
What Made This Test Flake?
Pinpointing Classes Responsible for Test Flakiness

Sarra Habchi
Ubisoft

sarra.habchi@ubisoft.com

Guillaume Haben
University of Luxembourg
guillaume.haben@uni.lu

Jeongju Sohn
University of Luxembourg

jeongju.sohn@uni.lu

Adriano Franci
University of Luxembourg

adriano.franci@uni.lu

Mike Papadakis
University of Luxembourg
michail.papadakis@uni.lu

Maxime Cordy
University of Luxembourg

maxime.cordy@uni.lu

Yves Le Traon
University of Luxembourg

yves.letraon@uni.lu

Abstract—Flaky tests are defined as tests that manifest non-
deterministic behaviour by passing and failing intermittently for
the same version of the code. These tests cripple continuous
integration with false alerts that waste developers’ time and
break their trust in regression testing. To mitigate the effects
of flakiness, both researchers and industrial experts proposed
strategies and tools to detect and isolate flaky tests. However,
flaky tests are rarely fixed as developers struggle to localise
and understand their causes. Additionally, developers working
with large codebases often need to know the sources of non-
determinism to preserve code quality, i.e., avoid introducing
technical debt linked with non-deterministic behaviour, and to
avoid introducing new flaky tests. To aid with these tasks, we
propose re-targeting Fault Localisation techniques to the flaky
component localisation problem, i.e., pinpointing program classes
that cause the non-deterministic behaviour of flaky tests. In par-
ticular, we employ Spectrum-Based Fault Localisation (SBFL),
a coverage-based fault localisation technique commonly adopted
for its simplicity and effectiveness. We also utilise other data
sources, such as change history and static code metrics, to further
improve the localisation. Our results show that augmenting SBFL
with change and code metrics ranks flaky classes in the top-1
and top-5 suggestions, in 26% and 47% of the cases. Overall, we
successfully reduced the average number of classes inspected to
locate the first flaky class to 19% of the total number of classes
covered by flaky tests. Our results also show that localisation
methods are effective in major flakiness categories, such as
concurrency and asynchronous waits, indicating their general
ability to identify flaky components.

I. INTRODUCTION

Regression testing is a key component of continuous inte-
gration (CI) that checks whether code changes integrate well
in the codebase without breaking any existing functionality.
To this end, it is assumed that failing tests indicate the
presence of faults, introduced by the latest changes. However,
some tests break this assumption by failing for reasons other
than faults, as for instance, they exhibit non-deterministic
behaviour, thereby sending confusing signals to developers.
Such tests are usually called flaky tests.

Academic and industrial reports have emphasised the ad-
verse effects of test flakiness in software development. Specifi-
cally, Google reported that 16% of their tests manifested some
level of flakiness, while more than 90% of their test transitions,
either to failing or passing, were due to flakiness [1]. As the

de facto approach for detecting flaky tests is to rerun them
[2], [3], detecting large numbers of flaky tests can be time-
and resource-consuming. Indeed, Google reports that between
2 to 16% of their CI resources are dedicated in rerunning flaky
tests [4]. It is noted that other companies, like Microsoft [5],
Spotify [6] and Mozilla [7], also report similar issues when
dealing with test flakiness.

Perhaps more importantly, test flakiness affects team pro-
ductivity and software quality [2]. This is because flaky
failures interrupt the CI and make developers waste time in
investigating false issues [8], [9], [1], [2]. Additionally, the
accrual of flaky tests breaks the trust in regression testing,
leading developers to disregard legitimate failure signals be-
lieving them to be false [2], [3]. This situation often results
in faults slipping into production systems [7]. Moreover, code
quality is often linked with the level of flakiness incurred [2]
and thus, developers need to know where it comes from and
understand the causes of flakiness to avoid introducing and
spreading it.

Given the adverse effects of test flakiness, engineers and
researchers aim at developing detection techniques that can
predict whether a test is potentially flaky. These approaches
rely on a number of runs and re-runs, such as IDFLAKIES [10]
and SHAKER [11], coverage analysis like DEFLAKER [12],
or static and dynamic test features [13], [14], [15], [16],
[17], [18], [19]. Evaluated on open-source projects, these
approaches showed promising detection accuracy and consid-
erably decreased the amount of time and resources needed to
detect flaky tests.

Although flakiness detection methods are important, alone,
they cannot reduce the prevalence of test flakiness. This is
because on the one hand there are only partial approaches to
the problem, such as IFIXFLAKIES [20] and FLEX [21] that are
only applicable to specific cases, and the inherent difficulties
in isolating/controlling the flakiness causes on the other. For
instance, IFIXFLAKIES [20] fixes order-dependent tests by
identifying helper statements in other tests, whereas FLEX [21]
identifies assertion bounds that minimise flakiness stemming
from algorithmic randomness. At the same time, many preva-
lent categories of flakiness, e.g., Asynchronous Waits and

Concurrency [22], [23], [24], [9], remain unaddressed by
fixing approaches. This is mainly due to the difficulty of
identifying and controlling the cause of flakiness [9].

Flakiness root cause localisation is both important and dif-
ficult. It is important since it allows developers to understand
the sources of flakiness, hence enabling better control of non-
determinism. It is also difficult because of the difficulty to
reproduce failures, the diversity in potential issues, e.g., time
and network, and the large scope of potential culprits, e.g., the
tests, the code under test (CUT), and the infrastructure [22].
Consequently, practitioners struggle to identify the causes of
non-determinism in their codebases that trigger flakiness and
consider this step as the main challenge in automating flakiness
mitigation strategies [9].

In this paper, we address this challenge by re-targeting
Fault Localisation (FL) techniques in order to help identify
components (program classes in particular) that are responsible
for the non-deterministic behaviour of flaky tests. For the sake
of simplicity, we refer to these classes as flaky classes. Such
techniques can be useful to support the analysis of codebases
and of flaky tests. Thus, given a failure, either known as flaky
or unknown, engineers can rely on localisation methods to
investigate the specific scenario (condition) that causes the
test transition. Additionally, flakiness localisation techniques
can help with code comprehension and make engineers aware
of code areas linked with flaky behaviour, assisting them in
both development and testing tasks.

In view of this, we investigate the appropriateness of a
variety of fault localisation methods, such as Spectrum-Based
Fault Localisation (SBFL), change history metrics, and static
code metrics in identifying flaky classes. Our study aims to
answer the following four research questions:

• RQ1: Are SBFL-based approaches effective in identify-
ing flaky classes?

• RQ2: How do code and change metrics contribute to the
identification of flaky classes?

• RQ3: How can ensemble learning improve the identifi-
cation of flaky classes?

• RQ4: How does an SBFL-based approach perform for
different flakiness categories?

To answer these questions, we analyse five Open Source
projects where test flakiness has been fixed during the project
evolution. Our analysis shows that:

• An ensemble of models based on SBFL, change, and size
metrics, yields the best results, with 61% of flaky classes
in the top 10 and 26% of them at the top. This method
also reduces the average effort wasted by developers
to 19% of the effort spent when inspecting all classes
covered by the flaky test.

• The ensemble method is effective for major flakiness
categories. Concurrency and Asynchronous Waits are
identified effectively, with 38% and 30% of their flaky
classes ranked at the top, respectively.

To facilitate the reproducibility of this study, we provide all
used scripts, the set of collected flaky classes, and detailed

TABLE I: Collected Data. ffc: number of flakiness-fixing
commits. all: number of commits in the project.

Proj. #Commits #Tests #Classes
ffc all min - max avg min – max avg

Hbase 8 18,990 138 - 2,089 1,113 734 – 1366 1053.4
Ignite 14 27,903 15 - 1,018 174 72 – 1767 1262.3
Pulsar 10 8,516 194 - 1,326 626 171 – 422 259.7
Alluxio 3 32,560 315 - 694 473 131 – 817 360.3
Neo4j 3 71,824 21 - 5,782 2,139 40 – 1663 581.3

Total 38 15 - 5,782 905 40 – 1767 820.2

results in a comprehensive package1.

II. DATA COLLECTION

The objective of our study is to assess the effectiveness of
FL techniques in identifying flaky classes. To achieve this, we
need a set of flaky tests for which the responsible classes are
already known. For this, we rely on flakiness-fixing commits
as they provide information about classes that were modified
as part of the fix. Our assumption is that such classes are,
at least, part of the root cause. To collect flaky classes, we
followed a four-step process.

a) Search: This step aims to identify Java projects con-
taining the highest number of flakiness-fixing commits. For
this, we relied on two sets of projects to consider. We built
the first set by using the SEART GitHub Search Engine [25].
Out of the 81,180 available Java projects, we selected the top
200 projects for each of those criteria: number of commits,
contributors, stars, releases, issues, and files. This sorting was
made with the aim of finding the bigger and more complex
projects, thus maximising our chance to find flakiness-fixing
commits. Keeping only unique projects in those sets, we ended
up with a first list of 902 projects. As a second set, we use
the 187 projects available in the IDFLAKIES dataset [10]. For
each of the 1,089 projects, 902 from the first and 187 from
the second set, we query the GitHub API looking for commits
with messages containing the keyword flaky. This led to the
identification of 16,501 commits. We look further into whether
these commits are truly suitable for our purpose through the
following processes.

b) Inspection: The objective of this step is to filter
commits that do not provide a clear indication about the flaky
class. Hence, we look for flakiness-fixing commits containing
any of the following keywords: fix, repair, solve, correct, patch,
prevent. Then, we analyse each commit and keep the ones that:
• The fix affects the code under test (not only the test itself);
• The changes are atomic enough (i.e., containing only rele-
vant changes) allowing us to discern the flaky class(es).

This led to the selection of 85 commits from five projects.
We further discarded 22 commits for which the flaky tests
or commit were not retrievable (e.g., rejected pull request),
leaving 63 commits in the end.

c) Test execution: This step aims to select commits that
are usable in our evaluation. Our first question inspects the
effectiveness of SBFL, a technique that requires a coverage

1https://github.com/serval-uni-lu/sherlock.replication

https://github.com/serval-uni-lu/sherlock.replication

matrix indicating the classes covered by each test. Hence,
for a commit to be usable in our analysis, its test suite
should be runnable allowing us to extract the coverage matrix.
To ensure this, we used GZOLTAR2, a Maven plugin that
allows collecting coverage information for each commit. For
11 commits, we were unable to run GZOLTAR due to an
incompatible Java version. We also found that the flakiness
patches were irrelevant in 10 commits. For instance, some
commits were fixing modules in other programming languages
or modifying non-source code files. Lastly, we filtered out
four additional commits since the reported flaky failures were
not flaky test failures. Consequently, we dropped 25 commits
in addition. Table I summarises the retained projects. The
complete list of flakiness-fixing commits is available in our
replication package.

d) Extraction: For each collected flakiness-fixing com-
mit, we retrieve the source code, the test suite, the fixed flaky
test, and the flaky class. To retrieve the flaky classes, two
authors manually analysed the commit diff and message to
identify them. Overall, the identification was obvious since
we selected atomic commits beforehand. Hence, there were no
disagreements between the authors at this step. The identified
classes are considered the ground truth of our study.

III. STUDY DESIGN

A. RQ1 - Effectiveness

1) Motivation: The objective of our study is to investi-
gate the usability of well-founded FL techniques to help in
mitigating flaky tests. The literature on FL proposes a wide
variety of categories such as ML-based techniques [26], [27],
[28], mutation-based techniques [29], [30], and qualitative
reasoning-based techniques [31]. Nonetheless, spectrum-based
fault localisation remains one of the most distinguished FL
categories thanks to its effectiveness and simplicity [32].
SBFL requires only the test coverage matrix to compute the
likelihood for a code entity to include the root cause of an
observed test failure. The main assumption of SBFL is that
code entities covered by more failing tests and fewer passing
tests are more suspicious than those less covered by failing
tests and more by passing tests [33]. This assumption can be
revised to identify the root causes of flaky tests instead of
bugs. In particular, if we separate tests into two groups: flaky
and stable, instead of failing and passing, we can leverage
the coverage matrix to rank classes based on their correlation
with flaky tests. In this case, the assumption would be that
classes covered by more flaky tests and fewer stable tests have
a higher chance to be responsible for test flakiness. In this
RQ, we assess the effectiveness of this adaptation of SBFL in
identifying flaky classes.

2) Approach: Relying on the data collected in Section II,
we use the GZOLTAR plugin to run the test suites of each
commit and build coverage matrices. Based on these matrices,
we compute for each class the spectrum data: (es, ef , ns, nf).
In our case, for each class, es and ef represent the number

2https://github.com/GZoltar/gzoltar/blob/master/com.gzoltar.ant/

TABLE II: SBFL formulae adapted to flakiness.

Name Formula
Ochiai [42]

ef√
(ef+nf)(ef+es)

Barinel [43] 1− es
es+ef

Tarantula [44], [45]

ef
ef+nf

ef
ef+nf

+ es
es+ns

DStar [34]
e∗f

es∗nf

of stable and flaky tests executing it, respectively. On the
other hand, ns and nf represent the number of stable and
flaky tests that do not execute it, respectively. To compute
classes’ suspiciousness scores, we inject these spectrum data
in classical SBFL formulæ. Table II summarises the four
formulæ adopted in our study with the necessary adaptations
for flakiness. For DStar, the notation ‘*’ is a variable that we
set to 2 based on the recommendation of Wong et al. [34].
With each formula, we compute the suspiciousness scores of
each class and then rank them in descending order: classes
with the highest scores are ranked first.

Recently, it has been theoretically proven that no SBFL
formula can outperform all others [35]. In addition, Xuan and
Monperrus proposed a new approach that learns to combine
multiple SBFL formulæ [36]. Their approach, called Multric,
successfully outperformed all the input formulæ, opening a
trend to use multiple formulæ to overcome the limitation of
using a single SBFL formula [37], [38], [27]. Following this
trend, we used Genetic Programming to evolve a new formula
that combines all four SBFL formulæ.

Genetic Programming (GP) evolves a solution (i.e., a pro-
gram) for a given problem under the guidance of a (fitness)
function. GP can also generate non-linear models and learn a
model flexibly from input instead of defining a fixed formula.
Hence, GP was employed to generate risk evaluation formulæ
for fault localisation [39], [40]. For the same reasons, we
employ GP to evolve a model (i.e., a formula) for the flaky
class identification problem. We configure the GP to have a
population of 40 individuals and to stop and return the best
model found so far after 100 generations. Each individual
in the population denotes a single candidate formula and
is generated using (i) six arithmetic operators (subtraction,
addition, multiplication, division, square root, and negation)
and (ii) the features that GP takes as input. We define our
fitness function as the average ranking of flaky classes. To
make most of the data and avoid overfitting, we use ten-fold
cross-validation, using one fold for test and the others for
training. We also normalise all input data between 0 and 1
using min-max normalisation. Finally, to compensate for the
inherently stochastic nature of GP, we run GP 30 times with
different random seeds and report the results of a model with
the median fitness. We used DEAP v.1.3.1 [41].

B. RQ2 - Code and change metrics

1) Motivation: The objective of this question is to explore
the benefits of augmenting the SBFL technique with additional
signals from the software. Recent studies showed that the

https://github.com/GZoltar/gzoltar/blob/master/com.gzoltar.ant/

performances of SBFL can be improved by incorporating
signals from code and change metrics. More specifically, Sohn
and Yoo [40] showed that combining SBFL with code and
change metrics widely adopted in the fault prediction com-
munity [46], such as age, change frequency (i.e., churn), and
size, can significantly improve the approach’s performances.
The assumption is that code entities with higher complexity
and change frequency are more likely to be faulty. Several
studies suggested that the test size and complexity can also
be an indicator of flakiness [15], [47], [18]. However, it is
unclear if such metrics correlate also with classes that are
responsible for test flakiness. Therefore, in this RQ, we assess
the benefits of these metrics in spotting flaky classes. Besides
these metrics, we investigate the effects of metrics that are
specific to the nature of flaky tests. Multiple empirical studies
analysed the root causes of flakiness and showed that the main
categories are: Async Waits, Concurrency, Order-dependency,
Network, Time, I/O operations, Unordered collections and
Randomness [24], [48], [49], [22]. We derived a list of static
metrics that describe each of these categories in Java projects.
We exclude order-dependency because order-dependent tests
generally stem from tests themselves instead of the CUT, thus,
they are not concerned by our approach. In the following, we
describe our approach for (i) calculating these metrics and (ii)
defining a FL formulae based on them.

2) Approach:
a) Metric collection: Table III summarises the full list

of metrics used in our study. To compute these metrics, we
first retrieve the source code of the project at the commit of
interest (i.e., the parent commit of the flakiness-fixing commit
identified by the data collection step). Then, for calculating
flakiness-specific metrics, we use Spoon [50]. Spoon is a
framework for Java-based program analysis and transformation
that allows us to build an abstract syntax tree and a call
graph. Using the graph and tree, we extract classes and
their metrics (e.g., #COPS and #ROPS). For size metrics, we
also use these code analysis results from Spoon (e.g., DOI).
As for change metrics, we analyse the change history and
extract the following information: the date of each commit,
files modified and renamed by each commit, and authors of
individual commits. Using this information, we compute the
three change metrics: Unique Changes, Age, and Developers.

b) Ranking model: Similarly to RQ1, we use GP in order
to generate models that combine our metrics with suspicious-
ness scores generated by SBFL formulæ. In particular, for each
type of metrics (i.e., flakiness, size, and change), we evolve
a model that takes as input its metrics with SBFL scores
and outputs a ranking for each candidate class. Afterwards,
we compare the performances of these models to infer the
contribution of each type of metrics.

C. RQ3 - Ensemble method

1) Motivation: This question explores the potential for
improvement by exploiting all the formulæ generated using
GP while at the same time making the most of the resources
spent on model generation. For this aim, we use voting as our

TABLE III: Code and change metrics used to augment SBFL.

Metric Definition

Fl
ak

in
es

s

#TOPS Number of time operations performed by the class.
#ROPS Number of calls to the random() method in the

class.
#IOPS Number of input/output operations performed by the

class.
#UOPS Number of operations performed on unordered col-

lections by the class.
#AOPS Number of asynchronous waits in the class.
#COPS Number of concurrent calls in the class.
#NOPS Number of network calls in the class.

C
ha

ng
e Changes Number of unique changes made on the class.

Age Time interval to the last changes made on the class.
Developers Number of developers contributing to the class.

Si
ze

LOC The number of lines of code.
CC Cyclomatic complexity.
DOI Depth of inheritance.

ensemble learning method. We opted for voting since it does
not require an additional cost for model generation and its
effectiveness has already been demonstrated by previous fault
localisation studies [51], [52]

2) Approach: Voting between models is performed in two
phases: candidate selection and voting. During the candidate
selection phase, all the participating models compute their own
suspciousness scores for the candidates. A candidate, in our
case, is an individual class of the CUT. Individual models
compute their own suspiciousness scores for the candidates
and select those placed within the top N as their candidates to
vote. In the voting phase, each model votes for its own top N
candidates. If M number of models participate in the voting,
we can have the maximum N×M number of voted candidates
in total. The votes from the models are then aggregated, and
the voted candidates are reordered from the most voted to the
least voted.

Previous studies on voting-based FL showed that varying
the number of votes that each candidate receives based on
its actual rank in individual models can improve the localisa-
tion performance even further [51], [52]. Hence, rather than
assigning the same number of votes to each candidate, we
allow individual models to cast a different number of votes
for each candidate based on its location in the ranking. For
instance, a candidate ranked at the top will obtain a complete
one vote, whereas a candidate ranked in the third place will
get 1

3 vote. As mentioned in III-F, candidates can be tied with
other candidates since their ranks are computed from ordinal
scores. When a candidate fails to be in the top N due to being
tied with others, we allow every tied candidate (c) to receive
the following number of votes: votes = 1

rankbest(c)×ntied(c)
votes. Here rankbest denotes the best (highest) rank a tied
candidate can have, and ntied is the total number of tied
candidates, including itself. The equation below summarises
the number of votes a candidate (c) can obtain. rank(c) is the
rank of the candidate c.


1

rank(c) if rank(c) ≤ N
1

rankbest(c)×ntied(c)
if rankbest(c) ≤ N

0 otherwise

D. RQ4 - Flakiness categories

1) Motivation: The literature on flaky tests reports different
categories of flakiness [24], [48], [49], [22]. These categories
can manifest differently both in the test and CUT and as a
result the identification of flaky classes can also be affected
by such differences. That is, a technique might identify de-
cently the classes responsible for non-deterministic network
operation, but struggles in pinpointing classes causing race
conditions. This RQ aims to investigate the performances of
an SBFL-based approach among distinct flakiness categories.

2) Approach: Many studies manually analysed flakiness-
fixing commits to categorise them [24], [53] based on their
commit message and code changes. In our study, we followed
a similar process where two authors manually analysed the
commits separately to assign them to one of the categories
derived by Luo et al. [24]. As our manual analysis does not
intend to build a new taxonomy or identify new categories,
it is reasonable to adopt an existing taxonomy as reference.
The two authors had a disagreement over one commit, where
one author only suggested one category whereas the other sug-
gested two categories. After discussion, the authors decided to
keep two categories to avoid discarding relevant information.
The results of this analysis are available in our replication
package. After labelling the flakiness-fixing commits, we
analyse the performance of our SBFL-based approach among
different flakiness categories.

E. Evaluation metrics

For the evaluation of our approach, we use two metrics:
accuracy and wasted effort. Both acc@n and wef are based
on the absolute number of code entities instead of percent-
ages. This conforms to the recommendations of Parnin and
Orso [54] who suggested that absolute metrics reflect the
actual amount of efforts required from developers better than
percentages. The accuracy (acc@n) calculates the number of
cases where the flaky classes were ranked in the top n. In
our study, we report the acc@n with 1, 3, 5, and 10 as n
values. In the cases of multiple flaky classes, we consider the
flaky class to be among the top n, if at least one of the flaky
classes is. The second metric, wasted effort (wef), allows us to
measure the effort wasted while searching for the flaky class.
It is formally defined as [36]:

wef = |susp(x) > susp(x∗)|+|susp(x) = susp(x∗)|/2+1/2

Where susp() provides the suspiciousness score of the class x,
x∗ is the flaky class, and |.| provides the number of elements
in the set. Accordingly, wef measures the absolute number of
classes inspected before reaching the real flaky class x∗.

For our approach to be useful for developers, it should pro-
vide guidance beyond currently available information. When a

program fails due to flaky tests, one thing that can be helpful
to identify the cause is a list of classes covered by the flaky
tests. Hence, in this paper, we count the total number of classes
covered by flaky tests (i.e., our baseline) and compare it with
the number of classes inspected to locate a flaky class (i.e.,
wef+1). More specifically, in addition to the two absolute
metrics, we measure the relative effort defined as:

Rwef =
100× (wef + 1)

of classes covered by flaky tests
, 0 < Rwef ≤ 100

If Rwef is smaller than 50, we consider our approach to
outperform the baseline since it saves more than the expected
effort (i.e., average) of the baseline.

F. Tie-breaking

Both SBFL and our evolved formulæ compute an ordinal
score for each class. As a result, multiple classes can have
the same score, being tied to each other. Ties are generally
harmful as they force developers to inspect more classes.
Among various tie-breakers introduced and adopted to handle
this problem [55], we use a max tie-breaker that assigns the
lowest rank (i.e., the maximum) to all tied entities. We choose
the max tie-breaker to avoid overinterpretation of the results.

IV. STUDY RESULTS

A. RQ1 - Effectiveness

Table IV shows the localisation results of SBFL formulæ.
Among the four SBFL formulæ, Dstar yields the worst results
both in accuracy and wasted effort, while the other three
perform similarly. Out of 38 analysed flaky classes, Dstar
ranks 18 (47%) in the top 10. Ochiai, which performs the best,
places 53% of flaky classes (i.e., 21) within the top 10 and
16% (6) at the top. Nevertheless, regardless of which formula
we use, our SBFL-based approach outperforms the baseline
of inspecting classes covered by flaky tests: for all four SBFL
formulæ, Rwef is always smaller than 50 in total, especially
in its median. It is worth noting that since the total number
of classes covered by flaky tests differs in each flaky commit,
Rwef does not always concur with wef. For Ochiai, Rwef

reduces to 6, meaning we only need to inspect 6% of the
classes covered by flaky tests.

Table V presents the evaluation results of our GP model
evolved to combine the four SBFL formulæ. As explained in
Section III-A, we report only the results of the model with
the median fitness among 30 models. In contrast to what we
expected from combining the four SBFL formulæ using GP,
we fail to observe any meaningful improvement compared to
the results of Ochiai, the best of the four formulæ: the acc@10
and the median wasted effort improve only marginally, and
Rwef degrades.

To understand these observations, we inspect the intersec-
tion between the sets of classes ranked in the top 5 by these
four SBFL formulæ. Figure 1 presents this intersection in a
Venn diagram. Out of 14,16,15,15 flaky classes ranked within
the top 5 by Dstar, Ochiai, Tarantula, and Barinel, 13 of them
are the same flaky classes. There are two additional classes

TABLE IV: RQ1: Effectiveness of SBFL formulæ. (#) denotes the total number of flaky commits for each project. The row
Perc contains the percentage of flaky commits whose triggering flaky classes are ranked in the top n; these values are

computed only for acc@n.

Dstar Ochiai Tarantula Barinel
Proj. (#) acc wef (Rwef) acc wef (Rwef) acc wef (Rwef) acc wef (Rwef)

@1 @3 @5 @10 mean med @1 @3 @5 @10 mean med @1 @3 @5 @10 mean med @1 @3 @5 @10 mean med

Hbase (8) 0 3 4 4 33.0 (17) 7 (5) 2 5 5 5 14.9 (13) 1 (4) 1 4 4 5 11.9 (12) 4 (4) 1 4 4 5 11.6 (12) 4 (4)
ignite (14) 0 2 2 2 214.7 (21) 31 (4) 0 3 3 4 212.0 (20) 20 (4) 0 3 3 4 177.1 (17) 20 (4) 0 3 3 4 175.1 (17) 20 (4)
Pulsar (10) 1 3 6 9 9.9 (21) 4 (6) 3 5 6 9 9.2 (13) 3 (6) 3 5 6 9 9.2 (13) 3 (6) 3 5 6 9 9.2 (13) 3 (6)
Alluxio (3) 0 0 0 1 60.7 (43) 72 (31) 0 0 0 1 71.0 (46) 72 (41) 0 0 0 0 92.7 (59) 73 (58) 0 0 0 0 105.3 (66) 87 (65)
Neo4j (3) 1 2 2 2 12.0 (41) 1 (18) 1 2 2 2 12.0 (41) 1 (18) 1 2 2 2 23.0 (43) 1 (18) 1 2 2 2 23.7 (43) 1 (18)

Total (38) 2 10 14 18 94.4 (24) 11 (17) 6 15 16 21 90.2 (21) 7 (6) 5 14 15 20 79.3 (21) 8 (7) 5 14 15 20 79.6 (21) 8 (7)
Perc (%) 5 26 37 47 - - 16 39 42 55 - - 13 37 39 53 - - 13 37 39 53 - -

TABLE V: RQ1: The effectiveness of GP evolved formulæ
using Ochiai, Barinel, Tarantula, and DStar.

Project Total acc wef (Rwef)
@1 @3 @5 @10 mean med

Hbase 8 1 4 5 5 13.12 (16) 2.5 (5)
Ignite 14 0 3 3 5 214.93 (21) 20.0 (4)
Pulsar 10 3 5 6 9 9.20 (23) 3.0 (9)
Alluxio 3 0 0 0 1 101.67 (65) 86.0 (83)
Neo4j 3 1 2 2 2 23.33 (43) 1.0 (18)

Total 38 5 14 16 22 94.24 (26) 6.5 (8)
Percentage (%) 100 13 37 42 58 - -

that are ranked in the top 5 by all except Dstar and one
extra class by only Ochiai and Dstar. Overall, the diagram
demonstrates that there are large overlaps between the results
of these four SBFL formulæ. Thus, we can conclude that the
GP-evolved formula did not lead to substantial improvements
because there was no space for improvement as all four input
formulæ provided similar signals. This conclusion brings out
the need for introducing external signals from other code
and change metrics, which will be discussed in the following
research question.

0

0

0

0

0

0

2

0

0

0
0

1

0

0

13

dstar
ochiai
tarantula
barinel

Fig. 1: Venn-diagram of flaky classes ranked in the top 5 by
the four SBFL formulæ.

Using SBFL, we were able to localise flaky classes
by inspecting only 21-24% (6-7%) of classes covered
by flaky tests on average (median). With Ochiai, flaky
classes are ranked at the top and in the top 10 for 16%
and 55% of total flaky commits.

B. RQ2 - Code and change metrics

Table VI shows the evaluation results for GP-evolved mod-
els using SBFL scores with change and code metrics. The table

shows that the addition of signals from change and size metrics
leads to an improvement in the identification of flaky classes.
In particular, by adding change metrics, the percentage of
classes ranked at the top reaches 24%. This percentage is much
higher than the maximum percentage achieved with SBFL
alone, which is 16% with Ochiai. On the contrary, we do not
observe any significant improvements in the number of flaky
tests ranked in the top 10 or top 5. Combined, these results
imply that these change and size metrics can give additional
signals that break ties between the classes located near the top,
allowing developers to identify the exact cause of flakiness
more precisely. The comparison with the results of GP with
only SBFL formulæ in Table V further supports the usefulness
of change and size metrics. Specifically, by adding change and
size metrics, the percentage of flaky classes ranked at the top
(acc@1) goes from 13% to 24% and 18%, respectively. In
addition, average Rwef improves 5% with change metrics and
4% with size metrics.

With regard to flakiness metrics, their combination with
SBFL scores does not lead to any notable improvements in
the ranking of classes at the top. The percentage of classes
at the top is 11% and the percentage of classes in the top 10
is 53%. One possible explanation for this is that our flakiness
metrics are derived from a flakiness taxonomy that focuses
on the test instead of the CUT. Hence, using metrics derived
from such categories may not be helpful in the identification
of CUT components that are responsible for flakiness. To
alleviate this, future studies should consider categories and
metrics that are derived from the CUT, and existing flakiness
taxonomies should be updated accordingly.

To further investigate the impact of change and size metrics
on the identification performance, we analyse the involvement
of each metric in our GP-evolved formulæ. Table VII shows
the frequency of change and size metrics in the GP evolved
formulæ generated under the configuration of using SBFL and
change metrics (i.e., SBFL & Change) and the configuration
of using SBFL and size metrics (i.e., SBFL & Size). As shown
in this table, both change and size metrics are frequently
involved in the final formulæ, confirming that our observed
improvement did not come only from using GP. Based on these
results, we posit that change and size metrics can contribute
positively to the identification of flaky classes.

TABLE VI: RQ2: The contribution of flakiness, change, and size metrics to the identification of flaky classes.

SBFL & flakiness SBFL & change SBFL & size
Proj. (#) acc wef (Rwef) acc wef (Rwef) acc wef (Rwef)

@1 @3 @5 @10 mean med @1 @3 @5 @10 mean med @1 @3 @5 @10 mean med

Hbase (8) 1 4 5 5 11.9 (12) 3 (4) 2 4 4 5 16.9 (13) 4 (4) 2 4 5 5 11.4 (12) 3 (3)
Ignite (14) 0 2 2 4 230.9 (26) 63 (4) 2 4 4 4 222.3 (24) 18 (4) 1 3 3 5 220.1 (24) 43 (4)
Pulsar (10) 2 5 6 8 10.2 (15) 3 (8) 3 5 7 9 8.0 (12) 2 (5) 2 5 7 9 6.9 (13) 2 (6)
Alluxio (3) 0 0 1 1 97.7 (51) 73 (65) 0 0 1 1 75.7 (49) 94 (39) 0 0 1 1 90.7 (49) 77 (58)
Neo4j (3) 1 2 2 2 19.3 (42) 1 (18) 2 2 2 2 6.7 (37) 0 (9) 2 2 2 2 23.0 (40) 0 (10)

Total (38) 4 13 16 20 99.5 (24) 8 (8) 9 15 18 21 94.1 (21) 5 (6) 7 14 18 22 94.3 (22) 5 (7)
Percentage (%) 11 34 42 53 - - 24 39 47 55 - - 18 37 47 58 - -

TABLE VII: Frequency of metrics in GP-evolved formulæ
(from 0 to 1). ‘Changes’ and ‘Dev’ denote ‘Unique Changes’
and ‘Developers’, respectively. The column ‘SBFL’ contains
the average frequency of the four SBFL metrics.

SBFL Changes Dev Age LOC DOI CC

SBFL & Change 0.45 0.50 0.37 0.53 - - -
SBFL & Size 0.50 - - - 0.71 0.37 0.73

The augmentation of Spectrum-Based Fault Localisa-
tion with change or size metrics lets more flaky classes
be ranked near the top; by adding change metrics, we
can rank 24% flaky classes at the top. In contrast,
metrics specific to flakiness categories do not provide
any beneficial signals to the identification approach.

C. RQ3 - Ensemble method

Table VIII presents the evaluation results for the voting
method with 60 GP-evolved models, half from using SBFL
and change metrics and the other half from using SBFL and
size metrics. We decided to exclude the models that build
on flakiness metrics since their usage did not improve the
performance any further. As explained in Section III-C, there
can be a case where none of the participating models succeeds
to vote for the true candidate since individual models vote only
for those ranked within the top n. For this case, we report the
median of all rankings of the models as an alternative.

The results show that the voting step further improves the
ranking results. The most notable improvement is the accuracy
at the top 3, which reaches 47%. Although the improvements
in the other accuracy metrics are not as noticeable as what
we have seen in the accuracy at the top 3, there are constant
improvements over the results without voting. The average
of wasted effort remains almost the same while the median
improves from the voting, dropping to 3.5. These results imply
that the voting allows those near the top to shift further
to higher ranks based on the agreement among the models
that exploit and capture different features of flaky classes.
Nonetheless, the constant improvements in Rwe, both per
project and in total, suggest that through the voting, we can
rank flaky classes further near to the top; for example, in
Alluxio, where Rwef is always near 50, average Rwef reduces
to 22 and its median to 10. These results imply that voting

can leverage the complementarity between different models,
further improving the localisation of flakiness.

TABLE VIII: RQ3: The effectiveness of the voting between
60 different GP-evolved models, 30 from SBFL with change
metrics, and 30 from using SBFL with size metrics. ‘Perc’

denotes Percentage

Project Total acc wef (Rwef)
@1 @3 @5 @10 mean med

Hbase 8 3 5 6 6 9.62 (12) 1.5 (2)
Ignite 14 2 4 4 4 228.61 (24) 17.5 (4)
Pulsar 10 3 6 7 9 7.30 (12) 2.0 (5)
Alluxio 3 1 1 1 2 61.83 (22) 9.0 (10)
Neo4j 3 1 2 2 2 19.67 (42) 1.0 (18)

Total 38 10 18 20 23 94.61 (19) 3.5 (5)
Perc (%) 100 26 47 53 61 - -

A voting between models based on SBFL, change,
and size metrics, provides the best ranking for flaky
classes. 47% of flaky classes are ranked in the top 3
and 26% of them are ranked at the top. The average
Rwef further reduces to 19, highlighting the practical
usefulness of our approach.

D. RQ4 - Flakiness categories

Table IX presents the performances of the voting method on
the different flakiness categories encountered in our dataset.
The “Ambiguous” category represents cases where the flaky
tests could not be assigned to any of the known flakiness
categories. First, we observe that the most common categories
are Concurrency and Asynchronous Waits. This aligns with
observations from previous studies [24], [49], [9] and confirms
that the taxonomy adopted for our metrics is adequate for our
distribution. Furthermore, we observe a discrepancy between
the performances in different categories. Classes responsible
for Async Waits are well identified with 80% of the classes in
the top 10, and 30% of them at the top. Classes responsible
for Concurrency also show good performances with 50% of
them in the top 10, and 38% of them at the top; the average
Rwef is below ten, eight precisely, meaning we can locate
flaky classes by inspecting less than 10% of the total number
of the classes covered by flaky tests.

Categories such as Time and I/O show much lower per-
formances, with 33% and 0% of flaky classes in the top 10,
respectively. Nevertheless, given the low number of instances
for these categories, it is hard to discuss or generalise their
results. With only two instances, the category Unordered
Collections shows curious results as one class is ranked second
and the other one ranked 663. To understand the reasons
behind the bad ranking, we manually inspected this case3. We
found that the concerned test, testUnstableTopology,
was executed twice due to a retry mechanism. Both executions
led to failure, but interestingly, we found that the two failures
have different causes. One of them is due to a lack of context
initialisation and is likely to be the reason behind flakiness.
As the two failure causes are different, the coverage is also
different in them. Specifically, one of the failures did not
cover the flaky class, and as the coverage of this failure was
leveraged in the SBFL, the flaky class was not considered
suspicious. We discuss other reasons responsible for poor
ranking in Section V.

TABLE IX: RQ4: The effectiveness per flakiness category

Flakiness acc wef (Rwef)
Category @1 @3 @5 @10 mean med

Concurrency (16) 6 (38) 7 (44) 7(44) 8 (50) 147.53 (27) 9.5 (9)
Async wait (10) 3 (30) 6 (60) 8 (80) 8 (80) 21.05 (8) 1.5 (3)
Ambiguous (4) 1 (25) 2 (50) 2 (50) 3 (75) 18.88 (5) 3.5 (5)
Time (3) 0 (0) 0 (0) 0 (0) 1 (33) 88.33 (16) 14.0 (10)
Network (2) 0 (0) 2 (100) 2 (100) 2 (100) 1.00 (10) 1.0 (10)
Unordered
collections (2) 0 (0) 1 (50) 1(50) 1 (50) 331.5 (33) 331.5 (33)
I/O (1) 0 (0) 0 (0) 0(0) 0 (0) 12.50 (3) 12.5 (3)
Random (1) 0 (0) 1 (100) 1 (100) 1 (100) 2.00 (75) 2.0 (75)

Total (394) 10 18 20 23 94.47 (19) 3.5 (5)
Perc (%) 26 47 53 61 - -

The most prominent flakiness categories, Concurrency
and Asynchronous Waits, are identified effectively,
with 38% and 30% of their flaky classes ranked at
the top, respectively. In the Concurrency category,
flaky classes are identified by examining 8% of classes
covered by flaky tests on average.

V. DISCUSSION

In this section, we discuss our results in light of the existing
literature on test flakiness and fault localisation. Our approach
uses existing fault localisation techniques to identify flaky
classes in the CUT. While we leverage various data sources,
the main strength of our approach comes from adopting exist-
ing SBFL techniques, as explained in RQ2. The effectiveness
of other data, such as change metrics, is limited in providing
additional signals that break ties between the classes already
ranked near the top. Hence, the performance of our approach
largely depends on the applicability of SBFL to our flaky

3https://github.com/apache/ignite/commit/188e4d52c2
4One flaky class belongs to two categories: Network and Unordered

Collections.

class identification problem. The flaky class identification
problem and traditional fault localisation problems are similar
in the way they are debugged (i.e., from the reproduction and
cause identification to the fix). As described in III-A, this
resemblance allows us to redefine SBFL techniques to identify
flaky classes instead of faulty ones. Nevertheless, there is one
significant difference between them: the characteristics of a
test suite. Many fault localisation studies assume a test to
cover a single functionality, and the subjects they studied often
follow this assumption [26], [27], [56]. In contrast, we did
not consider such an assumption for test subject selection to
reflect a realistic scenario of flaky test failure. This difference
may restrict the applicability of existing fault localisation tech-
niques to the flaky class identification problem, especially test
coverage-based techniques, such as SBFL. Indeed, although
we identified 26% and 61% of flaky classes at the top and
within the top 10, we failed to reach the performance reported
in prior work on fault localisation [57]. Hence, we investigate
the diagnosability of the test suite of our subjects using the
Density, Diversity, and Uniqueness (DDU) metric [58].

DDU diagnoses the adequacy of SBFL for a software
system by considering three properties of its test suite: Density,
Diversity, and Uniqueness. Each property covers a distinct fea-
ture of a test suite, and DDU is computed as the multiplication
of these three properties. Density evaluates how frequently a
code entity, in our case a class, is covered by tests. Diversity
is about whether tests cover code entities in a diverse fashion.
Lastly, uniqueness guarantees that different code entities are
covered by different sets of tests. All these three components
of DDU have values between 0 and 1. The higher the DDU
is, the more adequate the test suite is for SBFL.

Table X presents DDU values for the five projects analysed
in this study. While all five projects generally have high
diversity values (i.e., all above 0.9), they have relatively low
uniqueness and density values, which results in low DDU
scores. Among the five projects, Pulsar has the highest DDU
score of 0.289, followed by Neo4j, Alluxio, Ignite, and Hbase.
Since both Neo4j and Alluxio have only three flaky classes,
which might be too small to discuss the identification results,
we will skip these two for the following discussion. Among
the remaining three projects, all our flaky class identification
methods, ranging from pure SBFL to voting, perform the best
on Pulsar, the one with the highest DDU score, in acc@n and
wef. For instance, even the pure SBFL approach that often
performs the worst successfully localised nine out of ten flaky
classes of Pulsar within the top 10 and more than half within
the top five. The same trend was observed in both GP and
voting-based methods. Compared to HBase, while Ignite has
a slightly higher average for the DDU score, it has a far lower
Uniqueness score (i.e., 0.188 for Ignite and 0.413 for HBase).
Uniqueness evaluates whether a code entity is distinguishable;
we assume that the flaky classes have different coverage than
non-flaky classes. Thus, we suspect that Ignite having a lower
Uniqueness is why our methods were not as effective on Ignite
as on HBase: we have the worst results on Ignite in both
absolute (i.e., acc@n and wef) and relative effort (i.e., Rwef).

https://github.com/apache/ignite/commit/188e4d52c2

Based on these results, we argue that while our outcome
may not be as good as those reported by prior fault localisation
studies[39], [40], that is mainly due to the inherently low
diagnosability of a test suite (e.g., covering too many classes
in the same fashion). This test-suite adequacy issue commonly
exists in the fault localisation field[51] and is not limited to
flaky class identification. Hence, we posit that the performance
of our approach can improve along with the advances in fault
localisation techniques.

In an attempt to shed light on the 15 cases where
the class was ranked outside the top 10 by our
voting approach, we extended our inspection to reason
about such performances. We observed that flaky tests
covering a high number of classes are more likely to
result in low performances. For example, the flaky test
shutdownDatabaseDuringIndexPopulations in
Neo4j covers 480 classes and its flaky class was ranked
59 by our voting approach whereas the other flaky tests in
Neo4j (having their corresponding flaky classes ranked 1
and 2) cover fewer than 10 classes. When we inspect the
DDU score of the specific commit that contains this test,
it has a relatively low DDU score compared to the other
two commits. Additionally, most of the mis-ranked classes
are found in the Ignite project (10/15), whose DDU score
is the second-lowest, and its tests cover on average 492
classes. Due to this consequent number of covered classes,
we suspect these tests to be of a higher level, i.e., integration
or end-to-end tests. This aligns with studies highlighting the
prevalence of flakiness in integration and system tests [59],
[60]. Still, our approach does not systematically fail to
identify flaky classes covered by higher-level tests as nine of
them (flaky test covering more than 100 classes) are listed in
the top 10.

VI. THREATS TO VALIDITY

a) External validity: The main threat to the external
validity of this study is the dataset size. To ensure the
generalisability of our results, it would have been preferable
to include more flaky tests in our experiments. Nonetheless,
the datasets of flaky tests are generally limited in size due
to the elusiveness of flakiness [61], [14], [13]. Moreover,
as explained in Section II, the requirements of this study
limited the set of candidates considerably. For a commit to
be eligible in our study, it needs to have atomic changes
fixing flakiness in the CUT. However, only 24% of flaky
tests actually stem from the CUT, which limits the size of
potential subjects [24]. Besides, the creation of our dataset
required a substantial amount of manual work to identify
suitable commits and perform necessary changes to retrieve
coverage matrices. For instance, for each commit, we had
to modify the build script to match GZOLTAR requirements,
i.e., find the test executor version that matches both the
program under test and the plugin. We iteratively removed
non-essential listeners and other plugins that could interfere
with the instrumentation. Moreover, we had to find and adapt
the execution environment to match the program under test

and the testing environment. Finally, compared to the works
of Lam et al. [62] and Zitfci and Cavalcanti [63], which were
conducted on proprietary software, this study is the first to
leverage open-source software to localise flakiness root causes.
Thus, our dataset and ground truth can be valuable for future
studies on flakiness debugging.

b) Internal validity: One potential threat to our internal
validity is our definition of flakiness root causes within the
CUT, i.e., flaky classes. We rely on flakiness-fixing commits
to identify classes that are responsible for flakiness. However,
we cannot be certain that (i) the flakiness fix is effective, and
(ii) the modified class is the one responsible for flakiness.
Indeed, a study by Lam et al. [49] showed that developers
may wrongly claim that their commits fix flaky tests before
realising that the fix is ineffective. Additionally, there are no
guarantees that the classes included in the fix are the ones
responsible for flakiness. Nonetheless, if the class was part of
the proclaimed fix, this means that the developers found it,
at least, relevant. Hence, its identification by our approach is
still helpful for developers willing to understand, debug, and
fix flaky tests.

c) Construct validity: One potential threat to our con-
struct validity is our measurement of the coverage for flaky
tests. A flaky test can pass and fail for the same version of
the program, but in practice, it may be extremely difficult
to reproduce both the pass and failure [13], [64]. Hence,
a test can be observed as flaky by the project developers
and therefore fixed, yet we are unable to reproduce the pass
and failure in our experiments even with a large number of
reruns [13]. For this reason, we focused on the available status,
i.e., pass or failure, and retrieve its coverage. It is possible
that including the coverage of both the pass and failure from
the flaky tests might lead to different results with spectrum-
based fault localisation. Thus, we encourage future studies to
investigate this direction. Another possible threat is whether
the evaluation results of our approach truly support what we
claim. We use two absolute metrics, acc@n and wef , that can
reflect the realistic debugging effort of developers, following
the suggestion from Parnin and Orso [54], and one relative
metric, Rwef , to compare with the baseline of inspecting
classes covered by flaky tests.

VII. RELATED WORK

a) Flakiness root causes: Several empirical studies high-
lighted the diversity of flakiness root causes. Luo et al. [24]
were the first to characterise the root causes of flaky tests. They
analysed 201 flakiness-related commits from 51 open-source
projects and showed that the mismanagement of asynchronous
calls and concurrency are the most common causes of flaky
tests. Later studies replicated the work of Luo et al., showing
that other flakiness root causes can be more relevant in
different application domains. Thorve et al. [53] analysed 77
flakiness-related commits in 29 open-source Android applica-
tions and found that 22% of these commits have flakiness
caused by external factors like hardware, operating system
version, and third-party libraries. Eck et al. [9] surveyed 21

TABLE X: DDU metrics for the analysed test suites.

Project Density Diversity Uniqueness DDU
min max mean min max mean min max mean min max mean

Hbase 0.049 0.477 0.248 0.995 0.999 0.997 0.188 0.553 0.413 0.021 0.116 0.091
Ignite 0.368 0.993 0.736 0.918 1.000 0.979 0.045 0.486 0.188 0.034 0.466 0.132
Pulsar 0.029 0.998 0.491 0.984 0.998 0.994 0.520 0.786 0.609 0.019 0.518 0.289
Alluxio 0.414 0.833 0.591 0.958 0.996 0.982 0.226 0.615 0.362 0.101 0.322 0.201
Neo4j 0.127 0.739 0.515 0.894 0.993 0.931 0.268 0.791 0.585 0.088 0.522 0.258

Mozilla developers, asking them to classify 200 flaky tests
in terms of root causes and fixing efforts. The survey results
highlighted four new categories of flakiness: restrictive ranges,
test case timeout, test suite timeout, and platform dependency.

b) Flakiness root cause analysis: The main contribution
to flakiness root cause localisation was proposed by Lam et
al. [62]. They introduced a framework that helps developers
to localise the root causes of their flaky tests. This framework
uses an instrumentation tool to log the runtime properties of
the test execution. Then it reruns the tests 100 times to produce
logs for a passing and a failing execution. To analyse these
logs and localise the root cause, they propose RootFinder, a
tool that compares the logs of passing and failing executions
to identify methods that can be responsible for flakiness.
RootFinder relies on a predefined set of non-deterministic
method calls and does not explore calls of unknown methods.
Hence, it can only detect flaky tests that arise from method
calls that the developer is already suspecting. Zitfci and Caval-
canti [63] presented Flakiness Debugger, a tool that compares
the code coverage of passing and failing executions to localise
the flakiness root cause. They ran their tool on 83 flaky tests
and presented the localised root cause to two developers asking
them for their evaluation. On average the developers found that
in 48% of the cases, flakiness was due to the exact statements
spotted by Flakiness Debugger. Moreover, only 18% of the
outputs were considered inconclusive, hard to understand, or
not useful. Both RootFinder and Flakiness Debugger relied
on differences between passing and failing executions of flaky
tests to localise flakiness in the CUT. In this study, we explore
a new direction by analysing the differences between flaky and
stable tests.

Morán [65] presented FlakyLoc, a tool for localising the root
causes of flakiness in web applications. The tool reruns web
tests while varying environmental factors (network, memory,
CPU, browser type, operating system, and screen resolution)
and records test results. Then, it uses ranking metrics (Ochiai
and Tarantula [66], [67]) to identify the environmental factor
and value that are responsible for the flaky failure. The tool
was only evaluated on one test case and it detected that the
failure was caused by low screen resolution. In this paper, we
do not focus on any specific flakiness category and our analysis
is based on the test coverage instead of environmental factors.

c) Fault localisation: Fault localisation was introduced
to ease the developers’ burden of debugging by automatically
identifying the root cause of a program failure [68], [57]. Since
its appearance, various fault localisation techniques that utilise

various data, from dynamic to static ones, have been actively
proposed [69], [29], [27], [32]. Spectrum Based Fault Local-
isation (SBFL), a lightweight coverage-based technique, was
under the spotlight for many years. SBFL takes a test coverage
matrix as input and computes the likelihood of containing a
fault for individual code entities using a risk evaluation for-
mula. The simplicity and effectiveness of SBFL attract many
researchers into this field [70], [71], [72], [39]. Papadakis and
Traon proposed Mutation Based Fault Localisation (MBFL)
techniques that leverage the coupling between real faults
(i.e., complex faults) and the mutants (i.e., simple faults)
to localise faults in code [29]. Information Retrieval-based
Fault Localisation (IRFL) approaches the problem differently,
utilising static data sources, such as bug reports, instead of
dynamic ones, such as test coverage [32]. Recently, Li et al.
proposed to combine various fault localisation techniques us-
ing a deep learning model [27]. Their approach called DeepFL
successfully outperforms all the other FL techniques that it
considers. The current trend of fault localisation is moving to
either use a deep neural network to train a model [26], [73]
or include humans to bring additional signals [74]. In which
direction it heads, the main framework of fault localisation
remains the same and test coverage remains to be an effective
source of information.

VIII. CONCLUSION

We presented the first empirical evaluation of SBFL as a
potential approach for identifying flaky classes. We investi-
gated three approaches: pure SBFL, SBFL augmented with
change and code metrics, and an ensemble of them. We
evaluated these approaches on five open-source Java projects.
Our results show that SBFL-based approaches can identify
flaky classes relatively well, especially with code and change
metrics, suggesting that code components responsible for
flakiness exhibit similar properties with faults. This finding
highlights the potential of existing fault localisation techniques
for flakiness identification. At the same time, the results show
that flaky tests can have unique failure causes that may mislead
any coverage-based root cause analysis, stressing the need to
consider these flakiness-specific causes in future studies.

Our study forms the first step towards flakiness localisation.
We believe that there is a lot of room for improvement and
encourage future studies to explore additional techniques, fault
prediction metrics, and devise techniques that can further
improve and support flakiness localisation.

REFERENCES

[1] C. Leong, A. Singh, M. Papadakis, Y. L. Traon, and J. Micco, “Assessing
transition-based test selection algorithms at google,” in Proceedings
of the 41st International Conference on Software Engineering: Software
Engineering in Practice, ICSE (SEIP) 2019, Montreal, QC, Canada,
May 25-31, 2019, H. Sharp and M. Whalen, Eds. IEEE / ACM, 2019,
pp. 101–110. [Online]. Available: https://doi.org/10.1109/ICSE-SEIP.
2019.00019

[2] S. Habchi, G. Haben, M. Papadakis, M. Cordy, and Y. L. Traon, “A
qualitative study on the sources, impacts, and mitigation strategies of
flaky tests,” pp. 244–255, 2022.

[3] G. F. Martin Gruber, “A survey on how test flakiness affects developers
and what support they need to address it,” International Conference on
Software Testing (ICST), 2022.

[4] J. Micco, “The State of Continuous Integration Testing Google,” 2017.
[5] W. Lam, S. Winter, A. Wei, T. Xie, D. Marinov, and J. Bell, “A large-

scale longitudinal study of flaky tests,” Proceedings of the ACM on
Programming Languages, vol. 4, no. OOPSLA, pp. 1–29, 2020.

[6] J. Palmer, “Test flakiness – methods for identify-
ing and dealing with flaky tests : Spotify engi-
neering,” https://engineering.atspotify.com/2019/11/18/
test-flakiness-methods-for-identifying-and-dealing-with-flaky-tests/,
November 2019, (Accessed on 01/12/2021).

[7] M. T. Rahman and P. C. Rigby, “The impact of failing, flaky, and high
failure tests on the number of crash reports associated with firefox
builds,” ESEC/FSE 2018 - Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pp. 857–862, 2018.

[8] J. Micco and A. Memon, “Gtac 2016: How flaky tests in continuous in-
tegration - youtube,” https://www.youtube.com/watch?v=CrzpkF1-VsA,
December 2016, (Accessed on 01/12/2021).

[9] M. Eck, M. Castelluccio, F. Palomba, and A. Bacchelli, “Understanding
Flaky Tests: The Developer’s Perspective,” arXiv, pp. 830–840, 2019.

[10] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “IDFlakies: A
framework for detecting and partially classifying flaky tests,” Proceed-
ings - 2019 IEEE 12th International Conference on Software Testing,
Verification and Validation, ICST 2019, pp. 312–322, 2019.

[11] D. Silva, L. Teixeira, and M. D’Amorim, “Shake It! Detecting Flaky
Tests Caused by Concurrency with Shaker,” Proceedings - 2020 IEEE
International Conference on Software Maintenance and Evolution, IC-
SME 2020, pp. 301–311, 2020.

[12] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“DeFlaker: Automatically Detecting Flaky Tests,” in Proceedings of
the 40th International Conference on Software Engineering - ICSE ’18.
New York, New York, USA: ACM Press, 2018, pp. 433–444. [Online].
Available: http://dl.acm.org/citation.cfm?doid=3180155.3180164

[13] A. Alshammari, C. Morris, M. Hilton, and J. Bell, “Flakeflagger:
Predicting flakiness without rerunning tests,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 2021,
pp. 1572–1584.

[14] G. Haben, S. Habchi, M. Papadakis, M. Cordy, and Y. Le Traon, “A
Replication Study on the Usability of Code Vocabulary in Predicting
Flaky Tests,” Proceedings of the International Conference on Mining
Software Repositories (MSR), 2021.

[15] G. Pinto, B. Miranda, S. Dissanayake, M. D’Amorim, C. Treude, and
A. Bertolino, “What is the Vocabulary of Flaky Tests?” Proceedings
- 2020 IEEE/ACM 17th International Conference on Mining Software
Repositories, MSR 2020, pp. 492–502, 2020.

[16] Z. Dong, A. Tiwari, X. L. Yu, and A. Roychoudhury, “Flaky test
detection in Android via event order exploration,” in Proceedings of
the 29th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE
’21), August 23â•fi28, 2021, Athens, Greece, vol. 1, no. 1. Association
for Computing Machinery, 2021, pp. 367–378.

[17] B. Camara, M. Silva, A. T. Endo, and S. Vergilio, “What is the
vocabulary of flaky tests? an extended replication,” in 2021 2021
IEEE/ACM 29th International Conference on Program Comprehension
(ICPC) (ICPC). Los Alamitos, CA, USA: IEEE Computer Society, may
2021, pp. 444–454. [Online]. Available: https://doi.ieeecomputersociety.
org/10.1109/ICPC52881.2021.00052

[18] B. Camara, M. Silva, A. Endo, and S. Vergilio, “On the use of test smells
for prediction of flaky tests,” in Brazilian Symposium on Systematic and
Automated Software Testing, 2021, pp. 46–54.

[19] S. Fatima, T. A. Ghaleb, and L. Briand, “Flakify: A Black-
Box, Language Model-based Predictor for Flaky Tests,” arXiv
preprint arXiv:2112.12331, pp. 1–12, 2021. [Online]. Available:
http://arxiv.org/abs/2112.12331

[20] A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov, “iFixFlakies : A
Framework for Automatically Fixing Order-Dependent Flaky Tests,”
in 27th ACM Joint European Software Engineering Conference and
Symposium on the Foundations ofSoftware Engineering (ESEC/FSE
’19), 2019.

[21] S. Dutta, A. Shi, and S. Misailovic, FLEX: Fixing Flaky Tests in
Machine Learning Projects by Updating Assertion Bounds. New York,
NY, USA: Association for Computing Machinery, 2021, p. 603–614.
[Online]. Available: https://doi.org/10.1145/3468264.3468615

[22] M. Gruber, S. Lukasczyk, F. Krois, and G. Fraser, “An Empirical Study
of Flaky Tests in Python,” Proceedings - 2021 IEEE 14th International
Conference on Software Testing, Verification and Validation, ICST 2021,
pp. 148–158, 2021.

[23] A. Romano, Z. Song, S. Grandhi, W. Yang, and W. Wang, “An empirical
analysis of ui-based flaky tests,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 2021, pp. 1585–
1597.

[24] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in Proceedings of the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, vol. 16-21-November-2014, nov
2014, pp. 643–653.

[25] O. Dabic, E. Aghajani, and G. Bavota, “Sampling projects in github for
MSR studies,” in 18th IEEE/ACM International Conference on Mining
Software Repositories, MSR 2021. IEEE, 2021, pp. 560–564.

[26] Y. Lou, Q. Zhu, J. Dong, X. Li, Z. Sun, D. Hao, L. Zhang, and
L. Zhang, “Boosting coverage-based fault localization via graph-based
representation learning,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2021. New York,
NY, USA: Association for Computing Machinery, 2021, p. 664–676.
[Online]. Available: https://doi.org/10.1145/3468264.3468580

[27] X. Li, W. Li, Y. Zhang, and L. Zhang, “Deepfl: Integrating multiple fault
diagnosis dimensions for deep fault localization,” in Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2019. New York, NY, USA: Association
for Computing Machinery, 2019, p. 169–180. [Online]. Available:
https://doi.org/10.1145/3293882.3330574

[28] L. C. Briand, Y. Labiche, and X. Liu, “Using machine learning to support
debugging with tarantula,” in The 18th IEEE International Symposium
on Software Reliability (ISSRE’07). IEEE, 2007, pp. 137–146.

[29] M. Papadakis and Y. L. Traon, “Metallaxis-fl: mutation-based fault
localization,” Journal of Software Testing, Verification and Reliability,
vol. 25, no. 5-7, pp. 605–628, 2015.

[30] S. Hong, B. Lee, T. Kwak, Y. Jeon, B. Ko, Y. Kim, and M. Kim,
“Mutation-based fault localization for real-world multilingual programs
(T),” in 30th IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015,
2015, pp. 464–475.

[31] A. Perez, R. Abreu, and I. HASLab, “Leveraging qualitative reasoning
to improve sfl.” in IJCAI, 2018, pp. 1935–1941.

[32] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
vol. 42, no. 8, pp. 707–740, 2016.

[33] M. Renieres and S. P. Reiss, “Fault localization with nearest neighbor
queries,” in 18th IEEE International Conference on Automated Software
Engineering, 2003. Proceedings. IEEE, 2003, pp. 30–39.

[34] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The dstar method for
effective software fault localization,” IEEE Transactions on Reliability,
vol. 63, no. 1, pp. 290–308, 2014.

[35] S. Yoo, X. Xie, F.-C. Kuo, T. Y. Chen, and M. Harman, “No pot of gold
at the end of program spectrum rainbow: Greatest risk evaluation for-
mula does not exist,” University College London, Tech. Rep. RN/14/14,
2014.

[36] J. Xuan and M. Monperrus, “Learning to combine multiple ranking
metrics for fault localization,” in 2014 IEEE International Conference
on Software Maintenance and Evolution, 2014, pp. 191–200.

[37] T.-D. B. Le, D. Lo, C. Le Goues, and L. Grunske, “A learning-to-rank
based fault localization approach using likely invariants,” in Proceedings
of the 25th International Symposium on Software Testing and Analysis,
ser. ISSTA 2016. New York, NY, USA: ACM, 2016, pp. 177–188.

https://doi.org/10.1109/ICSE-SEIP.2019.00019
https://doi.org/10.1109/ICSE-SEIP.2019.00019
https://engineering.atspotify.com/2019/11/18/test-flakiness-methods-for-identifying-and-dealing-with-flaky-tests/
https://engineering.atspotify.com/2019/11/18/test-flakiness-methods-for-identifying-and-dealing-with-flaky-tests/
https://www.youtube.com/watch?v=CrzpkF1-VsA
http://dl.acm.org/citation.cfm?doid=3180155.3180164
https://doi.ieeecomputersociety.org/10.1109/ICPC52881.2021.00052
https://doi.ieeecomputersociety.org/10.1109/ICPC52881.2021.00052
http://arxiv.org/abs/2112.12331
https://doi.org/10.1145/3468264.3468615
https://doi.org/10.1145/3468264.3468580
https://doi.org/10.1145/3293882.3330574

[38] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empirical
study of fault localization families and their combinations,” IEEE
Transactions on Software Engineering, 2019.

[39] S. Yoo, X. Xie, F.-C. Kuo, T. Y. Chen, and M. Harman, “Human com-
petitiveness of genetic programming in sbfl: Theoretical and empirical
analysis,” ACM Transactions on Software Engineering and Methodology,
vol. 26, no. 1, pp. 4:1–4:30, July 2017.

[40] J. Sohn and S. Yoo, “Empirical evaluation of fault localisation using
code and change metrics,” IEEE Transactions on Software Engineering,
vol. 47, no. 8, pp. 1605–1625, 2021.

[41] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and
C. Gagné, “DEAP: Evolutionary algorithms made easy,” Journal of
Machine Learning Research, vol. 13, pp. 2171–2175, July 2012.

[42] R. Abreu, P. Zoeteweij, and A. J. van Gemund, “An evaluation of similar-
ity coefficients for software fault localization,” in The proceedings of the
12th Pacific Rim International Symposium on Dependable Computing,
ser. PRDC 2006. IEEE, 2006, pp. 39–46.

[43] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “Spectrum-based multi-
ple fault localization,” in 2009 IEEE/ACM International Conference on
Automated Software Engineering. IEEE, 2009, pp. 88–99.

[44] J. A. Jones, M. J. Harrold, and J. T. Stasko, “Visualization for fault lo-
calization,” in Proceedings of ICSE Workshop on Software Visualization,
2001, pp. 71–75.

[45] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test informa-
tion to assist fault localization,” in Proceedings of the 24th International
Conference on Software Engineering. New York, NY, USA: ACM,
2002, pp. 467–477.

[46] S. McIntosh and Y. Kamei, “Are fix-inducing changes a moving tar-
get? a longitudinal case study of just-in-time defect prediction,” IEEE
Transactions on Software Engineering, vol. 44, no. 5, pp. 412–428, May
2018.

[47] T. M. King, D. Santiago, J. Phillips, and P. J. Clarke, “Towards a
Bayesian Network Model for Predicting Flaky Automated Tests,” 2018
IEEE International Conference on Software Quality, Reliability and
Security Companion (QRS-C), pp. 100–107, 2018.

[48] O. Parry, “A Survey of Flaky Tests,” ACM transactions on software
engineering and methodology, vol. 31, no. 1, 2021.

[49] W. Lam, K. Muslu, H. Sajnani, and S. Thummalapenta, “A study on
the lifecycle of flaky tests,” Proceedings - International Conference on
Software Engineering, pp. 1471–1482, 2020.

[50] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier,
“Spoon: A Library for Implementing Analyses and Transformations of
Java Source Code,” Software: Practice and Experience, vol. 46, pp.
1155–1179, 2015. [Online]. Available: https://hal.archives-ouvertes.fr/
hal-01078532/document

[51] J. Sohn, G. An, J. Hong, D. Hwang, and S. Yoo, “Assisting bug report
assignment using automated fault localisation: An industrial case study,”
in Proceedings of the 14th IEEE International Conference on Software
Testing, Verification and Validation, 2021.

[52] J. Sohn and S. Yoo, “Why train-and-select when you can use them all?
Ensemble model for fault localisation,” in Proceedings of the Annual
Conference on Genetic and Evolutionary Computation, ser. GECCO
2019, 2019, pp. 1408–1416.

[53] S. Thorve, C. Sreshtha, and N. Meng, “An empirical study of flaky tests
in android apps,” Proceedings - 2018 IEEE International Conference on
Software Maintenance and Evolution, ICSME 2018, pp. 534–538, 2018.

[54] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proceedings of the 2011 International
Symposium on Software Testing and Analysis, ser. ISSTA ’11. New
York, NY, USA: Association for Computing Machinery, 2011, p.
199–209. [Online]. Available: https://doi.org/10.1145/2001420.2001445

[55] X. Xu, V. Debroy, W. Eric Wong, and D. Guo, “Ties within fault local-
ization rankings: Exposing and addressing the problem,” International
Journal of Software Engineering and Knowledge Engineering, vol. 21,
no. 06, pp. 803–827, 2011.

[56] M. Wen, J. Chen, Y. Tian, R. Wu, D. Hao, S. Han, and S. C. Cheung,
“Historical spectrum based fault localization,” IEEE Transactions on
Software Engineering, pp. 1–1, 2019.

[57] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
vol. 42, no. 8, pp. 707–740, 2016.

[58] A. Perez, R. Abreu, and A. van Deursen, “A test-suite diagnosabil-
ity metric for spectrum-based fault localization approaches,” in 2017

IEEE/ACM 39th International Conference on Software Engineering
(ICSE), 2017, pp. 654–664.

[59] E. Kowalczyk, K. Nair, Z. Gao, L. Silberstein, T. Long, and A. Memon,
“Modeling and ranking flaky tests at apple,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering:
Software Engineering in Practice, ser. ICSE-SEIP ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 110–119.
[Online]. Available: https://doi.org/10.1145/3377813.3381370

[60] K. Herzig and N. Nagappan, “Empirically Detecting False Test Alarms
Using Association Rules,” Proceedings - International Conference on
Software Engineering, vol. 2, pp. 39–48, 2015.

[61] S. Habchi, M. Cordy, M. Papadakis, and Y. L. Traon, “On the
use of mutation in injecting test order-dependency,” CoRR, vol.
abs/2104.07441, 2021. [Online]. Available: https://arxiv.org/abs/2104.
07441

[62] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta,
“Root Causing Flaky Tests in a Large-Scale Industrial Setting,” in
Proceedings ofthe 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA ’19). Beijing, China: ACM Press,
2019, pp. 101–111.

[63] C. Ziftci and D. Cavalcanti, “De-flake your tests : Automatically locating
root causes of flaky tests in code at google,” in 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2020, pp.
736–745.

[64] W. Lam, S. Winter, A. Astorga, V. Stodden, and D. Marinov, “Under-
standing reproducibility and characteristics of flaky tests through test
reruns in java projects,” in 2020 IEEE 31st International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 2020, pp. 403–413.

[65] J. Morán, C. Augusto, A. Bertolino, C. de la Riva, and J. Tuya,
“Flakyloc: Flakiness localization for reliable test suites in web
applications,” J. Web Eng., vol. 19, no. 2, pp. 267–296, 2020. [Online].
Available: https://doi.org/10.13052/jwe1540-9589.1927

[66] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. van Gemund,
“A practical evaluation of spectrum-based fault localization,” J. Syst.
Softw., vol. 82, no. 11, p. 1780–1792, nov 2009. [Online]. Available:
https://doi.org/10.1016/j.jss.2009.06.035

[67] J. A. Jones and M. J. Harrold, “Empirical evaluation of the
tarantula automatic fault-localization technique,” in Proceedings of
the 20th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’05. New York, NY, USA: Association
for Computing Machinery, 2005, p. 273–282. [Online]. Available:
https://doi.org/10.1145/1101908.1101949

[68] C. Catal, “Software fault prediction: A literature review and current
trends,” Expert Systems with Applications, vol. 38, no. 4, pp. 4626 –
4636, 2011.

[69] W. Wen, “Software fault localization based on program slicing spec-
trum,” in 2012 34th International Conference on Software Engineering
(ICSE), 2012, pp. 1511–1514.

[70] W. E. Wong, Y. Qi, L. Zhao, and K.-Y. Cai, “Effective fault localization
using code coverage,” in Proceedings of the 31st Annual International
Computer Software and Applications Conference - Volume 01, ser.
COMPSAC ’07. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 449–456.

[71] X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu, “A theoretical analysis of
the risk evaluation formulas for spectrum-based fault localization,” ACM
Transactions on Software Engineering Methodology, vol. 22, no. 4, pp.
31:1–31:40, October 2013.

[72] X. Xie, F.-C. Kuo, T. Y. Chen, S. Yoo, and M. Harman, “Provably
optimal and human-competitive results in sbse for spectrum based fault
localisation,” in Search Based Software Engineering, ser. Lecture Notes
in Computer Science, G. Ruhe and Y. Zhang, Eds. Springer Berlin
Heidelberg, 2013, vol. 8084, pp. 224–238.

[73] Y. Li, S. Wang, and T. N. Nguyen, “Fault localization with code
coverage representation learning,” in 43rd IEEE/ACM International
Conference on Software Engineering, ICSE 2021, Madrid, Spain, 22-
30 May 2021. IEEE, 2021, pp. 661–673. [Online]. Available:
https://doi.org/10.1109/ICSE43902.2021.00067

[74] X. Li, S. Zhu, M. d’Amorim, and A. Orso, “Enlightened
debugging,” in Proceedings of the 40th International Conference on
Software Engineering, ser. ICSE ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 82–92. [Online].
Available: https://doi.org/10.1145/3180155.3180242

https://hal.archives-ouvertes.fr/hal-01078532/document
https://hal.archives-ouvertes.fr/hal-01078532/document
https://doi.org/10.1145/2001420.2001445
https://doi.org/10.1145/3377813.3381370
https://arxiv.org/abs/2104.07441
https://arxiv.org/abs/2104.07441
https://doi.org/10.13052/jwe1540-9589.1927
https://doi.org/10.1016/j.jss.2009.06.035
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1109/ICSE43902.2021.00067
https://doi.org/10.1145/3180155.3180242

	Introduction
	Data Collection
	Study Design
	RQ1 - Effectiveness
	Motivation
	Approach

	RQ2 - Code and change metrics
	Motivation
	Approach

	RQ3 - Ensemble method
	Motivation
	Approach

	RQ4 - Flakiness categories
	Motivation
	Approach

	Evaluation metrics
	Tie-breaking

	Study Results
	RQ1 - Effectiveness
	RQ2 - Code and change metrics
	RQ3 - Ensemble method
	RQ4 - Flakiness categories

	Discussion
	Threats to Validity
	Related Work
	Conclusion
	References

