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Abstract. We investigate the concept of S0 equivalent class, n-variable Boolean functions up to the addition of a
symmetric function null in 0n and 1n, as a tool to study weightwise perfectly balanced functions. On the one hand
we show that weightwise properties, such as being weightwise perfectly balanced, the weightwise nonlinearity and
weightwise algebraic immunity, are invariant of these classes. On the other hand we analyse the variation of global
parameters inside the same class, showing for example that there is always a function with high degree, algebraic
immunity, or nonlinearity in the S0 equivalent class of a function. Finally, we discuss how these results extend to
other equivalence relations and their applications in cryptography.

1 Introduction

Weightwise Perfectly Balanced (WPB) functions have been introduced by Carlet et al. in [CMR17] while studying the
cryptographic properties of Boolean functions when the input is restricted to a subset of Fn2 , motivated by the analysis
of FLIP stream cipher [MJSC16]. These objects are the functions f : Fn2 → F2, such that |{x ∈ Ek,n | f(x) = 0}| =
|{x ∈ Ek,n | f(x) = 1}| for each 1 ≤ k ≤ n−1 where the slice Ek,n denotes the set of Fn2 with all vectors of Hamming
weight k, f globally balanced, and f(0n) = 0. Since then, several articles studied the properties on restricted sets, and
multiple articles focused on WPB functions such as [LM19, TL19, LS20, MS21, ZS21, MSL21, GS22, ZS22, MPJ+22,
GM22a, GM22b, MKCL22, MSLZ22, GM23a, ZJZQ23, ZLC+23, GM23b, YCL+23].

In this article we study their parameters relatively to the concept of S0 equivalent class, which considers two n-
variable Boolean functions being in the same class if they are equal up to the addition of a symmetric function null in
0n and 1n. The interest for WPB functions is that being WPB is an invariant of S0-classes. Hence, by stabilising the
WPB functions, the notion of S0-equivalence gives a new direction to find WPB functions.

Since for every practical application it is crucial to have a WPB function with both good weightwise and global
parameters, this work aims to suggest a new strategy to construct a WPB function satisfying this assumption. Indeed,
the results of this article imply that in order to find such a function, we can first search for one with suitable weightwise
properties and later improve the global properties by looking directly inside its S0-class.

Indeed, in this paper we show that the weightwise parameters such as weightwise nonlinearity and weightwise
algebraic immunity stay unchanged inside the S0-class. Then, we investigate the variation of the global parameters
such as the degree, algebraic immunity and nonlinearity, inside an S0-class and we prove bounds on the maximal
parameters in all classes. We demonstrate, for example, that from WPB functions with algebraic immunity as low
as 2 (e.g. , in [GM23b]), we can find a function with algebraic immunity at least t + 1 in its S0-class provided
log2(n) ≥ log2(2t + 1) + t + 2; while, for those whose nonlinearity is as low as 2n/2−1 (as exhibited in [GM23a]),
we can find a function with nonlinearity at least 2n−2 − 2

n
2−2 in its S0-class. We show that in every class we can find

a function with degree n− 1.
Using this framework are also able to prove that for every degree between n/2 and n − 1 we can exhibit a WPB

function with such a degree. Finally, we discuss how these results can be extended to other equivalence relations
defined up to the addition of functions from of family T . In different context of cryptography where a family T is easy
to compute, and the addition is cheap, finding a Boolean function with good cryptographic parameters could then be
reduced to finding the best function inside its T -class.

We complement our investigation performing experimental analyses on equivalence classes for WPB functions in
a small number of variables. Specifically, we are able to provide an exhaustive taxonomy of 4-variable classes. For 8
variables we selected some function from known families, e.g. [CMR17,LM19,TL19,GM23a,GM23b], and computed
statistics over the properties in their classes. The result of these experiments is provided in Section 6.



2 Preliminaries

For readability we use the notation + instead of ⊕ to denote the addition in F2 and
∑

instead of
⊕

. In addition to
classic notations we denote by [a, b] the subset of all integers between a and b: {a, a+ 1, . . . , b}.

For a vector v ∈ Fn2 we use wH(v) to denote its Hamming weight wH(v) = |{i ∈ [1, n] | vi = 1}|. For two vectors
v and w of Fn2 we denote dH(v, w) the Hamming distance between v and w, that is dH(v, w) = wH(v + w).

2.1 Boolean functions and weightwise considerations

In this part we recall general concepts on Boolean functions and their weightwise properties we use in this article. For
a deeper introduction on Boolean functions and their cryptographic parameters we refer to e.g. the book [Car21] and
to [CMR17] for the weightwise properties, also called properties on the slices.

For k ∈ [0, n] we denote Ek,n the set {x ∈ Fn2 |wH(x) = k} and call it slice of the Boolean hypercube (of
dimension n). Accordingly, the Boolean hypercube is partitioned into n + 1 slices where the elements have the same
Hamming weight.

Definition 1 (Boolean Function). A Boolean function f in n variables is a function from Fn2 to F2. The set of all
Boolean functions in n variables is denoted by Bn, and we denote B∗n the set without the null function.

To denote when a property or a definition is restricted to a slice we use the subscript k. For example, for a n-
variable Boolean function f we denote its support supp(f) = {x ∈ Fn2 | f(x) = 1} and we denote suppk(f) its
support restricted to a slice, that is supp(f) ∩ Ek,n.

Definition 2 (Balancedness). A Boolean function f ∈ Bn is called balanced if |supp(f)| = 2n−1 = |supp(f + 1)|.
For k ∈ [0, n] the function is said balanced on the slice k if ||suppk(f)| − |suppk(f + 1)|| ≤ 1. In particular when
|Ek,n| is even |suppk(f)| = |suppk(f + 1)| = |Ek,n|/2.

Definition 3 (Weightwise (Almost) Perfectly Balanced Function (WPB and WAPB)). Let m ∈ N∗ and f be a
Boolean function in n = 2m variables. It will be called weightwise perfectly balanced (WPB) if, for every k ∈ [1, n−1],
f is balanced on the slice k, that is ∀k ∈ [1, n− 1], |suppk(f)| =

(
n
k

)
/2, and:

f(0, · · · , 0) = 0, and f(1, · · · , 1) = 1.

The set of WPB functions in 2m variables is denotedWPBm.
When n is not a power of 2, other weights than k = 0 and n give slices of odd cardinality, in this case we call

f ∈ Bn weightwise almost perfectly balanced (WAPB) if:

|suppk(f)| =

{
|Ek,n|/2 if |Ek,n| is even,
(|Ek,n| ± 1)/2 if |Ek,n| is odd.

The set of WAPB functions in n variables is denotedWAPBn.

Definition 4 (Walsh transform and restricted Walsh transform). Let f ∈ Bn be a Boolean function, its Walsh
transform Wf at a ∈ Fn2 is defined as:

Wf (a) :=
∑
x∈Fn

2

(−1)f(x)+a·x.

Let f ∈ Bn, S ⊂ Fn2 , its Walsh transform restricted to S at a ∈ Fn2 is defined as:

Wf,S(a) :=
∑
x∈S

(−1)f(x)+ax.

For S = Ek,n we denote Wf,Ek,n
(a) byWf,k(a), and for a = 0n we denoteWf,k(a) asWf,k(0).
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Definition 5 (Nonlinearity and weightwise nonlinearity). The nonlinearity NL(f) of a Boolean function f ∈ Bn,
where n is a positive integer, is the minimum Hamming distance between f and all the affine functions in Bn:

NL(f) = min
g, deg(g)≤1

{dH(f, g)},

where g(x) = a · x + ε, a ∈ Fn2 , ε ∈ F2 (where · is an inner product in Fn2 , any choice of inner product will give the
same value of NL(f))

For k ∈ [0, n] we denote NLk the nonlinearity on the slice k, the minimum Hamming distance between f restricted
to Ek,n and the restrictions to Ek,n of affine functions over Fn2 . Accordingly:

NLk(f) = min
g, deg(g)≤1

|suppk(f + g)|.

Property 1 (Nonlinearity on the slice, adapted from [CMR17], Proposition 6). Let n ∈ N∗, k ∈ [0, n], for every
n-variable Boolean function f over Ek,n:

NLk(f) =
|Ek,n|
2
−

maxa∈Fn
2
|Wf,k(a)|
2

.

Definition 6 (Non Perfect Balancedness ( [GM23a])). Let m ∈ N∗, n = 2m, and f an n-variable Boolean function,
the non perfect balancedness of f , denoted NPB(f) is defined as:

NPB(f) = min
g∈WPBm

dH(f, g).

Property 2 (NPB and restricted Walsh transform ( [GM23a], Proposition 2)). Let m ∈ N∗, n = 2m, and f ∈ Bn, the
following holds on its non perfect balancedness:

NPB(f) =
2−Wf,0(0) +Wf,n(0)

2
+

n−1∑
k=1

|Wf,k(0)|
2

.

Definition 7 (Algebraic Normal Form (ANF) and degree). We call Algebraic Normal Form of a Boolean function
f its n-variable polynomial representation over F2 (i.e. belonging to F2[x1, . . . , xn]/(x

2
1 + x1, . . . , x

2
n + xn)):

f(x1, . . . , xn) =
∑

I⊆[1,n]

aI

(∏
i∈I

xi

)

where aI ∈ F2. The (algebraic) degree of f , denoted deg(f) is:

deg(f) = max
I⊆[1,n]

{|I| | aI = 1} if f is not null, 0 otherwise.

Definition 8 (Algebraic Immunity (AI), and weightwise AI). The Algebraic Immunity (AI) of a Boolean function
f ∈ Bn, denoted as AI(f), is defined as:

AI(f) = min
g 6=0
{deg(g) | fg = 0 or (f + 1)g = 0},

where deg(g) is the algebraic degree of g. The function g is called an annihilator of f (or f + 1). Additionally we
denote AN(f) = ming 6=0{deg(g) | fg = 0}.

The weightwise algebraic immunity of a Boolean function f ∈ Bn on the slice Ek,n, denoted as AIk(f), is defined
as: min {deg(g) | (fg) = 0 or (f + 1)g = 0 over Ek,n} where g is non null on Ek,n.

Property 3. If g ∈ B∗n is an annihilator of f and h another function such that supp(h) ⊆ supp(g), then hf = 0.
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2.2 Families of WPB functions

In this section we recall families of WPB functions exhibited in former works. These families will be used as examples
of WPB functions with minimal or maximal parameters relatively to the degree or algebraic immunity.

Definition 9 (CMR WAPB construction (adapted from [CMR17], Proposition 5)). Let n ∈ N, n ≥ 2, the WAPB
function fn is recursively defined by f2(x1, x2) = x1 and for n ≥ 3:

fn(x1, . . . , xn) =


fn−1(x1, . . . , xn−1) if n odd,

fn−1(x1, . . . , xn−1) + xn−2 +
∏2d−1

i=1 xn−i if n = 2d; d > 1,

fn−1(x1, . . . , xn−1) + xn−2 +
∏2d

i=1 xn−i if n = p · 2d; p odd.

Re-indexing the variables the subfamily of WPB functions (the cases where n is a power of 2) can be written as:

f(x1, x2, . . . , x2m) =

m∑
a=1

2m−a∑
i=1

2a−1−1∏
j=0

xi+j2m−a+1

Definition 10 (LM WPB construction (adapted from [LM19], Corollary 3.5)). Let n ∈ N, n ≥ 2, we denote by
Γn the set of all the coset leaders of the cyclotomic classes of 2 modulo 2n − 1 and by o(j) the cardinality of the
cyclotomic class of 2 modulo 2n − 1 containing j. Define Tj : F2o(j) → F2 the function y 7→

∑o(j)−1
i=0 y2

i

. For any
fixed β primitive element of F22 and any given any function ι : Γn \ {0} → {1, 2}, the LM WPB function associate to
ι is

gι(x) =
∑

j∈Γn\{0}

Tj(β
ι(j)xj).

Definition 11 (TL WPB construction (adapted from [TL19], Construction 1 )). Let m ∈ N∗ and n = 2m ≥ 4 be
an integer. A TL WPB Boolean function h on n-variable is such that

– h(0n) = 0 and h(1n) = 1
– h(x, y) = 0 if wH(x) < wH(y), where x, y ∈ Fm−12 .
– h(x, y) = 1 if wH(x) > wH(y), where x, y ∈ Fm−12 .

– the cardinality of Ui = supp(f) ∩
{
(x, y) ∈ F2m−1

2 × F2m−1

2 : wH(x) = wH(y) = i
}

is exactly
(
2m−1

j

)2
/2 for all

0 < j < 2m−1.

Remark 1. Despite Definition 11 may appear quite different respect the original paper, it is equivalent when applying
the constrains from the definitions we consider. Namely, here we consider only the case where n is a power of two.
Referring to Construction 1 of [TL19], this implies that the coefficients c1, . . . , ck−1 must be zero. Moreover, in [TL19]
f(0n) = 0 and f(1n) = 1 is not required for weightwise perfectly balancedness, differently from Definition 3. This
implies that in this context we can only instantiate the construction with (−1, 0, .., 0, 1) as input sequence, i.e. as in
Definition 11.

Property 4 (Properties of WPB families, [CMR17, LM19, TL19]). Let m ∈ N∗ and n = 2m, the n-variable CMR
function fn, a n-variable LM function gn AND a n-variable TL function hn have the following properties:

– deg(fn) =
n
2 ,

– deg(gn) = n− 1,
– AI(hn) =

n
2 .

2.3 Symmetric Functions

The n-variable Boolean symmetric functions are those that are constant on each slice Ek,n for k ∈ [0, n]. This class
has been thoroughly studied in the context of cryptography, see e.g. [Car04, CV05, BP05, SM07, QFLW09, Méa19,
Méa21, CM22]. The set of n-variable symmetric functions is denoted SYMn, and |SYMn| = 2n+1. In this article
we mainly consider two families of symmetric functions, which are both bases of the symmetric functions:
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Definition 12 (Elementary symmetric functions). Let i ∈ [0, n], the elementary symmetric function of degree i in
n variables, denoted σi,n, is the function which ANF contains all monomials of degree i and no monomials of other
degrees.

Definition 13 (Slice indicator functions). Let k ∈ [0, n], the indicator function of the slice of weight k is defined as:

∀x ∈ Fn2 , ϕk,n(x) = 1 if and only if wH(x) = k.

Property 5 (Properties of elementary symmetric functions). Let n ∈ N∗, and d ∈ [0, n]:

– The function σd,n takes the value
(
k
d

)
mod 2 on the elements of the slice Ek,n.

– The function σ2,n takes the value 1 only on the slices Ek,n such that k = 2 mod 4 or k = 3 mod 4. Moreover,
for n even, σ2,n is bent.

Definition 14 (Threshold functions). For any positive integers d ≤ n + 1 we define the Boolean function Td,n as
follows:

∀x = (x1, . . . , xn) ∈ Fn2 , Td,n(x) =

{
0 if wH(x) < d,

1 otherwise.

Property 6 (Lucas’ Theorem, e.g. [Fin47]). Let a, b, p ∈ N be integers such that a > b and p is a prime. Consider
their p-adic expansions a =

∑q
j=0 ajp

j and b =
∑q
j=0 bjp

j such that 0 ≤ aj < p and 0 ≤ bj < p for each j ∈ [0, q]
and aq 6= 0. Then (

a

b

)
≡

q∏
j=0

(
aj
bj

)
(mod p).

Property 7 (Weightwise restricted Walsh transform and addition of symmetric function ( [GM22b], Proposition 4)).
Let n ∈ N∗, k ∈ [0, n] and f ∈ Bn, the following holds on f + ϕk,n

∀a ∈ Fn2 ,∀i ∈ [0, n] \ {k},Wf+ϕk,n,i(a) =Wf,i(a), andWf+ϕk,n,k(a) = −Wf,i(a).

3 The S0-equivalence relation

In this section we introduce the notion of S0 equivalent relation and we prove a few properties of sets of equivalent
functions. Let n = 2m for m ∈ N+ and consider the set of symmetric functions null in 0n and 1n:

S0 = {σ ∈ SYMn : σ(0n) = σ(1n) = 0} ,

In this section we analyses the properties of sets of Boolean functions in Bn up to addition of an element of S0:

Definition 15 (S0-equivalent functions). Let m ∈ N∗ and f, g ∈ Bn Boolean functions in n = 2m variables. f, g
are called S0-equivalent if there exists a symmetric function σ ∈ S0 such that f = g+ σ. We call S0-class of f the set
of functions S0-equivalent to f and we denote it by S0(f).

Lemma 1. Let m ∈ N∗ and n = 2m,

1. S0 is a F2-vector space of dimension n− 1. In particular,

S0 = 〈ϕk,n : k ∈ [1, n− 1]〉F2

where we denote by ϕk,n’s the slice indicator functions (Definition 13).
2. |S0| = 2n−1.
3. For all f ∈ Bn, S0(f) = f + S0 and |S0(f)| = 2n−1.
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Proof. Boolean symmetric functions are those constant on each slice Ek,n for k ∈ [0, n]. Since by definition every
function σ ∈ S0 is such that σ(0n) = σ(1n) = 0, it can be uniquely written σ =

∑n−1
k=1 akϕk,n with ak ∈ F2 for

k ∈ [1, n− 1]. Additionally, this establishes a bijection between Fn−12 and

S0(f) = {f + σ : σ ∈ S0} = f + S0.

Therefore, |S0| = 2n−1 and |S0(f)| = 2n−1.

From the first point of Lemma 1 we can deduct that being S0-equivalent is an equivalence relation. Indeed, we
have that f ∈ S0(f) (reflexivity), since the null function belongs to S0. If g ∈ S0(f), there exists σ ∈ S0 such that
g = f + σ, then f = g + σ and f ∈ S0(g) (symmetry). Finally, if g = f + σ h = g + σ′ for σ, σ′ ∈ S0, we have that
h = f + σ + σ′ and h ∈ S0(f), since σ + σ′ ∈ S0 (transitivity).

From Lemma 1 we can derive an efficient constructive method to compute one or more S0-classes. Namely, for a
fixed n we can first precompute the set S0, and then compute the class S0(f) as f + S0. The set S0 can be generated
via slice indicator functions as suggested by Lemma 1. When n = 2m > 1, this space can be also generated via
elementary symmetric functions (Definition 12):

Lemma 2. Let m ∈ N∗ and n = 2m. We denote by σd,n the n-variable elementary symmetric function of degree d.
For all d ∈ [1, n− 1], σd,n ∈ S0.

Proof. On the slice 0 the function σd,n takes the value
(
0
d

)
from Property 5 Item 1. This implies that is 0 since

d > 0. Similarly, on the slice n, the function σd,n takes the value
(
n
d

)
mod 2, that is 0 since n = 2m > 1 and

d ∈ [1, n− 1].

Proposition 1. Let m ∈ N∗ and n = 2m. Then, S0 = 〈σd,n : d ∈ [1, n− 1]〉F2 .

Proof. Lemma 2 implies that 〈σd,n : d ∈ [1, n− 1]〉F2
is a subspace of S0. Since the elementary symmetric functions

have distinct degree, they are also linearly independent. This is sufficient to prove the equality.

Both S0-classes of weightwise almost perfectly balanced functions and weightwise perfectly balanced functions
consist of functions having the same W(A)PB property.

Proposition 2. Let m ∈ N∗ and n = 2m,

1. For all f ∈ WAPBn, S0(f) ⊆ WAPBn.
2. For all f ∈ WPBm, S0(f) ⊆ WPBm.
3. Let v = (v1, . . . , vn−1) be a tuple such that ∀k ∈ [1, n − 1], vk ∈ Ek,n. For any f ∈ Bn, there exists a unique
gv ∈ S0(f) such that for all k ∈ [1, n − 1], gv(vk) = 1. We call gv the canonical representative of its class
respectively to v.

Proof. Let f ∈ WAPBn and g ∈ S0(f) such that g = f + σ = f +
∑n−1
k=1 aiϕk,n. Then, for all k ∈ [1, n − 1]

we have |suppk(g)| = |suppk(f + ϕk,n)|. If Ek,n is even, then |suppk(g)| = |suppk(f)| = |Ek,n|/2. If Ek,n is odd,
|suppk(g)| = |suppk(f)| = |Ek,n|/2± 1/2. This implies S0(f) ⊆ WAPBn.

Additionally, since σ(0n) = σ(1n) = 0, we obtain g(0n) = f(0n) and g(1n) = f(1n). This implies that if
f ∈ WPBm, then g ∈ WPBm too. Namely, S0(f) ⊆ WPBm.

Finally, consider a tuple v = (v1, . . . , vn−1) such that ∀k ∈ [1, n−1], vk ∈ Ek,n. If we set bk = f(vk)+1 ∈ {0, 1}
for all k ∈ [1, n − 1], we obtain a function σv =

∑n−1
k=1 bkϕk,n ∈ S0. Hence, we can define gv = f + σv . By

construction gv(vk) = f(vk) + σv(vk) = f(vk) + bk = 1 and gv ∈ S0(f). Moreover, since the coefficients bk
uniquely identify σv , such gv is unique.

As a consequence of Proposition 2 we obtain that S0-classes form a partition of WAPBn and WPBm and that
for every tuple v we can represent the partition using canonical representatives. We prove that S0-equivalent classes
have invariant weightwise nonlinearity and weightwise algebraic immunity:

Theorem 1. Let m ∈ N∗, n = 2m and f, g ∈ Bn S0-equivalent functions. For every k ∈ [0, n] it holds NLk(f) =
NLk(g).
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Proof. Any symmetric function in S0 can be written as sum of slice indicator functions with index in [1, n − 1] (see
Lemma 1). Therefore, if σ = f + g there exist b1, . . . , bn−1 ∈ F2 such that σ =

∑n−1
k=1 bkϕk,n. Applying recursively

Property 7 we obtain from Property 1 that for all a ∈ Fn2 and for all k ∈ [0, n] we have |Wg,k(a)| = |Wf,k(a)|. This
is sufficient to conclude that, for all k ∈ [0, n]:

NLk(f) =
|Ek,n|
2
−

maxa∈Fn
2
|Wf,k(a)|
2

= NLk(g).

Theorem 2. Let m ∈ N∗, n = 2m and f, g ∈ Bn S0-equivalent functions. For every k ∈ [0, n] it holds AIk(f) =
AIk(g).

Proof. For k = 0, n, the restrictions of f and g on the slices coincide by definition of S0. Consequently, they have
the same restricted algebraic immunity. Let us consider k ∈ [1, n− 1] and h a Boolean function non null on Ek,n and
such that either (fh)|Ek,n

= 0 or ((1 + f)h)|Ek,n
= 0. Denoting σ = f + g ∈ S0, we have that there exist unique

coefficients b1, . . . , bn−1 ∈ F2 such that σ =
∑n−1
j=1 bjϕj,n. Then, considering the case (fh)|Ek,n

= 0 without lost of
generality, we can write:

g · h · ϕk,n = (f + σ) · h · ϕk,n = (

n−1∑
j=1

bjϕj,n) · h · ϕk,n = bk · h · ϕk,n,

(1 + g) · h · ϕk,n = (f + σ + 1) · h · ϕk,n = (

n−1∑
j=1

(bj + 1)ϕj,n) · h · ϕk,n = (bk + 1) · h · ϕk,n.

Since for every Boolean function f we have that (f · ϕk,n)|Ek,n
= f|Ek,n

, and bk is a binary value we obtain that one
between (gh)|Ek,n

= 0 and ((1 + g)h)|Ek,n
= 0 must be zero. This implies that AIk(f) = AIk(g).

While functions in the same S0-class have the same weightwise nonlinearities and algebraic immunities, they do
not necessarily share the global properties such as the degree, nonlinearity and algebraic immunity. Working with
S0-classes provides us a different principle for the construction of new functions. In fact, suppose we have a WPB
function h with certain NLk ’s and AIk ’s and we are interested in increasing, for instance, its algebraic immunity, we
can start our search for a new function inside S0(h). Additionally, if h is a WPB function, we are guaranteed to obtain
a function that is also WPB.

In the rest of this article we study the behaviour of degree, nonlinearity and algebraic immunity inside S0-classes.
Specifically, we are interested in the following edge quantities for WPB functions that characterise the best guaranteed
value, for degree, algebraic immunity and nonlinearity, achievable by modifying a function inWPBm, while staying
within its S0-class:

Definition 16. Let m ∈ N∗ and n = 2m, we define:

mdegS0(m) = min
f∈WPBm

max
g∈S0(f)

deg(g),

mAIS0(m) = min
f∈WPBm

max
g∈S0(f)

AI(g),

mNLS0(m) = min
f∈WPBm

max
g∈S0(f)

NL(g).

Remark 2. From Lemma 1 we have that S0 is a vector space, hence a group. S0-class can be interpreted as orbits of
Boolean functions respect to the action of S0 over the set Bn:

Σ : S0 × Bn → Bn
(σ, f) 7→ f + σ

In these terms, Proposition 2 implies that both the subset of weightwise almost perfectly balanced functions and
weightwise perfectly balanced functions are stable under the action of S0. Notice that SYMn is also stabilised.
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4 Degree in S0-classes

In this part we study the potential algebraic degree inside S0-classes. We prove that we can preview the behaviour
of the degree inside the S0-class S0(f) by looking at the ANF of f . As a consequence, we show that for any value
between n/2 and n−1 (included) there exist WPB functions reaching this degree. The proof is constructive, we exhibit
a new family of WPB functions with prescribed degree for all n = 2m (with m ∈ N∗).

Definition 17 (Sigma-degree σdeg(f)). Let n ∈ N∗, and f ∈ Bn. Let Df be the set of d ∈ [1, n − 1] such that the
ANF of f contains at least a degree d monomial but not all of them. We define:

σdeg(f) =

{
maxDf if Df 6= ∅
0 otherwise.

Lemma 3. Let m ∈ N∗ and n = 2m. Let f, g S0-equivalent Boolean functions in n variables. Then, σdeg(f) =
σdeg(g).

Proof. If σdeg(f) = 0, for every d ∈ [0, n] the ANF of f contains either all monomials of degree d or none. Namely,
f ∈ SYMn and f + σ ∈ SYMn for every σ ∈ S0. This implies if g ∈ S0(f), σdeg(g) = σdeg(f) = 0. Suppose
now σdeg(f) > 0. Let fds be the sum of monomials in f of degree up to σdeg(f). Since σdeg(f) is the maximum
d ∈ N∗ such that the ANF of f does not contain all the monomials of degree d, there exist bσdeg(f), . . . , bn ∈ F2 such
that

f = fds +

n∑
k=σdeg(f)+1

bkσk,n.

From Proposition 1 we can write any σ ∈ S0 as
∑n−1
k=1 akσk,n. Then,

g = f + σ = fds +

σdeg(f)∑
k=1

akσk,n︸ ︷︷ ︸
gds

+

n∑
k=σdeg(f)+1

(ak + bk)σk,n. (1)

This implies that σdeg(g) = deg(gds) = deg(fds) = σdeg(f).

Hence, σdeg(f) is an invariant of the S0-class and it is in fact the minimum degree in the class when f is not a
symmetric function:

Theorem 3. Let m ∈ N∗ and n = 2m. Let a Boolean function of n variables such that f 6∈ SYMn and δ ∈ N.

- there exist exactly 2σdeg(f) functions g ∈ S0(f) such that deg(g) = σdeg(f).
- if σdeg(f) < δ < n, there exist exactly 2δ−1 functions g ∈ S0(f) such that deg(g) = δ.
- if δ < σdeg(f), there does not exist g ∈ S0(f) such that deg(g) = δ.

Proof. Let fds be the sum of monomials in f of degree up to σdeg(f) > 0. Repeating the arguments of the proof of
Lemma 3 to get Equation (1), we have that every g ∈ S0(f) can be uniquely written as

g = fds +

σdeg(f)∑
k=1

akσk,n︸ ︷︷ ︸
gds

+

n−1∑
k=σdeg(f)+1

ckσk,n.

for some fixed ak, ck ∈ F2. This implies that deg(g) cannot be smaller than deg(fds) = σdeg(f). Moreover, we have
exactly 2σdeg(f) possible values for gds ∈ S0(f). All functions of degree δ for σdeg(f) < δ < n are of the form
gds +

∑δ−1
k=σdeg(f) ckσk,n + σδ,n. Hence, we obtain 2δ−1 functions of such degree in S0(f).
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Therefore, in the S0 class of every WPB function there exists at least a function of degree n− 1, i.e. the minimum
of the maximal degree inside an S0-class ofWPBm is n− 1:

Corollary 1. Let m ∈ N∗. mdegS0(m) = n− 1.

We can specialise the argument of Theorem 3 to explicitly construct WPB functions having for degree any value
between n/2 and n− 1 included, based on the CMR family.

Corollary 2 (WPB functions with prescribed degree). Let m ∈ N∗, n = 2m, and d ∈ [n2 , n − 1]. We define the
function fn,d as :

fn,d =

{
fn as in Definition 9 if d = n

2 ,

fn + σd,n if n2 < d < n.

The function fn,d is weightwise perfectly balanced and deg(fn,d) = d.

Proof. Since, for all d, fn,d ∈ S0(fn) and fn ∈ WPBm, the function fn,d is weightwise perfectly balanced
from Proposition 2. If d = n/2 then fn,d = fn hence deg(fn,n/2) = n/2 by Property 4, otherwise deg(fn,d) =
deg(σd,n) = d.

4.1 Degree distribution in WPBm

Let m ∈ N∗ and n = 2m. We observe that S0-classes form a partition of WPBm from Proposition 2. Denoting
by θd,m the number of S0-classes such that σdeg(f) = d and setting Dd,m = | {f ∈ WPBm : deg f = d} |, from
Theorem 3 we have that:

Dd,m = 2d · θd,m + 2d−1 ·
d−1∑
k=0

θk,m = 2d−1 · θd,m + 2d−1 ·
d∑
k=0

θk,m.

We prove now that a WPB function have degree n−1 with probability greater than 1/2. First, notice that the following
property implies Dd,m = θd,m = 0 for d < n/2:

Property 8 (Proposition 4 from [CMR17]). If f is a weightwise perfectly balanced Boolean function of n variables,
then the ANF of f contains at least one monomial of degree n/2.

From Property 4 we know that θn/2,m > 0. Hence, the number of WPB functions of minimal degree is a multiple
of 2n/2.

Lemma 4. Let m ∈ N, m ≥ 3, n = 2m and d ∈ [n/2, n− 2] the following holds: θn−1,m ≥ θd,m.

Proof. If θd,m = 0 then θn−1,m ≥ θd,m so we focus on the case θd,m > 0. First, for each function WPB f with
σdeg(f) = d we create a WPB function g such that σdeg(g) = n− 1. Since f is WPB, for all k ∈ [1, n− 1] we have
|suppk(f)| = |Ek,n|/2, therefore on the slice n − 1, |suppn−1(f)| = n/2 = |suppn−1(f + 1)|, and there exist pairs
of elements (u, v) ∈ E2

n−1,n such that f(u) = 0 and f(v) = 1. For an element a ∈ Fn2 we denote xa the monomial
defined by xa =

∏
i∈supp(a) xi. Since u and v belongs to En−1,n, the monomials xu and xv have degree n− 1. In the

following we consider the properties of the function g = f + xu + xv .
The degree of g is n − 1 since it as 2 degree-(n − 1) monomials of difference with f and 2 6= |En−1,n| = n

since m ≥ 2 (since σdeg(f) = d, in the ANF of f there are all or none of the monomials of degree n − 1). With the
same arguments σdeg(g) = n− 1. Then, we show that g is WPB. Since only the ANF of degree at least n− 1 differs
between f and g, the two functions have the same support on all slices of Hamming weight lower than n− 1. On the
slice En−1,n, we have suppn−1(g) = {suppn−1(f)∪{u}} \ {v}, therefore |suppn−1(g)| = |suppn−1(f)| = n/2. On
the last slice, g(1n) = f(1n) + xu(1n) + xv(1n) = 1 + 1 + 1 = 1, it allows to conclude, g is WPB.

Finally, by construction each pair (u, v) gives a different function g from a function f since g has the same support
on all the slices of weight lower than n− 1, and only 2 < n/2 modifications on the slice n− 1. It allows to conclude
θn−1,m ≥ θd,m. Note that, if m = 2, |En−1,n| = 4 and in this case f and f + σ3,4 can lead to the same function g for
different pairs (u, v).
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As a consequence, we can also show that more than half of the WPB functions have degree n− 1:

Theorem 4. Let m ∈ N,m ≥ 3, n = 2m, the probability of a WPB function fromWPBm having degree n− 1 is:

Dn−1,m

|WPBm|
=

2n−2θn−1,m
|WPBm|

+
1

2
> 1/2. (2)

Proof. The number of n-variable WPB functions of degree n− 1 is:

Dn−1,m = 2n−2θn−1,m + 2n−2 ·
n−1∑
k=0

θk,m = 2n−2θn−1,m + 2n−2
|WPBm|
|S0|

.

Therefore, the probability that a WPB function has degree n− 1 is:

Dn−1,m

|WPBm|
=

2n−2θn−1,m
|WPBm|

+ 2n−2
1

|S0|
=

2n−2θn−1,m
|WPBm|

+
1

2
>

1

2

since θn−1 > 0 using Lemma 4.

Experimental degree distribution in WPBm for m ∈ [2, 4]. To complement this investigation on the degree, we
perform an experimental study of the degree distribution for WPB functions in a small number of variables. Following
the same principle as in [GM22a, GM23a], we exhausted WPB2 to collect the distribution of the degree, while we
sampled uniformly at random WPB functions in 8 and 16 variables and we extrapolated an approximation of the
distribution of the degree for these cases. See Figure 1, Figure 2 and Table 3, respectively.

x 2 3

pdeg(x)% 13.333 86.667

# 96 624

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
x

0

20

40

60

80

%

deg, m=2

Fig. 1. Degree distribution in WPB2.

5 Minimal parameters inside the S0-classes of WPB functions

In this section we show that for a WPB function reaching a very small algebraic immunity or nonlinearity, there always
exists a function with better parameters in its S0-class. On the experimental side, it allows to optimise the parameters
of a WPB function by exhausting the parameters of all the elements of the class when the number of variables is
limited (up to 16), or by using more complex methods to increase specific parameters while staying in the class.

5.1 Algebraic immunity inside an S0 class

In this part we focus on the mAIS0(m) parameter ( Definition 16). In [GM23b], the minimal AI that a WPB function
can have is proven to be 2. In the following we show that mAIS0(m) > 2 (for m ≥ 6), which means that for such
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Fig. 2. Approximation of the degree distribution in WPB3 via sampling elements of WPB3 uniformly at random. The sample size
is larger than 223.
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deg, m=4

Fig. 3. Approximation of the degree distribution in WPB4 via sampling elements of WPB4 uniformly at random. The sample size
is larger than 219.

WPB functions exhibited in [GM23b], there always exist functions with better AI in their S0-class, more adequate to
be used in a cipher.

We begin by demonstrating a general lemma:

Lemma 5. Let m ∈ N∗ and n = 2m, let t ∈ N∗, if there exist 2t functions si in S0 such that :

– AI(si) > 2t,
– AI(si + sj) > 2t, for all i 6= j,

then for all f ∈ Bn there exists g ∈ S0(f) such that AI(g) ≥ t+ 1.

Proof. We prove the result by contradiction. Assume that all elements in S0(f) have algebraic immunity at most t,
then we consider the function f and the 2t functions f + si where si are the ones defined in the statement. We denote
f by f0, and fi with i ∈ [1, 2t] the other functions. Since the AI of these functions is at most t, for each one of them
we can take an annihilator gi of fi or annihilator of fi + 1, such that deg(gi) ≤ t and gi 6= 0.

Then, we have that each sum fi + fj with 0 ≤ i < j ≤ 2t is equal to a function sj or si + sj , and (gi ·
gj)(fi + fj + ε) = 0 where ε ∈ {0, 1}. By construction gi · gj has degree at most 2t so it can only be null since the
algebraic immunity of fi+ fj is greater than 2t. All the products gi · gj being null means that the support of all the gi,
i ∈ [0, 2t] are disjoints. Since the gi are non null functions of degree at most t their support have size at least 2n−t and
(2t + 1)2n−t > 2n which leads to a contradiction.
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Then, we need a result on the AI of some symmetric functions, to show the existence of 2t functions satisfying the
conditions of Lemma 5 in S0. We recall necessary results for it:

Property 9 (Adapted from [MT21], Proposition 12). Let k, d ∈ N, let f ∈ Bn such that AI(f) = k, and h ∈ Bn such
that wH(h) < min(2n−k, 2d+1 − 1), then |AI(f + h)− AI(f)| ≤ d.

Property 10 (AI of threshold functions, e.g. [CM22], Proposition 3). Let n ∈ N, d ∈ [1, n], the threshold function
Td,n has the following algebraic immunity: AI(Td,n) = min(d, n− d+ 1).

Proposition 3. Let m ∈ N∗ and n = 2m, let r ∈ N∗, r < m, for all vector v ∈ (Fr2)∗ the symmetric function f
defined as:

f =

r∑
i=1

viσ2m−2m−i,2m

is such that AI(f) ≥ 2m−r − 1.

Proof. First, we prove that for r < m, AI(σ2m−2m−r,2m) ≥ 2m−r. Note that, from Property 5, σ2m−2m−r,2m takes
the value

(
k

2m−2m−r

)
mod 2 on the slice Ek,n, that is, 0 for k < 2m−2m−r, 1 for k ∈ [2m−2m−r, 2m−1] and 0 for

k = 2m from Lucas’ Theorem (see Property 6). Therefore, σ2m−2m−r,2m = T2m−2m−r,2m + T2m,2m by Definition 14.
Then, for r > 1, using Property 9, since wH(T2m,2m) = 1, and since from Property 10 we get AI(T2m−2m−r,2m) =
2m−r +1, we can conclude AI(σ2m−2m−r,2m) ≥ 2m−r. For r = 1, we get σ2m−2m−r,2m = σ2m−1,2m and in this case
its AI is 2m−1 from Property 5.

Then, we consider any function f with at least two σi,2m functions in their ANF, and consider the smaller value of
i. We write f as f = σ2m−2s,2m + g where:

– m− 1 ≥ s > m− r.
– g’s ANF contains only monomials of degree greater than 2m − 2s−1.

For any non null function h of degree at most 2m−r − 1 we consider the degree of h · f = h ·σ2m−2s,2m +h · g. Since
AI(σ2m−2s,2m) ≥ 2m−r we have that h · σ2m−2s,2m 6= 0 and all monomials of this product have degree in the range
[2m − 2s, 2m − 2s + 2m−r − 1], hence they cannot be cancelled by the monomials from the product h · g, therefore
h · f 6= 0. Similarly for 1 + f , writing it as 1 + σ2m−2s,2m + g we obtain that the product by any non null function h
of degree at most 2m−r − 1 has a non null parts in its ANF (in the range of degrees [2m − 2s, 2m − 2s + 2m−r − 1]).
Therefore, we can conclude AI(f) ≥ 2m−r − 1.

It allows to derive a first lower bound on mAIS0(m):

Theorem 5 (Lower bound on mAIS0(m)). Let t,m ∈ N, t ≥ 2, if m > log(2t + 1) + t + 1 + (t mod 2) then
mAIS0(m) ≥ t+ 1.

Proof. First, to apply Lemma 5 we need 2t functions si from S0 that have AI greater than 2t and such that each
sum of 2 functions also has AI greater than 2t. We take as functions si symmetric functions that can be written as
si =

∑r
j=1 vjσ2m−2m−j ,2m where:

– r = t+ 1 if t is even, r = t+ 2 otherwise,
– v ∈ Fn2 , wH(v) is odd.

Since r is odd we have N =
∑r
k=0,k odd

(
r
k

)
= 2r−1, and by construction N ≥ 2t, therefore there are at least 2t

such functions si (provided m is bigger than r). Since each function si is the sum of an odd number of elementary
functions of degree between 2m−1 and 2m − 2m−r we obtain that each sum of pair can be written as si + sj =∑r
j=1 vjσ2m−2m−j ,2m , where wH(v) > 0 and wH(v) is even. Then, applying Proposition 3 all functions si and si+sj

for i 6= j have AI at least 2m−r − 1. Taking m > log(2t+ 1) + t+ 1+ (t mod 2) we get m > log(2t+ 1) + r that
is 2m−r − 1 > 2t, thereafter we can apply Lemma 5 and conclude mAIS0(m) ≥ t+ 1.
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Taking the first m satisfying the condition of Theorem 5, mt = blog(2t+1)c+ t+2+(t mod 2), the first values
are m2 = 6, m3 = 8, m4 = 9, and m5 = 11.

Remark 3. In fact, the proof of Theorem 5 can be applied to any function, and not only WPB functions; by construction
there is always a function with this lower bound on the algebraic immunity inside an S0 class.

Theorem 5 shows that for m ≥ 6 there are functions with AI at least 3 in each S0-class ofWPBm. An interesting
research direction is to determine if mAIS0(m) = 2m−1. If it holds, there are functions with optimal AI in each S0-
class, and then finding a WPB function with good AI together with good NLk and AIk boils down to determining the
adequate representative. If it does not hold, it is appealing to characterize the classes where optimal AI is not reachable.

5.2 Nonlinearity inside an S0-class

In this part we focus on mNLS0(m), as defined in Definition 16. In [GM23a], WPB functions with a nonlinearity as
low as 2n/2−1 have been exhibited. In this part we demonstrate that mNLS0(m) ≥ 2n−2 − 2

n
2−2.

Theorem 6 (Lower bound on mNLS0(m)). Let m ∈ N, m ≥ 2 and n = 2m, the following holds:

mNLS0(m) ≥ 2n−2 − 2
n
2−2.

Proof. For any f ∈ WPBm, we show that at least one function between f and f + σ2,2m has nonlinearity equal to
or greater than B = 2n−2 − 2

n
2−2. If NL(f) ≥ B the property holds, hence we focus on the case NL(f) < B. In

this case, we can write f as (f + `) + ` where ` is the best affine approximation of f (or one of the best if multiple
functions reach the same minimal distance), that is such that dH(f, `) = NL(f), which implies wH(f + `) < B. We
take g = f + σ2,2m which is in the S0-class of f , we can write g as `+ (f + `) + σ2,2m . Since the nonlinearity is an
extended affine equivalent criteria we have NL(g(x)) = NL(g(x) + a · x+ ε) (for all a ∈ Fn2 and ε ∈ {0, 1}), and in
particular NL(g) = NL(f + `+σ2,2m). Then, since σ2,2m is a bent function (see Property 5) its distance to the closest
affine function is 2n−1 − 2n/2−1, hence for any affine function `′ we have the triangular inequality dH(`

′, σ2,2m) ≤
dH(`

′, f + `+ σ2,2m) + dH(f + `+ σ2,2m , σ2,2m). Thereafter, dH(f + `+ σ2,2m , `
′) ≥ 2n−1 − 2n/2−1 −wH(f + `),

which implies NL(g) ≥ 2n−1 − 2n/2−1 − NL(f). It allows us to conclude NL(g) ≥ 2n−1 − 2n/2−1 − B, that is
NL(g) ≥ B.

Remark 4. As for the bound on mAIS0(m) in section 5.1, the proof of Theorem 6 also hold for functions that are not
WPB.

5.3 Beyond parameters in S0-classes

These results have more implications for cryptographic applications: for example in the (improved) filter permitted
context [MJSC16, MCJS19], for hybrid homomorphic encryption, there are efficient ways to evaluate symmetric
functions (as illustrated in [HMR20]), and doing one addition is cheap, therefore it is interesting to consider the
best function in the S0-class of a filter function. In that case, for all contexts where adding one function is cheap, the
hunt for optimised functions could be split into finding a cheap function to evaluate, and then determining the one with
best cryptographic parameters in its T -class. The T -class would be the class given by an equivalence relation up to
the addition of a fixed family of functions, at the same time efficiently computable in the context and enabling good
cryptographic parameters.

Different results we presented can be generalised to T -classes, in particular denoting mdegT ,mAIT and mNLT ,
the minimum over the maximum degree, AI and nonlinearity parameter inside a T -class:

– Similarly to Corollary 1, denoting by D the maximum degree of functions inside T , we obtain that mdegT ≥ D.
– Lemma 5 can be generalised to any family T , hence for any family T with functions with high AI and such that

the sum of two elements still have high AI, we can obtain a bound on mAIT similarly to the one of Theorem 5.
– The bound on mNLS0(m) from Theorem 6 comes from the fact that a bent function belongs to S0. Then, the same

bound applies for each family T containing a bent function. More generally, denoting B the maximal nonlinearity
for a function in T , the bound mNLT ≥ B/2 holds.
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6 S0-classes of WPB functions

In this part we experimentally compute the parameters of WPB functions within their S0-class. In Section 6.1 we
determine the parameters for all S0-classes ofWPB2 since there are only 90. In Section 6.2 we exhibit the parameters
of one part of the S0-classes of WPB3 only, since there are too man to exhaust all parameters. We focus on the
S0-classes of WPB functions exhibited in former works.

6.1 S0 taxonomy of WPB2

The size of S0 in 4 variables is 8 and |WPB2| = 720, then the S0-equivalence relation produces a partition ofWPB2

in 90 S0-classes. We further divide the classes according to the value that can be obtained as NL2, nonlinearity and
degree within the same classes and summarize the result in Table 1. We recall that all functions in degree 4 have
algebraic immunity 2. We can observe that only less than 14% of S0-classes contain functions with all the possible
values of degree and NL, and these classes only contain functions with null weightwise nonlinearity.

NL2,NL, deg # S0-classes
1, {2, 4} , {3} 12
1, {4} , {3} 30
1, {4} , {2, 3} 12
0, {2, 4} , {2, 3} 12
0, {2, 4} , {3} 24

Table 1.

6.2 Selection of S0-classes in WPB3

We computed S0-classes of some known constructions in 8 variables. The properties of these formerly studied
functions are summarized in Table 2, then we investigate the parameters inside their S0-classes in dedicated tables.

– The algebraic normal form of CMR function (Definition 9) in 8 variables is f8 = x1 + x2x3 + x2 + x4x5x6x7 +
x4x5 + x4 + x6. We collect the distribution of degree, algebraic immunity and nonlinearities of its S0-class in
Table 3.

– The family of 8-variable WPB functions introduced in [LM19] (see Definition 10) have good restricted
nonlinearities. We study here the S0-class some of these function, too. Specifically, we consider the function
referred as l in [GM22b] and two other elements sampled uniformly at random by this family that we denote by
l′, l′′. See Table 4.

– Selecting arbitrary sets Ui as in Definition 11 we obtain distinct functions from the TL family ( [TL19]). We
construct the S0-class of four functions a1, a2, a3, a4 uniformly sampling Ui in 8 variables. See Table 5.

– The family of WPB functions with high nonlinearity constructed in [GM23a] has algebraic immunity 2 [GM23b].
We summarize the properties of the S0-class of three functions sampled from this family with different
nonlinearity. See Table 6.2, Table 6 and Figure 4.

– Every function in the porcelain family described in [GM23b] has algebraic immunity 2. We summarize the
property of the S0-class of three functions p1, p2, p3 sampled from this family with different nonlinearity. See
Table 7.

– We collect the data also for three functions g1, g2, g3 sampled uniformly at random fromWPB3. See Table 8. For
these functions we observe that all the S0-equivalent functions have degree 7 and algebraic immunity 4.
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deg AI NL NL2 NL3 NL4 NL5 NL6 Reference
f8 4 4 88 2 12 19 12 6 [CMR17]
l 7 4 108 6 21 27 22 9 [LM19]
l′ 7 4 96 9 8 19 20 6 [LM19]
l′′ 7 4 104 9 16 19 16 6 [LM19]
a1 7 4 88 8 8 22 8 7 [TL19]
a2 7 4 88 6 8 22 8 6 [TL19]
a3 7 4 88 6 8 20 8 7 [TL19]
a4 7 4 90 6 8 24 8 7 [TL19]
s112 7 2 112 2 0 3 0 2 [GM23a]
s114 7 2 114 2 0 3 0 2 [GM23a]
s116 7 2 116 2 0 3 0 2 [GM23a]
p1 7 2 64 6 19 21 11 3 [GM23b]
p2 7 2 76 6 14 20 11 6 [GM23b]
p3 7 2 82 7 15 18 14 6 [GM23b]
g1 7 4 106 7 17 21 18 7 SUR
g2 7 4 104 7 15 19 19 7 SUR
g3 7 4 104 5 18 23 17 6 SUR

Table 2. Criteria of some 8-variable WPB functions from known constructions, referred in the last column. SUR corresponds to
functions sampled uniformly at random.

NL 84 88 92 96 100 104

# 8 68 16 20 4 12

deg 4 5 6 7

# 16 16 32 64

AI 3 4

# 36 92

Table 3. Distribution of nonlinearities, degree and algebraic immunity in S0(f8).

NL 96 100 104 106 108 110 112

S0(l) # 0 0 4 16 24 48 36

S0(l′) # 16 0 48 12 40 8 4

S0(l′′) # 16 4 80 8 0 20 0

deg 7

# 128

# 128

# 128

AI 3 4

# 0 128

# 0 128

# 14 114

Table 4. Distribution of nonlinearities, degree and algebraic immunity in S0(l), S0(l
′) and S0(l

′′).
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AI 3 4

S0(a1) # 64 64

S0(a2) # 64 64

S0(a3) # 64 64

S0(a4) # 64 64

deg 7

# 128

# 128

# 128

# 128

NL 80 88 90 92 94 96 98 100 102

# 16 36 8 6 16 22 14 8 2

# 16 36 10 10 12 32 12 0 0

# 16 36 10 10 18 36 2 0 0

# 16 34 6 8 14 34 4 6 6
Table 5. Distribution of nonlinearities, degree and algebraic immunity in S0(a1), S0(a2), S0(a3) and S0(a4).

AI 2 3 4

S(s112) # 24 96 8

S(s114) # 32 88 8

S(s116) # 32 88 8

deg 7

# 128

# 128

# 128

NL 8 16 24 32 40 48 56 64 72 88 90 92 94 96 104 110 112 114 116

S0(s112) # 4 8 4 8 16 8 4 16 12 16 2 2 2 10 4 8 4 0 0

S0(s114) # 4 8 4 8 16 8 4 16 12 16 2 4 2 8 4 8 2 2 0

S0(s116) # 4 8 4 8 16 8 4 16 12 16 4 4 0 8 4 8 0 0 4

Table 6. Distribution of nonlinearities, degree and algebraic immunity in S0(s112), S0(s114) and S0(s116).

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124
0

2

4

6

8

10

12

14

16

NL
S(s112)
S(s114)
S(s116)

Fig. 4. Display of nonlinearity’s distribution in Table 6
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AI 2 3 4

S0(p1) # 4 56 68

S0(p2) # 4 56 68

S0(p3) # 4 58 66

deg 7

# 128

# 128

# 128

NL 64 66 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110

S0(p1) # 2 2 4 4 0 2 4 2 2 6 6 6 16 14 20 6 12 0 8 0 8 2 2

S0(p2) # 0 0 0 2 6 6 4 6 6 2 6 6 14 4 16 8 6 20 6 10 0 0 0

S0(p3) # 0 0 2 4 2 4 8 4 2 6 6 2 6 14 10 12 10 6 8 16 6 0 0

Table 7. Distribution of nonlinearities, degree and algebraic immunity and in S0(p1), S0(p2) and S0(p3).

NL 94 96 98 100 102 104 106 108 110

S0(g1) # 2 6 14 4 24 34 30 14 0

S0(g2) # 0 2 14 8 52 24 26 2 0

S0(g3) # 0 0 8 8 24 48 34 4 2

Table 8. Distribution of nonlinearities in S0(g1), S0(g2) and S0(g3).

Implementation. The values discuss above were obtained via sagemath [The17]. Our code is available at https://
github.com/agnesegini/WAPB_pub. Experiments were partially hosted by https://hpc.uni.lu/ [VBCG14].

17

https://github.com/agnesegini/WAPB_pub
https://github.com/agnesegini/WAPB_pub
https://hpc.uni.lu/


7 Conclusions and open questions

In this article we introduced the notion of S0-equivalent class for Boolean functions in 2m > 1 variables. Namely,
we consider the partition of the Boolean functions space by collecting in the same class functions which addition is a
symmetric function null in 0n and 1n.

First, we studied invariant properties of these classes. We proved that if a function is either WPB or WAPB,
the same holds for all the functions in its class. Additionally, S0-equivalent functions have the same weightwise
nonlinearity and weightwise algebraic immunity.

Then, we studied the behaviour of the degree, nonlinearity and algebraic immunity inside S0-classes and determine
bounds for edge quantities like the best guaranteed value, for the degree, algebraic immunity and nonlinearity,
achievable by modifying a function in WPBm, while staying within its S0-class, i.e. mdegS0(m),mAIS0(m) and
mNLS0(m). Specifically, for the degree we proved the distribution of degree inside a class of a WPB function is
determined by its sigma-degree σdeg(f), which is another invariant of the class deduct from the ANF of the function.
As a corollary, we also showed that for any value between n/2 and n − 1 (included) there exist WPB functions
reaching this degree, explicitly exhibiting a new family of WPB functions with prescribed degree for all n = 2m.
Additionally, we used this results to infer properties of the degree distribution in WPBm and prove that more than
half of the functions in this set have degree exactly n− 1. Then, analysing the algebraic immunity and nonlinearity of
certain symmetric functions we derived lower bounds for both mAIS0(m) and mNLS0(m). It demonstrated that there
are always S0-equivalent functions with better AI and nonlinearity than the one with minimal parameters exhibited
in former works. Moreover, the proofs of these bounds hold for functions that are not WPB. We also discussed how
the concept of S0-class can be generalised and how the results on mdegS0(m), mAIS0(m) and mNLS0(m) can be
extended.

Finally, we presented experimental results. In Section 6 we provided an exhaustive taxonomy of 4-variable classes.
While, for 8 variables we analysed S0-classes of some functions from know families, e.g. [CMR17, LM19, TL19,
GM23a, GM23b]

Regarding open questions and future possible directions:

– In Section 5.3, we outline a possible extension to other equivalence relations defined up to the addition of functions
from a family T . Indeed, we suggest that for cryptographic application where a family T is easy to compute, and
the addition is cheap, finding a Boolean function with good cryptographic parameters could then be reduced to
finding the best function inside its T -class.

– We observe our work suggests a new strategy to construct a WPB function with good cryptographic criteria.
Indeed, being weightwise properties invariant in S0-classes, as soon as we identify a function having good
weightwise properties, we can then improve the global properties by looking directly inside its S0-class.
mdegS0(m),mAIS0(m) and mNLS0(m) express the best guaranteed value, for degree, algebraic immunity and
nonlinearity, achievable by using this strategy. Therefore, it would be good to improve our bounds on these
quantities. For instance, as we point out, it would be interesting to determine if mAIS0(m) = 2m−1, since it
would imply that there are functions with optimal AI in each S0-class.
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HMR20. Clément Hoffmann, Pierrick Méaux, and Thomas Ricosset. Transciphering, using filip and TFHE for an efficient
delegation of computation. In Karthikeyan Bhargavan, Elisabeth Oswald, and Manoj Prabhakaran, editors, Progress in
Cryptology - INDOCRYPT 2020 - 21st International Conference on Cryptology in India, Bangalore, India, December
13-16, 2020, Proceedings, volume 12578 of Lecture Notes in Computer Science, pages 39–61. Springer, 2020.

LM19. Jian Liu and Sihem Mesnager. Weightwise perfectly balanced functions with high weightwise nonlinearity profile. Des.
Codes Cryptogr., 87(8):1797–1813, 2019.

LS20. Jingjing Li and Sihong Su. Construction of weightwise perfectly balanced boolean functions with high weightwise
nonlinearity. Discret. Appl. Math., 279:218–227, 2020.
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