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A B S T R A C T
Space missions to Near Rectilinear Halo Orbits (NRHOs) in the Earth-Moon system are upcoming.
A rendezvous technique in cislunar space is proposed in this investigation, one that leverages coupled
orbit and attitude dynamics in the Circular Restricted Three-body Problem (CR3BP). An autonomous
Guidance, Navigation and Control (GNC) technique is demonstrated in which a chaser spacecraft
approaches a target spacecraft in a sample southern 9:2 synodic-resonant L2 NRHO, one that
currently serves as the baseline for NASA’s Gateway. A two-layer guidance and control approach is
contemplated. First, a nonlinear optimal controller identifies an appropriate baseline rendezvous path
for guidance, both in position and orientation. As the spacecraft progresses along the pre-computed
baseline path, navigation is performed through optical sensors that measure the relative pose of the
chaser relative to the target. A Kalman filter processes these observations and offers state estimates.
A linear controller compensates for any deviations identified from the predetermined rendezvous
path. The efficacy of the GNC technique is tested by considering a complex scenario in which
the rendezvous operation is conducted with an uncontrolled tumbling target. Hardware-in-the-loop
laboratory experiments are conducted as a proof-of-concept to validate the guidance algorithm, with
observations supplemented by optical navigation techniques.

1. Introduction
The ongoing Cislunar Autonomous Positioning System

Technology Operations and Navigation Experiment (CAP-
STONE) mission and NASA’s planned Gateway mission
are to be established along a Near Rectilinear Halo Orbit
(NRHO) in cislunar space [1]. The growing interest in ex-
ploring cislunar space for various scientific reasons offers
opportunities to test and advance rendezvous operations,
thereby improving the sustainability of such missions. The
Gateway, for example, is currently being developed as a
long-lasting modular space hub, offering potential human
residence beyond the International Space Station (ISS). The
Gateway is further expected to serve as a testing station for
systems and equipment and offers logistical support for var-
ious future missions to Mars and beyond [2]. Consequently,
life-support systems for the crew, essential pressurized and
unpressurized cargo, supplies, fuel, and advanced external
robotics equipment for science experiments will be trans-
ported and exchanged periodically. The Gateway facility is
planned to contain several docking ports for visiting mod-
ules, as well as space for scientific apparatus and stowage [3].
Further, CubeSat-sized vehicles such as CAPSTONE will
frequent operations in cislunar space supporting the less-
risky, inexpensive and large-scale applications that can be
exercised with the use of such smallsats. With activities in
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cislunar space becoming extensive, precise rendezvous and
docking techniques become essential.

A complete architecture is proposed for the guidance,
navigation and control (GNC) algorithm, and its compatibil-
ity with a real-world application is validated via hardware-
in-the-loop experiments in the ZeroG-Lab facility at the
University of Luxembourg. Scaled mockups of CubeSats are
mounted at the end-effectors of two robotic manipulators,
and the trajectory and attitude motion in cislunar environ-
ment are imparted to the robots’ end-effectors. In addition,
optical sensors in the form of a monocular camera mounted
on the chaser spacecraft identify semantic features on the
target spacecraft in actual time. Using the correspondence
of the detected keypoints in the known wireframe model
of the target, an Efficient Perspective-n-Point (EPnP) solver
estimates the relative pose of the target. A hardware-in-the-
loop test with closed feedback is performed to validate the
GNC architecture; a sample scenario represents the target
spacecraft tumbling with natural gravity gradient torques.
The results from the hardware-in-the-loop experiments offer
proof-of-concept for utilizing optical navigation methods for
planning rendezvous operations in cislunar environments,
and eventually in deep space.

A coupled orbit and attitude dynamics in the Circular
Restricted Three-body Problem (CR3BP) is leveraged to
achieve the close proximity operations in this investigation
[4–7]. The target body is considered to be stationed along
the 9:2 synodic resonant southern L2 NRHO in the Earth-
Moon system, comparable to the baseline trajectory for the
Gateway. In this investigation, however, the target spacecraft
is considered passive and does not have active controllers
to change its orbit or orientation. Nonetheless, the chaser
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spacecraft possesses active thrusters to deliver control ma-
neuvers to modify its course during the rendezvous process.
The effects of gravitational forces exerted by the Earth and
Moon are considered for both the target and the chaser
spacecraft. A two-layered guidance and control approach
facilitates the close proximity operations [8]. Firstly, a non-
linear optimal controller using an Interior-Point Optimiza-
tion (IPOPT) technique identifies a baseline rendezvous path
for guidance, i.e., a series of setpoints in both position
and orientation. Any deviations from this predetermined
baseline identified through pose estimation are subsequently
overcome by a linear controller. Navigation is performed
using optical instruments onboard the chaser that captures
the images of the target spacecraft in real-time. The procured
images are subsequently processed to retrieve relative pose
observations at regular intervals. The image acquisition and
pose estimation process happens concurrently as the chaser
spacecraft progresses towards the target. Uncertainties and
sudden fluctuations in pose observations are overcome by in-
corporating a Kalman filter to deliver precise state estimates
and run synchronously with the control algorithm [9].

This paper is organized as follows: Section 2 reviews
some of the previous contributions that serve as the founda-
tion for this investigation. Section 3 presents the equations of
motion for the spacecraft in the circular restricted three-body
problem, both orbit and attitude motion. Section 4 describes
the computation of an optimal rendezvous path for guidance.
The procedure for vision-based spacecraft navigation using
pose estimation is illustrated in Section 5. The process of
state estimation from filtering pose observations and de-
termination of subsequent corrective control maneuvers to
overcome deviations from the predicted path is presented
in Section 6. Section 7 presents the experimental setup
and the motion planning strategy for the hardware-in-the-
loop experiments. Section 8 describes the experiments and
lists significant results including lessons learned from the
hardware-in-the-loop experiments. Finally, some important
takeaways and concluding remarks are offered in Section 9.

2. Previous Contributions
There are numerous literature sources that demonstrate

autonomous rendezvous in near-Earth orbit, but such un-
manned autonomous operations have yet to be executed
in multi-body environments [10]. Rendezvous in a multi-
gravity environment is more complex and challenging due
to the increased forces involved. Several researchers have
explored the concept of cislunar rendezvous, particularly
through trajectory planning and optimization [7, 11–15].
The inclusion of attitude dynamics becomes crucial for the
final phase of the close proximity operations. With planned
missions, investigations that focus on coupled orbit and
attitude dynamics are upcoming [6, 10, 16, 17]. Relative
navigation employing vision is drawing attention to increas-
ing autonomy in space. Different approaches for relative
spacecraft pose estimation are available in literature [18–
22]. Hardware-in-the-loop tests are valuable for validating

operational feasibility and synchronizing with different sub-
systems, such as control algorithms, pose measurements and
robotic manipulation. There are several research test beds for
emulating motions in space, such as the GNC Rendezvous
and Landing Simulator (GRALS) at the European Space
Research and Technology Centre (ESTEC) in the Nether-
lands [23], the European Proximity Operations Simulator
(EPOS) at the German Aeronautics Centre (DLR) [24],
and the Testbed for Robotic Optical Navigation (TRON)
in Stanford University [25], among others. Rendezvous in
circular Earth orbits have been demonstrated at the EPOS
test facility [26]. However, a comprehensive approach for
integrating subsystems and in a more challenging cislunar
rendezvous scenario is still limited and is the focus of current
investigations.

3. Dynamics
Proximity operation in cislunar space is the point of

focus. The motion of the chaser and target spacecraft for
rendezvous operations are influenced by their location in
cislunar space and their relative position and orientation.
The dynamics for spacecraft motion are, thus, classified
into three categories: (1) Evolution of the orbital motion
of the target spacecraft expressed in terms of the circular
restricted three-body problem for the Earth-Moon system;
(2) Relative orbital motion of the chaser spacecraft relative
to the target spacecraft; and (3) Attitude dynamics for both
the spacecraft. For this investigation, the target spacecraft
is assumed passive (no active controllers); the orbit and
attitude motion evolve under natural gravitational forces and
gravity torques exerted by the Earth and Moon. On the
contrary, the chaser spacecraft is active; control maneuvers
(external acceleration and torques) alter its trajectory and
orientation.
3.1. Circular Restricted Three-Body Problem

In the case of a spacecraft in near-Earth orbits, a Keple-
rian solution is obtained by solving the two-body problem,
which considers the gravitational force exerted on the space-
craft by a single celestial body, i.e., the Earth. Spacecrafts
in cislunar region are however influenced primarily by the
two main gravitational forces due to the Earth and the Moon
concurrently [27]. The convenience of analytical closed-
form solutions in the form of conic trajectories in the two-
body problem is no longer available to describe motion in
cislunar space. The circular restricted three-body problem
(CR3BP) is fairly complete than the two-body problem but
offers an adequate approximation for the spacecraft dynam-
ics in the higher-fidelity model. The CR3BP offers a time-
invariant motion of a spacecraft by assuming that the two
primary bodies, the Earth and Moon, rotate in coplanar
circular orbits about their mutual barycenter, i.e., point O
[28]. The CR3BP model is expressed relative to a synodic
frame [S] and rotates about the inertial frame [I] at a constant
rate equal to the angular rate of revolution of the Earth and
Moon. The frame [S] is defined such that the unit vector
𝑖[S] points from the Earth towards the Moon, 𝑘̂[S] is along
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the positive orbital angular momentum direction, and finally,
𝑗[S] completes the right-hand coordinate system. The inertial
frame [I] shares the same origin as the synodic frame [S].
Figure 1 offers a schematic representation of the different
coordinate frames used in this investigation. Each of the
frames and their vector notation is summarized in Table
1. In the Earth-Moon system, the primary body P1 is the
Earth while the Moon is represented by P2. By convention,
the dynamical equations of motion for a spacecraft in the
CR3BP are modeled with the position and velocity quantities
non-dimensionalized using characteristic quantities. These
non-dimensionalized equations offer ease for the numeri-
cal computation of trajectories in the CR3BP. Further, the
characteristic length, 𝑙∗, is defined as the mean distance
between the Earth and Moon, while the characteristic time,
𝑡∗, is defined as the reciprocal of the mean motion along the
circular orbit of the primary bodies about their barycenter.
The approximate values for characteristic length, 𝑙∗, and
characteristic time 𝑡∗ in the Earth-Moon system are listed
in Table 2 [29]. Any dimensional quantities are retrieved
by factoring in the characteristic length and time within the
nondimensional quantities [30]. The orbit of interest for the
rendezvous operation is in close proximity to the Moon,
consequently, a Moon-centered rotating frame [M] is defined
that is a direct linear translation from the [S] frame, such that,

𝑥[M] = (1 − 𝜇) − 𝑥[S] (1)
𝑦[M] = − 𝑦[S] (2)
𝑧[M] = 𝑧[S] (3)

where 𝜇 is the system mass ratio, defined as the ratio of
the mass of P2 to the overall mass of the system, i.e.,
𝜇 = 𝑚2∕(𝑚1 + 𝑚2), where 𝑚1 and 𝑚2 are the masses of
bodies P1 and P2, respectively. The value of 𝜇 in the Earth-
Moon system is as defined in Table 2. For convenience, the
dynamical equations of motion for a spacecraft in the [M]
frame is expressed as

𝑥̈[M] − 2𝑦̇[M] − 𝑥[M] = −
1 − 𝜇
𝑑31

(𝑥[M] − 1)

−
𝜇
𝑑32

𝑥[M] − (1 − 𝜇)
(4)

𝑦̈[M] + 2𝑥̇[M] − 𝑦[M] = −
1 − 𝜇
𝑑31

𝑦[M] −
𝜇
𝑑32

𝑦[M] (5)

𝑧̈[M] = −
1 − 𝜇
𝑑31

𝑧[M] −
𝜇
𝑑32

𝑧[M] (6)

where the quantities 𝑑1 and 𝑑2,

𝑑1 =
√

(𝑥[M] − 1)2 + 𝑦2[M] + 𝑧2[M] (7)
𝑑2 =

√

𝑥2[M] + 𝑦2[M] + 𝑧2[M] (8)

are the scalar non-dimensional distances from the spacecraft
to the primary bodies P1 and P2, respectively. These nonlin-
ear equations of motion offer five equilibrium points (also
known as Lagrange points or libration points) and an infinite
number of periodic orbits are available in their neighbor-
hood. A family of 3-dimensional periodic orbits exists near
the L1 and L2 Lagrange points, commonly labeled as halo
orbits [31]. In the Earth-Moon system, the 9:2 synodic reso-
nant L2 Near Rectilinear Halo Orbit (NRHO) is the current
focus for NASA’s Gateway mission, and the CAPSTONE
mission [1, 29]. The chosen orbit is deemed nearly stable
by investigating the stability index of its monodromy matrix
[32, 33]. Figure 2 offers a view of the 9:2 synodic resonant
L2 NRHO in the Moon-centered rotating frame.

Figure 1: Coordinate frames for spacecraft motion [16].

Figure 2: View of the 9:2 synodic resonant southern L2 NRHO
in the Earth-Moon system. Plotted in [M] frame.

3.2. Relative Motion
Close proximity operations such as rendezvous are best

visualized by capturing the relative dynamics between a
chaser and a target spacecraft. For simplicity, a coordinate
frame centered on the target spacecraft such as the Local
Velocity Local Horizontal (LVLH) frame is appropriate to
realize the relative motion. Frame notations are detailed in
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Table 1
Frame descriptions.

Frame ID Frame Name Center Unit vector notation

[I] Inertial frame O (Earth-Moon Barycenter) 𝑖[I], 𝑗[I], 𝑘̂[I]

[S] Synodic frame O (Earth-Moon Barycenter) 𝑖[S], 𝑗[S], 𝑘̂[S]

[M] Moon-centered rotating frame Moon 𝑖[M], 𝑗[M], 𝑘̂[M]

[L] Local Velocity Local Horizontal (LVLH) frame Target spacecraft 𝑖[L], 𝑗[L], 𝑘̂[L]

[B] Target body frame Target spacecraft 𝑖[B], 𝑗[B], 𝑘̂[B]

[P] Image frame Sensor plane corner (2D) 𝑖[P], 𝑗[P]

[C] Camera frame Optical center 𝑖[C], 𝑗[C], 𝑘̂[C]

Table 2
Characteristic quantities and system mass ratio in the Earth-
Moon system

Length 𝑙∗ 385692.50 km
Time 𝑡∗ 377084.15 seconds
System mass ratio 𝜇 0.0121505856096240

Table 1. The LVLH frame, [L], is defined with directions
𝑖[L], 𝑗[L], 𝑘̂[L] such that unit direction 𝑘̂[L] points from the
target spacecraft to the central body (i.e., the Moon), 𝑗[L]direction is away from the instantaneous orbital angular
momentum vector, and finally, 𝑖[L] completes the dextral
coordinate system. Mathematically, these directions are de-
rived as

𝑘̂[L] = − r
||r||

(9)

𝑗[L] = − h
||h||

(10)
𝑖[L] = 𝑗[L] × 𝑘̂[L] (11)

where r represents the target position vector with respect
to the central body, i.e., the Moon. Of course, the position
vector r may be expressed in the Moon-centered rotating
frame (equivalent to 𝑟̄[M]), i.e.,

𝑟̄[M] = [𝑥[M], 𝑦[M], 𝑧[M]]T (12)
where superscript ‘T’ indicates a transpose. The instanta-
neous orbital angular momentum vector, h, is the cross
product of the target position vector with the target velocity
vector relative to the central body (v) at the current time, i.e.,
h = r × v. When expressed in the Moon-centered rotating
frame [M], the target velocity is identified as v = ̇̄𝑟[M]. In
literature, the unit directions, 𝑖[L], 𝑗[L] and 𝑘̂[L] are sometimes
denoted as V-bar, H-bar, and R-bar directions, respectively
[7, 34].

The motion of the chaser relative to the target is a
measure of the difference in the gravitational acceleration
experienced by each target and chaser spacecraft. The accel-
eration for the target spacecraft, by applying Newton’s laws
for universal gravitation, is

r̈[I] = −𝜇 r
||r||3

−(1−𝜇)
( r + r𝑒𝑚
||r + r𝑒𝑚||3

−
r𝑒𝑚

||r𝑒𝑚||3

)

(13)

while the acceleration due to gravitational forces experi-
enced by the chaser is given by,

r̈𝑐[I] = −𝜇
r𝑐

||r𝑐||3
−(1−𝜇)

( r𝑐 + r𝑒𝑚
||r𝑐 + r𝑒𝑚||3

−
r𝑒𝑚

||r𝑒𝑚||3

)

(14)

where r𝑐 is the chaser position vector from the central body,
the Moon. The difference between the position vector of the
chaser and the target provides the relative position of the
chaser with respect to the target, i.e., 𝜌̄, such as

𝜌̄ = r𝑐 − r (15)
and the evolution of 𝜌̄ offers a foundation for comprehending
proximity operations. The basic kinematic equations for the
velocity and the acceleration of the chaser spacecraft in the
inertial frame, i.e.,

ṙ𝑐[I] = ṙ[I] + ̇̄𝜌[I] = ṙ[I] + ̇̄𝜌[L] + 𝜔L/I × 𝜌̄[L] (16)

r̈𝑐[I] = r̈[I] + ̈̄𝜌[L] + 2𝜔L/I × ̇̄𝜌[L] + 𝜔̇L/I × 𝜌̄[L]
+ 𝜔L/I × (𝜔L/I × 𝜌̄[L])

(17)

are expressed as a function of the relative position in the
LVLH frame, 𝜌̄[L], as well as the angular velocity (𝜔L/I) and
angular acceleration (𝜔̇L/I). Moreover, the subscript L/I rep-
resents a frame transformation from the LVLH frame [L] to
the inertial frame [I]. Note that, similar subscripts are defined
to represent other frame transformations. Substituting Eqs.
(13) and (14) into Eq. (17), the higher-order time derivatives
for 𝜌̄[L] are determined. The updated equation,

̈̄𝜌[L] = − 2𝜔L/I × ̇̄𝜌[L] − 𝜔̇L/I × 𝜌̄[L]
− 𝜔L/I × (𝜔L/I × 𝜌̄[L])

− 𝜇
r𝑐

||r𝑐||3
− (1 − 𝜇)

( r𝑐 + r𝑒𝑚
||r𝑐 + r𝑒𝑚||3

−
r𝑒𝑚

||r𝑒𝑚||3

)

+ 𝜇 r
||r||3

+ (1 − 𝜇)
( r + r𝑒𝑚
||r + r𝑒𝑚||3

−
r𝑒𝑚

||r𝑒𝑚||3

)

(18)
describes the nonlinear equations for relative motion in
the CR3BP [7, 35]. The angular velocity and the angular
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acceleration for frame [L] relative to the inertial frame [I]
is expressed as a combination of the frame rotation from
LVLH to the Moon-centered rotating frame ([L] → [M])
and from the Moon-centered rotating frame to the inertial
frame ([M] → [I]), such that

𝜔L/I = 𝜔L/M + 𝜔M/I (19)
𝜔̇L/I[L] = 𝜔̇L/M + 𝜔̇M/I[M] − 𝜔L/M × 𝜔M/I (20)

and employs the following relationships,
𝜔L/M[L] = 𝜔𝑥

L/M𝑖[L] + 𝜔𝑦
L/M𝑗[L] + 𝜔𝑧

L/M𝑘̂[L] (21)

𝜔𝑥
L/M = 0 (22)

𝜔𝑦
L/M = −

||h||
||r||2

(23)

𝜔𝑧
L/M = −

||r||
||h||2

h ⋅ ̈̄𝑟[M] (24)

that corresponds to instantaneous values for angular rota-
tions resulting from frame transformations. The frame trans-
formation, [L] → [M], is representative of the motion of
the target body around the Moon while the frame transfor-
mation, [M] → [I] is attributed to the rotation of primary
bodies, particularly the Moon around the barycenter. Using
the simplifying assumptions in the CR3BP model, 𝜔M/I =
𝑘̂[M] is fixed; as a consequence, 𝜔̇M/I = 0. The quantity ̈̄𝑟[M],
such that, ̈̄𝑟[M] = [𝑥̈[M], 𝑦̈[M], 𝑧̈[M]]T, is determined in Eqs.
(4), (5) and (6). Similarly,

𝜔̇L/M[L] = 𝜔̇𝑥
L/M𝑖[L] + 𝜔̇𝑦

L/M𝑗[L] + 𝜔̇𝑧
L/M𝑘̂[L] (25)

𝜔̇𝑥
L/M = 0 (26)

𝜔̇𝑦
L/M = − 1

||r||

(

ℎ̇
||r||

+ 2𝑟̇𝜔𝑦
L/M

)

(27)

𝜔̇𝑧
L/M =

(

𝑟̇
||r||

− 2 ℎ̇
||h||

)

𝜔𝑧
L/M −

||r||
||h||2

h ⋅ ⃛̄𝑟[M]
(28)

such that,

ℎ̇ = −ḣ[M] ⋅ 𝑗 (29)
𝑟̇ = 1

||r||
𝑟̄[M] ⋅ ̇̄𝑟[M] (30)

including the third derivative of position, i.e., the jerk,
experienced by the target spacecraft in the [M] frame,

⃛̄𝑟[M] = − 2𝜔M/I × ̈̄𝑟[M] − 𝜔M/I × (𝜔M/I × ̇̄𝑟[M])

− (1 − 𝜇) 𝜕
𝜕r

[ r + r𝑒𝑚
||r + r𝑒𝑚||3

]

̇̄𝑟[M]

− 𝜇 𝜕
𝜕r

[

r
||r||3

]

̇̄𝑟[M]

(31)

where the following rule for differentiation applies,

𝜕
𝜕q

[

q
||q||3

]

= 1
||q||3

(

𝐈 − 3
qqT
||q||2

)

(32)

for any vector q. A simplified explicit function for jerk along
each of the 𝑥[M], 𝑦[M] and 𝑧[M] directions are deduced in Eqs.
(33), (34), and (35), such as

𝑥[M] = 2𝑦̈[M] + 𝑥̇[M] −
𝜇
𝑑32

((

1 − 3
𝑥2[M]
𝑑22

)

𝑥̇[M] − 3
𝑥[M]𝑦[M]

𝑑22
𝑦̇[M] − 3

𝑥[M]𝑧[M]
𝑑22

𝑧̇[M]

)

−
1 − 𝜇
𝑑31

((

1 − 3
(𝑥[M] − 1)2

𝑑21

)

𝑥̇[M] − 3
(𝑥[M] − 1)𝑦[M]

𝑑21
𝑦̇[M] − 3

(𝑥[M] − 1)𝑧[M]
𝑑21

𝑧̇[M]

)
(33)

𝑦[M] = − 2𝑥̈[M] + 𝑦̇[M] −
𝜇
𝑑32

(

−3
𝑥[M]𝑦[M]

𝑑22
𝑥̇[M] +

(

1 − 3
𝑦2[M]
𝑑22

)

𝑦̇[M] − 3
𝑦[M]𝑧[M]

𝑑22
𝑧̇[M]

)

−
1 − 𝜇
𝑑31

(

−3
(𝑥[M] − 1)𝑦[M]

𝑑21
𝑥̇[M] +

(

1 − 3
𝑦2[M]
𝑑21

)

𝑦̇[M] − 3
𝑦[M]𝑧[M]

𝑑21
𝑧̇[M]

)
(34)

𝑧[M] = −
𝜇
𝑑32

(

−3
𝑥[M]𝑧[M]

𝑑22
𝑥̇[M] − 3

𝑦[M]𝑧[M]
𝑑22

𝑦̇[M] +
(

1 − 3
𝑧2[M]
𝑑22

)

𝑧̇[M]

)

−
1 − 𝜇
𝑑31

(

−3
(𝑥[M] − 1)𝑧[M]

𝑑21
𝑥̇[M] − 3

𝑦[M]𝑧[M]
𝑑21

𝑦̇[M] +
(

1 − 3
𝑧2[M]
𝑑21

)

𝑧̇[M]

)
(35)
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and evaluated numerically since analytical solutions for the
set of nonlinear equations for relative motion of the chaser
with respect to the target are not available.

The chaser spacecraft employs active thrusters to al-
ter its orbit and attitude motion as mentioned previously.
These thrusters exhibit additional acceleration apart from
the natural dynamics. These variable acceleration values act
as control parameters that are varied to achieve rendezvous.
The Eq. (18) is thus modified to account for the additional
relative acceleration of the chaser with control parameters
𝑢1, 𝑢2, 𝑢3 as

̈̄𝜌[L] = − 2ΩL/I[L] ̇̄𝜌[L] − (Ω̇L/I[L] + Ω2
L/I[L])𝜌̄[L]

(1 − 𝜇)
( r + r𝑒𝑚
||r + r𝑒𝑚||3

−
r + 𝜌̄ + r𝑒𝑚

||r + 𝜌̄ + r𝑒𝑚||3

)

+ 𝜇
(

r
||r||3

−
r + 𝜌̄

||r + 𝜌̄||3

)

+ [𝑢1, 𝑢2, 𝑢3]T

(36)

where the following relation holds,

ΩL/I [L] =
⎡

⎢

⎢

⎣

0 −𝜔𝑧
L/I 𝜔𝑦

L/I
𝜔𝑧

L/I 0 −𝜔𝑥
L/I

−𝜔𝑦
L/I 𝜔𝑥

L/I 0

⎤

⎥

⎥

⎦

(37)

Ω̇L/I [L] =
⎡

⎢

⎢

⎣

0 −𝜔̇𝑧
L/I 𝜔̇𝑦

L/I
𝜔̇𝑧

L/I 0 −𝜔̇𝑥
L/I

−𝜔̇𝑦
L/I 𝜔̇𝑥

L/I 0

⎤

⎥

⎥

⎦

(38)

𝜔L/I [L] = 𝜔𝑥
L/I𝑖[L] + 𝜔𝑦

L/I𝑗[L] + 𝜔𝑧
L/I𝑘̂[L] (39)

𝜔̇L/I [L] = 𝜔̇𝑥
L/I𝑖[L] + 𝜔̇𝑦

L/I𝑗[L] + 𝜔̇𝑧
L/I𝑘̂[L] (40)

and these equations are numerically integrated to identify the
relative position for the chaser in the LVLH frame [L] such
that

𝜌̄[L] = 𝜌𝑥𝑖[L] + 𝜌𝑦𝑗[L] + 𝜌𝑧𝑘̂[L] (41)
where 𝜌𝑥, 𝜌𝑦 and 𝜌𝑧 are the projections of the position vector
along each of the 𝑖[L], 𝑗[L] and 𝑘̂[L] directions, respectively.
Such quantities in the [L] frame are also appropriate for
simulating close proximity operations in a laboratory envi-
ronment.
3.3. Attitude Dynamics

When the separation distance between the chaser and
target spacecraft is sufficiently large, the orbital dynamics
portion of the controller supersedes the attitude dynamics
operations. The orientation of the chaser relative to the target
is trivial at this scale. Moreover, at such a distance, optical
sensors may only yield a point image of the target and
the determination of relative orientation is inconsequential.
However, during the final rendezvous phase such as dock-
ing, maintaining appropriate relative orientation between
the chaser and target also becomes crucial. Henceforth, for
convenience, the relative attitude dynamics for the chaser are

modeled with respect to the body frame of the target. Euler’s
equations of motion are, thus, employed to manifest the
rotational dynamics of the spacecraft; the angular velocities
are expressed as

𝐶 𝜔̇1 =
1

𝐶𝐼1

(

𝑇1 −
(𝐶𝐼3 − 𝐶𝐼2

) 𝐶𝜔2
𝐶𝜔3

) (42)
𝐶 𝜔̇2 =

1
𝐶𝐼2

(

𝑇2 −
(𝐶𝐼1 − 𝐶𝐼3

) 𝐶𝜔1
𝐶𝜔3

) (43)
𝐶 𝜔̇3 =

1
𝐶𝐼3

(

𝑇3 −
(𝐶𝐼2 − 𝐶𝐼1

) 𝐶𝜔1
𝐶𝜔2

) (44)

where 𝐶𝜔 ≡ 𝜔(𝐶ℎ𝑎𝑠𝑒𝑟 → 𝑇 𝑎𝑟𝑔𝑒𝑡) with a left superscript,
𝐶 . The moment of inertia for the chaser along each of its
three principal axes is denoted by 𝐶𝐼𝑗 , with 𝑗 = 1, 2, 3.
The quantities 𝑇1, 𝑇2 and 𝑇3 are components of external
torques delivered by the chaser. Using the same convention
the orientation is defined by quaternions 𝐶𝜖𝑖 ≡ 𝜖𝑖(𝐶ℎ𝑎𝑠𝑒𝑟 →
𝑇 𝑎𝑟𝑔𝑒𝑡). The orientation of the chaser is altered as desired
by appropriately varying the values for 𝑇1, 𝑇2 and 𝑇3. The
instantaneous orientation of the chaser body relative to the
target body are expressed in terms of rotation quaternions

𝐶 ̇𝜖1 =
1
2
(𝐶𝜔1

𝐶𝜖4 − 𝐶𝜔2
𝐶𝜖3 + 𝐶𝜔3

𝐶𝜖2
) (45)

𝐶 ̇𝜖2 =
1
2
(𝐶𝜔1

𝐶𝜖3 + 𝐶𝜔2
𝐶𝜖4 − 𝐶𝜔3

𝐶𝜖1
) (46)

𝐶 ̇𝜖3 =
1
2
(

−𝐶𝜔1
𝐶𝜖2 + 𝐶𝜔2

𝐶𝜖1 + 𝐶𝜔3
𝐶𝜖4

) (47)
𝐶 ̇𝜖4 =

1
2
(

−𝐶𝜔1
𝐶𝜖1 − 𝐶𝜔2

𝐶𝜖2 − 𝐶𝜔3
𝐶𝜖3

) (48)
where 𝜖1, 𝜖2 and 𝜖3 offer insight into the orientation of the
axis of rotation while 𝜖4 shadows the degree of spin about
the axis of rotation. Also 𝜖21 + 𝜖22 + 𝜖23 + 𝜖24 = 1. The
dynamics of the target spacecraft are, however, assumed
to be evolving under the natural gravity gradient torques
exerted by the primary bodies. For simplicity, the dynamics
are expressed relative to the inertial frame. Notations for the
angular velocity and orientation quaternions for the target
are expressed with a left superscript, 𝑇 , for example, 𝑇𝜔 ≡
𝜔(𝑇 𝑎𝑟𝑔𝑒𝑡 → 𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑙). The rate of change in angular
velocity of the target body is given by

𝑇 𝜔̇1 =
𝑇 𝐼3 − 𝑇 𝐼2

𝑇 𝐼1

(

3
1 − 𝜇
𝑑51

𝑔2𝑔3 + 3
𝜇
𝑑52

ℎ2ℎ3 − 𝑇𝜔2
𝑇𝜔3

)

(49)
𝑇 𝜔̇2 =

𝑇 𝐼1 − 𝑇 𝐼3
𝑇 𝐼2

(

3
1 − 𝜇
𝑑51

𝑔1𝑔3 + 3
𝜇
𝑑52

ℎ1ℎ3 − 𝑇𝜔1
𝑇𝜔3

)

(50)
𝑇 𝜔̇3 =

𝑇 𝐼2 − 𝑇 𝐼1
𝑇 𝐼3

(

3
1 − 𝜇
𝑑51

𝑔1𝑔2 + 3
𝜇
𝑑52

ℎ1ℎ2 − 𝑇𝜔1
𝑇𝜔2

)

(51)
where the terms including (1 − 𝜇) quantify the effects of the
gravity torque due to body P1, i.e., the Earth; while terms in-
cluding 𝜇 are associated with the gravity gradient torque ex-
erted by body P2, i.e., the Moon [4, 10]. The quantities 𝑔𝑗 and

V. Muralidharan et al.: Preprint submitted to Elsevier Page 6 of 22



Rendezvous in cislunar halo orbits: Hardware-in-the-loop simulation with coupled orbit and attitude dynamics

⎡

⎢

⎢

⎣

𝑔1
𝑔2
𝑔3

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑇 ̇𝜖12 − 𝑇 ̇𝜖22 − 𝑇 ̇𝜖32 + 𝑇 ̇𝜖42 2(𝑇 ̇𝜖1𝑇 ̇𝜖2 + 𝑇 ̇𝜖3𝑇 ̇𝜖4) 2(𝑇 ̇𝜖1𝑇 ̇𝜖3 − 𝑇 ̇𝜖2𝑇 ̇𝜖4)
2(𝑇 ̇𝜖1𝑇 ̇𝜖2 − 𝑇 ̇𝜖3𝑇 ̇𝜖4) −𝑇 ̇𝜖12 + 𝑇 ̇𝜖22 − 𝑇 ̇𝜖32 + 𝑇 ̇𝜖42 2(𝑇 ̇𝜖2𝑇 ̇𝜖3 + 𝑇 ̇𝜖1𝑇 ̇𝜖4)
2(𝑇 ̇𝜖1𝑇 ̇𝜖3 + 𝑇 ̇𝜖2𝑇 ̇𝜖4) 2(𝑇 ̇𝜖2𝑇 ̇𝜖3 − 𝑇 ̇𝜖1𝑇 ̇𝜖4) −𝑇 ̇𝜖12 − 𝑇 ̇𝜖22 + 𝑇 ̇𝜖32 + 𝑇 ̇𝜖42

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑐𝑜𝑠(𝜃̇𝜏) −𝑠𝑖𝑛(𝜃̇𝜏) 0
𝑠𝑖𝑛(𝜃̇𝜏) 𝑐𝑜𝑠(𝜃̇𝜏) 0

0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1 − 𝑥[M]
−𝑦[M]
𝑧[M]

⎤

⎥

⎥

⎦

(52)

⎡

⎢

⎢

⎣

ℎ1
ℎ2
ℎ3

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑇 ̇𝜖12 − 𝑇 ̇𝜖22 − 𝑇 ̇𝜖32 + 𝑇 ̇𝜖42 2(𝑇 ̇𝜖1𝑇 ̇𝜖2 + 𝑇 ̇𝜖3𝑇 ̇𝜖4) 2(𝑇 ̇𝜖1𝑇 ̇𝜖3 − 𝑇 ̇𝜖2𝑇 ̇𝜖4)
2(𝑇 ̇𝜖1𝑇 ̇𝜖2 − 𝑇 ̇𝜖3𝑇 ̇𝜖4) −𝑇 ̇𝜖12 + 𝑇 ̇𝜖22 − 𝑇 ̇𝜖32 + 𝑇 ̇𝜖42 2(𝑇 ̇𝜖2𝑇 ̇𝜖3 + 𝑇 ̇𝜖1𝑇 ̇𝜖4)
2(𝑇 ̇𝜖1𝑇 ̇𝜖3 + 𝑇 ̇𝜖2𝑇 ̇𝜖4) 2(𝑇 ̇𝜖2𝑇 ̇𝜖3 − 𝑇 ̇𝜖1𝑇 ̇𝜖4) −𝑇 ̇𝜖12 − 𝑇 ̇𝜖22 + 𝑇 ̇𝜖32 + 𝑇 ̇𝜖42

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑐𝑜𝑠(𝜃̇𝜏) −𝑠𝑖𝑛(𝜃̇𝜏) 0
𝑠𝑖𝑛(𝜃̇𝜏) 𝑐𝑜𝑠(𝜃̇𝜏) 0

0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

−𝑥[M]
−𝑦[M]
𝑧[M]

⎤

⎥

⎥

⎦

(53)

where 𝜃̇𝜏 symbolizes the angle between the frames [S]
and [I] in the CR3BP. The nondimensional value for 𝜃̇ in
CR3BP is 1; 𝜏 is the nondimensional time. Consistently,
the orientation of the target spacecraft is governed by the
following equations for the quaternions

𝑇 ̇𝜖1 =
1
2
(𝑇𝜔1

𝑇 𝜖4 − 𝑇𝜔2
𝑇 𝜖3 + 𝑇𝜔3

𝑇 𝜖2
) (54)

𝑇 ̇𝜖2 =
1
2
(𝑇𝜔1

𝑇 𝜖3 + 𝑇𝜔2
𝑇 𝜖4 − 𝑇𝜔3

𝑇 𝜖1
) (55)

𝑇 ̇𝜖3 =
1
2
(

−𝑇𝜔1
𝑇 𝜖2 + 𝑇𝜔2

𝑇 𝜖1 + 𝑇𝜔3
𝑇 𝜖4

) (56)
𝑇 ̇𝜖4 =

1
2
(

−𝑇𝜔1
𝑇 𝜖1 − 𝑇𝜔2

𝑇 𝜖2 − 𝑇𝜔3
𝑇 𝜖3

) (57)

that offer the rate of change of the orientation of the target
body axis relative to the inertial frame.

Mathematical solutions for the chaser trajectory may
pass through the body of the target. The chaser and target
spacecraft are rigid bodies, however, and such a rendezvous
path is not feasible. Thus, during the rendezvous, the chaser
spacecraft is deliberately constrained to remain at a fixed
distance from the center of the target spacecraft without
colliding. For convenience, such a location is labeled as
“approach site,” and is stationary in the body-fixed frame of
the target, [B]. The chaser must eventually progress towards
the “approach site” during rendezvous. The coordinates of
the approach site, however, are neither static in the inertial
frame [I], the Moon-centered rotating frame [M] nor the
LVLH coordinate frame [L] due to continuous frame trans-
formations. The target spacecraft may appear as tumbling in
a particular frame of interest; as a consequence, the approach
site is rather an instantaneous 3-dimensional location, as
illustrated in Figure 3. In this investigation, for convenience,
the approach site is assumed as the eventual location of the
geometric center of the chaser spacecraft during rendezvous.

Consider the coordinates of the approach site as
𝜚̄[B] = 𝑏1𝑖[B] + 𝑏2𝑗[B] + 𝑏3𝑘̂[B]

measured in the target body frame and along its principal
axes of inertia. Note that 𝑏1, 𝑏2 and 𝑏3 are fixed parameters
selected as desired. The LVLH frame is conveniently the
working frame of view and offers direct insight into the
spacecraft’s approach during the rendezvous process. The
“approach site” in the LVLH frame is deduced as

𝜚̄[L] =
⎛

⎜

⎜

⎝

𝜚𝑥
𝜚𝑦
𝜚𝑧

⎞

⎟

⎟

⎠

= [L]ℂ[B] 𝜚̄[B] = [L]ℂ[B]
⎛

⎜

⎜

⎝

𝑏1
𝑏2
𝑏3

⎞

⎟

⎟

⎠

where [L]ℂ[B] = {ℂ ∶ [B] → [L]} is the transformation
matrix from the target body frame [B] to the LVLH frame
[L]. The matrix [L]ℂ[B],

[L]ℂ[B] = [L]ℂ[M] [M]ℂ[I] [I]ℂ[B] (58)
is a by-product of a sequence of frame rotations, i.e., [B] →
[I], [I] → [M] and finally [M] → [L]. The transformation
matrix or the Direction Cosine Matrix (DCM), [I]ℂ[B], is
evaluated from the orientation quaternions, 𝑇 𝜖. From the
definition in the CR3BP model, 𝜔M/I = 𝑘̂[M] and remains
fixed; as a consequence, the [M] frame rotates about the
inertial frame [I] at a consistent rate proportional to the
nondimensional time 𝜏. Thus, the calculation of the trans-
formation matrix [M]ℂ[I] is enabled. Finally, the correlations
in Eq. (11) facilitate determination of matrix [L]ℂ[M].

Mathematically, the progression of the chaser spacecraft
towards the approach site during the rendezvous operations
is denoted by, 𝜌̄[L] → 𝜚̄[L], i.e., 𝜌𝑥 → 𝜚𝑥, 𝜌𝑥 → 𝜚𝑦 and
𝜌𝑧 → 𝜚𝑧. A chaser spacecraft may not necessarily dock along
any particular principal axis of the target. Incorporating
the approach site while modeling the rendezvous process
facilitates defining complex docking scenarios.V. Muralidharan et al.: Preprint submitted to Elsevier Page 7 of 22
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ℎ𝑗 , with 𝑗 = 1, 2, 3, represent the projections of the position
vectors to P1 and P2 on the target body frame, respectively
[4, 5]. These quantities are evaluated in Eqs. (52) and (53),
such as

Figure 3: Approach site, 𝜚̄, for the chaser as a 3D location
relative to the center of the target [8].

4. Guidance: Optimal Path Planning
The dynamics for the spacecraft trajectory and attitude

dynamics are complex and nonlinear. To facilitate the deter-
mination of an optimal guidance path suitable for proximity
operations, a nonlinear control algorithm, CasADi, [36] is
introduced with an Interior Point Optimization (IPOPT)
scheme. A cost functional, 𝐽 , such that

𝐽 = ∫

𝜏

0
(𝜌̄[L] − 𝜚̄[L])T𝐐1(𝜌̄[L] − 𝜚̄[L]) + 𝐶 𝜔̄T𝐐2

𝐶 𝜔̄

+ 𝐶𝜖T𝐐3
𝐶𝜖 + 𝐮T𝐑𝐮 𝑑𝑡 (59)

is minimized during the optimization process. Here weight-
ing matrix 𝐐1 penalizes any offset in position states from the
approach site, i.e., 𝜌̄[L]−𝜚̄[L]. The relative angular velocity of
the chaser with respect to the target is compensated by matrix
𝐐2 whereas the relative change in orientation between the
two spacecraft is penalized by matrix𝐐3. Finally, the control
inputs 𝐮 are weighted with matrix 𝐑. The control input
vector 𝐮𝑘 is defined as,

𝐮𝑘 = [𝑢1, 𝑢2, 𝑢3, 𝑇1, 𝑇2, 𝑇3]T

where 𝑢1, 𝑢2 and 𝑢3 represent translational acceleration along
each of the 𝑥, 𝑦 and 𝑧 directions, respectively; 𝑇1, 𝑇2 and
𝑇3 (also referred as 𝑢4, 𝑢5 and 𝑢6) are the control torques
that the chaser spacecraft may deliver. Alternate rendezvous
paths are obtained by varying each of the penalty matrices
within the cost functional 𝐽 . Further, an additional collision
avoidance constraint is introduced as

||𝜌̄|| ≥ 𝑟𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛

to maintain the position of the chaser spacecraft outside a
spherical volume centered at the target spacecraft with a
radius 𝑟𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛. The quantity 𝑟𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 is user-defined, typ-
ically larger than the dimensions of the spacecraft along

appropriate directions. The optimal control process yields
states (both trajectory and attitude) that serve as the baseline
or the predicted reference path for rendezvous operations.
Such a guidance path is ideal and void of any fluctuations or
uncertainties. An actual path, however, incorporates inherent
errors. Consequently, the state estimation and linear control
algorithms are engaged synchronously during the entire
proximity operations.

5. Vision Based Navigation
Relative state estimation in proximity operations sup-

ported by perceptual observations is crucial for robust au-
tonomous navigation systems. These perceptual observa-
tions may be available from one or more sensors like cam-
eras, Lidars and Radars. With the advent of advanced vision
algorithms and increasing computational availability, visi-
ble spectrum cameras have become a favorable choice for
perception due to their small form factors, low power con-
sumption and cost-effectiveness. For the problem of target
localization, as addressed in this work, a range of different
approaches may be employed. For instance, if the target
does not have uniquely identifiable fiducial markers, feature-
based, template-based or neural network based pose estima-
tion may be used [37, 38]. In this investigation, however,
a simplified perception using pre-defined passive fiducial
markers is considered for engaging the rendezvous scenario
in a closed-loop manner. The usage of such markers is
common in cooperative proximity operations. Owing to their
superior balance of performance, speed, and detection relia-
bility, an array of fiducial ArUco [39, 40] markers are used
on the target spacecraft mockup. Unique detection of each
ArUco marker is facilitated by its encoding dictionary[41],
which provides a unique combination of 𝑛𝑒x𝑛𝑒 array of bits
that take a binary value. ArUco markers provide reasonably
precise localization of the four corners that enclose them.
Identification and localization are accomplished within the
ArUco detection algorithm by first applying an adaptive
threshold to the image and polygonalizing the filtered con-
tours. Subsequently, the quadrilaterals are filtered and binary
bit codes inside the quadrilaterals are parsed for identifica-
tion. Given valid identification of a marker, marker iden-
tifier or ID in the marker dictionary and then the ordered
pair of corner coordinates are obtained. Once the locations
of marker corners are obtained, the pose of the known
body frame relative to the camera is estimated using the
Perspective-𝑛-Points formulation.

Given knowledge of the target’s 3D wireframe model,
the intrinsic parameters of the observing camera (found
by calibration), and the 2D location of the feature in the
image plane, the perspective geometry and projection of the
points between 3D and 2D spaces is described by the P𝑛P
formulation, and demonstrated in Fig. 4. Consider

r[B] = [x𝑗[B], y𝑗[B], z𝑗[B]]T

with 𝑗 = 1, 2, 3...𝑛 to be 𝑛 points of interest on a known
3D model in the body frame, [B], and p𝑗 = [u𝑗 , v𝑗]T, be
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𝑛 corresponding image points in the 2D image frame, [P].
The P𝑛P problem concerns the projection of object or body
points to image points, subject to the camera’s intrinsic and
extrinsic parameters. The extrinsic parameters specify a 3D-
3D transform to project points in the body frame to the
camera frame. The intrinsic parameters specify the 3D-2D
transformation that projects the points in the camera frame to
the image plane. For an arbitrary 3D point r[B] in an object’s
body frame, the corresponding projection, r[C], in the camera
frame and the 2D projection p in the image frame are then
expressed as

r[C] = [C]ℂ[B] r[B] + 𝓉[C] (60)
p =

[x[C]
y[C]

𝑓𝑥 + C𝑥 ,
y[C]
z[C]

𝑓𝑦 + C𝑦

]

(61)

where intrinsic parameters, 𝑓𝑥 and 𝑓𝑦 are focal lengths in the
respective principle directions of the image frame, while C𝑥and C𝑦 are locations of the principle points of the projected
image. The rotation matrix [C]ℂ[B] and the translation vector
𝓉[C] specify the extrinsic parameters. To further condition
the generic problem, it is assumed that the unit vector 𝑘̂[C]direction is along the bore-sight of the camera, and the unit
vectors 𝑖[C] and 𝑗[C] are aligned with the image frame axes
𝑖[P] and 𝑗[P]. In that case, the Eqs. (60) & (61) are transformed
using homogeneous coordinates and expanded as

⎡

⎢

⎢

⎣

w𝑗u𝑗
w𝑗v𝑗
w𝑗

⎤

⎥

⎥

⎦

=
[

K
] [

P
]

⎡

⎢

⎢

⎢

⎣

x𝑗[B]
y𝑗[B]
z𝑗[B]
1

⎤

⎥

⎥

⎥

⎦

(62)

where, K is 3x3 camera intrinsic matrix, P is the 4x3 pose
matrix for extrinsic transformation, and w is the scale factor
for the image point. Assuming zero distortion and square
sensor pixels, Eq. (62) is expanded to

⎡

⎢

⎢

⎣

w𝑗u𝑗
w𝑗v𝑗
w𝑗

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑓𝑥 0 C𝑥
0 𝑓𝑦 C𝑦
0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

[C]ℂ[B]
| 𝓉[C]

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

x𝑗[B]
y𝑗[B]
z𝑗[B]
1

⎤

⎥

⎥

⎥

⎦

(63)

and has 6 unknowns in P that include three independent pa-
rameters for relative attitude and three for relative position.
These unknown parameters are estimated using analytical
methods exploiting geometry or iterative methods optimiz-
ing a reprojection objective.

Generally, 𝑛 = 6 points in a non-coplanar configuration
are ideal for unambiguous estimation of the relative pose,
as a lower number of points results in multiple ambigu-
ous pose solutions. Since 2D fiducial markers like ArUco
provide four co-planar corners, perspective ambiguity is
inevitable [42]. Such ambiguities result from multiple local
minima from relative poses that minimize the reprojection
cost to similar magnitudes. To overcome the ambiguity
issues, along with any practical shortcomings of precision
along the range, partial occlusions, and specular blinding,
an array of seven ArUco markers are used with different

Figure 4: Frame descriptions for PnP problem.

sizes such that locations of corners minimize the presence of
axes of symmetry under different combinations of detection.
The marker dictionary uses 4x4 (𝑛𝑒 = 4) encoding bits
and has a minimum hamming distance between marker
pairs of 4. It reduces misdetections while providing high-
bit resolution in the threshold image along the range. Once
marker corners are localized, an EP𝑛P solver [43] is used to
solve for relative pose using the 3D-2D correspondences in
the known wireframe model in the body frame. While the
EP𝑛P solver provides reliable pose estimates, false positive
detection of marker corners may result in degraded pose es-
timates. To mitigate this issue, a Random Sample Consensus
(RANSAC) [44] is used with EP𝑛P to reject corner outliers.
Figure 5 illustrates the detection of seven ArUco markers
and the resulting marker plane pose on the mock-up of the
target spacecraft.

Figure 5: ArUco markers on target CubeSat mock-up identified
for pose estimation.
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6. Estimation and Control
6.1. State Estimation

When the separation distance between the spacecraft is
relatively small, optical sensors, typically in the form of
visible light or infrared cameras that are attached to the
chaser spacecraft, are capable of determining the position
and orientation vectors (also denoted as the “pose”) of a
target spacecraft, or perhaps any other target object including
space debris. Modern sensors can capture pose data at a
frequency of as much as 20 Hz; pose observations are, thus,
acquired at discrete time intervals. Rudimentary observa-
tions may incur large fluctuations and inherent uncertain-
ties. Implementing control maneuvers in response to every
individual observation is redundant and potentially draws
large control costs. Individual observations are, therefore,
filtered to determine state estimates with reasonable preci-
sion. A measurement matrix consisting of partial derivatives
of observed quantities (pose, in this case) with respect to
the state variables, is the basis of a filtering process. The
most common filters for trajectory and attitude estimation
are Batch Least Squares and a sequential Kalman filter. State
estimates and covariance matrices are updated in succession
allowing prior observations to be discarded in a sequential
Kalman filter. A sequential Kalman filter, therefore, offers an
advantage over a batch least squares filter in terms of com-
putational memory allocation [9, 45]; and is, subsequently,
selected for this analysis.
6.1.1. System Dynamics

Appropriate prediction of spacecraft states at a certain
time is key to designing an estimator and a controller. Con-
sider the configuration of the system described by the state
vector 𝐱, i.e.,

𝐱 =[𝑥[M], 𝑦[M], 𝑧[M], 𝑥̇[M], 𝑦̇[M], 𝑧̇[M],
𝜌𝑥, 𝜌𝑦, 𝜌𝑧, ̇𝜌𝑥, 𝜌𝑦, 𝜌𝑧,
𝐶𝜔1,

𝐶𝜔2,
𝐶𝜔3,

𝐶𝜖1,
𝐶𝜖2,

𝐶𝜖3,
𝐶𝜖4,

𝑇𝜔1,
𝑇𝜔2,

𝑇𝜔3,
𝑇 𝜖1,

𝑇 𝜖2,
𝑇 𝜖3,

𝑇 𝜖4, 𝑥𝜚, 𝑦𝜚, 𝑧𝜚]T

that captures the motion of the target spacecraft in the
Moon-centered rotating frame, the position, velocity and
orientation of the chaser spacecraft relative to the target,
the orientation of the target in the inertial frame, and the
instantaneous locus of the approach site. In principle, the
orientation of the target spacecraft as well as the coordinates
of the approach site evolve independently (or decoupled)
from the motion of the chaser spacecraft. As a consequence,
pose observations or corresponding maneuvers do not affect
the motion of the target spacecraft.

Observed data are processed by the Kalman filter and
provide updates to the covariance and estimates of the states
within the stochastic system. Computational speed is key
when applied to a system that runs in real-time. Corre-
spondingly, the Kalman filter is developed upon a linearized
system of state equations along the predetermined baseline
optimal path for the spacecraft motion. The equations are as

formulated as
𝛿𝐱𝑗+1 = 𝐀𝑗𝛿𝐱𝑗 + 𝐁𝑗Δ𝐯𝑗 + 𝐰𝑗 (64)
𝛿𝐲𝑗+1 = 𝐇𝑗𝛿𝐱𝑗 + 𝐞𝑗 (65)

where 𝐀𝑗 and 𝐁𝑗 are system matrices, 𝐇𝑗 = 𝜕𝐲
𝜕𝐱 is the

measurement matrix, whereas 𝐰𝑗 and 𝐞𝑗 are stochastic white
noise with covariance 𝐸[𝐰𝑗𝐰T

𝑗 ] = ℚ and 𝐸[𝐞𝑗𝐞T
𝑗 ] = ℝ,

respectively. The frequency of the control inputs differs from
the sampling frequency resulting in Δ𝐯𝑗 = 0 at certain time
instants 𝑡𝑗 .
6.1.2. Filtering

The Kalman filter is developed based upon an inherent
assumption that the noises, 𝐰𝑗 and 𝐞𝑗 , are Gaussian. These
assumptions are reasonable and deliver rational results for
a number of space applications [9]. The sequential Kalman
filter minimizes the mean square error of the estimated states
from the reference. The state estimates and the covariance
are derived as

𝛿𝐱̂𝑗|𝑗 = 𝛿𝐱̂𝑗|𝑗−1 + 𝕂𝑗𝛿𝐲𝑗 (66)
𝚺𝑗|𝑗 = 𝚺𝑗|𝑗−1 − 𝕂′

𝑗𝐇𝑗𝚺𝑗|𝑗−1 (67)
𝕂′
𝑗 = 𝚺𝑗,𝑗−1𝐇𝑇

𝑗 (𝐇𝑗𝚺𝑗|𝑗−1𝐇𝑇
𝑗 +ℝ)−1 (68)

𝚺𝑗+1|𝑗 = 𝐀𝑗𝚺𝑗|𝑗𝐀𝑇
𝑗 +ℚ𝑗 (69)

where 𝛿𝐱̂𝑗|𝑗−1 is the predicted state estimate once 𝑗 − 1
observations are available prior to the 𝑗-th observation, and
𝛿𝐱̂𝑗|𝑗 is the new estimate once the measurement at 𝑗-th
observation is also included. The Kalman gain, 𝕂, is a by-
product of the system matrices, measurement covariance and
state covariance. The quantity,

𝚺𝑗|𝑗−1 = 𝐸[(𝛿𝐱𝑗 − 𝛿𝐱̂𝑗|𝑗−1)(𝛿𝐱𝑗 − 𝛿𝐱̂𝑗|𝑗−1)T] (70)
is the a-priori state covariance at the 𝑗-th interval once 𝑗−1
observations are filtered. Then, the covariance matrix

𝚺𝑗|𝑗 = 𝐸[(𝛿𝐱𝑗 − 𝛿𝐱̂𝑗|𝑗)(𝛿𝐱𝑗 − 𝛿𝐱̂𝑗|𝑗)T] (71)
is the a-posteriori covariance after the 𝑗-th observation is
also incorporated. Initially, prior to the availability of any
observed data, the value of a-priori covariance 𝚺𝑗|𝑗−1 is
set high. The covariance matrices and state estimates are
continuously updated with the availability of additional ob-
servations. The control maneuvers are delivered at a smaller
frequency than the pose tracking data, allowing sufficient ob-
servations to be captured to produce reliable state estimates.
6.2. Linear Controller

A nonlinear controller is well suited for sophisticated
problems that include a set of nonlinear equations of motion
and multiple complex constraints. Subsequently, the nonlin-
ear controller is the primary choice for identifying the base-
line rendezvous path. The benefits offered by the nonlinear
controller are sometimes offset by the excess computational
time to determine an optimal solution. Rapid computation
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of control maneuvers, therefore, is challenging. For success-
ful practical application, the nonlinear controller must be
computationally compatible and operate in sync with any
onboard software; perhaps, compute the maneuvers at a pace
faster than the actual flight time. A nonlinear controller is,
therefore, not employed for the routine maneuver delivery
process but rather to yield a baseline flight path adequate for
rendezvous, typical of any flagship mission.

A linear controller allows significantly quicker calcula-
tions appropriate for delivering maneuvers that compensate
for any deviations detected from the predetermined baseline
path and is engaged in tandem with the nonlinear guidance
algorithm. A linear controller is appropriate for systems that
obey the superposition principle [46]. The dynamical flow
in the neighborhood of the baseline path is linearized and
modeled using state-space representation, analogous to that
adopted for the Kalman filter. Accordingly, the state tran-
sition matrices (or system matrices) are computed for each
discrete control segment along the predetermined nonlinear
baseline path.

A two-layered guidance and control approach is imple-
mented in this investigation to exploit the advantages offered
by both the nonlinear and linear controllers. The approach is
detailed as follows

• First and foremost, the nonlinear controller using an
IPOPT scheme generates an ideal baseline rendezvous
path for guidance, with a sequence of optimal control
maneuvers, 𝐮∗𝑘. If perturbations or modeling errors are
absent, the baseline rendezvous path guides the chaser
spacecraft toward the target. However, in practice, per-
turbations are inherent and inevitable. Any deviations
from this baseline path must also be compensated.

• As the chaser progresses toward the target, the navi-
gation apparatus offer relative pose observations that
are continuously recorded and serve as feedback to
the chaser’s motion. The Kalman filter offers the state
estimate from these pose observations. The linear
controller determines subsequent maneuvers to com-
pensate for the measured deviations from the baseline
path.

Figure 6 offers a schematic of the two-layered guidance and
control regime adopted in this investigation. The nonlinear
controller yields the baseline path indicated in red while
the green curve indicates the true path. Quantities marked
with an asterisk, ∗, mark the state and controls along the
baseline guidance path whereas the state and controls along
the true path are denoted without the asterisk. At initial time,
𝑡0, the control output is 𝐮0; also 𝐮0 = 𝐮∗0. Subsequently,
the linear controller produces corrective maneuvers, 𝛿𝐮𝑘,
at time 𝑡𝑘. The total control maneuver (𝐮𝑘) delivered to
the chaser spacecraft along its true path is the total sum of
the control outputs from the nonlinear (𝐮∗𝑘) and the linear
controller (𝛿𝐮𝑘), i.e., 𝐮𝑘 = 𝐮∗𝑘 + 𝛿𝐮𝑘. For convenience, the
control outputs of the nonlinear and linear controllers are
engaged at the same frequency. Figure 7 offers a summary
of the rendezvous process; one that exploits a two-layered

approach with a blended linear and nonlinear controller, with
state feedback and closed-loop hardware simulations.

Figure 6: The baseline/reference solution is computed with
nonlinear control while the spacecraft’s true path incorporates
maneuvers from the linear controller. The spacecraft’s true
path incorporates deviations from the reference [8].

Figure 7: Overview of the proximity operations [16].

6.2.1. System Dynamics
Limitations in navigational apparatus and modeling er-

rors induce perturbations to the spacecraft flight path, both
in orbit and attitude, therefore, appropriate control strategies
are adopted to maintain the spacecraft in close proximity to
the reference path. Quick control response to compensate
for any deviations measured from the baseline path, i.e., the
quantity 𝛿𝐱𝑘 is adopted using the linear controller. The state
errors are typically small, and hence, linearized dynamics
in the neighborhood of the reference path is a good approx-
imation to predict the necessary control output. The linear
variational equations of motion are thus computed as

𝛿𝐱𝑘+1 = 𝐀𝑘𝛿𝐱𝑘 + 𝐁𝑘𝛿𝐮𝑘 (72)
where 𝐀𝑘 is the 29 × 29 state transition matrix, and 𝐁𝑘is a 29 × 6 matrix with partials of the state vector at the
final time, 𝐱𝑘+1, to a control input 𝛿𝐮𝑘, evaluated along
the baseline path. The motion of the target spacecraft and
the approach site are decoupled and independent from the
motion of the chaser spacecraft; a number of partials within
the matrix 𝐀𝑘 are therefore zeros, resulting in a sparse
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matrix. Further, by definition, only the chaser spacecraft
possesses control capabilities while the target only evolves
under natural dynamics. Consequently, the control inputs
only alter the flight path of the chaser and do not influence
the motion of the target body or the location of the approach
site. A number of partials within matrix 𝐁𝑘 are subsequently
zeros. The matrices 𝐀𝑘 and 𝐁𝑘 are numerically computed
using a central differencing technique.
6.2.2. Linear Quadratic Regulator (LQR)

Given the linearized dynamical flow near a desired path,
a linear quadratic regular offers a cost-optimal control. A
discrete LQR controller is designed to update control maneu-
vers at regular intervals. As the feedback from the Kalman
filter is received, the deviation from the desired reference is
known. A cost functional, 𝐽 , is defined as

𝐽 = 𝛿𝐱T
𝑁 𝐏̃𝑁𝛿𝐱𝑁 +

𝑁−1
∑

𝑘=0
𝛿𝐱T

𝑘 𝐐̃𝑘𝛿𝐱𝑘 + 𝛿𝐮T
𝑘𝐑̃𝑘𝛿𝐮𝑘 (73)

and minimized in the process. Any deviations from the
baseline states are penalized. Weights are also introduced on
the size of the control outputs. The solution to minimizing
the cost functional is given by [47, 48],

𝛿𝐮𝑘 = −𝐊̃𝑘𝛿𝐱𝑘 (74)
where 𝐊̃𝑘 is the set of time-varying gain matrices that satisfy

𝐊̃𝑘 = (𝐑̃𝑘 + 𝐁T
𝑘 𝐏̃𝑘+1𝐁𝑘)−1𝐁T

𝑘 𝐏̃𝑘+1𝐀𝑘 (75)
and 𝐏̃𝑘 is determined by solving the discrete algebraic Ric-
cati equation,

𝐏̃𝑘 = 𝐐̃𝑘 + 𝐀T
𝑘 𝐏̃𝑘+1𝐀𝑘 − 𝐀T

𝑘 𝐏̃𝑘+1𝐁𝑘𝐊̃𝑘 (76)
for 𝑘 = 0,… , 𝑁 − 1. The quantities 𝐐̃𝑘 and 𝐑̃𝑘 are positive
definite weighting matrices or penalty matrices. The value of
𝑁 is the total number of discrete control intervals selected
for the rendezvous operations.

Pose observations are retrieved and processed through a
Kalman filter at a significantly high frequency to overcome
large fluctuations and, subsequently, obtain reliable state
estimates. Controllers, however, operate at a lower frequency
than the estimator. Moreover, it is desired to span two
successive control maneuvers sufficiently apart to achieve
a reasonable estimate of the spacecraft’s position, velocity
and orientation states. A schematic representation of the
overall process from the procurement of pose observations
to state estimation and, finally, delivering control outputs
are established in a timeline and presented in Fig. 8. The
schematic emphasizes the following:

• Note that in the absence of any control maneuvers the
chaser spacecraft evolves under the underlying natural
dynamics and the resulting ballistic motion, given by
a solid blue curve, may not advance toward the target.

• An appropriate guidance trajectory analogous to the
red curve serves as the predetermined baseline for the
rendezvous operations; this baseline is determined by
the nonlinear optimal control algorithm.

• Prominent red dots lie along the baseline path and cor-
respond to discrete time intervals where the optimal
control maneuvers are updated.

• Pose observations recorded by the camera on the
chaser spacecraft are symbolized by magenta dots and
occur at a high frequency.

• The observed navigation data is processed through the
Kalman filter to yield an estimate, reflected as the gray
dotted curve.

• The actual spacecraft trajectory is labeled as the true
path and is illustrated by the green curve in Fig. 8. De-
viations due to uncertainties in the state measurements
and unmodeled errors are inherited into the true path;
consequently, the true path does not precisely overlap
the red curve but rather exists in the neighborhood of
the baseline.

Figure 8: Schematic timeline of the natural ballistic path,
optimal path for rendezvous, and true path. Red and green
dots correspond to discrete time intervals of control outputs,
while magenta dots correspond to pose observations recorded
by the optical navigation sensors.

7. Robot Motion Planning
7.1. Experimental Setup

The ZeroG Lab at the University of Luxembourg is
a robotic test facility for real-time simulation of on-orbit
servicing missions. As demonstrated in Fig. 9, the facility
is a 5m x 3m area. The facility has four main components
to emulate on-orbit scenarios: a Sun emulator to recreate the
challenging space lighting conditions, a 240 Hz advanced
Motion Capture System (MCS) to provide ground truth data,
and two UR10e robotic manipulators. Each robotic manipu-
lator has six degrees-of-freedom and is mounted on a rail to
provide an additional range of motion suitable for simulating
spacecraft motion in on-orbit scenarios. The UR10e robots,
the MCS as well as other external devices communicate and
are controlled using the Robot Operating System (ROS).
External commands to control these robotic manipulators
are also directed over the ROS network. A mock-up of the
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target spacecraft is mounted on the ceiling arm’s flange.
Likewise, the mock-up simulating the chaser spacecraft, in
the form of an optical camera, is mounted on the wall robotic
arm. A schematic representation of the laboratory setup with
appropriate coordinate frames is available in Fig. 10. The
HITL experiments are conducted in the ZeroG lab with the
Sun emulator as the only light source for increased fidelity
in simulating the space environment.

Figure 9: The Zero-G lab facility at University of Luxembourg
[49]

Figure 10: Schematic of laboratory setup with associated
coordinate frames.

7.2. Robot Control
The ROS toolkit is an open-source robotics middleware

used to control and communicate with the robots throughout
the experimental setup. The computers are connected over
the network running the robots, and the pose-estimation and
the orbital dynamics simulations are pre-installed with ROS
Melodic on a Linux-based operating system. Several pro-
cesses run in the form of ROS nodes that communicate with
each other to carry out hardware-in-the-loop simulations.
ROS-visualization, RViz, is a ROS graphical interface that
enables visualization of several ROS topics and assists in
remote documentation and monitoring of the experiments.
Robot motion is typically controlled using a method com-
monly referred to as “servoing” that uses feedback infor-
mation from sensors such as a camera, OptiTrack motion
capture systems, or a trajectory generator program (using
externally available ROS topics), and streams the reference
motion for the robot to follow. It is possible to provide
the rendezvous path in the form of Cartesian set-points.

These paths are updated based on visual feedback and pose
estimation run as separate ROS nodes, while servoing is
performed to guide the chaser spacecraft to approach the
target in the position space, as well as follow any changes
in the orientation of the target. The motion of the target
as realized by the robot is also realized via another servo-
ing node running simultaneously with the chaser. Servoing
is implemented via a modified implementation of MoveIt
Servoing ROS package. MoveIt Servoing is a plugin in the
MoveIt motion planning framework that allows for real-
time control of robotic manipulators. It also consists of
a set of ROS nodes that help in the pose-tracking of the
robot using Cartesian motion set-points. Desired mockup
position commands are directly streamed as inputs and the
manipulator executes them concurrently. To get the existing
system setup operating with MoveIt Servoing, the chaser and
the target spacecraft mounted at the end of the UR10e flanges
are also added as links to the xacro files and, therefore, made
a part of the serial kinematic chain. The center of mass
of each spacecraft is treated as the new tool-centre-point
(TCP) of the robot. The following robot TCP is then treated
as the command frame. The position way-points, obtained
in the LVLH frame, are expressed in the command frame
using appropriate transformations as set-points to the robot
controller. Each spacecraft then follows its corresponding
trajectory simulating rendezvous between the target and the
chaser as closely as possible.

8. Results
The final approach phase between the chaser and the

target is emphasized for evaluating the rendezvous oper-
ations in this investigation. When the separation between
the chaser and the target is significantly large, the relative
orientation between the two spacecraft is less pivotal. In
such a case, the controller is inclined towards identifying an
optimal trajectory for the chaser to progress toward the target
spacecraft with little focus on matching the orientation. On
the contrary, when the separation between the chaser and the
target spacecraft is small, the determination of a rendezvous
trajectory as well as maintaining appropriate relative ori-
entation between the chaser and target spacecraft becomes
equally crucial. Such a scenario becomes a criterion for
testing and validating the control algorithm for rendezvous
operations.

Analogous to the Gateway, the target spacecraft is con-
templated to move along the 9:2 synodic resonant south-
ern NRHO, particularly at apoapsis during the start of the
approach. The target spacecraft experiences gravity torques
exerted by the Earth and Moon, and tumbles under the dy-
namics. Such a complex scenario is deliberately selected to
test the potency of the control algorithm while ensuring the
chaser adapts to orbit and attitude changes proportionately.
Two different tests are evaluated in this investigation: (1)
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Table 3
Sample parameters for testing controller performance and hardware-in-the-loop (HITL) experiments.

Parameters Case 1 (simulation) Case 2 (simulation) HITL (experiment)
Initial separation in LVLH frame [-3.5, 1.5, 0] [35,-15,-10] [-0.80, 0.01, 0.04]
([x,y,z] m) (from actual observation)
Distance at rendezvous [m] 0.6 2 0.45
Collision avoidance distance [m] 0.6 2 0.45
Total time of propagation [hr] 4 3 3
Control segments 120 60 120
Max. control acceleration [m/s2] 1.1 × 10−6 2.7 × 10−5 1.1 × 10−7

Max. control torque per kg [Nm] 1.4 × 10−9 7.0 × 10−8 1.4 × 10−9

𝐐1 [diagonal in log10 scale] [3, 3, 3] [0, 0, 0] [1, 1, 1]
𝐐2 [diagonal in log10 scale] [1, 1, 1] [1, 1, 1] [1, 1, 1]
𝐐3 [diagonal in log10 scale] [0, 0, 0] [0, 0, 0] [0, 0, 0]
𝐑 [diagonal in log10 scale] [−1, −1, −1, −2, −2, −2] [0, 0, 0, −2, −2, −2] [−1, −1, −1, −2, −2, −2]
Pose observation interval [s] 30 30 5
Errors in pose (3𝜎) 15 cm in x,y,z (absolute error) 10% in x,y,z (relative error) NA

0.03 in 𝜖𝑖 0.03 in 𝜖𝑖 (based on real pose values)
Incorrect orientation or 1 in 30 observations 1 in 30 observations NA
pose flipping (based on real pose values)

analyzing the capabilities of the controller based on simu-
lation, and (2) hardware-in-the-loop (HITL) tests as a proof-
of-concept for rendezvous in cislunar halo orbits with navi-
gation using ArUco-markers-based optical sensing. Both the
target and chaser spacecraft are modeled as uniform-density
6U CubeSats for both tests. The control algorithm is out-
lined with Object-oriented programming (OOP) in Python
with standard libraries. The pose estimation algorithm is
also programmed in Python using OpenCV library. These
programs interface with the robotic manipulators over the
Robot Operating System (ROS) network.
8.1. Controller Performance

The phase of the proximity operations is considered
where the trajectory and orientation of the spacecraft are
relevant. Of course, the control algorithm adapts to the
varying distance of separation between the two spacecraft.
Two distinct and diverse cases are evaluated. These cases
are simulated with different parameters as listed in Table 3.
In case 1, the chaser and the target spacecraft are initially
separated by a distance of approximately 3.8 m and the entire
rendezvous is expected to occur within 4 hours. For case 2
however, the initial separation is roughly 40 m, i.e., an order
of magnitude higher than in case 1. Moreover, the proximity
operations in case 2 happen within 3 hours; quicker than in
case 1. Case 1 involves 120 equally-spaced discrete control
inputs while only 60 control maneuvers are employed in
case 2, over the entire course. The maximum values for the
optimal control acceleration and torque are constrained to
be within the values currently proposed for the Gateway
mission [50]. Values for weighting matrices within the cost
functional that guide the generation of optimal rendezvous
path are as listed in Table 3 for both these cases.

Poor pose observation is detrimental to the control costs
necessary to maintain the chaser spacecraft along the op-
timal rendezvous path. In practice, optical sensors on the
chaser identify the pose of the target while it is itself in
motion; certain poor pose observations may, therefore, be
inevitable. The effects of uncertainties in pose identification
on the quality of control are tested by introducing syn-
thetic perturbations in the components of orbital motion
and orientation. The resulting values of 𝛿𝐮𝑘 are monitored.
For both cases, the frequency of observations is limited for
availability only once every 30 seconds; further, 1 in every
30 observations is assumed to be pose flipped, i.e., supplying
faulty orientation values. Besides, in case 1, the components
of position along each direction are perturbed by an absolute
3𝜎 value of 15 cm. On the contrary, a relative position error
with 3𝜎 of 10% along each of the three spatial directions is
introduced in case 2. Finally, a perturbation of 3𝜎 value of
0.03 along each component of the orientation quaternions is
introduced for both cases. The results from the two cases are
outlined as follows:

• Case 1. An optimal rendezvous path is determined
with the approach site at 0.6 m from the center of the
target, along the target body frame 𝑖[B] axis; accord-
ingly, the collision avoidance distance is established as
0.6 m. The optimal rendezvous path in configuration
space is visualized relative to the [L] frame in Fig.
11. A snapshot of the two spacecraft at a certain
time instant is also plotted to describe the mutual
orientation of the two spacecraft during the approach.
Figure 12 offers the actual path that incorporates linear
control maneuvers once the synthetic pose errors are
introduced. The optimal guidance path is also plotted
for reference. A distinct difference between the actual
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and optimal trajectory is not visible at a macro level in
Fig. 12, primarily since the Kalman filter compensates
for any large fluctuations in routine pose observa-
tions recorded along the process. A thorough inspec-
tion of the position coordinates in Fig. 13, however,
yields a distinct difference between the reference ren-
dezvous path (labeled by subscript ‘ref’), the true path
of spacecraft motion (labeled by subscript ‘truth’),
and finally the estimated path (labeled by subscript
‘est’). Finally, the control history, both acceleration
and torque, for cislunar rendezvous in case 1 are given
in Fig. 14.

Figure 11: Optimal path for rendezvous, with a sample
orientation of target and chaser spacecraft. Frame:
LVLH. CubeSat scale: 2X. (Case 1)

Figure 12: Actual rendezvous path for simulations with
estimated poses. (Case 1)

• Case 2. Similar to the previous case, in case 2, a
reference rendezvous path is determined such that the
approach site is spaced 2 m from the center of the

Figure 13: Position state history for the proximity
operations. (Case 1)

(a) Acceleration control history

(b) Torque control history
Figure 14: Control history for rendezvous operations
(Case 1). In certain regions, the optimal and actual
control values have small differences and appear as
overlapping.

target; consequently, the collision avoidance distance
of 2 m is set. The optimal path along with a sample
orientation of the target and chaser is demonstrated
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in Fig. 15. Figure 16 illustrates the actual flight path
given that perturbations from synthetic pose data are
incorporated. Note that, in case 2, pose errors are
relative while absolute 3𝜎 pose errors are included
in case 1. The overall geometry of the rendezvous
path remains fairly consistent in configuration space
despite uncertainties in the pose. Figure 17 offers the
progression of the position states along the optimal
reference path, the true path, and the estimated path.
Figure 18 presents the acceleration and torque control
history for case 2. In contrast to case 1, the maximum
acceleration and torque level (along the reference path
evaluated by nonlinear optimal control) is higher in
case 2; the chaser thereby rapidly progresses toward
the approach site near the target. Not surprisingly, the
magnitude of the control costs, in consequence, are
higher in the beginning and reduce substantially with
time.

Figure 15: Optimal path for rendezvous, with a sample
orientation of target and chaser spacecraft. Frame: LVLH.
CubeSat scale: 4X. (Case 2)

The quality of pose observations has a direct impact on
the quality of the state estimation; a poor estimate triggers
an increased deviation from the reference path. As a conse-
quence, larger control costs are required to evolve near the
desired rendezvous path. Frequent and precise pose obser-
vations are essential for improving efficiency and reducing
the costs of corrective maneuvers.
8.2. Hardware-in-the-loop tests

The autonomy of the control algorithm for rendezvous
operations is validated using hardware-in-the-loop tests.
These tests are proof-of-concept for guidance and control
strategies leveraging optical navigation techniques. Such au-
tonomy presents potential opportunities in cislunar missions.

Figure 16: Actual rendezvous path for simulations with esti-
mated poses. (Case 2)

Figure 17: Position state history for the proximity operations.
(Case 2)

The guidance, navigation and control (GNC) techniques are
validated in a sophisticated test facility.
8.2.1. Hardware and software integration

The ROS network offers a platform to integrate and com-
municate between hardware and software. As a language-
agnostic tool, components programmed in different pro-
gramming languages can send and receive information with
very low latency over the ROS network. For the rendezvous
operations in this investigation, a “Cislunar” ROS node
serves as the leading piece of the entire hardware-in-the-loop
architecture. It undergoes three primary tasks as follows:

1. Foremost, the node subscribes to the pose values for
the target spacecraft relative to the chaser camera
frame as well as the location of the chaser body rel-
ative in the laboratory space. For convenience, all the
pose values are retrieved in the LVLH frame. Note that
in common terminology, these packets of informa-
tion are denoted as ROS topics. In this investigation,
these information packages are communicated form
of “geometry messages” which include Frame ID, the
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(a) Acceleration control history

(b) Torque control history
Figure 18: Control history for rendezvous operations (Case 2).
In certain regions, the optimal and actual control values have
small differences and appear as overlapping.

time stamp of the message, position coordinates and
orientation quaternions.

2. The node further includes the python controller pack-
age that apprehends the pose values to deliver ma-
neuvers. At the initial time, the nonlinear controller
within the package determines an appropriate cost-
optimal reference path that is ideal for rendezvous.
For any following observations, the package uses the
available observation to update the state estimate and
covariance. At certain time intervals, the algorithm
also computes intermittent corrective maneuvers as
necessary.

3. Finally, the node publishes the way-points, again in the
form of position coordinates and orientation quater-
nions for both target and chaser spacecraft, that the
robot is expected to follow. The way-points are also in
the form of “geometry messages” that are published
as ROS topics.

A simplified representation of the ROS node is presented
in Fig. 19, indicating the subscribing and publishing topics.
Further, Fig. 20 presents RViz with the actual robot config-
uration, visual feedback from the camera with the detection
of ArUco markers on the target spacecraft, and visualization
of the static transformations.

8.2.2. Test results
Numerical simulations in Cases 1 and 2 demonstrate

the adaptability of the control algorithm for a range of
motion. Such motion although plausible in the real world,
the experimental rendezvous path is constrained to lie within
the limited workspace accessible to the robotic arms as well
as the marker detection distance for the camera. Initial con-
ditions for the proximity operations are identified from the
pre-existing configuration of both the robotic arms within
their accessible workspace; an initial separation of approxi-
mately 0.8 m was determined. The relative pose of the target
spacecraft is determined and an optimal path is calculated;
the one determined in the experiment for a rendezvous
duration of 3 hours is plotted in Fig. 21. A sequence of 120
control segments are, thus, placed at segment intervals of
90 seconds. Pose observations are recorded once every 5
seconds. Initial conditions and parameters used for the HITL
tests are listed in Table 3.

The results from the hardware-in-the-loop tests are con-
templated as follows:

• Filtering pose observations. The Kalman filter in-
cludes an inherent assumption that the noise is nearly
Gaussian, however, such assumptions may not pre-
cisely hold with real-time pose observations. Further,
the quality of the observations depends on several fac-
tors such as changing lighting conditions, the direction
of the optical camera, the separation distance between
the chaser and target, and even vibrations from the
setup. Further determination of the pose of a moving
target while the chaser itself is in motion may also
generate uncertainties. Figure 22 displays the actual
pose observations along with the estimate, reference,
and true flight path at two sample locations. The nature
of pose observations is different at these two locations,
and may again vary at other locations. Some oscilla-
tions occur at a frequency of the maneuver delivery
potentially due to the hardware setup, nevertheless,
the amplitude of the observed vibrations is minuscule
and handled conveniently by the Kalman filter. In gen-
eral, pose observations are retrieved at significantly
higher frequencies enabling an acceptable precision
in state estimation. Figure 23 offers the history of the
estimated flight path along with the true flight path
and the reference path. A reasonable precision in the
determination of the entire flight path is achieved with
the Kalman filter working in tandem with the linear
feedback controller. The actual flight path, one that
incorporates observations and corrective maneuvers,
is plotted along with the reference rendezvous path in
the 3-dimensional configuration space in Fig. 24.

• Control costs. Optimal maneuvers are planned to fol-
low the reference path ideal for rendezvous. The ac-
tual maneuvers, however, are the sum of the optimal
and corrective maneuvers. The control history for the
HITL test is presented in Fig. 25 for the optimal and
actual maneuvers. A zoomed-in view is also available
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Figure 19: “Cislunar” ROS node to receive pose observations and communicate way-points for robot end-effectors to emulate the
motion of the target and chaser spacecraft.

Figure 20: Robot motion planning interface as visualized on
RViz toolkit.

Figure 21: Optimal path for rendezvous, determined for HITL
experiments. Frame: LVLH. Target is colored orange. CubeSat
scale: 0.6X. Trajectory without control is visually obscured by
the chaser body.

in Fig. 25b that distinctly reveals the evolution of cor-
rective maneuvers while compensating the orientation
errors. Despite these fluctuations, the chaser is able to
rendezvous with the target in the neighborhood of the
determined reference path.

• Computational time. The computational time to iden-
tify the optimal baseline rendezvous path after ac-
quiring the initial pose along with system lineariza-
tion near this baseline is approximately 200 to 400
seconds, depending on the case and the operating
machines. In any flagship mission, a reference path
is ideally known, hence, such a computational time
is not translated during the actual flight. The routine
computation of the corrective maneuver is, however,
translated during actual flight operations. The “Cis-
lunar” ROS node was able to operate at a frequency
up to 6 Hz, i.e., subscribe to the pose data and publish
relevant way-points for the spacecraft, roughly 6 times
a second. The pose identification occurs significantly
faster than the controller, up to 20 Hz; a pose is almost
instantaneously available for subscribing. For the par-
ticular HITL case, pose observations are recorded at
every 5 seconds of flight time, i.e., 0.2 Hz (indicated
in Table 3), i.e., a total of 2160 pose observations
in 3 hours of rendezvous time. At a frequency of
operation at 6 Hz, the entire rendezvous operation may
be emulated as fast as 6 mins (= 2160/6 = 360 s) in the
laboratory. In practice, discrete maneuvers are not typ-
ically updated every 6 Hz. Perhaps 6 Hz is the limiting
case and offers the maximum operational speed of the
control algorithm. Modern pose estimation algorithms
for space applications are capable of delivering poses
at a frequency greater than 5 Hz [18, 19]. Since ma-
neuvers are updated at a significantly lower frequency,
the entire rendezvous operation is achievable in the
real world.

The experiments are successful only with proper inte-
gration of software and hardware components. Figure 26
presents evidence and offers a direct comparison between
the motion rendered by the robotic manipulators while em-
ulating the spacecraft motion with the desired way-points
visualized in RViz. The functionality of the control algo-
rithm to perform in sync with the pose estimation algorithm
and robotic manipulators (for emulating actual spacecraft
trajectory) is validated with the HITL tests. Furthermore,
real-time pose estimation for spacecraft navigation presents
opportunities for precise rendezvous. Improved algorithms
for a wider range of pose estimation scenarios potentially
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Figure 22: Actual state observations along with estimated
values, true values and reference state values determined
during HITL experiments. Zoomed-in view at two sample
locations in 𝑧[L] direction.

Figure 23: Position state history for the HITL experiments

overcome the existing challenge of a limited operating dis-
tance of separation between spacecraft.

Figure 24: Actual rendezvous path with estimated poses,
determined for HITL experiments.

(a) Acceleration control history

(b) Torque control history
Figure 25: Control history for experimental rendezvous opera-
tions

9. Concluding Remarks
A GNC technique for autonomous rendezvous opera-

tions in cislunar halo orbits is presented in this investigation,
one that adopts a two-layered guidance and control approach.
Firstly, the guidance algorithm using a nonlinear optimizer
offers a baseline rendezvous path that accommodates both
orbit and attitude motion for the chaser and target spacecraft
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Figure 26: Robotic manipulators with target and chaser mock-
ups (with its coordinate frames) as seen on RViz (bottom)
vs configuration in laboratory space (top). The body frame
axes (𝑥̂, 𝑦̂, 𝑧̂) for the target and chaser spacecraft are displayed
in RViz with standard Red-Green-Blue (RGB) color format
(bold).

in the circular restricted three-body problem. Subsequently,
the linear controller compensates for any deviations iden-
tified from the desired baseline path, while incorporating
feedback from optical navigation techniques. Vision-based
navigation offers pose observations in this investigation. The
designed algorithm is capable of performing rendezvous
with a wide range of separations between the two spacecraft;
two distinct cases are presented to validate this ability.
Weighting matrices for the cost functional are altered on
a case-by-case basis. From an operational perspective, the
computationally intensive process of baseline generation
may be performed on the ground, and gains required for the
linear controller may be passed onto onboard computers.

A proof-of-concept autonomous GNC technique is elab-
orated with hardware-in-the-loop experiments. Spacecraft
mockups on the end-effector of the two robots emulate the
motion of the chaser and target for rendezvous in a Near Rec-
tilinear Halo Orbit. Fluctuations in actual pose data are not
precisely Gaussian, yet frequent real-time pose observations,
processed through a Kalman filter, yield state estimates with
reliable precision; therefore adequate for delivering correc-
tive maneuvers. Pose estimation and controller communicate
over the ROS network with low latency. In this investigation,
the controller was able to operate at a frequency of as
much as 6 Hz, much faster than the operational requirement.

Correspondingly, a real-world rendezvous application with a
control frequency significantly less than 6 Hz is achievable.
Ample time for capturing multiple pose data allows precise
state estimation, resulting in the superior quality of control
maneuvers.

The favorable outcome from the hardware-in-the-loop
experiment further presents opportunities for more rigor-
ous testing; particularly, evaluating long-range pose esti-
mation algorithms, challenging lighting conditions, and an
enhanced range of robot motion to emulate a spacecraft
trajectory. The advancements in the GNC algorithm, one that
incorporates an onboard optical navigation system, to ac-
tively undergo rendezvous operations enable exploitation of
such activities in regions that are inaccessible directly from
the Earth, for example, in the Earth shadow region (away
from the line of sight). Such techniques further reinforce the
potential to execute rendezvous in deep space, significantly
farther from Earth.

Supplementary Materials
Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.actaastro.2023.06.028.
A media demonstration of the hardware-in-the-loop test is
presented.
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