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Abstract
A line replaceable unit (LRU) is a collection of connected parts in a system that is

replaced when any part of the LRU fails. Companies use LRUs as a mechanism to

reduce downtime of systems following a failure. The design of LRUs determines

how fast a replacement is performed, so a smart design reduces replacement and

downtime cost. A firm must purchase/repair a LRU upon failure, and large LRUs

are more expensive to purchase/repair. Hence, a firm seeks to design LRUs such

that the average costs per time unit are minimized. We formalize this problem in

a new model that captures how parts in a system are connected, and how they are

disassembled from the system. Our model optimizes the design of LRUs such that

the replacement (and downtime) costs and LRU purchase/repair costs are minimized.

We present a set partitioning formulation for which we prove a rare result: the optimal

solution is integer, despite a nonintegral feasible polyhedron. Second, we formulate

our problem as a binary linear program (BLP). The article concludes by numerically

comparing the computation times of both formulations and illustrates the effects of

various parameters on the model’s outcome.
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1 INTRODUCTION

System failures are major frustrations for their users. The con-

sequences of failures can vary from discomfort, to disutility,

to direct cost penalties such as downtime cost. In particu-

lar, industries that rely on systems to render a service or to

manufacture a product experience high downtime cost. For

example, the downtime cost of a computer system of a broker-

age company is roughly between $100 000 and $1 000 000 per

hour (CNET News, 2001) and the downtime cost in the semi-

conductor industry is in the order of magnitude of $100 000

per hour (Parent, 2000). Together, the cost of downtime and

maintenance can constitute up to 70%–80% of a system’s

total life cycle costs (Öner et al., 2007). As a consequence,

it is crucial for a company’s profitability to minimize the

cost of downtime and maintenance. Significant cost reduc-

tions can be realized during the design phase of a system

with relatively little effort. Asiedu and Gu (1998) show that

70%–85% of the total life cycle costs are determined during

the design phase, even though costs accrued in this phase only

accounts for 10%–20% of the life cycle costs (Norman, 1990;

Öner et al., 2007; Saranga & Kumar, 2006). Hence, prac-

tice and research explore various system design concepts that

enable a reduction of the after-sales costs including down-

time and maintenance costs. Such concepts include common

components (Briant & Naddef, 2004; Driessen et al., 2017;

Thonemann & Brandeau, 2000), reliability and redundancy

optimization (Öner et al., 2013; Xie et al., 2014), and a

smart design of line replaceable units (LRUs) (Parada Puig &

Basten, 2015).

A LRU is a collection of connected system parts that

can be easily replaced when one of the parts in the LRU

fails. An example of such a LRU is the wheel of a car that

can be quickly replaced by a spare wheel in case of a tire
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puncture. The design of LRUs has a particularly large effect

on downtime and maintenance, because they directly deter-

mine long a maintenance intervention lasts (Birolini, 2007;

Dhillon, 1999; Kumar et al., 2012; Muckstadt, 2004). It

is crucial for companies to design the LRUs in a smart

way that minimizes the maintenance and downtime costs.

Discussions with our project partners, ASML (a manufac-

turer in the semiconductor industry) and Dutch Railways (a

maintenance, repair and overhaul [MRO] company in the rail-

way industry), indicate that this problem is highly relevant for

their industries. Similarly, two case studies (Parada Puig &

Basten, 2015; van Geel, 2018) at Thales (a manufacturer in

the defense industry) and a case study (van Deursen, 2020)

at Canon (a manufacturer of industrial printing equipment)

report the same relevance, and other examples where LRUs

are deliberately designed include Durand (2001), Brasseur

et al. (2012), Air France Industries KLM Engineering and

Maintenance (2013), and Klauke et al. (2015). On a more gen-

eral note, the problem of designing LRUs is relevant for firms

that are responsible for operational aspects (downtime and

the maintenance) of systems. Such a firm may be an original

equipment manufacturer (OEM) that closes service contracts

with its customers, but it may also be a firm that sells MRO

as a service to the user. Examples of OEMs that consider

the design of LRUs include PACCAR or Volkswagen Group

(trucking industry), Airbus (aviation industry), and the afore-

mentioned manufacturers ASML, Thales, and Canon; while

examples of MROs that consider the design of LRUs include

the aforementioned Dutch Railways and Air France Industries

KLM Engineering & Maintenance (aviation industry).

LRUs are designed based on a given system design in prac-

tice. At an OEM, who designs the systems itself, the engineers

design the system and subsequently they define the LRUs.

The problem of defining the LRUs for a given design of the

system is called LRU design. If development time allows, the

OEM’s design department may redesign their system design

based on the outcome of a LRU design, and subsequently

determine the LRUs again. A MRO does not design the sys-

tem itself and thus starts with a given design of the system,

when designing the LRUs. Similar to the OEM, the outcome

of the LRU design may lead a MRO to modify the initial sys-

tem design and derive the LRUs from this revised design. This

interactive process between system design and LRU design is

a powerful concept to reduce the total expected costs for an

OEM or MRO.

A system consists of various critical parts that are all con-

nected to each other. As soon as one of these parts fails,

the entire system is down and the company incurs downtime

cost. To reduce the downtime cost, it is essential to quickly

restore the system to a functioning state by replacing the

failed part. Firms typically group parts in LRUs such that each

LRU can be replaced quickly if any of the parts in this LRU

fails. As designers make larger LRUs, the purchase costs typi-

cally increase, because the LRU contains more parts and thus

more value. The purchase cost can refer to the purchase cost

of a new LRU or to the purchase cost of a repair depend-

ing on the context. The failure of any part in a LRU triggers

the failure of the entire LRU. The LRU’s failure rate there-

fore equals the sum of the failure rates of the parts in the

LRU.
1

Larger LRU incur higher purchase cost and fail more

often than smaller LRUs. Now, the challenge is to optimally

design the LRUs such that the average costs per time unit

are minimized. We address this problem in this article when

a LRU design is required to partition the parts into LRUs.

The first reason for considering this partition constraint

comes from interviews with our project partners. If parts

are partitioned into LRUs, replacement ambiguity is avoided.

Replacement ambiguity is the situation in which a part fails

and it is contained in more than one LRU. The engineer can

then decide what LRU to replace and this leads to each sys-

tem being maintained differently, which is undesirable from

an asset configuration management perspective. Second, par-

titioned LRUs simplify the OEM’s/MRO’s production and

functional testing procedures of LRUs (van Geel, 2018, p. 19).

A third reason for a partitioning constraint is that it is in line

with common practice in engineering for reliability and main-

tenance Birolini (2007, p. 154). Nevertheless, the problem

can also be solved without the partition constraint as shown

in the appendix. In the remainder (Section 5) we numerically

illustrate that the partition restriction leads to very limited

increased costs, while it significantly increases the practical

applicability of the LRU design.

Our LRU design problem relates to multi-component main-

tenance research with structural dependencies. Structural

dependency between parts occurs when some parts have to be

replaced or removed before the failed part can be replaced.

Practitioners frequently face this type of dependency, but the

academic field studying it “is wide open … and there have

only been a few articles published on this topic” (Nicolai

& Dekker, 2008). The problem of designing LRUs naturally

falls into this class, and only two papers address this problem.

Thomas (1986) poses the question whether to replace the

entire car, the engine or just the piston rings in case the

piston rings need replacement. More recently, Parada Puig

and Basten (2015) have revisited the question posed by

Thomas (1986) and propose a model to design LRUs based

on a narrow set of potential LRUs. Both works start from

a bill of materials structure, that is, the system’s structure

is a tree. The major issue with tree structure is that it does

not capture the structural dependencies between parts. Tree

structures cannot model the connections that exist and that

have to be broken in order to replace a failed part, that is,

the connections between parts need not adhere to a tree struc-

ture. By contrast, we focus on the connections (cables, hoses,

bolt-nut connections etc.) between various parts in a system,

that is, we consider the structural dependencies between parts.

We explicitly incorporate disassembly sequences that exist

1
This holds when the part’s time between failures is exponentially distributed

and represents a good approximation in other circumstances.
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DRIESSEN ET AL. 3

for maintenance based on connections. Literature typically

considers part based disassembly sequences: Part B must be

disassembled before part A can be disassembled (De Fazio

& Whitney, 1987; Gupta & Krishnan, 1998; Lambert, 2007).

This means that all connections that part B has with other

parts have to be broken before the connections of part A

can be broken that enable part A’s replacement. We capture

these disassembly dynamics by considering the connections

between parts. The connection oriented disassembly sequence

has a major benefit over the part based disassembly sequence:

it allows a subset of a part’s connections to be broken. For

instance, if we want to replace the part A, connection based

disassembly sequences allow a subset of part B’s connections

to be broken; whereas the part based disassembly sequence

forces all connections of part B to be broken. Only breaking

a subset of connections is common in practice—as observed

at our project partners, for example, part B can be tilted after

unmounting the bolts and leaving a hose still attached to this

part. Subsequently, a part A can be reached and replaced

without fully disconnecting part B.

Modeling the disassembly of a system based on its con-

nections and the subsequent disassembly sequence is new

and it enables us to accurately model the time needed

to replace any LRU. Thus, we endogenize the replace-

ment time and therewith the replacement cost of a LRU.

This contrasts with Parada Puig and Basten (2015) where

the replacement time and cost are exogenously given. Fur-

thermore, our modeling considers the full set of potential

LRUs, because a LRU—in our model—can be any combi-

nation of parts in the system, contrasting Thomas (1986)

and Parada Puig and Basten (2015) who must pre-define

all potential LRUs and their corresponding parameter

values.

Another line of related research studies LRUs (which are

called modules) from a systems engineering perspective,

where “a module is a unit whose parts are powerfully con-

nected among themselves, and relatively weakly connected to

parts in other units” (Baldwin & Clark, 2000). This literature

stream typically describes a system in terms of parts that are

connected to each other, and these connections are commonly

depicted in a design structure matrix (DSM) (Steward, 1981).

However, this approach neglects the disassembly sequence

dynamics that exist for the replacement of LRUs (or mod-

ules). Papalambros and Michelena (1997) manage to relate

this line of research to the area of optimization. Most research

in the DSM stream aims to define measures of modularity and

optimize these. Such measures typically focus on the connec-

tions between parts, and the measures prefer a high number

of intra-LRU connections and a low number of inter-LRU

connections; see Newcomb et al. (1998), Sharman and Yas-

sine (2004), Sosa et al. (2007), and Wilschut et al. (2017).

Optimization of of the defined measures is typically done by

using genetic algorithms (Meier et al., 2006; Yu et al., 2007)

or simulated annealing (Thebeau, 2001). The aforementioned

research focuses on single product DSMs, whereas Alvaro

and Harrison (2011) and Kim et al. (2021) apply this approach

to a product family.

Work on (dis)assembly sequencing also has similarities

to our work, because this stream models the (dis)assembly

sequence that exists between parts in much detail (De Fazio

& Whitney, 1987; Gupta & Krishnan, 1998; Lambert, 2007).

Research in this area optimizes the (dis)assembly sequence.

We do not optimize this sequence, but we consider it to be

given and focus on optimizing the design of LRUs.

Finally, our work relates to several operations research

studies that consider the impact of modular design on oper-

ations. These studies are often combinatorial in nature and

aim to design product configurations such that the demand

for end products is met and the average costs per time

unit are minimized; see for example Swaminathan and

Tayur (1998), Thonemann and Brandeau (2000), and Briant

and Naddef (2004). The structure in their problems superfi-

cially resembles ours, because we also study configurations

of parts, which are LRUs in our case. The main difference is

that we model the connections between parts and the disas-

sembly sequences that exist for maintenance, while research

in this stream does not.

In this article, we make the following contributions: we

present (i) a novel way to represent a system with multiple

parts that are connected to each other, and we incorporate the

disassembly sequences that exist for maintenance based on

connections rather than parts. Modeling the connections and

disassembly sequences enables us to endogenize the down-

time cost due to the replacement of a LRU containing the

failed part. Next, we use our system description to define an

optimization model—called LRU DESIGN—that minimizes

the sum of the replacement and purchase cost by optimizing

the LRU designs.

We provide (ii) a set partitioning formulation of LRU

DESIGN that allows for branch-and-price algorithms. Next,

we prove (iii) that an optimal solution to the set partition-

ing formulation is integer. This result is rather remarkable,

because the feasible polyhedron is not integral. There exist

two problems that also possess this property: a minimax trans-

portation problem (Ahuja, 1986) and a multi-period machine

assignment problem (Zhang & Bard, 2006). The majority of

research typically shows the existence of an optimal integer

solution by proving that the feasible polyhedron is integral

(e.g., through total unimodularity), see for instance Hillier and

Brandeau (1998), Ball et al. (2003), Churchill et al. (2012),

Gamvros and Raghavan (2012). Our integrality result cannot

be established in this way due to the nonintegral polyhedron.

We define a so-called LRU cycle and prove that a solution

that contains such a LRU cycle is suboptimal. Subsequently,

we study the matrix encoding of an optimal solution to prove

that an optimal solution is integer. We believe that our proof

approach is applicable and promising to other problems that

can be formulated as set partitioning problems, because one’s

main effort would be to prove suboptimality of partitions that

contain cycles.
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4 DRIESSEN ET AL.

Fourth (iv), we focus on additive failure rates such that we

obtain linear expressions that support the implementation of

our models. We specify the set partitioning formulation under

such additive failure rates and we formulate LRU DESIGN as a

binary non-linear program (BNLP), which we then transform

into a BLP.

Finally, (v) we illustrate that the set partitioning formula-

tion is suitable for large instances, and we study the effects

of various parameters on the model’s outcome. Moreover, we

numerically show that the relative cost impact of introduc-

ing a partitioning constraint is very limited, while we strongly

improve practical applicability of our model.

The rest of this article is organized as follows. In Section 2,

we discuss our system representation including the disassem-

bly sequences, and the optimization model LRU DESIGN.

We present a set partitioning formulation of LRU DESIGN in

Section 3, and we prove that an optimal solution is integer for

this formulation. In the succeeding part of the article, we focus

on additive failure rates (for implementation convenience)

and we present the set partitioning formulation under this

assumption. Moreover, we discuss a binary non-linear pro-

gramming (BNLP) formulation of LRU DESIGN in Section 4,

which we subsequently linearize to obtain a BLP. Finally in

Section 5, we numerically compare the computation times of

the BLP formulation to the set partitioning formulation, we

illustrate the effects of various parameter perturbations on the

model’s outcome, and illustrate the limited cost impact of the

partitioning constraint in our problem. We offer concluding

remarks in Section 6.

2 MODEL

First this section explains how a system with parts an con-

nections can be represented by means of an example. The

generalization then follows from the example and we present

the optimization model called LRU DESIGN.

2.1 An illustrative example

Consider a laptop repair shop that repairs laptops by remov-

ing failed parts from the laptop and replacing the failed parts

with new ones. The repair shop’s objective is to design the

LRUs such that it minimizes the cost of repair time and pro-

curement of new LRUs. We consider the illustrative example

of a laptop, because this system is technologically simple

and many people have some familiarity with it. Bear in mind

however that the model was designed for and has greater

financial impact for large and technologically complex sys-

tems. Unfortunately, such a system lacks the familiarity of

general readership.

The laptop example is based on data for a Dell Precision

7710 laptop (Dell Inc., 2016). Each part has a purchase cost

and a failure rate (in failures per year). Table 1 lists the esti-

mated purchase cost and fictitious failure rate for all parts (in

TABLE 1 Part identifier list.

Identifier Part name Part cost ($)
Failure rate
(failures/year)

A Battery 180 0.3

B Hard disk drive 170 0.2

C Keyboard 45 0.001

D WLAN card 50 0.15

E Palm rest 45 0.001

F Speakers 14 0.05

G Heat sink 75 0.1

H 4 GB video card 250 0.1

I Display housing 40 0.001

J Display front cover 20 0.001

K Display bezel 170 0.25

L Motherboard 270 0.25

M Computer base 50 0.001

failures per year). The purchase cost of a part is its price found

online on websites such as https://www.amazon.com.

Each of the parts is connected to other parts, for example,

the palm rest is screwed to the computer base, the palm rest

is wired to the motherboard, and the palm rest is screwed to

the keyboard. Thus, there exist connections {E,M}, {E,L},
and {C,E}. In the event the palm rest fails and one wishes

to replace it individually, one has to break all the connec-

tions that the palm rest has with all other parts: {E,M},
{E,L}, and {C,E}. Breaking each connection takes a certain

amount of time, which translates into costs by multiplying

the time with a cost rate, for example, the salary rate of the

repair man or downtime penalty. When the failed palm rest

has been disconnected from the system, a new and identical

palm rest from stock is installed into the system by reconnect-

ing all the connections that have been broken previously (in

order to remove the failed palm rest). This re-establishing of

connections also costs time and can be translated into costs

as well. Finally, a new palm rest is purchased to replenish

the stock.

All information about parts, connections, failure rates, pur-

chase costs, and the costs of breaking and re-establishing

connections can be represented in a weighted un-directed

graph. The parts correspond to vertices, and the part con-

nections correspond to the edges. Furthermore, the failure

rates and the purchase costs are attributes of the vertices, and

the costs for breaking and re-establishing a connection corre-

spond to the weight of an edge in the graph. For the laptop

example, this graph can be found by analyzing the Owner’s

manual (Dell Inc., 2016), and is given in Figure 1. The cost of

breaking and re-establishing a connection is an estimate and

is depicted on the edges.

We call the graph in Figure 1 the connection graph. The

connection graph may suggest that we only need to break

connections {E,L}, {E,M}, and {C,E} in order to remove

the palm rest. However, the Owner’s manual states that in

order to disconnect the palm rest, one must first break the
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DRIESSEN ET AL. 5

FIGURE 1 The laptop’s connection graph.

FIGURE 2 The laptop’s precedence graph.

connections that enable one to remove the keyboard (C),

the hard disk drive (B), and the battery (A); that is, there

is a disassembly sequence. This implies that there exists a

collection of connections that needs to be broken prior to

breaking the connections {E,L}, {E,M}, or {C,E} (Dell

Inc., 2016). Therefore there is a predecessor–successor rela-

tionship for breaking (and re-establishing) the connections

depicted in Figure 1. We model such predecessor–successor

relationships in a separate directed graph, which we call

the precedence graph. An arc in the precedence graph from

an edge {E,M} to {E,L} implies that connection {E,L}
must be broken before connection {E,M} can be bro-

ken. Figure 2 shows the precedence graph for the laptop

(Dell Inc., 2016).

The combination of the precedence graph (Figure 2) with

the connection graph (Figure 1), enables us to list all connec-

tions that need to be broken for the replacement of an arbi-

trary part. For example, replacement the palm rest requires

one to break {E,M}, {E,L}, and {C,E} (see Figure 1),

but to break connection {C,E} one must first break the

set of connections {{A,L}, {A,M}, {B,M}, {B,L}, {C,L}}
(see Figure 2). Similarly, one can determine all connections

that need to be broken prior to {E,M} and {E,L}. Finally,

one must break all connections {{A,L}, {A,M}, {B,M},
{B,L}, {C,E}, {C,L}, {E,L}, {E,M}} in order to remove

the palm rest (E). Analogously, one must break con-

nections {{A,L}, {A,M}, {B,M}, {B,L}, {C,E}, {C,L}} to

replace the keyboard.

If one decides to replace the palm rest (E) together

with the keyboard (C), that is, define a LRU Q that con-

tains C and E. However, this implies that the engineer

has to break all connections {{A,L}, {A,M}, {B,M}, {B,L},
{C,L}, {C,E}, {E,L}, {E,M}} upon the failure of either the

palm rest (E) or the keyboard (C). As a consequence, one must

break the expensive edges {E,L} and {E,M}more often than

when the palm rest and the keyboard are separate LRUs. Fur-

thermore, the LRU Q has a higher purchase cost as well as a

higher failure rate compared to the palm rest and the keyboard

individually. Therefore, it is better to keep the palm rest and

the keyboard as separate LRUs instead of combining these

two into one LRU Q. It is now of interest to find the optimal

design of LRUs that minimizes the sum of the replacement

and purchase costs, based on the connection graph in Figure 1

and the precedence graph in Figure 2.
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6 DRIESSEN ET AL.

2.2 A generic model

The example above illustrates how a system is built up and

what relationships parts and connections have. The approach

used for the laptop also applies to more complicated systems

such as a bogie in a train (Bombardier/Dutch Railways), a

positioning module in a lithography system (ASML), a truck

engine (PACCAR/Volkswagen Group), or a jet engine (Pratt

& Whitney). Consider a system that consists of multiple parts,

and assume that maintenance is done upon the failure of a

part. Moreover, assume that one can accurately and instan-

taneously determine which part has failed, when the system

fails as a whole. The system is defined by two graphs: a

weighted undirected connection graph G and a directed prece-

dence graph D. The graph G = (V ,E) is characterized by

the set of vertices V and the set of edges E. The former

set V corresponds to the parts in the system, and the latter

set E corresponds to the connections between parts. Further-

more, each part in G has a purchase cost 𝓁 ∶ V → R+,

where R+ = {x ∈ R | x > 0}, and the failure rate for

any subset Q ⊆ V is given by 𝜆 ∶ 2
V → R+. We also

assume that the failure rate function is subadditive, that is,

𝜆(R) + 𝜆(T) ≤ 𝜆(R∪ T), ∀R,T ⊆ V . The cost to break a con-

nection are given by the edge costs w ∶ E → R+. We use

the terms part and vertex interchangeably, as well as the terms

connection and edge. At the end of this section, we discuss

what happens when LRUs are repaired rather than purchased,

see Remark 1.

Besides the connection graph G, the precedence graph D =
(E,A) is an unweighted acyclic directed graph that captures

the disassembly sequences of the connections e ∈ E. The

set A corresponds to the set of arcs, and an arc (i, j) ∈ A
from edge i to edge j exists if and only if edge j has to be

broken before edge i can be broken. We assume that arcs

can only connect adjacent edges, that is, all arcs in A satisfy

({u, v}, {v, x}) ∈ A ∶ u, v, x ∈ V and u ≠ v ≠ x. The graph D
determines a set H(e) of successor edges for each edge e ∈ E.

This set H(e) consists of all edges including the edge e ∈ E
that must be disconnected in order to break e, and it can be

determined by using the polynomial time Algorithms 1 and 2

in Appendix A. We remark that H(e) is a directed tree rooted

at e ∈ E.

Further, we assume that G is connected, without loss of

generality. If G is not connected, there do not exist arcs

({u, v}, {x, y}) ∈ A such that u, v are in one connected com-

ponent and x, y are in the other connected component. This

follows because all arcs in A satisfy ({u, v}, {v, x}) ∈ A ∶
u, v, x ∈ V and u ≠ v ≠ x. Hence, if G were disconnected, we

apply our model to each connected component of G with the

precedence graph induced by the connected component. We

define a LRU design as partition S of the vertices V . Connec-

tions need to be broken in order to replace a LRU Q ∈ S from

the system. First, define the set B(Q) = {{u, v} ∈ E ∶ u ∈
Q, v ∈ V ⧵ Q}, as the set of all edges that connect the LRU

to the other parts of the system not in the LRU. That is, the

set B(Q) contains the edges that cross the LRU’s boundary.

Next, for the removal of LRU Q, one must break all the edges

e ∈ B(Q), as well as all the edges that need to be broken prior

to breaking any edge e ∈ B(Q). Hence, Γ(Q) =
⋃

e∈B(Q) H(e)
is the set of edges that need to be broken in order to replace

a LRU Q ∈ S. Note that Γ(Q) may contain edges between

vertices in Q. This is a model feature as it allows us to model

LRUs such as a chain between two cogwheels. If each each

link in a chain is a vertex that is connected to the adjacent ver-

tices, then it is necessary to break the edge between two links

in order to remove the chain from the cogwheels. A detailed

example of this is provided in Appendix B.

Each LRU Q has a purchase cost and failure rate. The pur-

chase cost of a LRU is given by the sum of the purchase cost

of all parts in the LRU, that is, the LRU’s purchase cost is

given by
∑

v∈Q 𝓁(v). We relax this assumption in Remark 1.

The total failure rate of a LRU Q ∈ S is denoted by 𝜆(Q).
Next, we derive the cost expression for a LRU Q ∈ S. Upon

the failure of LRU Q, one breaks all edges e ∈ Γ(Q) resulting

in the cost
∑

e∈Γ(Q) w(e). Moreover, replacement LRU is pur-

chased at cost
∑

v∈Q 𝓁(v). The average cost per time unit of

LRU Q then satisfies

𝜔(Q) = 𝜆(Q)

(
∑

e∈Γ(Q)
w(e) +

∑

u∈Q
𝓁(u)

)

. (1)

As a LRU design S is a partition of V and Q ∈ S, the total

cost per time unit of a LRU design is given by

𝜋(S) =
∑

Q∈S
𝜔(Q). (2)

The LRU DESIGN problem can now be simply stated as: What

is the LRU Design S that minimizes 𝜋(S)?
LRU DESIGN has the property that each LRU Q in optimal

solution S∗ to LRU DESIGN is a connected subgraph of G.

Lemma 1. Each LRU Q ∈ S∗ is a connected
subgraph of G, for any optimal solution S∗ to
LRU DESIGN.

Proof. Let S∗ be an optimal solution to LRU

DESIGN, and let 𝒥 be the finite set of connected

components in the subgraph induced by a LRU

Q ∈ S∗. The set 𝒥 partitions Q, 𝒥 is finite

because Q is finite, and |𝒥 | ≥ 1. The case of

|𝒥 | = 1 implies that Q is connected, which

satisfies our claim. Thus, we consider the case

|𝒥 | ≥ 2 in the remainder, and observe that in

this case ∄{u, v} ∈ E ∶ u ∈ 1, v ∈ 2 with

1,2 ∈ 𝒥 . Note further that Γ( ) ⊆ Γ(Q) for a

 ∈ 𝒥 as  ⊂ Q. Thus,

∑

∈𝒥
𝜔( ) =

∑

∈𝒥
𝜆( )

∑

e∈Γ( )
w(e) +

∑

∈𝒥
𝜆( )

∑

u∈
𝓁(u)

≤

∑

∈𝒥
𝜆( )

∑

e∈Γ(Q)
w(e) +

∑

∈𝒥
𝜆( )

∑

u∈
𝓁(u)
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DRIESSEN ET AL. 7

<

∑

∈𝒥
𝜆( )

∑

e∈Γ(Q)
w(e) +

∑

∈𝒥
𝜆( )

∑

u∈Q
𝓁(u)

≤ 𝜆(Q)
∑

e∈Γ(Q)
w(e) + 𝜆(Q)

∑

u∈Q
𝓁(u) = 𝜔(Q),

where the first inequality follows from the fact

that each Γ( ) ⊆ Γ(Q), ∀ ∈ 𝒥 . The sec-

ond inequality follows from the fact that  ⊂ Q,
∀ ∈ 𝒥 , and thus

∑
u∈ 𝓁(u) <

∑
u∈Q 𝓁(u),

∀ ∈ 𝒥 . The last inequality holds because 𝒥
partitions Q and the failure rate function 𝜆 is sub-

additive. Hence, we obtain
∑
∈𝒥 𝜔( ) < 𝜔(Q),

where 𝒥 partitions Q. However, this contradicts

the optimality of S∗. Therefore, each LRU Q ∈ S∗
is a connected subgraph of G, for any optimal

solution S∗ to LRU DESIGN. ▪

We will use Lemma 1 throughout this article. We conclude

this section with two remarks that enable further generaliza-

tion of LRU DESIGN.

Remark 1. We assumed that we do not repair a

LRU, and thus purchase a new one. If we relax

this assumption and repair a failed part of a LRU

offline, we incur a total repair cost per time unit

of 𝜆(V)
∑

v∈V q(v), where q(v) is the repair cost

of part v. However, if we repair a part of a LRU,

we have to test the entire LRU to see whether it

functions again. This means that we have to test

each part in the LRU, and thus 𝓁(v) now repre-

sents the cost of testing part v ∈ V offline. Larger

LRUs, now, have more parts that need to be tested

before the LRU is certified as repaired. The total

repair cost per time unit is sunk as 𝜆(V)
∑

v∈V q(v)
is independent of the LRU design, but we still

have the testing cost per time unit of LRU Q
given by 𝜆(Q)

∑
u∈Q 𝓁(u). Hence, our model LRU

DESIGN still applies.

3 SET PARTITIONING FORMULATION

We formulate LRU DESIGN as a set partitioning problem

that allows for column generation (branch-and-price) algo-

rithms. Then, we prove in Section 3.1 that an optimal solution

to the relaxed master program is integer, even though the

feasible polyhedron is not integral. Finally, we present the col-

umn generating procedure in Section 3.2 for solving the set

partitioning formulation of LRU DESIGN.

A LRU design S consists of various non-intersecting LRUs

Q ∈ S that have been selected. Let𝒮 = 2
V

be the power set of

V from which LRUs can be selected; 𝒮 contains all possible

LRUs. Then, S ⊂ 𝒮 , and our objective is to determine which

solution S is optimal via column generation. A LRU Q ∈ 𝒮
can equivalently be represented as a (0, 1) column with |V|
elements, where a 1 indicates that a vertex is in the LRU Q

and a 0 denotes that the vertex does not belong to the LRU Q.

Hence, we consider the matrix entries zvQ that equal 1 if v ∈ Q
and 0 otherwise. Then, a column from the matrix Z = (zvQ)
corresponds to LRU Q, and we denote this column by ZQ.

Note that a column ZQ and the LRU Q ⊆ V are equivalent

representations of a LRU.

Let xQ be the indicator variable that denotes whether a

LRU Q ∈ 𝒮 is selected for the LRU design S. We denote

x as the vector consisting of all entries xQ. Given x, we can

straightforwardly derive the solution S to LRU DESIGN by

S = {Q ∈ 𝒮 ∶ xQ > 0}. We remark that S can equivalently

be represented as the submatrix  = {ZQ ∶ xQ > 0} of Z.

Our objective is to determine the LRU design in terms of xQ
such that the average costs per time unit are minimized, and

each part v ∈ V is included in exactly one LRU. We capture

this in the master problem (M):

(M) min
x

∑

Q∈𝒮
𝜔(Q)xQ, (3a)

s.t.

∑

Q∈𝒮
zvQxQ = 1, ∀v ∈ V , (3b)

xQ ∈ {0, 1}, ∀Q ∈ 𝒮 . (3c)

Recalling that 𝜔(Q) is the average cost per time unit of using

LRU Q, the objective function (3a) minimizes the costs of

using the selected LRUs, while constraints (3b) enforce that

each part v ∈ V is included in exactly one LRU Q ∈ 𝒮 . The

set 𝒮 is exponentially large, so straightforward optimization

is not tractable. Therefore, we propose to solve the LP relax-

ation of M by column generation. We relax the integrality of

xQ to obtain the LP relaxation of the master problem called

LPM:

(LPM) min
x

∑

Q∈𝒮
𝜔(Q)xQ (4a)

s.t.

∑

Q∈𝒮
zvQxQ = 1, ∀v ∈ V , (4b)

0 ≤ xQ ≤ 1, ∀Q ∈ 𝒮 . (4c)

Subsequently, we present our procedure for solving LPM in

Section 3.2.

3.1 Integrality and polyhedral structure of LPM

We prove that an optimal solution to LPM is integer by con-

sidering a so-called LRU cycle. We show that if a given

fractional solution contains a LRU cycle, there exists a feasi-

ble solution to LPM without the LRU cycle and strictly lower

costs. This implies that an optimal solution does not contain

a LRU cycle.

Let x̃ be a fractional solution to LPM with ̃S = {Q ∈ 𝒮 ∶
x̃Q > 0} (or equivalently ̃ = {ZQ ∶ x̃Q > 0}) and such that

each Q ∈ ̃S is a connected subgraph of G. Furthermore, let x∗
be an optimal solution to LPM with S∗ = {Q ∈ 𝒮 ∶ x∗Q > 0}

 15206750, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.22146 by E

V
ID

E
N

C
E

 A
ID

 - B
E

L
G

IU
M

, W
iley O

nline L
ibrary on [01/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 DRIESSEN ET AL.

(a)

(b)

FIGURE 3 The input graphs and a LRU cycle C. (A) Connection graph. (B) Precedence graph.

(or equivalently ∗ = {ZQ ∶ x∗Q > 0}) and that also has

connected LRUs Q ∈ S∗. Note that x∗ exists by Lemma 1.

Definition 1. A LRU cycle is a collection of

LRUs C = {Q1,Q2, … ,Qn} such that each Qi is

connected, n ≥ 3 and for all 1 ≤ i ≤ n we have

Qi ∩ Qi+1 ≠ ∅, (Qi ∩ Qi+1) ⧵ (Qi+1 ∩ Qi+2) ≠ ∅,

(Qi+1 ∩ Qi+2) ⧵ (Qi ∩ Qi+1) ≠ ∅, with n + 1 ≡

1 (mod n) and n + 2 ≡ 2 (mod n).

For an example of a LRU cycle, we refer the reader to

Figure 3. We remark that there can exist a solution contain-

ing a LRU cycle such that the solution is an extreme point of

the feasible polyhedron of LPM, and thus the feasible polyhe-

dron of LPM is not integral. Next, we prove that an optimal

solution to LPM does not contain a LRU cycle: Theorem 1.

Theorem 1. An optimal solution x∗ to LPM does
not contain a LRU cycle.

The proof of this theorem uses a technical lemma that can

be found in the Appendix D as Lemma 2 and the following

two concepts. Define the set of edges that is broken for a LRU

X but not for a LRU Y by (X,Y) = Γ(X)⧵Γ(Y). Furthermore,

modular arithmetic is used for the indices of LRUs that form

a cycle Qi, Qi−1, and Qi+1 with 1 ≤ i ≤ n, n+ 1 ≡ 1 (mod n),
and Q0 ≡ Qn.

Proof. We show that a solution to LPM that

contains a LRU cycle is suboptimal. Let x̃ be a

solution to LPM such that each Q ∈ ̃S is con-

nected and there exists a LRU cycle C = {Q1,

Q2, … ,Qn} ⊆
̃S with minimal n. Note that

a solution that contains a LRU cycle must be

fractional. We prove that there exists a feasible

solution x′ to LPM with S′ = {Q ∈ 𝒮 ∶ x′Q > 0}
in which the LRU cycle C does not exist and

𝜋(S′) < 𝜋(̃S).
Let Wj = min

{∑
e∈ (Qj∩Qj+1

,Qj)
w(e),

∑
e∈ (Qj∩Qj−1

,Qj)
w(e)

}
for each LRU Qj. Next, we

consider a specific LRU Qi = argminQj∈C{Wj}
and we assume that Wi =

∑
e∈ (Qi∩Qi+1

,Qi)
w(e)

(later we consider Wi =
∑

e∈ (Qi∩Qi−1
,Qi)

w(e)).
We create an alternative solution x′ by parti-

tioning Qi in Qi ∩ Qi+1 and Qi ⧵ Qi+1. That is,

let the alternative solution x′ be identical to x̃
except for the entries x′Qi

= 0, x′Qi⧵Qi+1

= x̃Qi , and
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DRIESSEN ET AL. 9

x′Qi∩Qi+1

= x̃Qi . We have

𝜋(S′) − 𝜋(̃S)

≤ x̃Qi

(

𝜆(Qi ∩ Qi+1)
∑

e∈Γ(Qi∩Qi+1
)
w(e) + 𝜆(Qi ∩ Qi+1)

+
∑

u∈Qi∩Qi+1

𝓁(u)𝜆(Qi ⧵ Qi+1)
∑

e∈Γ(Qi⧵Qi+1
)
w(e)

+𝜆(Qi ⧵ Qi+1)
∑

u∈Qi⧵Qi+1

𝓁(u) − 𝜆(Qi)
∑

e∈Γ(Qi)
w(e)

−𝜆(Qi)
∑

u∈Qi

𝓁(u)

)

< x̃Qi

(

𝜆(Qi ∩ Qi+1)
∑

e∈Γ(Qi∩Qi+1
)
w(e) + 𝜆(Qi ⧵ Qi+1)

∑

e∈Γ(Qi⧵Qi+1
)
w(e) − 𝜆(Qi)

∑

e∈Γ(Qi)
w(e)

)

≤ x̃Qi

([
∑

e∈Γ(Qi∩Qi+1
)
w(e) −

∑

e∈Γ(Qi)
w(e)

]

𝜆(Qi ∩ Qi+1)

+

[
∑

e∈Γ(Qi⧵Qi+1
)
w(e) −

∑

e∈Γ(Qi)
w(e)

]

𝜆(Qi ⧵ Qi+1)

)

,

where the first inequality follows from the

subadditivity of 𝜆 and the second inequal-

ity holds as 𝜆(Qi ∩ Qi+1)
∑

u∈Qi∩Qi+1

𝓁(u) +
𝜆(Qi ⧵Qi+1)

∑
u∈Qi⧵Qi+1

𝓁(u) < 𝜆(Qi)
∑

u∈Qi
𝓁(u),

because Qi ∩ Qi+1 and Qi ⧵ Qi+1 partition Qi,

𝜆(Q) > 0 for all Q ⊆ V , and 𝓁(v) > 0

for all v ∈ V . The last inequality follows

after rearranging terms and using the subaddi-

tivity of the failure rate function 𝜆. We con-

tinue by proving that the right hand side of

the last equality is less than zero; that is, we

show that
∑

e∈Γ(Qi∩Qi+1
) w(e) ≤

∑
e∈Γ(Qi)

w(e) and
∑

e∈Γ(Qi⧵Qi+1
) w(e) ≤

∑
e∈Γ(Qi)

w(e). We have

𝜋(S′) − 𝜋(̃S)

< x̃Qi

([
∑

e∈Γ(Qi∩Qi+1
)
w(e) −

∑

e∈Γ(Qi)
w(e)

]

𝜆(Qi ∩ Qi+1)

+

[
∑

e∈Γ(Qi⧵Qi+1
)
w(e) −

∑

e∈Γ(Qi)
w(e)

]

𝜆(Qi ⧵ Qi+1)

)

= x̃Qi

([
∑

e∈Γ(Qi∩Qi+1
)
w(e) −

∑

e∈ (Qi∩Qi−1
,Qi−1

)
w(e)

−
∑

e∈Γ(Qi)⧵ (Qi∩Qi−1
,Qi−1

)
w(e)

]

𝜆(Qi ∩ Qi+1)

+

[
∑

e∈Γ(Qi⧵Qi+1
)
w(e) −

∑

e∈ (Qi∩Qi+1
,Qi+1

)
w(e)

−
∑

e∈Γ(Qi)⧵ (Qi∩Qi+1
,Qi+1

)
w(e)

]

𝜆(Qi ⧵ Qi+1)

)

≤ x̃Qi

([
∑

e∈Γ(Qi∩Qi+1
)
w(e) −

∑

e∈ (Qi∩Qi−1
,Qi−1

)
w(e)

−
∑

e∈Γ(Qi∩Qi+1
)⧵ (Qi∩Qi+1

,Qi)
w(e)

]

𝜆(Qi ∩ Qi+1)

+

[
∑

e∈Γ(Qi⧵Qi+1
)
w(e) −

∑

e∈ (Qi∩Qi+1
,Qi+1

)
w(e)

−
∑

e∈Γ(Qi⧵Qi+1
)⧵ (Qi∩Qi+1

,Qi)
w(e)

]

𝜆(Qi ⧵ Qi+1)

)

≤ x̃Qi

([
∑

e∈Γ(Qi∩Qi+1
)
w(e) −

∑

e∈ (Qi∩Qi+1
,Qi)

w(e)

−
∑

e∈Γ(Qi∩Qi+1
)⧵ (Qi∩Qi+1

,Qi)
w(e)

]

𝜆(Qi ∩ Qi+1)

+

[
∑

e∈Γ(Qi⧵Qi+1
)
w(e) −

∑

e∈ (Qi∩Qi+1
,Qi)

w(e)

−
∑

e∈Γ(Qi⧵Qi+1
)⧵ (Qi∩Qi+1

,Qi)
w(e)

]

𝜆(Qi ⧵ Qi+1)

)

= 0.

The equality holds, because  (Qi∩Qi−1,Qi−1) ⊂
Γ(Qi) and (Qi∩Qi+1,Qi+1) ⊂ Γ(Qi). The second

inequality holds by Lemma 2. The last inequality

follows because Qi = argminQj∈C{Wj} and we

assumed that Wi =
∑

e∈ (Qi∩Qi+1
,Qi)

w(e). Hence,

x′ is a solution without the LRU cycle C and

satisfies 𝜋(S′) < 𝜋(̃S).
Next, consider the case Wi =

∑
e∈ (Qi∩Qi−1

,Qi)
w(e). Then, we create the solution

x′ by partitioning Qi in Qi ∩ Qi−1 and Qi ⧵ Qi−1,

and we follow the same procedure as above using

Lemma 2 and Wi =
∑

e∈ (Qi∩Qi−1
,Qi)

w(e). Hence,

the solution x′ does not have the LRU cycle C
and satisfies 𝜋(S′) < 𝜋(̃S). ▪

The result of Theorem 1 is illustrated by means of

Example 1.

Example 1. Suppose we have the connection

graph G with w(e) = 1, ∀e ∈ E and the prece-

dence graph D from Figure 3. Furthermore, we

consider the solution x̃ with a LRU cycle C ⊆
̃S

as drawn by the dashed ellipses in Figure 3. We

illustrate our procedure for splitting LRU a Qi
into Qi ∩ Qi+1 and Qi ⧵ Qi+1.

In this example, we have

Γ(Qi) = {{2, 12}, {2, 13}, {2, 4}, {3, 4},

{3, 5}, {3, 6}, {4, 5}, {4, 12}},

 15206750, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.22146 by E

V
ID

E
N

C
E

 A
ID

 - B
E

L
G

IU
M

, W
iley O

nline L
ibrary on [01/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 DRIESSEN ET AL.

Γ(Qi+1) = {{1, 2}, {10, 11}, {4, 12}, {5, 11},

{11, 12}, {12, 2}, {2, 4}, {4, 3}, {3, 5}},

Γ(Qi−1) = {{1, 3}, {4, 5}, {7, 8}, {5, 11}, {11, 12},

{2, 12}, {2, 4}, {3, 4}, {3, 5}},

Γ(Qi ∩ Qi−1) = {{1, 3}, {4, 3}, {3, 5}, {3, 6}},

Γ(Qi ⧵ Qi−1) = {{1, 3}, {2, 12}, {2, 13}, {2, 4},

{3, 4}, {3, 5}, {4, 5}, {4, 12}},

 (Qi ∩ Qi+1,Qi+1) = {{2, 12}, {2, 13}},

 (Qi ∩ Qi−1,Qi) = {{1, 3}},

 (Qi ∩ Qi−1,Qi−1) = {{3, 6}}.

One can use the above expressions to verify that

the procedure in the proof of Theorem 1 yields a

solution x′ such that 𝜋(S′) < 𝜋(̃S).

Next, we introduce the concept of totally balanced matrices

and Theorem 2 that—in combination with Theorem 1—helps

us to prove that an optimal solution to LPM is integer. The

definition of a totally balanced matrix can for instance be

found in Anstee and Farber (1984) or Hoffman et al. (1985).

Definition 2. A binary matrix  is totally bal-

anced if it does not contain a square submatrix R
that has no identical columns and the sum of each

row and column equals to two.

Given this definition, we can now introduce Theorem 2,

stating that the matrix encoding of an optimal solution to LPM

is totally balanced. Note that we do not consider the constraint

matrix of LPM—as is mostly done—but we study the matrix

encoding of an optimal solution to LPM.

Theorem 2. If an optimal solution x∗ does not
contain a LRU cycle, then∗ is totally balanced.

Proof. By the definition of a totally balanced

matrix the statement of this theorem is equiva-

lent to: given an optimal solution x∗—with S∗ or

equivalently ∗—that does not contain a LRU

cycle, there does not exist a binary k × k subma-

trix R of ∗ with k ≥ 3, no identical columns,

and such that the sum of each row and column of

R equals to two. We prove this by the contrapo-

sition, that is, we prove that if such a submatrix

exists, the solution contains a LRU cycle.

To be more precise, we prove the following

statement: Given a binary k × k matrix R with

k ≥ 3, no identical columns, and such that each

row and column sum to two, there exists an n× n
submatrix ̂R of R with minimal n ≥ 3, no identi-

cal columns, and such that each row and column

of ̂R sum to two. If we interpret the columns of ̂R
as LRUs and the rows of ̂R as vertices, then the

LRUs—corresponding to the columns of ̂R—are

a LRU cycle.

Consider an n × n submatrix ̂R of R with min-

imal n ≥ 3, no identical columns, and such that

each row and column of ̂R sum to two. Such a sub-

matrix ̂R exists, because R satisfies the same con-

ditions. We will rename the rows and columns of

̂R such that we can easily show that the columns

(LRUs) of ̂R are a LRU cycle. This renaming

procedure is as follows.

The first row is v1 and Q1 and Q2 are the

columns such that r̂v
1
,Q

1
= r̂v

1
,Q

2
= 1. This

follows without loss of generality, because ̂R is

binary and the sum of each row equals two. Fur-

thermore, note that all other values of v1 are zero.

Next, let v2 be the second row such that r̂v
2
,Q

2
= 1.

This is feasible because the sum of column Q2 is

two. Moreover, all other rows (except v1 and v2)

have the value 0 in column Q2. We also remark

that r̂v
2
,Q

1
= 0, since otherwise all other val-

ues in column Q1 (except for r̂v
1
,Q

1
and r̂v

2
,Q

1
) are

zero and this means that columns Q1 and Q2 are

identical, which is a contradiction.

Next, we label the column Qi such that r̂vi−1
,Qi =

1 for each i = 3, … , n, and we call the row

vi that satisfies r̂vi,Qi = 1, for all i = 3, … , n.

This can be done due to the following reasoning.

The columns Qj with 1 < j < i − 1 are such

that r̂vi−1
,Qj = 0, because each column Qj already

sums to two. Unless i = n, we have r̂vi−1
,Q

1
= 0

because otherwise we would have a i × i subma-

trix for which each row and column sum equal

2, i ≥ 3, and where no identical columns exists.

But this would contradict the fact that n is mini-

mal. Hence, we can label Qi such that r̂vi−1
,Qi = 1.

Moreover, all rows vj with 1 ≤ j < i − 1 are

such that r̂vj,Qi = 0, because each row vj already

sums to two (by considering columns Qk with

k < i). Therefore, we can call a row vi such that

r̂vi,Qi = 1.

Finally, we let rvn,Q1
= 1 such that the row

and column sum of each row and column of ̂R
equals 2.

Given the renaming of the columns and rows of

̂R, we have for all 1 ≤ i ≤ n that {vi} = Qi ∩Qi+1

with n+1 ≡ 1 (mod n). Furthermore, this implies

that (Qi∩Qi+1)⧵(Qi+1∩Qi+2) = {vi}⧵{vi+1} ≠ ∅
and (Qi+1∩Qi+2)⧵(Qi∩Qi+1) = {vi+1}⧵{vi} ≠ ∅
with n + 1 ≡ 1 (mod n) and n + 2 ≡ 2 (mod n).
This implies that the LRUs Q1,Q2, … ,Qn are a

LRU cycle.

Hence, we proved that the submatrix ̂R cor-

responds to a LRU cycle. Hence, if an optimal

solution x∗ does not contain a LRU cycle, it will

not contain such a submatrix and, thus, the matrix

∗ is totally balanced. ▪
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DRIESSEN ET AL. 11

Given Theorems 1 and 2, our final and rather unusual result

follows relatively easily in Theorem 3.

Theorem 3. All extreme optimal points of the
feasible polyhedron of LPM are integer.

Proof. Let x∗ be an optimal solution to LPM.

Each LRU Q ∈ S∗ is a connected subgraph of G
by Lemma 1 and x∗ does not contain a LRU cycle

by Theorem 1. Then, the matrix ∗ is totally

balanced by Theorem 2. Consequently, the poly-

hedron  =
{

x ∶ ∗x = 1, x ≥ 0, x ∈ R|S∗|}
is

integral (Fulkerson et al., 1974). Hence, x∗ is

either integer or a convex combination of integer

solutions to LPM, and thus we obtain our desired

result. ▪

In a column generation approach, a restricted version of

LPM is solved repeatedly after new columns are added (this

will be detailed in Section 3.2). If the restricted versions of

LPM are solved by the simplex algorithm, we obtain an opti-

mal solution x∗ that is an extreme point of the polyhedron

P =
{

x ∶ Zx = 1, x ≥ 0, x ∈ R|𝒮 |
}

, but is also an extreme

point of the polyhedron  =
{

x ∶ ∗x = 1, x ≥ 0, x ∈ R|S∗|}

spanned by the submatrix∗. Theorem 3 now implies that x∗
is integral, because x∗ is an extreme point of  . Hence, solv-

ing LPM with the simplex algorithm yields an optimal integer

solution, and this solution is thus also optimal for M.

If LPM is solved by the simplex algorithm, we obtain an

optimal solution x∗ that is an extreme point of the polyhedron

P =
{

x ∶ Zx = 1, x ≥ 0, x ∈ R|𝒮 |
}

, but is also an extreme

point of the polyhedron  =
{

x ∶ ∗x = 1, x ≥ 0, x ∈ R|S∗|}

spanned by the submatrix∗. Theorem 3 now implies that x∗
is integral, because x∗ is an extreme point of  . Hence, solv-

ing LPM with the simplex algorithm yields an optimal integer

solution, and this solution is thus also optimal for M.

We would like to stress that our result in Theorem 3 is rather

unusual, because the polyhedron P of LPM is not integral.

This contrasts with much other research that focuses on prov-

ing integrality of the polyhedron to conclude that an optimal

integer solution can be found (if the objective function is con-

vex), for example, via totally unimodular constraint matrices.

We demonstrate that—for nonintegral polyhedra—analysis of

the objective function can be used to establish the existence

of an optimal integer solution to a relaxed problem when the

constraint matrix will not guarantee an integral polyhedron.

The crucial analysis of the objective function is in the proof

of Theorem 1. We believe that our proof approach can be used

more generally for partitioning problems where the objective

function is convex. One is only required to show that cycles

in solutions are suboptimal.

3.2 Solving LPM and M

Given Theorem 3, we move our attention to solving LPM,

for which we apply column generation. Hence, we consider

a feasible subset of LRUs (or columns) ̃𝒮 ⊆ 𝒮 for LPM.

This results in the Restricted Master Program (RLPM). For

RLPM, we generate profitable LRUs (columns) by solving the

pricing problem of RLPM:

c∗ = min
Q∈𝒮

{

𝜔(Q) −
∑

v∈Q
rv

}

, (5)

where rv are dual variables for the partitioning constraints of

RLPM. We want to find a LRU Q ∈ 𝒮 with minimal reduced

cost. After we solve the pricing problem (7a), we add the

obtained LRU to ̃𝒮 and we again solve LPM with the new ̃𝒮 .

Next, we solve the pricing problem again, and we repeat this

procedure until the pricing problem does not return a prof-

itable LRU (column), that is, we terminate when c∗ ≥ 0. This

means that there does not exist a LRU (column) that is worth-

while to add to our LPM, and we have obtained the optimal

solution.

The computation of the pricing problem is difficult in gen-

eral, but can be done with a standard solver when the failure

rate function 𝜆 is additive, that is, when 𝜆(S) =
∑

i∈S 𝜆({i}).
We provide this formulation below.

3.2.1 Pricing problem for additive failure rates

Problem (5) can be expressed as follows when 𝜆 is additive

(𝜆(S) =
∑

i∈S 𝜆({i})). The binary auxiliary variable ke
denotes

whether edge e ∈ E needs to be disconnected to remove LRU

Q. The binary decision variable 𝛾v indicates whether node v is

included in the LRU Q. Now we rewrite Problem (5) to obtain

c∗ = min
𝜸,k

∑

e∈E
kew(e)

∑

v∈V
𝛾v𝜆({v})

+
∑

u∈V
𝛾u𝓁(u)

∑

v∈V
𝛾v𝜆({v}) −

∑

v∈V
𝛾vrv, (6a)

s.t. 𝛾u − 𝛾v ≤ ke
, ∀{u, v} ∈ E,

∀e ∈ H({u, v}), (6b)

𝛾v, ke ∈ {0, 1}. (6c)

Problem (5) can be linearized by applying the McCormick

linearization method (McCormick, 1976). In particular, let

𝜂ev = ke
𝛾v and 𝛿uv = 𝛾u𝛾v. Note that 𝜂ev denotes whether the

LRU contains part v ∈ V and that edge e ∈ E needs to be

broken for the LRU to be removed. Similarly, 𝛿uv represents

whether the LRU contains both parts u, v ∈ V . Then a binary

linear formulation of (5) is given below in (7a).

c∗ = min
k,𝜸,𝜼,𝜹

∑

e∈E

∑

v∈V
𝜂ev𝜆(v)w(e)

+
∑

u,v∈V
𝛿uv𝓁(u)𝜆(v) −

∑

v∈V
𝛾vrv, (7a)

s.t. 𝛾u − 𝛾v ≤ ke
, ∀{u, v} ∈ E,

∀e ∈ H({u, v}), (7b)

𝜂ev ≤ ke
,∀e ∈ E, ∀v ∈ V , (7c)
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12 DRIESSEN ET AL.

𝜂ev ≤ 𝛾v,∀e ∈ E, ∀v ∈ V , (7d)

𝜂ev ≥ ke + 𝛾v − 1, ∀e ∈ E,∀v ∈ V , (7e)

𝛿uv ≤ 𝛾u, ∀u, v ∈ V , (7f)

𝛿uv ≤ 𝛾v, ∀u, v ∈ V , (7g)

𝛿uv ≥ 𝛾u + 𝛾v − 1, ∀u, v ∈ V , (7h)

𝜂ev, 𝛿uv ≥ 0, 𝛾v, ke ∈ {0, 1}.𝛾v, ke ∈ {0, 1}. (7i)

After we solve the pricing problem (7a), we add the obtained

LRU to ̃𝒮 and we again solve LPM with the new ̃𝒮 . Next, we

solve the pricing problem again, and we repeat this procedure

until the pricing problem does not return a profitable LRU

(column), that is, we terminate when c∗ ≥ 0. This means that

there does not exist a LRU (column) that is worthwhile to add

to our LPM, and we have obtained the optimal solution.

4 BINARY PROGRAMMING
FORMULATION AN ADDITIVE FAILURE
RATE FUNCTION

In this section, we consider only additive failure rates 𝜆, that

is, 𝜆(Q) =
∑

v∈Q 𝜆({v}). This special case is convenient when

implementing the model and solving it with a standard solver

like CPLEX or Gurobi. We formulate LRU DESIGN as a

BNLP and linearize it so that it can be solved by a stan-

dard integer program solver. We use this linearized BLP as a

benchmark to compare our set partitioning formulation with.

For the BNLP, we first relax the fact that ∅ ∉ S. In the fore-

going, S was a partition of V . For the BNLP (and later the

BLP) we consider a solution S′ satisfying |S′| = |V|, where

S′ may contain empty LRUs, and we have that S = {Q ∈ S′ ∶
Q ≠ ∅}. Next, we index each LRU in S′ by i ∈ {1, … , |V|},
that is, we have LRUs Qi ∈ S′ that are indexed by i. Further-

more, we create a binary variable yvi that indicates whether a

part v ∈ V is assigned to LRU Qi, i ∈ {1, … , |V|}:

yvi =

{
1 if v ∈ Qi

0 otherwise

, ∀v ∈ V ,∀i ∈ {1, … , |V|}.

We denote Y as the matrix consisting of all entries yvi. Note

that we can derive S′ easily from Y. We also define the auxil-

iary binary variable ke
i that denotes whether edge e ∈ E needs

to be broken in order to replace LRU Qi, and organize them

in a matrix K. We determine the value of ke
i by considering all

the edges b ∈ B(Qi). We determine B(Qi) by considering the

edges {u, v} ∈ E such that yui−yvi = 1 or yvi−yui = 1, that is,

one of the end points of {u, v} belongs to LRU Qi while the

other end point does not. This corresponds to the definition of

B(Qi). Subsequently, we consider each edge e ∈ E that needs

to be broken before breaking {u, v}; that is, for each {u, v} ∈
B(Qi) we consider all e ∈ H({u, v}). Hence, the variable ke

i
satisfies yui − yvi ≤ ke

i , ∀{u, v} ∈ E,∀e ∈ H({u, v}),∀i ∈
{1, … , |V|}. Note that ke

i may take the value of one, even if

an edge e ∈ E is fully contained within a LRU Qi. We denote

K as the matrix consisting of all entries ke
i . We use the variable

ke
i in our objective function (8a), since it represents whether

an edge has to be broken (ke
i = 1) in order to remove LRU Qi.

Furthermore, the objective function implies ke
i = 0 if edge e

is not broken for the replacement of Qi. Next, we use ke
i , the

edge weights, and the failure rate of Qi (expressed using yvi)

to determine the cost for replacing Qi. The total purchase cost

of the LRU Qi is derived by using yvi, and we multiply this by

the total failure rate of Qi (which also depends on yvi). This

results in a BNLP formulation of LRU DESIGN:

(BNLP) min
Y,K

|V|∑

i=1

∑

e∈E
ke

i w(e)
∑

v∈V
yvi𝜆(v)

+
|V|∑

i=1

∑

u∈V
yui𝓁(u)

∑

v∈V
yvi𝜆(v), (8a)

s.t.

|V|∑

i=1

yvi = 1, ∀v ∈ V , (8b)

yui − yvi ≤ ke
i , ∀{u, v} ∈ E,

∀e ∈ H({u, v}),∀i ∈ {1, … , |V|}, (8c)

yvi, ke
i ∈ {0, 1}. (8d)

Constraints (8b) ensure that each part v ∈ V is included in

exactly one LRU, and constraints (8c) enforce the definition

of the auxiliary variable ke
i .

The BNLP is a problem with a quadratic objective function.

Therefore, the BNLP van be linearized by the McCormick

reformulation (McCormick, 1976); that is, we introduce new

variables 𝜌
i
ev = yvike

i and 𝜎
i
uv = yuiyvi. The variable 𝜌

i
ev denotes

whether LRU Qi contains part v ∈ V and whether edge e ∈ E
needs to be broken in order to replace the LRU Qi. Anal-

ogously, 𝜎
i
uv denotes whether two parts u, v ∈ V are both

contained in the same LRU Qi. Substituting 𝜌
i
ev and 𝜎

i
uv into

the above implies that we need to add constraints that enforce

the interpretation we gave. Furthermore, we optimize over Y,

K, 𝝆, and 𝝈, where 𝝆 and 𝝈 correspond to the 3-D arrays with

entries 𝜌
i
ev and 𝜎

i
uv, respectively. Hence, we obtain the BLP

formulation of LRU DESIGN:

(BLP) min
Y,K,𝝆,𝝈

|V|∑

i=1

∑

e∈E

∑

v∈V
𝜌

i
ev𝜆(v)w(e)

+
|V|∑

i=1

∑

u,v∈V
𝜎

i
uv𝓁(u)𝜆(v),

(9a)

s.t.

|V|∑

i=1

yvi = 1, ∀v ∈ V , (9b)

yui − yvi ≤ ke
i ,∀{u, v} ∈ E, ∀e ∈ H({u, v}),

∀i ∈ {1, … , |V|}, (9c)

𝜌

i
ev ≤ yvi,∀e ∈ E,∀v ∈ V , ∀i ∈ {1, … , |V|}, (9d)
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DRIESSEN ET AL. 13

𝜌

i
ev ≤ ke

i ,∀e ∈ E,∀v ∈ V , ∀i ∈ {1, … , |V|}, (9e)

𝜌

i
ev ≥ yvi + ke

i − 1, ∀e ∈ E,∀v ∈ V ,
∀i ∈ {1, … , |V|}, (9f)

𝜎

i
uv ≤ yui, ∀u, v ∈ V , ∀i ∈ {1, … , |V|}, (9g)

𝜎

i
uv ≤ yvi, ∀u, v ∈ V ,∀i ∈ {1, … , |V|}, (9h)

𝜎

i
uv ≥ yui + yvi − 1, ∀u, v ∈ V ,
∀i ∈ {1, … , |V|}, (9i)

𝜌

i
ev, 𝜎

i
uv ≥ 0, (9j)

yvi, ke
i ∈ {0, 1}. (9k)

We acknowledge that tighter MIP formulations than BLP will

exist due to extensive studies on binary quadratic program-

ming and Boolean quadratic polytopes (Bonami et al., 2018;

Boros et al., 1992; Boros & Hammer, 1993; Charfreitag

et al., 2022; Deza et al., 1997; Jünger & Mallach, 2021;

Padberg, 1989; Rehfeldt et al., 2023; Rendl et al., 2010). The

formulation above is a straightforward formulation that will

appeal to many practitioners of operations research due to its

simplicity.

5 NUMERICAL EXPERIMENTS

In this section, we use the BLP formulation and the set par-

titioning formulation (LPM) of LRU DESIGN under additive

failure rate functions to gain some insight into the size of

instances that can be solved to optimality. We shed a light

on the objective value gap between both approaches, and we

explore the effects of parameter perturbations on our model’s

outcomes. Furthermore, we numerically illustrate—based on

randomly generated instances of practical size—that the rel-

ative cost increase from introducing a partitioning constraint

is very limited, and its magnitude decreases as the num-

ber of parts grows. We have implemented all optimization

model formulations in JuMP (Dunning et al., 2017; Lubin

& Dunning, 2015), which is a mathematical optimization

package of Julia (Balbaert et al., 2016), and we solved all

problems using Gurobi 7.0.1 on an Intel i5-4300U @2.50GHz

processor with 16GB RAM and running Ubuntu 16.04 LTS.

In Section 5.1, we explain the used instance generator

for our experiments. In Section 5.2, we study the difference

between the computation times (in seconds) of the binary lin-

ear programming formulation (BLP) and the set partitioning

formulation (LPM). Also, we discuss the relative difference in

objective value between both models. Furthermore, we shed

some light on how the downtime cost per time unit affects

the number of LRUs used in an optimal solution. Moreover,

we study how the system’s complexity affects the total annual

costs by considering the number of connections between

parts, and the number of predecessor–successor relationships

that exist. Finally, we show that the cost effect of introducing

a partitioning constraint is very limited for practically sized

instances.

5.1 Instance generator

An instance is described by the graphs G and D. We vary the

number of vertices |V|, the number of edges |E|, and the num-

ber of arcs |A| in our numerical experiments. We relate the

number of edges in G to the number of vertices by |E| = 𝛿|V|,
where 𝛿 is the average vertex degree in the graph G. Similarly,

we relate the number of arcs in D to the number of edges by

|A| = 𝛿E|E|, where 𝛿E is the average out degree of an edge

e ∈ E. All other parameters such as 𝜆(v) > 0 and 𝓁(v) > 0 for

all v ∈ V , and w(e) > 0 for all e ∈ E are randomly generated,

as well as a graph’s layout in terms of the edge set E and the

arc set A.

The graphs G and D are generated in the following way. For

G, we have a set of vertices V and a number of unique edges

|E| = 𝛿|V|, and we create a spanning tree with |V|− 1 edges.

We add an arbitrary vertex v ∈ V to a set of considered ver-

tices ̃V , and we select a new vertex u ∈ V ⧵ ̃V and connect it

to an arbitrary vertex z ∈ ̃V by adding the edge {u, v} to the

edge set E. We keep doing this until ̃V = V . Subsequently we

add remaining edges randomly to our graph and we terminate

once we have |E| edges in G. Second, we generate the prece-

dence graph D. We (randomly) assign an index to each edge

e ∈ E and denote this index by I(e), and the minimum and

maximum values assigned are 1 and |E|, respectively. We start

with A = ∅ and add an arc in each iteration. An iteration starts

by selecting two random edges {u, v}, {v, x} ∈ E ∶ u, v, x ∈ V
and u ≠ v ≠ x. If I({u, v}) ≤ I({v, x}) we create an arc

({u, v}, {v, x}) and add it to A, otherwise we create an arc

({v, x}, {u, v}) and add it to A. We repeat this procedure until

𝛿E|E| = |A|, and upon termination we have obtained a set A
that has a topological sorting and thus the precedence graph

D is acyclic.

5.2 Computational results

Next, we discuss the computational results for our model.

The generation of a random graph follows the procedure

from Section 5.1, and we let |V| ∈ {10, 20, 30, 40, 50, 60},
𝛿 ∈ {2, 3, 4}, and 𝛿E ∈ {0.5, 1, 1.5}. For each combination

(|V|, 𝛿, 𝛿E), we generate 10 random instances, resulting in a

total of 540 instances.

We use a time limit of 600 s for the BLP formulation and

also for the set partitioning formulation. This time limit is

relatively low because we solve a large number of instances,

thereby making it feasible to perform the entire numerical

study in a reasonable amount of time. If an instance has

not been solved to optimality within 600 s, we say that it is

inefficient. If all instances of a certain parameter combina-

tion (|V|, 𝛿, 𝛿E) are inefficient, we write—as an entry for the
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14 DRIESSEN ET AL.

TABLE 2 Average computation times (s) of both formulations.

BLP |V|

𝜹 𝜹E 10 20 30

2 0.5 4.4510 121.0210 –

2 1 5.1610 144.5910 –

2 1.5 3.3910 85.3810 577.213

3 0.5 7.1810 316.429 –

3 1 6.2210 308.7310 –

3 1.5 4.9810 151.6410 –

4 0.5 11.0010 479.456 –

4 1 8.5610 502.254 –

4 1.5 6.6210 246.399 –

LPM |V|

𝜹 𝜹E 10 20 30 40 50 60

2 0.5 0.2110 1.6410 13.0210 37.3210 111.7510 216.5310

2 1 0.6110 3.7910 30.9710 88.6510 314.119 533.702

2 1.5 0.1910 1.6510 9.6610 36.4610 124.7110 228.219

3 0.5 0.3710 2.5910 22.1310 60.0210 105.3910 331.387

3 1 0.9710 8.0810 37.9810 232.8910 331.505 –

3 1.5 0.6510 3.6810 17.7610 93.8610 289.0010 514.143

4 0.5 0.5010 3.3910 26.5010 114.0910 304.429 410.973

4 1 1.3710 10.0610 48.5610 294.8110 432.312 –

4 1.5 1.2910 6.2510 32.5410 211.5510 521.403 –

Note: The subscripts indicate that number of instances that were solved to opti-

mality for a given setting.

combination. We determine the average computation time of

both formulations based on the efficient instances. The results

are presented in Table 2, where the computation times are

given in seconds, and the subscripts indicate the number of

efficient instances. Furthermore, we have not reported com-

putation times for the BLP with |V| ≥ 40, since we have found

no efficient solutions within the time limit.

We observe that, given the time limit of 600 s, the BLP

formulation can only solve small size instances up to 20 ver-

tices (parts), while the set partitioning (SP) formulation can

solve medium size to large instances up to 60 vertices (parts).

Furthermore, we see that the set partitioning formulation

solves instances faster than the BLP formulation. This effect

is amplified when the instances become larger, that is, when

|V| and 𝛿 increase. Real-life instances are typically medium to

large sized instances and can have 50 vertices (parts). Further-

more, such instances may possess many and complex connec-

tions and predecessor–successor relationships. This makes

the BLP formulation unsuitable for practical purposes. Hence,

it is worthwhile to invest extra time to implement the set par-

titioning formulation (LPM) with a pure pricing algorithm.

Furthermore, the computation times illustrate that the set par-

titioning formulation of LRU DESIGN is particularly useful as

a feedback mechanism for the company’s design department.

The engineers can quickly assess many design alternatives

(in terms of the connection graph and precedence graph) and

their effects on the optimal LRU design and the corresponding

(after-sales) costs.

TABLE 3 Objective value gap between both formulations.

|V|

𝜹 𝜹E 10 20 30 40

2 0.5 0.0% 0.0% 18.9% 257.6%
2 1 0.0% 0.0% 20.3% 349.1%
2 1.5 0.0% 0.0% 29.2% 369.0%
3 0.5 0.0% 0.0% 96.7% 523.1%
3 1 0.0% 0.1% 115.9% 520.6%
3 1.5 0.0% 0.0% 110.3% 474.2%
4 0.5 0.0% 0.0% 150.1% 580.2%
4 1 0.0% 7.8% 127.5% 218.9%
4 1.5 0.0% 4.6% 95.5% 191.1%

Not solving the BLP formulation to optimality may still

result in solutions that are near optimal. Therefore, we also

perform a gap analysis by studying the relative difference

in the objective values of both formulations. We only study

this difference for parameter combinations for which each

instance solved by LPM is efficient, that is, instances with

|V| ≤ 40. We define the objective value gap

𝛽 = 𝜋(Sb) − 𝜋(Sl)
𝜋(Sl)

× 100%,

with 𝜋(Sb) and 𝜋(Sl) denoting the costs of the best feasible

solution found after 600 s of the BLP and set partitioning

formulation (LPM), respectively. The results are shown in

Table 3.

We observe that the relative objective value difference

rapidly grows as the number of vertices grows. This implies

that the inefficient instances, produced by the BLP, do not

result in a competitive solution compared to the set partition-

ing formulation (LPM).

Next, we numerically study the effect of the cost of one time

unit of system downtime on the number of LRUs that is used

in an optimal LRU design. In the remainder of this section, we

use the same instance generator as discussed in Section 5.1,

and we generate 1000 instances per parameter setting (𝛿, 𝛿E)
and keep |V| = 20. For a given instance, we vary the edge

weights by multiplying all edge weights of the instance by a

constant factor q ∈ {0.1, 1, 10}. A higher value for q means

that it is more expensive to break edges. If the time for break-

ing an edge remains constant, it means that the cost rate per

time unit for breaking an edge increases, and thus we can cap-

ture a higher downtime cost per time unit by varying q. This

way, we create three classes of instances (i) low downtime

cost per time unit (q = 0.1); (ii) moderate downtime cost per

time unit (q = 1); (iii) and high downtime cost per time unit

(q = 10). We keep the parameter values for 𝛿 and 𝛿E constant

at 𝛿 = 3 and 𝛿E = 1. We focus on the number of LRUs |S∗| in

an optimal solution S∗. The results are presented in Figure 4.

Based on Figure 4, the instances where the downtime cost

per time unit is low, have many small LRUs (each part is

a LRU in itself in the extreme case). These solutions prefer

small LRUs because they have lower purchase costs. As the
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DRIESSEN ET AL. 15

FIGURE 4 Effect of edge weights on the number of LRUs in S∗.

cost for a single time unit of downtime increases, we see that

the optimal solution prefers fewer LRUs that each become

larger, because such larger LRUs enable faster replacement

and thus lower downtime costs. This explains, for example,

why we observe that the consumer electronics industry with

low values for q has rather small LRUs. On the other end of the

spectrum, capital intensive industries such as the semiconduc-

tor industry or the aviation industry have high values for q, and

they tend to opt for larger LRUs which enable faster replace-

ment. Both these phenomena are confirmed by the numerical

results of our model.

The second effect that we study considers the complexity

of the system, and how this affects the costs of the opti-

mal LRU design. We restrict our attention, for now, on the

number of edges in the connection graph G that describes

system complexity. We vary how strongly various parts are

connected to each other by altering 𝛿. A low (high) value of

𝛿 corresponds to lesser (more) connected parts. We are inter-

ested in the effect that the number of connections in G has

on the costs, because this provides a justification of whether

to avoid many connections between parts in order to reduce

the total cost. For our analysis, we keep 𝛿E and q constant at

𝛿E = 1 and q = 1. The results are presented in Figure 5.

We observe that more connections in the connection graph

G result in cost increases, because we need to disconnect more

edges in order to remove a LRU. This has an important man-

agerial implication, as engineers should be urged to reduce

the number of connections in systems to be developed. Thus,

it may be wise for a company to invest extra in a system’s

design such that the number of connections in G is reduced.

An example wherein few number of connections lead to low

costs is a bicycle. A typical connection graph of bicycles has

few connections, and consequently relatively low replacement

cost because we only need to disconnect few connections in

case a part fails.

Finally, we also study the effect that system complexity has

on the costs of the optimal solution 𝜋(S∗), when we consider

the number of predecessor–successor relationships. A lower

FIGURE 5 Effect of the number of connections in G on 𝜋(S∗).

FIGURE 6 Effect of the number of predecessor–successor relationships in

D on 𝜋(S∗).

value of 𝛿E indicates that fewer predecessor–successor rela-

tionships exist in the precedence graph D. Similar to the

foregoing, we keep the other parameters constant at 𝛿 = 3

and q = 1. The results for different values of 𝛿E are depicted

in Figure 6 and we observe a similar behavior to changes in 𝛿.

The costs increase as the number of predecessor–successor

relationships increases, because we need to disconnect more

connections upon the failure of a LRU. Consequently,

the costs of an optimal solution 𝜋(S∗) increase when the

number of connections in D increases (as 𝛿E increases).

The managerial implications of our results also align with

those for 𝛿: managers should urge their designers to avoid

predecessor–successor relationships in order to reduce costs.

This objective may be easier to attain than avoiding connec-

tions in the connection graph G by careful design. Hence, the

results confirm that careful design (in terms of G and D) is

crucial to reduce the overall costs.

Finally, we numerically illustrate the cost effect of intro-

ducing a partitioning constraint. Therefore, we consider LRU
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16 DRIESSEN ET AL.

TABLE 4 Relative cost differences between LRU DESIGN and C-LRU

DESIGN.

|V| = 20 |V| = 30 |V| = 40

𝜹 𝜹E avg (%) max (%) avg (%) max (%) avg (%) max (%)

2 0.5 0.74 1.56 1.07 3.63 1.20 4.00

2 1 1.62 4.36 2.23 5.49 2.52 4.20

2 1.5 0.26 1.05 0.19 0.62 0.19 0.51

3 0.5 0.56 1.36 0.63 1.73 0.54 1.11

3 1 0.84 3.53 0.87 2.45 1.48 3.12

3 1.5 2.37 13.56 0.56 2.56 0.36 2.34

4 0.5 0.00 0.00 0.13 1.20 0.08 0.26

4 1 1.58 6.07 1.02 3.78 0.47 1.39

4 1.5 4.22 13.48 1.80 6.36 1.32 3.08

All 1.34 13.56 0.94 6.36 0.91 4.20

DESIGN and the variant without a partition constraint called

C-LRU DESIGN. Further details on C-LRU DESIGN are

included in Appendix C. Both, C-LRU DESIGN and the

numerical results, are based on Driessen (2018). We study the

average relative cost difference for a given parameter com-

bination Δ
𝜋
= 𝜋(S∗)−𝜋c(S∗c )

𝜋c(S∗c )
× 100%, where S∗ and S∗c are

the optimal solutions of LRU DESIGN and C-LRU DESIGN,

respectively. We limit our analysis to instances with |V| ∈
{20, 30, 40}, because the set partitioning formulation of LRU

DESIGN is efficient for each parameter combination.

The results in Table 4 illustrate that we sacrifice little costs

when we introduce a partitioning constraint. Combining this

with the practical benefits that LRU DESIGN has over C-LRU

DESIGN, we conclude that LRU DESIGN is highly usable for

practical purposes.

6 CONCLUSIONS

We considered an OEM or MRO that is concerned with the

(re)design and maintenance of a system. If the system does not

operate, the company loses money, customer goodwill or has

to pay customers a downtime penalty. Therefore, the company

is interested in lowering the cost for non-functioning systems

by designing LRUs that can be removed quickly. Furthermore,

the LRUs should not be too large, because this increases a

LRU’s total failure rate and the LRU’s purchase cost (or repair

cost). Thus, the company has to determine what the optimal

LRU design is that balances the replacement cost and the

purchase cost (or repair cost) of LRUs.

We presented a novel model for representing the connec-

tions between parts in a system, also capturing the existing

disassembly sequences. We used the system representation

to derive an optimization model LRU DESIGN that mini-

mizes the replacement cost and the purchase cost (or repair

cost) by optimizing the LRU design. Our optimization model

was constrained such that a LRU design is a partition of the

parts, and we saw that this constraint has strong practical

benefits (avoiding replacement ambiguity, simplification of

the production and testing processes, and consistency with

general maintenance practice), while sacrificing very little

extra costs compared to the case where we relax the parti-

tion constraint. We formulated the problem as a BLP and as

a set partitioning problem. We proved a result infrequently

encountered in research: an optimal solution to the set parti-

tioning formulation is integer, despite a nonintegral feasible

polyhedron. This result follows from proving the suboptimal-

ity of LRU cycles and relating this to the matrix encoding of

an optimal solution. Furthermore, the set partitioning formu-

lation reduces the computation times and makes it useful as

a feedback mechanism to assess various design alternatives

and their effects on the optimal LRU design and the corre-

sponding (after-sales) costs. Moreover, the set partitioning

formulation is suitable to solve large instances, while the

binary linear programming formulation is not. In addition to

the computation times, we observed that optimal solutions to

LRU DESIGN have larger LRUs when the cost per time unit

of system downtime increases, because this enables faster

replacement and thus avoids large downtime cost. Finally,

we found that managers should urge their designers to

reduce the number of connections and predecessor–successor

relationships in a system’s design.
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APPENDIX A: DERIVING THE SUCCESSOR
COLLECTION H(e)

We determine H(e) for all edges e ∈ E in polynomial time

by the following polynomial algorithms, where Algorithm 2

is called by Algorithm 1.

Algorithm 1. Derive H(e) for all edges e ∈ E

1: procedure REMOVALEDGES(E,A)

2: ̂E ← E
3: ̃E ← DEGREE(D( ̂E,A))
4: while ̃E ≠ ∅ do
5: for all e ∈ ̃E do
6: H(e) ← {e}
7: end for
8: for all e ∈ ̃E do
9: for all (e, z) ∈ A do

10: H(e) ← H(e) ∪ H(z)
11: end for
12: end for
13: ̂E ← ̂E ⧵ ̃E
14: ̃E ← DEGREE(D( ̂E,A))
15: end while
16: return H(e) for all e ∈ E
17: end procedure

Algorithm 2. Determine all edges e ∈ E that have no

successors in D

1: procedure DEGREE(D)

2: ̃E ← ∅
3: for all e ∈ E do
4: if 𝛿out(e) = 0 then
5: ̃E ← ̃E ∪ {e}
6: end if
7: end for
8: return ̃E
9: end procedure

APPENDIX B: LRU WITH INTERNAL LINKS THAT
MUST BE BROKEN

The precedence graph determines which edges must nec-
essarily be broken before a certain edge can be broken.

Therefore it is possible to define a LRU Q such that certain

connections within LRU Q must be broken in order to be able

to detach LRU Q from the rest of the system. While such situ-

ations do not happen often in optimal designs in practice, it is

sometime inevitable. Why this cannot physically be avoided

is illustrated by a simple example.

Consider two cog-wheels with a chain between them such

that motion in one cog is transmitted to the other cog. Every

bicycle has such a system to transmit motion from the ped-

als to the rear-wheel and a picture of such a system is shown

below in Figure B1. The chain consists of many links. Now

one may wish to define the chain as a LRU. To remove the

chain from the two-cog-wheels on which it sits, one must

necessarily break the connection between two links in the

chain, despite the fact that such a connection is internal to the

LRU/chain.
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FIGURE B1 Two cog-wheels connected with a chain.

FIGURE B2 Connection graph for two cog-wheels with a chain.

FIGURE B3 Precedence graph for two cog-wheels with a chain.

This example can be formalized in the connection and

precedence graph shown in Figures B2 and B3 respectively.

In these graphs A and B are the cog-wheels and nodes 1 to

12 correspond to the links in the chain. In this example the

chain LRU is given by Q = {1, 2, … , 12} so that Γ(Q) =
{{A, 3}, {B, 3}, {3, 4}}. The fact that that {3, 4} is internal

to chain reflects the fact that it is physically impossible to

remove the chain from the cog-wheels without first break-

ing a connection between two links in the chain. Thus the

precedence graph models the physical necessity of break-

ing certain connections before it is possible to break/access

other connections. The fact that Γ(Q) may contain connec-

tions that are internal to an LRU Q is a modeling feature

that allows us to model systems appropriately. However, we

do observe that most LRUs in optimal designs do not have

internal connections that need to be broken.

APPENDIX C: LRU DESIGN WITHOUT
PARTITIONING CONSTRAINT

In this appendix, we explain the model of designing LRUs

without considering a partitioning constraint. We call this

problem C-LRU DESIGN. Let a system be represented by a

connection graph G = (V ,E) and a precedence graph D =
(E,A), with V , E and A corresponding to the vertex set, edge

set and arc set, respectively. Furthermore, we let 𝜆(v) > 0 and

𝓁(v) > 0 be the failure rate and purchase cost of part v ∈ V ,

and we define w(e) > 0 as the cost of breaking edge e ∈ E. An

arc ({u, v}, {v, x}) ∈ A denotes that we have to break {v, x}
prior to breaking {u, v}.

A part v ∈ V belongs to at least one LRU. That is, part v
is replaced upon its own failure, but it may also be replaced

upon the failure of a part u ∈ V ∶ u ≠ v. Therefore, we rep-

resent a LRU differently from LRU DESIGN. We let a LRU

be a tuple characterized by a replacement set and a failure

set, that is, Q = (RQ,FQ) where Q is the LRU, RQ ⊆ V
is the replacement set, and FQ ⊆ RQ is the failure set. The

failure of a part in the failure set triggers replacement of the

LRU. The replacement set is replaced if any of the vertices

in the failure set fails. Furthermore, we assume that a part

v ∈ V belongs to exactly one failure set, that is, the failure

sets partition V .

Next, we study what happens when a LRU Q fails, or

technically what happens when a part v ∈ FQ fails. In

this case, we have to break all edges e ∈ Γ(RQ), where

Γ(RQ) =
⋃

e∈B(RQ)
H(e). The failure rate of LRU Q is given by

∑
v∈FQ

𝜆(v), because all parts v ∈ FQ induce the replacement

of RQ. Similarly, the total purchase cost of LRU Q is given by
∑

v∈RQ
𝓁(v). This yields the following average cost per time

unit for LRU Q:

𝜔c(Q) =
∑

e∈Γ(RQ)
w(e)

∑

v∈FQ

𝜆(v) +
∑

u∈RQ

𝓁(u)
∑

v∈FQ

𝜆(v).

We are interested in determining the optimal LRU design. Let

Sc be a collection of LRUs such that ∅ ∉ Sc and each part

v ∈ V is included in at least one replacement set and in exactly

one failure set; that is,
⋃

Q∈Sc
FQ = V , FQ ∩ FQ′ = ∅ for

all Q,Q′ ∈ Sc ∶ FQ ≠ FQ′ , and FQ ⊆ RQ for each LRU

Q ∈ Sc. The average costs per time unit of a LRU design Sc
are given by

𝜋c(Sc) =
∑

Q∈Sc

𝜔c(Q) =
∑

Q∈Sc

∑

b∈Γ(RQ)
w(b)

∑

v∈FQ

𝜆(v)

+
∑

Q∈Sc

∑

u∈RQ

𝓁(u)
∑

v∈FQ

𝜆(v). (C1)

Next, we define C-LRU DESIGN as: What is the LRU Design

Sc that minimizes 𝜋c(Sc)?
For implementation, we use the binary programming for-

mulation of C-LRU DESIGN as explained in Driessen (2018),

which is similar to the binary programming formulation of

LRU DESIGN.

APPENDIX D: LEMMA USED IN THE PROOF OF
THEOREM 1

The proof of Theorem 1, which states that an optimal solu-

tion to LPM does not contain a LRU cycle, uses Lemma 2.

This appendix contains the statement, an interpretation and

the proof of that lemma. Recall that we define the set of

edges that is broken for a LRU X but not for a LRU Y by

 (X,Y) = Γ(X) ⧵ Γ(Y). Furthermore, recall that we use mod-

ular arithmetic for the indices of LRUs that form a cycle Qi,

Qi−1, and Qi+1 with 1 ≤ i ≤ n, n + 1 ≡ 1 (mod n), and

Q0 ≡ Qn.
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20 DRIESSEN ET AL.

FIGURE D1 Interpretation of Lemma 2. The edges that cross the lines shown in the legend are contained in the corresponding sets of the legend.

Lemma 2. Given a solution x to LPM that con-
tains a LRU cycle C = {Q1,Q2, … ,Qn} ⊆ S
with minimal n, we have Γ(Qi ∩ Qi+1) ⧵  (Qi ∩
Qi+1,Qi) ⊆ Γ(Qi) ⧵  (Qi ∩ Qi−1,Qi−1) and
Γ(Qi ⧵Qi+1) ⧵ (Qi ∩Qi+1,Qi) ⊆ Γ(Qi) ⧵ (Qi ∩
Qi+1,Qi+1). Furthermore, we have Γ(Qi ∩Qi−1)⧵
 (Qi∩Qi−1,Qi) ⊆ Γ(Qi)⧵ (Qi∩Qi+1,Qi+1) and
Γ(Qi ⧵Qi−1) ⧵ (Qi ∩Qi−1,Qi) ⊆ Γ(Qi) ⧵ (Qi ∩
Qi−1,Qi−1).

Lemma 2 can be interpreted by considering Figure D1,

which is a simplified part of a solution in which we depict

only the LRUs Qi−1, Qi, and Qi+1, and we assume that A = ∅.

The first claim in Lemma 2 states that the set of edges that are

broken for LRU Qi as well as for the intersection Qi∩Qi+1 (the

edges that cross the thin dotted line in Figure D1) is a subset

of the edges that are broken for Qi except for the edges that

are broken for Qi ∩Qi−1 but not for Qi−1 (the edges that cross

the thin solid line in Figure D1). Second, the set of edges that

is broken for both Qi and Qi ⧵ Qi+1 (the edges that cross the

thick dotted line in Figure D1) is a subset of the edges that are

broken for Qi except for the edges that are broken for Qi∩Qi+1

but not for Qi+1 (the edges that cross the thick solid line in

Figure D1).

The third and fourth claim from Lemma 2 can be interpreted

similarly to the first two claims, where Qi+1 is replaced by

Qi−1 and vice versa.

The same interpretation—as illustrated in Figure D1—

holds when A ≠ ∅, but this makes exposition cumbersome.

The proof of Lemma 2 is given below, for arbitrary A.

Proof of Lemma 2. Let x be a solution

to LPM that contains a LRU cycle C =
{Q1,Q2, … ,Qn} ⊆ S with minimal n. First, we

prove that if e = {u, v} ∈  (Qi ∩ Qi−1,Qi−1)
then u, v ∈ Qi−1. Subsequently, we use this result

to show that Γ(Qi ∩ Qi+1) ⧵  (Qi ∩ Qi+1,Qi) ⊆
Γ(Qi) ⧵  (Qi ∩ Qi−1,Qi−1). Similarly, we

show that if e = {u, v} ∈  (Qi ∩ Qi+1,Qi+1)
then u, v ∈ Qi+1, and we use this to prove

that Γ(Qi ⧵ Qi+1) ⧵  (Qi ∩ Qi+1,Qi) ⊆

Γ(Qi) ⧵  (Qi ∩ Qi+1,Qi+1).
Let e = {u, v} ∈  (Qi ∩ Qi−1,Qi−1). If u ∈

Qi−1 and v ∉ Qi−1, it follows directly that e ∈
Γ(Qi−1) as e ∈ B(Qi−1). This contradicts that

e ∈  (Qi ∩Qi−1,Qi−1). If u, v ∉ Qi−1, then there

exists a (sub)path (e1, e2, … , e) in the prece-

dence graph with e1 = {u1, v1} ∶ u1 ∈ Qi ∩Qi−1.

Consequently, there is an ej = {uj, vj} ∶ uj ∈
Qi−1, vj ∉ Qi−1 in this path, due to the assumption

that ({u, v}, {v, x}) ∈ A for u, v, x ∈ V . Therefore,

ej ∈ Γ(Qi−1) and thus e ∈ Γ(Qi−1). Subsequently,

e ∉  (Qi ∩Qi−1,Qi−1), which is a contradiction.

Therefore, if e = {u, v} ∈  (Qi ∩ Qi−1,Qi−1),
then u, v ∈ Qi−1.

Next, we show that Γ(Qi ∩ Qi+1) ⧵  (Qi ∩
Qi+1,Qi) ⊆ Γ(Qi) ⧵  (Qi ∩ Qi−1,Qi−1). Let

e = {u, v} ∈ Γ(Qi ∩ Qi+1) and suppose that

e ∈  (Qi ∩ Qi−1,Qi−1). There exists a (sub)path

(e1, e2, … , e) in the precedence graph with e1 =
{u1, v1} ∶ u1 ∈ Qi ∩ Qi+1. Also, u1 ∉ Qi−1,

because C is a LRU cycle with minimal n (imply-

ing that Qi−1 ∩Qi ∩Qi+1 = ∅, otherwise one can

omit Qi and obtain a LRU cycle with fewer LRUs,

which is a contradiction). Furthermore, u, v ∈
Qi−1 as e = {u, v} ∈  (Qi ∩ Qi−1,Qi−1) (see

above). Hence, there exists ej = {uj, vj} ∶ uj ∈
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Qi−1, vj ∉ Qi−1 in this path, as ({u, v}, {v, x}) ∈ A
for u, v, x ∈ V . Therefore, ej ∈ Γ(Qi−1) and

thus e ∈ Γ(Qi−1). Consequently, e ∉  (Qi ∩
Qi−1,Qi−1) which is a contradiction. Hence, if

e ∈ Γ(Qi ∩ Qi+1), then e ∉  (Qi ∩ Qi−1,Qi−1).
Next, we consider Γ(Qi∩Qi+1)⧵ (Qi∩Qi+1,Qi),
and have that Γ(Qi ∩ Qi+1) ⧵  (Qi ∩ Qi+1,Qi) ⊆
Γ(Qi) as  (Qi ∩Qi+1,Qi) = Γ(Qi ∩Qi+1)⧵Γ(Qi).
Furthermore, each e ∈ Γ(Qi ∩ Qi+1) ⧵  (Qi ∩
Qi+1,Qi) satisfies e ∈ Γ(Qi ∩ Qi+1) and thus e ∉
 (Qi∩Qi−1,Qi−1), as we proved in the foregoing.

Hence, we have Γ(Qi∩Qi+1)⧵ (Qi∩Qi+1,Qi) ⊆
Γ(Qi) ⧵  (Qi ∩ Qi−1,Qi−1).

Let us now prove that if e = {u, v} ∈  (Qi ∩
Qi+1,Qi+1), then u, v ∈ Qi+1. The proof is iden-

tical to proving that if e ∈  (Qi ∩ Qi−1,Qi−1)
then u, v ∈ Qi−1, but Qi−1 is replaced by Qi+1.

We continue by proving that Γ(Qi ⧵ Qi+1) ⧵
 (Qi ∩ Qi+1,Qi) ⊆ Γ(Qi) ⧵  (Qi ∩ Qi+1,Qi+1).
Let e = {u, v} ∈ Γ(Qi ⧵ Qi+1) and suppose

that e ∈  (Qi ∩ Qi+1,Qi+1). There exists a

(sub)path (e1, e2, … , e) in the precedence graph

with e1 = {u1, v1} ∶ u1 ∈ Qi ⧵ Qi+1.

Moreover, u, v ∈ Qi+1 as e = {u, v} ∈  (Qi ∩
Qi+1,Qi+1) (from foregoing). Hence, there exists

ej = {uj, vj} ∶ uj ∈ Qi+1, vj ∉ Qi+1 in this path,

as ({u, v}, {v, x}) ∈ A for u, v, x ∈ V . There-

fore, ej ∈ Γ(Qi+1) and thus e ∈ Γ(Qi+1). As

a consequence, e ∉  (Qi ∩ Qi+1,Qi+1), which

is a contradiction. Hence, if e ∈ Γ(Qi ⧵ Qi+1),
then e ∉  (Qi ∩ Qi+1,Qi+1). Next, we consider

Γ(Qi ⧵Qi+1) ⧵  (Qi ∩Qi+1,Qi). We observe that

 (Qi ∩ Qi+1,Qi) =  (Qi ⧵ Qi+1,Qi), because

Qi ∩Qi+1 and Qi ⧵Qi+1 partition Qi, and thus the

edges existing between Qi∩Qi+1 and Qi⧵Qi+1 are

the same. Hence, Γ(Qi⧵Qi+1)⧵ (Qi∩Qi+1,Qi) =
Γ(Qi ⧵ Qi+1) ⧵  (Qi ⧵ Qi+1,Qi) ⊆ Γ(Qi), where

the last inequality holds as  (Qi ⧵ Qi+1,Qi) =
Γ(Qi⧵Qi+1)⧵Γ(Qi). Finally, we haveΓ(Qi⧵Qi+1)⧵
 (Qi ∩ Qi+1,Qi) ⊆ Γ(Qi) ⧵  (Qi ∩ Qi+1,Qi+1),
since each e ∈ Γ(Qi ⧵ Qi+1) is such that e ∉
 (Qi ∩ Qi+1,Qi+1).

Finally, we can do the same analysis as above,

but replace Qi−1 by Qi+1 and vice versa. Then,

we obtain Γ(Qi ∩ Qi−1) ⧵  (Qi ∩ Qi−1,Qi) ⊆
Γ(Qi)⧵ (Qi∩Qi+1,Qi+1) andΓ(Qi⧵Qi−1)⧵ (Qi∩
Qi−1,Qi) ⊆ Γ(Qi) ⧵  (Qi ∩ Qi−1,Qi−1). ▪
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