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Abstract

Congruence theorems for triangles provide conditions that ensure that a triangle is deter-
mined up to congruence. In the classical statements, the conditions are the lengths of certain
sides or the measure of certain interior angles. We consider congruence theorems for triangles
that involve, respectively: the length of the angle bisectors (from a triangle vertex to the
opposite side); the length of the segments on the angle bisectors from the incenter to the
triangle vertices. In both cases there exists — up to congruence — precisely one triangle with
prescribed arbitrary positive lenghts for those three segments.

1 Introduction

A Congruence Theorem for triangles usually contains a list of properties and it is phrased in one of
the two following ways: one triangle that satisfies those properties is determined up to congruence;
any two triangles that satisfy those properties are congruent. One classical Congruence Theorem,
abbreviated as SSS, states that the lengths of the three triangle sides determine a triangle up to
congruence. In other words, if two triangles have the same side lengths, then they are congruent.
Certain Congruence Theorems for triangles were known at the time of Euclid and involve side
lenghts and measures of interior angles.

Multiplying any side length with the length of the corresponding height always gives the same
number, namely twice the triangle area, so we can deduce another Congruence Theorem: a triangle
is determined up to congruence by the lengths of its three heights. (Hint: The ratios between the
side lengths are determined hence the triangle is determined up to similarity.)

Another congruence theorem that could be presented as an exercise is the following:

Theorem 1. A triangle is determined up to congruence by the lengths of its three medians.

Proof. Let A, B, and C be the triangle vertices and (up to a translation) place the origin at the
barycenter O. The lengths of —fi, O_B)7 OC' are known because, for example, OA4 is 2/3 of the
length of the median at A. Recall from the definition of barycenter (as the center of mass of the
vertices) that OA+ 0B+ 0C = 0. We deduce the angle measure AOB from the relation

|0C|1* = |04 + OB||* = [|[0A|]* + ||OB||* + 2/|04]| - |[OB]| - cos(AOB).

Up to a rotation, knowing ||OA|| determines A. Then, knowing AOB and OA determines B (up
to a line symmetry). Finally, knowing OC' = —(@I + O—B)) determines C. Up to congruence, we
have then determined the position of the vertices A, B, and C. O

In this paper, we prove Congruence Theorems that involve the lengths of angle bisectors or
the lengths of the segments that are cut on an angle bisector by the incenter. Our main result is
the following, for which we don’t know of an easy proof as the one mentioned above:

Theorem 2. A triangle is determined up to congruence by the length of the three bisectors.
Moreover, for every triple of positive real numbers there exists a triangle such that those numbers
are the length of the three angle bisectors.



This result appeared previously in the work of Mironescu and Panaitopol [MP94] (see also
related recent work [cMP22]), who provided an elegant argument by reducing it to an application
of the Brouwer fixed-point theorem. Although their approach avoids many explicit computations,
it does not offer a direct construction of the triangle, highlighting a central theme of this problem:
recovering a triangle from its bisector lengths cannot be accomplished solely by straightedge-and-
compass methods. By Galois theory, the algebraic constraints arising from the bisector-length
equations are not solvable by radicals, thus ruling out purely classical constructions. Despite this
inherent algebraic complexity, we believe a more hands-on and constructive geometric treatment
is both instructive and worthwhile. In this paper, we present such a geometric proof. We combine
algebraic and trigonometric manipulations with geometric insights, resulting in a self-contained
approach that may appeal to those seeking a more elementary viewpoint.

As a variant of Theorem [2] we also prove:

Theorem 3. A triangle is determined up to congruence by the length of the three segments con-
necting the incenter to the vertices. Moreover, for every triple of positive real numbers there exists
a triangle such that those numbers are the lengths of said segments.

Notice that we don’t have a Congruence Theorem if we consider instead the length of the three
segments connecting the incenter to the endpoints of the angle bisectors that are not vertices, see
Remark [T5l

We may also relate the angles to the lengths of the angle bisectors as follows:

Theorem 4. In a triangle, the largest (respectively, smallest) angle corresponds to the shortest
(respectively, longest) angle bisector. In particular, two angles are the same if and only if the
corresponding angle bisectors have the same length.

The above result clearly holds replacing the angle bisectors by the three segments connecting
the incenter to the vertices (because the triangle sides are tangents to the incircle). However, the
above result does not hold for a triangle ABC replacing the length of the angle bisectors by the
length 14,15, 1t of the segments from the incenter to the endpoints of the angle bisectors (if the

angle measures are 2a > 23 > 2y and 28 = § we have Iy = l;; # Il by Theorem [10).
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2 Preliminaries on angle bisectors

Let ABC be a triangle with vertices A, B, and C. For convenience, we denote the measures of the
interior angles at A, B and C by 2«, 23 and 27 respectively (noticing that o+ 3+~ = 7). Call O
the incenter (which is the intersection point of the three angle bisectors, and it is also the center
of the incircle) and R the radius of the incircle. We write a for the length of the side opposite
to A, by for the length of the angle bisector at A, we call A’ the endpoint of said angle bisector,
and we set [4 := OA and Iy := by — l4 (and we similarly define b, ¢, B',C’,bg,bc, g, lc, g, ).
Without loss of generality a+ /3 is the smaller angle made by the bisectors at A and B, see Figure
1.

Remark 5. Consider the projection P of O on the side AB. Working in the right triangle APO
and C' PO respectively, we can see that R = lasina and R = I, cos(a— f3). Since R only depends
on the triangle ABC' (and not on the choice of a vertex), we also obtain

R=lsina=10,cos(f—7). (1)



Figure 1: The angle bisectors in the triangle ABC, with related lengths and angle measures

la 1 Us y . .
Lemma 6. We can express e ﬁ (and hence ﬁ) in terms of «, B,y as follows:

la sin(o + 27) la  sin(a+2y)

ba 2sin(a + 7) cosy v sin «

Proof. By the previous remark, we have Iy = % We deduce that

la la la B sin(a + 27)
ba  la+l, ZA+&§% sin(a + 27) + sina

We conclude because, as it can be seen by expanding the terms, we have 2sin(a + v)cosy =

sin(o + 2) + sina.
Remark 7. The length of the angle bisector at A is

ba = b2—l:Cc cosa = \/bc(l — (bic)z)

and analogous formulas hold for bg and bo. This is a well-known consequence of the Angle Bisector

Theorem, see for example [projand [Wik25].

s

Example 8. In a right-angled triangle ABC where 2y = 5 and where, up to a rescaling, R =1

we can express ba,bp, b in terms of a as follows (this easy computation is left to the reader):

1 1
bA(a) = — +
sina  cosa
1 1
b =
5(a) sin (§ — ) * cos (§ —a)
1
bo(a) = ——— +/2

sin (2a + 7)

3 Isosceles triangles

The following result implies this observation on equilateral triangles:

Remark 9. A triangle is equilateral if and only if ba = bg = bo if and only if o4 = lg = ¢ if

and only if I'y =1y = 1.



Theorem 10. We have 2a = 203 if and only if ba = bp if and only if l4 = lg. The property
Iy = Uy is equivalent to 2cc = 23 or 2y = .

Proof. If the triangle is isosceles with apex C, swapping A and B results in the same triangle so
we deduce by = bp and 14 = Ip and Iy = l'5. The property {4 = [ implies that o = 5 by Remark
Similarly, by Remark the property I’y = I’z is equivalent to cos(a —~) = cos(8 —~) and hence
a —v = (B — ), which is equivalent to a =  or v = %.

lasin

Finally, suppose that b4 = bp. By Remark [5| we have Ip = P and by Lemma |§| we can

express I; in terms of [ 4 and the triangle angles. The known equality {4+’ = g+ 15, expressing
these lengths all in terms of 4 and the triangle angles, then gives

lasina lasina l4sin«

la+ = + (2)

sin(a + 27) sin 8 sin(B +2v) -

Calling w = a + 8 this equation is equivalent to

1 1 1 1
- + . (3)

sinfw—g)  sin(w+ ) sin(w—a)  sin(w + @)

Computing the left hand side (a similar computation holds for the right hand side), we get

1 1 _ sin(w + B3) + sin(w — )
sin(w — ) * sin(w + B)  sin(w + B) sin(w — B)
_ 2 sinw cos 3
sin? w cos? B — sin® B cos? w (@)

2 sinw cos 3
(1 — cos?w)cos? B — (1 — cos? 3) cos? w

2sinw cos B

~ cos2 B —cos?w
If a # 3, then we have sinw # 0 and we deduce

cos 3 CoS &

cos2 8 —cos2w  cos?a — cos?w

This is impossible because f : x + —%55 is an injective function over (k,1). Indeed, we can

2 2
compute that f'(z) = % < 0. O
The following result is our main theorem in the case of isosceles triangles:

Theorem 11. Given two positive real numbers h and b there exists a unique, up to congruence,
isosceles triangle with height h and such that b is the length of the angle bisector at a basis angle.

Proof. Consider an isosceles triangle ABC with apex C (thus h = bo and b = bs = bp).
Fixing b (remark that, up to rescaling the triangle, we can obtain any value for b) and varying the
basis angle 2a € (0, ), we can see the height h as a function of a. It suffices to prove that this
function is injective with range (0,+00). Without loss of generality, fix b = 1 and consider the
function hc(a) for a € (0, 7).

Call F the projection of A’ on the side AB. In particular, AA’F and BA'F are right triangles.
Recalling that b4 = 1, we have

!
AF =cosaa A'F =sina FB= A'F :
tan 2«




We deduce that

he(a)

11—
iAB - tan 2«

1
3 sin(a) + 5 cosa tan 2a

1 . (1+ 2cos? « > (5)
—sina - _—
2 2cos?a — 1

1.
= —sina-

(3 — 4sin? a)
2

1—2sin’a

[S

), so sin®a € (0,3). The

In particular, the function he(a) is continuous. Let z = sina € (0, 3

range of ho(a) is the range of the function

2

3 — 422
1—222

f@) = w

where z € (0, g) Moreover, as  is an injective function of «, we deduce that ho (o) is injective
if f(z) is injective. The function f is continuous, its right limit for z — 0 equals 0 and its left
V2

limit for x — 72 equals +00. We conclude by proving that f is strictly increasing. We compute
) 8zt — 622 +3
p) = 0 > 9
(2 —1)2
The numerator (seen as a quadratic expression in #2) has negative discriminant and hence it is
strictly positive. O

Remark 12. The above proof also shows (starting with an equilateral triangle) that, for an isosce-
les triangle, we have h > b if and only if the basis is smaller than the other two sides if and only
if the basis angles are larger than the angle at the apez.

4 The proof of Theorem

To prove Theorem [3| we separate it into two results:
Theorem 13. A triangle is determined up to congruence by the length of OA, OB, OC.

Proof. Tt suffices to prove that the ratios [ 4 /lB and [4 /lc determine the triangle up to similarity.
By Remark [5] the numbers ¢ = :22 and d = 5+ are known, and it suffices to prove that they

determine sin o (then sin 8 and sin+y are also determined, and hence also the acute angles «, 3,
and ). We have

siny = cos(a + ) =V1-sin?a-V1-c2sin?a — csin?a

and hence

dsina + csin® o = \/1 fsin2a~\/1 —2sina.
Setting S = sin « and squaring gives
2cdS® + (1+c2 +d*)S?—1=0.

1

In the variable { = —— we obtain the depressed cubic

t+pt+qg=0 p=—(1+c+d% qg=—2cd

We conclude by proving that there is at most one real root of the cubic which is strictly positive.
Call A the discriminant of the cubic. Notice that 0 is not a root (as ¢ # 0) and the sum of the



roots is zero (as the coefficient at t2 is zero). We then exclude A < 0 (because there cannot be
precisely one root). If A = 0, there are two values for the roots, so at most one of them is a strictly
positive real number. Now suppose that A > 0: there are three distinct real roots, their sum is 0
and their product is positive (as ¢ < 0), so there is precisely one strictly positive real root. O

Theorem 14. For any triple of positive real numbers, there is a triangle such that these are the
lengths of OA, OB, OC'.

Proof. Up to a rescaling we may fix R = 1 and it suffices to prove that there is a triangle with

any given ratios lg/la = ZEE?; = % and l¢/lp = ;ngg = Cossi(nog)w = Cossizlcii)m. So call

Flonw) = (sin(a) sin(w — a)) ,

cos(w)’  cos(w)
where w represents a + §. The domain of this function is (o, w) such that 0 < a < w < It
suffices to show that f is onto with codomain (0, c0)?.

We let (x,y) € (0,00)? be arbitrary and aim to find 0 < a < w < 5 such that

jus
3.

sin(ar) . sin(w — a) _
’ cos(w) v

cos(w)

For w € (arctanz, §) we have tanw > x, hence sinw > x cosw, which gives

0<zcosw <1,

™

so a(w) = arcsin(z cosw) € (0, §), and moreover a(w) < w. Thus, for fixed > 0, the equation

sin o

Cosw

forces « to depend on w, giving a one-parameter family (a(w),w). The second coordinate y is
then given by the function

sin(w — a(w))

w) = —— w € (arctanzx, Z).
g(w) COS 0 ( 2)

Indeed, the function g is continuous, strictly increasing, and satisfies

lim g(w) =0, lim g(w) = +o0.

wlarctan x WT%

Thus g is a bijection (arctanz, ) — (0,00). So, for any y > 0 there exists w with g(w)

= y.
Setting o = a(w) yields f(a,w) = (x,y). O

Remark 15. Knowing the lengths of Uy, U, li, is not sufficient to determine the triangle up to
congruence. Indeed, consider two triangles ABC and A'B'C’ and fir o = 8 = 21—’57 ando’ = ' = %.
Notice that we have sin(3a) = sin(3a’). Moreover, we have I’y =y and l'y, =1’z,. Up to rescaling
one of the triangles, we may suppose that lc = I, and we conclude because

cos(8 —7)
cos(f — «)

Il = = sin(3a) = sin(3a’) = lg /Uy .

5 The proof of the main result

This section is devoted to proving Theorem [2| The following transformation is depicted in Figure
2.



Figure 2: Transformation I applied to the equilateral triangle

pC'

1-

Lemma 16 (Transformation I). Consider a triangle ABC and suppose that = «. Modify the
triangle by keeping bo and v and the line AB invariant (thus C rotates around the endpoint of
bo) and preserving 8 = «. Increasing B (equivalently, decreasing o) we have that bs increases
and bg decreases.

Proof. We have
sin(2a + )
sin(o + 2) sin(2a)

ba = bosin(2y) -

and the analogous expression for bp (replacing « by 8). We can see «(t) (respectively, 3(t)) as a
function of the time, such that o/ = —1 (respectively, 5’ = 1). To study the sign of by and bz we
may neglect the positive constant b sin(27). So we have to derive a quotient f/g and the sign of
its derivative is the sign of f’g — ¢’ f. We now show that by > 0:

— 2cos(2a + ) sin(a + 2) sin(2«) + sin(2a + ) cos(a + 27) sin(2a)

+ 2sin(2a + ) sin(a + 2) cos(2a)

= 2sin(y) sin(a + 27) + sin(2a + ) cos(a + 27) sin(2a)

2sin(y) sin(a + 2) + cos(7y) cos(a + 27) — cos(2a + 7y) cos(2a) cos(a + 2)

sin(7y) sin(a + 27) + cos(a + ) — cos(2a + ) cos(2a) cos(a + 27)
>0.

In the last inequality we used the following:
1. For the first summand: « + 2y < 7, so that sin(y) sin(a + 27) = 0.

2. For the second summand: a + v < 7/2, so that cos(a + ) > 0.

3. For the third summand, we can lower bound it by —cos(2« + ), and since 2a + v < Z

2
(because a < ), we have that cos(a + ) > cos(2a + 7).

For the derivative b3 we cannot reduce directly to the previous argument, because the as-
sumption 8 > « breaks the symmetry. In this case, we have to show the following expression is
negative:

2cos(28 + ) sin(B + 27) sin(28) — sin(28 + ) cos(B + 27) sin(245)
— 2sin(28 + ) sin(B + 27) cos(20) .
1

The computational knowledge engine WolframAlpha rewrites this expression as ; times

cos(38 — ) — 5 cos(B+ ) +3cos(B + 3y) + cos(58 + 37) .



Write z = 3 + v and y = 2v, so that § <z < § and § < y < 7. So the above expression
becomes
cos(3z — 2y) — 5cos(z) + 3cos(x + y) + cos(bx — y) .

Writing z = § — 6 and y = 7 — ¢, and recalling
cos (—g + z) = sin(z), cos (g + z) = —sin(z),
the expression becomes
sin(2e — 34) — 5sin(d) — 3sin(e + J) + sin(e — 54) .
We have 0 <d < g and 0 <e < %’“ Suppose first that e < 7 and § < {5. Then
sin(2e — 39) <sin(2e) and sin(e — 59) < sin(e).
An upper bound for the full expression is then
sin(2¢) — 3sin(e) + sin(e) = 2sin(e)(cos(e) — 1) < 0.
It suffices to prove that in the remaining region we have
5sin(d) + 3sin(e +9) > 2.
We can check by hand that this inequality holds for the extremal values (6, ¢) in the following list:
0.9 (3 03 G35

The convex hull of the four points is a convex quadrilateral that contains the remaining region
because € = 20 (as € = 2a + 28 and § = «). We then reason by convexity. Let f(e,d) =
5sin(d) + 3sin(e + 4). We claim f is concave on {(¢,0) : 0 < € + § < w}. This follows because
a C? function is concave if and only if its Hessian is negative semi-definite, and f is negative
semi-definite if and only if 15sin(d) sin(e + ) > 0, which is true because 0 < e+ J < 7. (As a side
remark: by moving along lines it would be possible to prove and make use of concavity only for
functions in one-variable.) We deduce that a lower bound for the values inside the region is the
minimum of the four extremal values, which is strictly greater than 2 and we conclude. O

The following result implies Theorem [4}
Lemma 17. If the angles in the triangle ABC satisfy a < 8 < -y then we have by = bp = bc.

Proof. By Theorem [I0] we have an equality of angles if and only if the corresponding bisectors
are equal. So the case of an equilateral triangle is evident. Now suppose that o < 5 = 7 or
that & = f < . From Remark we deduce that b4 > bc and we conclude. Finally, suppose
that @ < B < . We consider a continuous transformation that changes the angles while keeping
the triangle scalene. As such a transformation never gives an isosceles triangle, by continuity
the inequalities among the bisectors are preserved. We conclude by Lemma [L6| (starting from an
isosceles triangle with strict largest angle 2 and considering Remark .

Lemma 18 (Transformation II). Consider a triangle ABC such that 27 is the largest angle.
Fizing bc and 8 — a and increasing v (thus, o and 8 decrease by the same amount), both by and
bp increase.

Proof. Seeing the angles as a function of the time we may suppose that v/ > 0 and 8’,a’ < 0. The
role of A and B is interchangeable, so it suffices to prove that b4 increases. We have

sin(2y)
sin(a + 27) sin(2a)

ba = besin(2a + ) -



Figure 3: Transformation II applied to the equilateral triangle

Since 2« + v is constant, up to neglecting the positive constant be - sin(2a + ) we get

dba = o - | —4cos sin(« sin(2a
dt [sin(a + 27) sin(2)]? [ 4cos(2)sin(a +27) sin(2a)

+ 38in(27) cos(a + 27) sin(2a) — 2sin(2y) sin(a + 27) COS(QQ)] (6)
dba

Thus, in order to prove that <32 > 0, it suffices to show that the sign of the following expression
is positive:

4 cos(27) sin(a + 2v) sin(2a) — 3sin(27) cos(a + 27) sin(2c) + 2 sin(27) sin(a + 2) cos(2a)
= c0s(27) sin(a + 2v) sin(2a) + 3sin(a) sin(2a) + 2sin(27y) sin(a + 2) cos(2a)
= sin(a + 2v) sin(2a + 2v) + 3sin(a) sin(2a) + sin(2) sin(a + 2v) cos(2a) > 0.
In the last inequality, we used that since 2(a + 8 + ) = 7, we have
1. First summand is positive: since a + 2y < 7, and 2« + 2y < 7.
2. Second summand is positive: since 2o < 7.
3. Third summand is positive: since 2y < 7, a + 2y < 7 and 2« < 7/2.
U

Proof of the unicity claim in the Main Theorem. By the result for isosceles triangles we may sup-
pose that our triangle is scalene. Up to rescaling we may suppose without loss of generality that
bc =1 is the shortest angle bisector and that by > bp, so that v > 8 > « by Lemmal[I7] Suppose
that A’B’C” is another triangle with bor = 1 and bsr = by and bg: = bg. So v > B > o' and
we may suppose without loss of generality that 4/ > . Then we obtain A’B’C’ from ABC by
combining the two transformations seen in the previous lemmas: keeping bo = 1, opening 7 to
~" (where by and bp do not decrease, and strictly increase if 4/ > «). Then, keeping bo = 1,
increasing 8 and decreasing « (so that a + (8 is constant) or conversely. In the former transfor-
mation, b strictly increases and in the latter bp strictly increases (unless we already are at the
triangle A’B’C”). This shows that, unless ABC and A’B’C’ are similar (and hence congruent
because bo = ber = 1) then by or bp increases while passing from ABC to A’B’C’, against our
assumptions. O



Proof of the existence claim in the Main Theorem. Transformations I and II proven, respectively,
in Lemmal[l6and Lemmal[I8|allow us to modify the angles of the triangles (keeping b = 1) so that
ba and bp both increase and, respectively, b4 increases and bg decreases. The idea of this proof is
to show that, by combining the two transformations, we can settle for the desired values of b4 and
bp. Let T be the space of Euclidean triangle up to similarity, which we parametrize as follows.
We assume the base of the triangle lies on the z-axis, and we scale the triangle so that b = 1 is
the shortest angle bisector (consequently, 2 is the largest angle). We may then parametrize the
triangle by the angles («, ), since v = m — o — 3 is determined. Let b4 (v, 8), bp(a, B) denote the
bisector lengths corresponding to the vertices A and B for a triangle T = (a, ).
Define the smooth map:

(O3 T—’ R2, @(O&,B) = (bA(OZ,B),bB(a,ﬂ))-

Recall the Transformation I (Lemma and Transformation II (Lemma , which we will
tailor specifically for this setting. We start with a base triangle T' = («g, o).

e Transformation I: Fixes 4. This transformation increases « (thus decreasing 8 by the
same amount s). This increases by and decreases bp (the signs reverse if we decrease ).
Let s > 1. We consider the transformation where «y is replaced by

a(s) = ag — log(s),and B(s) = By + log(s).
Let X3$(a, B) denote the triangle obtained by performing Transformation I of magnitude s.

e Transformation II: Fix 5 — «a = constant (i.e., move along a line of slope 1 in angle space)
i.e., decrease o and (B by the same amount. This causes both by and bg to increase. Let
t > 1. We will replace yg by v(t) = 2log(t) + 9, or equivalently, a and 8 by a(t) = a—log(¢)
and [(t) = By —log(t) respectively. Let X&(a, 3) denote the triangle obtained by performing
Transformation II of magnitude t.

Since the only assumptions in Lemma [16] and Lemma (18] are that v > § > «, these transfor-
mations are well-defined for all s,¢ > 1 such that we still have v > . By Theorem we may
suppose that we have v > 8 > «.

Given T = (a, 8) € T, consider the map F': (1,00)% — R3, defined as

F = Fr(s,t) == X3(X{(c, B)) = (ba(s,t),bp(s,t)).

Our goal is to show that the image of F' is the set S consisting of the pairs (z,y) such that
x >y > 1. Lemma [I6] implies

b b

a—sA <0 and 6—5 > 0.
Also, Lemma [18] implies that

Oba obp

W >0 and W > 0.

Thus the matrix differential DF' of F' at the point (s,t) = (0,0) has rank 2. From the inverse
function theorem it follows that F is a C'-diffeomorphism in a neighborhood V' of (0,0), i.e., it is
a local diffeomorphism. It follows that F' is an open map.

If B € S corresponds to the triangle T', we let A denote the set of B’ € S so that B = Fy(s,t)
for some s,t € (1,00)2.

This corresponds to the pairs in S arising as a pair of bisectors obtained by traveling from
triangle 7' by some time s along X; and some time t along X>. We want to show Az = S.

Since F'is an open map, A is open. We define the relation B ~ B’ whenever B’ € Agz. We
claim this is an equivalence relation. Indeed, we clearly have Be A 55 moreover, if B'eA 5 then
Be A, by running the opposite trajectory. Finally, if B e Ap, and B, e Aés implies B e Aég
by composition. Then, we have a partition into open sets

S=J 4

Bes

10



But S is connected, hence there can only be one open set in this partition, so S = A 5. This shows
F is surjective onto S, and finishes the proof of the existence result. O
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