
Addition walls

Addition walls provide mathematical amusement for all ages. Most notably, they are
popular exercises for primary school to train addition and subtraction [1]. The aim is
completing a number grid in the shape of a brick wall (alternatively, hexagonal cells are
used). There must be one number in each brick. Every brick which is not in the bottom
row lies on top of two other bricks and the key rule is the following: the number above is
the sum of the two numbers below.

The easiest addition walls can be completed progressively going upwards by performing
additions. Now try to solve this addition wall:

6 5

2

The number at the top is 6+5 = 11, the second number in the bottom row is 5−2 = 3
and then the first number in the bottom row is 6−3 = 3. In general, if you have one brick
on top of two other bricks and you know two out of the three numbers, then (because of
the key rule) you can determine the unknown number with an addition or a subtraction.
This observation allows you to solve the addition walls for primary school. Now try to
solve this addition wall:

12

4 2

Call x the unknown number in the bottom row. The two numbers in the middle row
are 4+x and 2+x, so the number at the top is 12 = (4+x)+(2+x) = 6+2x. Thus x = 3
and the two numbers in the middle row are 7 and 5. In a more intuitive way, the number
x counts twice for the top number 12 because it is used twice to generate the numbers
in the second row. So we have 12 = 4 + 2 + 2x and again we can find x = 3. We have
discovered a strategy to solve any addition wall with a configuration of numbers like the
one above. Now try to solve this addition wall:

3 1

7 11

36
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The above part of the wall can be solved as in the previous example, the unknown number
in the third row being 9. To solve the bottom part of the wall let x, y, and z be the
unknown numbers in the bottom row. The numbers in the fourth row are then 3 + x,
x+ y, y + z, z + 1. We know the numbers in the third row, and by the key rule they are
sums of numbers in the fourth row. So we can write down the following equations:

7 = 3 + 2x+ y

9 = x+ 2y + z

11 = y + 2z + 1

We can solve this linear system and get x = 1, y = 2, z = 4. So we have the following
number grid:

3 1 2 4 1

4 3 6 5

7 9 11

16 20

36

Had we known that all numbers were positive integers (and exploiting the fact that the
known number 7 was very small) we could have solved the addition wall by trying out
various possibilities. Indeed, the first two unknown numbers in the bottom row can only
be 1 or 2 (because twice the first number plus the second number plus 3 gives 7). After
determining the first two unknown numbers in the bottom row, by trial and error (or by
a small computation) we can find the third unknown number in the bottom row. Then,
as the bottom row is known, we can solve the addition wall progressively with additions.

Solving any addition wall

If all numbers in an addition wall are positive integers, then with the help of a computer
we can solve the problem by brute force (provided that the number of rows is not huge,
and the known numbers are not huge). Indeed, we can fix larger and larger values for the
numbers in the bottom row and complete the addition wall in the hope that we find back
the known entries. This means searching over the possible addition walls and looking for
a match with the constraints that are given.

Fortunately, linear algebra [2] allows us to solve any addition wall in a smarter way.
Let n be the number of rows, and consider the entries in each brick as variables. So there
are 1 + 2 + · · · + n = n(n + 1)/2 variables. For every brick outside the bottom row, the
key rule gives a linear relation between three variables (corresponding to the brick and
the two bricks below it). So we have n(n− 1)/2 linear equations because of the key law.
Each known entry provides one further linear equation. Collecting all these equations we
get a linear system and solving it means solving the addition wall.

Provided that n is not huge, it is possible to solve this linear system and there is either
no solution or precisely one solution or there are infinitely many solutions. It is customary
that the addition walls given as exercises have precisely one solution. Moreover, the
solution usually consists of positive integers. Warning: Even if the known entries are
positive integers, we are solving a linear system over the rational numbers (because we do
linear algebra over a field) so the entries are rational numbers. They are not necessarily
integers, and not necessarily positive. For example consider the following addition walls
(where the known entries are the number at the top and the first and third number in the
bottom row):
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4

3/2 5/2

1 1/2 2

3

0 3

1 -1 4

Now consider the n variables in the bottom row. Fixing any value for them results
in precisely one addition wall. So, without knowing any entry, there are precisely n free
variables (or degrees of freedom) for the addition wall.

To ensure that the solution is unique we then need to know at least n entries. More
precisely, we need to know n or more “independent” entries. For example, three entries
related by the key rule are not independent, while the known entries in all above examples
of addition walls were independent. (The precise definition of independent entries is that
the corresponding variables can be taken as free variables for the linear system provided
by the key rule.)

Given some known entries which are not independent, we cannot be sure that a solu-
tion exists because the key rule gives compatibility relations that must be satisfied. For
example, if we know the number in one brick, then we cannot arbitrarily prescribe the
numbers in the two bricks below it.

Notice that linear algebra allows us to solve all addition walls with parametric linear
systems. For example, we can solve the following addition wall for all values of a, b, c:

a

b c

a

a+b−c
2

a−b+c
2

b
a−b−c

2
c

In this example we can make the following considerations: if a, b, c are strictly positive,
then all entries are strictly positive if and only if a > b+ c; if a, b, c are integers, then all
entries are integers if and only if a and b+ c have the same parity.

Determining the top entry

Consider an addition wall with n rows and name x1 to xn the numbers in the bottom row.
Progressively with additions we can determine all other entries. Each entry is then a sum
of the numbers x1 to xn, possibly taken multiple times. In particular, we can determine
the top entry. Its expression is as follows:

x1 for n = 1
x1 + x2 for n = 2
x1 + 2x2 + x3 for n = 3
x1 + 3x2 + 3x3 + x4 for n = 4
x1 + 4x2 + 6x3 + 4x4 + x5 for n = 5 .

These expressions are symmetric (namely, we can replace xk by xn−k+1) because the
addition wall and the key rule are symmetric by swapping left and right. We may guess
that for general n the expression of the top entry involves binomial coefficients and it is

x1 + (n− 1)x2 +

(
n− 1

2

)
x3 + · · · =

n∑
k=1

(
n− 1

k − 1

)
xk .

We can prove this formula by induction. The formula is clearly correct for the base case
n = 1. To prove the induction step, we suppose that the formula holds for n (fixing
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n ≥ 1) and we prove it for n + 1. Naming y1 to yn the entries in the n-th row, we
know by assumption that the top entry is T =

∑n
k=1

(
n−1
k−1

)
yk and we want to prove that

T =
∑n+1

k=1

(
n

k−1

)
xk. By the key rule we also know that yk = xk + xk+1, so we can write

T =
n∑

k=1

(
n− 1

k − 1

)
yk =

n∑
k=1

(
n− 1

k − 1

)
xk +

n∑
k=1

(
n− 1

k − 1

)
xk+1

= x1 + xn+1 +

n∑
k=2

(
n− 1

k − 1

)
xk +

n∑
k=2

(
n− 1

k − 2

)
xk =

n+1∑
k=1

(
n

k − 1

)
xk

where for the last step we applied the recurrence relation for binomial coefficients.
Now we wish to similarly determine an entry which is not the top entry. Luckily, we

may resolve to a trick. Namely, we can see the entry X as the top entry of a smaller
addition wall.

X

◦ ◦ ◦
◦ ◦

So we get a similar formula for X that involves only some of the numbers from the bottom
row. Concretely, suppose that we want to know the i-th entry of the j-th row (in the
above picture we have i = 2 and j = 4). The smaller addition wall has n− j +1 rows and
its bottom entries y1 to yn−j+1 are the entries xk with k varing from i to i+ n− j. The
formula for the top entry applied to the smaller addition wall then gives

X =

n−j+1∑
h=1

(
n− j

h− 1

)
yh =

n−j+i∑
k=i

(
n− j

k − i

)
xk .

In the example from the above picture we simply get X = x2 + 2x3 + x4.

Generalizations of addition walls

Firstly, addition walls can be generalized by changing the key rule. For example, the
number in a brick could be the difference of the numbers in the two bricks below it. More
generally, the number in a brick could be a linear expression of numbers in other bricks.
In this case, we can still write down a linear system and use linear algebra to solve the
problem.

Secondly, we could involve operations other than addition in the key rule. This could
get complicated because we may loose the possibility to work with linear algebra. Still
within reach are the multiplication walls, where the number in a brick is the product of the
numbers in the two bricks below it. In fact, by taking logarithms we have a corresponding
addition wall that we can solve with linear algebra and then, by exponentiating back the
numbers, we find the solution to the multiplication wall.

Thirdly, we could vary the problem a bit by having other kind of information on the
entries of the addition wall. For example, we can be told that the unknown entries in the
bottom row belong to a certain set and we only need to correctly assign them with a small
reasoning. These variants are particularly meaningful when they allow to determine the
entries of the addition wall progressively.
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Finally, we could vary the structure of addition walls. Now consider an addition wall
as a graph. More precisely, it is a rooted tree and (with the terminology of rooted trees),
the key rule states that the number of a parent is the sum of the numbers of its two
children. One natural generalization would then be increasing the number of children, for
example from two to three. Then the key rule is that the number of the parent (vertex
above) is the sum of the numbers of its three children (the three vertices below). Here a
solved example of such a ternary addition wall :

45

17 15 13

6 6 5 4 4

1 3 2 1 2 1 1

Luckily, we can still resolve to linear algebra to solve ternary addition walls. Moreover,
we can still compute an expression for the top entry in terms of the bottom entries. The
coefficients that we find in that expression are generalizations of the binomial coefficients.
Namely, they are the entries of the trinomial triangle:

1

1 1 1

1 2 3 2 1

1 3 6 10 6 3 1

1 4 10 19 22 19 10 4 1

1 5 15 33 51 60 51 33 15 5 1

Such numbers, sometimes called trinomial coefficients, have an easy recurrence relation
(three numbers must now be added to obtain a new number) and have further nice and
deep properties [4].

We could also conceive other addition walls leading to further generalizations of the
binomial coefficients and Pascal’s triangle [3]. There are also other kinds of number walls
that do not show a triangular structure [5], and they are also extremely interesting.

This investigation comes to an end, and now it is your turn. You may invent addition
walls for your friends (or for mathematical competitions); you may provide your college
students with funny exercises of linear algebra and combinatorics; you may investigate
generalizations of addition walls within projects of undergraduate research. Have fun!

Exercises for the reader

1. Consider an addition wall with n rows. If all numbers in the bottom row equal some
constant c, what is the number at the top?

2. Solve the following addition wall for all values of a, b, c and show that if a, b, c are
integers, then all entries are integers.
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a

b c

3. Invent an addition wall with infinitely many rows.

4. Solve the following multiplication wall by direct inspection, knowing that all entries
are positive integers.

3 12

36

Summary

Easy addition walls are popular exercises for primary school, while more complicated ones
are nifty problems for the general public. College students can tackle them with linear
algebra. Moreover, addition walls have a strong link with combinatorics and they can be
generalized in fascinating ways. In short, addition walls are suitable for all ages.
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Solutions to the exercises for the reader

1. Suppose first that c = 1. In the n-th row there are n numbers equal to 1. In the
(n− 1)-th row there are n− 1 numbers equal to 2. In general, the numbers in each
row are all the same and the value for one row is twice the value of the row below
(this can be seen by iteration using the key rule). So the top value for c = 1 is 2n

and for general c (by the distributivity law) it is c · 2n.

2. We can progressively determine the missing entries. The second entry in the second
row is b + c. Then the first entry in the second row is a − b − c. Finally, the first
entry in the third row is a− 2b− c. The missing entries are all sums of integers, so
they are all integers.

3. One example is as follows. The top entry is 2. In all other rows, the first and the last
entry are 1 while the middle entries are all 0. The key rule is respected: the key rule
at the top entry states 2 = 1 + 1; the key rule at the first (respectively, last) entry
of a further row states 1 = 1 + 0; the key rule at a middle entry states 0 = 0 + 0.

4. We can progressively determine the second, third, and fourth row. We obtain

3 1 12

3 1 1 12

36

3 12

7


