
A Qualitative Study on the Sources, Impacts, and
Mitigation Strategies of Flaky Tests

Sarra Habchi
University of Luxembourg

sarra.habchi@uni.lu

Guillaume Haben
University of Luxembourg
guillaume.haben@uni.lu

Mike Papadakis
University of Luxembourg
michail.papadakis@uni.lu

Maxime Cordy
University of Luxembourg

maxime.cordy@uni.lu

Yves Le Traon
University of Luxembourg

yves.letraon@uni.lu

Abstract—Test flakiness forms a major testing concern. Flaky
tests manifest non-deterministic outcomes that cripple continu-
ous integration and lead developers to investigate false alerts.
Industrial reports indicate that on a large scale, the accrual of
flaky tests breaks the trust in test suites and entails significant
computational cost. To alleviate this, practitioners are constrained
to identify flaky tests and investigate their impact. To shed light
on such mitigation mechanisms, we interview 14 practitioners
with the aim to identify (i) the sources of flakiness within
the testing ecosystem, (ii) the impacts of flakiness, (iii) the
measures adopted by practitioners when addressing flakiness,
and (iv) the automation opportunities for these measures. Our
analysis shows that, besides the tests and code, flakiness stems
from interactions between the system components, the testing
infrastructure, and external factors. We also highlight the impact
of flakiness on testing practices and product quality and show that
the adoption of guidelines together with a stable infrastructure
are key measures in mitigating the problem.

I. INTRODUCTION

Software Testing is critical for modern software develop-
ment as it allows the concurrent implementation and inte-
gration of features. At Google, more than 50 million test
cases are executed every day to ensure the quality of their
products [1]. Though, test automation faces major problems
with the emergence of flaky tests [2]–[4]. Flaky tests are
tests that, for the same versions of code and test, can pass and
fail on different runs. Such non-determinism sends confusing
signals to developers who struggle to interpret the test results.
As a result, developers lose trust in test suites, disregard their
signals and integrate features containing real failures, thereby
nullifying the purpose of testing.

Flaky tests are prevalent in large software systems and they
incur significant cost. Google reports indicate that 16% of their
tests exhibit some flakiness whereas 84% of the transitions
from pass to fail involve a flaky test [2]. This entails enormous
computational resources since 2-16% of the company’s testing
budget is dedicated to rerun flaky tests [5].

In response to this challenge, researchers dedicate their
efforts in understanding the nature of flaky tests and the way
they manifest. Empirical studies examined the root causes
of flaky tests in open-source software [6]–[9] and industrial
systems [10], showing that concurrency and order-dependency

are among the main categories of test flakiness. Notably, the
study of Eck et al. [7] showed that flakiness can stem from
the code under test and highlighted its potential impact on
organisational aspects like resource allocation.

Other studies investigated tools and techniques that could
help developers to cope with test flakiness. Automated tools,
such as DeFlaker [11], iDFlakies [12], and FlakeFlagger [13]
have been developed in order to detect flaky tests with a
minimum number of test runs or re-runs. Unfortunately, these
advances offer only partial solutions to the problem and may
not fit well within the development systems and organisation
constraints. For instance, DeFlaker relies on coverage and
reruns of tests that do not execute changed code, which are
not possible in specific development environments that use
regression test selection or when coverage cannot be obtained.
Furthermore, the fixing of flaky tests gained traction as studies
investigated the fixing effort devoted for flaky tests and tools
like [14] are designed to fix flaky tests. Nonetheless, in order
to devise flakiness solutions, we need to understand how
developers deal with flaky tests in practice. In particular,
it is necessary to identify the typical measures taken by
practitioners when dealing with flaky tests, and reflect on how
research solutions could assist and improve them.

To shed some light on these questions, we conduct an
empirical study focused on the industrial context in which
flakiness manifests. Specifically, we perform a qualitative
analysis on data collected from 14 practitioner interviews to
answer the following research questions:

• RQ1: Where can we locate flakiness?
Goal: Differently from previous studies [6]–[10], which fo-
cused on the root causes of flakiness, e.g., concurrency and
timeouts, we aim to identify where flakiness stems within
the different components of the development ecosystem, e.g.,
test, code under test, and infrastructure. This localisation is
necessary to guide both detection and fixing approaches.
Results: In addition to tests, flakiness stems from the poor
orchestration between the system components, the testing
infrastructure, and external factors, e.g., OS and firmware.
Studies should consider and leverage these factors when
addressing flaky tests and not focus solely on the test and



code under test.
• RQ2: How do practitioners perceive the impact of flaki-

ness?
Goal: This question is commonly discussed in industrial re-
ports and research studies. In this paper, we examine it through
direct discussions with practitioners. The aim is to understand
the impact of flakiness on the development workflow and
practices.
Results: Besides dissipating development time and hindering
the continuous integration (CI), flakiness affects the testing
practices and leads to a degradation of the system quality.
We also shed light on the pernicious consequences of system
flakiness, i.e., buggy or non-deterministic features that are
falsely labelled as flaky tests.

• RQ3: How do practitioners address flaky tests?
Goal: This question aims at identifying and understanding the
measures taken by practitioners to address flakiness before and
after it manifests in the CI.
Results: The prevention of test flakiness is performed by build-
ing stable infrastructures and enforcing guidelines, whereas the
detection still relies mainly on reruns and manual inspection.
Our results also highlight monitoring and logging tasks, which
are commonly dismissed in research, yet they are key to most
of the mitigation measures taken by practitioners.

• RQ4: How could mitigation measures be improved with
automation tools?
Goal: This question aims to identify specific needs to be
addressed by future research.
Results: We accentuate the need for techniques that mon-
itor and analyse the system states to assist the prediction,
debugging, and fine-grained evaluation of flaky tests. Our
participants also expressed the need for automating the qual-
ity assessment of software tests through static analysis and
variability-aware reruns, i.e., reruns under diverse system
configurations.

We believe that the qualitative results of this study are nec-
essary to complement the current understanding of flakiness
and advise future work.

II. RELATED WORK

The first study on test flakiness was carried out by Luo
et al. [6]. They analysed 201 commits from 51 open source
projects in order to understand the root causes of flaky tests.
They showed that Async Waits, concurrency, and test order-
dependency are the main categories of flakiness. Later, many
techniques were proposed to detect flaky tests with minimal
resources, relying on reruns [12], coverage analysis [11], or
static and dynamic test features [13], [15], [16]. Other studies
focused on highlighting the effects of flakiness on mutation
testing and program repair [17].

Several studies have been conducted to inspect flakiness in
industrial contexts. Lam et al. conducted two studies [10],
[18] about flaky tests at Microsoft. The first study showed that
the number of build failures can quickly become significant
despite having a low number of flaky tests. Thence, they
introduced RootFinder, a tool that identifies the root causes

of flaky tests by analysing differences in test logs and spot-
ting suspect method calls. In their second study, Lam et al.
presented FaTB, an automated tool that speeds the runtime of
test suites by lowering timeouts and waits without impacting
the overall test suite flake rate. Leong et al. [19] studied flaky
tests at Google and found that more than 80% of test output
transitions are caused by flakiness. At Apple, Kowalczyk et
al. [20] introduced a flakiness scoring system and showed its
ability to reduce flakiness by 44%.

Eck et al. [7] surveyed 21 Mozilla developers, asking
them to classify 200 flaky tests in terms of root causes and
fixing efforts. This study highlighted four new categories
of flakiness: restrictive ranges, test case timeout, test suite
timeout, and platform dependency. It also provided evidence
about flakiness from the CUT and showed that flaky tests
can have organisational impacts. In this study, we leverage
a different qualitative approach (interviews) to address other
aspects of flakiness in practice. More specifically, we investi-
gate broader sources of flakiness (e.g., SUT and infrastructure)
instead of the root causes (e.g., concurrency and timeouts).
Our study also inspects the actions taken by practitioners in
order to prevent, detect, and alleviate flaky tests. Result-wise,
our findings confirm the observations of Eck et al. about
(i) the impact of flakiness on the test suite reliability and
(ii) the challenges of reproducing and debugging flaky tests.
Furthermore, we highlight new flakiness impacts, on testing
practices and product quality, and we synthesise a list of
automation challenges for flakiness mitigation.

III. PRELIMINARY ANALYSIS: GREY LITERATURE REVIEW

We conduct a grey literature review (GLR) to establish an
initial mapping of the measures adopted by practitioners when
dealing with flaky tests. This mapping lays the foundation
for our mitigation analysis (RQ3) and helps in guiding our
interview design. With respect to this objective, this GLR is
exploratory and non-exhaustive. In the following, we explain
our process for collecting, evaluating, and analysing data from
the grey literature.

a) Search: We followed the recommendations of
Kitchenham and Charters [21], for the reviewing process in
general, and the guidelines of Garousi et al. [22] for the aspects
specific to grey literature. The research question for our review
is:

• RQ3: How do practitioners address flaky tests?
In order to answer this question, we focused our review
on materials published by practitioners describing their
mitigation of flakiness, e.g., technical reports, presentations,
blogs, etc. To collect these materials, we queried the advanced
Google search engine with the following string: (Mitigate
OR Manage OR Deal OR Control OR Avoid OR
Prevent OR Tools OR Identify OR Detect)
AND (Flaky OR Intermittent OR Unreliable
OR non-deterministic) AND Tests. This query
resulted in 276, 000 results. We manually checked the top
100 articles and only accepted articles that:



• Are written by practitioners. Articles and Blog posts
written by researchers are excluded.

• Depict practitioners’ views on flakiness and do not only
address the problem theoretically.

We found that only 56 articles correspond to the searched ma-
terial as a large part of the top-100 articles were dedicated to
the introduction of flakiness without addressing its mitigation.

b) Analysis: The objective of this step is to identify and
categorise the flakiness mitigation measures from the selected
articles. For this purpose, we first examined the 56 articles to
check their adequacy for our analysis. We relied on the quality
assessment checklist presented by Garousi et al. [22], which
is specifically designed for grey literature sources. We found
that three factors are particularly relevant in our context and
we adopted them as exclusion criteria:

• Objectivity: We exclude sources where the authors have
a clear vested interest. For instance, articles that promote new
tools or plugins for mitigating flaky tests are generally biased.

• Method adequacy: We found that very few sources have
a clearly stated their aim and methodology. However, from
the presented content, we could identify articles that were not
based on practical experience and exclude them. For instance,
in several cases, the authors present mitigation measures from
a compilation of other sources and not based on their own
experiences.

• Topic adequacy: We checked whether the articles enrich
our analysis or not. More specifically, we excluded articles
that do not present any mitigation measures for flaky tests.
The full quality assessment is available with our artefacts [23].
Based on the three exclusion criteria, we selected 38 articles
that fit within the study scope and objectives. Two authors
read these articles and iteratively synthesised a classification
of the measures described by practitioners. This consensual
process is similar to the qualitative analysis performed on
the interview transcripts (cf. Section IV). The results of this
analysis are presented in Table II and will be discussed in
Section V. Interestingly, in our grey literature analysis, we
observed that the articles do not explain the rationale behind
the choice of measures. Similarly, the consequences of the
measures are generally dismissed. Hence, we try to address
these gaps in our interviewing process.

IV. INTERVIEWS & ANALYSIS

The objective of the interviewing process is to explore
the topics of our research questions with an open mind
instead of testing pre-designed questions. For this purpose, we
pursue a qualitative research approach [24] based on classic
Grounded Theory concepts [25]. In this section, we explain our
implementation of this approach from the interview design to
the analysis of the results.

A. Questions

Since we already formulated our topics of interest (RQs), we
opted for semi-structured interviews. These interviews build
on starter questions, which cover the topics of interest, and

according to the interviewee’s answers, they develop follow-
up questions that explore other points. While designing and
conducting our interviews, we followed the recommendations
of Hove et al. [26]. In particular, we ensured the clarity of the
discussed topics and notions before going through the inter-
views. For instance, we always asked questions about the inter-
viewee’s definition of flakiness to avoid misunderstandings and
ensure that the following questions are interpreted correctly.
We also avoided making prior assumptions about participants’
opinions or actions. For example, we ask several questions
about the testing practices before formulating our questions
to avoid wrong assumptions about the use of automated
testing or CI. We also explained the non-judgemental nature
of the interviews and encouraged participants to express their
opinions freely. Specifically, we mentioned that the objective
is not to assess the participants’ knowledge about flakiness
but rather to grasp their perception of it. Finally, we asked
follow-up questions whenever possible and we favoured open-
questions such as “Why did you opt for this measure?” to
incite participants to explain their motivations. We structured
our interview around the three following sections.

a) Context: We asked questions to characterise the
project and testing infrastructure.
1) What kind of projects do you work on? If possible ask for

metrics like codebase size, architecture, and development
team size.

2) Do you have automated or manual tests?
3) What kind of tests do you generally write?
4) Do you have a continuous integration?
5) Do you have a testing policy?
6) Can you describe your testing infrastructure? Do you

consider it stable?
b) Flakiness: We asked general questions about flaki-

ness:
7) Do you know what a flaky test is?
8) What is your definition of flakiness?
9) How commonly do you encounter flaky tests?

10) What are the sources of flakiness in your context?
11) Do you consider flakiness as an issue? Why?

c) Measures: We asked questions about the actions taken
by participants to prevent and address flaky tests:

12) How do flaky tests manifest in your codebase? How do
you detect them?

13) How do you treat the identified flaky tests?
14) Do you adopt any specific measures to avoid flaky tests?
15) Why did you adopt these measures?
16) Do you face difficulties when dealing with flaky tests?
17) If yes: What are these difficulties and what could help you

to overcome them?
For each measure described by the participant, we asked
follow-up questions to understand the motivations and con-
sequences. When possible, we also asked follow-up questions
about the measures that the participants did not take, e.g., if
they never mention fixing flaky tests, we could ask about the
rationale behind it. All the interviews were performed with
online calls where we explicitly asked the participants for



recording permission. The recordings lasted from 26 to 63
minutes with an average duration of 41 minutes.

1) Participants: Our objective was to select practitioners
who have experience in dealing with flaky tests in diverse
contexts. This diversity enriches the study and allows us to
have a thorough understanding of the practitioner perspective.
To ensure this diversity, we relied on several channels to invite
potential participants.

We shared our invitation with a brief description of the
study objectives on online groups for software engineering
practitioners. For instance, we targeted a group that gath-
ers 265 practitioners that are interested in software testing
and continuous integration. The group members are from
large companies like Tesla, Google, Apple, VMWare, Netflix,
Facebook, Spotify, etc. To include participants from other
backgrounds, we also targeted groups of practitioners from
FinTech companies, average-sized IT companies, and local
startups. Following these invitations, we received answers
from 19 practitioners who showed an interest in our study.
After exchanges, five participants estimated that their expe-
rience is insufficient for the study and did not proceed with
the interviews, thus our process ended up with 14 participants.
This number of interviewees is typical in studies that approach
similar topics [27], [28]. Besides, due to the specificity of
the topic, it is very challenging to find other developers that
are qualified enough to take part in the study. We conducted
the interviews with the 14 participants and after the analysis,
we considered that the collected data is enough to answer
our research questions and provide us with theoretical satu-
ration [29]. Indeed, the three last interviews did not lead to
any changes in our analytical template and only provided new
formulations for existing categories.

Table I summarises the profile of our participants (role and
years of experience) and their current companies (number of
employees, domain, and number of users). To preserve the
anonymity of our participants, we refer to them with code
names, we omit their company names, and upon specific
request, we also omit the experience and domain. Our par-
ticipants have solid experience in software engineering, their
experience ranges from 6 to 35 years, with an average of
16 years. The participants also work in companies that vary
significantly in terms of size and domain of activity. On top of
the industrial experience, three of our participants contributed
regularly to Open Source Software (OSS) as part of their job
or as a side activity.

B. Analysis

As our study builds on semi-structured interviews, we
relied on the strategy proposed by Schmidt et al. [30]. This
strategy helps with inquiries where a prior understanding of
the problem is postulated but the analysis remains open for
exploring new topics and formulations. In the following, we
explain the four steps of this analysis.

a) Transcription: To prepare the interview analysis, we
transcribed the recorded interviews into texts following a
denaturalism approach. This approach allows us to dismiss

TABLE I
A SUMMARY OF PARTICIPANTS’ PROFILES.
Role Years Size Domain Users OSS

P1 Engineering Manager 24 +1K Music +200M No
P2 CTO 10 +10 Mobility - No
P3 Tech Lead 7 +200 Cloud +30K Yes
P4 QA Consultant 12 +2K FinTech +190K No
P5 CTO 14 +10 Infrastructure - No
P6 Staff Engineer 20 +1K DevOPs - Yes
P7 Vice President 17 +200 Cloud +30K Yes
P8 Architect 7 +5k Online sales +70M No
P9 Senior Researcher 35 +20 R&D - No
P10 Architect 30 +24K Virtualisation +500K No
P11 Senior Engineer 6 +10k - +500M No
P12 Principal Architect 23 +10k Payment +200M No
P13 Front-end Developer 7 +40 Banking - No
P14 Senior Engineer - +10k - +500M No

non-informational content and ensures a full and faithful
transcription [31]. For the cases where the interviews were
not conducted in English, we transcribed them in the original
language and we only proceeded to their translation at the
reporting step.

b) Definition of analytical categories: The goal of this
step is to define the analytical categories that guide our
analysis. In our case the initial categories of interest were (i)
the sources of flaky tests, (ii) the measures for mitigating flaky
tests, and (iii) the difficulties of dealing with flaky tests. After
conducting four interviews, we observed that an additional
topic that is commonly mentioned by developers is: (iv) the
impact of flakiness. Based on our preliminary discussions,
this topic provided new insights on the effects of flaky tests,
as seen by practitioners. This topic also seemed essential
for understanding the efforts dedicated to the mitigation of
flaky tests. Hence, we added this topic to our categories of
interest and our interview template. After setting the analytical
categories, we read each participant answer to identify the
categories that can be associated with it. In this process, we
do not only focus on the participants’ direct answers, but we
also consider their use of terms and the aspects that they omit.
For instance, in our analysis of the second analytical category,
we consider the measures taken by practitioners but also those
that they were not aware of or the ones that they discarded.
On top of that, we carefully analyse developers’ answers to
context and flakiness questions to spot elements that can help
in interpreting their answers.

c) Assembly of a coding guide: The objective of this step
is to build a guide that can be used to code the interviews.
We assembled the four analytical categories and identified
different sub-categories for them based on an initial reading of
the interviews. The sub-categories represent different versions
formulated by developers in one analytical category. For
instance, for the first analytical category, i.e., sources of flaky
tests, the initial sub-categories were Test, Code Under Test,
and Environment. These sub-categories are not final and can
be refined, omitted, or merged along the following step. For
example, the sub-category Environment is later refined to two
categories Infrastructure and Uncontrollable environment.

d) Coding: We read the interviews to identify passages
that can be related to the categories and sub-categories of our



coding guide. This process can be repetitive as every time
a new sub-category is identified or refined, we need to read
previous texts to ensure that all passages related to it are
identified. To ensure the soundness of this process, two authors
coded the interviews separately before comparing their results.
In case of disagreement, the authors discussed their views
and opted for a negotiated solution. Besides this consensual
coding, all the authors discussed the coding guide iteratively, to
ensure the clarity and precision of the identified sub-categories.

V. STUDY RESULTS

A. RQ1: Where can we locate flakiness?

1) Test: 8 participants mentioned that the test itself, when
poorly written, is a cause of flakiness (P1, P2, P3, P4, P6, P8,
P13, P14). In particular, the participants explained that some
tests are by nature difficult to write and prone to flakiness.
For instance, GUI tests were considered as a special cause of
flakiness by many participants. “The synchronisation points
in GUI tests are a major cause of flakiness... We wait for
some elements of the web page (e.g., button) to proceed to
the testing but some other elements could be necessary and
lead the test to fail” (P4). According to participants, other
cases where it is difficult to write flakiness-free tests included
time manipulation, threads, statistics, and performance tests.
P8 described examples of tests that encode variables and
properties that are not really useful for the test case and lead to
non-deterministic behaviour. These variables could be related
to the system, environment, or time and they can be avoided
inside the test code.

2) Code Under Test (CUT): In this sub-category, we
consider flakiness that stems from the part of the system that is
directly under test. Surprisingly, only 3 participants mentioned
that their flakiness stems from the CUT (P1, P3, P7). The
root causes of CUT flakiness are similar to the causes of test
flakiness, as examples, the participants mentioned concurrency
and time handling. Interestingly, flakiness in the CUT can have
direct impacts on the product reliability and thus developers
tend to take it more seriously. “If the product itself is flaky,
which is happening quite often, then you have got a problem
because you actually publish code which is flaky, it breaks one
out of three times” (P1).

3) System Under Test (SUT): This source of flakiness was
mentioned by 9 participants (P2, P3, P4, P5, P6, P7, P8, P12,
P14). Differently from the CUT, this sub-category considers
the system as a whole and not only the part under test. The
SUT emerges as a source of flakiness in complex systems
where integration tests flake due to failing orchestration be-
tween the system components. “It only takes one timeout in
the communication between two services or other middleware
like databases to make a test fail randomly” (P2). The failing
interactions can be a result of a misunderstanding of the system
architecture and its impact on tests, “the principle behind
micro-services is that every service can fail, so we need to
keep that in mind when writing integration tests” (P2). The
organisational structure can also add to the difficulty of writing
stable integration tests as components can be maintained by

distinct teams that do not communicate properly. “Every team
has the impression of working in a sandbox, they would rebase
the production or generate a new sequential number and the
tests of other teams will flake because of that” (P8). Ideally,
these dependencies should be documented or formalised and
integration tests should account for them. Yet, P8 confirms that
despite the recurrence of such incidents, developers remain
reluctant to invest in their documentation.

4) Infrastructure: The testing infrastructure is the set of
processes that support the testing activity and ensure its stabil-
ity. 8 participants considered that their tests were flaky because
of an unstable or improper testing infrastructure (P1, P4, P5,
P6, P10, P11, P12, P14). For instance, P5 explained that most
of their flaky tests were caused by a lack of resources, “the
test is getting throttled because we do not have enough CPU
or memory quota for our database”. P12 showed how flaky
tests can emerge from a mismatch between the product design
and its usage in the testing infrastructure, “a single data
source that would, in production, be used by only one user,
now is used by several tests that may override each other’s
data”. When flaky tests are caused by poor infrastructure,
participants express more struggle in detecting and fixing them
as the search space is broader and programmers are not always
qualified for these tasks, “CI issues are not like race condition
where we can have a clear solution for it, this is difficult
because it can be different things” (P6).

5) Environment: 11 participants explained that tests can
flake because of external factors (P1, P2, P5, P6, P7, P8, P9,
P10, P11, P13, P14). This source of flakiness differs from
the infrastructure by considering all factors that developers
cannot or should not control. One common example of the
environment is the hardware on which developers have almost
no control, “sometimes one batch of RAM sticks has an
unidentified problem and the test is failing because of it”
(P7). The underlying Operating System (OS) is also subject
to various changes that make it unpredictable and therefore
a potential source of flakiness. One example of such cases
is given by P1: “if we test the app on devices, then we rely
on some iPhone being up and if it decides to upgrade its OS
at the exact same time then we have a problem”. On top of
the OS, tests can always be impacted by cumulative states of
the machine that developers do not account for, e.g., firmware
versions, memory state, and access to the internet.

The impact of the environment is particularly perceptible on
GUI tests since they run on different web browsers that are
prone to frequent changes. Similarly, developers may need to
write acceptance and integration tests that depend on external
resources that are hardly controllable. “I work on a command-
line interface that wraps packages from different providers, it
seems simple but there are always random changes” (P7).

It is worth noting that the distinction between infrastructure
and environment may depend on the software, test type, and
the choices of the practitioner. Some developers can consider
aspects like the OS state as part of their infrastructure and
control it to ensure the reliability of their tests, whereas others
choose to ignore it. Likewise, aspects that seem external



and futile for unit or integration tests, e.g., firmware, must
be considered and controlled as part of the infrastructure of
performance tests.

6) Testing framework: Two developers found that the
testing framework can lead to flakiness (P1, P7). This issue
can arise when the framework is written or customised by
the developers themselves, which makes it less stable than
other widely used frameworks. Another possible issue is the
mismatch between the testing framework and the CUT. This
can occur when the framework is not adapted to the type
of tests or to the application domain. P7 describes a similar
case: “We used a Cassandra cluster (NoSQL) and we tried to
test the database consistency rules. This generated many flaky
tests. Instead, we should have used a more delicate testing
framework to write serialisation tests and produce consistency
edge cases”.

7) Tester: Two participants believed that developers and
testers can constitute a source of flakiness (P4, P5). This is
possible for manual tests where the tester actions are part of
the test execution. Indeed, being manual makes tests rely on
human behaviour, which is less deterministic and more failure-
prone. Hence manual tests can flake because of variations in
the tester actions. Besides, the tester’s misunderstanding of
the requirements and the SUT can be another point of failure.
“The person running the tests does not always have a correct
and precise idea of the behaviour expected from the system
and this affects the test outcome” (P4).

a) Discussion: According to our participants, flaky tests
stem frequently from the external factors of the environment,
the interactions of the SUT, and the testing infrastructure.
Flakiness is not limited to the test and CUT and the studies
on this topic should consider and leverage all these factors
when addressing flaky tests. Our analysis also shows that
besides the well-established root causes of flaky tests, e.g.,
concurrency and order-dependency, the size and scope of the
test are important flakiness factors. GUI and system tests are
more prone to flakiness, yet, our understanding of flakiness in
these types of tests remains limited and we still lack techniques
that adapt to these specific tests.

B. RQ2: How do practitioners perceive the impact of flaki-
ness?

1) It wastes developers’ time: 10 participants considered
that flaky tests waste developers’ time (P2, P4, P5, P6, P7, P8,
P9, P11, P12, P14). When developers observe flaky failures,
they have to invest time and effort in investigating the root
cause before realising that it is a false alert. Besides the time
wasted on investigating false alerts, our participants affirmed
that discussions about flaky tests are also costly. “It was ok
when we were a team of five and everyone knew that the test
is flaky. But as the startup grew, it became expensive and we
found ourselves constantly explaining to other developers that
these are not real failures” (P7).

2) It disrupts the CI: 7 participants mentioned that their
flaky tests disrupt the continuous integration process (P2, P3,
P4, P8, P10, P11, P13). This impact arises from the pace of

modern development life cycles and its extent is proportional
to the releasing frequency. “Flakiness would never be an
issue if we released once every two weeks. But in a CI today
with 400 deliveries per day, disruptions waste so much time”
(P2). Disruptions also affect the developer’s ability to develop
confidently because the CI, which is supposed to guard the
code quality, is halted, “five days a month, the Jenkins of this
project was red so I couldn’t develop on the project and be
sure that my work is not breaking anything at the time” (P3).

3) It affects testing practices: 6 participants observed that
flakiness affects the testing practices in their teams (P1, P6,
P7, P8, P12, P13). In particular, they explained how developers
lost confidence in their capacity to write tests, According
to P12, in the worst-case scenario, developers are repelled
and would write fewer tests to have fewer problems. In a
phenomenon similar to the broken window theory, P1, P7, and
P12 described how developers are more inclined to introduce
and accept flaky tests in a system that is already flaky. “As the
suite is unreliable, it opens the door for more flaky tests” (P7).
Ultimately, the accrual of flaky tests pushes development teams
to adapt their testing strategies: “flakiness tends to accumulate
in the system, and at some point, it becomes so large that
companies may look for completely different solutions, like
using more unit testing” (P12). The impact on testing practices
is not only related to flakiness but also to the general software
quality, “the more flakiness it is, the greater the acceptance of
less than ideal test coverage, and that leads to a degradation
of the software quality” (P12).

4) It undermines the system reliability: 5 participants
highlighted the impact of flaky tests on the reliability of both
tests and the SUT (P1, P3, P6, P7, P8). The false alerts raised
by flaky tests confuse developers and make them question
the suite’s ability to detect faults accurately. Consequently,
developers can disregard test results, which may lead to the
introduction of bugs, “if you do not fix flaky tests, people
will start ignoring them and then they will introduce real
bugs in the product” (P1). Similarly, the non-deterministic test
outcomes cast doubts on the reliability of the system under
test. This doubt is all the more important in open source
projects where newcomers can be repelled by inexplicable
flaky failures. P6 who worked on a large open-source project
stated: “new contributors see CI failures, they do not know it
is flakiness and it gives them the impression that the project is
not well maintained so they do not even rerun the tests, they
just give up”.

5) It disguises bugs: Two developers explained that flak-
iness can hide buggy features (P1, P6). In some cases, the
non-deterministic behaviour stems from a bug in the product,
but as developers believe it is a flaky test, they disregard
it without further inspection. “People ignore the flaky test
results because it is just a flake, except it is an actual
problem in a product” (P1). Interestingly, we witnessed first-
hand the confusion between buggy features and flaky tests
while performing the interview with P9. The participant was
providing an example of non-deterministic test failures that
were caused by memory issues, and when asked about how



these flaky tests were detected, she replied: “they appear
when they are in the customer premises”. After the customer
complaint, the participant reran the test that covers the buggy
code multiple times and reproduced the bug. In this case, the
test has indeed a non-deterministic outcome, but addressing it
as a flaky test (false alert) is inappropriate because the failure is
real. Furthermore, the more flakiness is prevalent in a test suite
the more developers are inclined to overlook non-deterministic
system failures. “The most important is that it actually makes
people think they can introduce bugs in the form of flaky bugs
in a product and get away with it” (P1).

a) Discussion: Our results confirm the impact of flak-
iness in terms of development time and CI obstruction.
Moreover, our analysis shows that the accrual of flaky tests
affects the testing practices negatively as developers become
repelled by testing and more lenient toward testing standards,
which eventually leads to a degradation of the system quality.
Our participants also raised the issue of system buggy non-
deterministic features that are falsely labelled as test flakiness
and therefore disregarded and shipped to end-users. For future
studies, this shows the necessity of distinguishing the sources
of flakiness and addressing them accordingly.

C. RQ3: How do practitioners address flaky tests?

Table II summarises the measures identified in our GLR.
The columns #GL and #Int. report the number of times where
the measure was mentioned in grey literature and interviews,
respectively, while the columns %GL and %Int. report the
percentages. The full results summary is available within our
artefacts [23].

1) Prevention measures: This represents all proactive prac-
tices that aim to prevent the introduction of test flakiness.

a) Set up a reliable infrastructure: Grey literature
articles that embraced prevention measures estimated that a
proper setup of the testing infrastructure is necessary for
avoiding flaky tests. Several practitioners adopted hermetic
servers, a.k.a. mock servers, where tests can be run locally
without the need to call external servers [32]–[34]. Some
articles also stressed the importance of using containers to
ensure that the testing environment is clean when the tests
are run [35]. 9 interviewees reported the adoption of similar
practices to ensure the stability of their infrastructure (P1, P3,
P4, P5, P6, P10, P11, P13, P14). P6 explained that they rarely
observe test failures caused by infrastructure or environment
thanks to their use of virtual machines. “The virtual machine is
started for the tests and destroyed just after ... all our tests are
reproducible” (P6). P4 mentioned pre-tests, a form of sanity
checks, as another solution to infrastructure flakiness. “If we
have 5 APIs involved, the pre-tests check that these APIs are
up, otherwise the test is not run” (P4).

b) Define testing guidelines: One guideline that was
recurrently mentioned is following the testing pyramid prin-
ciples [35]–[37]. These basic principles force developers to
respect the scope of each test type and avoid flakiness. The
proportions of each test type shall also be respected to avoid
the Ice cream cone and the Cupcake anti-patterns [38], where

the number of GUI tests, which are a main source of flakiness,
is exaggerated. Interestingly, only two of our interviewees (P11
& P14) confirmed that their teams defined explicit guidelines
to prevent flakiness. P14 considered that thanks to these
explicit guidelines, she rarely encounters flaky tests in her
product, “with the investment that was done in the guidelines
and tooling, now we are able to cope with flakiness”. The other
participants suggested that the absence of explicit guidelines in
their companies is due to the lack of maturity (P8). However,
many participants affirmed that with experience their teams
had developed testing practices to avoid flaky tests (P2, P3,
P4, P6, P7, P10, P13). These practices are similar to the ones
identified from the grey literature. They focus on the test
scope and size and they address common flakiness sources
like concurrency and time manipulations. In order to enforce
these good practices, the participants relied on code reviews.

c) Limit external dependencies: This practice is more
relevant for unit tests, which are supposed to test narrow parts
of the systems, than integration or GUI tests, which have to
interact with other components. The analysed articles explain
that some practitioners keep useless dependencies in their unit
tests, which lead to flakiness [32], [37]. P3 mentioned that
in order to avoid environment flakiness, her team tries to
mock external services, use test doubles, and prefer in-memory
resources (e.g., database and file system).

d) Customise the testing framework: Sudarshan et
al. [39] explained how they built their own testing framework
so they can test critical aspects like time and concurrency
without introducing flakiness. In some cases, practitioners
customise the testing framework to disable features like ani-
mations in web and mobile applications, which are commonly
connected to flaky tests [32].

2) Detection measures: This category groups all actions
taken by developers to identify flaky tests.

a) Rerun: Based on our GLR, reruns are the most
common and intuitive way of identifying flaky tests despite
their computation cost. Even other measures and mitigation
steps, e.g., debugging and reproduction, require multiple test
reruns. To maximise their chances to observe flakiness and
minimise the number of reruns, the reruns can be performed
in different environments (local machine, CI, etc) and with
different settings (P4). Some participants advocated the effec-
tiveness of reruns especially for infrastructure and environment
flakiness (P1, P2, P4, P5, P10, P11, P12). Nevertheless, P1
warned about the consequences of solely depending on reruns
to deal with flakiness, “with reruns, you do not understand
the issue and you can ignore actual problems”.

b) Manually analyse test outcome: When even reruns
are not possible or useful, developers manually analyse the
execution trace to determine if the test is flaky or not [40].
In the case of GUI tests, practitioners rely particularly on the
screenshots recorded during the test run [33], [41], [42]. P2,
P4, and P8 affirmed that they prefer going through manual
analysis before trying reruns or other detection techniques. In
the case of P8, this choice is due to system specifications that



TABLE II
THE NUMBER AND PERCENTAGE OF GREY LITERATURE ARTICLES AND INTERVIEWS FOR EACH MITIGATION MEASURE.

Strategy #GL %GL #Int. %Int.

Prevent

Setup a reliable infrastructure with processes properly adapted to the testing activity. 4 11% 9 64%
Define guidelines that should be respected when writing tests and enforced through reviews. 5 13% 9 64%
Limit external dependencies by mocking connections, services, and dependencies. 9 24% 1 7%
Customise the testing framework to avoid flaky features. 4 11% 1 7%

Detect

Rerun the failing test multiple times to check if it is a real failure or a flaky one. 14 37% 7 50%
Manually analyse the failure message and trace to determine if the test is flaky. 17 45% 3 21%
Check the test execution history to distinguish flaky failures from real failures. 8 21% 2 14%
Proactively expose test flakiness before it manifests in the CI. 5 13% 2 14%
Compare test coverage to the modifications of the commit under test to identify flaky failures. 2 5% 1 7%

Treat

Fix the root cause of flakiness to remove the non-deterministic behaviour. 15 39% 7 50%
Ignore flaky tests that are not common or costly (based on the flake rate and periodicity). 2 5% 5 36%
Quarantine flaky tests by isolating them from the blocking path that commands the CI. 7 18% 4 23%
Remove the test permanently from the suite. 2 5% 4 23%
Document flaky tests in databases, issues, alerts, or internal reports. 8 21% 3 21%

Support Monitor and log system interactions and test outcomes. 8 21% 9 64%
Establish testing workflows that protect the CI. 2 5% 4 23%

make rerunning the same test in the exact same conditions
impossible.

c) Check test history: Some practitioners keep a record
of the test execution history, i.e., all test passes and fails
for each build. When a suspicious test failure is observed,
developers inspect these records to check if the test has already
shown a random behaviour. Palmer et al. [43] argue that
when these records are visualised they can help developers
in distinguishing flaky failures easily and thus gain a lot of
investigation time. P11 and P14 described a system in their
company, which relies on the execution records to score tests.
Based on the past passes and failures, a test receives a flakiness
score that expresses the probability for this test to be flaky.
P14 described how these scores helped her when a flaky test
manifested, “it is very good when it tells that it is 90% flaky
and you can just go on with your day knowing that it’s because
of flakiness”.

d) Expose: As explained in RQ2, when a flaky failure
occurs in the CI, it disrupts the work progress and wastes
developers’ time and efforts. For these reasons, some practi-
tioners attempt to reveal flaky tests before CI failures [43],
[44]. In this case, new tests are rerun several times to ensure
that they are stable, before adding them to the main test
suite. Among our interviewees, only P1 and P4 reported
adopting this practice in their companies. “Before committing
the test, you should run it a thousand times (counting different
configurations and device types) and it must be a thousand
greens (passes)” (P1).

e) Leverage test coverage: When practitioners suspect
that a test failure is flaky, they compare the coverage of the
failing test to the modifications performed by the commit
that triggered the build. If the intersection between these
two is empty, the test is considered flaky. This process can
be performed manually by developers (P14) or automatically
using tools like DeFlaker [11]. However, P14 explains that,
due to hidden dependencies between projects, this technique
is not always effective.

3) Treatment measures: This presents actions taken by
practitioners to deal with flay tests that manifested.

a) Fix: In theory, every identified flaky test should be
fixed at some point. However, according to practitioners, this
point is rarely reached because the fix depends on two chal-
lenging steps, reproducing the flaky failure and determining
its root cause (cf. RQ4). For this reason, many flaky tests re-
main unaddressed or removed. Interestingly, some participants
affirmed that fixing flaky tests is easy when the root cause is
known (P2, P10). P3 also affirmed that once the flaky test is
understood, it was only a matter of resources to fix it.

b) Ignore: Naturally, ignoring flaky tests is not com-
monly recommended in the grey literature (only 2 articles).
Yet, 5 interviewees recalled situations where flaky tests were
intentionally left unaddressed (P2, P3, P6, P7, P10). For P3
and P7, this was in a case where all team members were aware
of the test flakiness and considered that the test is useful, so
they did not isolate or remove it, but did not have enough
time or resources to fix it. For P6 and P10, this choice is
motivated by the severity of the flaky test, i.e., the flake rate.
“If the test has a very low flake rate, it is not really worth the
investigation” (P10).

c) Quarantine: According to our GLR, quarantining
flaky tests is one of the most common measures among
practitioners. While in most cases, the isolation in quarantine
is performed manually by developers when they identify a test
as flaky, in some cases this process is more sophisticated. An
article from Fuchsia explained how they designed an auto-
mated workflow where flaky tests are automatically identified
and removed from the commit queue [45]. This workflow
comprises a benchmark that evaluates the fixed flaky tests
before reinserting them in the integration suite. By lack of
better solutions, this evaluation relies on reruns. The adoption
of the quarantine is less popular among our interviewees (P1,
P4, P7, P10). Indeed, even participants who affirmed that
they isolated their flaky tests, raised several questions about
the side effects of this practice. P1 suggested that developers
can abuse this practice, “it’s a dangerous way to go because
then suddenly the number of tests goes down”. P6 went
further and considered that the quarantine is a bad practice
because it implies that a potential bug is being disregarded
without further investigation. “You move the problem from the



developer, who will not see the flaky failures anymore, and
you transfer it to the user who may deal with a bug” (P6).

d) Remove: When a flaky test is hard to reproduce,
debug, or fix, many practitioners recommend to remove it
completely from the system to avoid its negative effects [45]–
[47]. P1, P2, P7, and P14 affirmed that if a flaky persists and
they are unable to address they choose to remove it. “I would
rather remove the flaky test from the codebase because of its
cost” (P2).

e) Document: The documentation of flaky tests is per-
formed for different purposes. The most basic being informing
other developers that the test is flaky so they know how to
react to its failures. The documentation is also helpful for
the reproduction and debugging of flaky tests as it keeps
logs, memory dumps, system states, screenshots in GUI tests,
etc [48]. Finally, keeping track of all flaky tests is helpful when
building a system that relies on execution history to detect
flaky failures. Indeed, three interviewees affirmed that their
internal systems relied on flaky tests that were documented in
the past (P10, P11, P14) to guide developers when a test fails.

4) Support measures: This includes actions that are likely
unrelated to test flakiness but are critical for addressing flaky
tests.

a) Monitor and log: 9 interviewees explained that when
addressing a flaky test they rely mainly on the data logged
by their monitoring system (P1, P6, P8-P14). P1 explained
their advanced log analysis, which automatically suggests the
root cause of the failure, “we have a probe that can identify
those root causes of flakiness”. Regarding, the effect of this
monitoring and analysis on their productivity, P1 added: “it
takes years to do it right, but it is extremely powerful”. P11 and
P14 explained that the test logs assist their flakiness prediction
system. Furthermore, P6 and P10 showcased the importance of
monitoring by affirming that their decisions are always guided
by the flake rate, a test score that is calculated by monitoring
and analysing test outcomes for periods of time.

b) Establish testing workflows: For complex software
systems, practitioners can design advanced testing paths that
organise tests based on their criticality for the integration [42],
[49]. In these scenarios, due to computation costs, the blocking
path, i.e., the set of tests that decide in the CI, does not include
all tests. 4 interviewees suggested that these workflows can be
leveraged to protect the blocking path from flaky tests (P1,
P10, P11, P14).

c) Discussion: Our analysis shows that on top of the
typical detection and treatment measures, developers take
actions to prevent the introduction and manifestation of flaky
tests. Interestingly, this prevention relies mainly on the setup
of the infrastructure and the establishment of guidelines. To
the best of our knowledge, these two tasks were not identified
by prior studies and none of the literature techniques supports
them. Similarly, our results emphasise the role of supporting
measures like logging and monitoring in the accomplishment
of critical mitigation steps like detection and fixing. The study
of Lam et al. [10] has already shown that logs can be used to
automatically spot the root cause of flakiness. Other studies

should follow the same path and benefit from monitoring and
log analysis to improve flakiness detection and prediction.

D. RQ4: How could mitigation measures be improved with
automation tools?

1) Root cause identification and reproduction: 8 partici-
pants expressed their struggle while reproducing and debug-
ging flaky tests (P1, P2, P3, P4, P7, P9, P10, P11). These two
tasks are tightly coupled because reproducing a flaky failure
generally requires a minimal understanding of the root cause.
P4 explained that the difficulty of these tasks is due to the
multitude and variety of potential factors of flaky tests, both
in terms of root causes and sources (from the test itself to
complete external factors). P11 added that the broadness of
factors is particularly relevant for SUT flakiness: “Trying to
figure out among 8 to 10 services what is the actual culprit
of flakiness is the challenging part”. For all the participants,
except P1, the reproduction and debug are currently performed
manually, which is time and effort consuming. P7 affirmed
that simple reruns are not always effective for reproducing
and more advanced solutions are necessary, “we need tracking
tools to help us reproduce flaky tests”. In the same vein, P4
said that even when logs are available, a lot of assistance is
still required to help developers isolate the root cause and
reproduce flaky tests.

2) Monitoring and log analysis: 7 participants suggested
that managing flaky tests would be easier if they were equipped
with tools to monitor the testing activity and analyse the
generated logs (P3, P4, P6, P8, P9, P12, P13). These two tasks
are coupled because an automated analysis is critical to benefit
from the data collected by the monitoring process. Indeed,
P4 said that their GUI testing system produces overwhelming
amounts of logs and yet it is impossible to manually draw
insightful information from them. The analysis of such data
can help developers to:

• Predict flaky tests: As shown in RQ3, analysing the logs
of test history is useful for predicting flakiness and assisting
developers when a flaky failure occurs.

• Identify the source or root cause: “For debugging GUI
tests, traces of all the called APIs can help in isolating the
root of failure” (P4).

• Evaluate the flake rate: In RQ3, we showed that the
flake rate monitoring gives a fine grained assessment of flaky
tests and therefore guides the mitigation strategies, e.g., ignore
flaky tests that flake rarely. “This monitoring would help us
to debug and find the changes that led to increasing the flake
rate”, stated P6 who explained that these tasks are currently
performed manually.

3) Test validation: RQ3 showed that following testing
guidelines is a key measure for preventing test flakiness. Yet,
according to 9 participants, the process of enforcing these
guidelines still relies on manual reviews, and it could be
assisted with:

• Static analysis: P10 described how preventing flakiness
through code reviews can be redundant, “I keep rejecting
tests that have sleep() statements”, and suggested that a



simple static analyser could help in this regard. P4 described
a similar situation with GUI testing reviews and affirmed
that “advanced static analysis could help to identify potential
problems”.

• Variability-aware reruns: P4 mentioned that she cur-
rently tests the scripts of GUI tests manually: “I test the
script by crashing the browser and observing the outcome.
This avoids pushing flaky tests that block the quality gate”. P6
emphasised the need for tools that automate such procedures:
“it would be great to have a tool that stress tests the tests
to ensure their stability”. Indeed, the manual test validation
could be assisted with variability-aware reruns that account
for different configurations, inputs, and system states (e.g.,
[50]). These variations can build on the known causes of non-
determinism (e.g., random inputs and the system resources) to
expose, detect, and reproduce flaky tests.

a) Discussion:: Our results confirm previous observa-
tions [7], [10], [51] and show that reproducing and debugging
flaky tests remain the most challenging tasks for developers.
Furthermore, our analysis accentuates the need for techniques
and tools that monitor and analyse the system states to
assist the prediction, debugging, and evaluation of flaky tests.
This need is particularly relevant if we consider the results
of RQ1, which suggested that flakiness can stem from the
system interactions and factors that are external to the source
code. Indeed, trace analysis could be a powerful tool that
complements the current detection and prediction approaches,
which rely mainly on the source code [11], [12], [15], [52],
[53]. Our results also show that a more fine-grained analysis
of flaky tests, using the flake rate, can be more insightful
for developers. This aligns with the works that suggested that
every test is potentially flaky [54], and research studies should
focus on (or at least consider) the level of flakiness instead
of classifying tests as flaky and non-flaky. Finally, our partici-
pants expressed the need for automating the quality assessment
of software tests through static analysis and variability-aware
reruns. In particular, techniques that rerun tests with different
configurations or inputs, like Shaker [55] and FLASH [9],
seem very promising if we consider the role of external factors
on flakiness.

VI. THREATS TO VALIDITY

A possible threat to the generalisability of our study is the
number of participants. Unfortunately, due to the specificity
of the topic, it was challenging to find developers qualified
to take part in the study. We tried to ensure the quality of
our results by only considering practitioners with relevant
experience (with flakiness in particular and testing in general).
The experience of our participants ranges from 6 to 35 years,
with an average of 16 years. Our participants also constitute a
diverse set of roles, company sizes, and application domains.
Moreover, the collected data are enough to answer our research
questions and provide us a theoretical saturation [29].

A potential threat to the credibility of our findings could
be the credibility of the analysed materials as we relied on
grey literature and interview transcripts. In grey literature,

we followed the quality assessment guidelines of Garousi et
al. [22], which were specifically designed for such purposes.
In interviews, we communicated the study objectives to the
participants and clearly explained that the process is not
judgemental. Moreover, we formulated our questions to target
the practitioner experiences and observations.

A potential threat to the confirmability of our results is the
accuracy of the analysis of the transcripts. To mitigate this
threat, two authors performed consensual coding and all the
authors discussed the coding guide iteratively, to ensure the
clarity and precision of the identified sub-categories.

VII. IMPLICATIONS

Our study shows that the analysis of flaky tests must
consider the whole testing ecosystem and it should not be
limited to the test and code under test. We also highlight
a broader impact of flakiness on the testing practices and
the overall system quality than what had been presented by
previous work. Finally, we synthesise 16 measures adopted by
practitioners to mitigate flakiness and we identify automation
opportunities within them. These results open an avenue for
future work:

• Flakiness stems mainly from the interactions between sys-
tem components, the testing infrastructure, and uncontrollable
external factors. Future studies can leverage monitoring and
log analysis to propose techniques that assist practitioners in
addressing flakiness.

• The establishment of simple testing guidelines, e.g., rec-
ommendations on test size, external resources, and assertion
thresholds, is a key measure for preventing flaky tests. Future
studies can decrease the manual effort expended in enforcing
such guidelines by providing static analysis tools and code
review processes.

• Future work can leverage variability-aware reruns [50]
and fuzzy testing to effectively expose and reproduce flaky
tests. Such techniques can help in automating the current
manual test validations performed by practitioners.

• Given the frequency of flaky tests and the cost of their
mitigation, practitioners rely on the flake rate to adapt their
strategies. Future work should account for this indicator when
assessing flaky tests and leverage it in their automated solu-
tions.

• Some practitioners may falsely label buggy and non-
deterministic features as flaky tests, and thus ignore them
and treat them as false alerts. Future studies should further
investigate the impacts of such confusions.

• Due to the difficulty of reproducing and debugging flaky
tests, the fixing step is rarely achieved by practitioners. Future
work should focus on providing tools that assist the root cause
identification and reproduction of flaky tests.

ACKNOWLEDGMENT

This work is supported by the Luxembourg National
Research Funds (FNR) through the TestFast Project, ref.
12630949. Sarra Habchi and Guilliame Haben are supported
by PayPal.



REFERENCES

[1] J. Thomas, “Welcome to the google engineering tools blog! —
google engineering tools,” http://google-engtools.blogspot.com/2011/05/
welcome-to-google-engineering-tools.html, May 2011, (Accessed on
02/22/2021).

[2] J. Listfield, “Google testing blog: Where do our flaky tests come from?”
https://testing.googleblog.com/2017/04/where-do-our-flaky-tests-come-
from.html, April 2017, (Accessed on 01/12/2021).

[3] M. contributors, “Test verification - mozilla — mdn,” https://
developer.mozilla.org/en-US/docs/Mozilla/QA/Test Verification, March
2019, (Accessed on 01/12/2021).

[4] J. Palmer, “Test flakiness – methods for identifying and dealing with
flaky tests : Spotify engineering,” https://engineering.atspotify.com/
2019/11/18/test-flakiness-methods-for-identifying-and-dealing-with-
flaky-tests/, November 2019, (Accessed on 01/12/2021).

[5] A. Micco, John & Memon, “Gtac 2016: How flaky tests in continuous in-
tegration - youtube,” https://www.youtube.com/watch?v=CrzpkF1-VsA,
December 2016, (Accessed on 01/12/2021).

[6] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical
analysis of flaky tests,” in Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
FSE 2014. Hong Kong, China: Association for Computing Machinery,
Nov. 2014, pp. 643–653. [Online]. Available: https://doi.org/10.1145/
2635868.2635920

[7] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli, “Understanding
flaky tests: the developer’s perspective,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ser. ESEC/FSE
2019. Tallinn, Estonia: Association for Computing Machinery,
Aug. 2019, pp. 830–840. [Online]. Available: https://doi.org/10.1145/
3338906.3338945

[8] S. Thorve, C. Sreshtha, and N. Meng, “An empirical study of flaky tests
in android apps,” Proceedings - 2018 IEEE International Conference on
Software Maintenance and Evolution, ICSME 2018, pp. 534–538, 2018.

[9] S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, and
S. Misailovic, “Detecting flaky tests in probabilistic and machine
learning applications,” in Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis. Virtual
Event USA: ACM, Jul. 2020, pp. 211–224. [Online]. Available:
https://dl.acm.org/doi/10.1145/3395363.3397366

[10] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta,
“Root Causing Flaky Tests in a Large-Scale Industrial Setting,” in
Proceedings ofthe 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA ’19). Beijing, China: ACM Press,
2019, pp. 101–111.

[11] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“DeFlaker: Automatically Detecting Flaky Tests,” in 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE), May
2018, pp. 433–444, iSSN: 1558-1225.

[12] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “iDFlakies: A
Framework for Detecting and Partially Classifying Flaky Tests,” in 2019
12th IEEE Conference on Software Testing, Validation and Verification
(ICST), Apr. 2019, pp. 312–322, iSSN: 2159-4848.

[13] A. Alshammari, C. Morris, M. Hilton, and J. Bell, “Flakeflagger:
Predicting flakiness without rerunning tests,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 2021,
pp. 1572–1584.

[14] A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov, “iFixFlakies: a
framework for automatically fixing order-dependent flaky tests,” in
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2019. Tallinn, Estonia: Association for
Computing Machinery, Aug. 2019, pp. 545–555. [Online]. Available:
https://doi.org/10.1145/3338906.3338925

[15] G. Pinto, B. Miranda, S. Dissanayake, M. D’Amorim, C. Treude, and
A. Bertolino, “What is the Vocabulary of Flaky Tests?” Proceedings
- 2020 IEEE/ACM 17th International Conference on Mining Software
Repositories, MSR 2020, pp. 492–502, 2020.

[16] G. Haben, S. Habchi, M. Papadakis, M. Cordy, and Y. Le Traon, “A
replication study on the usability of code vocabulary in predicting flaky
tests,” in 2021 IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR), 2021, pp. 219–229.

[17] M. Cordy, R. Rwemalika, M. Papadakis, and M. Harman, “Flakime:
Laboratory-controlled test flakiness impact assessment. A case study
on mutation testing and program repair,” CoRR, vol. abs/1912.03197,
2019. [Online]. Available: http://arxiv.org/abs/1912.03197

[18] W. Lam and K. Muşlu, “A study on the lifecycle of flaky tests,” p. 12,
2020.

[19] C. Leong, A. Singh, M. Papadakis, Y. L. Traon, and J. Micco, “Assessing
transition-based test selection algorithms at google,” in Proceedings
of the 41st International Conference on Software Engineering: Software
Engineering in Practice, ICSE (SEIP) 2019, Montreal, QC, Canada,
May 25-31, 2019, H. Sharp and M. Whalen, Eds. IEEE / ACM,
2019, pp. 101–110. [Online]. Available: https://doi.org/10.1109/ICSE-
SEIP.2019.00019

[20] E. Kowalczyk, K. Nair, Z. Gao, L. Silberstein, T. Long, and A. Memon,
“Modeling and ranking flaky tests at apple,” Proceedings - International
Conference on Software Engineering, pp. 110–119, 2020.

[21] B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering,” Keele University and
Durham University Joint Report, Tech. Rep. EBSE 2007-001, 2007.
[Online]. Available: http://www.dur.ac.uk/ebse/resources/Systematic-
reviews-5-8.pdf

[22] V. Garousi, M. Felderer, and M. V. Mäntylä, “Guidelines for including
grey literature and conducting multivocal literature reviews in software
engineering,” Information and Software Technology, vol. 106, pp. 101–
121, 2019.

[23] Authors, “Summary of the qualitative results,” https://figshare.com/s/
5b252c442fc36e8823cb, February 2021, (Accessed on 02/24/2021).

[24] J. W. Creswell and J. D. Creswell, Research design: Qualitative,
quantitative, and mixed methods approaches. Sage publications, 2017.

[25] S. Adolph, W. Hall, and P. Kruchten, “Using grounded theory to
study the experience of software development,” Empirical Software
Engineering, vol. 16, no. 4, pp. 487–513, 2011.

[26] S. E. Hove and B. Anda, “Experiences from conducting semi-structured
interviews in empirical software engineering research,” in Software
metrics, 2005. 11th ieee international symposium. IEEE, 2005, pp.
10–pp.

[27] K. F. Tómasdóttir, M. Aniche, and A. van Deursen, “Why and how
javascript developers use linters,” in 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2017, pp. 578–
589.

[28] S. Habchi, X. Blanc, and R. Rouvoy, “On adopting linters to deal
with performance concerns in android apps,” in 2018 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2018, pp. 6–16.

[29] B. G. Glaser and J. Holton, “Remodeling grounded theory,” Historical
Social Research/Historische Sozialforschung. Supplement, pp. 47–68,
2007.

[30] C. Schmidt, “The analysis of semi-structured interviews,” A companion
to qualitative research, pp. 253–258, 2004.

[31] D. G. Oliver, J. M. Serovich, and T. L. Mason, “Constraints and oppor-
tunities with interview transcription: Towards reflection in qualitative
research,” Social forces, vol. 84, no. 2, pp. 1273–1289, 2005.

[32] K. Hu, “Test stability - how we make ui tests stable —
linkedin engineering,” https://engineering.linkedin.com/blog/2015/12/
test-stability---how-we-make-ui-tests-stable, December 2015, (Ac-
cessed on 02/24/2021).

[33] A. Solntsev, “Flaky tests 2 - jvm advent,” https://www.javaadvent.com/
2017/12/flaky-tests-2.html, December 2017, (Accessed on 02/24/2021).

[34] E. Developer, “How to fix flaky tests in your ios/swift codebases
- youtube,” https://www.youtube.com/watch?v= BOp6WYbq38&
ab channel=EssentialDeveloper, December 2019, (Accessed on
02/24/2021).

[35] J. Vimberg, “Effective testing - reducing non-determinism to avoid
flaky tests - coding forest,” https://jivimberg.io/blog/2020/07/27/
effective-testing-reducing-non-determinism/, July 2020, (Accessed on
02/24/2021).

[36] Testinium, “Flaky tests and how to reduce them - testinium,” https://
testinium.com/blog/flaky-tests-and-how-to-reduce-them/, (Accessed on
02/24/2021).

[37] Smartbear, “Managing test flakiness — testcomplete,” https://smartbear.
com/resources/ebooks/managing-ui-test-flakiness/, June 2018, (Ac-
cessed on 02/24/2021).

[38] P. Fabio, “Introducing the software testing cupcake (anti-pattern)
— thoughtworks,” https://www.thoughtworks.com/insights/blog/

http://google-engtools.blogspot.com/2011/05/welcome-to-google-engineering-tools.html
http://google-engtools.blogspot.com/2011/05/welcome-to-google-engineering-tools.html
https://testing.googleblog.com/2017/04/where-do-our-flaky-tests-come-from.html
https://testing.googleblog.com/2017/04/where-do-our-flaky-tests-come-from.html
https://developer.mozilla.org/en-US/docs/Mozilla/QA/Test_Verification
https://developer.mozilla.org/en-US/docs/Mozilla/QA/Test_Verification
https://engineering.atspotify.com/2019/11/18/test-flakiness-methods-for-identifying-and-dealing-with-flaky-tests/
https://engineering.atspotify.com/2019/11/18/test-flakiness-methods-for-identifying-and-dealing-with-flaky-tests/
https://engineering.atspotify.com/2019/11/18/test-flakiness-methods-for-identifying-and-dealing-with-flaky-tests/
https://www.youtube.com/watch?v=CrzpkF1-VsA
https://doi.org/10.1145/2635868.2635920
https://doi.org/10.1145/2635868.2635920
https://doi.org/10.1145/3338906.3338945
https://doi.org/10.1145/3338906.3338945
https://dl.acm.org/doi/10.1145/3395363.3397366
https://doi.org/10.1145/3338906.3338925
http://arxiv.org/abs/1912.03197
https://doi.org/10.1109/ICSE-SEIP.2019.00019
https://doi.org/10.1109/ICSE-SEIP.2019.00019
http://www.dur.ac.uk/ebse/resources/Systematic-reviews-5-8.pdf
http://www.dur.ac.uk/ebse/resources/Systematic-reviews-5-8.pdf
https://figshare.com/s/5b252c442fc36e8823cb
https://figshare.com/s/5b252c442fc36e8823cb
https://engineering.linkedin.com/blog/2015/12/test-stability---how-we-make-ui-tests-stable
https://engineering.linkedin.com/blog/2015/12/test-stability---how-we-make-ui-tests-stable
https://www.javaadvent.com/2017/12/flaky-tests-2.html
https://www.javaadvent.com/2017/12/flaky-tests-2.html
https://www.youtube.com/watch?v=_BOp6WYbq38&ab_channel=EssentialDeveloper
https://www.youtube.com/watch?v=_BOp6WYbq38&ab_channel=EssentialDeveloper
https://jivimberg.io/blog/2020/07/27/effective-testing-reducing-non-determinism/
https://jivimberg.io/blog/2020/07/27/effective-testing-reducing-non-determinism/
https://testinium.com/blog/flaky-tests-and-how-to-reduce-them/
https://testinium.com/blog/flaky-tests-and-how-to-reduce-them/
https://smartbear.com/resources/ebooks/managing-ui-test-flakiness/
https://smartbear.com/resources/ebooks/managing-ui-test-flakiness/
https://www.thoughtworks.com/insights/blog/introducing-software-testing-cupcake-anti-pattern


introducing-software-testing-cupcake-anti-pattern, June 2014,
(Accessed on 02/24/2021).

[39] S. Pavan, “No more flaky tests on the go team — thoughtworks,” https:
//www.thoughtworks.com/insights/blog/no-more-flaky-tests-go-team,
September 2012, (Accessed on 02/24/2021).

[40] D. Welter, “Preventing flaky tests from ruining your test suite — gradle
enterprise,” https://gradle.com/blog/prevent-flaky-tests/, (Accessed on
02/24/2021).

[41] T. C. Gang, “Flaky tests - a war that never ends — hacker noon,” https:
//hackernoon.com/flaky-tests-a-war-that-never-ends-9aa32fdef359, De-
cember 2017, (Accessed on 02/24/2021).

[42] Z. Attas, “Selenium conf 2018 - how to un-flake flaky tests-
a new hire’s toolkit — confengine - conference platform,”
https://confengine.com/conferences/selenium-conf-2018/proposal/
6157/how-to-un-flake-flaky-tests-a-new-hires-toolkit, June 2018,
(Accessed on 02/24/2021).

[43] J. Palmer, “Test flakiness – methods for identifying and dealing with
flaky tests : Spotify engineering,” https://engineering.atspotify.com/
2019/11/18/test-flakiness-methods-for-identifying-and-dealing-with-
flaky-tests/, (Accessed on 02/25/2021).

[44] S. Liviu, “A machine learning solution for detecting and mitigating
flaky tests - engineering fitness,” https://eng.fitbit.com/a-machine-
learning-solution-for-detecting-and-mitigating-flaky-tests/, (Accessed
on 02/25/2021).

[45] Fuchsia, “Flaky test policy,” https://fuchsia.dev/fuchsia-src/concepts/
testing/test flake policy, February 2021, (Accessed on 02/25/2021).

[46] J. Micco, “Flaky tests at google and how we mitigate them —
googblogs.com,” https://www.googblogs.com/flaky-tests-at-google-and-
how-we-mitigate-them/, May 2016, (Accessed on 02/24/2021).

[47] Thethinkingtester, “Think like a tester: Your flaky tests are
destroying trust,” http://thethinkingtester.blogspot.com/2019/10/your-
flaky-tests-are-destroying-trust.html, October 2019, (Accessed on
02/24/2021).

[48] A. McPeak, “flaky tests archives — crossbrowsertesting.com,” https://
crossbrowsertesting.com/blog/tag/flaky-tests/, February 2018, (Accessed
on 02/24/2021).

[49] B. Lee, “We have a flaky test problem. flaky tests are
insidious. fighting. . . — by bryan lee — scope — medium,”
https://medium.com/scopedev/how-can-we-peacefully-co-exist-with-
flaky-tests-3c8f94fba166, November 2019, (Accessed on 02/24/2021).

[50] C. Wong, J. Meinicke, L. Lazarek, and C. Kästner, “Faster variational
execution with transparent bytecode transformation,” Proc. ACM
Program. Lang., vol. 2, no. OOPSLA, pp. 117:1–117:30, 2018.
[Online]. Available: https://doi.org/10.1145/3276487

[51] W. Lam, S. Winter, A. Astorga, V. Stodden, and D. Marinov, “Under-
standing Reproducibility and Characteristics of Flaky Tests Through Test
Reruns in Java Projects,” pp. 403–413, 2020.

[52] T. M. King, D. Santiago, J. Phillips, and P. J. Clarke, “Towards a
Bayesian Network Model for Predicting Flaky Automated Tests,” 2018
IEEE International Conference on Software Quality, Reliability and
Security Companion (QRS-C), pp. 100–107, 2018.

[53] A. Bertolino, E. Cruciani, B. Miranda, and R. Verdecchia, “Know
Your Neighbor: Fast Static Prediction of Test Flakiness,” Proceedings
of the International Conference on Software Engineering (ICSE), 2020.
[Online]. Available: https://ieeexplore.ieee.org

[54] M. Harman and P. O’Hearn, “From start-ups to scale-ups: Opportunities
and open problems for static and dynamic program analysis,” in 2018
IEEE 18th International Working Conference on Source Code Analysis
and Manipulation (SCAM). IEEE, 2018, pp. 1–23.

[55] D. Silva, L. Teixeira, and M. D’Amorim, “Shake It! Detecting Flaky
Tests Caused by Concurrency with Shaker,” Proceedings - 2020 IEEE
International Conference on Software Maintenance and Evolution, IC-
SME 2020, pp. 301–311, 2020.

https://www.thoughtworks.com/insights/blog/introducing-software-testing-cupcake-anti-pattern
https://www.thoughtworks.com/insights/blog/no-more-flaky-tests-go-team
https://www.thoughtworks.com/insights/blog/no-more-flaky-tests-go-team
https://gradle.com/blog/prevent-flaky-tests/
https://hackernoon.com/flaky-tests-a-war-that-never-ends-9aa32fdef359
https://hackernoon.com/flaky-tests-a-war-that-never-ends-9aa32fdef359
https://confengine.com/conferences/selenium-conf-2018/proposal/6157/how-to-un-flake-flaky-tests-a-new-hires-toolkit
https://confengine.com/conferences/selenium-conf-2018/proposal/6157/how-to-un-flake-flaky-tests-a-new-hires-toolkit
https://engineering.atspotify.com/2019/11/18/test-flakiness-methods-for-identifying-and-dealing-with-flaky-tests/
https://engineering.atspotify.com/2019/11/18/test-flakiness-methods-for-identifying-and-dealing-with-flaky-tests/
https://engineering.atspotify.com/2019/11/18/test-flakiness-methods-for-identifying-and-dealing-with-flaky-tests/
https://eng.fitbit.com/a-machine-learning-solution-for-detecting-and-mitigating-flaky-tests/
https://eng.fitbit.com/a-machine-learning-solution-for-detecting-and-mitigating-flaky-tests/
https://fuchsia.dev/fuchsia-src/concepts/testing/test_flake_policy
https://fuchsia.dev/fuchsia-src/concepts/testing/test_flake_policy
https://www.googblogs.com/flaky-tests-at-google-and-how-we-mitigate-them/
https://www.googblogs.com/flaky-tests-at-google-and-how-we-mitigate-them/
http://thethinkingtester.blogspot.com/2019/10/your-flaky-tests-are-destroying-trust.html
http://thethinkingtester.blogspot.com/2019/10/your-flaky-tests-are-destroying-trust.html
https://crossbrowsertesting.com/blog/tag/flaky-tests/
https://crossbrowsertesting.com/blog/tag/flaky-tests/
https://medium.com/scopedev/how-can-we-peacefully-co-exist-with-flaky-tests-3c8f94fba166
https://medium.com/scopedev/how-can-we-peacefully-co-exist-with-flaky-tests-3c8f94fba166
https://doi.org/10.1145/3276487
https://ieeexplore.ieee.org

	Introduction
	Related Work
	Preliminary analysis: Grey Literature Review
	Interviews & Analysis
	Questions
	Participants

	Analysis

	Study Results
	RQ1: Where can we locate flakiness?
	Test
	Code Under Test (CUT)
	System Under Test (SUT)
	Infrastructure
	Environment
	Testing framework
	Tester

	RQ2: How do practitioners perceive the impact of flakiness?
	It wastes developers' time
	It disrupts the CI
	It affects testing practices
	It undermines the system reliability
	It disguises bugs

	RQ3: How do practitioners address flaky tests?
	Prevention measures
	Detection measures
	Treatment measures
	Support measures

	RQ4: How could mitigation measures be improved with automation tools?
	Root cause identification and reproduction
	Monitoring and log analysis
	Test validation


	Threats to Validity
	Implications
	References

