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1 Introduction

Many of today’s industrialized countries have seen a significant decline in the
amount of hours worked per worker at least since 1870. According to recent es-
timates by Huberman (2004) and Huberman and Minns (2007), a full-time job of
a US production worker in 1870 required an annual workload of 3096 hours of
work. In the year 2000 this had come down to 1878 hours of work, an absolute
decline of roughly 40%. A similar tendency can be found for Australia, Belgium,
Canada, Denmark, France, Germany, Ireland, Italy, the Netherlands, Spain, Swe-
den, Switzerland, and the UK.

For this group of countries and the time span 1870-2000, Boppart and Krusell
(2020) argue that the decline in annual hours worked per worker is a fairly sta-
ble trend with an estimated average annual rate of decline of roughly 0.57%.1 At
the same time, these countries evolve in line with Kaldor’s growth facts (Kaldor
(1961), pp. 177-178, Herrendorf, Rogerson, and Valentinyi (2019), Boppart and
Krusell (2020)). Taken together, these stylized observations suggest an interpre-
tation of the decline of hours worked as a balanced growth phenomenon.

The present paper develops a simple theory that is consistent with the balanced-
growth-path interpretation of these stylized facts. Key elements include an OLG-
model with two-period lived individuals and a neoclassical production sector.
The novel feature is the individual lifetime utility with periodic utility functions
of the generalized log-log, henceforth BK-gll, type. This preference representation
was recently proposed by Boppart and Krusell (2020), Section V, for applications
in the Ramsey-Cass-Koopmans model with exogenous neoclassical growth. The
present paper shows that its scope of application extends to a household sector
with overlapping generations.

The mechanics of the theory emphasizes a dual role of technological progress. On
the one hand, technological progress drives productivity and the growth of real
wages and real incomes. On the other hand, it expands the supply of consump-
tion goods that individuals buy and enjoy during their leisure time. Hence, the

1Notwithstanding, for shorter time spans the evolution of hours of work may deviate in some
countries from this negative trend. See, e. g., the discussion of the US post World War II experience
in McGrattan and Rogerson (2004), Ramey and Francis (2009), or Boppart and Krusell (2020).
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value individuals attach to leisure time increases.2

These mechanics are shown to function on a balanced growth path with a time-
invariant real return on savings and real wages growing at a constant rate, gw,
equal to the exogenous growth rate of labor-augmenting technological knowl-
edge, gA > 0, i. e., gw = gA. The individual supply of hours worked declines
approximatively at rate −νgw = −νgA where (−ν) < 0 is the wage elasticity of
the individual supply of hours worked that reflects preferences.

Since a growing stock of technological knowledge applies to an ever declining
amount of hours worked, the economy’s growth rate of per-capita variables on
a balanced growth path is gA − νgw = (1 − ν) gA and falls with ν. Hence, even
though gA is exogenous, the economy’s growth rate is endogenous through the
preference parameter ν.3

The scope of the theory is not confined to the balanced growth path under exoge-
nous neoclassical growth. There are at least two relevant additional features. The
first concerns the global transitional dynamics, the second the compatibility with
neoclassical endogenous growth à la Romer (1986).

The transitional dynamics give rise to two regimes. Roughly speaking, in Regime
0 wages are low, and individuals are poor. The prospect of a low wage income
induces individuals to supply their entire time endowment to the labor market.
Moreover, the supply of hours worked does not respond to an increase in the
real wage. In contrast, wages are high in Regime 1. Here, the individual supply
of hours worked declines in response to a wage hike. This behavioral pattern
makes intuitive sense. For poor people the additional purchasing power of a
higher real wage is spent on consumption goods that satisfy basic needs rather
than on leisure. The demand for leisure becomes only positive once these needs
are adequately satisfied. This marks the switch from Regime 0 into Regime 1.

2Gordon (2016), p. 9, illustrates this mechanism with technological progress in home enter-
tainment: “Added household equipment, such as TV sets, and technological change, such as the
improvement in the quality of TV-set pictures, increase the marginal product of home time de-
voted to household production and leisure. For instance, the degree of enjoyment provided by an
hour of leisure spent watching a TV set in 1955 is greater than that provided by an hour listening
to the radio in the same living room in 1935.”

3Overall, these results underline that, mutatis mutandis, the properties of the balanced growth
path derived for the Ramsey-Cass-Koopmans model by Boppart and Krusell (2020) carry over to
a setting with two-period lived overlapping generations.

2



This interpretation suggests that the common assumption of an inelastic labor
supply made in the literature on modern economic growth applies best to poor
economies. In contrast, a plausible growth theory of rich economies ought to
include a mechanism by which the supply of hours worked declines in response
to higher incomes.

The neoclassical endogenous growth model of Romer (1986) is meant to describe
economic growth in modern industrialized economies. Yet, it assumes an inelas-
tic labor supply. The present paper shows how this model may be amended to
possess a balanced growth path with endogenously declining hours worked.

On the household side, this possibility arises for a constant workforce of two-
period lived overlapping generations with periodic BK-gll utility functions. On
the production side, this requires the relationship describing the process of decen-
tralized knowledge creation via capital investments, K, to account for the decline
in the supply of hours worked. In fact, the linear specification between techno-
logical knowledge and capital, A = K, stipulated by Romer has to be replaced by
A = K1/(1−ν). Then, with gK denoting the growth rate of capital, the balanced
growth path has approximately gA = gK/(1− ν) and gw = gA so that the growth
rates of per-capita variables and of capital are equal, i. e., gA − νgA = gK. This
modification leaves the “scale effect” intact, i. e., an economy with more workers
grows faster.

The present paper is related to at least two strands of the literature. First, it adds
an analytically tractable variant to the literature on discrete-time models with
overlapping generations (de la Croix and Michel (2002)).

Key to the tractability is the BK-gll preference representation. It implies that nei-
ther the individual demand for leisure nor the supply of savings hinges on the
real return on savings. In addition, the wage elasticity of the individual supply of
hours worked is a negative constant. Section 2 reveals that alternative preference
representations used in the literature do not possess these three properties.

In conjunction with a neoclassical production function of the Cobb-Douglas type
and exogenous technical change, the BK-gll preference representation implies a
unique and stable balanced growth path. More surprisingly, for Regime 1 the
equilibrium difference equation is available in closed form.4

4Appendix B.2 of Boppart and Krusell (2020) sketches a closed-form solution for the planner’s
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Second, the present paper helps toward filling a gap in the modern growth liter-
ature that largely neglects the long-lasting decline in hours worked per worker
and, instead, sticks to the assumption of an inelastic labor supply. Notable ex-
ceptions to this trend include Duranton (2001), Iong and Irmen (2021), and Irmen
(2021).

Duranton (2001) explores the role of an endogenous labor supply under a wage
elasticity different from zero in a model with two-period-lived overlapping gen-
erations and endogenous neoclassical growth as in Romer (1986). Abstracting
from a consumption-savings trade-off on the household side, this author follows
the then common assessment that a zero wage elasticity of the demand for leisure
is a necessary condition for a balanced growth path (Duranton (2001), p. 297) and,
therefore, focusses on “unbalanced” paths. In contrast, Section 5 of the present
paper shows that balanced growth with a positive wage elasticity of the demand
for leisure is possible if, on the household side, individuals trade off consumption
and savings when young, BK-gll utility functions represent preferences, and, on
the production side, the relationship between technological knowledge and the
capital stock is strictly convex as discussed above.

Iong and Irmen (2021) and Irmen (2021) study, respectively, endogenous fluctu-
ations between growth regimes and the incentives to automate production pro-
cesses in aging economies when rising wages induce a declining supply of hours
worked. Similar to the present paper, these contributions feature a household
sector with two-period lived individuals equipped with per-period utility func-
tions of the BK-gll type. Yet, these studies differ in at least two respects from the
present one.

First, the present paper extends and generalizes the treatment of the household
sector. In particular, here, the analysis accounts for an additional preference pa-
rameter reflecting the utility weight attached to leisure. Moreover, I allow for
the individual choice set to coincide with the entire domain of the lifetime util-
ity function and not to be restricted to the subset of this domain over which the
lifetime utility function is strictly concave.5

problem in a discrete-time Ramsey model with BK-gll utilty, Cobb-Douglas production, and a
rate of capital depreciation equal to 100%. The existence of this solution hinges crucially on the
restrictive assumption that capital fully depreciates. In contrast, the closed-form solution with
overlapping generations derived in the present paper obtains for any depreciation rate.

5To be precise, the first generalization refers to the introduction of the parameter κ ∈ (0, 1] in

4



Second, the production sector of these contributions features endogenous techno-
logical change, respectively, along the lines of Romer (1990) and of Irmen (2017,
2020). In contrast, the focus of the present paper is on exogenous and endogenous
neoclassical growth.

This paper is organized as follows. Section 2 compares the behavioral implica-
tions of some popular preference representations involving a labor-leisure trade-
off to those of a BK-gll preference representation. It highlights why the latter is
both reasonable and analytically convenient. Section 3 presents the model. Sec-
tion 3.1 derives and characterizes the optimal plan of each cohort. Section 3.2 in-
troduces the neoclassical production sector. The main results on balanced growth
paths and transitional dynamics are contained in Section 4 and 5. Section 4 stud-
ies the intertemporal general equilibrium under the assumption of exogenous
technological change. Its definition is given and explained in Section 4.1. Sec-
tion 4.2 sets up the dynamical system in Regime 1 and provides the analysis of
the steady state. The focus of Section 4.3 is on the global dynamics. Section 5 ex-
plores the role of declining hours of work in the neoclassical endogenous growth
model of Romer (1986). Section 6 concludes. All proofs are contained in Section 7,
the Appendix.

2 Two-Period Lived Individuals and the Demands for
Consumption and Leisure

The overlapping-generations economy of the following sections is populated by
identical, two-period lived individuals. When young they consume, enjoy leisure,
supply labor, and save. When old, they have to retire and consume the proceeds
of their savings. The purpose of this section is to highlight the behavioral impli-
cations of popular preference representations and to compare them to a BK-gll
preference representation.

To address this issue I first identify the determinants of an individual’s demands
for consumption and leisure when young under a general preference representa-

the lifetime utility function (see equation (3.1) below). This parameter is set equal to unity in Iong
and Irmen (2021) and Irmen (2021). Both generalizations manifest themselves in Proposition 2
which, in the stated sense, generalizes Proposition 2.1 in Iong and Irmen (2021) and Proposition
2.4 in Irmen (2021).
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tion in Section 2.1. Based on this, Section 2.2 compares specific preference repre-
sentations used in the literature to a BK-gll utility representation. Table 1 sum-
marizes the key results.

2.1 Price Responses for General Preference Representations

Let y and o indicate the two periods of life. Then, cy and co denote consump-
tion when young and old. Leisure when young is l. A time constraint requires
l ∈ [0, 1]. The individual assesses bundles (cy, l, co) according to a preference re-
lation ≿ on (cy, l, co) ∈ R+ × [0, 1]× R+. The utility function U represents these
preferences, i. e., (cy, l, co) 7→ U (cy, l, co) where U : R+× [0, 1]×R+ → R is twice
continuously differentiable, strongly increasing, strictly quasi-concave, and satis-
fies the Inada conditions at the origin.

Consumption serves as numéraire. With w denoting the real wage, R the real
return factor on savings, s, the periodic budget constraints read cy + wl + s ≤ w
and co ≤ Rs. Since U is strongly increasing the latter will hold as equalities and
can be consolidated. This gives the intertemporal budget constraint in present
value terms as cy + wl + co/R = w. Moreover, maximizing U (cy, l, co) subject to
the latter constraint delivers the demand functions

cy = cy (w, R) , l = l (w, R) , and co = co (w, R) . (2.1)

To bring the analysis closer to the remaining parts of this paper I assume hence-
forth that U13 = U23 = 0, i. e., there is time separability between cy and co and
between l and co. Moreover, let me introduce the following elasticities

η1 ≡ −cy U11

U1
> 0 and η3 ≡ −co U33

U3
> 0, (2.2)

which measure the curvature of U with respect to cy and co at the demands (2.1).
Then, the following proposition holds.
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Proposition 1 (Properties of the Demands for Consumption and Leisure when Young)

Consider the demands for consumption and leisure when young of (2.1). They satisfy

dcy

dw
⋛ 0 ⇔ 1 − U12

U1

1
η3

co

Rw
+

(−U22

U2
+

U12

U1

)
(1 − l) ⋛ 0,

dl
dw

⋛ 0 ⇔ −1 − η1

η3

co

Rcy +

(
η1

w
cy +

U21

U1

)
(1 − l) ⋛ 0,

dcy

dR
⋛ 0 ⇔ (1 − η3) (U22 − wU12) ⋛ 0

dl
dR

⋛ 0 ⇔ (1 − η3) (wU11 − U21) ⋛ 0.

The sign of the comparative statics dcy/dw and dl/dw hinge on how the substitu-
tion effect, represented by the first two terms in the respective expressions, relates
to the sum of the ordinary and the endowment income effect, represented by the
third term.

Since changing R does not affect the value of the labor endowment, the compar-
ative statics dcy/dR and dl/dR show only the tension between the substitution
and the ordinary income effect. The strength of the latter hinges on the elasticity
η3.6

2.2 Price Responses for Specific Preference Representaions

With Proposition 1 it is straightforward to compare the implications of three fre-
quently used preference representations to the BK-gll representation. Through-
out, β ∈ (0, 1) is the discount factor.

First, consider a preference representation with periodic utility functions of the
King-Plosser-Rebelo log-log type (King, Plosser, and Rebelo (1988)), henceforth
KPR-ll. Then,

U (cy, l, co) = ln cy + κ ln (1 − ϕ (1 − l)) + β ln co, (2.3)

6To be precise, consider dcy/dR. Then, U22 − wU12 represents the substitution effect whereas
−η3 (U22 − wU12) captures the income effect; analogously for dl/dR.
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where κ > 0 and ϕ > (1 + β) / (κ + 1 + β) ≡ ϕc. Here, U satisfies η1 = η3 = 1
and U12 = 0. This implies that i) the demand for leisure does not hinge on the real
wage and ii) neither the demands for consumption when young and leisure nor
savings depend on the real return factor. Hence, the joint evolution of increasing
real wages and declining hours of work over the long run cannot be replicated
with this preference representation.

To generate a demand for leisure that increases in the real wage one may extend
(2.3) and allow for subsistence consumption, c̄ > 0, in both periods of life (see,
e. g., Ohanian, Raffo, and Rogerson (2008) or Bick, Fuchs-Schuendeln, and La-
gakos (2018)), i. e.,

U (cy, l, co) = ln (cy − c̄) + κ ln (1 − ϕ (1 − l)) + β ln (co − c̄) . (2.4)

Then, η1 = cy/ (cy − c̄) > 1, η3 = co/ (co − c̄) > 1, U12 = 0, and dl/dw > 0. Yet,
the wage elasticity of the supply of hours worked is not constant. Moreover, the
demands for consumption when young and leisure increase whereas savings fall
in the real return factor. The latter dependency complicates the derivation of an-
alytical results and may not be consistent with the evidence on the determinants
of life-cycle savings (see, e. g., Bloom, Canning, and Graham (2003)).

Finally, consider periodic utility functions of the MaCurdy type (MaCurdy (1981)).
Then, the lifetime utility function reads

U (cy, l, co) =
(cy)1−σ − 1

1 − σ
− (1 − l)1+ϵ

1 + ϵ
+ β

(co)1−σ − 1
1 − σ

, (2.5)

where σ > 1 and ϵ > 0. Here, η1 = η3 = σ > 1 and U12 = 0. With the same
argument as for subsistence consumption the demand for leisure increases in the
real wage. Moreover, the wage elasticities of the supply of hours worked and of
savings are constant. Hence, MaCurdy preferences are a special case of Boppart-
Krusell preferences (see, Boppart and Krusell (2020), p. 138). Yet, as under (2.4),
the demands for consumption when young and leisure increase whereas savings
fall in the real return factor.

Table 1 collects the findings derived so far. Its last line states the correspond-
ing properties for a utility representation with periodic BK-gll utility functions
that will be derived below. Here, the elasticities (2.2) are constant and differ.
From Proposition 1 it is then immediate that (i) the demand for consumption and
leisure when young as well as savings are independent of R since η3 = 1. More-
over, (ii) the demands for consumption and leisure increase in the wage since
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Table 1: Preference Representations and Key Properties of the Demands for
Consumption, Leisure, and Savings when Young.

η1 and η3 U12 comp. statics: w comp. statics: R

KPR-ll η1 = η3 = 1 U12 = 0 dcy

dw > 0, dl
dw = 0 dcy

dR = dl
dR = ds

dR = 0

c̄ > 0 η1 > 1, η3 > 1 U12 = 0 dcy

dw > 0, dl
dw > 0 dcy

dR > 0, dl
dR > 0, ds

dR < 0

MaCurdy η1 = η3 = σ > 1 U12 = 0 dcy

dw > 0, dl
dw > 0 dcy

dR > 0, dl
dR > 0, ds

dR < 0

BK-gll η1 > 1, η3 = 1 U12 > 0 dcy

dw > 0, dl
dw > 0 dcy

dR = dl
dR = ds

dR = 0

η1 > 1 and U12 > 0. Hence, consumption and leisure are (gross) complements.
Finally, (iii) the implied supply of hours worked declines in the real wage at a
constant proportionate rate. Observe that the BK-gll preference representation is
the only functional form that satisfies the properties (i), (ii), and (iii).

3 The Model

The economy has a household sector and a production sector in an infinite se-
quence of periods t = 1, 2, ..., ∞. The household sector comprises overlapping
generations of individuals who live for two periods, youth and old age. Individ-
ual preferences are represented by a lifetime utility function that features periodic
BK-gll utility functions.

The production sector has competitive firms producing a single good using phys-
ical capital, technology, and labor hours as inputs. This good may be either con-
sumed or invested. In the latter case, it serves as future capital. Henceforth, I
shall refer to the single produced good as the manufactured good. If consumed it is
referred to as the consumption good, if invested as capital.

In all periods, there are three objects of exchange, the consumption good, labor and
capital. Capital at t is built from the savings of period t − 1 and depreciates at rate
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δ ∈ [0, 1] after use. Households supply labor and capital. Labor is “owned” by
the young; the old own the capital stock. Each period has markets for all three
objects of exchange. Capital is the only asset in the economy. The manufactured
good serves as numéraire.

3.1 The Household Sector

The population at t consists of Lt young (cohort t) and Lt−1 old individuals (co-
hort t − 1). Due to birth and other demographic factors the number of young
individuals between two adjacent periods grows at rate gL > (−1). For short, I
shall refer to gL as the population growth rate.

When young, individuals supply labor, earn wage income, save, and enjoy leisure
as well as the consumption good. When old, they retire and consume their wealth.

3.1.1 Preferences, Utility, and the Optimal Plan of Cohort t

For cohort t, denote consumption when young and old by cy
t and co

t+1, and leisure
time enjoyed when young by lt. I normalize the maximum per-period time en-
dowment supplied to the labor market to unity. Then, 1 − lt = ht, where ht ∈
[0, 1] is hours worked when young. Individuals of all cohorts assess bundles(
cy

t , lt, co
t+1
)

according to a lifetime utility function

U
(
cy

t , lt, co
t+1
)
= ln cy

t + κ ln
(

1 − ϕ (1 − lt)
(
cy

t
) ν

1−ν

)
+ β ln co

t+1, (3.1)

where κ ∈ (0, 1], ϕ > 0, ν ∈ (0, 1), are parameters to be interpreted below, and
β ∈ (0, 1) is the discount factor. Let D denote the domain of U. Since the natural
logarithmic function requires a strictly positive argument, D cannot include the

set B = {
(
cy

t , lt
)
|1 − ϕ (1 − lt)

(
cy

t
) ν

1−ν ≤ 0}. Hence, D = {
(
cy

t , lt, co
t+1
)
∈ R++ ×

[0, 1]× R++ \ B}.7

The function U evaluates consumption and leisure in both periods of life accord-
ing to a BK-gll utility function. Retirement means that leisure when old, lo

t+1,

7Accordingly, U is not a utility function that represents a preference relation ⪰ over all bundles(
cy

t , lt, co
t+1

)
∈ R++ × [0, 1]× R++.
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is equal to unity. Accordingly, the term βκ ln
(

1 − ϕ
(
1 − lo

t+1
) (

co
t+1
) ν

1−ν

)
disap-

pears from U. For ease of notation, I follow Boppart and Krussell and use hence-
forth

xt ≡ (1 − lt)
(
cy

t
) ν

1−ν . (3.2)

The term κ ln (1 − ϕxt) reflects the disutility of labor when young. It is more
pronounced the greater κ or ϕ. These parameters may be associated with in-
stitutional, cultural, or geographical features of the labor market that affect the
disutility of labor in addition to the amount of hours worked and the level of
consumption. For instance, in an economy with demanding occupational safety
regulations κ and ϕ may be lower than in an economy without such regulations.
Similarly, these parameters should be low if the labor market gives rise to a good
matching between individual career aspirations and actual occupations. Alter-
natively, as suggested respectively by Weber (1930) and Landes (1998), κ and ϕ

may reflect a prevailing work ethic or the climatic conditions under which labor
is done. Finally, the parameter ν determines how the disutility of labor increases
with the level of consumption.8 In the context of Proposition 2 below we will see
that ν > 0 is key for the income effect of a wage hike on the demand for leisure to
dominate the substitution effect. In the limit ν → 0, U boils down to the KPR-ll
preference representation (2.3) for which the income and the substitution effect
cancel.

The following lemma summarizes relevant properties of the lifetime utility func-
tion (3.1).

8In fact, ν > 0 implies that the cross derivative U12 is strictly positive, i. e.,

U12 =
νϕκ

(1 − ν)
(

cy
t

) 1−2ν
1−ν

(1 − ϕxt)2

> 0.

Hence, under the utility representation (3.1), consumption when young and leisure are “utility
complements.” Yet, the sign of U12 is not an ordinal property of the utility function U.
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Lemma 1 (Properties of U)

The lifetime utility function U of (3.1) has the following properties:

1. The marginal utility of consumption when young, U1, satisfies limcy
t →0 U1 = ∞

and is strictly positive for pairs
(
cy

t , lt
)
∈ D that also satisfy

1 − ν

ϕ (1 − ν(1 − κ))
> xt. (3.3)

Moreover, U11 < 0.

2. The marginal utility of leisure when young, U2, satisfies limlt→0 U2 < ∞, and is
strictly positive. Moreover, U22 < 0.

3. U
(
cy

t , lt, co
t+1
)

is strictly concave on D if

1 − 2ν + (1 − κ)ν2

ϕ(1 − ν) (1 − ν(1 − κ))
> xt. (3.4)

Hence, as to consumption when young, U satisfies the Inada condition at the ori-
gin. However, the interaction between consumption and leisure implies that U1

is negative if cy
t becomes too large. As to leisure when young, U is monotonically

increasing without satisfying the Inada condition at the origin. Moreover, U is
concave in cy

t and lt though not necessarily jointly concave in
(
cy

t , lt
)
.

Let wt > 0 denote the real wage per hour worked and rt > (−1) the real rental
rate per unit of capital. Then, Rt+1 ≡ 1 + rt+1 − δ > (−1) is the perfect foresight
real return factor on savings net of depreciation. I refer to

(
cy

t , lt, co
t+1, st

)
as the

plan of cohort t. The optimal plan of cohort t solves

max
(cy

t ,lt,co
t+1,st)∈D×R

ln cy
t + κ ln

(
1 − ϕ (1 − lt)

(
cy

t
) ν

1−ν

)
+ β ln co

t+1 (3.5)

subject to the per-period budget constraints

cy
t + st ≤ wt(1 − lt) and co

t+1 ≤ Rt+1st. (3.6)

The following assumption assures the existence of a unique optimal plan for all
wt > 0 and Rt+1 > (−1).
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Assumption 1 (Upper Bound on ν)

It holds that

0 < ν < ν̄ (β, κ) ≡
3 + β −

√
(1 + β)2 + 4κ

2 (2 + β − κ)
.

The function ν̄ : [0, 1]2 → R+ takes on strictly positive values. Moreover, it is
monotonically declining in β and in κ with ν̄ (0, 0) = 1/2 and ν̄ (1, 1) = 1 −
1/

√
2 ≈ 0.2923. In other words, Assumption 1 says that ν must not be too large.

The following proposition reveals that the optimal plan involves a corner solution
l = 0 if the real wage is lower than the following critical value

wc ≡
(

(1 + β) (1 − ν)

(ϕ (κ + (1 + β) (1 − ν)))1−ν (1 − ν (1 + β))ν

) 1
ν

.

Proposition 2 (Optimal Plan of Cohort t)

Suppose Assumption 1 holds. Then, for cohorts t = 1, 2, ..., ∞, prices wt > 0, and
Rt+1 > (−1) the optimal plan involves continuous, piecewise defined functions

ht = h (wt) , cy
t = cy (wt) , co

t+1 = co (wt, Rt+1) , and st = s (wt) (3.7)

that give rise to two regimes.

Regime 0: If 0 < wt ≤ wc then lt = 0, ht = 1, and cy (wt) is implicitly given by

cy
t =




(1 − ν)
(

1 − ϕ
(
cy

t
) ν

1−ν

)
− νκϕ

(
cy

t
) ν

1−ν

(1 − ν) (1 + β)
(

1 − ϕ
(
cy

t
) ν

1−ν

)
− νκϕ

(
cy

t
) ν

1−ν


wt (3.8)

Moreover, st = wt − cy (wt) = s (wt) and co
t+1 = Rt+1s (wt) = co (wt, Rt+1).

Regime 1: If wt ≥ wc then lt ≥ 0, ht ≤ 1 and

ht = wν
c w−ν

t , cy
t =

1 − ν (1 + β)

(1 + β) (1 − ν)
wν

c w1−ν
t ,

st =
β

(1 + β) (1 − ν)
wν

c w1−ν
t , co

t+1 =
βRt+1

(1 + β) (1 − ν)
wν

c w1−ν
t .

Finally, for members of cohort 0, we have co
1 = R1s0 > 0 where s0 > 0 is given.
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Proposition 2 makes two important points. First, it establishes that the optimal
plan hinges on the level of the real wage. In Regime 0 the real wage is below the
critical level wc, and individuals supply their entire time endowment to the labor
market. In Regime 1 the real wage exceeds wc, and individuals supply less than
their time endowment to the labor market. Hence, the individual labor supply
is indeed piecewise defined, yet, as established in the proposition, continuous at
w = wc. As the real wage increases above its critical level, the supply of hours
worked declines at the constant proportionate rate ν ∈ (0, 1). This finding sug-
gests that the standard assumption of an inelastic labor supply made in almost
all growth models is in fact most plausible for low-wage, i. e., poor economies.

The implied behavioral pattern makes intuitive sense. When wages and incomes
are low then the individual demand for consumption goods satisfies basic needs.
The demand for leisure is zero since the only way to earn a decent income is
by working the maximum of available hours. Rising wages and incomes allow
people to adequately satisfy their basic needs, to consume beyond these needs
and, eventually, to demand leisure.

The critical wage level, wc, and, hence, the consumption level cy (wc) above which
the demand for leisure becomes positive, reflects an intricate relationship among
preference parameters. As mentioned above, these parameters may depend on
institutional, cultural, or geographical factors that differ across countries. For
instance, wc and cy (wc) decline in κ and ϕ. Hence, of two otherwise identical
economies the readiness to reduce the labor supply in response to an increasing
wage begins at a lower wage level and a correspondingly lower consumption
level in the economy with lower occupational safety regulations. Mutatis mutan-
dis, a similar argument can be made for economies that differ in their work ethic
or in their climatic conditions.

To understand why the individual labor supply is piecewise defined recall that
the utility-maximizing plan involving

(
cy

t , lt, co
t+1
)
≫ 0 satisfies the first-order

condition U2/U1 = wt. However, when the optimal plan involves lt = 0 then
U2/U1 ≤ wt. Hence, in Regime 0 it holds that U2/U1 ≤ wt ≤ wc with equality
only if wt = wc.9 In other words, wc has an interpretation as the marginal rate of
substitution, U2/U1, evaluated at the optimal plan at wt = wc.

Second, Proposition 2 shows that the individual supply of hours worked, con-
sumption when young, and individual savings are independent of the real return

9To see this analytically, use Lemma 1 to express the marginal rate of substitution between
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factor on savings. This follows from Proposition 1. Since the lifetime utility func-
tion (3.1) features η3 = 1 the substitution and the income effect in the comparative
statics for cy

t and lt vanish. Then, the budget constraint when young implies that
st becomes also independent of Rt+1. Observe that the relevant comparative stat-
ics are independent of whether lt = 0 or lt > 0. Hence, they apply to the optimal
plan under both regimes. An immediate implication of these findings is that con-
sumption and leisure when young are demand complements in Regime 1, i. e.,
dl/dw > 0 and dcy/dw > 0.

The inter-temporal trade-off between consumption when young and consump-
tion when old is governed by the first-order condition U1/U3 = Rt+1. Evaluated
at optimal pairs

(
cy

t , lt
)

this trade-off delivers the Euler equation in Regime 1 as

co
t+1

cy
t

=
βRt+1

1 − ν(1 + β)
. (3.9)

The latter states the desired consumption growth factor of a member of cohort
t. The parameter ν reflects the disutility of consumption when young associated
with the labor supply that shows up in the second term of U. Its presence weak-
ens the tendency to smooth consumption over the life-cycle.

Regime 1 of Proposition 2 exhibits another intuitive property of the optimal plan:
cy

t , st, and co
t+1 are proportionate to the wage income, wtht. In particular, one finds

that

cy
t =

1 − ν(1 + β)

(1 + β)(1 − ν)
wtht and st =

β

(1 + β) (1 − ν)
wtht. (3.10)

Hence, ceteris paribus, the marginal (and average) propensity to consume when
young declines in ν whereas the marginal propensity to save out of wage income
increases in ν.

Next, consider the role of ν for the response of leisure when young to changes in
the real wage. Inspection of the expression for dl/dw from Proposition 1 reveals

consumption when young and leisure in Regime 0 at the optimal plan. This gives

U2 (cy(wt), 0, co (wt, Rt+1))

U1 (cy(wt), 0, co (wt, Rt+1))
=

κϕ(1 − ν) (cy(wt))
1

1−ν

(1 − ν)
(

1 − ϕ (cy(wt))
1

1−ν

)
− νκϕ (cy(wt))

1
1−ν

.

The right-hand side is increasing in wt since (cy)′ (wt) > 0 and converges to wc as wt ↑ wc (see
Lemma 3 in the proof of Proposition 2).
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that leisure is a normal good under the lifetime utility function (3.1) since

η1 =
κ (1 − ν (1 + (1 + β) (1 − 2ν))) + (1 + β)2 (1 − ν) ν2

κ(1 − ν)(1 − ν(1 + β))
> 1,

η3 = 1, and U12 > 0 (see Footnote 8). Using the consolidated budget constraint
one readily verifies that

dl
dw

⋛ 0 ⇔ −1 + η1 +
U21

U1
(1 − l) ⋛ 0,

where
U21

U1
(1 − l) =

ν(1 + β)(κ + (1 + β)(1 − ν))

κ (1 − ν(1 + β))
> 0.

As limν→0 η1 = 1 and limν→0 U21(1 − l)/U1 = 0, it is clear that dl/dw > 0 results
since ν > 0 implies both η1 > 1 and U21 > 0. As mentioned above, in the limit
ν → 0, the lifetime utility function U becomes part of the KPR class and the
demand for leisure will no longer respond to changes in the real wage.10

One readily verifies that the response of the optimal plan to changes in factor
prices satisfies

h′ (wt) ≤ 0, (cy)′ (wt) > 0, s′ (wt) > 0,

(3.11)

co
1 (wt, Rt+1) > 0, co

2 (wt, Rt+1) > 0.

For Regime 0, this is to be expected. As h′ (wt) = 0, a higher real wage increases
real income one-to-one. Then, consumption smoothing requires that the higher
income is used to increase consumption when young and old, hence savings. For
Regime 1, a similar intuition holds since

d ln (wtht)

d ln wt
= 1 − ν > 0,

i. e., the proportionate increase in the wage income induced by a higher wage is
still positive even though the labor supply declines. Clearly, only co

t+1 increases
in response to a higher Rt+1.

Finally, let me turn to the comparative statics of the optimal plan of Proposition 2
with respect to the preference parameters ϕ and β.11

10As ν → 0, the optimal plan under Regime 0 converges, respectively, to cy
t = wt/(1 + β),

st = βwt/(1 + β), and co
t+1 = βRt+1wt/(1 + β), which coincides with the canonical OLG-model

(see, e. g., Acemoglu (2009), Chapter 9.3).

11Comparative statics with respect to κ mimic those of ϕ and are therefore omitted.
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Proposition 3 (Comparative Statics of the Optimal Plan)

Consider the optimal plan of Proposition 2.

For Regime 0, it holds that

∂cy
t

∂ϕ
< 0,

∂co
t+1

∂ϕ
> 0,

∂st

∂ϕ
> 0,

∂cy
t

∂β
< 0,

∂co
t+1

∂β
> 0,

∂st

∂β
> 0.

For Regime 1, it holds that

∂ht

∂ϕ
< 0,

∂cy
t

∂ϕ
< 0,

∂co
t+1

∂ϕ
< 0,

∂st

∂ϕ
< 0,

∂ht

∂β
> 0,

∂cy
t

∂β
< 0,

∂co
t+1

∂β
> 0,

∂st

∂β
> 0.

Proposition 3 shows that the comparative statics properties of the optimal plan
hinge on whether the supply of hours worked responds to the respective parame-
ter change or not. First, consider Regime 1. For a greater ϕ the disutility of labor is
more pronounced. Accordingly, the labor supply falls. Consumption smoothing
dictates that the concomitant decline in the wage income reduces consumption
in both periods of life, hence, savings. Consumption when young is further re-
duced since the marginal utility of cy

t falls in ϕ. A greater β increases the value of
consumption when old. Therefore, co

t+1 increases at the expense of the demand
for leisure and for consumption when young. Accordingly, the labor supply and
savings increase.

In Regime 0 parameter changes do not affect the labor supply. However, a greater
ϕ reduces the marginal utility of consumption when young whereas a greater β

increases the value of consumption when old. Hence, unlike in Regime 1, for both
parameter changes, cy

t falls whereas st and co
t+1 increase.

3.1.2 Some Orders of Magnitude

The validity of Proposition 2 hinges on the parameter restrictions summarized
under Assumption 1. The purpose of this section is to show by example that
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this assumption is satisfied for reasonable magnitudes of key parameters of the
model.

To derive reasonable parameter values set κ = 1 and let a generation correspond
to 30 years. Then, β is the discount factor over 30 years. Following Prescott (1986),
the annual discount factor is equal to 0.96.12 This implies β = 0.294, and, from
Assumption 1, a corresponding critical value ν̄ (0.294, 1) = 0.352.

Suppose that hours worked per worker and the real wage grow at constant an-
nual rates, i. e., the economy is in Regime 1. I follow Boppart and Krusell (2020)
and take the constant annual growth rate of hours worked per worker to be
−0.57%. Moreover, suppose the annual growth rate of the real wage is 2%. To
match these data with the model the growth factors of hours worked and of the
real wage should satisfy

ht+1

ht
= 0.994330 and

wt+1

wt
= 1, 0230.

According to Proposition 2 these growth factors are linked, i. e.,

ht+1

ht
=

(
wt+1

wt

)−v
or 0.994330 = 1, 02−30ν.

This gives an estimate of ν as,

ν = − ln .9943
ln 1.02

= 0.288 < 0.352 = ν̄ (0.294, 1) ,

and Assumption 1 is satisfied.

3.2 Firms

At all t, the production sector can be represented by a single competitive firm
with access to the production function

Yt = ΓKγ
t (AtHt)

1−γ , Γ > 0, 0 < γ < 1. (3.12)

Here, Kt is physical capital and Ht the amount of hours of work employed by the
firm. Technological knowledge is represented by At and advances exogenously

12The value of β is quite sensitive to the chosen value of the annual discount factor. For in-
stance, if the latter is 0.97 or 0.98 then one has, respectively, β = 0.40 or β = 0.55. However, this
modifications hardly impact on the corresponding values of ν̄ which are equal to 0.342 and 0.33.
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at rate gA > 0. Accordingly, At = (1 + gA)
t−1A1, with A1 > 0 given. The

productivity parameter Γ > 0 may reflect cross-country differences in geography,
technical and social infrastructure that affect the transformation of capital and
efficient hours worked into the manufactured good.

In each period, the firm chooses the amounts of capital, Kt, and of hours of work,
Ht, to maximize the net-present value of profits. Doing so, it takes the evolution
of At as given. Void of inter-temporal considerations, the respective first-order
conditions read

wt = Γ(1 − γ)Kγ
t A1−γ

t H−γ
t and rt = ΓγKγ−1

t (AtHt)
1−γ , (3.13)

where rt is the real rental rate of capital at t.

4 Intertemporal General Equilibrium

4.1 Definition

A price system corresponds to a sequence {wt, rt}∞
t=1. An allocation is a sequence

{cy
t , lt, co

t , st, Yt, Ht, Kt}∞
t=1 that comprises a plan {cy

t , lt, co
t+1, st}∞

t=1 for all cohorts,
consumption of the old at t = 1, co

1, and a strategy for the production sector
{Yt, Ht, Kt}∞

t=1.

For an exogenous evolution of the labor force, Lt = L1 (1 + gL)
t−1 with L1 > 0,

an exogenous evolution of technological knowledge, At = A1(1 + gA)
t−1 with

A1 > 0, and a given initial level of capital, K1 > 0, an intertemporal general
equilibrium with perfect foresight corresponds to a price system and an allocation
that satisfy the following conditions for all t = 1, 2, ..., ∞:

(E1) The plan of each cohort satisfies Proposition 2.
(E2) The production sector satisfies (3.13).
(E3) The market for the manufactured good clears, i. e.,

Lt−1co
t + Ltc

y
t + It = Yt + (1 − δ)Kt, (4.1)

where It is aggregate capital investment.
(E4) There is full employment of labor, i. e,

Ht = Ltht. (4.2)
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(E1) guarantees the optimal behavior of the household sector under perfect fore-
sight. Since the old own the capital stock, their consumption at t = 1 is L0co

1 =

R1K1 and s0 = K1/L0. (E2) assures the optimal behavior of the production sec-
tor and zero profits. (E3) states that the aggregate demand for the manufactured
good at t is equal to its produced output plus the non-depreciated capital stock.
According to (E4) the demand for hours worked must be equal to the supply.

The labor market requires a special treatment. Since both the aggregate demand
for hours worked and the aggregate supply of hours worked are decreasing in
the real wage there may be none, one, or multiple wage levels at which demand
is equal to supply. To address this issue let me refer to the first condition of (3.13)
as the firms’ aggregate demand for hours worked at t and restate it as

Hd
t = Kt A

1−γ
γ

t

(
Γ(1 − γ)

wt

) 1
γ

≡ Hd
t (wt) . (4.3)

Let Hs
t = Ltht denote the aggregate supply of hours worked at t. Using Proposi-

tion 2 gives

Hs
t =





Ltwν
c w−ν

t if wt ≥ wc

Lt · 1 if 0 < wt ≤ wc





≡ Hs
t (wt) . (4.4)

Then, the labor market equilibrium,
(
ŵt, Ĥt

)
, satisfies Ĥt = Hd

t (ŵt) = Hs
t (ŵt).

To simplify the notation let kt ≡ Kt/
(

A1−ν
t Lt

)
and define the critical value

kc,t ≡
[

wc

Γ(1 − γ)A1−γν
t

] 1
γ

. (4.5)

Then, one readily verifies that at all t there is a unique labor market equilibrium
where the equilibrium real wage is given by

ŵt =





At ·
(

Γ(1−γ)

wγν
c

) 1
1−γν · k

γ
1−γν

t if kt ≥ kc,t,

A1−νγ
t · Γ(1 − γ) · kγ

t if kt ≤ kc,t,

(4.6)

and the equilibrium amount of hours worked is

Ĥt =





Lt
Aν

t
·
(

wc
Γ(1−γ)

) ν
1−γν · k

−γν
1−γν

t if kt ≥ kc,t,

Lt · 1 if kt ≤ kc,t.

(4.7)
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Existence and uniqueness follow from two properties of the labor market that are
illustrated in Figure 4.1. First, since ν is quite small the individual and the aggre-
gate supply of hours worked, h (wt) and Hs

t (wt), is fairly flat. Second, the image
of the aggregate demand for hours worked, Hd

t (wt), is R++ since the aggregate
production function satisfies both Inada conditions.

If kt ≥ kc,t then ŵ1 ≥ wc and the labor market equilibrium is in Regime 1. Intu-
itively, for a given aggregate supply of hours worked this is the case if the aggre-
gate demand for hours worked is large (see

(
ŵ1

t , Ĥ1
t
)

in Figure 4.1). From (4.3)
the latter is more likely the greater Kt, At, or Γ. Intuitively, modern industrialized
economies should possess these features. Conversely, economies with a low de-
mand for hours worked would find their labor market equilibrium in Regime 0
(see

(
ŵ0

t , Ĥ0
t
)

where Ĥ0
t = Lt · 1 in Figure 4.1).

For a given aggregate demand for hours worked the labor market equilibrium is
more likely to be in Regime 1 the smaller the total amount of workers, i. e., the
smaller Lt. Intuitively, when Lt falls then the aggregate supply of hours worked
shifts downwards. Labor becomes scarcer so that the equilibrium wage increases.
Then, even for a low aggregate demand of hours worked such as Hd0

t an equilib-
rium wage in Regime 1 is possible.

Finally, observe that the equilibrium conditions (E1) - (E4) imply for all t and both
regimes that aggregate saving equals capital investment, i. e.,

stLt = It = Kt+1. (4.8)

4.2 Dynamical System for Regime 1 and Steady-State Analysis

Using Proposition 2, the labor market equilibrium, and the capital market equi-
librium (4.8) reveals that in Regime 1 the intertemporal general equilibrium may
be studied by means of the sequence {kt}∞

t=1. This state variable will be constant
in steady state and equal to

k∗ ≡ wν
c

[
β (Γ(1 − γ))

1−ν
1−γν

(1 + β) (1 − ν) (1 + gL) (1 + gA)
1−ν

] 1−γν
1−γ

. (4.9)

The following assumption serves the purpose of this section.
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Figure 4.1: The Labor Market Equilibrium of Period t.

0

Hs
t , H

d
t

Lt

wcŵ0
t ŵ1

t

Hs
t

Hd1
t

Hd0
t

wt

Ĥ1
t

Regime 0 Regime 1

Note: If the aggregate demand for hours worked is Hd1
t then the labor market equilibrium is

(
ŵ1

t , Ĥ1
t
)
.

The individual supply of hours worked is in Regime 1, i. e., it falls in wt, and aggregate demand for hours
worked is high. If the aggregate demand for hours worked is Hd0

t then the labor market equilibrium is(
ŵ0

t , Ĥ0
t
)

where Ĥ0
t = Lt · 1. The individual supply of hours worked is in Regime 0, i. e., it does not hinge on

wt, and aggregate demand for hours worked is low.

Assumption 2 It holds that k1 ≥ kc,1 and k∗ > kc,1.

As will become clear from Proposition 4 below, the intuition behind Assump-
tion 2 is the following. The labor market equilibrium assures that k1 ≥ kc,1 im-
plies ŵ1 ≥ wc. Hence, if k1 ≥ kc,1 then the economy starts with an equilibrium
wage in Regime 1. Moreover, as k∗ is the steady state of the sequence, {kt}∞

t=1,
k∗ > kc,1 assures that over time this sequence remains in Regime 1.13

13Notice that there are indeed plausible parameter constellations that satisfy Assumption 2.
Consider, e. g., the preference parameters of (4.14) and the corresponding optimal plan (4.15).
In addition, set Γ = 3/2 and γ = 1/3. Then, k∗ > kc,1 is satisfied whenever A1 >√

3(1 + gL)(1 + gA)3/4. Moreover, k1 ≥ kc,1 requires K1/L1 > (A1)
−2.
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Figure 4.2: The Dynamical System under Regime 1.

0 k∗kc,1

kt

kt+1

kt+1 = kt

kt+1 =
β
[
w
ν(1−γ)
c (Γ(1−γ))1−ν

] 1
1−γν

(1+β)(1−ν)(1+gL)(1+gA)
1−ν × k

γ(1−ν)
1−γν
t

k1

Note: Under Assumption 2 the steady state of the equilibrium difference equation (4.10), k∗, is unique and
stable for k1 > kc,1.

Proposition 4 (Dynamical System - Regime 1)

Suppose the initial conditions (K1, L1, A1) are such that Assumption 2 holds. Then, the
transitional dynamics of the intertemporal general equilibrium is given by a unique and
monotonous sequence {kt}∞

t=1, generated by the difference equation

kt+1 =
β
[
wν(1−γ)

c (Γ(1 − γ))1−ν
] 1

1−γν

(1 + β)(1 − ν)(1 + gL)(1 + gA)1−ν
· k

γ(1−ν)
1−γν

t (4.10)

with

lim
t→∞

kt = k∗. (4.11)

Hence, in Regime 1 the evolution of the state variable is governed by the differ-
ence equation (4.10). Since γ(1 − ν)/ (1 − γν) < 1 the sequence generated by
this equation is monotonous and the steady state is stable. This is illustrated in
Figure 4.2.

23



The key parameter in the difference equation (4.10) is ν. It affects the sequence
{kt}∞

t=1 through four channels. To see this let me write (4.8) using (3.10) and
Proposition 2 as

β

(1 + β) (1 − ν)
ŵth (ŵt) Lt = Kt+1, (4.12)

where ŵt is the equilibrium wage for Regime 1. Hence, the factor (1 − ν) in the
denominator of (4.10) shows the effect of ν on the marginal propensity to save.
A greater ν increases the fraction of the wage income that is saved and invested,
hence, Kt+1 increases. This is the first channel.

Next, observe that Proposition 2 and (4.6) imply that the equilibrium individual
wage income can be expressed as

ŵth (ŵt) = A1−ν
t

[
wν(1−γ)

c (Γ(1 − γ))1−ν
] 1

1−γν k
γ(1−ν)
1−γν

t . (4.13)

The remaining three channels show how ν affects the difference equation (4.10)
through this expression.

The second channel is related to the factor A1−ν
t . It captures that, given kt, a

greater At increases the equilibrium wage and reduces the individual supply of
hours worked. This channel shows up as (1 + gA)

1−ν in the denominator of (4.10)
since the latter equation expresses (4.12) in units of A1−ν

t+1 Lt+1. As gA > 0 a greater
ν implies a greater kt+1.

The third channel reflects all effects of ν related to the bracketed term in the nu-
merator of (4.10). From (4.13) it is clear that this term shows how preference
and technology parameters affect the equilibrium individual wage income given
(Kt, At, Lt).

Finally, ν impacts on how the state variable affects the equilibrium individual
wage income. Increasing ν augments the exponent of kt on the right-hand side
of (4.10) and accelerates the process of convergence towards the steady state. In-
deed, the speed of convergence defined as

−
∂ ln

(
kt+1

kt

)

∂ ln kt
=

1 − γ

1 − γν
> 0

increases in ν.

The following proposition characterizes the steady state of Regime 1.
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Proposition 5 (Properties of the Steady State - Regime 1)

Along the steady-state path the growth rate of the real wage is gw = gA > 0, and the real
rental rate of capital is constant, i. e., r̂t = r̂. Moreover, it holds that

a)
ht+1

ht
= (1 + gA)

−ν ,
Ĥt+1

Ĥt
= (1 + gA)

−ν (1 + gL) ,

b)
cy

t+1

cy
t

=
co

t+1
co

t
=

st+1

st
= (1 + gA)

1−ν ,

c)
Yt+1

Yt
=

Kt+1

Kt
= (1 + gA)

1−ν (1 + gL) ,

d)
∂ (1 + gA)

1−ν

∂ν
< 0.

Hence, in steady state the individual supply of hours worked declines at an ap-
proximate rate νgA since (−ν) is the wage elasticity of h(wt). The steady-state
growth rate of the aggregate supply of hours worked is approximately equal to
−νgA + gL. It reflects the intensive and the extensive margin of the labor sup-
ply. Depending on which margin dominates it may be positive or negative. The
growth rates under b) follow from Proposition 2 as the wage elasticity of cy

t , co
t+1,

and st is 1 − ν.

The findings under a) and b) highlight why the optimal plan of Proposition 2
is consistent with a steady state equilibrium. The steady-state growth factor of
individual hours worked is (1 + gh) = (1 + gA)

−ν, the one of cy
t , co

t+1, and st

is (1 + gA)
1−ν. In steady state, individual wage income, wtht, grows at a factor

(1 + gh) (1 + gw) = (1 + gA)
1−ν that coincides with the growth factor of cy

t , co
t+1,

and st. Therefore, these growth patterns are consistent with the individual and
the economy-wide budget constraints. As to c), we obtain from (4.8) that in steady
state (1 + gK) = (1 + gA)

1−ν (1 + gL). Then, the production function delivers
gY = gK.

Overall, the rule is that the steady-state growth factor of economic aggregates like
Yt, Kt, or aggregate consumption, Ltc

y
t + Lt−1co

t , is the growth factor of aggregate
efficient hours worked, AtHt = AtLtht. The growth factor of per-capita variables
like cy

t , co
t+1, st, or output per worker, Yt/Lt, is the one of efficient individual hours

worked, AtHt/Lt = Atht. The latter growth factor is (1 + gA)
1−ν and reflects

the attenuating effect of a declining individual supply of hours worked on the
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growth rate of per-capita variables. Hence, all growth factors under a) - c) are
endogenous.

According to d), the attenuation of the growth factor is more pronounced the
greater is ν. Hence, the growth rate of per-capita variables declines in ν, and,
ceteris paribus, an economy with a greater ν is predicted to grow slower in per-
capita terms.

Observe that for all adjacent periods t and t + 1 hours worked per worker and
hours worked per capita grow at the same rate. To see this, denote the population
at t by Nt = Lt + Lt−1. Then, hours worked per capita at t is the product of hours
worked per worker and the labor-market participation rate, i. e.,

Ht

Nt
= ht ×

Lt

Lt + Lt−1
= ht ×

1 + gL

2 + gL
.

Hence, in line with the cross-country evidence over the long run the participa-
tion rate is constant (Boppart and Krusell (2020)). Moreover, the growth factor of
hours worked is ht+1/ht and, in steady state, equal to (1 + gA)

−ν.

Define a Boppart-Krusell Balanced Growth Path, as an allocation that satisfies Kaldor’s
growth facts (Kaldor (1961)), i. e., the capital-output ratio, the real rental rate of
capital, and factor shares remain constant whereas output per worker grows at a
constant rate, and has the supply of hours worked declining at a constant rate.

Corollary 1 (Boppart-Krusell Balanced Growth Path of Regime 1)

The steady-state path of Proposition 5 is a Boppart-Krusell Balanced Growth Path.

Corollary 1 follows as the allocation described by Proposition 5 implies indeed
that the labor share, ŵtĤt/Yt, and the capital share, r̂Kt/Yt, are time-invariant.
Hence, this path is consistent with the stylized facts discussed in the Introduction.

Before closing this section two remarks are in order. First, observe that Proposi-
tion 4 and 5 do not hinge on the depreciation rate, i. e., they hold for any δ ∈ [0, 1].
This contrasts with the discrete-time neoclassical growth model where a closed-
form solution requires δ = 1 (Boppart and Krusell (2020), Appendix B.2). This
difference is due to the fact that savings of cohort t do not hinge on Rt+1.

Second, consider the limit ν → 0 in which the lifetime utility function (3.1) con-
verges to (2.3). Then, limν→0 wc = 0 implies limν→0 kc,1 = 0. Moreover, the
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shape of the difference equation (4.10) depends on whether ϕ > ϕc or ϕ = ϕc. In
the former case, the demand for leisure is strictly positive since limν→0 h(wt) =

limν→0 wν
c = (1 + β) / (ϕ(κ + 1 + β)) < 1. Accordingly, (4.10) becomes

kt+1 =
β
(

1+β
ϕ(κ+1+β)

)1−γ
Γ(1 − γ)

(1 + β)(1 + gL)(1 + gA)
· kγ

t .

If ϕ = ϕc then the demand for leisure vanishes since limν→0 h(wt) = limν→0 wν
c =

(1 + β) / (ϕc(κ + 1 + β)) = 1 and (4.10) boils down to

kt+1 =
βΓ(1 − γ)

(1 + β)(1 + gL)(1 + gA)
· kγ

t .

The latter coincides with the difference equation of the canonical OLG-model
with (gA > 0) or without (gA = 0) technological progress.

4.3 Global Dynamics: Technological Progress as an Engine of
Liberation

This section studies the global dynamics of the economy of Section 3. The analysis
reveals that sustained technological progress is the main cause for why workers
have enjoyed more and more leisure over time. It liberated poor individuals from
the necessity to supply long hours of work to assure a subsistence income. In this
sense, technological progress has been an engine of liberation.14

On the supply side, technological progress increases the marginal product of total
hours worked. Accordingly, equilibrium real wages increase. During the transi-
tion to the steady state the growth rate of real equilibrium wages also reflects the
growth rates of the physical capital stock and of the total supply of hours worked.
However, in the long run it is technological progress alone that determines the
growth rate of equilibrium wages. In addition, with technological progress ag-
gregate output of the manufactured good increases.

On the household side, individuals who see their real income increase want to
buy more of the consumption good. Additional purchases of the consumption

14In a related sense, the metaphor “engine of liberation” is also used by Greenwood, Seshadri,
and Yorukoglu (2005) to describe the role of technological change for the liberation of women
from the home.
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good become feasible since technological progress allows for the total output of
the consumption good to increase. Preferences exhibit a latent desire to work less.
As consumption per capita increases the valuation of leisure increases. Eventu-
ally, individuals decide to enjoy more and more leisure and to supply less labor.

Section 4.3.1 starts out with the analysis of an economy where capital accumula-
tion is the only source of economic growth. There is no technological progress.
Initially, the economy is in Regime 0. Hence, real wages are low and individu-
als are poor. As a consequence, they supply their entire time endowment to the
labor market. For the chosen parameter values, I establish that this economy con-
verges towards a steady state with a constant real wage below wc. Hence, while
real wages may grow over time due to capital accumulation individuals remain
poor and supply their entire time endowment to the labor market.15 Section 4.3.2
adds sustained technological progress to an otherwise identical economy. The
initial state of the economy is again in Regime 0. However, due to technological
progress the economy evolves in finite time from Regime 0 into Regime 1 where
the supply of individual hours worked continuously declines. Eventually, there
is convergence to the steady state of Proposition 4.

To straighten the presentation I choose particular parameter values and make the
following simplifying assumptions. On the household side, I set

ν =
1
4

, β =
1
3

, κ = 1, and ϕ =
1
2

(
3
2

) 1
3

. (4.14)

While the values for ν and β are not far away from those discussed in Section 3.1.2,
this calibration involves a judicious choice of κ and ϕ so that wc = 1. Assump-
tion 1 is satisfied since 1/4 < 0.352, and the optimal plan for Regime 1 involves

ht = w− 1
4

t , cy
t =

2
3

w
3
4
t , co

t+1 =
Rt+1

3
w

3
4
t , and st =

w
3
4
t

3
. (4.15)

Without loss of generality for my qualitative results, I simplify further and set
Lt = 1 for all t. Then, the evolution of the capital stock (4.8) becomes

s (wt) = Kt+1. (4.16)

15For alternative parameter constellations, e. g., by allowing for a larger Γ, the process of capital
accumulation may actually lead the economy in finite time out of Regime 0 into Regime 1. Upon
arrival in Regime 1, individuals will start to reduce their supply of hours worked. However,
due to a declining impact of additional capital per worker on equilibrium wages the economy
will converge to a stationary steady state with constant levels of per-capita variables. Since this
prediction contradicts the stylized facts set out in the Introduction I neglect this case.
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On the production side, let Γ = 3/2 and γ = 1/3. Then, from (3.13) the inverse
aggregate demand for hours worked is

wt = A
2
3
t

(
Kt

Hd
t

) 1
3

. (4.17)

Throughout, it proves convenient to describe the evolution of the economy in
terms of its equilibrium real wage, ŵt.

4.3.1 No Technological Progress: The Equilibrium Dynamics in Regime 0

Consider the intertemporal general equilibrium of Section 4 void of technological
progress, i. e., At = 1 for all t. The initial state of the economy is in Regime 0.
Hence, the aggregate supply of hours worked is Hs

t = 1 · 1. Then, from (4.17) the
equilibrium real wage is ŵt = K1/3

t . Combining the latter with (4.16) delivers the
evolution of the equilibrium real wage in Regime 0 as

ŵt+1 = [s (ŵt)]
1
3 for ŵt ≤ s−1

(
w3

c

)
, (4.18)

where the latter inequality assures that ŵt+1 ≤ wc.

The following proposition characterizes the steady state and the transitional dy-
namics of Regime 0.

Proposition 6 (Dynamical System - Regime 0)

The difference equation (4.18) gives rise to a unique, strictly positive steady-state equilib-
rium real wage ŵ∗∗ < wc given by

ŵ∗∗ = [s (ŵ∗∗)]
1
3 . (4.19)

Suppose 0 < ŵ1 < wc then the sequence {ŵt}∞
t=1 generated by (4.18) converges mono-

tonically with limt→∞ ŵt = ŵ∗∗.

The point of Proposition 6 is that a poor economy may not escape from poverty
without technological progress but remain forever stuck in Regime 0. The reason
is that wage growth is driven by the process of capital accumulation alone. Due
to a declining impact of additional capital on equilibrium wages the latter even-
tually peters out and the growth of wages comes to a halt. This tendency cannot

29



be outweighed by the utility interaction between consumption and leisure when
young that reduces the marginal utility of consumption when young and, thus,
implies higher savings per worker.16 The following section shows that sustained
technological progress annihilates the possibility of a steady state involving a sta-
tionary real wage.

4.3.2 Global Dynamics with Sustained Exogenous Technological Progress

Sustained technological progress means that At grows over time at a constant
rate gA > 0. Let the economy start in Regime 0 with an equilibrium real wage
ŵ1 < ŵ∗∗ < wc. Then, equations (4.16) and (4.17) deliver the evolution of the
equilibrium real wage in Regime 0 as

ŵt+1 = A
2
3
t [s (ŵt)]

1
3 for ŵt ≤ s−1

(
w3

c

A2
t

)
, (4.20)

where the latter inequality assures that ŵt+1 ≤ wc.

As seen above, ŵt increases over time in Regime 0 even without technological
progress. However, technological progress prevents the economy from converg-
ing to the steady state of Proposition 6 since the right-hand side of the difference
equation (4.20) shifts up by a factor (1 + gA)

2/3 between any pair of periods t and
t + 1.

Instead, there is a finite tc at which ŵtc > s−1 (w3
c /A2

tc

)
so that (4.20) prescribes

a real wage wtc+1 > wc. This is illustrated in Figure 4.3. However, since wtc+1

falls into Regime 1 it is not the equilibrium wage of period tc + 1. Intuitively,
at tc + 1 individuals realize that the real wage is so high that they want to re-
duce their supply of hours worked. Accordingly, the aggregate supply of hours
worked becomes Hs

tc+1 of (4.4) for wtc+1 > wc. Equating the latter with the aggre-
gate demand for hours worked, Hd

tc+1 of (4.3), delivers the labor market equilib-
rium

(
ŵtc+1, Ĥtc+1

)
. Here, ŵtc+1 > wtc+1 since the decline in the supply of hours

worked increases the equilibrium wage.

16To be precise, it is not difficult to show that in Regime 0 consumption when young, cy(wt),
is strictly smaller than cy(wt) = wt/(1 + β) that results for ν = 0 (see Footnote 10). Then, the
budget constraint when young implies that s(wt) for ν > 0 must exceed s(wt) = βwt/ (1 + β)

obtained for ν = 0.
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At tc + 1 the capital stock and the level of technological knowledge will be Ktc+1

and Atc+1, respectively. Hence, ktc+1 = Ktc+1/
(

A1−ν
tc+1

)
as Lt = 1 for all t. It satis-

fies ktc+1 > kc,tc+1 and serves as the initial condition for the dynamical system of
Regime 1 as outlined in Proposition 4. Using (4.6) the latter can be expressed as

ŵt+1

At+1
=

(
1

3(1 + gA)3/4

) 4
11

·
(

ŵt

At

) 3
11

, t = tc + 1, tc + 2, tc + 3... (4.21)

Proposition 7 (Dynamical System with Exogenous Technological Progress)

Consider the intertemporal general equilibrium of Section 4 under (4.14) - (4.17). If the
economy starts in Regime 0 with initial conditions such that ŵ1 < ŵ∗∗ < wc then it
switches in finite time into Regime 1 and remains there. The sequence {ŵt/At}∞

t=tc+1
generated by (4.21) converges monotonically with

lim
t→∞

(
ŵt

At

)
=

1√
2 (1 + gA)

3/4
. (4.22)

Hence, technological progress drives the economy out of the poverty Regime 0.
The advantages of productivity growth are not confined to the possibility to buy
larger amounts of the consumption good. They also open the opportunity to
enjoy more leisure.

5 Neoclassical Endogenous Economic Growth

Romer (1986) argues that endogenous steady-state growth of per-capita variables
is consistent with the neoclassical growth model if the accumulation of techno-
logical knowledge occurs as a byproduct of capital accumulation and the labor
supply is time-invariant. Key to the argument is a linear relationship linking the
level of technological knowledge to the contemporaneous stock of capital, a con-
stant population, and an exogenous supply of hours worked.17

17Roughly speaking the argument is as follows. Consider a neoclassical aggregate production
function Yt = F (Kt, AthtLt). If technological knowledge obeys At = Kt and ht = h then Yt =

KtF (1, hLt). Moreover, the equilibrium factor prices paid in the competitive production sector
are r̂t = F1 (1, hLt) and ŵt = KtF2 (1, hLt). Hence, if Lt = L then the marginal product of capital
is constant whereas Yt and wt grow at the same rate as Kt.
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Figure 4.3: The Switch between Regime 0 and 1.
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Note: At tc the equilibrium in the labor market is (ŵtc , 1). Then, the difference equation (4.20) delivers
wtc+1 > wc which is the intersection between Hd

tc+1 and Hs
tc
= 1. However, for wage levels greater than wc

the equilibrium expression for the aggregate supply of hours worked is Hs
tc+1. Accordingly, the labor market

equilibrium in period tc + 1 is (ŵtc+1, Ĥtc+1) where ŵtc+1 > wtc+1.

This section asks whether Romer’s argument still delivers endogenous steady-
state growth if individuals reduce their supply of hours worked in response to
a rising wage as described by Regime 1 of Proposition 2. Does this behavioral
feature interact with the so-called “scale effect”? To address these issues, the
production sector of Section 3.2 needs to be adapted to Romer’s setting.

Consider a continuum [0, 1] of identical competitive firms. At all t, firm i ∈ [0, 1]
produces output Yt(i) according to the production function

Yt(i) = ΓKt(i)γ (AtHt(i))
1−γ , Γ > 0, 0 < γ < 1, (5.1)

where Kt(i) is physical capital and Ht(i) the amount of hours of work employed
by this firm. In each period, firms choose Kt(i) and Ht(i) to maximize the net-
present value of profits taking {At}∞

t=1, the evolution of technological knowledge,
as given. The corresponding first-order conditions are

wt = Γ(1 − γ)Kt(i)γ A1−γ
t Ht(i)−γ and rt = ΓγKt(i)γ−1 (AtHt(i))

1−γ . (5.2)
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Technological knowledge at t, At, is a function of the aggregate capital stock

At = Kζ
t , ζ > 0. (5.3)

The latter generalizes the discussion in Romer (1986) allowing for values of ζ ̸= 1.

The labor market requires again a special treatment since both the labor demand
and the labor supply of hours worked are decreasing in the real wage. To see this
here, evaluate the first condition for hours worked in (5.2) at (5.3) and sum over
firms. This gives the firms’ aggregate demand for hours worked at t as

Hd
t = K

1+ζ 1−γ
γ

t

(
Γ(1 − γ)

wt

) 1
γ

. (5.4)

The aggregate supply of hours worked, Hs
t , is still given by (4.4). Let

Kc ≡
[

wcLγ

Γ(1 − γ)

] 1
γ+ζ(1−γ)

. (5.5)

Then, the labor market equilibrium at t,
(
ŵt, Ĥt

)
, is given by

ŵt =





(
Γ(1−γ)
(wν

c L)γ

) 1
1−γν · K

γ+ζ(1−γ)
1−γν

t if Kt ≥ Kc,

Γ(1−γ)
Lγ · Kγ+ζ(1−γ)

t if Kt ≤ Kc,

(5.6)

and

Ĥt =





(
wν

c L
(Γ(1−γ))ν

) 1
1−γν · K

−ν
(

γ+ζ(1−γ)
1−γν

)

t if Kt ≥ Kc,

L · 1 if Kt ≤ Kc.

(5.7)

Hence, for Kt ≥ Kc the aggregate demand for hours worked induces an equilib-
rium wage ŵt ≥ wc. Accordingly, the expressions for ŵt and Ĥt reflect a supply
of hours worked that declines in the real wage. For Kt ≤ Kc the equilibrium wage
satisfies ŵt ≤ wc and the equilibrium level of employment is L.

The accumulation of capital is described by (4.8). Let gK ≡ Kt+1/Kt − 1 denote
the time-invariant growth rate of the capital stock and assume that

β

(1 + β)(1 − ν)
·
[
(wν

c · L)1−γ · (Γ(1 − γ))1−ν
] 1

1−γν
> 1. (5.8)
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Proposition 8 (Neoclassical Endogenous Steady-State Growth)

Suppose that (5.8) holds and let K1 > Kc. Then, for all t = 1, 2, ..., ∞, the

1. growth rate of the capital stock is time-invariant and strictly positive if and only if

ζ =
1

1 − ν
,

2. growth factors of individual and aggregate variables satisfy

a)
ŵt+1

ŵt
=

At+1

At
= (1 + gK)

1
1−ν and r̂t = r̂,

b)
ht+1

ht
=

Ĥt+1

Ĥt
= (1 + gK)

−ν
1−ν ,

c)
Yt+1

Yt
=

cy
t+1

cy
t

=
co

t+1
co

t
=

st+1

st
= 1 + gK.

The first claim of Proposition 8 highlights a key contrast to Romer’s argument. If
individuals reduce their supply of hours worked in response to a rising wage as
in Regime 1 of Proposition 2 then endogenous steady-state growth requires the
relationship between the level of technological knowledge and the contempora-
neous stock of capital to be strictly convex. More precisely, steady-state growth is
possible if and only if

At = K
1

1−ν
t . (5.9)

Hence, the level of technological knowledge has to grow faster than the capital
stock. This suggest the presence of complementarities in the process of decentral-
ized knowledge creation.

On the one hand, ζ = 1/(1 − ν) assures that the growth factor of capital is equal
to the growth factor of aggregate savings. Indeed, absent of population growth
the growth factors of aggregate and individual savings coincide and are equal
to the growth factor of the individual wage income, ŵtht. Then, with (5.6) and
Proposition 2 one readily verifies that

ŵt+1ht+1

ŵtht
=

(
ŵt+1

ŵt

)1−ν

= (1 + gK)

(
γ+ζ(1−γ)

1−γν

)
(1−ν)

The exponent is only equal to 1 if ζ = 1/(1 − ν).
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On the other hand, ζ = 1/(1 − ν) assures that aggregate output is linked to the
capital stock through a time-invariant factor of proportionality. To see this con-
sider the neoclassical production function with Lt = L

Yt = F (Kt, AthtL) = KtF
(

1,
Atht

Kt
L
)

.

Hence, Yt is linear in Kt if Atht/Kt remains constant over time. Using (5.3), Propo-
sition 2, and (5.6) the growth factor of this ratio can be expressed as

(
At+1

At

)(
ht+1

ht

)(
Kt+1

Kt

)−1

= (1 + gK)
ζ (1 + gK)

−ν
(

γ+ζ(1−γ)
1−γν

)
(1 + gK)

−1.

The exponents vanish only if ζ = 1/(1 − ν). Hence, technological knowledge
has to grow faster than capital to outweigh the decline in hours worked. As a
consequence, aggregate output grows at the same rate as capital.

Observe that

gK =
β

(1 + β)(1 − ν)
·
[
(wν

c · L)1−γ · (Γ(1 − γ))1−ν
] 1

1−γν − 1. (5.10)

This expression reflects the time-invariant parameters that determine the individ-
ual propensity to save as well the equilibrium wage level at all t. Condition (5.8)
assures that gK > 0. Moreover, the scale effect survives: gK increases in L.

As shown in Claim 2, ζ = 1/(1− ν) also assures a common growth rate of wages
and technological knowledge and a constant rental rate of capital. Hence, the
labor share, ŵtĤt/Yt, as well as the capital share, r̂Kt/Yt are constant.

Corollary 2 (Boppart-Krusell Balanced Growth Path in Romer (1986))

The steady-state path of Proposition 8 is a Boppart-Krusell Balanced Growth Path.

These findings extend and complement those of Duranton (2001). In particular,
they reveal that BK-gll preferences in conjunction with ζ = 1/(1 − ν) delivers
positive and sustained growth in spite of the complementarity between leisure
and consumption.
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6 Concluding Remarks

To a first approximation the growth performance of today’s industrialized coun-
tries since 1870 may be described as an evolution along a Kaldorian balanced
growth path (Kaldor (1961)). Yet, as suggested by Boppart and Krusell (2020),
this notion should be extended to include the decline in the amount of hours
worked per worker observed in these countries. The present paper accomplishes
this with an OLG-model featuring two-period lived individuals equipped with
per-period utility functions of the generalized log-log type of Boppart and Krusell
(2020) and a neoclassical production sector that features either exogenous or en-
dogenous technological progress.

My analysis suggests several directions for future research. One concerns the
role of government policies that may affect the supply of hours worked through
payroll taxes, pension schemes, or differential labor market regulations (Prescott
(2004)). A second concerns the recent literature on the structural properties of
balanced growth paths (see, e. g., Grossman, Helpman, Oberfield, and Sampson
(2017), Grossman, Helpman, Oberfield, and Sampson (2021), or Casey and Horii
(2022)). These contributions focus on capital-augmenting technical change and
human capital accumulation. None of them includes a declining amount of hours
worked as a balanced-growth phenomenon. Future research may reveal whether
these phenomena can be combined in a unified framework.
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7 Appendix

7.1 Proof of Proposition 1

The demands maximize U (cy, l, co) subject to cy + wl + co/R = w, i. e., they solve

max
cy∈[0,w],l∈[0,1]

U (cy, l, R (w(1 − l)− cy)) .

Under the assumptions made on U this problem has a unique interior solution given by the first-
order conditions

cy : U1 − RU3 = 0 and l : U2 − RwU3 = 0, (7.1)

where U is evaluated at (cy, l, R (w(1 − l)− cy)). Total differentiation of the two equations (7.1)
delivers the comparative statics

dcy

dw
=

Dcy
w

D
,

dl
dw

=
Dl

w
D

,
dcy

dR
=

Dcy

R
D

, and
dl
dR

=
Dl

R
D

,

where D, Dcy
w , Dl

w, Dcy

R , and Dl
R are the following determinants

D =

∣∣∣∣∣∣∣∣∣

U11 + R2U33 U12 + R2wU33

U21 + R2wU33 U22 + R2w2U33

∣∣∣∣∣∣∣∣∣
, (7.2)

Dcy

w =

∣∣∣∣∣∣∣∣∣

R2(1 − l)U33 U12 + R2wU33

R (U3 + Rw(1 − l)U33) U22 + R2w2U33

∣∣∣∣∣∣∣∣∣
, (7.3)

Dl
w =

∣∣∣∣∣∣∣∣∣

U11 + R2U33 R2 (1 − l)U33

U21 + R2wU33 R (U3 + Rw(1 − l)U33)

∣∣∣∣∣∣∣∣∣
, (7.4)

Dcy

R =

∣∣∣∣∣∣∣∣∣

U3 + R (w(1 − l)− cy)U33 U12 + R2wU33

w (U3 + R (w(1 − l)− cy)U33) U22 + R2w2U33

∣∣∣∣∣∣∣∣∣
, (7.5)

Dl
R =

∣∣∣∣∣∣∣∣∣

U11 + R2U33 U3 + R (w(1 − l)− cy)U33

U21 + R2wU33 w (U3 + R (w(1 − l)− cy)U33)

∣∣∣∣∣∣∣∣∣
, (7.6)

37



all evaluated at the demands.

Since U is strictly quasi-concave it follows with (7.2) that

D = U11

(
U22 + R2w2U33

)
+ R2U33U22 − (U12)

2 − 2R2wU12U33 > 0.

As to Dcy
w I have from (7.3) that

Dcy

w = −R2U33U2

[
1 − U12

U1

1
η3

co

Rw
+

(−U22

U2
+

U12

U1

)
(1 − l)

]
.

Since U33 < 0 and D > 0 the sign of dcy/dw is determined by the stated condition.

As to Dl
w I find from (7.4) that

Dl
w = −R2U33U1

[
−1 − η1

η3

co

Rcy +

(
η1

w
cy +

U21

U1

)
(1 − l)

]
.

Since the term preceding the brackets is strictly positive and D > 0 the sign of dl/dw is deter-
mined by the stated condition.

As to Dcy

R , (7.5) delivers

Dcy

R = U3 (1 − η3) (U22 − wU12) .

Since U3 > 0 and D > 0 the sign of dcy/dR is determined by the stated condition.

As to Dl
R I obtain from (7.6) that

Dl
R = −U3 (1 − η3) (−wU11 + U21) .

Since U3 > 0 and D > 0 the sign of dl/dR is determined by the stated condition. ■

7.2 Proof of Lemma 1

Claim 1 The marginal utility of consumption when young is given by

U1 =
(1 − ν) (1 − ϕx)− νκϕx

cy(1 − ν)(1 − ϕx)
. (7.7)

Since limcy→0 x = limcy→0(1 − l) (cy)
ν

1−ν = 0 it holds that limcy→0 U1 = ∞. The denomina-
tor of (7.7) is positive for all (cy, l) ∈ D. The stated condition for U1 > 0 is then necessary
and sufficient for the numerator to be strictly positive. Moreover, from (7.7) one readily
verifies that

U11 = −1 − ν − ϕx(1 − ν(1 − κ))

(cy)2 (1 − ν)(1 − ϕx)
− κν2ϕx

(cy)2 (1 − ν)2(1 − ϕx)2
< 0. (7.8)

Claim 2 The marginal utility of leisure when young is given by

U2 =
κϕ (cy)

ν
1−ν

1 − ϕx
. (7.9)
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Since liml→0 x = (cy)
ν

1−ν > 0 it holds that liml→0 U2 = κϕ (cy)
ν

1−ν /
(

1 − ϕ (cy)
ν

1−ν

)
< ∞.

The denominator of (7.9) is strictly positive for all (cy, l) ∈ D. Hence, U2 > 0. Moreover,
from (7.9) one readily verifies that

U22 = −κϕ2 (cy)
2ν

1−ν

(1 − ϕx)2 < 0. (7.10)

Claim 3 Consider the leading principal minors of the Hessian matrix of U (cy, l, co), i. e.,

D1 (cy, l, co) = − (1 − ν − ϕx)2 + νϕx (1 − ϕx + (1 − κ) (1 + (1 − ν)ϕx))

(cy(1 − ν) (1 − ϕx))2 ,

D2 (cy, l, co) =
κϕ2 (1 − 2ν + (1 − κ)ν2 − (1 − ν) (1 − (1 − κ)ν) ϕx

)

(cy)
2(1−2ν)

1−ν (1 − ν)2 (1 − ϕx)3
,

D3 (cy, l, co) = − β

(co)2 D2 (cy, l, co) .

First, we have −D1 (cy, l, co) > 0 since 1 − ϕx > 0 and κ ≤ 1. Second, D2 (cy, l, co) > 0 and
−D3 (cy, l, co) > 0 hold since the denominator in both expressions is strictly positive and
the numerator is positive if and only if (3.4) holds. This implies strict concavity. ■

7.3 Proof of Proposition 2

For ease of notation I shall suppress the time argument. First, I establish relevant properties of the
solution to the constraint maximization problem (3.5) with (3.6) in Lemma 2. The latter implies
that the solution to the constraint maximization problem can be derived as the solution to an
unconstraint maximization problem. For this problem, I determine the candidate solution from
the first-order conditions. Then, I prove in turn the findings stated in the proposition for Regime
0 and Regime 1 and establish the continuity of the piecewise defined optimal plan. Finally, I show
that the second-order conditions for both regimes holds under Assumption 1.

Lemma 2 (Properties of the Optimal Plan)

Suppose (cy, l, co, s) is an optimal plan. Then,

cy > 0, l ∈ [0, 1), co > 0, s > 0, cy + s = w(1 − l), and co = Rs.

Proof of Lemma 2

Since limco→0 ∂U/∂co = ∞ the optimal plan involves co > 0. This requires s > 0 and l < 1.
As ∂U/∂co > 0 for all co > 0 the two budget constraints will hold as equalities. As shown
in Lemma 1, the marginal utility of cy satisfies limcy→0 ∂U/∂cy = ∞. Hence, the optimal plan
involves cy > 0. ■

Hence, the two budget constraints may be consolidated to cy + wl + co/R = w. The latter pins
down co for any given choice (cy, l). Accordingly, the choice set may be stated as S = {(cy, l, co) ∈
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R+× [0, 1]×R+, cy +wl + co/R = w} which is a compact subset of R3
+. Then, in light of Lemma 2

the optimal plan may be characterized with the solution to the unconstrained problem

max
(cy ,l)∈D̂

Û (cy, l, R (w(1 − l)− cy)) = ln cy + κ ln
(

1 − ϕ (1 − l) (cy)
ν

1−ν

)

(7.11)

+ β ln R (w(1 − l)− cy) ,

where D̂ = {(cy, l) ∈ R++ × [0, 1] \ B, cy < w(1 − l)} is the domain of Û. Since Û is continuous
on D̂ Weierstrass’s Theorem assures the existence of a global maximum (cy, l) ∈ D̂.

According to Lemma 2 a corner solution may only arise at l = 0. Accounting for this, the respec-
tive first-order necessary conditions to (7.11) read

Û1 = U1 −
β

w(1 − l)− cy = 0, (7.12)

Û2 = U2 −
βw

w(1 − l)− cy ≤ 0, with “<” only if l = 0. (7.13)

Observe that condition (7.12) may be expressed as

cy =

(
(1 − ν) (1 − ϕx)− νκϕx

(1 − ν) (1 + β) (1 − ϕx)− νκϕx

)
w(1 − l). (7.14)

Regime 0: Suppose some cy > 0 and l = 0 solve (7.11). Then, cy is given by (3.8) which is (7.14)
evaluated at l = 0. One readily verifies that (3.8) assigns to each value w ∈ (0, wc) a unique cy > 0.
An application of the implicit function theorem to (3.8) establishes the existence of a C1 function
w 7→ cy(w) where cy : (0, wc) → (0, wc) with (cy)′ (w) > 0. Then, as indicated in the proposition,
the functions s (wt) and co (wt, Rt+1) follow from the respective periodic budget constraint (3.6).

At the boundaries of its domain the function cy(w) has the following properties.

Lemma 3 (Limits of cy(w))

It holds that

lim
w↓0

cy(w) = 0 and lim
w↑wc

cy(w) =

(
(1 + β) (1 − ν)

ϕ (κ + (1 + β) (1 − ν))

) 1−ν
ν

≡ cy(wc). (7.15)

Proof of Lemma 3

Consider (3.8). Then, the first limit follows since x = (cy)
ν

1−ν , hence, limcy→0 x = 0 and

lim
cy→0

(1 − ν) (1 − ϕx)− νκϕx
(1 − ν) (1 + β) (1 − ϕx)− νκϕx

=
1

1 + β
> 0. (7.16)

The proof of the second limit is more involved. In addition to (3.8), Regime 0 requires (7.13) to
hold for l = 0. The latter may be expressed as

cy ≥ w
(

1 − β

κ
· 1 − ϕx

ϕx

)
. (7.17)
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Replacing cy by (3.8) gives

(1 − ν) (1 − ϕx)− νκϕx
(1 − ν) (1 + β) (1 − ϕx)− νκϕx

≥ 1 − β

κ
· 1 − ϕx

ϕx
. (7.18)

The left-hand side of this inequality defines a C1 function x 7→ LHS(x) where LHS : [0, x̄] → R+.
Here, x̄ ≡ (1 − ν) / (ϕ (1 − ν (1 − κ))), i. e., in accordance with condition (3.3), at x = x̄ it holds
that ∂U/∂cy = 0 . Then, one readily verifies that

LHS(0) =
1

1 + β
, LHS(x̄) = 0, and LHS′(x) < 0. (7.19)

Similarly, the right-hand side of inequality (7.18) defines a C1 function x 7→ RHS(x) where RHS :
(0, x̄] → R+. With Assumption 1 the function RHS satisfies

lim
x→0

RHS(x) = −∞, RHS(x̄) =
1 − ν (1 + β)

1 − ν
> 0, and RHS′(x) > 0. (7.20)

Accordingly, there is a unique xc ∈ (0, x̄) such that LHS(xc) = RHS(xc), i. e.,

xc =
(1 + β) (1 − ν)

ϕ (κ + (1 + β) (1 − ν))
. (7.21)

Hence, for all x ∈ [0, xc] we have LHS(x) ≥ RHS(x) and conditions (7.12) and (7.13) are satisfied.
From the definition of x it follows that the level of consumption when young corresponding to xc

is

cy
c = x

1−ν
ν

c =

(
(1 + β) (1 − ν)

ϕ (κ + (1 + β) (1 − ν))

) 1−ν
ν

. (7.22)

Using the latter in (3.8) reveals that the critical level of consumption, cy
c , is attained at w = wc. It

follows that cy
c = cy(wc) and limw↑wc cy(w) = cy(wc) as claimed. ■

Regime 1: Next, consider the interior solution involving cy > 0 and l > 0. Then, conditions (7.12)
and (7.13) have to hold as equality and determine cy and l. The following algorithm delivers the
closed-form solutions stated under Regime 1 in the proposition. Given x, (7.12) and (7.13) imply

cy =

(
(1 − ν)(1 − ϕx)− νκϕx

κ(1 − ν)ϕx

)
w(1 − l). (7.23)

The latter, in conjunction with either (7.12) or (7.13), determines

ϕx =
(1 + β)(1 − ν)

κ + (1 + β) (1 − ν)
∈ (0, 1). (7.24)

Hence, all pairs (cy, l) ≫ 0 that satisfy (7.12) and (7.13) also satisfy

cy =

(
(1 + β)(1 − ν)

ϕ (κ + (1 + β)(1 − ν)) (1 − l)

) 1−ν
ν

. (7.25)

Next, use (7.24) to replace ϕx in (7.23). This gives the expression for cy stated in (3.10). Combining
the latter with (7.25) using h = 1 − l gives

h =
(1 + β)(1 − ν)

(ϕ (κ + (1 + β)(1 − ν)))1−ν (1 − ν(1 + β))ν
w−ν (7.26)
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and

cy =

(
1 − ν(1 + β)

ϕ (κ + (1 + β)(1 − ν))

)1−ν

w1−ν. (7.27)

Straightforward algebraic manipulations of (7.26) and (7.27) using wc deliver the two expressions
for cy

t and ht stated in the proposition. The expressions for st and co
t+1 follow from the respective

periodic budget constraints. Moreover, l = 1 − h.

Evaluation of (7.26) at w = wc gives h = 1, hence, l = 0. Moreover, evaluation of (7.27) at w = wc

gives cy
c = cy(wc) of (7.22). Hence, the optimal plan is piecewise defined and the functions of (3.7)

are indeed continuous.

Finally, consider the second order conditions for both regimes. One readily verifies that

Û11 = U11 −
β

(w(1 − l)− cy)2 < 0,

Û22 = U22 −
βw2

(w(1 − l)− cy)2 < 0,

Û12 = U12 −
βw

(w(1 − l)− cy)2 ,

where the two signs follow from Lemma 1. It remains to be shown that

Û11Û22 −
(
Û12

)2
> 0. (7.28)

Using the above expressions, one readily verifies that (7.28) is satisfied whenever

U11U22 − (U12)
2 >

β

(w(1 − l)− cy)2

(
w2U11 + U22 − 2wU12

)
. (7.29)

Since U12 > 0 (see Footnote 8) the right-hand side of this inequality is negative.

Regime 0: Under Assumption 1, each pair (cy, l) = (cy(w), 0) that solves (7.11) for w ∈ (0, wc)

satisfies inequality (3.4), i. e., U is strictly concave. To see this consider (3.4) for x = (cy(w))
ν

1−ν .
Since cy(w) is increasing in w with limw↑wc cy(w) = cy(wc) strict concavity is satisfied whenever

cy(wc)
ν

1−ν =
(1 + β) (1 − ν)

ϕ (κ + (1 + β) (1 − ν))
<

1 − 2ν + (1 − κ)ν2

ϕ(1 − ν) (1 − ν(1 − κ))
. (7.30)

One readily verifies that the latter inequality holds if and only if Assumption 1 holds, i. e., ν ∈
(0, ν̄ (β, κ)).

From Lemma 2 the solution to (7.11) must involve cy > 0 and co > 0. Hence, alternative candidate
solutions on the boundary of S can be excluded. Accordingly, under Assumption 1 any pair
(cy(w), 0) that satisfies (7.12) and (7.13) for w ∈ (0, wc) identifies a global maximum of Û on S .

Regime 1: Some tedious computations reveal that (7.28) when evaluated at (7.26) and (7.27)
gives18

Û11Û22 −
(
Û12

)2
=

ϕ2(1 − ν(1 + β))(κ + (1 + β)(1 − ν))3

(cy)
2(1−2ν)

1−ν βκ(1 − ν)2
.

18The computations were supported by Mathematica. The notebook is available upon request.
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The latter is strictly positive if and only if ν < 1/(1+ β). Since 1/(1+ β) > ν̄ (β, κ), Assumption 1
assures that any pair (cy(w), l(w)) that satisfies (7.12) and (7.13) for w > wc identifies a global
maximum of Û on D̂.

From Lemma 2 the solution to (7.11) has cy > 0 and co > 0. Hence, alternative candidate solutions
that may lie on the boundary of S can be excluded. Accordingly, under Assumption 1 any pair
(cy, l) that satisfies (7.12) and (7.13) for w > wc identifies a global maximum of Û on S . ■

7.4 Proof of Proposition 3

For Regime 0 one obtains the comparative statics for ϕ and β from a straightforward application
of the implicit function theorem.

Consider Regime 1. Since ∂wc/∂ϕ < 0 it holds that ∂ht/∂ϕ < 0. Moreover, since ∂wc/∂β > 0 it
holds that ∂ht/∂β > 0. For cy

t , ∂cy
t /∂ϕ < 0 and ∂cy

t /∂β < 0 are immediate from (7.27).

As to st one has from (3.10) that ∂st/∂ϕ < 0 since ∂ht/∂ϕ < 0. Moreover, since the marginal
propensity to save and ht increase in β we have ∂st/∂β > 0. Finally, consider co

t+1. Since co
t+1 =

Rt+1st, the qualitative results of the comparative statics for st apply here, too. ■

7.5 Proof of Proposition 4

To derive (4.10) use Proposition 2 and the equilibrium wage, ŵt, to express (4.8) as

β
[
wν(1−γ)

c (Γ(1 − γ))1−ν
] 1

1−γν

(1 + β)(1 − ν)
A1−ν

t Ltk
γ(1−ν)
1−γν

t = Kt+1.

Division by A1−ν
t+1 Lt+1 delivers the desired result. Since γ(1 − ν)/ (1 − γν) < 1 the sequence

{kt}∞
t=1 is monotonous and the steady state is stable. ■

7.6 Proof of Proposition 5

Statements a) - c) follow from Proposition 2, the capital market equilibrium condition (4.8), and
the production function (3.12). Statement d) follows since gA > 0 implies ∂g∗/∂ν < 0. ■

7.7 Proof of Corollary 1

From c) the capital-output ratio is constant. Since r̂t = r̂ the capital share, r̂Kt/Yt, is constant.
Moreover, the real return factor on savings is R̂ = 1 − r̂ − δ and constant. With gw = gA, a), and
c) the labor share, ŵtĤt/Yt is constant. The latter implies that output per hour worked, Yt/Ĥt/,
and output per worker, Yt/Lt/ grow at a constant rate. Finally, from a) the individual supply of
hours worked grows at rate (1 + gA)

−ν − 1 < 0. ■
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7.8 Proof of Proposition 6

First, consider the existence of a unique steady state ŵ∗∗ ∈ (0, 1) for equation (4.18). Consumption
when young, cy(w), is implicitly given by (3.8), i. e., for the indicated parameter values

cy


1 +

1 − 1
2

(
3cy

2

) 1
3

3 − 2
(

3cy

2

) 1
3


 = w. (7.31)

Hence, limw→0 cy(w) = 0, limw→0 (cy)′ (w) = 3/4, and cy(1) = 2/3. For Regime 0 the budget
when young dictates s = w − cy. Accordingly, s (w) satisfies

s (w) = cy(w)




1 − 1
2

(
3cy(w)

2

) 1
3

3 − 2
(

3cy(w)
2

) 1
3


 (7.32)

with limw→0 s(w) = 0, limw→0 s′(w) = 1/4, and s(1) = 1/3. Hence, with Proposition 2 and (3.11)
the function s(w) is continuous and strictly increasing on w ∈ [0, 1]. It follows that equation (4.18)
has at least one fixed point. To see that there is one and only one fixed point ŵ∗∗ > 0 write (4.18)
as

w3 = s(w). (7.33)

The left-hand side of (7.33), LHS(w), is strictly convex on [0, 1] with LHS(0) = LHS′(0) = 0,
LHS(1) = 1, and LHS′(1) = 3. With the properties of s(w) established above there must be one
and only one w ∈ (0, 1) that satisfies (7.33). Computations reveal that ŵ∗∗ = 0.55 < 1(= wc) and
s (ŵ∗∗) = 0.167.

Second, consider the local stability of the steady state. From (4.18) one has

dŵt+1

dŵt
=

1
3

(
s′ (ŵt)

[s (ŵt)]
2
3

)
.

Using (7.31) and the budget constraint when young, the function s (wt) satisfies

16(wt − s)− 5 · 22/3 · 3
√

3 · (wt − s)4/3

12 − 4 · 22/3 · 3
√

3 · 3
√

wt − s
− wt = 0.

Then, implicit differentiation and evaluation at the steady state delivers s′(ŵ∗∗) = .339. Hence,
with (4.18)

dŵt+1

dŵt

∣∣∣∣
ŵt=ŵ∗∗

=
1
3

(
s′(ŵ∗∗)

[s (ŵt)]
2
3

)
= 0.372 < 1.

Accordingly, the steady state is locally stable.

Finally, the global stability over the domain wt ∈ (0, 1) follows since s(0) = 0, s(1) = 1/3,
s′(w) > 0, and

lim
ŵt→0

dŵt+1

dŵt
= ∞.

■
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7.9 Proof of Proposition 7

Given in the main text. ■

7.10 Proof of Proposition 8

Claim 1 “⇒”: Consider (4.8) in conjunction with Proposition 2 and (5.6). Then, the evolution of Kt

obeys

Kt+1 =
β
[
(wν

c · L)1−γ (Γ(1 − γ))1−ν
] 1

1−γν

(1 + β)(1 − ν)
· K

1−ν
1−γν (γ+ζ(1−γ))

t . (7.34)

Hence, if ζ = 1/(1 − ν) then Kt+1/Kt = 1 + gK is time-invariant and given by (5.10).
Moreover, under the stated condition gK is strictly positive.

“⇐”: Consider some gK > 0. Then, from (4.8) and Proposition 2 with Lt = L it must be
that

1 + gK ≡ Kt+1

Kt
=

st+1

st
=

(
ŵt+1

ŵt

)1−ν

.

Since Kt > Kc this requires

1 + gK = (1 + gK)
(1−ν) γ+ζ(1−γ)

1−γν . (7.35)

The latter equation may have a solution for gK > 0 only if

1 = (1 − ν)
γ + ζ(1 − γ)

1 − γν
⇒ ζ =

1
1 − ν

. (7.36)

Claim 2 The growth factor of equilibrium wages follows from (4.6). The equilibrium rental rate

follows from (5.2) and is equal to r̂t = Γ · γ · K
ν(1−γ)

1−ν
t · Ĥ1−γ

t . Then, with (5.7) one finds

that r̂t+1/r̂t = 1 and r̂ = Γ · γ · K
ν(1−γ)

1−ν
1 · Ĥ1−γ

1 . Absent of population growth, the growth
factors of ht and Ĥt must coincide. They follow immediately from Proposition 2 and the
growth factor of ŵt. The same is true for the growth factors of individual consumption and
savings. The growth factor of Yt is explained in the main text. ■

7.11 Proof of Corollary 2

From 2.c) the capital-output ratio is constant. Since r̂t = r̂ the capital share, r̂Kt/Yt, is con-
stant. Moreover, the real return factor on savings is R̂ = 1 − r̂ − δ and constant. From 2.a)
gw = (1 + gK)

1/(1−ν). In conjunction with 2.b) and 2.c) the labor share, ŵtĤt/Yt, is constant. The
latter implies that output per hour worked, Yt/Ĥt, and output per worker, Yt/L, grow at a con-
stant rate if gK > 0, i. e., the corresponding condition under 1. is satisfied. Finally, from 2.b) the
individual supply of hours worked grows at rate (1 + gK)

−ν/(1−ν) − 1 < 0. ■
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