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Abstract

Congruence theorems for triangles provide conditions that ensure that a triangle is deter-
mined up to congruence. In the classical statements, the conditions are the lengths of certain
sides or the measure of certain interior angles. We consider congruence theorems for triangles
that involve, respectively: the length of the angle bisectors (from a triangle vertex to the
opposite side); the length of the segments on the angle bisectors from the incenter to the
triangle vertices. In both cases there exists – up to congruence – precisely one triangle with
prescribed arbitrary positive lenghts for those three segments.

1 Introduction

A Congruence Theorem for triangles usually contains a list of properties and it is phrased in one of
the two following ways: one triangle that satisfies those properties is determined up to congruence;
any two triangles that satisfy those properties are congruent. One classical Congruence Theorem,
abbreviated as SSS, states that the lengths of the three triangle sides determine a triangle up to
congruence. In other words, if two triangles have the same side lengths, then they are congruent.
Certain Congruence Theorems for triangles were known at the time of Euclid and involve side
lenghts and measures of interior angles.

Multiplying any side length with the length of the corresponding height always gives the same
number, namely twice the triangle area, so we can deduce another Congruence Theorem: a triangle
is determined up to congruence by the lengths of its three heights. (Hint: The ratios between the
side lengths are determined hence the triangle is determined up to similarity.)

Another congruence theorem that could be presented as an exercise is the following:

Theorem 1. A triangle is determined up to congruence by the lengths of its three medians.

Proof. Let A, B, and C be the triangle vertices and (up to a translation) place the origin at the
barycenter O. The lengths of

ÝÑ
OA,

ÝÝÑ
OB,

ÝÝÑ
OC are known because, for example,

ÝÑ
OA is 2{3 of the

length of the median at A. Recall from the definition of barycenter (as the center of mass of the
vertices) that

ÝÑ
OA `

ÝÝÑ
OB `

ÝÝÑ
OC “

ÝÑ
0 . We deduce the angle measure AÔB from the relation

||
ÝÝÑ
OC||2 “ ||

ÝÑ
OA `

ÝÝÑ
OB||2 “ ||

ÝÑ
OA||2 ` ||

ÝÝÑ
OB||2 ` 2||

ÝÑ
OA|| ¨ ||

ÝÝÑ
OB|| ¨ cospAÔBq .

Up to a rotation, knowing ||
ÝÑ
OA|| determines A. Then, knowing AÔB and

ÝÑ
OA determines B (up

to a line symmetry). Finally, knowing
ÝÝÑ
OC “ ´p

ÝÑ
OA `

ÝÝÑ
OBq determines C. Up to congruence, we

have then determined the position of the vertices A, B, and C.

In this paper, we prove Congruence Theorems that involve the lengths of angle bisectors or
the lengths of the segments that are cut on an angle bisector by the incenter. Our main result is
the following, for which we don’t know of an easy proof as the one mentioned above:

Theorem 2. A triangle is determined up to congruence by the length of the three bisectors.
Moreover, for every triple of positive real numbers there exists a triangle such that those numbers
are the length of the three angle bisectors.

1



This result appeared previously in the work of Mironescu and Panaitopol [MP94] (see also
related recent work [cMP22]), who provided an elegant argument by reducing it to an application
of the Brouwer fixed-point theorem. Although their approach avoids many explicit computations,
it does not offer a direct construction of the triangle, highlighting a central theme of this problem:
recovering a triangle from its bisector lengths cannot be accomplished solely by straightedge-and-
compass methods. By Galois theory, the algebraic constraints arising from the bisector-length
equations are not solvable by radicals, thus ruling out purely classical constructions. Despite this
inherent algebraic complexity, we believe a more hands-on and constructive geometric treatment
is both instructive and worthwhile. In this paper, we present such a geometric proof. We combine
algebraic and trigonometric manipulations with geometric insights, resulting in a self-contained
approach that may appeal to those seeking a more elementary viewpoint.

As a variant of Theorem 2 we also prove:

Theorem 3. A triangle is determined up to congruence by the length of the three segments con-
necting the incenter to the vertices. Moreover, for every triple of positive real numbers there exists
a triangle such that those numbers are the lengths of said segments.

Notice that we don’t have a Congruence Theorem if we consider instead the length of the three
segments connecting the incenter to the endpoints of the angle bisectors that are not vertices, see
Remark 15.

We may also relate the angles to the lengths of the angle bisectors as follows:

Theorem 4. In a triangle, the largest (respectively, smallest) angle corresponds to the shortest
(respectively, longest) angle bisector. In particular, two angles are the same if and only if the
corresponding angle bisectors have the same length.

The above result clearly holds replacing the angle bisectors by the three segments connecting
the incenter to the vertices (because the triangle sides are tangents to the incircle). However, the
above result does not hold for a triangle ABC replacing the length of the angle bisectors by the
length l1A, l

1
B , l

1
C of the segments from the incenter to the endpoints of the angle bisectors (if the

angle measures are 2α ą 2β ą 2γ and 2β “ π
3 we have l1A “ l1C ‰ l1B by Theorem 10).
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discussions on angle bisectors. This project was a student project (Experimental Mathematics
Lab, University of Luxembourg) mentored by Didac Mart́ınez Granado and Antonella Perucca.

2 Preliminaries on angle bisectors

Let ABC be a triangle with vertices A, B, and C. For convenience, we denote the measures of the
interior angles at A, B and C by 2α, 2β and 2γ respectively (noticing that α`β `γ “ π

2 ). Call O
the incenter (which is the intersection point of the three angle bisectors, and it is also the center
of the incircle) and R the radius of the incircle. We write a for the length of the side opposite
to A, bA for the length of the angle bisector at A, we call A1 the endpoint of said angle bisector,
and we set lA :“ OA and l1A :“ bA ´ lA (and we similarly define b, c, B1, C 1, bB , bC , lB , lC , l

1
B , l

1
C).

Without loss of generality α`β is the smaller angle made by the bisectors at A and B, see Figure
1.

Remark 5. Consider the projection P of O on the side AB. Working in the right triangle APO
and C 1PO respectively, we can see that R “ lA sinα and R “ l1C cospα´βq. Since R only depends
on the triangle ABC (and not on the choice of a vertex), we also obtain

R “ lA sinα “ l1A cospβ ´ γq . (1)
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Figure 1: The angle bisectors in the triangle ABC, with related lengths and angle measures

Lemma 6. We can express lA
bA

, lA
l1
A

(and hence
l1
A

bA
) in terms of α, β, γ as follows:

lA
bA

“
sinpα ` 2γq

2 sinpα ` γq cos γ

lA
l1A

“
sinpα ` 2γq

sinα
.

Proof. By the previous remark, we have l1A “ lA sinα
sinpα`2γq

. We deduce that

lA
bA

“
lA

lA ` l1A
“

lA

lA ` lA sinα
sinpα`2γq

“
sinpα ` 2γq

sinpα ` 2γq ` sinα
.

We conclude because, as it can be seen by expanding the terms, we have 2 sinpα ` γq cos γ “

sinpα ` 2γq ` sinα.

Remark 7. The length of the angle bisector at A is

bA “
2bc

b ` c
cosα “

c

bc
´

1 ´

´ a

b ` c

¯2¯

and analogous formulas hold for bB and bC . This is a well-known consequence of the Angle Bisector
Theorem, see for example [pro]and [Wik25].

Example 8. In a right-angled triangle ABC where 2γ “ π
2 and where, up to a rescaling, R “ 1

we can express bA, bB , bC in terms of α as follows (this easy computation is left to the reader):

bApαq “
1

sinα
`

1

cosα

bBpαq “
1

sin pπ
4 ´ αq

`
1

cos pπ
4 ´ αq

bCpαq “
1

sin p2α ` π
4 q

`
?
2

3 Isosceles triangles

The following result implies this observation on equilateral triangles:

Remark 9. A triangle is equilateral if and only if bA “ bB “ bC if and only if lA “ lB “ lC if
and only if l1A “ l1B “ l1C .
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Theorem 10. We have 2α “ 2β if and only if bA “ bB if and only if lA “ lB. The property
l1A “ l1B is equivalent to 2α “ 2β or 2γ “ π

3 .

Proof. If the triangle is isosceles with apex C, swapping A and B results in the same triangle so
we deduce bA “ bB and lA “ lB and l1A “ l1B . The property lA “ lB implies that α “ β by Remark
5. Similarly, by Remark 5 the property l1A “ l1B is equivalent to cospα´γq “ cospβ ´γq and hence
α ´ γ “ ˘pβ ´ γq, which is equivalent to α “ β or γ “ π

6 .

Finally, suppose that bA “ bB . By Remark 5 we have lB “ lA sinα
sin β and by Lemma 6 we can

express l1A in terms of lA and the triangle angles. The known equality lA ` l1A “ lB ` l1B , expressing
these lengths all in terms of lA and the triangle angles, then gives

lA `
lA sinα

sinpα ` 2γq
“

lA sinα

sinβ
`

lA sinα

sinpβ ` 2γq
. (2)

Calling ω “ α ` β this equation is equivalent to

1

sinpω ´ βq
`

1

sinpω ` βq
“

1

sinpω ´ αq
`

1

sinpω ` αq
. (3)

Computing the left hand side (a similar computation holds for the right hand side), we get

1

sinpω ´ βq
`

1

sinpω ` βq
“

sinpω ` βq ` sinpω ´ βq

sinpω ` βq sinpω ´ βq

“
2 sinω cosβ

sin2 ω cos2 β ´ sin2 β cos2 ω

“
2 sinω cosβ

p1 ´ cos2 ωq cos2 β ´ p1 ´ cos2 βq cos2 ω

“
2 sinω cosβ

cos2 β ´ cos2 ω
.

(4)

If α ‰ β, then we have sinω ‰ 0 and we deduce

cosβ

cos2 β ´ cos2 ω
“

cosα

cos2 α ´ cos2 ω

This is impossible because f : x ÞÑ x
x2´k2 is an injective function over pk, 1q. Indeed, we can

compute that f 1pxq “
´px2

`k2
q

px2´k2q2
ă 0.

The following result is our main theorem in the case of isosceles triangles:

Theorem 11. Given two positive real numbers h and b there exists a unique, up to congruence,
isosceles triangle with height h and such that b is the length of the angle bisector at a basis angle.

Proof. Consider an isosceles triangle ABC with apex C (thus h “ bC and b “ bA “ bB).
Fixing b (remark that, up to rescaling the triangle, we can obtain any value for b) and varying the
basis angle 2α P p0, π

2 q, we can see the height h as a function of α. It suffices to prove that this
function is injective with range p0,`8q. Without loss of generality, fix b “ 1 and consider the
function hCpαq for α P p0, π

4 q.
Call F the projection of A1 on the side AB. In particular, AA1F and BA1F are right triangles.

Recalling that bA “ 1, we have

AF “ cosα A1F “ sinα FB “
A1F

tan 2α
.
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We deduce that

hCpαq “
1

2
AB ¨ tan 2α

“
1

2
sinpαq `

1

2
cosα ¨ tan 2α

“
1

2
sinα ¨

´

1 `
2 cos2 α

2 cos2 α ´ 1

¯

“
1

2
sinα ¨

´3 ´ 4 sin2 α

1 ´ 2 sin2 α

¯

(5)

In particular, the function hCpαq is continuous. Let x “ sinα P p0,
?
2
2 q, so sin2 α P p0, 1

2 q. The
range of hCpαq is the range of the function

fpxq “ x ¨
3 ´ 4x2

1 ´ 2x2

where x P p0,
?
2
2 q. Moreover, as x is an injective function of α, we deduce that hCpαq is injective

if fpxq is injective. The function f is continuous, its right limit for x Ñ 0 equals 0 and its left

limit for x Ñ
?
2
2 equals `8. We conclude by proving that f is strictly increasing. We compute

f 1pxq “
8x4 ´ 6x2 ` 3

p2x ´ 1q2
.

The numerator (seen as a quadratic expression in x2) has negative discriminant and hence it is
strictly positive.

Remark 12. The above proof also shows (starting with an equilateral triangle) that, for an isosce-
les triangle, we have h ą b if and only if the basis is smaller than the other two sides if and only
if the basis angles are larger than the angle at the apex.

4 The proof of Theorem 3

To prove Theorem 3, we separate it into two results:

Theorem 13. A triangle is determined up to congruence by the length of OA, OB, OC.

Proof. It suffices to prove that the ratios lA{lB and lA{lC determine the triangle up to similarity.
By Remark 5, the numbers c “

sin β
sinα and d “

sin γ
sinα are known, and it suffices to prove that they

determine sinα (then sinβ and sin γ are also determined, and hence also the acute angles α, β,
and γ). We have

sin γ “ cospα ` βq “

a

1 ´ sin2 α ¨

a

1 ´ c2 sin2 α ´ c sin2 α

and hence
d sinα ` c sin2 α “

a

1 ´ sin2 α ¨

a

1 ´ c2 sin2 α .

Setting S “ sinα and squaring gives

2cdS3 ` p1 ` c2 ` d2qS2 ´ 1 “ 0 .

In the variable t “ 1
sinα we obtain the depressed cubic

t3 ` pt ` q “ 0 p “ ´p1 ` c2 ` d2q q “ ´2cd

We conclude by proving that there is at most one real root of the cubic which is strictly positive.
Call ∆ the discriminant of the cubic. Notice that 0 is not a root (as q ‰ 0) and the sum of the
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roots is zero (as the coefficient at t2 is zero). We then exclude ∆ ă 0 (because there cannot be
precisely one root). If ∆ “ 0, there are two values for the roots, so at most one of them is a strictly
positive real number. Now suppose that ∆ ą 0: there are three distinct real roots, their sum is 0
and their product is positive (as q ă 0), so there is precisely one strictly positive real root.

Theorem 14. For any triple of positive real numbers, there is a triangle such that these are the
lengths of OA, OB, OC.

Proof. Up to a rescaling we may fix R “ 1 and it suffices to prove that there is a triangle with

any given ratios lC{lA “
sinpαq

sinpγq
“

sinpαq

cospα`βq
and lC{lB “

sinpβq

sinpγq
“

cospα`γq

sinpγq
“

sinpβq

cospα`βq
. So call

fpα, ωq “

´ sinpαq

cospωq
,
sinpω ´ αq

cospωq

¯

,

where ω represents α ` β. The domain of this function is pα, ωq such that 0 ă α ă ω ă π
2 . It

suffices to show that f is onto with codomain p0,8q2.
We let px, yq P p0,8q2 be arbitrary and aim to find 0 ă α ă ω ă π

2 such that

sinpαq

cospωq
“ x,

sinpω ´ αq

cospωq
“ y.

For ω P parctanx, π
2 q we have tanω ą x, hence sinω ą x cosω, which gives

0 ă x cosω ă 1,

so αpωq “ arcsinpx cosωq P p0, π
2 q, and moreover αpωq ă ω. Thus, for fixed x ą 0, the equation

x “
sinα

cosω

forces α to depend on ω, giving a one-parameter family pαpωq, ωq. The second coordinate y is
then given by the function

gpωq :“
sinpω ´ αpωqq

cosω
, ω P parctanx, π

2 q.

Indeed, the function g is continuous, strictly increasing, and satisfies

lim
ωÓarctan x

gpωq “ 0, lim
ωÒ

π
2

gpωq “ `8.

Thus g is a bijection parctanx, π
2 q Ñ p0,8q. So, for any y ą 0 there exists ω with gpωq “ y.

Setting α “ αpωq yields fpα, ωq “ px, yq.

Remark 15. Knowing the lengths of l1A, l
1
B, l

1
C is not sufficient to determine the triangle up to

congruence. Indeed, consider two triangles ABC and A1B1C 1 and fix α “ β “ 2π
15 and α1 “ β1 “ π

5 .
Notice that we have sinp3αq “ sinp3α1q. Moreover, we have l1A “ l1B and l1A1 “ l1B1 . Up to rescaling
one of the triangles, we may suppose that lC “ l1C and we conclude because

l1C{l1A “
cospβ ´ γq

cospβ ´ αq
“ sinp3αq “ sinp3α1q “ l1C1 {l1A1 .

5 The proof of the main result

This section is devoted to proving Theorem 2. The following transformation is depicted in Figure
2.
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Figure 2: Transformation I applied to the equilateral triangle

OA B

C

Lemma 16 (Transformation I). Consider a triangle ABC and suppose that β ě α. Modify the
triangle by keeping bC and γ and the line AB invariant (thus C rotates around the endpoint of
bC) and preserving β ě α. Increasing β (equivalently, decreasing α) we have that bA increases
and bB decreases.

Proof. We have

bA “ bC sinp2γq ¨
sinp2α ` γq

sinpα ` 2γq sinp2αq

and the analogous expression for bB (replacing α by β). We can see αptq (respectively, βptq) as a
function of the time, such that α1 “ ´1 (respectively, β1 “ 1). To study the sign of b1

A and b1
B we

may neglect the positive constant bC sinp2γq. So we have to derive a quotient f{g and the sign of
its derivative is the sign of f 1g ´ g1f . We now show that b1

A ą 0:

´ 2 cosp2α ` γq sinpα ` 2γq sinp2αq ` sinp2α ` γq cospα ` 2γq sinp2αq

` 2 sinp2α ` γq sinpα ` 2γq cosp2αq

“ 2 sinpγq sinpα ` 2γq ` sinp2α ` γq cospα ` 2γq sinp2αq

“ 2 sinpγq sinpα ` 2γq ` cospγq cospα ` 2γq ´ cosp2α ` γq cosp2αq cospα ` 2γq

“ sinpγq sinpα ` 2γq ` cospα ` γq ´ cosp2α ` γq cosp2αq cospα ` 2γq

ą 0 .

In the last inequality we used the following:

1. For the first summand: α ` 2γ ă π, so that sinpγq sinpα ` 2γq ě 0.

2. For the second summand: α ` γ ă π{2, so that cospα ` γq ą 0.

3. For the third summand, we can lower bound it by ´ cosp2α ` γq, and since 2α ` γ ď π
2

(because α ď β), we have that cospα ` γq ą cosp2α ` γq.

For the derivative b1
B we cannot reduce directly to the previous argument, because the as-

sumption β ě α breaks the symmetry. In this case, we have to show the following expression is
negative:

2 cosp2β ` γq sinpβ ` 2γq sinp2βq ´ sinp2β ` γq cospβ ` 2γq sinp2βq

´ 2 sinp2β ` γq sinpβ ` 2γq cosp2βq .

The computational knowledge engine WolframAlpha rewrites this expression as 1
4 times

cosp3β ´ γq ´ 5 cospβ ` γq ` 3 cospβ ` 3γq ` cosp5β ` 3γq .
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Write x “ β ` γ and y “ 2γ, so that π
6 ă x ă π

2 and π
6 ă y ă π. So the above expression

becomes
cosp3x ´ 2yq ´ 5 cospxq ` 3 cospx ` yq ` cosp5x ´ yq .

Writing x “ π
2 ´ δ and y “ π ´ ε, and recalling

cos
´

´
π

2
` z

¯

“ sinpzq, cos
´π

2
` z

¯

“ ´ sinpzq,

the expression becomes

sinp2ε ´ 3δq ´ 5 sinpδq ´ 3 sinpε ` δq ` sinpε ´ 5δq .

We have 0 ă δ ă π
6 and 0 ă ε ă 2π

3 . Suppose first that ε ă π
4 and δ ă π

10 . Then

sinp2ε ´ 3δq ă sinp2εq and sinpε ´ 5δq ă sinpεq.

An upper bound for the full expression is then

sinp2εq ´ 3 sinpεq ` sinpεq “ 2 sinpεqpcospεq ´ 1q ă 0 .

It suffices to prove that in the remaining region we have

5 sinpδq ` 3 sinpε ` δq ą 2 .

We can check by hand that this inequality holds for the extremal values pδ, εq in the following list:

p0, π
4 q

`

π
10 ,

π
5

˘

p0, 2π
3 q

`

π
3 ,

2π
3

˘

.

The convex hull of the four points is a convex quadrilateral that contains the remaining region
because ε ě 2δ (as ε “ 2α ` 2β and δ “ α). We then reason by convexity. Let fpϵ, δq :“
5 sinpδq ` 3 sinpϵ ` δq. We claim f is concave on tpϵ, δq : 0 ď ϵ ` δ ă πu. This follows because
a C2 function is concave if and only if its Hessian is negative semi-definite, and f is negative
semi-definite if and only if 15 sinpδq sinpϵ` δq ě 0, which is true because 0 ď ϵ` δ ă π. (As a side
remark: by moving along lines it would be possible to prove and make use of concavity only for
functions in one-variable.) We deduce that a lower bound for the values inside the region is the
minimum of the four extremal values, which is strictly greater than 2 and we conclude.

The following result implies Theorem 4:

Lemma 17. If the angles in the triangle ABC satisfy α ď β ď γ then we have bA ě bB ě bC .

Proof. By Theorem 10 we have an equality of angles if and only if the corresponding bisectors
are equal. So the case of an equilateral triangle is evident. Now suppose that α ă β “ γ or
that α “ β ă γ. From Remark 12 we deduce that bA ą bC and we conclude. Finally, suppose
that α ă β ă γ. We consider a continuous transformation that changes the angles while keeping
the triangle scalene. As such a transformation never gives an isosceles triangle, by continuity
the inequalities among the bisectors are preserved. We conclude by Lemma 16 (starting from an
isosceles triangle with strict largest angle 2γ and considering Remark 12).

Lemma 18 (Transformation II). Consider a triangle ABC such that 2γ is the largest angle.
Fixing bC and β ´ α and increasing γ (thus, α and β decrease by the same amount), both bA and
bB increase.

Proof. Seeing the angles as a function of the time we may suppose that γ1 ą 0 and β1, α1 ă 0. The
role of A and B is interchangeable, so it suffices to prove that bA increases. We have

bA “ bC sinp2α ` γq ¨
sinp2γq

sinpα ` 2γq sinp2αq
.
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Figure 3: Transformation II applied to the equilateral triangle

O

C

A B

Since 2α ` γ is constant, up to neglecting the positive constant bC ¨ sinp2α ` γq we get

dbA
dt

“
α1

rsinpα ` 2γq sinp2αqs
2 ¨

„

´ 4 cosp2γq sinpα ` 2γq sinp2αq

` 3 sinp2γq cospα ` 2γq sinp2αq ´ 2 sinp2γq sinpα ` 2γq cosp2αq

ȷ

(6)

Thus, in order to prove that dbA
dt ą 0, it suffices to show that the sign of the following expression

is positive:

4 cosp2γq sinpα ` 2γq sinp2αq ´ 3 sinp2γq cospα ` 2γq sinp2αq ` 2 sinp2γq sinpα ` 2γq cosp2αq

“ cosp2γq sinpα ` 2γq sinp2αq ` 3 sinpαq sinp2αq ` 2 sinp2γq sinpα ` 2γq cosp2αq

“ sinpα ` 2γq sinp2α ` 2γq ` 3 sinpαq sinp2αq ` sinp2γq sinpα ` 2γq cosp2αq ą 0 .

In the last inequality, we used that since 2pα ` β ` γq “ π, we have

1. First summand is positive: since α ` 2γ ă π, and 2α ` 2γ ă π.

2. Second summand is positive: since 2α ă π.

3. Third summand is positive: since 2γ ă π, α ` 2γ ă π and 2α ă π{2.

Proof of the unicity claim in the Main Theorem. By the result for isosceles triangles we may sup-
pose that our triangle is scalene. Up to rescaling we may suppose without loss of generality that
bC “ 1 is the shortest angle bisector and that bA ą bB , so that γ ą β ą α by Lemma 17. Suppose
that A1B1C 1 is another triangle with bC1 “ 1 and bA1 “ bA and bB1 “ bB . So γ1 ą β1 ą α1 and
we may suppose without loss of generality that γ1 ě γ. Then we obtain A1B1C 1 from ABC by
combining the two transformations seen in the previous lemmas: keeping bC “ 1, opening γ to
γ1 (where bA and bB do not decrease, and strictly increase if γ1 ą γ). Then, keeping bC “ 1,
increasing β and decreasing α (so that α ` β is constant) or conversely. In the former transfor-
mation, bA strictly increases and in the latter bB strictly increases (unless we already are at the
triangle A1B1C 1). This shows that, unless ABC and A1B1C 1 are similar (and hence congruent
because bC “ bC1 “ 1) then bA or bB increases while passing from ABC to A1B1C 1, against our
assumptions.
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Proof of the existence claim in the Main Theorem. Transformations I and II proven, respectively,
in Lemma 16 and Lemma 18 allow us to modify the angles of the triangles (keeping bC “ 1) so that
bA and bB both increase and, respectively, bA increases and bB decreases. The idea of this proof is
to show that, by combining the two transformations, we can settle for the desired values of bA and
bB . Let T be the space of Euclidean triangle up to similarity, which we parametrize as follows.
We assume the base of the triangle lies on the x-axis, and we scale the triangle so that bC “ 1 is
the shortest angle bisector (consequently, 2γ is the largest angle). We may then parametrize the
triangle by the angles pα, βq, since γ “ π ´α´β is determined. Let bApα, βq, bBpα, βq denote the
bisector lengths corresponding to the vertices A and B for a triangle T “ pα, βq.

Define the smooth map:

Φ : T Ñ R2, Φpα, βq “ pbApα, βq, bBpα, βqq.

Recall the Transformation I (Lemma 16) and Transformation II (Lemma 18), which we will
tailor specifically for this setting. We start with a base triangle T “ pα0, β0q.

• Transformation I: Fixes γ. This transformation increases α (thus decreasing β by the
same amount s). This increases bA and decreases bB (the signs reverse if we decrease α).
Let s ą 1. We consider the transformation where α0 is replaced by

αpsq “ α0 ´ logpsq,and βpsq “ β0 ` logpsq.

Let Xs
1pα, βq denote the triangle obtained by performing Transformation I of magnitude s.

• Transformation II: Fix β ´α “ constant (i.e., move along a line of slope 1 in angle space)
i.e., decrease α and β by the same amount. This causes both bA and bB to increase. Let
t ą 1. We will replace γ0 by γptq “ 2 logptq`γ0, or equivalently, α and β by αptq “ α´ logptq
and βptq “ β0 ´ logptq respectively. Let Xt

2pα, βq denote the triangle obtained by performing
Transformation II of magnitude t.

Since the only assumptions in Lemma 16 and Lemma 18 are that γ ě β ě α, these transfor-
mations are well-defined for all s, t ą 1 such that we still have γ ě β. By Theorem 11, we may
suppose that we have γ ą β ą α.

Given T “ pα, βq P T , consider the map F : p1,8q2 Ñ R2
`, defined as

F “ FT ps, tq :“ Xt
2pXs

1pα, βqq “ pbAps, tq, bBps, tqq.

Our goal is to show that the image of F is the set S consisting of the pairs px, yq such that
x ą y ą 1. Lemma 16 implies

BbA
Bs

ă 0 and
BbB
Bs

ą 0.

Also, Lemma 18 implies that
BbA
Bt

ą 0 and
BbB
Bt

ą 0.

Thus the matrix differential DF of F at the point ps, tq “ p0, 0q has rank 2. From the inverse
function theorem it follows that F is a C1-diffeomorphism in a neighborhood V of p0, 0q, i.e., it is
a local diffeomorphism. It follows that F is an open map.

If B⃗ P S corresponds to the triangle T , we let AB⃗ denote the set of B⃗1 P S so that B⃗1 “ FT ps, tq
for some s, t P p1,8q2.

This corresponds to the pairs in S arising as a pair of bisectors obtained by traveling from
triangle T by some time s along X1 and some time t along X2. We want to show AB⃗ “ S.

Since F is an open map, AB⃗ is open. We define the relation B⃗ „ B⃗1 whenever B⃗1 P AB⃗ . We

claim this is an equivalence relation. Indeed, we clearly have B⃗ P AB⃗ ; moreover, if B⃗1 P AB⃗ then

B⃗ P AB⃗1 , by running the opposite trajectory. Finally, if B⃗1 P AB⃗2
and B⃗2 P AB⃗3

implies B⃗1 P AB⃗3

by composition. Then, we have a partition into open sets

S “
ď

B⃗PS

AB⃗ .

10



But S is connected, hence there can only be one open set in this partition, so S “ AB⃗ . This shows
F is surjective onto S, and finishes the proof of the existence result.
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