Toward High-Performance Multi-Physics Coupled Simulations for the Industry with XDEM

Xavier Besseron, Prasad Adhav, Daniel L. Louw, Bernhard Peters

University of Luxembourg LuXDEM Research Centre https://luxdem.uni.lu

1st International Conference Math 2 Product (M2P 2023) Emerging Technologies in Computational Science for Industry, Sustainability and Innovation

May 30th - June 1st, 2023, Taormina, Italy

IS26b - High performance computing in research and industry

X. Besseron Toward HPC Multi-Physics Coupled Simulations for the Industry with XDEM

Outline

High-Performance Biomass Furnace Simulation

- CFD-DEM volume coupling
- Co-located partitioning
- Simulation approach and results

Cloud-based Workflow for the Industry

• Seamless integration in HPC

Coupling with more Flexibility

• Using the preCICE coupling library

Parallel Coupling for Biomass Furnace Simulation

- CFD-DEM Volume Coupling
- Co-located Partitioning

Combustion process in a biomass furnace

Biomass combustion (e.g. wood chips)

- widely used for generating electric and thermal energy
- renewable and potentially carbon-neutral energy source

Combustion chamber of a biomass furnace

- forward acting grate
- transports the fuel through the furnace

The fuel undergoes a number of steps

- drying, pyrolysis, char burning, cooling in which it releases hydrocarbons
- hydrocarbons are burned in the gas phase

Use numerical simulations

- to study efficiency and performance
- and reduce the costs of experiments

Numerical Approach for Biomass Furnace: Multi-Physics Simulation

Two-way coupling between Discrete Element Method (DEM) and Computational Fluid Dynamics (CFD)

XDEM (Lagrangian) for:

- Motion and collisions of biomass particles
- Conversion of biomass particles

OpenFOAM (Eulerian) for:

- Flow of gas phase
- Reactions in the gas phase

CFD-DEM coupling is required to capture the physics of biomass furnaces and offers unprecedented insight.

Fluid Fluid Interactions Particles

CFD-DEM Parallel Coupling: Challenges

The domains overlap in space

X. Besseron Toward HPC Multi-Physics Coupled Simulations for the Industry with XDEM

Challenges in CFD-XDEM parallel coupling

- Combine different independent software
- Volume coupling
 - \Rightarrow Large amount of data to exchange
- Different distributions of computation and data
- DEM data distribution is dynamic
- Data interpolation between meshes

CFD-DEM Parallel Coupling: Challenges

Classical Approach: the domains are partitioned independently

Complex pattern and large volume of communication

M2P 2023

Co-located Partitioning Strategy

Domain elements **co-located** in domain space are assigned to the same partition

X. Besseron Toward HPC Multi-Physics Coupled Simulations for the Industry with XDEM

High Performance Biomass Furnace Simulation

Simulation approach and results

Volume Coupling for Biomass Furnace Simulation Momentum, Heat and Mass transfer

Fluid phase in OpenFOAM

- CFD to DEM
- Fluid velocity, density, dynamic viscosity
- Pressure Gradient
- Temperature
- Thermal conductivity
- Specific heat
- Diffusivity
- Species mass fraction (CH4, CO2, CO, H2, H2O, N2, O2, Tar)
- Porosity
- Momentum source (acceleration, omega)
- Heat source
- Mass sources (CH4, CO2, CO, H2, H2O, N2, O2, Tar)

DEM to CFD

Particles in XDEM

X. Besseron Toward HPC Multi-Physics Coupled Simulations for the Industry with XDEM

Parallelization approach for Biomass Furnace Simulation

Overlapping domains are co-located \Rightarrow No inter-partition inter-physics communicationSolvers linked as one executable \Rightarrow Fast intra-partition inter-physics data exchange

M2P 2023

X. Besseron Toward HPC Multi-Physics Coupled Simulations for the Industry with XDEM

Biomass Furnace Setup

based on an experimental furnace at Enerstena UAB in Lithuania

Furnace

- Dimensions of 2.51m × 1.14m × 2.07m (L × W × H)
- Top exhaust pipe of 0.6m diameter
- 6 primary air inlets from the bottom
- 11 secondary air inlets on each side
- 1 tertiary air inlet on the exhaust pipe

Grates

- 8 static grates and
- 6 moving grates with an
- average slope of 7.5 degrees

Fuel bed

- Initial fuel bed heigh is 10cm
- Wood particles of 3cm diameter with 40% humidity
- Injected at the top side of the grates at a rate of 439kg/h

- CFD mesh with 60,001 cells
- 9,141 particles initially

M2P 2023

Performance measurements were performed on the *Barbora* cluster of the IT4Innovations HPC platform.

Biomass Furnace simulation using XDEM+OpenFOAM

- At 445s of simulated time, lighting-up of the furnace
- Around 1125s, furnace reaches the steady state (all hot gases are burning)
- ⇒ Dynamics and coupling-aware load-balancing approaches required

X. Besseron Toward HPC Multi-Physics Coupled Simulations for the Industry with XDEM

M2P 2023

Cloud-based Workflow for the Industry

Seamless integration in HPC

Objective: a simple user workflow

Visualize the results

download archive from

pre-generated report

UNIVERSITÉ DU

M2P 2023

the web portal

X. Besseron Toward HPC Multi-Physics Coupled Simulations for the Industry with XDEM

How to much input is required?

Furnace and grate design

- parametrised with a few numbers
- geometry is generated automatically

Fuel / Wood chip

- characterised by ultimate analysis
- thermo-physical values obtained from standard experiments

Air inlets

- can be placed at any position
- require the full composition when recirculation is used

\rightarrow A few hundred degrees of freedom!

Designing and implementing a web interface was out of scope

M2P 2023

Spreadsheet Input File

Job submission

Biomass Furnace Simulation Workflow

Welcome! This workflow takes an Excel file that contains the input parameters of a bio mass furnace simulation. The simulation uses XDEM (discrete particles) and foam-extend (computational fluid dynamics). It automatically generates all necessary inputs (geometry, mesh, input files) and returns a report for download.

Workflow steps

1. Select input Excel file 2. Perform simulation 3. Download results

Step 1: Excel-file selection

Select the Excel file that contains the inputs for the furnace simulation

Submission Web Portal

HPC Simulation with Singularity on IT4T HPC cluster

IT4Innovations national01\$#80 supercomputing center@#01%101

HPC job running

Execution Progress

- parse -> done

11

11

11

11

11

11

11

11

11

11

11

11

- render controlDict -> done

 surfaceFeatureEdges -> done - cartesianMesh -> done

- prepareXDEMPackedBed -> done BedPackingInput -> done - runXDEMBedPacking -> done

- grateGeometry -> done

renderMeshDict -> done

- prepareFuel -> done - mappingRegion -> done

- prepareFoam -> done

prepareXDEM -> done

- geometry -> done

- cellSet -> done

Versions

Input File

()

Step: 1/3 Pre-processing started at Sat Oct 9 23:57:14 CEST 2021

 $(_)_(_)$

() (_)_

()

()

Execution of the

workflow is delegated to

the SemWES engine

Real-time - adiustFurnaceGeometry -> done progress report

- renderDecomposeParDict -> done
- decomposePar -> done Step: 2/3 Simulation started at Sun Oct 10 00:02:44 CEST 2021 - runXDEM -> done

Toward HPC Multi-Physics Coupled Simulations for the Industry with XDEM X. Besseron

Toward HPC Multi-Physics Coupled Simulations for the Industry with XDEM X. Besseron

Simulation Results

Average bed surface temperature temperature over time

X. Besseron Toward HPC Multi-Physics Coupled Simulations for the Industry with XDEM

Organic matter

Water Ash

9 00

UNIVERSITÉ DU LUXEMBOURG

M2P 2023

Header of the report with software versions and checksum of the input file

M2P 2023

X. Besseron Toward HPC Multi-Physics Coupled Simulations for the Industry with XDEM

Average properties at the outlet

Average of T over patch outlet[3] = 1422.4505 Average of rho over patch outlet[3] = 0.23866349 Average of CH4 over patch outlet[3] = 0.0002149707 Average of CO over patch outlet[3] = 0.023597323 Average of CO2 over patch outlet[3] = 0.12360054 Average of H2 over patch outlet[3] = 0.00014842204 Average of H2 over patch outlet[3] = 0.18191674 Average of 02 over patch outlet[3] = 0.078764601 Average of TarLithuania_1 over patch outlet[3] = 0.029753928

Average properties at exit of the exhaust pipe

Toward HPC Multi-Physics Coupled Simulations for the Industry with XDEM X. Besseron

UNIVERSITÉ DU LUXEMBOURG

Toward HPC Multi-Physics Coupled Simulations for the Industry with XDEM X. Besseron

and many more...

UNIVERSITÉ DU LUXEMBOURG

M2P 2023

Toward more flexibility for the Industry

Coupling using the preCICE library

M2P 2023

Replacing ad-hoc coupling in XDEM \rightarrow Using preCICE coupling library

Black-box approach

- Solver can be replaced 'easily'
- Require an adapter
- Compatible with closedsource solvers

⇒ more flexibility

Homepage: https://precice.org/

XDEM-OpenFOAM coupling with preCICE

[2] Xiao H, Sun J. Algorithms in a robust hybrid CFD-DEM solver for particle-laden flows. Communications in Computational Physics. 2011;9(2):297-323.
[-] preCICE 2021, Momentum coupling: https://youtu.be/7fpRsB55Oss

M2P 2023

X. Besseron Toward HPC Multi-Physics Coupled Simulations for the Industry with XDEM

XDEM-OpenFOAM coupling with preCICE

[2] Xiao H, Sun J. Algorithms in a robust hybrid CFD-DEM solver for particle-laden flows. Communications in Computational Physics. 2011;9(2):297-323.
[-] preCICE 2021, Momentum coupling: https://youtu.be/7fpRsB55Oss

X. Besseron Toward HPC Multi-Physics Coupled Simulations for the Industry with XDEM

Going further: 6-way coupling DEM-CFD-FEM

M2P 2023

Abrasive Water Jet Cutting Nozzle with preCICE coupling (work in progress)

X. Besseron Toward HPC Multi-Physics Coupled Simulations for the Industry with XDEM

M2P 2023

AWJC Nozzle setup

Particle inlet

(1 to 10 gm/s) Air inlet Fluid outlet

Fluid Part

Summary: HPC Multi-Physics Coupled Simulations for the Industry

Cloudi CO Facturing C

Multi-Physics Biomass Furnace Simulation

- Two-way 'in-memory' coupling CFD ↔ DEM
- Hybrid parallelization scheme: MPI + OpenMP

Cloud-based workflow

- From input to simulation report
- Portable execution using Singularity
- Job submission and execution on HPC platform

\rightarrow Application as a Service (AaaS)

Toward more flexibility

- preCICE coupling library
- coupling-aware load-balancing

X. Besseron Toward HPC Multi-Physics Coupled Simulations for the Industry with XDEM

Average particle composition over the

References

Xavier Besseron, Henrik Rusche, and Bernhard Peters. **Parallel Multi-Physics Simulation of Biomass Furnace and Cloud-based Workflow for SMEs**. In *Practice and Experience in Advanced Research Computing (PEARC '22)*, July 10–14, 2022, Boston, MA, USA. https://doi.org/10.1145/3491418.3530294

Gabriele Pozzetti, Xavier Besseron, Alban Rousset, Bernhard Peters. **A co-located partitions strategy for parallel CFD–DEM couplings**. In *Advanced Powder Technology*, Volume 29, Issue 12, 2018. https://doi.org/10.1016/j.apt.2018.08.025

Bernhard Peters, Maryam Baniasadi, Mehdi Baniasadi, Xavier Besseron, Alvaro Estupinan Donoso, Mohammad Mohseni, and Gabriele Pozzetti. **XDEM multi-physics and multi-scale simulation technology: Review of DEM–CFD coupling, methodology and engineering applications**. In *Particuology*, Volume 44, 2019. https://doi.org/10.1016/j.partic.2018.04.005

Prasad Adhav, Xavier Besseron, Alvaro A. Estupinan Donoso, Bernhard Peters, and Alban Rousset. **Heat and Mass Transfer between XDEM & OpenFOAM using PreCICE Coupling Library**. In *ECCOMAS 2022*. http://hdl.handle.net/10993/51657

More details about the CloudiFacturing BioOpt Experiment: http://luxdem.uni.lu/projects/2020-CloudiFacturing_BioOpt/

CloudiFacturing project:

https://www.cloudifacturing.eu

Thank you for your attention!

The project CloudiFacturing receives funding from the European Union's Horizon2020 research and innovation programme (Grant No. 768892).

UNIVERSITÉ DU LUXEMBOURG

M2P 2023