THE TERNARY CYCLOTOMIC POLYNOMIALS &3,

ABSTRACT. Cyclotomic polynomials are a classical and fundamental topic in number the-
ory, and still an active field of research. The aim of this work is providing a formula for
the family of ternary cyclotomic polynomials ®3,4, where p < g are prime numbers greater
than 3 such that ¢ = £1,+£2 mod 3p and ¢ > 3p. We can derive various properties from
our formula. In particular, we prove a conjecture of Zhang on the number of maximum

gaps for the coefficients.

1. INTRODUCTION

Cyclotomic polynomials play an important role in several areas of mathematics and
especially in number theory: they are a classical and fundamental topic, and still an active
field of research. For the basic properties of cyclotomic polynomials, we refer the reader to
[11, 12]. We denote by ®,, the n-th cyclotomic polynomial. If n is a prime number, then

n—1

¢, (X) = > X" If nis the product of two distinct odd prime numbers, then ®,, is called
i=0

binary cyclotomic polynomial: these polynomials are flat (i.e. the non-zero coefficients are

either 1 or —1) and their structure is known by Lam and Leung [8].

In this work we consider ternary cyclotomic polynomials, namely those polynomials ®,,
where n = p1paps for some odd prime numbers p; < pa < p3. Such polynomials are not
necessarily flat (for example, ®3.5.7 has two coefficients equal to —2). Bounds for the coef-
ficients and structural properties of ternary cyclotomic polynomials have been investigated
however there are many open questions, see [11] for instance.

From now on, we suppose that p3 > pip2, and decompose ®,, into blocks, following Al-

Kateeb [1, 2]. By grouping terms of exponents between two consecutive multiples of p3, we

obtain
w(p1p2)—1 .
(1) (I)plmps (X) = Z fz’(X)XZm
=0

where f;(X) is a polynomial of degree smaller than p3 that is called a p3-block. There are
©(p1p2) such blocks.

2020 Mathematics Subject Classification. Primary: 11C08 ; Secondary: 11Y99.
Key words and phrases. Cyclotomic polynomials, Ternary cyclotomic polynomials, Coefficients, Maximum
gaps.

1



2 THE TERNARY CYCLOTOMIC POLYNOMIALS &34

Denote by ¢ (respectively, r) the quotient (respectively, remainder) of ps after division
by p1p2. We decompose each ps-block as

(2) fi(X) = Z fij (X)X 7Pz
=0

where the polynomials f; ; have degree smaller than pipo: they are called pip2-blocks for
Jj < gq, while f; , has degree smaller than r and it is called r-block. For example, ®3.5.37 can
be decomposed into eight 37-blocks, that in turn are composed of two 15-blocks and one
7-block.

There are iterative formulas for the construction of the pyps-blocks and the r-blocks,
and these blocks only depend on ps through (ps mod pip2), see [1] by Al-Kateeb. We
decompose the pips-blocks into four slices (see Definition 2.6 and Proposition 2.5). Our

main contribution is the following:

Theorem 1.1. Setting p1 = 3 and p3 = +1,4+2 mod 3ps, there are explicit formulas for
®3,,p;- The expressions for the slices of the 3pa-blocks are given in Tables 1, 2 and 3 for
p3 = 1 mod 3ps2, and in Tables 5, 6, 7 and 8 for p3 = +2 mod 3ps.

The proof of this result for the case r = 4+1 mod 3ps will be given in Section 3, and in
Section 5 for r = £2 mod 3p2. Our explicit formulas lead to the following result:

Proposition 1.2. Under the assumptions ps > 3p2 and ps = £1,2 mod 3pa, there are
explicit formulas for the number of coefficients in ®3,,,, equal to a given value, see Tables
4 and 9.

We also consider maximum gaps, which are defined as follows.

¢(p1p2p3)
Definition 1.3. Write ®,,,p,(X) = Y.  axX* and call k; the finite growing sequence

of the exponents of the non-zero coeﬂicientg. We call gaps the positive integers g; := k;11—k;
and we call g := max g; the maximum gap of @, pops-

The maximum gap has been determined by Al-Kateeb et al. in [2].
Theorem 1.4. If p3 > pip2, the mazimum gap of Pp pops s (p1 — 1)(p2 — 1).

The number of maximum gaps is the number of indices 7 such that g; = ¢g. In [13], Zhang
stated the following conjecture and proved it for p;ps = 15.

Conjecture 1.5 (Zhang, 2019). If ps > p1p2, the number of mazimum gaps is 2q.
Thanks to our explicit formula we can prove the following:

Proposition 1.6. Under the assumptions ps > 3p2 and p3 = £1,2 mod 3pa, Zhang’s
conjecture holds true.
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We prove Propositions 1.2 and 1.6 in Section 4 for pg = 41 mod 3ps and in Section 6 for
p3 = 2 mod 3ps.
Finally, as an example, we study the family of cyclotomic polynomials ®15, for every odd

prime number p # 3,5 in Section 8.

2. PRELIMINARIES

2.1. Binary cyclotomic polynomials. We write

(p1p2

® )
D1 (X) = Z kak :
k=0

We first specialise a result by Lam and Leung [8] to the case p; = 3.

Theorem 2.1. Let p; < p2 be odd prime numbers, and denote by u,v the unique non-
negative integers such that o(p1p2) = up1 + vpa. For every integer 0 < k < ¢(p1p2), we
have

1 if k=1ip1 + jpo with 0 <i<wu and 0<j <w
(B) br=9q-1 ifk=tipi+jpr—pipo withu+1<i<ps—landv+1<j<p —1
0 otherwise .

Corollary 2.2. The coefficients by, of the binary cyclotomic polynomial ®3,, are periodically
equal to

1,-1,0 for0<k<py—1

1,0,—1 forps—1<k <2(p2—1) and p2 =1 mod 3

-1,1,0 forps —1<k <2(p2—1) and p2 =2 mod 3.

Proof. We rely on Theorem 2.1. If po = 1 mod 3, we have u = % and v = 0. We
deduce that b, = 1 holds precisely for the indices k = 3i with 0 < i < 2221 Gimilarly,
bp = —1 holds when k = 3i — 2py or k = 3i — py with 22271 4 1 < < py — 1. I
p2 = 2 mod 3, we have u = Z’QT*Q and v = 1. We deduce that by = 1 holds precisely for the
indices k = 3i or k = 3i 4+ p2 with 0 < ¢ < 7323—_2. Similarly, b = —1 holds when k = 3¢ + 1
with 0 < i < 2224, O

2.2. Operations on the blocks. We recall the following operations from [2, Notation 5
and Section 2]:

pip2—1
Definition 2.3. Let f(X) = Y. aiX* be a polynomial with degree smaller than pips.

0

Yy a non-negative integer s are
s—1

Truncation | T,f(X) = 3 apX*

k=0

p1p2—1

Rotation | R.f(X)= 5 apXremk—spip2)

k=0

k
The truncation and rotation of f
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where rem(k — s, p1p2) is the remainder of k — s after division by p1ps.

Concretely, if we represent f(X) with the list of coefficients (ao, ..., Gp,p,—1), the effect of
the rotation by s is a cyclical shift leftwards by s indices, leading to the coefficients

(Ggy ovey Qprpy—15Q0; oey Gs—1) -
Example 2.4. For pips =15 and f(X) =1+ X + X2 — X5 — X% — X7 we have

Tof(X) =1+ X,
Rof(X)=1—-X3 - X1 X554 X134 x11

Consider the inverse cyclotomic polynomial

L (X) = ﬂ =—1—-X - _xpily xpe 4 xPp2tpi-l
p1p2 (bp1p2 (X) .. e .

We remark that adding or subtracting ¥s3,, to a polynomial only acts on the coefficients
whose exponent is in {0,1,2, p2,p2 + 1, p2 + 2}.

The following result from [2, Lemma 6] describes relationships between the p;pa-blocks
and the r-blocks of the ternary cyclotomic polynomial @, ,p,:

Proposition 2.5. We have the following identities:

(4) fio=Ffi1=...= fig—1,
(5) fiq =Trfi0
(6) fi+10 = Rrfio — bit1¥p s,
(7) Jo0 = —Ypip,-

The equations (4) and (5) show that to determine ®,,,,,,, it is enough to compute the
p1p2-blocks fio for 0 < i < ¢(p1p2). The other equations show an explicit expression for
fo,0 and how to compute f;11, from f;o. In this paper we compute all pipa-blocks f; o when
p1 = 3 and p3 = +1,+2 mod 3po.

3p2—1

Definition 2.6. We decompose each block fio(X) = > ai,ka into four slices
k=0

fio(X) = 51,i(X) + 82,i(X) + 83,i(X) + 54,4(X)

by partitioning the exponents as follows (notice that s1; and s3; have at most three non-zero
coefficients):

2 p2—1
._E : k o E : k
8172‘(X) = ai,kX y SQJ‘(X) = ai,kX N
k=0 k=3
p2+2 3p2—1

s3,i(X) == Z a; X", s4,4(X) == Z aip X"

k=p2 k=p2+3
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3. EXPLICIT BLOCK DESCRIPTION FOR ®g3,,, WITH p3 = 31 mod 3p»

Consider the ternary cyclotomic polynomial ®3,,,, such that p3 > 3p2 and p3 = +1 mod
p1p2. We prove Theorem 1.1 in this case by computing explicitly the 3ps-blocks f; o for
0 <i<2(py—1)—1. For p3 = 1 mod 3py (respectively, p3 = —1 mod 3p3) we gather the
expressions of s1; and s3; in Table 1 (respectively, Table 2). For ps = 41 mod 3py the
expressions of s ; and s4; can be found in Table 3.

We will see that the expressions of the slices s1; and s3; of f; o are periodic by varying 4
within certain intervals. The values of ¢ for which the periodicity is affected will correspond
to the values of i for which certain coefficients in f;_1 ¢ are non-zero.

Suppose that p3 = 1 mod 3p2. We speak about perturbations of the periodicity of sy ;
that is caused by a non-zero coefficient of so; 1 because rotating the polynomial f;_19
by 1 the smallest possible exponent for sy ; becomes the largest possible exponent for si ;.
Similarly, the periodicity for s3; might be affected if the smallest exponent of s4;_1 is non-
zero. For 0 < i < 2(pa — 1) we then say that si; (respectively, s3;) is perturbed if the
coefficient of X? (respectively, XP2+3) in f;_; o is non-zero.

For p3 = —1 mod 3ps, we consider instead the coefficient of X3P2~! (respectively, XP271)

to say that s;; (respectively, s3;) is perturbed.

3.1. The case p3 = 1 mod 3pa. We compute progressively sj; for £ = 1,...,4 by consid-
ering small values of 7 first. We rely on those expressions to compute s;, ; for further values
of 1.

The index i = 0. We have foo = —V3,, by (7).

The indices i € {1,2,3}. We computed the four slices by hand and we explicit here the
computations for ¢ = 1. Applying (6) with by = —1, we find f10 = R1fo,0 + ¥3p,. Since

Rifoo=1+X+—-XP2~t — xP2 _ xpatl 4 xdpa—l
we find
s11(X) = - X2 s21(X) = —_xpr2—1 s53.1(X) = xP2t2 s11(X) = X321
Then, foo = Ri1fi,0, S0
s12(X) ==X s22(X) = —XP272 s35(X) = XP2TL s5(X) = X2
Finally, f30 = R1f2,0 — ¥3p, and hence
$13() = X+ X2 s555(X) = —XP8 g g(X) = —XPHL_ XP2 g, () = X0

The indices 3 < © < po — 3. We can compute by hand that s;; = s1 43 holds for
Jj=1,2,3. We will show that the expression of s1; is 3-periodic for 1 <7 < py — 3.

Since in (6) we only perform rotations by 1, the computation of s;; from f;_10 just
requires b; and the coefficients of X, X2, X3 in fi—1,0 (because s1; is a polynomial of degree
at most 2). Similarly, computing the coefficients of X, X2, X3 in fi—1,0 just requires b;—; and
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the coefficients of X2, X3, X% in fi—2,0, which are computable from b;_» and the coefficients
of X3, X4 X% in fi—3,0. Thus, the expression of si; only depends on the coefficients of
X3 X% and X° in fi—3,0 and on b;_2,b;—1 and b;. By Corollary 2.2, the coefficients b; are
periodic up to i = pa — 1. The only exponent for a non-zero coefficient in so3 is po — 3
(the coefficient is —1), so after applying i — 3 rotations, we find that the smallest exponent
corresponding to a non-zero coefficient in sy ; is pp — i (also with coefficient —1). Hence, the
coefficients of X3, X* and X° in fi—3,0 are zero if i < py — 3. Thus, the expression of sy ; is
3-periodic for 3 < i < py — 3.

To study s3; we mimic the reasoning for s1;. We compute by hand that s3; = s3 ;43
for j = 1,2,3 and we prove that the expression for s3; is 3-periodic for 1 < i < ps — 3.
The expression of s3; only depends on the coefficients of XP2¥3 XP2Hd xP2+5 in f; 4
and on b;_2,b;—1 and b;. The only exponent for a non-zero coefficient in s43 is 3ps — 3
(with coefficient 1), so after applying ¢ — 3 rotations, the smallest exponent for a non-zero
coefficient in s4; is 3ps —i (again with coefficient 1). Thus the coefficients of X P23 X P2t
XP2F5 in f; 5 are zero for 3 < i < py — 3.

In our 3-periodic expressions of s1; and s3; for 1 < i < py — 1, the coeflicients of
X9 and XP2 are zero. Thus the rotation Ry fi,o doesn’t introduce additional non-zero
coefficients in sg; (respectively, s4,) compared to sg 3 (respectively, s43). We deduce that
52.i(X) = —XP27% and s4,;(X) = X327

The indices i € {p2 — 2,p2 — 1,pa}. The coefficient of X3 in fio is equal to —1 for
i = py — 3, which affects the periodicity for the expression of s;; (this is our first example
of perturbation for the first slice). We could compute s;; by hand for these values of i.
Moreover, also by hand, sg; = 0 for i € {ps — 2,ps — 1, pa} because sz p,_3 has only the
monomial at exponent 3 while the smallest non-zero coefficient of s3; has exponent larger
than py for i € {ps — 3,p2 — 2,p2 — 1}. We may compute by hand that s4;(X) = X3P2~
holds for i € {pa — 2,p2 — 1, p2}.

The indices po < i < 2(p2 — 1). We apply the same procedure as above (computing
fi,o by hand for the first four values of i greater than p, and reasoning by periodicity).
The coefficients b; are still periodic, but with a different order than in the case i < po
(see Corollary 2.2). Moreover, the cases p2 = 1,2 mod 3 have to be distinguished because
we have these two cases in Corollary 2.2. Notice that the coefficient of X?2 in s3,, is
—1 hence, by rotation, s3p,11(X) = —XP2~1 Since the coefficient of XP? in 83, is zero
for po < i < 2(p2 — 1), the rotations don’t introduce new non-zero coefficients in s ; for
p2+1<i<2(py—1). Thus we deduce s9;(X) = —X?2~ from the expression of s9,,11.
The coefficient of X3 in fi,0 is non-zero only if ¢ = 2pa — 3, which is the last possible value of
i, so there is no new perturbation in s; ; coming from the non-zero coefficient of s ;. Finally
(looking at the explicit expressions that are obtained by 3-periodicity) the coefficient of X
of s1,; is equal to 0 for p» < i < 2(pa — 1). Thus the rotation R f;o doesn’t introduce
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) ‘ P2 mod 3 ‘ Sl,i(X) ‘ Sg@(X) ‘
i=0 1,2 1+ X + X2 —XP2 — XP2Hl _ XP2F2
i=1mod3,i<py—3 1,2 —X? XP2+2
i=2mod3,1<py—3 1,2 -X Xp2tl
1=0mod3,0<i<py—3 1,2 X + X? —XP2tl _ XPaF2
, 1 -X - X? Xpatl
i =p2—2 2 X — X Pl — xpaTF2
] 1 X2 — X P2l Z xp2F2
t=p2—1 2 X - X2 X722
) 1 X —XPz _ xP2Fl
1= Dp2 2 X2 —XP2 _ Xp2F2
2 _ xp2t+2
i=0mod 3, py <i<2(py—1) ; )é;, _§p2+1
_ XY P2t1
i=1mod3, py <i<2(py—1) ; —X)in Xp2+1)(+sz+z
_X _ X2 p2+1 p21+2
i =2mod 3, py < i< 2(ps—1) ; XXZX X _thfz

TABLE 1. Expressions of s1; and s3; in the case p3 = 1 mod 3pa.

additional non-zero coefficients in s;;. We deduce that the expression sq;(X) = X3P~
(which holds for i = py) is still valid for ps < i < 2(p2 — 1).

3.2. The case p3 = —1 mod 3py. As this case is completely analogous to the case p3 =
1 mod 3ps, we only sketch it. The main difference is that now the rotations are rightwards
instead of leftwards (because shifting cyclically the coefficients by 3py — 1 indices leftwards
consists in shifting the coefficients by 1 index rightwards). In particular, so;(X) = X2* for
1 < i < py — 3 and the coefficient of XP2~1 of fpa—3,0 is equal to 1. Thus, the perturbation

at index ¢ = pp — 2 will affect s3; instead of sq ;.

4. PROPERTIES OF ®3,,,, FOR p3 = £1 mod 3p

Recall that cyclotomic polynomials are symmetric with respect to the middle coefficient.
For ®3,,,,, the coefficient at exponent k is the same as the coefficient at exponent 2(py —
1)(ps — 1) — k, the middle coefficient being at exponent (p2 — 1)(p3 — 1).

Notice (inspecting Tables 1 and 2) that each p1pe-block f; ¢ contains at least one positive
coefficient and one negative coefficient. We now prove Proposition 1.6 for p3 = +1 mod 3p2,
studying the gaps inside blocks and between blocks.

Let 0 <i < 2(p2 —1). We write

Fi(X) := XP3 f;(X)
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/) ‘ P2 HlOd 3 ‘ Sl,i(X) ‘ Sg@(X) ‘
i=0 1,2 1+ X+ X2 [ —XP2 — Xxp2Hl _ Xxp2i2
t=1mod3,i<py—3 1,2 —1 XP2
i=2mod3,i<py—3 1,2 -X Xpatl
i=0mod3,0<i<py—3 1,2 1+X —XP2 — XP2HI
. ) 1 X XP2  XP2F]
tTh 2 T+ X —XPaT
. 1 1+ X —XP2
i=p2—1 2 1 XP2 § xPal
. 1 X+ X2 —Xp2Fl
L= P2 2 T+ X2 —X72
) ) 1 1 —XP2
i=0mod 3, ps <i<2(py—1) 5 < —pT
) ) 1 X — Xp2Fl
i=1mod 3, py <i<2(p2—1) 5 % P 1 XPr
. . 1 -1-X XPz 4 xP2tl
i=2mod 3, pp <1i<2(py—1) 5 7 —7
TABLE 2. Expressions of s1; and s3; in the case p3 = —1 mod 3pa.
’ 7 \ p3 mod 3ps \ s2,i(X) \ s4,(X) ‘
i=0 1,—1 0 0
] 1 _XP2—1 X 3p2—t
l<i<p»—3 1 2T | _xPzT2E
. 1 0 X3p2—i
p2_2 S/L SpQ _1 O _Xp2+2+z
] 1 — X 2p2—1 X 3p2—t
p2 <i<2(p2—1) 1 XT-PaF2 | _ Pt

TABLE 3. Expressions of so; and s3; in the case p3 = £1 mod 3pa.

for the block of ®3y,,, consisting of the terms with exponent from ps - i to p3 - (i + 1) — 1.

We similarly write

Fz’,j(X) — pr’i+3p2jfi7j (X)

for the block of ®3,,,, consisting of the terms with exponent in the interval [p3i+3paj, psi+

where 0 < j <gq

3p2(j + 1) — 1] for j < q and [p3i + 3paq,p3(i + 1) — 1] for j = q.

We introduce the following notation, considering the exponents with non-zero coefficients.

This will allow us to locate all maximum gaps.

® g1t

e go; : difference between the smallest exponent of F;; and the largest exponent of

Fi,O (Setting gzﬂ‘ =0 if F@l = 0)

maximum gap of F; o (for 0 <7 < 2(pg — 1) this is a positive integer)
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e g3, : difference between the smallest exponent of F;, and the largest exponent of
F; q—1 (setting g2 ; = 0 if Fj ; = 0; recall that ¢ > 1)

® g4, : difference between the smallest exponent of Fj,; and the largest exponent of
F; (for 0 <i < 2(p2 — 1), this is a positive integer).

By (4), there are ¢ gaps equal to g1 ; and (¢—1) gaps equal to g2 ; in P3p,p,. Our expressions
for f; o show that F;, 1 = Xp3”3(q*1)p2f,'7q_1 = Xp3i+3(q’1)p2fi70 is non-zero. Moreover,
recall from (5) that f; , = 7, fio. We have F; , = f; , = 0 if and only if p3 = 1 mod 3p, and
¢ > 1. In that case, one may directly study g4 ; instead of g3 ;.

Proof of Proposition 1.6 for p3 = +1 mod 3p. By Theorem 1.4 the maximum gap of ®3,,,,
is 2(p2 — 1) and we have to prove that the number of maximum gaps is 2q. For q # 1, we
have

foo(X) = fo1(X) =1+ X 4+ X? — XP2 — xP2+l _ xp2t2

hence
F071(X) = X3p2  xdpetl o x3pat2 | xdpa  xdpatl | xdpat2

So we have ga o = 2(p2 — 1), and there are (¢ — 1) gaps equal to g2 in P3p,p,. Moreover,
the constant coefficient of fo, = Tifo0 is 1, so Foq(X) = X3P2¢ and g30 = 2(p2 — 1).
Hence, we have located ¢ gaps equal to the maximum gap. This also holds for ¢ = 1, where
Fo1(X) = X3P2. Since Fy corresponds to the terms of ®3,,,, with exponent in the interval
[0,p3 — 1], these gaps occur before the middle coefficient of ®3,,,,. By symmetry of the
coefficients, there are also ¢ maximum gaps after the middle coefficient. To conclude the
proof, we have to show that all of the other gaps are smaller than 2(ps — 1), so we have to
investigate g1 ; and g4, for 0 <i <py — 2 and ¢o; and g3; for 1 <i < py — 2.

The block F},,—2 corresponds to the terms of ®3,,,, with exponent in the interval [(ps —
2)ps3, pap3 — p3 — 1], the blocks Fj for 0 < i < ps — 2 cover all the coefficients of ®3p,,, up to
the middle coefficient. By the symmetry of the coefficients, we will only need to consider
the values of ¢ in the interval [0, p2 — 2]. We first suppose that p3 = 1 mod 3ps.

For 0 < i < po — 2, the quantity g1, is also the maximum gap of f;o. Differences
between exponents in s3; and sj; are smaller than p; + 3 (this can be read from the
explicit expressions). As sg0(X) = s4,0(X) = 0, we have g19 < p2 +3 < 2(p2 — 1). For
1 < i < py —2, in order to show that g1, < 2(p2 — 1), it is sufficient to show that the
difference between the smallest exponent of s4; and the largest exponent of s3; is smaller
than 2(ps — 1). For these values of i, we have s4;(X) = XP27% so we may check that
91,0 =p2—2, 911 = g12 = 2p2 — 3, and g1; < 2py — i for i > 3.

We have already studied g2 0 and g3 9. We now assume 1 <17 < py —2. If ¢ = 1, since the
coefficient of X© in fiois 0, then F; 1 = X P3it3p2 - Tifio = 0 and hence g2 ; = 0 according

to our convention. Else, g2 ; is by definition the difference between the smallest exponent of

Fiq= X P3it3p2 fi1= X P3it3p2 fio
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and the largest exponent of F; g = Xpsi fi,0- Then gy ; is the difference between the smallest
exponent in X3p2f2-70 and the largest exponent in f;o. Since s4;(X) = X3P271 the largest
exponent of f; ¢ is 3pa —i. Because s1;(X) # 0, the smallest exponent in X 3p2f; o is at most
3p2 42,50 g2 <2+ <2(py —1). To study g3, we may reason as for go; because Fj 4 is
a truncation of Fjg.

We now study gs; for 0 <7 < pa—2. We have Fy , = X3p2q'7’1f0,0 =% 0. Moreover, we have
51,1 # 0,80 g40 < 3. For 0 < i < pp —2 we have F; ; = 0, so g4, is the difference between
the smallest exponent of XP3(+1) £, 1 o and the largest exponent of XP3i+3p2(a=1) £, o Since
s44(X) = X3P2~% we get that 94; <341 <2(p2—1).

The case p3 = —1 mod 3py is analogous. Now we know that f; , # 0 (because s1; has
non-zero coefficients). Our explicit expressions for the blocks f; o make it possible to verify
that g14,92,i, 93,i94,; are strictly less than 2(py — 1) for 0 < ¢ < py — 2 with the exception of
g2,0 and g3 0. U

For the ternary cyclotomic polynomials ®,,,,,, such that p» = +1 mod p; and p3 =
+1 mod p1ps, Al-Kateeb has given in [1, Chapter 7] formulas for the number of non-zero

coefficients.

Remark 4.1. We consider the ternary cyclotomic polynomial ®3y,,, where p3 > 3p2 and
p3 = £1 mod 3pa. We call N, the number of coefficients equal to c in ®3p,p,. The expres-
sions in Tables 1, 2 and 4 show that N, = 0 for all ¢ # 0,1,—1 (so the polynomial is flat,
as known from [7, Theorem 1]). Consequently, we have

No=2(p2—1)(p3—1)+1—- Ny —N_;.

Proof of Proposition 1.2 for ps = £1 mod 3py. Calling A.; (respectively, B.;) the number
of coefficients equal to ¢ in the block f; ; = fio for any 0 < j < ¢ (respectively, in the block

fiq = Trfipn), we have
2(pa—1)—1

Nc - Z (Ac,iq + Bc,i) .
i=0
For ¢ = £1, the numbers A.; and B.; can be determined with our explicit formulas for
the blocks in Tables 1, 2 and 3. We gather the expressions for the number of coefficients in
Table 4 (notice that N1 + N_; agrees with Al-Kateeb’s result on the number on non-zero

coefficients). O

Remark 4.2. Consider ®3p,,, where p3 = 1 mod 3pz and po = 1 mod 3. According to
Table 4, the quantity Ny divided by the total number of coefficients is
Ny B 14qqz + 1 _4gE 7
22— D(ps—1)+1 2(p2—1)(ps—1)+1  2paps  9p2
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] H D3 mod3p2\ p2 = 1 mod 3 P2 =2 mod 3
N 1 14qq2 +1 14qq2 +4q + 1
' -1 T4qqo + 14g 14qqs + 14go + 4q + 4
N 1 14qqo 14qq2 + 4q
-1 -1 14qqs + 14gy — 1 14qqo + 14qs + 4 + 3
N 1 54qq5 — 10qg2 54qq5 + 2692 + 4q
0 —1 54qq3 — 10qqe + 545 — 22q2 + 2 | 54qq3 + 5445 + 26qqa + 14q2 + 4q + 2

TABLE 4. Numbers of coefficients for ®3,,,,, where g2 = |2 ].

In particular, this ratio goes to 0 when pa (hence also p3) goes to infinity. In the same way,
one may consider N_1 or Ng, or po =2 mod 3, or p3 = —1 mod 3p2. In the following table

we indicate approximate values when pa goes to infinity.

Hpgmod3p2‘p251mod3‘ ps =2 mod 3 ‘
7 7 2
N 1 92 oz T2
22— 1)(ps—1)+1 1 7T 77, 2
9Ip2 3p3 9p2 3p3 3p3
7 7 2
N 1 9 o T 52
2Apz=1)(ps=1)+1 1 A A A
9p2  3p3 9p2 ' 3ps | 3p2
1 Y _ 14 _ 4
_ No 9p2 9Ip2 Spg
2p2=1)(pa—1)+1 1 _ 4 _ 14 |q_ 14 _ 14 _ 4
9p2  3ps3 9p2  3ps  3p3

5. EXPLICIT BLOCK DESCRIPTION FOR ®3,,, WITH p3 = £2 mod 3p2

In this section we prove Theorem 1.1 for p3 = £2 mod 3p». Since we may reason as for
the case p3 = +1 mod 3py, we only illustrate the differences that occur. As we work with
rotations by 2 instead of by 1, we need to adapt our definition of perturbation. Namely,
we say that si; (respectively, sz ;) is perturbed if the coefficient of X 3 or X* (respectively,
XP2t3 or XP2H) in f; 4 is non-zero.

5.1. The case p3 = 2 mod 3ps. We work with rotations by 2 instead of 1, and it turns out
that s2; and s4; contain more non-zero coefficients. These two slices are still computable
in practice because their non-zero coefficients come from non-zero coefficients of s ; and
s for the values of & < i. Notice that the expressions of s1; and s3; are still 3-periodic
unless there is a perturbation.

We find that the coefficient of X3 in fiois —1fori="2 2_3, which leads to a perturbation

2
B2 L From the index i = 7’22—_1 the coefficients of X2 and X* are 3-periodic

of s1; for ¢ =

(this is a consequence of the periodicity of the coefficients of s3, for k < i). It will follow
3(p2—1)-2

from the expressions of the next s3;’s that this is the case up to index i = 3
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Hence we retrieve the 3-periodicity for si; (but the expressions are different than in the

case t < p22_1). Moreover, the coefficient of XP2+4 in fio is 1 for ¢ = pa — 2, which leads
to a perturbation for s3; for i = py — 1. The coefficients of XP2*3 and XP>™ in f;( are
periodic from i = py — 1, so we also retrieve the 3-periodicity for s3;. As the expressions

of s1; have changed from i = P2- L the expressions of the coefficients of XP23 and XP2+4

in f; o change from i = W, and so do the expressions of s3; from i = w. Recall

also that the coefficients b; of ®3,, change at i = ps — 1, so do the expressions of s1 ;.
We distinguish the cases po = 1 mod 3 and ps = 2 mod 3. The expressions of the first

and third slices are given in Table 5.

‘ i [p2mod3]  s1i(X) | s3,i(X) ‘
i=0mod 3, i < P2 1,2 1+ X+ X2 [ —XP2 — xP2Hl _ xpat2
i=1mod3, i< 2T 1,2 -X-Xx? XP2rl 4 Xpet2
i=2mod 3, i < 271 1,2 -1 XP2

. . 1 1 —_XP2 — xp2Fl _ xpaF2
i=0mod 3, = <i<py—1 o) X 1 ox? —XP2 _ XxPrFl _ xpeF2
] _ ] 1 —1-X Xp2+1 _|_Xp2+2
i=1mod 3, p7221§1<p2—1 5 1= X2 S s
o 1 . 1 X XP2
i=2mod3, = <i<py—1 5 i g X7
L L 1 1 —_XP2 _ xp2FI
1t =Dp2 — P 1— x2 XDP2FT 9 xPat?
' ] B 1 0 _XP2 _ XPp2tT
i=0mod3,pp—1<i< S(WQ 1) D) X2 —XP2 _ xPrFl _ xpaF?
' ] B 1 X2 X P2FT
i=1mod3, pp—1<i< 3(p22 1) P) —X2 XP2FT T oxP2F2
‘ 3 1 -X? Xr
i=2mod 3, pp—1<i< 3(p22 1 3 0 XP2 _ xP2t2
; — 3a-1) L 0 X - X
) 9 X? —XP2 _ Xp2tl _ xPp2FZ
3(po— ] 1 0 0
7= 0mod 3, 5(”2 o< 2(p2 — 1) 5 X2 X2 +2
o 1 X2 _ X P2+2
i=1mod3, 3227 < < 2(py — 1) 5 = P2
‘7 1 —X? X P2F2
i52m0d3,w<i<2(p2—1) o) 0 0

TABLE 5. Expressions of s1; and s3; in the case p3 = 2 mod 3p».

The second and fourth slices are given in Table 7, described by the list of their coefficients.
p2—1
For example, Y. ay ;X" has coefficients (as, ..., ap,—1). If L and L’ are two lists, then L+ L’
k=3
denotes the concatenation of L and L' and k- L = L+ ...+ L and 0 - L is the empty list.
———

k times
We also set

A=(-1,-1,0,1,1,0), B=(1,1,0,—1,-1,0), ¢ =(1,0,-1,-1,0,1),

D=(0,-1,-1,0,1,1), E=(0,1,1,0,—-1,-1), F=(-1,0,1,1,0,-1).
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In Table 7, the list (0...0) consists of zero coefficients, and it is empty in case the list
concatenated to it already contains all coefficients. This happens, for example, if po = 7,
because s has 4 coefficients (at X3, X4, X5, X) and we write

s22(X)=(0..0)+0-A+(-1,-1,0,1).
Finally, we make use of the notation
4p2 — 10 4p2 -8 3p2 -9
e hao(k) = —k+ ——— _— .
6 2() 6 6

Disclaimer: For the special case ps = 5, the second slice has only two coefficients, and the

hi(k) = -k + hs(k) = —k +

fourth slice has seven coefficients, so we have to take the truncation by two for s3; and the

truncation by seven for s4; in the expressions given in our tables.

5.2. The case p3 = —2 mod 3p2. This case is analogous to the case p3 = 2 mod 3ps.
Notice that rotations now go rightwards. The results are gathered in Tables 6 and 8 (the

description of the latter table is the same as the one given above for Table 7).

\ i [p2mod3] s14(X) | 53,i(X) |
i=0 mod3, i<t 12 [1+X+X2[—XP2 — XpeFl — xpe+2
i=1mod3,i< 2T 1,2 —1-X XP2 4 P2t
i=2mod3, i< 2T 1,2 -X? Xpet2

. _ . 1 1+ X+ X2 —XP2F2
i=0mod3, 221 <i<py—1 5 T X+ X2 “oXxPz _ XpaFl
] B ] 1 1-X XP2tl 4 xp2t2
121m0d3,7’221§z<p271 D) =X XPz — xP2tZ
. po—1 . 1 —X? —XPr
i=2mod3, B=<i<py—1 5 X2 XPz  XP2Fl | xp2t2
] 1 X—&-XZ _ X Pp2t2
1=py—1 P) 29X XP2 — XP2F2
) ) - 1 X+ X? 0
ZEOIn0d3,p271<’L<3(P22 L) 3 1+ X + X2 XDz
j B 1 —-X — XP2
i51m0d3.,p2—1<i<3(p221) 2 9 X XP2
. 1 —X? X2
152m0d3.,p2—1<i<'5(m21) o) 1 X2 0
 3ee1) 1 X+ X? 0
=T 2 1+ X+ X? —XP2
. 1 0 0
. 3(p2—1 .
i =0 mod 3, %<z<2(p271) D) 1 XDz
1 i —X2
. 3(pa—1 .
i=1mod 3, 22271 < < 2(py — 1) 5 1 X
: 1 -1 X7z
. 3(py—1 .
z:2mod3,(mT)<z<2(p2—1) 5 0 0

TABLE 6. Expressions of s1; and s3; in the case p3 = —2 mod 3pa.
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: | p2 mod 3 | 52,i(X) s44(X)
i =3k, i< P2 1,2 (0...0) +k-A (0...0)+k-B
i=3k+1, i< 1,2 a 0)+k-A+(-1,-1) (0...0)+k-B+(1,1)
i=3k+2,i< 2] 1,2 (0. v k-A+(-1,-1,0,1) 8.:8+w.mi:o|c
A 1. 1 B:o:sﬂ A (0...0)+ 21 B+ (k—21).C
— b2 HA _
i=3k B si<p -l 2 C,ov._.Ea -A (0...0) + 2222 . B+ (1,1,0,—1) + (k — 221y - A+ (-1,-1)
. 1 1 (1,0) + 2T A4 (=1, -1) a...e+sp.mi 2-1). C + (1,0)
_ p2 HA _ ) 6 ) 6 ]
P=3kt L S si<p o] 2 25 A+ (-1,-1) (0...0)+ 2222 . B+ (1,1,0,—1) + (k — 22F1) . A4 (~1,-1,0,1)
1. 1 BT A4 (-1,-1,0,1) (0...0) + 2= . B+ (k—2-1) - Qi;L ~1)
- P2 HA \ 6 ) s Uy
i=3k+2 % si<p -l 2 0.0 +22 . C 0.0 1% By (LLO 1)+ =5 A
. i (0,1,1,00+ 27 4 (1,0,-1,-L,0) + 27 B2l
b2 2 Emm.erAlﬁlC (1,0) + 2222 . A4 (—1) + 2222 . A+ (~1,-1,0,1,0...0)
1 1,1 P21 4 1,0,—1,—1,0) + hs(k)- B+ 2L .C +(1,0...0
1=3k,pp—1<1i< Qm\: Ao“,vovw@ml% (1.0, .0) & mAVV\W 6 o )
2 (1,0) + 2= - A (0,1,1,0) + hg(k) - A+ (—1) + 2228 . A4 (~1,-1,0,1,1,0...0)
=7 EM|H
_ _ ;- 3(p2—1) 1 (1,0) + 2= - A4 (-1, -1) (=1,-1,0) + h3(k) - B+ 2= -C + (1,0...0)
i=3k+ 1 pp—1<i< =5 2 Eo.\u.x:.ﬁlﬁlc (1,0) + hg(k) - A+ (1) + 2258 . A4 (~1,-1,0,1,1,0...0)
p2—"7 pa—1
B s02-1) 1 A+ (=1,-1,0,1) (0) + hs(k) - B+ 21 .C 1 (1,0...0)
1=3k+2, pp-1<i< 2 (0,1) 4 22=2.C ha(k) - A+ (1) + 22=2 . A4 (-1,-1,0,1,1,0...0)
. 3m) 1 (0,1,1,0) + @wL A (0,-1,-1,0,1) + 22T .C+(1,0...0)
2 2 G,o:Emc.m = - F+(-1,0,1,1,0...0)
=k, 2ol 1 (0,1,1,0) + hi(k) - A+ (-1 vi ..0) (0,—-1,-1,0,1) + hy(k) - C + (1,0...0)
, 2 (1, 9+5§.>+T Lvi .0) ho(k) - F 4+ (—1,0,1,1,0...0)
i3k D) 1 (1, SLL:AS A+ (—-1,-1)+(0...0) (—=1,0,1) + hy (k) -C + (1,0...0)
T2 = 2 :: Tr\:io.:e ha(k)- B+ (1,1,0...0)
Soa1) 1 hi(k) A+ (—1,—1) +(0...0) (1) + h(k)-C +(1,0...0)
i=3k+2 2 < 3 Ta(k)-E +(0...0) ha(k) - D+ (0...0)

TABLE 7. Expressions of sp; and s4; in the case p3 = 2 mod 3pa.
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6. PROPERTIES OF ®3,,,, FOR p3 = £2 mod 3p

In this section we consider the case pg = +2 mod 3p2, and we mimic our proofs from the
case p3 = £1 mod 3pz. Our explicit formulas for ®3,,,, show that Zhang’s conjecture holds

true.

Proof of Proposition 1.6 for ps = +2 mod 3py. The maximum gap is 2(pa — 1). We have ¢
maximum gaps located inside F, between the smallest exponent of Fp ;11 and the largest
exponent of Fp; for 0 <7 < ¢, and ¢ other maximum gaps are given by symmetry at the
middle coefficient. So we only have to check that the other gaps are smaller than 2(ps —
1). We only treat the case p3 = 2 mod 3ps, the case p3 = —2 mod 3ps being completely
analogous.

Since g0 and g3, give a maximum gap, by the symmetry of the coefficients of ®3,,,, we
are left to study go; and g3; for 1 <i < py—1 and g1, and g4, for 0 < ¢ < po —1. We have
g1,0 =p2 — 2 and g11 = 2pp — 4, while for 2 <4 < py — 1 we have g1; < 2(p2 — 1) because
the difference between the smallest exponent of s4; and the largest exponent of s3; is at
most 3pa — 2i — pp. We have go; <1417 < 2(py — 1) because the coefficient of X in sy ; is
non-zero (thus f;j; # 0) and the coefficient of X 3p2=20 ip 54 is non-zero. For g3; we may
reason as for go ;, while we have g4; < 3 because f;, = Tafio # 0 for 0 < ¢ < py — 2.

O

Finally, we compute the number N, of coefficients equal to ¢. The non-zero coefficients
are in the set {£1, £2} (see for instance [5, Theorem 1]). In particular we may deduce the
expression of Ny from Ni, N_1, No, N_s. From the explicit expressions in Table 9 we have
N3 + N_3 > 0 hence the polynomial ®3,,,, is not flat.

The computations of IV, are less evident, but only because s3; and s4 ; have more complex
expressions. Notice that Al-Kateeb and Dagher recently found formulas for the number of

non-zero coefficients (see [3]) that clearly match our expressions.

Remark 6.1. The behavior of the number of coefficients is different w.r.t. Remark 4.2.
Indeed, we have

N2 ~ 0 Ny N%
20pe —D(ps—1)+1 " 7 2(p2 —1)(ps—1)+1 36
7 2 7p2 7p2

~
~

2(po— D(ps— 1)+ 1 2(pa—1)(ps— 1)~ 2pops  2pops 36

7. GENERAL ALGORITHM FOR p3 > p1p2 AND p3 = +1,4+2 mod pip2

We have computed the blocks f; g of ®p,p,p;, When p1 = 3, p3 > 3p2, and p3 = £1, £2 mod
3p2. In this section we argument that our method allows to compute these blocks for @, ,,,p,

when p; is fixed, ps > p1p2, and ps = £1,+£2 mod p1ps.
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] H D3 mod3p2\ p2 = 1mod 3 \ p2 = 2 mod 3
2 0 p2+1 q
Ny — . e
2
N 9 7%22 _ %) g+ 2p23+1 (7172 + p2 o %) q+ 2p2+2
2
-2 (%-1) (a+1) - 252 (B +p—1) @+ + 52
2
N 9 <7%2 _ %> g+ 2p2372 7p2 ¥ — %> 2p2 1
- 2
-2 <% _ %) X (q + 1) 2p23+1 <7p2 + P2 7) (q + 1) 2p2+2
2 0
N_o —
2 0 (=2 ) (g+1)
11p 2p2—2 11p3q 23 2 29 4
No 2 11< 2_6p)'q+ +75 _ R W U
32 7 23 37 2
—2 U2 (g41) —bpog— 222 470 4o | 12 (g 1) — 220 3T 4 204 g

TABLE 9. Numbers of coefficients for ®3,,.

We only need to investigate ps = 1,2 mod p1p2 because the cases p3 = —1, —2 mod p1p2
are analogous (with rotations going rightwards instead of leftwards). We denote by g2 and

ro the quotient and remainder of py after division by p;. We decompose

p1p2—1
fio(X Z a; L XF Z 5;.4(X)
7j=1
with the four slices
p1—1 p2—1
Sl,i(X) = Z aikak, SQ,i(X) = Z aikak,
k=0 k=p1
p2+p1—1 pip2—1
837i(X) = Z a@ka, 847¢(X) = Z ai,ka .
k=p2 k=p2+p1

The binary cyclotomic polynomial ®,,,, is more complex than ®3,,, however Theorem
2.1 applies. We may decompose ®3;,, with po-blocks ﬁ (for 0 < i < p; —1) that in turn may
be decomposed with pi-blocks E for 0 < j < g2 — 1 and a final re-block ﬁ-;, satisfying
the same structure property as seen for the ternary case, namely

Jio= .= fig-1 Jige = Trafi0 -

Inside a block f, the coefficients of ®,,,, are pi-periodic. Hence we will get a certain

and

periodicity for the expressions of s1; and s3; (there are intervals of values of i for which
these expressions are pi-periodic).

Recall from (7) that foo = —VU,,p,. Then to compute f; o we start from fpo with the
iterative formula (6). As explained above, the p;-periodicity for the coefficients b;11 (inside

a pa-block of ®,,,) leads to a periodicity for sq; and s3;, as seen in the case p; = 3, after
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at most p; + 1 steps. This reasoning leads to the expression of f; ¢ for the po first values of
i. When we take b; 11 in a new block for ®,,,, we have a new p;-periodicity in the ternary
cyclotomic polynomial (this change happens p; — 2 many times because the number of ps-
blocks in ®,,,, is p1 — 1) hence we may have a perturbation of the periodicity for s;,; and
53,4, which means that we have to start anew to apply the iterative formula. For ¢ < py —p;
there is no perturbation for the periodicity coming from changing ps-block in @, ,, and,
as we will see below from the expressions of sp; and s4;, there is no further perturbation
coming from non-zero coefficients of sy ; and s4; by rotation. For i > ps — p; those further
perturbations may occur.

Our definition of perturbation for p; = 3 adapts to this more general setting. We first
consider the case p3 = 1 mod p1p2. We say that there is a perturbation for s3; (respectively,
s1,) if the coefficient of XP2*P1 (resp. XP!) in f;_1 ¢ is non-zero.

As in the case p; = 3, 540 = 0 and for ¢ > 1 the smallest exponent in s4; is pip2 — 4. So
there is no perturbation of s3; caused by non-zero coefficients of s, ;, because the coefficient
of XP2tP1 in f; o is non-zero only for i = ¢(p1p2) — 1, which is the last possible value of i.

As in the case p1 = 3, s29 = 0 and for 1 <7 < py —1 the coefficient of X?2 in s3; is equal
to 0. In fact, by (3) we have J/“EB(X ) =1 — X, so applying (6) successively yields

s34(X) = XPrp2i for L<i<p
3.1 (X) = xp2tl 4 xpetpi-l
and s3,p1+1(X) = xp2tpi-l — s3.1(X).

Then, by pi-periodicity, the coefficient of X?? of s3; is equal to 0 for other 7 < py — 1. As

for the case p; = 3, we have
s2,4(X) = —Xp2i for 1<i<py,—3.

Therefore, the coefficient of X?* of f;o is —1 for @ = ps — p1, which leads to the first
perturbation of sq ;. Depending on the expression of the polynomials s3;, the polynomial
s2,; could contain non-zero coefficients for larger values of 7, and new perturbations for sy ;
may occur. Notice that the coefficients in so; and s4; are coefficients of s1; and s3; for
some j < 1.

In the case pa = 2 mod 3ps, we say that there is a perturbation of s3; (respectively, s; ;)
if the coefficient of XP2+P1 or XP2+P1F! (vespectively, XP! or XP**1) in f;_ ¢ is non-zero.

Studying perturbations for ps = 2 mod pip2 is more complex but similar.

8. THE FAMILY OF TERNARY POLYNOMIALS ®15,,

Consider the family of ternary polynomials ®,, ,,,, for some fixed value of pips. We
argument that is possible to prove our results for the polynomials in this family (without
the assumptions ps > pipe or p3 = £1,4+2 mod pip2). Firstly, we may deal with the finitely

many primes p3 < pipe separately. Secondly, there are only finitely many remainders r for
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ps after division by pips (the possible remainders being those coprime to pips). Proposi-
tion 2.5 shows that the expression of the blocks f;¢ only depend on 7. Therefore, we may
resolve to choosing some prime P, > pipo that leaves remainder r after division by pipo
and computing ®,, ,,p, (see [4] for algorithms to compute cyclotomic polynomials). To get
the blocks f;p, it suffices to extract from @, ,,p, the appropriate slice of coefficients. The
knowledge of these blocks leads straight-forwardly (see Section 4) to the determination the
number of maximum gaps. Moreover, the coefficients of ®,, ,,,, are bounded in absolute
value by p; — 1 (see [11, Section 3.1] for bounds on the coefficients of ternary cyclotomic
polynomials) so we have to compute the number of coefficients N, only for |¢| < p; (and we
have Ny = p(p1pap3) +1— Zl<|c|<p1 N, ). The computation of N, can be done by counting

the coefficients equal to ¢ in each block, see Section 4.

We now fix pips = 15 and illustrate the above method in this example. For p3 < 15 we

may compute ®15,, explicitly. In particular, we get

’ P3 H Ny ‘ N ‘ N_4 ‘ No ‘ N_o ‘ maximum gap ‘ # maximum gaps

71618 13 | O 2 3 6
1124 114] 33 |10] O 4 4
13138131 26 | O 2 6 4

We may now suppose that ps > 15. The maximum gap is 8 (by Theorem 1.4) and the
number of maximum gaps is 2¢ (by the known result on Zhang’s conjecture [13]).

For an invertible class (r mod 15), the knowledge of the blocks f;o leads to formulas
for N, if p3 = r mod 15 with |¢| < 2, as we did in Sections 4 and 6. We computed the
blocks f; o recursively by hand using equation (6). Another possibility would have been to
compute ®;5p, numerically (for some fixed p3 > 15 with remainder r) and to extract the
slices of coefficients that correspond to the blocks. As an illustration, we detail the case
p3 = 4 mod 15. Recall that we have

P5(X)=1-X+X>— X+ X°— X"+ x8.
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We then compute the 15-blocks f; o where i =0,...,7:

f4,O(X)

f5,0(X)

f6,0(X)
fr0(X)

We deduce that, for r = 4, the numbers A ; and B; ; introduced in Section 4 are

=1+ X+ X2+ X3+ X4 - X0 —2X7
= Ra(f3,0(X)) + ¥15(X)
:—X—2X2—2X3—2X4—X5—|-X7+X8—|-X9+X10—|—X11—I—X12—|—X13—|—X14
= Ra(f10(X)) — ¥15(X)
—1+X2+X3+X4+X8+X9+X10—X12—2X13—2X14
=Ru(fs0(X)) =1+ X"+ X5+ X0 — X8 —2Xx9 —2X10 — X1 4 X134 x4
=Ra(fo,0(X)) + ¥15(X)
= X4 X5 X6 4 X94 X104 x11,

2X8 —
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| i Jo1[2]s[4]5]6]7]

foo(X) =-U5(X)=1+X+X?—-X°— X0 - X7

f10(X) =Ra(foo(X))+ ¥15(X)
=-1-2X-2X2 - X3+ X5+ X0+ X" 4 X1 4+ X124+ X13

f20(X) =Ra(fio(X) =X+ X2+ X34+ X7+ X8+ X9 — XM —2x12 _ox13_ xl4

f30(X) = Ra(fo0(X)) — ¥15(X)

2X9 . Xl[) +X12 +X13 +X14

A1;||3/6(6]8[8|6[6]3
Bi;|3]0(3]4(0/2]1|0
7
so we deduce that Ny = ) (A1,q+ Bi1;) = 46¢ + 13. Analogous computations lead to the
i=0
following values: '
’ pP3 mod 15 H N(] ‘ N1 ‘ N,1 ‘ N2 ‘ N,Q ‘
1 84q 18¢+1 18¢q 0 0
2 4g+2 | 30g+4 | 34g+ 3 2q 0
4 42g+4 | 469+ 13| 18q¢+ 4 0 14q + 4
7 48q + 16 | 38¢ + 18 | 30q + 13 0 4qg + 2
8 48¢ + 18 | 30g + 17 | 38¢ + 20| 4q+ 2 0
11 42q +24 | 18¢ + 14 | 46g + 33 | 14g + 10 0
13 54q + 38 | 34q + 31 | 30g + 26 0 2g+2
14 84q + 70 | 18q + 18 | 18q + 17 0 0
TABLE 10. Number of coefficients for ®15,,, where p3 > 15.
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