
PhD-FSTM-2023-041

The Faculty of Science, Technology and Medicine

DISSERTATION

Defence held on 15/06/2023 in Esch-sur-Alzette

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG
EN INFORMATIQUE

by

Semen Yurkov

Born on 30 April 1987 in Novokuznetsk (USSR)

ANALYSIS OF SMARTCARD-BASED PAYMENT
PROTOCOLS IN THE APPLIED π-CALCULUS USING

QUASI-OPEN BISIMILARITY

Dissertation defence committee
Dr. Peter Y. A. RYAN, Chairman
Professor, Université du Luxembourg

Dr. Ross James HORNE, Vice chairman
Postdoctoral researcher, Université du Luxembourg

Dr. Sjouke MAUW, Supervisor
Professor, Université du Luxembourg

Dr. Sebastian MÖDERSHEIM
Associate Professor, Danmarks Tekniske Universitet

Dr. Ioana BOUREANU
Professor, University of Surrey

ii

“Today abstraction is no longer that of the map, the double, the mirror, or the concept.
Simulation is no longer that of a territory, a referential being, or a substance. It is the
generation by models of a real without origin or reality: a hyperreal. The territory no longer
precedes the map, nor does it survive it. It is nevertheless the map that precedes the territory
– precession of simulacra – that engenders the territory.”

Jean Baudrillard

iii

Abstract
Analysis of Smartcard-based Payment Protocols in the Applied π-calculus using

Quasi-Open Bisimilarity

by Semyon Yurkov

Cryptographic protocols are instructions explaining how the communication be-
tween agents should be done. Critical infrastructure sectors, such as communica-
tion networks, financial services, information technology, transportation, etc., use
security protocols at their very core to establish the information exchange between
the components of the system. Symbolic verification is a discipline that investigates
whether a given protocol satisfies the initial requirements and delivers exactly what
it intends to deliver. An immediate goal of symbolic verification is to improve the
reliability of existing systems – if a protocol is vulnerable, actions must be taken
asap before a malicious attacker exploits it; a far-reaching goal is to improve the
system design practices – when creating a new protocol, it must be proven correct
before the implementation.

Properties of cryptographic protocols roughly fall into two categories. Either
reachability-based, i.e. that a system can or cannot reach a state satisfying some
condition, or equivalence-based, i.e. that a system is indistinguishable from its ide-
alised version, where the desired property trivially holds. Security properties are
often formulated as a reachability problem and privacy properties as an equivalence
problem. While the study of security properties is relatively settled, and powerful
tools like Tamarin and ProVerif, where it is possible to check reachability queries,
exist, the study of privacy properties expressed as equivalence only starts gaining
momentum. Tools like DeepSec, Akiss and, again, ProVerif offer only limited sup-
port when it comes to indistinguishability. This is partially due to the question of
“What is an attacker capable of?” is not answered definitively in the second case.

The widely-accepted default attacker, when it comes to security, is the so-called
Dolev-Yao attacker, which has full control of the communication network; however,
there is no default attacker who attempts to break the privacy of a protocol. The
capabilities of such an attacker are reflected in the equivalence relation used to
define a privacy property; hence the choice of such relation is crucial.

This dissertation justifies a particular equivalence relation called quasi-open
bisimilarity which satisfies several natural requirements. It has sound and com-
plete modal logic characterisation, meaning that any attack on privacy has a prac-
tical interpretation; it enables compositional reasoning, meaning that if a privacy
property of a system automatically extends to a bigger system having the initial
one as a component, and, it captures the capability of an attacker to make decisions
dynamically during the execution of the protocol.

We not only explain the notion of quasi-open bisimilarity, but we also employ
it to study real-world protocols. The first protocol, UBDH, is an authenticated
key agreement suitable for card payments, and the second protocol, UTX, is a
smartcard-based payment protocol. Using quasi-open bisimilarity, we define the
target privacy property of unlinkability, namely that it is impossible to link pro-
tocol sessions made with the same card and prove that it holds for UBDH and

iv

UTX. The proofs that UBDH and UTX satisfy their privacy requirements to our
knowledge are the first ones that demonstrate that a privacy property of a security
protocol, defined as bisimilarity equivalence, is satisfied for an unbounded number
of protocol sessions. Moreover, these proofs illustrate the methodology that could
be employed to study the privacy of other protocols.

v

Acknowledgements
This dissertation started in September

2018, when I was in Georgia preparing for
the SaToSS research seminar during my hol-
iday. In the picture, you can see my lap-
top and the mount Kazbegi (5034m). At that
time, my long-term friend Olga Gadyatskaya
invited me to visit Luxembourg to assess my
suitability as a doctoral researcher and to in-
troduce me to Sjouke Mauw and Ross Horne,
who were looking for a new colleague. I am
glad it worked out and that Sjouke and Ross
gave me the opportunity to make my way to-
ward the degree under their supervision. Without these three people, this disserta-
tion would have never happened.

If I could give myself from the past a single piece of advice, it would sound
like this: “If it is not written down, it doesn’t exist. Write down what you want to
preserve.” I learned this from Sjouke, whom I want to thank for his kindness and
wisdom. I owe immense thanks to Ross; it was truly a heroic effort of his to teach
me how to write a paper end-to-end.

I want to thank Ioana Boureanu and Peter Y. A. Ryan, members of my CET
(comité d’encadrement de thèse) committee, for their guidance and patience. They
were the first to see the majority of the material that went into this work, and
without their insights, the dissertation would not be what it is now.

This dissertation is by no means a single-person effort. It is a product of the en-
vironment the University of Luxembourg and the wider research community have
managed to build – from tiny internal events like brainstorms to summer schools
and conferences. I thank every SaToSS group member who was always supportive
and sharing with a dedicated credit to Sergiu Bursuc for his expertise in verification
tools. I am also grateful for my teaching experience during the doctorate; I thank
the students I taught since there is no better way to learn something than to explain
it to others.

I want to thank the FNR (Fonds National de la Recherche), which Pride program
has given me the freedom to manage the budget; the dissertation would not happen
without their financial support.

Lastly, I would like to thank the smartest person I know, my wife Daria, for
helping me not to overthink. It could have been a much harder journey without
her.

Semyon Yurkov1

1Semen Yurkov is supported by the Luxembourg National Research Fund through grant
PRIDE15/10621687/SPsquared

vii

Contents

1 Introduction 1
1.1 Contributions . 4
1.2 Layout and the author’s contribution 4

2 Background: quasi-open bisimilarity 7
2.1 Applied π-calculus . 10

2.1.1 Message theory . 11
2.1.2 Process syntax in the applied π-calculus 11
2.1.3 The semantics of the applied π-calculus 13

2.2 Quasi-open bisimilarity . 16
2.2.1 Attacker’s capabilities . 18
2.2.2 The definition of quasi-open bisimilarity 19
2.2.3 Whenever quasi-open bisimilarity fails, a modal logic formula

describes an attack . 22
2.2.4 Quasi-open bisimilarity enables compositional reasoning . . . 26
2.2.5 Quasi-open bisimilarity is the coarsest bisimilarity congruence 28
2.2.6 Proof certificates vs. formal proofs 33

2.3 Quasi-open bisimilarity, an elevator pitch 38

3 Case study: smartcard-based payments 41
3.1 EMV standard overview . 43

3.1.1 Initialisation . 45
3.1.2 Offline data authentication . 47
3.1.3 Cardholder Verification . 48
3.1.4 Transaction Authorisation . 50

3.2 An insecure EMV configuration . 53
3.3 Enhancing the privacy of EMV transactions: Blinded Diffie-Hellman

key establishment proposal . 55
3.3.1 Blinded Diffie-Hellman and external unlinkability 56
3.3.2 Blinded Diffie-Hellman and active attackers 57
3.3.3 Blinded Diffie-Hellman is not unlinkable 59

3.4 On different privacy notions . 61
3.5 An unlinkable key agreement for EMV payments 64

3.5.1 Unlinkable Blinded Diffie-Hellman UBDH 64
3.5.2 The proof of unlinkability of UBDH 66
3.5.3 Authentication in BDH and UBDH 85

3.6 Highlighting what we have learned . 87

viii

4 How to design an unlinkable smartcard-based payment protocol. 89
4.1 Design space for unlinkable transactions 90

4.1.1 Functional requirements. 90
4.1.2 Security requirements. 91
4.1.3 Privacy requirements. 91

4.2 The UTX protocol . 92
4.2.1 Application selection . 93
4.2.2 Keys required to set up Unlinkable 93
4.2.3 Message theory . 94
4.2.4 Before running the protocol: the setup 95
4.2.5 The UTX transaction . 97

4.3 Unlinkability and security analysis . 101
4.3.1 Attacker model . 102
4.3.2 Formal specification of the protocol 103
4.3.3 The proof of unlinkability of UTX 107
4.3.4 Further results obtained by compositionality 130
4.3.5 On future unlinkability proofs 133
4.3.6 Authentication and secrecy in UTX 138
4.3.7 Compromised scenarios . 143
4.3.8 The estimate of the runtime performance 143

4.4 Summary and future work . 144

5 Conclusion 147

Bibliography 150

Curriculum Vitae 160

ix

List of Figures

2.1 If an attacker can detect, that the same document has been used in
different sessions, unlinkability fails. 8

2.2 Whenever a property fails, a formula ϕ describes an attack. 9
2.3 Compositionality: a property automatically extends to a larger system. 9
2.4 Bisimilarities for the applied π-calculus: ∼e is (early) labelled bisim-

ilarity and ∼o is open bisimilarity. 10
2.5 The applied π-calculus can be instantiated with any message theory. . 11
2.6 A syntax for processes. 12
2.7 A syntax for extended processes and transition labels. 14
2.8 The anatomy of output and input transitions. 14
2.9 An open early labelled transition system. 17
2.10 The semantics of intuitionistic modal logic FM for the applied π-

calculus. Satisfaction |= is the least relation satisfying the rules above;
hence ff is defined implicitly, as there are no rules that force A |= ff

for any A. 23
2.11 Specification of a private server Server A. 29
2.12 Relation S defining a quasi-open bisimulation verifying the anonymity

of Server A in the case for a single session, without replication. 31
2.13 Relation T verifying Server B ∼ Server A in the unbounded case. . . . 32
2.14 Defining conditions for the relation R certifying A ∼ B. 34

3.1 Payment architecture. 42
3.2 The EMV 1st Gen protocol stages. 44
3.3 Initialisation of the EMV protocol. 45
3.4 ODA: Static Data Authentication mode. 47
3.5 ODA: Dynamic Data Authentication mode. 47
3.6 CVM: Offline cleartext PIN. 49
3.7 CVM: Offline encrypted PIN mode. The digit x is the number of tries

left. 49
3.8 Transaction authorisation in the offline mode. 51
3.9 Transaction authorisation in the online mode. 52
3.10 Overview of the strategy of an attacker. 53
3.11 Attack bypassing the PIN in an offline transaction. 54
3.12 Blinded Diffie-Hellman syntax. 56
3.13 Equational theory E0 for the Blinded Diffie-Hellman protocol. 57
3.14 EMV 2nd Gen key establishment. 58
3.15 Relation R verifying Uspec ∼ Uimpl . 63
3.16 Equation for blinding extending the equational theory in Fig. 3.13. . . 64
3.17 The Unlinkable BDH protocol. 65

x

3.18 Defining conditions for the bisimulation relation R. 68
3.30 The correspondence assertion for authentication in BDH/UBDH. . . . 86

4.1 Payment System Selection. 93
4.2 UTX message theory. 95
4.3 The UTX protocol. 98
4.4 Specifications of the card’s role in UTX. 103
4.5 Specification of the online high-value terminal’s role in UTX. 104
4.6 Specification of the bank’s role in UTX. 106
4.7 Specifications for the real UTX protocol and its ideal unlinkable version.107
4.10 Defining conditions for the bisimulation relation R. 116
4.11 Specifications for the real UTXL protocol and its ideal unlinkable

version. 131
4.12 Subsystem specifications for SUTXL. 132
4.13 The real-world specification of the card’s role in UTXMM. 134
4.14 The ideal-world specification of the card’s role in UTXMM. 136
4.15 Specifications for the real UTXMM protocol and its ideal unlinkable

version. 137
4.16 Correspondence assertions for injective agreement in UTX. 138
4.17 Additional functional properties of UTX. 139
4.18 Events in the card’s role. 140
4.19 Events in the terminal’s role. 141
4.20 Events in the bank’s’s role. 142

1

Chapter 1

Introduction

The majority of useful systems have a cryptographic (or, interchangeably, security)
protocol at their core, a set of instructions that specifies how the communication be-
tween the components of the system should be done. Whether the system is a web
service comprising servers and clients, or a payment system comprising payment
cards, point-of-sale terminals, and banks, the participants of the communication
aim at reaching certain goals. For instance, the client might want to be sure that
the data she receives is indeed the data the server sends to her and that this data
was not altered on the way due to the, e.g. noise in the communication channel;
or, the bank issuing the card might want to guarantee that it is impossible to iden-
tify whether two transactions are made with the same card if all three participants
honestly follow the protocol.

Symbolic verification studies whether a particular protocol satisfies a specific
property under the assumption that cryptography is perfect. In a way, this is the
study that answers the high-level question: “Is my protocol designed correctly?”
If the answer is negative, it is not worth investigating such a protocol further or
implementing it. Hence, when designing a new protocol, its symbolic verification
is the first guard that the protocol should pass on its way to deployment. How-
ever, practice shows that protocols are deployed without any such verification. For
instance, the EMV [emv11] payment protocol that payment systems such as Visa
and Mastercard implement has only recently been symbolically verified [BST21b],
resulting in attacks allowing to bypass the PIN for high-value purchases. Moreover,
even “proven” protocols might be found vulnerable later due to the modelling is-
sues, e.g. the famous Needham-Schroeder (NS) authentication protocol [NS78] was
considered to be secure in the closed environment, where agents know each other’s
identities, while later in an enhanced model with anyone allowed to connect, Lowe
found that the protocol is broken [Low96]. In this example, the attacker’s capa-
bilities were initially underestimated; hence, what an attacker can do affects the
verification outcome, and it is important to identify the relevant attacker model. It
is always safer to overestimate as if a property holds in a stronger setting, there is
no attack in a weaker setting, while proving in a weaker setting leaves room for
a more powerful realistic attacker, as the example with the Needham-Schroeder
protocol teaches.

The concept of a labelled transition system is often used to describe the poten-
tial behaviour of the protocol and to formulate its properties that roughly fall into
two categories.

2 Chapter 1. Introduction

• Reachability, i.e. the property holds if an attacker interacting with the system
cannot force the system reaching a “bad” state where the property is violated.

• Indistinguishability, i.e. the property holds if an attacker interacting with
the system cannot distinguish between the real-world system impl and the
idealised system spec, where the target property definitely holds, written
schematically as impl ∼ spec.

In symbolic verification argot, the first category is informally called security
properties which include secrecy and authentication, and the second category is
called privacy properties which include anonymity and unlinkability. The theory
of verifying reachability properties is well-established, and state-of-the-art tools like
Tamarin [MSCB13] and ProVerif [B+01] allowing to reason about complex protocols
automatically exist. At the same, the methodology of reasoning about the indistin-
guishability properties is still in development, as a story similar to the NS protocol
has been recently repeated.

Indistinguishability relies on the notion of equivalence ∼ between two la-
belled transition systems that reflects the attacker’s capabilities of distinguishing
between the real-world and idealised systems [Del18, ACRR10, HM21, KR05, CS11].
In 2016 Hirschi, Baelde and Delaune proved that in the trace equivalence-based
model [HBD16] in the BAC protocol used in biometric passports is unlinkable,
it is impossible to identify whether two sessions are with the same document.
However, later in 2019, a practical attack allowing to identify sessions with the
same document was discovered in a stronger bisimilarity-based model [FHMS19]
by Filimonov, Horne, Mauw, and Smith, thereby actualising the question of which
equivalence notion reflects a realistic attacker. Though methods for checking trace
equivalence and tools like DeepSec [CKR18] and Akiss [BAF08] also exist, the BAC
study [FHMS19, HM21] demonstrates that, generally, trace equivalence underesti-
mates the attacker’s capabilities.

The above leads us to research questions we will aim to answer in this disser-
tation.

Research Question 1

Can we identify the requirements for an equivalence notion suitable for mod-
elling indistinguishability properties of security protocols?

We aim at a small set of natural demands for an equivalence notion coming
both from the verification perspective and from the practical considerations; for
instance, it is already clear from this introduction that being finer than trace equiv-
alence is among such demands.

Research Question 2

Can we identify a canonical equivalence notion satisfying the demands iden-
tified?

Chapter 1. Introduction 3

Moreover, we are interested in the explicit attacker’s capabilities for distin-
guishing between the real and the idealised worlds such equivalence notion might
capture.

Research Question 3

Can we reason effectively about security protocols using the equivalence
identified?

Our goal is to demonstrate how to use the identified equivalence to define
(privacy) properties of security protocols, express attacks and, more importantly,
prove that a protocol in question indeed satisfied the desired property.

It is clear from the research questions above that our main ambition is to pro-
pose a method and apply it to some case study, thereby justifying it. Our method
of reasoning about indistinguishability properties of protocols in this dissertation
is based on the applied π-calculus formalism [ABF17], which is also used in the
ProVerif tool we rely on to analyse reachability properties. The central concept of
the applied π-calculus is a process, a concise way to define the labelled transition
system corresponding to the protocol; hence the equivalence relation we are aiming
at is the equivalence between two processes, and the attacker’s capabilities are also
expressed in terms of how an attacker can interact with the processes in an attempt
to distinguish between the real and the idealised versions of the same protocol.
Chapter 2 is dedicated entirely to the mathematical background.

Our case study is smartcard-based payments as such payments have a curious
aspect – since the card is a passive device without any power source, a distant at-
tacker can activate a contactless card and run the protocol remotely without the
cardholder’s awareness using an unauthorised device that is not connected to any
payment infrastructure. The privacy dimension of this scenario is straightforward.
If the card exposes its long-term identity to any device asking, it is easy to track the
cardholder by the fact that she is holding the card in her pocket – enough to install
antennas capable of activating the card at, e.g. doorways inside the building and
observe where each card is. This is exactly the case with the current EMV protocol
deployed worldwide since the card gives away its card number PAN. Surprisingly
or not, in 2013, the developers of the EMV protocol, in their proposal of enhancing
the privacy of payments [rfc12], underestimated the attacker’s capabilities. They
assumed an attacker that could only eavesdrop on communications but could not
interact, which led to a Blinded Diffie-Hellman authenticated key establishment
protocol that satisfies their privacy requirements in the weaker model but does not
satisfy them in the stronger model as we explain in Chapter 3 where we apply the
formalism developed in the first chapter. As in 2019, efforts to enhance the privacy
of payments were officially abandoned [emv19] In Chapter 4, we take the opportu-
nity to give a lesson in protocol design, i.e. we develop a smartcard-based payment
protocol by identifying functional, security and privacy requirements, the realistic
attacker model, and then verify both the security and privacy of the protocol using
ProVerif and the methodology developed in this dissertation.

4 Chapter 1. Introduction

1.1 Contributions

Below we summarise the main contributions of this dissertation.

• We identify a concise set of requirements for the equivalence in the applied
π-calculus suitable for modelling indistinguishability properties of crypto-
graphic protocols. Firstly, such equivalence should have sound and complete
modal logic characterisation, i.e. if impl ≁ spec, then there is a formula ϕ that
holds on one side but fails for the opposite, and if impl ∼ spec both sides
satisfy the same formulas. Secondly, such equivalence should also be a con-
gruence relation, i.e. if a property holds for a smaller system, it should also
hold for a larger system containing the smaller one as a subsystem. Thirdly,
the target equivalence should be some form of bisimilarity, i.e. an attacker
should be able to make decisions dynamically during the execution.

• We present an equivalence in the applied π-calculus satisfying the require-
ments above, called quasi-open bisimilarity, which is the coarsest among such
relations, and explain the attacker’s capabilities it captures. The attacker be-
hind quasi-open bisimilarity can “access” different universes where the exe-
cution takes place by manipulating variables in his control, can compare two
states using the messages output so far by honest participants, and can make
dynamic decisions.

• We analyse unlinkability, i.e. the impossibility of determining whether two
payments were made with the same card, of the Blinded Diffie-Hellman (BDH)
authenticated key establishment protocol proposed by the developers of the
EMV payment protocol to enhance the privacy of payments. We propose an
unlinkability definition based on the notion of quasi-open bisimilarity that ac-
counts for active attackers and employs the compositionality aspect allowing
us to reduce the amount of work needed for verification. We demonstrate a
modal logic formula representing an attack on the unlinkability of BDH. Fur-
ther, we propose a fixed version of BDH called UBDH (Unlinkable BHD) and
verify it against our definition. The proof of the unlinkability of the UBDH
key agreement protocol is the first published proof of a bisimilarity-based
indistinguishability problem for an unbounded number of protocol sessions.

• We identify the functional, privacy and security requirements for an unlink-
able smartcard-based payment protocol, we design such a protocol called UTX
(Unlinkable Transactions), and prove it satisfies the identified requirements
yet again providing a detailed proof for the unbounded case of indistinguisha-
bility between the real-world implementation and the idealised specification
of the protocol comprising several roles.

1.2 Layout and the author’s contribution

The dissertation comprises three chapters.

• Chapter 2 is dedicated to the background. In the introduction to the chapter,
we explain three main requirements that an equivalence suitable for reasoning

1.2. Layout and the author’s contribution 5

about protocols should satisfy. Then we present what constitutes the applied
π-calculus: the message theory axiomatising cryptographic operations, pro-
cess syntax and the associated labelled transition system. Next, we introduce
the notion of quasi-open bisimilarity and the surrounding concepts that in-
clude the “accessibility” mechanism an attacker may use to consider different
universes where the execution of the protocol may take place. After that,
we state the main results about quasi-open bisimilarity, i.e. that it is sound
and complete with respect to certain modal logic, thereby there is always a
formula describing attack whenever the equivalence fails; that it is preserved
in any context, thereby we can use compositional reasoning and reduce the
amount of work needed for verification; and that it is the coarsest bisimi-
larity congruence for the applied π-calculus making quasi-open bisimilarity
the canonical choice among the relations satisfying our requirements. The
presented material contains a variety of examples illustrating each concept
introduced. The chapter is based on the following work.

– Compositional Analysis of Protocol Equivalence in the Applied π-Calculus Us-
ing Quasi-open Bisimilarity by Horne, Mauw, and Yurkov published in
2021 in the proceedings of International Colloquium on Theoretical As-
pects of Computing (ICTAC) conference.

– Whenever a privacy property fails, a formula describes an attack: A complete and
Compositional Verification Method for Applied π-calculus by Horne, Mauw,
and Yurkov published in 2023 in Theoretical Computer Science (TCS)
journal.

It should be made clear that the author of this dissertation neither invented
quasi-open bisimilarity, nor proved its properties, yet he has contributed a few
technical results (e.g., Theorem 4, Sec. 2.2.6) that made it possible to publish
main results (Theorems 1 - 3) established by Ross Horne.

• In Chapter 3, we investigate EMV, a payment method accepted worldwide.
We introduce the main stages of the EMV transaction, discuss the security
and privacy threats of EMV and demonstrate an insecure version of the EMV
protocol allowed by the EMV standard, a set of technical documents specify-
ing how the cards and the terminals should be implemented. Then we study
the Blinded Diffie-Hellman (BDH) authenticated key establishment protocol
proposed by the developers of EMV to encrypt the communication between
the card and the terminal. We apply the theory developed in Chapter 2 to
show that the BDH protocol does not satisfy the official anti-tracking require-
ment in the presence of a realistic active attacker that can force the card to
interact using an unauthorised device such as an NFC-capable smartphone.
We finally propose a minor fix to the BDH protocol and verify that our fix in-
deed brings the desired anti-tracking in an enhanced attacker’s model without
breaking the initial functional BDH requirement of providing authentication.
The chapter is based on the following work.

6 Chapter 1. Introduction

– Unlinkability of an Improved Key Agreement Protocol for EMV 2nd Gen Pay-
ments by Horne, Mauw, and Yurkov published in 2022 in the proceedings
of The Computer Security Foundations Symposium (CSF) conference.

• In Chapter 4, we extract from the existing EMV standard the set of functional
and security requirements that smartcard-based payments should satisfy and
introduce a new privacy requirement, the unlinkability of payments in the
presence of active attackers. We design a new protocol, UTX explaining how
the sensitive information is hidden from the most powerful attacker, an at-
tacker pretending to be a terminal. Finally, we verify that UTX satisfies our
requirements. The chapter is based on the following work.

– Designing an Unlinkable Smartcard-based Payment Protocol by Bursuc, Horne,
Mauw, and Yurkov rejected at the 2023 Symposium on Security and Pri-
vacy (S&P) conference, in preparation for the submission to the 2023
Computer and Communications Security (CCS) conference.

• In Chapter 5, we conclude the dissertation by revising the research questions
posed in the introduction and outlining directions for future work.

7

Chapter 2

Background: quasi-open
bisimilarity

In this chapter, we identify the requirements for an equivalence relation suitable for
modelling indistinguishability properties of security protocols, we then give a state-
of-the-art formulation of the applied π-calculus [AF01], a language for modelling
concurrent processes and their interactions, and finally, we define the equivalence
relation that satisfies our requirements called quasi-open bisimilarity.

An equivalence-based approach can be employed to formulate both security
and privacy properties of cryptographic protocols, and, as Ryan and Schneider ex-
plain in [RS99,RSG+01] there is no universally “correct” notion of equivalence that
suits all contexts and applications. Hence the equivalence we discuss in this disser-
tation is the correct one for the requirements we identify below. We are also clear
from the start that the default application for the equivalence notion we introduce
here is privacy; thus, by property, we always mean privacy property if not specified
otherwise.

To start discussing requirements, we introduce some context by presenting
the running example of indistinguishability property in this dissertation, a privacy
property called unlinkability. Paraphrasing the definition given in Common Criteria
for Information Technology Security Evaluation (ISO/IEC 15408) [cc17], the proto-
col is unlinkable if an attacker cannot determine if two sessions of the protocol were
executed with the same user. To illustrate this definition, let us consider a protocol
in which a document carries a digital certificate issued by a trusted authority and
presents this certificate to a reader in different locations. Protocols such as bicycle-
sharing systems, COVID-19 green pass, access cards, and smartcard payments are
instances of such protocol.

Consider two (wireless) sessions made with the same document depicted in
blue in the left part of Fig. 2.1. If an attacker observing the protocol sessions can
link them, they can track the document owner. On the contrary, if an attacker cannot
link sessions, i.e. a document executing the protocol in each session appears to an
attacker as a new document that an attacker has never seen before, the tracking
is impossible, and we say that the protocol is unlinkable. This impossibility of
linking sessions is manifested as the equivalence between the protocol in question,
where the same document can be used twice, and the idealised protocol, where a
document can participate in one session at most. The idealised situation is depicted
on the right part of Fig. 2.1: in the first session, an attacker observes the blue
document, and in the second session, the same document appears as green.

8 Chapter 2. Background: quasi-open bisimilarity

≁

Figure 2.1: If an attacker can detect, that the same document has been used in different
sessions, unlinkability fails.

The pattern of a protocol being equivalent to some idealised version is the
essence of defining property as an indistinguishability problem, and we can already
start introducing the related terminology. We will call the protocol in question the
implementation or the system, while its idealised version, which specifies how the
protocol should appear, the specification.

Still, we are far from the formal definition of unlinkability. Firstly, we need
to model the system and the specification in some formal language; hence the
definition is always protocol-specific. Secondly, we need to make the equivalence
notion precise. While specifying the protocol defines how honest agents act and
how the whole system operates, the equivalence notion captures the capabilities of
an attacker trying to distinguish between the real world and the idealised situations
making the equivalence part of the threat model.

Imagine that the reader emits the error message whenever it detects that the
presented document is “wrong”. Hence, an attacker observing that there was no
error message during a protocol session may use this observation to infer that the
protocol run has been successful and the individual holding the document received
some sensitive data demonstrated, for instance, on the reader’s display. This simple
thought experiment illustrates that it is possible to leak some personal identifiable
information without leaking secret data; moreover, this leak is enabled by the ob-
servation of a failure of an action. The abilities of an attacker as such form the
set of attack strategies an attacker can execute to distinguish between the imple-
mentation and the specification of the protocol. Several equivalences have already
been proposed to define privacy properties like unlinkability. The list includes
trace equivalence [BNP01], early bisimilarity [ABF17], failure traces [Hoa85], and
failure simulation [vG93], which all capture different attacker’s capabilities and
correspond to different attack strategies.

The fact that equivalence in Fig. 2.1 fails reflects that an attacker can link ses-
sions by determining that a document has been used twice and, hence, follow the
movements of the document holder as the same document can be observed in dif-
ferent locations. We require that this non-equivalence between the implementation
and the specification have a precise meaning. There should be a strategy for dis-
tinguishing the protocol from its idealised specification. The existence of a strategy
whenever a property fails is crucial for the verification outcome and, however, is
not always guaranteed. In Sec. 2.2.5, we will encounter the example where the
equivalence failure does not correspond to an attack; hence the interpretation of
the verification outcome is unclear.

A distinguishing strategy can be described by a formula ϕ in a suitable modal
logic, where the formula holds for the implementation but does not hold for the

Chapter 2. Background: quasi-open bisimilarity 9

specification, as we illustrate in Fig. 2.2. Hennessy and Milner [HM85] were the
first who proposed the design pattern of using a modal logic to describe distin-
guishing strategies. Since then, it has been applied to characterise many different
equivalences for various process models [MPW93, HALT18, AHT21, PBE+21, VG01,
Sim04, DNV95, Dob05, BC14, DP03].

⊨ ϕ ⊭ ϕ
Figure 2.2: Whenever a property fails, a formula ϕ describes an attack.

In the context of privacy problems expressed as an equivalence, we require
that all distinguishing formulas are attacks on the property, and conversely, when
the property fails, the modal logic formula can always describe an attack. We
can now concisely formulate the first demand for our target equivalence notion.
The equivalence used for modelling indistinguishability properties should have a sound and
complete modal logic characterisation.

Let us continue with the unlinkability example in Fig. 2.1. It could be the case
that the electronic document participating in the protocol might be forced into a
session by an untrusted device, for instance, when the document is a proximity
card that can be powered up from a distance. We require that even in this case, the
unlinkability of the protocol should be maintained, and it should still be impossible
to track the document owner. Such an untrusted device to the document is simply
the environment that is able to communicate with it; hence the reduced system
and the corresponding reduced unlinkability scheme would require considering a
protocol without readers as presented schematically in the left part of Fig. 2.3. It is
also natural to require that bringing back honest readers to a picture does not affect
the unlinkability of the protocol. The relation between smaller and larger systems
is established by what is called context, a term we explain in Section 2.1.2. This
relation is protocol-specific, and its existence is not always guaranteed; however,
if it would be possible to reduce the definition to a smaller system, it can reduce
the amount of work needed for the verification. Thus our second demand for the
target equivalence notion is formulated as follows. The equivalence used for modelling
indistinguishability properties should also be a congruence relation, meaning that the
equivalence is preserved by any context.

∼ ⇒ ∼

Figure 2.3: Compositionality: a property automatically extends to a larger system.

Finally, we should consider where approximately the target equivalence sits
on the finer-coarser scale. The unlinkability analysis of the BAC protocol used in
ePassports [FHMS19] demonstrates that such equivalence must allow an attacker
to make decisions dynamically during the execution of the protocol, making the

10 Chapter 2. Background: quasi-open bisimilarity

relation some form of bisimilarity, which is finer than trace equivalence1. Hence,
our third demand for the suitable equivalence is simple it must be some form of
bisimilarity. Notice that verifying a property against a finer equivalence is safe,
as a property formulated via coarser equivalence would automatically hold. The
problem arises when we get too fine, such that the equivalence failure happens for
technical reasons while there is no practical attack behind this failure.

With this preliminary discussion, we can identify the area in Fig. 2.4 where the
target equivalence lives. In this picture blue area contains early labelled bisimilarity,
which is sufficiently fine to accommodate the dynamic decisions of an attacker,
but it is not a congruence. The red area contains early bisimilarity, which is a
congruence, but is too fine to reflect a realistic attacker’s capabilities, hence our
ideal equivalence should live in the intersection of these two regions.

∼
proves privacy properties

congruence ∼o

∼e

Figure 2.4: Bisimilarities for the applied π-calculus: ∼e is (early) labelled bisimilarity and
∼o is open bisimilarity.

In what follows, we pick and explain a single point in the identified region,
quasi-open bisimilarity, which is the coarsest bisimilarity congruence for the ap-
plied π-calculus. This bisimilarity covers a wide range of attack strategies and
admits desirable compositional approach, thereby being suitable to reason about
privacy properties of security protocols effectively. In Sec. 2.1, we introduce the
applied π-calculus, a formalism used to define and reason about labelled transition
systems, and then, in Sec. 2.2, we explain quasi-open bisimilarity, an equivalence
notion for the applied π-calculus, that satisfies the requirements we have identified
above.

2.1 Applied π-calculus

In this dissertation, we focus on the applied π-calculus [AF01, ABF17] due to its
prominent status as a model for cryptographic protocols. The variety of tools using
dialects of the applied π-calculus includes DEEPSEC [CKR18], Akiss [CCCK16],
Sapic [KK16], SAT-Equiv [CDD17], SPEC [TNH16], and ProVerif [Bla16], one of the
most popular verification tools used to analyse, e.g. commitment protocols [CSS15],
voting protocols [KR05], distance-bounding protocols [CdRS18], etc.

The central concept of the applied π-calculus is a process. Processes are used to
capture the behaviour of honest parties executing the protocol. Processes interact by
outputting or receiving messages using channels. Both messages and channels can
be message terms subject to some message theory, hence below we first describe

1A parallel approach of proving that a particular class of protocols indeed allows employing
trace equivalence was recently taken by Baelde, Delaune, and Moreau to analyse stateful proto-
cols [BDM20].

2.1. Applied π-calculus 11

a sample message theory, then we explain process syntax, and, finally, introduce
operational semantics which defines how the system moves from state to state.

2.1.1 Message theory

A message theory defines how the messages are formed and axiomatises crypto-
graphic operations. To provide meaningful examples we use a particular message
theory local to this chapter defined in Fig. 2.5 which includes public key cryptog-
raphy, one-way hash function, and tuples. The equational theory E at the bottom
of Fig. 2.5 defines the first and second projection functions, and the decryption
of an encrypted message using the right secret key. The last equation is a test of
whether the message M is the encryption with pk(M) which we require to hold for
any M, making it impossible to detect failed or successful decryption. However,
in this theory, it is possible to detect whether the message is a pair by checking if
⟨fst(M), snd(M)⟩ =E M holds.

M, N, K ::= x variable
| pk(M) public key
| h(M) hash
| ⟨M, N⟩ tuple
| aenc(M, N) asymmetric encryption
| adec(M, N) asymmetric decryption
| fst(M) left
| snd(M) right

fst(⟨M, N⟩) =E M

snd(⟨M, N⟩) =E N

adec(aenc(M, pk(K)) , K) =E M

aenc(adec(M, K) , pk(K)) =E M

Figure 2.5: The applied π-calculus can be instantiated with any message theory.

Further examples of message theories can also be used to instantiate the ap-
plied π-calculus and include subterm convergent theories [AC06], blind signatures
and homomorphic encryption [BCD14], locally stable theories with inverses [AFN17].
In further chapters we will consider theories that accommodate Diffie-Hellman
handshake.

2.1.2 Process syntax in the applied π-calculus

The applied π-calculus can be instantiated with any message theory like the one
given in Fig. 2.5 and generalises π-calculus [MPW92] in a way that channels and
messages can be any message terms instead of pure variables, hence the syntax is
similar. There are two main constructions: processes, which represent actions that
could be taken, and extended processes, which represent states. In this subsection
we focus on processes; extended processes are explained in the next subsection.

We start with processes and their syntax presented in Fig. 2.6. A process can
either contain no actions, i.e. being deadlocked, or send and receive messages on a

12 Chapter 2. Background: quasi-open bisimilarity

P, Q ::= 0 deadlock
| M⟨N⟩.P send
| M(y).P receive
| [M = N]P match
| [M ̸= N]P mismatch
| νx.P new
| P | Q parallel
| P + Q choice
| !P replication

Figure 2.6: A syntax for processes.

dedicated channel. Notice, since the receive action has not yet been taken, the pro-
cess M(y).P contains variable y that can be a parameter in the process P defining
the next actions. The processes we consider admit conditional branching reflecting
if–then–else construct, common for many programming languages. In the syntax
if branch corresponds to the match guard and the else branch to the mismatch
guard. During the execution, processes can generate new or fresh variables using
the ν operator and use them in future actions. These variables model private in-
formation such as nonces, keys, secret channels, etc. Finally, processes can run in
parallel, contain unconditional branching, and be replicated, i.e. to run in paral-
lel with itself infinitely many times. Later in the text we will encounter process
schemes which is simply a regular process, parametrised by the finite number of
parameters.

Throughout the paper, we use several conventions. We write Pπ, when some
transition π is available after execution of all actions in P. We do not make a
distinction between νx1.νx2.P and νx1.(νx2.P) and typically write νx1, x2.P. We
use the symbol ≜ to define a process and to improve readability we introduce the
following abbreviations.

let x := M in P ≜ P
{M/x

}
if M = N then P else Q ≜ [M = N]P + [M ̸= N]P

We also use pattern matching convention which is clear from the context. For
instance we have the following.

let ⟨x1, x2⟩ = M in P ≜ P
{
fst(M),snd(M)/x1,x2

}
In the process syntax, we have two examples of binding of a variable: when the

variable is fresh νx.P or when it represents the input M(y).P, hence variables x and
y are called bound variables. If the variable is not bound, we call it free or open.
We denote as fv(T) the set of free variables in a term T and call a term T ground
whenever fv(T) = ∅. Since often we talk about more than several messages, we
use vector notation to denote respectively the list of variables x⃗ of messages M⃗.
Whenever such lists are involved in set-theoretic operations, we treat x⃗ and M⃗ as
unordered sets of elements.

2.1. Applied π-calculus 13

Functions from some finite set of variables to message terms called substitu-
tions, or, historically, active substitutions, play important role in the applied π-
calculus. Firstly, substitutions are applied to processes when a receive action has
been taken to replace the bound variable with the actual message. Secondly, a
substitution represents the messages on the network available to an attacker as we
explain below when we discuss extended processes. We reserve Greek letters σ,
ρ, and θ for substitutions and write xσ when the substitution σ is applied to the
variable x. When we want to give a substitution explicitly we write σ :=

{
M⃗/⃗x

}
and

call x⃗ the domain and M⃗ the range of σ. A substitution σ being applied to a process
P, written as Pσ results in the replacement of any free occurrence of the variables
from the domain of σ with the messages from its range. The word free is crucial
here as substitutions must be capture-avoidant: if a bound variable x appears in
the range of the substitution, it must be preliminarily renamed to avoid the name
clash. Such renaming of bound variables is known as α-conversion [SW01b] and is
straightforward to perform as we explain in the following example.

Let us compute a(x).a⟨aenc(⟨x, y⟩ , k)⟩
{
h(x)/y

}
. Since x is a bound variable that

appears in the range of the substitution we should rename it using α-conversion
before we apply the substitution. Let us choose a “safe” name, s.t. it does not
belong to the set of free variables in the range of σ, i.e., is not x, and, does not belong
to the set of free variables of a⟨aenc(⟨x, y⟩ , k)⟩, i.e., is not among {a, x, y, k}. For
instance, z meets these conditions, hence we replace x with z in the process and we
are left with a(z).a⟨aenc(⟨z, y⟩ , k)⟩

{
h(x)/y

}
evaluated as a(z).a⟨aenc(⟨z, h(x)⟩ , k)⟩.

Below we will often encounter a situation when a variable should not belong
to a set of variables. We generalise this concept in the following.

Definition 1 (fresh). A set of variables x⃗ is fresh for a set of variables y⃗ whenever x⃗ ∩ y⃗ =

∅; x⃗ is fresh for a given term P, whenever x⃗ is fresh for fv(P); x⃗ is fresh for a given
substitution σ whenever x⃗ is fresh for dom(σ), and, for all y ̸∈ x⃗, we have x⃗ is fresh for
yσ (that is σ contains no variable from x⃗ in the domain and in the range). Notation: x⃗ # y⃗,
x⃗ # P, x⃗ # σ.

Finally, we introduce the notion of a context, which is a process with a dedi-
cated placeholder for another process. We denote such placeholder with a dot, and
the context is denoted as C{·}. E.g., if C{·} ≜ νk. (a(x).a⟨aenc(⟨x, y⟩ , k)⟩| !{·}), we
have C{P} ≜ νk. (a(x).a⟨aenc(⟨x, y⟩ , k)⟩| !P) for some process P.

2.1.3 The semantics of the applied π-calculus

In order to describe how the system can evolve from one state into another we first
introduce how the states are presented. To define the state of a process we use the
so-called extended process νx⃗.(σ | P). The syntax is given in Fig. 2.7.

An extended process νx⃗.(σ | P) comprises the private values x⃗ generated dur-
ing the execution of the protocol, a substitution σ used to record messages already
output on the network, and the process P that defines future actions the system
could take. Consider the extended process νs.

({
pk(s),M/u1,u2

}
| a(z)

)
as an exam-

ple. It consists of the fresh secret key s, the messages pk(s) and M which has been
output in the past (the domain of the substitution, u1 and u2, records labels on

14 Chapter 2. Background: quasi-open bisimilarity

Extended processes:
A ::= σ | P

| νx.A

Actions on labels:
π ::= τ

| M(z)
| M N

Figure 2.7: A syntax for extended processes and transition labels.

these messages; an attacker can only access messages on the network using labels),
and the input action a(z), that is not yet taken. The part of the extended process
νx⃗.(σ | _) consisting of the private values x⃗ and the substitution σ is traditionally
referred as a frame and it represents the static snapshot of the system at some stage
of the execution of the protocol. Whenever we talk about the domain of the frame
we mean dom(σ).

When describing the state of the system we require it to be presented in normal
form. We say that an extended process νx⃗.(σ | P) is in normal form if dom(σ) is
fresh for x⃗, fv(P), fv(yσ) for any variable y, meaning that σ is idempotent (σ ◦σ = σ)
and σ are fully applied to P. For instance, νn.

({
n,aenc(u,pk(k))/u,v

}
| νk.a⟨⟨k, u⟩⟩

)
is

not in the normal form, since the substitution is not idempotent and the process
refers the variable u appearing in the domain of the substitution; while the process
νn.

({
n,aenc(n,pk(k))/u,v

}
| νk.a⟨⟨k, n⟩⟩

)
satisfies conditions of the normal form.

Finally, we present transition rules in Fig. 2.9 to complete the description of
the labelled transition system associated with an extended process representing the
initial state. This transition system is early due to the way inputs are treated, i.e.
variables representing input should be substituted immediately; and this transition
system is open, as it does not assume that free variables are ground names unless
stated so explicitly in the name environment z⃗ to the left of the transition rela-
tion. Rules are defined on extended processes in the normal form, transitions are
presented as labelled arrows, where the label π defines the type of the transition:
input M N or output M(x) on the channel M, or a silent internal action τ. The set
of possible transitions that a system can make from the state νx⃗.(σ | P) is defined
by actions available in P. To avoid potential name clash and to keep track of the
private information we introduce the set of names of the label n(π), and the set of
bound names of the label bn(π) which we also define in Fig. 2.9.

~z : ⌫~x.(� | P)
M(u)I ⌫~x, ~w.

⇣n
K/u
o
� � | Q

⌘

~z : ⌫~x.(� | P)
M NI ⌫~x, ~w.

⇣
� | Q

n
N�/y
o⌘

A B

C D
E

F

G

H I
J

K

M

L
A B

C D
E

F

H K

Figure 2.8: The anatomy of output and input transitions.

2.1. Applied π-calculus 15

We illustrate the general form of input and output transitions in Fig. 2.8, where
the annotations highlight key elements and their role.

(A) A set of variables which should be treated as ground names that are used to
enable inequalities.

(B) Bound variables of the state (extended process) that cannot be observed di-
rectly by attackers.

(C) A representation of message previously output and intercepted by an attacker
that may be used to construct inputs.

(D) A process defining actions to be performed in the future, including the current
transition.

(E) A channel on the label that cannot refer to any bound private variables, yet
can use variables from dom(σ).

(F) Variables representing names that are extruded by the transition and that may
appear in K.

(G) An input message that can refer to the aliases of messages recorded in dom(σ).

(H) A fresh alias for an output message that is recorded in the domain of the
active substitution.

(I) The actual message being output that can be accessed indirectly using the
alias above.

(J) The messages already output in the past are updated with a new message
output in this transition.

(K) A process defining actions to be taken after the transition has been taken.

(L) The message that is being input in which aliases are replaced by messages
according to σ.

(M) A bound variable representing the input is replaced by the message input.

We can summarise the detailed description of input and output transitions
above as follows. The input action requires the substitution of a bound variable
representing input with a message term; the output action requires recording an
alias for a message appearing on the network in the active substitution part of the
extended process. Several examples of proof trees justifying transitions a particular
(extended) process can make and demonstrating how the rules from Fig. 2.9 work
can be found in Sec. 2.2.6 of the current chapter and in the proof of Theorem 7 of
the Chapter 3.

There are situations where a name clash is handled by the conventions we have
described above. Recall that substitutions are always capture-avoidant, therefore
before taking a transition it might be necessary to apply α-conversion first. For
example the state νn, k.

({
{n}k/u

}
| c(x).P

)
can make a transition c n since the next

available action is the input on the channel c. However, because n is bound by the

16 Chapter 2. Background: quasi-open bisimilarity

new name binder ν, there is a name clash when the substitution is applied to P
in the resulting state. Hence, we should rename n to a safe name, e.g. z in the
initial extended process, and only then execute the transition which results in the
extended process νz, k

({
{z}k/u

}
| P{z,n/n,x}

)
.

Mismatch is intuitionistic. The situation where the next available action is guarded
by mismatch (inequality) requires special care. The main insight from the work of
Horne et al. [HALT18] where they study a congruence relation in the version of the
π-calculus extended with mismatch is that mismatch should be preserved under
substitution. Consider the process if x ̸= h(y) then a(r) which can execute the in-
put action a(r) if {y/x} is applied, but cannot if we apply

{
h(y)/x

}
, hence neither

x = h(y) nor x ̸= h(y) holds until there is enough information about the environ-
ment s.t. we can once and forever decide between two options. In the next section,
where we define our equivalence notion, the reader will see, how an attacker can
systematically consider all possible universes by clarifying the environment and, in
turn, evaluating the process unambiguously. To define the negation of the equation
between two messages that enjoys the property of being preserved under substitu-
tion we introduce the following definition.

Definition 2 (entails). The entailment z⃗ |= M ̸= N holds if there is no substitution σ s.t.
z⃗ # σ and Mσ =E Nσ.

This definition precisely captures that two message terms are distinct if there
is no universe where they are equal. To give an example, the entailment ∅ |=
x ̸= h(x) holds since there is no substitution unifying both sides of the inequality,
hence there is enough information to resolve such guard. On the other hand, the
entailment ∅ |= x ̸= h(y) does not hold, as the substitution

{
h(y))/x

}
unifies both

sides, meaning that there is a universe where both sides are equal and there is
insufficient information to decide they are not equal. Let us clarify, or, extend, the
environment by declaring y private. In that case the entailment y |= x ̸= h(y) holds
since the most general unifier

{
h(y)/x

}
has y in the range, hence is not fresh for y

– anyone who has the power to influence variable x, cannot make x equal to h(y)
without access to y.

2.2 Quasi-open bisimilarity

This section is dedicated to the notion of quasi-open bisimilarity, an equivalence for
the applied π-calculus. This equivalence generalises a similar notion for the core
π-calculus [SW01a, HALT18] and satisfies the requirements we have identified in
the introduction to this chapter. Processes in this dissertation are used primarily to
describe the protocol’s behaviour in the real-world and the idealised situation. As
we have described above, a process defines labelled transition system. Abstractly,
two processes are equivalent if the associated labelled transition systems are equiv-
alent, i.e. there is a pairing between the states (extended processes) of the labelled
transition systems that an attacker cannot leave using their capabilities. We start
this section with an informal description of what an attacker can do in order to

2.2. Quasi-open bisimilarity 17

Mσ =E K
Inp

z⃗ : σ | K(x).P M N−−→ σ | P
{

Nσ/x

} x # M, N, P, σ, z⃗ Mσ =E K
Out

z⃗ : σ | K⟨N⟩.P M(x)−−−→
{

N/x

}
◦ σ | P

z⃗ : σ | P π−→ A
Sum-l

z⃗ : σ | P + Q π−→ A

z⃗ : σ | Q π−→ A
Sum-r

z⃗ : σ | P + Q π−→ A

z⃗ : σ | P π−→ A M =E N
Mat

z⃗ : σ | [M = N]P π−→ A

z⃗ : σ | P π−→ A z⃗ |= M ̸= N
Mismatch

z⃗ : σ | [M ̸= N]P π−→ A

z⃗, x : σ | P π−→ B x # z⃗, σ, n(π)
Extrude

z⃗ : σ | νx.P π−→ νx.B

z⃗, x : A π−→ B x # z⃗, n(π)
Res

z⃗ : νx.A π−→ νx.B

z⃗ : σ | P π−→ νx⃗.(θ | R) x⃗, bn(π) # Q
Par-l

z⃗ : σ | P | Q π−→ νx⃗.(θ | R | Q)

z⃗ : σ | Q π−→ νx⃗.(θ | R) x⃗, bn(π) # P
Par-r

z⃗ : σ | P | Q π−→ νx⃗.(θ | P | R)

z⃗ : σ | P
M(x)−−−→ νy⃗.

({
N/x

}
◦ σ | P′

)
z⃗ : σ | Q M x−−→ νw⃗.

(
σ | Q′) x, y⃗ # Q w⃗ # P, y⃗

Close-l
z⃗ : σ | P | Q τ−→ νy⃗, w⃗.

(
σ | P′ | Q′

{
Nσ/x

})
z⃗ : σ | P M x−−→ νy⃗.

(
σ | P′) z⃗ : σ | Q

M(x)−−−→ νw⃗.
({

N/x

}
◦ σ | Q′

)
x, w⃗ # P y⃗ # Q, w⃗

Close-r
z⃗ : σ | P | Q τ−→ νy⃗, w⃗.

(
σ | P′

{
Nσ/x

}
| Q′

)
z⃗ : σ | P π−→ νx⃗.(θ | Q) x⃗, bn(π) # P

Rep-act

z⃗ : σ | !P π−→ νx⃗.(θ | Q | !P)

z⃗ : σ | P
M(x)−−−→ νy⃗.

({
N/x

}
◦ σ | Q

)
z⃗ : σ | P M x−−→ νw⃗.(σ | R) y⃗ # P, w⃗ w⃗ # P

Rep-close

z⃗ : σ | !P τ−→ νy⃗, w⃗.
(

σ | Q | R
{

Nσ/x

}
| !P

)

bookkeeping

n(π) =

 fv(M) ∪ {x} if π = M(x)
fv(M) ∪ fv(N) if π = M N
∅ otherwise

bn(π) =

{
{x} if π = M(x)
∅ otherwise

Figure 2.9: An open early labelled transition system.

18 Chapter 2. Background: quasi-open bisimilarity

distinguish between two given processes, then we give the formal definition of
quasi-open bisimilarity with a self-contained background, continue with the de-
scription of the modal logic that characterises quasi-open bisimilarity, and present
main results about quasi-open bisimilarity. Finally, we apply quasi-open bisimilar-
ity to show that in an unlinkable authentication protocol scheme presented in the
introduction, readers can be withdrawn from the picture.

2.2.1 Attacker’s capabilities

Let us return to mismatch discussion above. We have seen that there are situa-
tions when declaring some open variables private can enable mismatch guard, i.e.
such manipulation with open variables can disable accessing any “universe” where
two terms are equal. Such mechanism of accessing and considering different “uni-
verses” where the execution of the protocol might take place is the essence of our
equivalence.

Being able to use the mechanism described above is the first capability of our
attacker. Consider two equivalent states, depicted by relation R below, then they
must also be equivalent when we allow open variables to be instantiated with or
fresh names, thereby declaring them private, or, capture avoiding substitutions,
thereby declaring there is a particular message term behind the variable. We say
that these “clarified” states (the pentagon and the star) are accessible (the dotted
line) from the initial state (the circle). Returning back to the example in Fig. 2.1, if
an attacker can instantiate open variables accessing a pair of states not belonging
to the relation R, the protocol in question deviates from its ideal behaviour in this
universe, and sessions with the same electronic document can be identified.

⟹

R

RR

Secondly, our attacker is also able to compare two static snapshots (frames) of
the system, known as static equivalence. Static equivalence is performed by checking
whether all possible equality tests that may be constructed using a snapshot of an
attacker’s knowledge of the system, resulting in the same outcome for all tests. In
the illustration below we have three message terms, labelled as u1, u2, and u3, ex-
posed to the environment and the sample testing equality fst(u1) = adec(u2, u3)

that holds for both, blue and green, states. In the case of the example from Fig. 2.1,
the equation that holds for the actual protocol might reflect that an electronic docu-
ment presented at different sessions is the same document. This would never hold
for the idealised protocol since no document is allowed to participate in a protocol
more than once.

⟹ ¯_(ツ)_/¯

u1, u2, u3 u1, u2, u3

fst(u1) = adec(u2, u3) fst(u1) = adec(u2, u3)

R

2.2. Quasi-open bisimilarity 19

Finally, our attacker can make decisions dynamically. In any stage of execution,
it can choose the perspective of one of the two processes and perform an input or
output action (or a silent action τ). The attacker has a winning strategy if the other
process cannot match the action at all, or can only do so by reaching an inequivalent
state. Hence, if there is no attack there is always a way to match every action of
a process with a corresponding action of the other process while staying within a
relation R, as illustrated below. For our example from Fig. 2.1, an attacker capable
of finding a pair of states and an action that cannot be matched by the idealised
specification of the protocol would mean that there is a way of exploiting the fact
that the same electronic document was used across several sessions.

⟹

π π π

R R

R

The last two capabilities correspond to a standard notion of early bisimilar-
ity2.Therefore the key novelty of quasi-open bisimilarity is the first point above. In
what follows we formally explain all three points starting from the easiest, which
is static equivalence.

2.2.2 The definition of quasi-open bisimilarity

We start from the concept of static equivalence, which is no different from original
work on the applied π-calculus [ABF17]. Static equivalence is defined over the static
information in an extended process – the frame consisting of the active substitutions
and new name binders.

Definition 3 (static equivalence). Two extended processes νx⃗.(σ | _) and νy⃗.(θ | _),
where _ may be any two processes, are statically equivalent whenever the following holds.
For all messages M and N such that x⃗, y⃗ # M, N, we have Mσ =E Nσ if and only if
Mθ =E Nθ. Notation: νx⃗.(σ | _) ∼seq νy⃗.(θ | _).

A recipe is a message term that cannot refer to private information recorded in
the extended process, i.e. variables bounded by the ν binder, but can refer to mes-
sage aliases from the domain of the active substitution and free variables. Thus, in
the above definition, messages M and N represent two different recipes for produc-
ing messages, and two extended processes are distinguished by static equivalence
only when the two recipes produce equivalent messages under one substitution,
but distinct messages under the other substitution.

For a self-contained presentation, we provide several examples. The following
extended processes are not statically equivalent.

νk.
({

aenc(x,pk(k)), aenc(x,pk(k))/v, w

}
| 0

)
≁seq νk.

({
aenc(x,pk(k)), aenc(z,pk(k))/v, w

}
| 0

)
2We purposefully use the term early bisimilarity used in the (core) π-calculus literature to be more

precise. While in the applied π-calculus the term labelled bisimilarity is more common, we find the
word “labelled” ambiguous since there are many distinct notions of bisimilarity defined in terms of
a labelled transition system.

20 Chapter 2. Background: quasi-open bisimilarity

There are two distinguishing recipes v and w for which we have vσ =E wσ, but
vθ ̸=E wθ, where σ =

{
aenc(x,pk(k)), aenc(x,pk(k))/v, w

}
, θ =

{
aenc(x,pk(k)),aenc(z,pk(k))/v,w

}
.

For a positive example, consider the following pair of extended processes.

νm, k, n.
({

aenc(m,pk(k)), n/x1, x2

}
| 0

)
∼seq νm, k.

({
aenc(m,pk(k)), k/x1, x2

}
| 0

)
In this case, the static equivalence relies on the fact that our sample message

theory, in Fig. 2.5, does not allow successful decryption to be detected. Thus, for
example, recipe adec(x1, x2) produces what looks like a random number for both
processes.

If a protocol requires successful decryption to be detected, we can introduce a
tag when a nonce is encrypted. Then the presence of a tag after decryption implies
that the decryption was successful. For example, consider the following extended
processes, where the nonce m is tagged with t before being encrypted.

νm, k, n.
({

aenc(⟨t,m⟩,pk(k)), n/x3, x4

}
| 0

)
≁seq νm, k.

({
aenc(⟨t,m⟩,pk(k)), k/x3, x4

}
| 0

)
In contrast to the previous example, the above are not statically equivalent,

since they can be distinguished by recipes fst(adec(x3, x4)) and t, which only pro-
duce equal messages according to the extended process above right.

Next, we introduce the attacker’s capability of manipulating free variables to
consider different universes, which is reflected in the notion of openness of the
relation between extended processes – if two states are related, they are related in
the accessible universe.

Definition 4 (open). A relation over extended processes R is open whenever we have that
if νx⃗.(σ | P) R νy⃗.(θ | Q) and there exist variables z⃗ and idempotent substitution ρ such
that: z⃗ # σ, P, θ, Q and ρ # x⃗, y⃗, dom(σ), dom(θ), we have

ν⃗z, x⃗.(σ ◦ ρ | Pρ) R ν⃗z, y⃗.(θ ◦ ρ | Qρ)

In the context of the definition above, we say that the extended process A ≜
νx⃗.(σ | P) can access the extended process A′ ≜ ν⃗z, x⃗.(σ ◦ ρ | Pρ) by the environment
extension ν⃗z.ρ, written as A ⊑ν⃗z.ρ A′ via ν⃗z.ρ if z⃗ # σ, P and ρ # x⃗, dom(σ). In what
follows we omit subscript when is it not important how we access A′ from A.
Using accessibility mechanism an attacker can declare free variables private, and
instantiate them with message terms without accessing private information and
available messages.

An important property of accessibility is that it is monotonous as proven in
the related work [HMY23], i.e. if a transition π available from the extended pro-
cess A, it is always available in any accessible state A′, however accessibility may
enable new transitions, not available in the original state. For instance, we have
νx.a⟨x⟩⊑νa.{z/a} νz, x. ({z/a} | z⟨x⟩) and for both states the transition av is avail-
able. For the example where a new transition is enabled consider the process
[x ̸= z]a(y).[x = y]π that cannot yet act since there is no evidence x and z are
distinct, or, similarly, there is a universe where they are equal, as in the remark

2.2. Quasi-open bisimilarity 21

about mismatch in Sec. 2.1.3. However, by extending the frame with a fresh name,
we have the following transition.

[x ̸= z]a(y).[x= y]π⊑νn.{n/x} νn.({n/x} | [n ̸= z]a(y).[n= y]π)
ax−→ νn.({n/x} | [n=n]π)

Notice, how declaring the free variable private – a in the first example and x in
the second example, makes these names available to be used as a the message alias
in the domains of {z/a} and {n/x} respectively.

Finally, we incorporate the attacker’s capability of making decisions dynami-
cally directly in the definition of quasi-open bisimilarity for the applied π-calculus.

Definition 5 (quasi-open bisimilarity). A symmetric relation between extended processes
R is a quasi-open bisimulation if

• R is open.

And whenever A R B we have the following:

• A and B are statically equivalent.

• If A π−→ A′ there exists B′ such that B π−→ B′ and A′ R B′.

Processes P and Q are quasi-open bisimilar whenever P R Q for some quasi-open bisimu-
lation R. Notanion: P ∼ Q.

The keyword in the definition above is “open” in the sense of Def. 4. With-
out ensuring that properties are preserved under accessibility, the above definition
would be a strong version of the classical labelled bisimilarity for the applied π-
calculus [ABF17], i.e. when the number of internal τ transitions is observable (in
contrast to weak, where the number of τ transactions is hidden).

By insisting that a quasi-open bisimulation is an open relation as in Def. 4,
static equivalence must also be preserved by all fresh substitutions. This has an
impact on examples such as the following.

Processes νx.a⟨aenc(x, z)⟩ and νx.a⟨aenc(⟨x, y⟩ , z)⟩ are labelled bisimilar but
not quasi-open bisimilar. Indeed, let v be the alias for the message output on chan-
nel a, then both processes can perform a a(v)-transition, to the respective extended
processes νx.

({
aenc(x,z)/v

}
| 0

)
and νx.

({
aenc(⟨x,y⟩,z)/v

}
| 0

)
. These extended pro-

cesses are statically equivalent (recall z cannot be used to decrypt these cyphertexts
in asymmetric cryptography). However, since a quasi-open bisimulation must be
preserved under substitution

{
pk(w)/z

}
x, v, we should check static equivalence

of νx.
({

aenc(x,z)/v

}
| 0

){
pk(w)/z

}
and νx.

({
aenc(⟨x,y⟩,z)/v

}
| 0

){
pk(w)/z

}
. After ap-

plying the substitution, the extended processes are no longer statically equivalent,
witnessed by distinguishing recipes snd(adec(v, w)) and y. Thus the processes are
not quasi-open bisimilar. The fact that such an attack succeeds is directly caused
by the attacker’s capability to influence the message bound to z in order to stage an
attack, thereby accessing the universe where it is possible to distinguish between
two states. In that universe, an attacker chooses that message to be a public key
pk(w) for which he knows the secret key w.

22 Chapter 2. Background: quasi-open bisimilarity

For another example, consider processes νk.a⟨aenc(x, pk(k))⟩.a⟨aenc(y, pk(k))⟩
and νk.a⟨aenc(x, pk(k))⟩.a⟨aenc(z, pk(k))⟩ which are labelled bisimilar but not quasi-
open bisimilar. To see why, firstly observe the above processes move to the states
νk.

({
aenc(x,pk(k)),aenc(y,pk(k))/v,w

}
| 0

)
and νk.

({
aenc(x,pk(k)),aenc(z,pk(k))/v,w

}
| 0

)
respec-

tively, by executing both output actions. Secondly, we apply the substitution {y/x}
satisfying the conditions from Def. 4, setting x to y and reaching a scenario ex-
plained after Def. 3, where the attacker can observe the same message is output
twice for the process on the left but not for the process on the right.

This feature of quasi-open bisimilarity is related to the security property of
strong secrecy [Bla04], meaning that an adversary cannot detect when the value
of the secret changes. The open nature of secrets when modelling such property
represents that the attacker may interfere with messages at runtime.

Lastly, we provide an example for which it matters that channels can also
be message terms. Consider the following pair of processes νz.x⟨z, y⟩.z(w) and
νz.x⟨z, y⟩. For both processes we firstly execute the output action x(v), where v is
the alias for the message a process outputs.

νz.x⟨z, y⟩.z(w)
x(v)−−→ νz.

({
⟨z,y⟩/v

}
| z(w)

)
νz.x⟨z, y⟩ x(v)−−→ νz.

({
⟨z,y⟩/v

}
| 0

)
Then an attacker can use fst(v) to refer to channel z when executing the next

available action fst(v)w for the process on the left νz.
({

⟨z,y⟩/v

}
| z(w)

)
fst(v)w−−−−→

νz.
({

⟨z,y⟩/v

}
| 0

)
. The process νz.

({
⟨z,y⟩/v

}
| 0

)
on the right cannot match this

transition, hence the initial processes are not quasi-open bisimilar.

2.2.3 Whenever quasi-open bisimilarity fails, a modal logic formula de-
scribes an attack

Our first demand for an equivalence suitable to model privacy properties of cryp-
tographic protocols is to have sound and complete modal logic characterisation.
In what follows we describe the modal logic intuitionistic FM that characterises
quasi-open bisimilarity, hence quasi-open bisimilarity meets this demand. The
modal logic intuitionistic FM presented below extends the restricted version com-
municated at LICS’18 [HALT18] used to characterise quasi-open bisimilarity for the
core π-calculus, where messages can be variables only. Since we consider arbitrary
messages, this logic for the applied π-calculus can describe attacks on privacy prop-
erties expressed as process equivalence problems. For the sake of completeness, we
formulate the corresponding results about this logic, but we stress that these results
are not among the contributions of the current dissertation, though the author has
contributed to the paper [HMY23] this subsection is based on.

2.2. Quasi-open bisimilarity 23

The syntax of intuitionistic FM is presented below.

ϕ ::= tt top
| ff bottom
| M = N equality
| ϕ ∧ ϕ conjunction
| ϕ ∨ ϕ disjunction
| ϕ ⊃ ϕ implication

intuitionistic logic

|
〈
π
〉
ϕ diamond

|
[
π
]
ϕ box

}
modalities

In the syntax above, observe that connectives cover the standard conjunction,
disjunction, implication, top, and bottom of intuitionistic logic with equality pred-
icates. Negation ¬ϕ is an abbreviation for ϕ ⊃ ff and hence inequality M ̸= N is
defined as (M = N) ⊃ ff. The two modalities box and diamond range over all
observable actions.

Observable actions π, as defined in Section 2.1.3, range over bound outputs
M(u), free inputs M N, and τ. The symbol F indicates the use of free inputs,
where the message input appears as a message, reflecting the fact that we use early
labelled transition system. The symbol M indicates the presence of “match”, i.e.,
the equality predicates, which are a way to reflect the role of static equivalence in
the logic. Finally, the semantics of intuitionistic FM is given in Fig. 2.10.

A |= tt always holds.
νx⃗.(σ | P) |= M = N iff Mσ =E Nσ and x⃗ # M, N
A |= ϕ1 ∧ ϕ2 iff A |= ϕ1 and A |= ϕ2.
A |= ϕ1 ∨ ϕ2 iff A |= ϕ1 or A |= ϕ2.
A |= ϕ1 ⊃ ϕ2 iff whenever A ⊑ B, and B |= ϕ1, we have B |= ϕ2.
A |=

〈
π
〉
ϕ iff there exists B such that A π−→ B and B |= ϕ.

A |=
[
π
]
ϕ iff whenever A ⊑ B, and B π−→ C, we have C |= ϕ.

Figure 2.10: The semantics of intuitionistic modal logic FM for the applied π-calculus.
Satisfaction |= is the least relation satisfying the rules above; hence ff is defined implicitly,
as there are no rules that force A |= ff for any A.

Now we state that quasi-open bisimilarity is sound with respect to intuitionistic
FM.

Theorem 1 (soundness). If P ∼ Q, then for all ϕ, P |= ϕ if and only if Q |= ϕ.

The proof of the theorem above is conducted by induction on the structure
of formulae and it shows, that any attack strategy described by a formula that
is valid for one process, is valid for any quasi-open bisimilar process. The com-
pleteness result, as explained in [HMY23], holds whenever the message theory is
finitary [BN99]. For the sake of completeness, we provide the reader with the defi-
nition of finitary message theory.

24 Chapter 2. Background: quasi-open bisimilarity

Definition 6. An equational theory E is finitary whenever, for all messages M and N,
there is a finite set of substitutions {σi}i∈I such that, for all i ∈ I, we have Mσi =E Nσi

and, for all θ such that Mθ =E Nθ, there exists j ∈ I such that σj is more general than θ,
i.e. there exists ς s.t. σjς = θ.

Examples of finitary message theories include standard symmetric encryption
and the equational theory in Fig. 2.5. Message theories with an associative opera-
tor, such as string concatenation, are not finitary in general [Plo72]. However, an
associative-commutative operator, such as xor [AFN17], is finitary [Sti81, Fag87].
The restriction to finitary message theories allows us to write down a finite set of
equations representing all substitutions that equate two messages. The complete-
ness result, then, is formulated as follows.

Theorem 2 (completeness). For a finitary message theory the following holds. If for all
ϕ, P |= ϕ iff Q |= ϕ, then P ∼ Q.

The proof of the above theorem requires a notion of distinguishing strategy,
which is, roughly speaking, a series of attacker’s actions (that include accessing
different worlds as in Def. 4) leading to either a pair of states where one state can
make a transition which the other state cannot match, or, a pair of states that are
not statically equivalent. The first step of the proof ensures that two processes are
not quasi-open bisimilar whenever there is a finite distinguishing strategy and the
second step describes how to construct a distinguishing formula from that distin-
guishing strategy.

Finally, we present several examples demonstrating how intuitionistic FM is
employed to represent distinguishing strategies whenever quasi-open bisimilarity
fails.

For the first example consider the processes νm, n.a⟨m⟩.a⟨n⟩ ̸∼ νn.a⟨n⟩.a⟨h(n)⟩,
which are not quasi-open bisimilar. A distinguishing strategy is that both processes
can perform output transitions a(u) and a(v), where u and v are respective message
aliases, reaching the pair of processes νm, n.({m,n/u,v} | 0) ̸∼ νn.

({
n,h(n)/u,v

}
| 0

)
.

These processes are not statically equivalent with distinguishing messages v and
h(u). Thereby we can construct the following distinguishing formulae representing
the quasi-open bisimilarity failure, biased to the left or the right process.

ϕ =
〈

a(u)
〉〈

a(v)
〉
(v ̸= h(u)) ψ =

[
a(u)

][
a(v)

]
(v = h(u))

νm, n.a⟨m⟩.a⟨n⟩|= ϕ νm, n.a⟨m⟩.a⟨n⟩̸|= ϕ

νn.a⟨n⟩.a⟨h(n)⟩̸|= ϕ νn.a⟨n⟩.a⟨h(n)⟩|= ψ

The duality between ϕ and ψ is rooted in the proof of Theorem 2 [HMY23]
where it is explained how the distinguishing formula is being constructed from
a distinguishing strategy. Two formulas constructed from the strategy described
above are as follows. The formula ϕ essentially tells that there is no world accessible
from the resulting state of the left process (after two output action has been taken)
where v = h(u) holds, while the formula ϕ tells that in any accessible resulting that
a right process can reach v = h(u) always holds.

2.2. Quasi-open bisimilarity 25

For the second example recall νx.a⟨aenc(x, z)⟩ ̸∼ νx.a⟨aenc(⟨x, y⟩ , z)⟩ from
previous section, after the Def. 5 of quasi-open bisimilarity. The distinguishing
strategy, described previously, the involved substitution

{
pk(w)/z

}
, and distinguish-

ing recipes snd(adec(u, w)) and y, both of which appear in the following distin-
guishing formula biased to the right, which tells that in any world accessible from
the resulting state where z = pk(w) holds, we also have snd(adec(u, w)) = y.

νx.a⟨aenc(⟨x, y⟩ , z)⟩|=
〈

a(u)
〉
(z = pk(w) ⊃ snd(adec(u, w)) = y)

From the same strategy, we can construct the distinguishing formula biased to
the left, telling that for any accessible state, the left process can reach, there is no
accessible world where snd(adec(u, w)) = y holds.

νx.a⟨aenc(x, z)⟩|=
[
a(u)

]
(snd(adec(u, w)) ̸= y)

Our third example illustrates the situation when a transition cannot be matched
by another process. Recall, from the end of Sec. 2.2.2 that νz.x⟨⟨z, y⟩⟩.z(w) ̸∼
νz.x⟨⟨z, y⟩⟩. The distinguishing strategy presented there yields the following for-
mulae biased to each process. Notice, yet again, how the message fst(u) is used as
a channel name for the second output action.

νz.x⟨⟨z, y⟩⟩.z(w) |=
〈

a(u)
〉〈
fst(u)w

〉
tt and νz.x⟨⟨z, y⟩⟩|=

[
a(u)

][
fst(u)w

]
ff

Finally, we develop further the example from Sec. 2.1.3 demonstrating that
mismatch is intuitionistic and present a formula requiring the absence of the law of
excluded middle. The following two processes are not quasi-open bisimilar.

a⟨r⟩ ̸∼ if x = pk(k) then a⟨aenc(m, pk(k))⟩else a⟨r⟩

The strategy exploiting the law of excluded middle is as follows. The a⟨r⟩ a(u)−−→
{r/u} | 0, cannot be matched by the process on the right without additional assump-
tions about x and k. Thus for a distinguishing formula biased to the left, we have
the following.

a⟨r⟩ |=
〈

a(u)
〉
tt and if x = pk(k) then a⟨aenc(m, pk(k))⟩else a⟨r⟩̸|=

〈
a(u)

〉
tt

The process on the right can only perform an output transition either: under
substitutions σ such that xσ =E pk(k)σ; or, under substitutions ρ and environments
n⃗ such that n⃗ |= xρ ̸= pk(k)ρ. Hence, in a distinguishing formula biased to the right
below, we have a postcondition indicating that either equality or inequality must
be decided in advance.

ψ =
[
a(u)

]
(x = pk(k) ∨ x ̸= pk(k))

a⟨r⟩̸|= ψ and if x = pk(k) then a⟨aenc(m, pk(k))⟩|= ψ

26 Chapter 2. Background: quasi-open bisimilarity

Observe that in a classical setting neither of the above formulae would be dis-
tinguishing, and

[
a(u)

]
(x = pk(k) ∨ x ̸= pk(k)) would be a tautology, due to the

law of excluded middle. Thus the absence of the law of excluded middle for intu-
itionistic FM provides additional distinguishing power.

2.2.4 Quasi-open bisimilarity enables compositional reasoning

Our second demand for the target equivalence is that it should also be a congruence
relation. The quasi-open bisimilarity, as defined in Def. 5 enjoys this property, since
we have the following theorem reported in [HMY21].

Theorem 3 (contexts). If P ∼ Q then for all contexts C{·}, we have C{P} ∼ C{Q}.

The proof of the theorem above reported in [HMY21, HMY23] is of interest in
itself and comprises a systematic check that quasi-open bisimilarity is preserved
under each process construct, i.e. it is always possible to construct a quasi-open
bisimulation containing two initial processes. Of particular interest is, e.g. the case
for parallel composition – whenever P ∼ Q, then for any R we have P | R ∼ Q | R:
despite the parallel processes R may diverge during executions as different data
may be transmitted by both processes, it is shown that the related states belong to
the constructed relation.

We motivate the importance of being congruence by developing the authentica-
tion to an untrusted device example from Fig. 2.3. Also, the introduced formalism
allows us now to formalise the unlinkability scheme expressed in the introduction
informally. Consider two roles, C, and T. The agent playing role C holds creden-
tials signed by the secret key s of the certification authority CA and wants to be able
to present the same identity multiple times without the risk of being reidentified.
The goal of the agent playing T is to verify these credentials using the public key
pk(s) of the CA and authenticate C. The real-world behaviour of the system can be
modelled as follows.

Sys ≜ νs.
(

!νc.!νchc.doc⟨chc⟩.C(s, chc, c) | out⟨pk(s)⟩.!νcht.reader⟨cht⟩.T(pk(s) , cht)
)

Initially, the CA’s secret key s is created. The first parallel component above de-
fines agents with identity c that can participate in an arbitrary number of sessions
of the protocol. Each session begins with advertising a fresh session channel chc on
the public channel doc, modelling a new connection to a new session. The leftmost
replication models that any number of agents can exist in the system, while the sub-
sequent replication is what allows an agent to appear with the same identity across
multiple sessions. The second parallel component above makes the public key pk(s)
of the CA available to the environment via the output on the public channel out.
After that, the role T is specified with a goal to authenticate a genuine agent in role
C making use of pk(s). Such sessions in role T also begin by advertising a fresh
session channel, in this case on the public channel reader. The process schemes
C(s, chc, c) and T(pk(s) , cht) can be instantiated to model various protocols.

2.2. Quasi-open bisimilarity 27

On the other hand, the idealised system is obtained from Sys by removing the
second replication, which means that the agent with the identity c can participate
in one protocol run only.

Spec ≜ νs.
(

!νc.νchc.doc⟨chc⟩.C(s, chc, c) | out⟨pk(s)⟩.!νcht.reader⟨cht⟩.T(pk(s) , cht)
)

Since the definition of unlinkability is always protocol-specific, let us call the
protocol scheme described above AU, standing for authentication to untrusted (de-
vice). The definition of unlinkability for AU below is in line with the original
unlinkability definition [ACRR10]3.

Definition 7 (AU-unlinkability). The AU system satisfies unlinkability if Sys ≈ Spec
holds, where ≈ is weak early bisimilarity.

The modelling decision of using session channels announced on special dedi-
cated public channels is not arbitrary. In the original definition of (strong) unlinka-
bility proposed by Arapinis et al. [ACRR10], the underlying bisimilarity notion uses
a weak transition system, which does not support image finiteness, i.e. for a given
process A and the transition label π there could be infinitely many states B s.t.
A π−→ B which can make verification a difficult task. To overcome this obstacle, we
follow a method developed by Horne and Mauw [HM21], allowing the reduction
of weak to strong bisimilarity that supports image finiteness. The insight of their
work is that expressing a protocol using such session channels makes verification
easier without compromising unlinkability in the original sense. Not only session
channels endows an attacker with the explicit ability to observe whether output/in-
put events are performed within the same session and inject message in a partic-
ular session, they are among the requirements in the transport protocol ISO/IEC
14443 [iso18] used in electronic documents [pas15], payment cards [emv11], elec-
tronic ticketing system [cal21] etc.

The fact that quasi-open bisimilarity is a congruence allows us to verify an
equivalence property for a smaller system looking exactly like the one in Fig. 2.1,
but without the reader role T, and extend the proof to a larger system. Consider a
smaller system comprising only agents playing the role C.

Small_Sys ≜ νs.out⟨pk(s)⟩.!νc.!νchc.doc⟨chc⟩.C(s, chc, c)

The corresponding, smaller version of the idealised specification where there
is one session per identity is as follows.

Small_Spec ≜ νs.out⟨pk(s)⟩.!νc.νchc.doc⟨chc⟩.C(s, chc, c)

3Potential terminology clash. In their paper Arapinis et al. explain two flavours of unlinkability,
weak and strong. In this dissertation we consider only strong unlinkability (hence we call it just
unlinkability) in a sense explained in the introduction, i.e. when the world where the protocol can
run multiple times with the same identity is indistinguishable from the world where the protocol
can run with an identity no more than once. However, to define strong unlinkability, they use a
weak labelled transition system. Hence, the reader here should not confuse between strong/weak
unlinkability and strong/weak labelled transition systems.

28 Chapter 2. Background: quasi-open bisimilarity

We are ready to prove that if we prove unlinkability using the smaller speci-
fication with one role, then it holds in the more traditional specification with two
roles.

Theorem 4. If Small_Sys ∼ Small_Spec, then Sys ≈ Spec.

Proof. Consider the following context, where out′ is a free variable for any of the
processes above.

C{ · } ≜ νout.
(

{ · } | out(pks).out’⟨pks⟩.!νcht.reader⟨cht⟩.T(pks, cht)
)

Firstly, we have C{Small_Sys}
{out/out′

}
∼ τ.Sys and C{Small_Spec}

{out/out′
}
∼

τ.Spec hold. By the assumption Small_Sys ∼ Small_Spec and the fact that since
quasi-open bisimilarity is a congruence (Theorem 3), the following holds.

C{Small_Sys} ∼ C{Small_Spec}

Furthermore, since quasi-open bisimilarity is closed under substitutions in-
volving free variables (by definition) we have that the following holds.

C{Small_Sys}
{out/out′

}
∼ C{Small_Spec}

{out/out′
}

Hence, since quasi-open bisimilarity is an equivalence relation, we have the
following.

τ.Spec ∼ τ.Sys

Thus there exists a quasi-open bisimulation R such that τ.Spec R τ.Sys. Hence,
since τ.Spec τ−→ Spec it must be the case that τ.Sys τ−→ Sys and Spec R Sys. Therefore
Spec ∼ Sys. Finally, since ∼⊆≈ we have Spec ≈ Sys.

Hence, in this situation, we are able to reduce significantly the amount of work
needed for unlinkability verification by studying a smaller system and proving
that Small_Sys ∼ Small_Spec. This approach to unlinkability allows us to revise
the Def. 7 and consider only one party right in the definition. We will apply this
approach in the next chapter where we will study the key agreement for contactless
payments and consider only honest cards in the unlinkability definition.

This example also demonstrates the limitations of the method. Here we can
drop one party, the verifier, from consideration because documents and verifiers
share no secret, while otherwise, an observed reaction of an honest participant may
break unlinkability.

2.2.5 Quasi-open bisimilarity is the coarsest bisimilarity congruence

Since quasi-open bisimilarity is a bisimilarity, it is by definition meets our third
demand for an equivalence suitable for modelling privacy properties. In this sub-
section we motivate the choice of quasi-open bisimilarity over a finer bisimilarity
congruence called open bisimilarity [San96, HM21] by providing an example of a
protocol for which a privacy property fails if we employ open bisimilarity, but holds

2.2. Quasi-open bisimilarity 29

if quasi-open bisimilarity is employed. The failure we describe below, however, has
no practical interpretation, demonstrating that open bisimilarity is too fine to accu-
rately model real-world protocols.

The example we use as illustration is a variant of a private server exam-
ple [AF04, CCLD17]. Similarly to previous illustrations, we express the privacy
property as an equivalence between the “real” and the “ideal” behaviours. Consider
a server Server A that responds with an encrypted message only when it receives a
particular public key. Otherwise, it responds with a nonce, indistinguishable from
a ciphertext. We assume an attacker knows public key pk(k) but does not know
private key k or nonce r.

S

pk(k)

C

pk(k)

fresh r
M

aenc(⟨m, r⟩ , pk(k))
M = pk(k)

r
M ̸= pk(s)

Figure 2.11: Specification of a private server Server A.

Informally, a private server can be described by the message sequence chart
in Fig. 2.11 and, formally, Server A can be modelled in the applied π-calculus as
follows.

Server A: νk.s⟨pk(k)⟩.! νa.c⟨a⟩.a(x).νr.
if x = pk(k) then a⟨aenc(⟨m, r⟩ , pk(k))⟩ else a⟨r⟩

In the specification for Server A, the prefix νk.s⟨pk(k)⟩ stands for announcing
a public key on a public channel s. The prefix !νa.c⟨a⟩.a(x).νr represents the start
of an unbounded number of sessions on a fresh channel a where, in each session,
an input is received and a nonce r is freshly generated. In each session, one of the
following decisions is made, based on the input received. If an input is a public key
output previously, Server A responds with a message-nonce pair encrypted with
the public key a⟨aenc(⟨m, r⟩ , pk(k))⟩. Otherwise, Server A sends a random dummy
message r indistinguishable from a random ciphertext. In this minimal formulation
of the problem, we refrain from modelling the clients (possibly knowing key k). Of
course, the fact that clients transmit their public keys in plaintext may introduce
further privacy concerns, which we do not model in this minimal illustration.

30 Chapter 2. Background: quasi-open bisimilarity

We approach the problem of proving that the privacy of the owner of secret
key k is preserved by specifying idealised behaviour. The private server from the
perspective of an attacker should ideally behave as Server B below, which differs
from Server A in that it transmits a nonce regardless of the message received.

Server B: νk.s⟨pk(k)⟩.!νa.c⟨a⟩.a(x).νr.a⟨r⟩

Server B and Server A are indistinguishable to an external observer – the at-
tacker. An attacker cannot learn that Server A responds in a special way to input
pk(k). The idea is that an attacker without private key k cannot learn that Server A
serves some data m to the owner of k. Thus the privacy of the intended recipient of
the data is preserved.

The point we make here is that if we employ open bisimilarity, which is also a
congruence, to verify the privacy of the owner of secret key k, the processes above
are not equivalent. Using a suitable labelled transition system [HM21], Server A
can reach the following state, at which point open bisimilarity still allows x, a free
variable representing an input, to be instantiated with the message bound to u,
representing pk(k), output previously.

νk, a1, r1.
({

pk(k),a1/u,v

}
| if x = pk(k) then a1⟨aenc(⟨m, r1⟩ , pk(k))⟩ else a1⟨r1⟩
| ! νa.c⟨a⟩.a(x).νr.

if x = pk(k) then a⟨aenc(⟨m, r⟩ , pk(k))⟩ else a⟨r⟩
)

Thus, we have not yet committed to x = pk(k) or x ̸= pk(k), and hence we
cannot proceed until we provide more information about x. Therefore the guard
in the if-then-else statement above cannot yet be resolved. To the contrary, Server B
cannot reach an equivalent state, since it can only reach a state which is immediately
ready to perform an action regardless of whether x = pk(k) or x ̸= pk(k). Note,
we are still in an intuitionistic setting [AHT17, AHT21] as we have explained in a
remark in the end of Sec. 2.1.3, and illustrated by the last example in Sec. 2.2.3;
and we do not assume x = pk(k) ∨ x ̸= pk(k) holds, which would be an instance
of the law of excluded middle. The presented distinguishing strategy, does not
correspond to a real attack on the privacy of Server A; hence open bisimilarity is
not sufficiently coarse to verify this privacy property.

Quasi-open bisimilarity, on the other hand, verifies the privacy property for the
protocol in Fig. 2.11, as we explain below by providing a relation between Server B
and Server A satisfying conditions of quasi-open bisimulation in Def. 5.

For greater clarity, we first consider the case of a single session, i.e., with repli-
cation removed. The equivalence of running examples Server B and Server A for the
single session case can be established by taking the least symmetric open relation
satisfying the constraints in Fig. 2.12.

The critical observation is that message N in Fig. 2.12 ranges over all permitted
inputs. Since N = u is permitted, we have the following pair in relation S.

νk, a, r.
({

pk(k),a/u,v

}
| a⟨r⟩

)
S νk.a, r.

({
pk(k),a/u,v

}
| if pk(k) = pk(k) then

a⟨aenc(⟨m, r⟩ , pk(k))⟩
else a⟨r⟩

)

2.2. Quasi-open bisimilarity 31

νk.s⟨pk(k)⟩.νa.c⟨a⟩.a(x).νr.a⟨r⟩S

νk.s⟨pk(k)⟩. νa.c⟨a⟩.a(x).
νr. ifx=pk(k)

thena⟨aenc(⟨m,r⟩ ,pk(k))⟩
elsea⟨r⟩

νk.
({

pk(k)/u

}
| νa.c⟨a⟩.a(x).νr.a⟨r⟩

)
S

νk.
({

pk(k)/u

}
| νa.c⟨a⟩.a(x).

νr. ifx=pk(k)
thena⟨aenc(⟨m,r⟩ ,pk(k))⟩
elsea⟨r⟩

)

νk,a.
({

pk(k),a/u,v

}
| a(x).νr.a⟨r⟩

)
S

νk,a.
({

pk(k),a/u,v

}
| a(x).

νr. ifx=pk(k)
thena⟨aenc(⟨m,r⟩ ,pk(k))⟩
elsea⟨r⟩

)
νk,a,r.

({
pk(k),a/u,v

}
| a⟨r⟩

)
S

νk,a,r.
({

pk(k),a/u,v

}
| ifN

{
pk(k),a/u,v

}
=pk(k)

thena⟨aenc(⟨m,r⟩ ,pk(k))⟩
elsea⟨r⟩

)
νk,a,r.

({
pk(k),a,r/u,v,w

}
| 0
)
S νk,a,r.

({
pk(k),a,aenc(⟨m,r⟩,pk(k))/u,v,w

}
| 0
)

νk,a,r.
({

pk(k),a,r/u,v,w

}
| 0
)
S νk,a,r.

({
pk(k),a,r/u,v,w

}
| 0
)

where s, c, m and N are messages and u, v and w are variables such that s,c,m, N # a,k,r, and
u # s,c,m,a,k,r, and v # s,c,a,m,k,r,u, and w # s,c,m,a,k,r,u,v, N.

Figure 2.12: Relation S defining a quasi-open bisimulation verifying the anonymity of
Server A in the case for a single session, without replication.

In the above, observe the branch sending an encrypted message is enabled.
Otherwise, we always have k, a, r |= N

{
pk(k),a/u,v

}
̸= pk(k) since if N were a mes-

sage term such that k, a, r # N such that N
{
pk(k),a/u,v

}
= pk(k), then N must be

equivalent to u. Thus in all other cases, the else branch is enabled.
Notice that the state νk, a, r.

({
pk(k),a,r/u,v,w

}
| 0

)
is statically equivalent to the

state νk, a, r.
({

pk(k),a,aenc(⟨m,r⟩,pk(k))/u,v,w

}
| 0

)
. To see why, observe that an attacker

neither has the key k to decrypt aenc(⟨m, r⟩ , pk(k)), nor can an attacker reconstruct
the message ⟨m, r⟩, without knowing r.

For the unbounded case, let us first define the process specifying the server
role as R ≜ νa.c⟨a⟩.a(x).νr.if x = pk(k) then a⟨aenc(⟨m, r⟩ , pk(k))⟩ else a⟨r⟩, and
consider the least symmetric open relation T satisfying the constraints in Fig. 2.13.
This generalises the finite case by defining all scenarios where there are l parallel
sessions that are either in the state of having just announced the communication
channel a, having just received a message, or having responded already. The rela-
tion T is closed under all transitions and accessibility, as required to establish that
T is a quasi-open bisimulation, moreover T is a quasi-open bisimulation such that
Server B T Server A, hence the desired privacy property of Server A being indistin-
guishable from the idealised Server B always responding with a nonce is verified.

32 Chapter 2. Background: quasi-open bisimilarity

νk.s⟨pk(k)⟩.!νa.c⟨a⟩.a(x).νr.a⟨r⟩ T νk.s⟨pk(k)⟩.!R

νk, a1, . . . al, r1, . . . rl.
(

σ | P1 | . . . Pl

| !νa.c⟨a⟩.a(x).νr.a⟨r⟩
) T

νk, a1, . . . al, r1, . . . rl.
(

θ | Q1 | . . . Ql

| !R
)

for any I, J, I′, J′ partitioning {1, . . . l} such that the following hold

uσ = pk(k)
viσ = ai if i ∈ {1, . . . l}
wiσ = ri if i ∈ I′ ∪ J′

uθ = pk(k)
viθ = ai if l ∈ {1, . . . l}
wiθ = aenc(⟨m, ri⟩ ,pk(k)) if l ∈ I′

wiθ = ri if l ∈ J′

Pi ≜

ai(x).νr.ai⟨r⟩ if i ∈ I
ai⟨ri⟩ if i ∈ J
0 if l ∈ I′ ∪ J′

Qi ≜

ai(x).νr.if xθ = pk(k) then ai⟨aenc(⟨m, r⟩ ,pk(k))⟩ else ai⟨r⟩ if i ∈ I
if Niθ = pk(k) then ai⟨aenc(⟨m, ri⟩ ,pk(k))⟩ else ai⟨ri⟩ if i ∈ J
0 if l ∈ I′ ∪ J′

s, c, m, Ni # k, a1, . . . al, r1, . . . rl
u, v1, . . . vl, w1 . . . wl # s, c, m, a1, . . . al, k, r1, . . . rl

Figure 2.13: Relation T verifying Server B ∼ Server A in the unbounded case.

In fact, quasi-open bisimilarity is not just coarser than open bisimilarity, al-
lowing us to verify the examples similar to the one in Fig. 2.11, it is the coarsest
(strong) bisimilarity congruence for the applied π-calculus since it coincides with an
equivalence that is the coarsest bisimilarity congruence in the objective sense it is
defined. This equivalence is open barbed bisimilarity [SW01a] and is by definition a
congruence defined independently of the messages sent and received. Below we
define open barbed bisimilarity and formulate the result published in the related
work [HMY23].

We say process P has barb M, written P↓ M, whenever, for some A, P
M(z)−−→ A,

or P M N−−→ A, that is a barb represents the ability to observe an input or output
action on a channel.

Definition 8 (open barbed bisimilarity). An open barbed bisimulation R is a symmetric
relation over processes such that whenever A R B holds the following hold:

• For all contexts C{ · }, C{A} R C{B}.

• If A↓M then B↓M.

• If A τ−→ A′, there exists B′ such that B τ−→ B′ and A′ R B′ holds.

Processes A and B are open barbed bisimilar whenever there exists an open barbed bisimu-
lation R such that A R B.

The power of open barbed bisimilarity comes from closing by all contexts at
every step, not only at the beginning of execution. Closing by all contexts at every

2.2. Quasi-open bisimilarity 33

step ensures the robustness of open barbed bisimilarity even if the environment is
extended at runtime; i.e., we stay within a congruence relation at every step of the
bisimulation game. Open barbed bisimilarity is concise – the definition requires
only the open labelled transition system in Fig. 2.9 and the three clauses in Def. 8.
Notice also that due to the independence of the information on the labels, open
barbed bisimilarity applies to any language. However, it is unwieldy due to closure
of the definition under all contexts, making it unsuitable for verification.

Having objective definition Def. 8 above we formulate the following.

Theorem 5. Quasi-open bisimilarity coincides with open barbed bisimilarity.

With the theorem and the definition of open barbed bisimilarity above, the
value of quasi-open bisimilarity becomes apparent – it admits effective verification,
as this dissertation demonstrates.

2.2.6 Proof certificates vs. formal proofs

To be more precise, a distinguishing modal logic formula and the relation similar
to that presented in Fig. 2.13 are proof certificates rather than formal proofs. This
means that to obtain a formal proof of non-equivalence or equivalence between two
applied π-calculus processes, one should respectively do the following. For a given
modal logic formula and two processes, one should check that, indeed, the formula
holds for one process and also that it does not hold for the other process. For a given
open relation one should check that it satisfies the defining clauses for a quasi-open
bisimulation. It would be useful to have a tool for automated checking of such
proof certificates which we consider as future work. Such a tool would play an
important part in the automated verification of privacy properties of cryptographic
protocols, i.e. a verification outcome should always be backed up with a proof
certificate that can be checked independently, thereby ensuring that the outcome
is correct. We have already checked in Sec. 2.2.3 several “negative” certificates
comprising formulas that correspond to the failure of two processes being quasi-
open bisimilar. For the sake of completeness of this background chapter below, we
provide a reader with a full check of a “positive certificate” comprising a quasi-open
bisimulation relation that corresponds to the fact that two processes are quasi-open
bisimilar.

Consider the process A ≜ νx.a⟨x⟩. (a(y)+a(y).τ + a(y). [x = y] τ) is quasi-open
bisimilar to the process B ≜ νx.a⟨x⟩. (a(y)+a(y).τ). Let us check the certificate
presented in Fig. 2.14 comprising defining conditions for a quasi-open bisimulation
R between A and B. The relation R is the least symmetric open relation satisfying
presented conditions. Notice that to construct such certificate we simply list all
possible pairs of states reachable by the same transitions.

Then, to check this certificate, we should verify that R relates initial processes
A and B and that it is indeed a quasi-open bisimulation. That is, according to Def. 5,
we must demonstrate the following.

34 Chapter 2. Background: quasi-open bisimilarity

(1) νx.a⟨x⟩. (a(y)+a(y).τ + a(y). [x = y] τ) R νx.a⟨x⟩. (a(y)+a(y).τ)

(2) νx.({x/u} | a(y)+a(y).τ + a(y). [x = y] τ) R νx.({x/u} | a(y)+a(y).τ)

(3) νx.({x/u} | 0) R νx.({x/u} | 0)

(4) νx.({x/u} | τ) R νx.({x/u} | τ)

(5) νx.({x/u} | [x = N{x/u}] τ) R νx.({x/u} | τ)

(6) νx.({x/u} | [x = N{x/u}] τ) R νx.({x/u} | 0) if N ̸=E u

Figure 2.14: Defining conditions for the relation R certifying A ∼ B.

1. (bisimulation) Whenever P R Q, and P π−→ P′, there exists Q′ such that Q π−→ Q′

and P′ R Q′.

2. (openness) R is closed under the application of a substitution fresh for the
domain of the frame of any of the related states.

3. (static equivalence) Whenever P R Q, P is statically equivalent to Q.

We start by the obvious observation that A R B, given (1) in Fig. 2.14. Then we
systematically check that the above condition holds.

Bisimulation. Since R is by definition a symmetric relation, we provide proof
only for the cases when the left-hand side process starts first. Below we present
the exhaustive list of cases for the defining conditions of the relation R in Fig. 2.14.
Notice that in particular we have to accommodate the openness of R: if P = σÂ
can make a transition π to the state P′ = σÂ′, there exists a state σB̂′ to which the
process Q = σB̂ can make the transition π and σÂ′ R σB̂′ where σ is fresh for the
domain of the frame of P and Â, Â′, B̂, B̂′ are states listed in Fig. 2.14.

Let us make the following observation. The only free variable in A and B that
can be affected by σ is a, i.e. σ is of the form

{
M,M⃗/a,A⃗

}
. Therefore the application

of σ to any of the base states listed in Fig. 2.14 leads to the replacement of a with M,
s.t. M # x. To indicate the openness of R we use M in the proof trees everywhere
below. To obtain proof trees for base states it is enough to set σ = id and M = a
below.

Case 1. A≜ νx.a⟨x⟩.(a(y)+a(y).τ+ a(y). [x = y]τ) R νx.a⟨x⟩.(a(y)+a(y).τ)≜ B
By definition R is open, hence for an arbitrary substitution σ we have Aσ R Bσ.
Case 1.1. Let σ # u. The process Aσ≜ νx.M⟨x⟩.(M(y)+M(y).τ+M(y). [x= y]τ)

can do the transition to M(u) to Ayσ ≜ νx. ({x/u} | M(y)+M(y).τ+ M(y). [x = y]τ)
justified by the following proof tree.

u # M, x, M(y)+M(y).τ + M(y). [x = y] τ, id, x M id =E M
Out

x : M⟨x⟩. (M(y)+M(y).τ + M(y). [x = y] τ)
M(u)−−−→{x/u} | M(y)+M(y).τ + M(y). [x = y] τ x # ∅, M, u

Res

∅ : νx.M⟨x⟩. (M(y)+M(y).τ + M(y). [x = y] τ)
M(u)−−−→ νx. ({x/u} | M(y)+M(y).τ + M(y). [x = y] τ)

There is a state Byσ ≜ νx. ({x/u} | M(y)+M(y).τ) to which the process Bσ ≜
νx.M⟨x⟩. (M(y)+M(y).τ) can make the transition M(u) justified by the following
proof tree.

2.2. Quasi-open bisimilarity 35

u # M, x, M(y)+M(y).τ + M(y). [x = y] τ, id, x M id =E M
Out

x : M⟨x⟩. (M(y)+M(y).τ + M(y). [x = y] τ)
M(u)−−−→{x/u} | M(y)+M(y).τ x # ∅, M, u

Res

∅ : νx.M⟨x⟩. (M(y)+M(y).τ+)
M(u)−−−→ νx. ({x/u} | M(y)+M(y).τ)

By (2) in Fig. 2.14 and the openness of R we have Ayσ R Byσ.
Case 1.2 Let σ is s.t. it is not fresh for u. Then, to satisfy the conditions of the

Out rule, we record the output using another alias, e.g. u′ # M and the respective
transition label is M(u′). The rest is identical to case 1.1.1 – it is enough to replace
u with u′. Notice that by the definition of R we have the following.

νx.({x/u′} | a(y)+a(y).τ + a(y). [x = y] τ) R νx.({x/u′} | a(y)+a(y).τ)

Case 2. νx.({x/u} | a(y)+a(y).τ + a(y). [x = y] τ) R νx.({x/u} | a(y)+a(y).τ).
Let us call the left and the right parts related by R as Ay and By respectively.

By definition R is open, hence for the substitution σ # u we have Ayσ R Byσ.
Since the process Ayσ ≜ νx.({x/u} | M(y)+M(y).τ + M(y). [x = y] τ) contains

the choice, it can make the transition a N, where N is any permitted input to several
different states. We consider each possible case below.

Case 2.1. The process Ayσ can make the transition M Nσ, where N is any
permitted input to the state A0σ ≜ νx.({x/u} | 0) justified by the following proof
tree.

M =E M
Inp

x : {x/u} | M(y) MNσ−−−→{x/u} | 0
Sum-L

x : {x/u} | M(y)+M(y).τ + M(y). [x = y] τ
MNσ−−−→{x/u} | 0 x # ∅, M, Nσ

Res

∅ : νx. ({x/u} | M(y)+M(y).τ + M(y). [x = y] τ)
MNσ−−−→ νx.({x/u} | 0)

There exists a state B0σ ≜ νx.({x/u}) to which the extended process Byσ ≜
νx. ({x/u} | M(y)+M(y).τ) can make the transition M Nσ justified by the following
proof tree.

M =E M
Inp

x : {x/u} | M(y) MNσ−−−→{x/u} | 0
Sum-L

x : {x/u} | M(y)+M(y).τ MNσ−−−→{x/u} | 0 x # ∅, M, Nσ
Res

∅ : νx. ({x/u} | M(y)+M(y).τ) MNσ−−−→ νx.({x/u} | 0)

By (3) in Fig. 2.14 and the openness of R we have A0σ R B0σ.
Case 2.2. The process Ayσ can make a transition M Nσ, where N is any permit-

ted input, to the state Aτσ ≜ νx.({x/u} | τ) justified by the following proof tree.

M =E M
Inp

x : {x/u} | M(y).τ MNσ−−−→{x/u} | τ
Sum-L

x : {x/u} | M(y)+M(y).τ + M(y). [x = y] τ
MNσ−−−→{x/u} | τ x # ∅, M, Nσ

Res

∅ : νx. ({x/u} | M(y)+M(y).τ + M(y). [x = y] τ)
MNσ−−−→ νx.({x/u} | τ)

36 Chapter 2. Background: quasi-open bisimilarity

There exists a state Bτσ ≜ νx.({x/u} | τ) to which the extended process Byσ ≜
νx. ({x/u} | a(y)+a(y).τ) can make the transition M Nσ justified by the following
proof tree.

M =E M
Inp

x : {x/u} | M(y).τ MNσ−−−→{x/u} | τ
Sum-L

x : {x/u} | M(y)+M(y).τ MNσ−−−→{x/u} | τ x # ∅, M, Nσ
Res

∅ : νx. ({x/u} | M(y)+M(y).τ) MNσ−−−→ νx.({x/u} | τ)

By (4) in Fig. 2.14 and the openness of R we have Aτσ R Bτσ.
Case 2.3. If the process Ayσ takes the third branch, the choice of the input

affects the further behaviour of the process. We will make a distinction between the
cases Nσ =E u and Nσ ̸=E u.

Case 2.3.a. The process Ayσ can make the transition M Nσ, where N is s.t.
Nσ =E u to the state Aa

matchσ ≜ νx.({x/u} | [x = N{x/u}σ] τ) justified by the follow-
ing proof tree.

M =E M
Inp

x : {x/u} | M(y). [x = y] τ
MNσ−−−→{x/u} | [x = N{x/u}σ] τ

Sum-L

x : {x/u} | M(y)+M(y).τ + M(y). [x = y] τ
MNσ−−−→{x/u} | [x = N{x/u}σ] τ x # ∅, M, Nσ

Res

∅ : νx. ({x/u} | M(y)+M(y).τ + M(y). [x = y] τ)
MNσ−−−→ νx.({x/u} | [x = N{x/u}σ] τ)

Notice that in Sum-L we have used the following observation: Nσ{x/u} =

N{x/u}σ. This is true since σ by assumption contains no u in the domain or the
range and has no effect on x since x is a bound variable. Therefore the set of free
variables in N affected by {x/u} does not intersect the set of free variables in N
affected by σ and the result of the application of σ and {x/u} to N does not depend
on the order of application of substitutions.

There exists a state Bτσ ≜ νx.({x/u} | τ) to which the extended process Byσ ≜
νx.({x/u} | M(y)+M(y).τ) can make the transition M Nσ, where N is s.t. Nσ =E u
justified by the following proof tree.

M =E M
Inp

x : {x/u} | M(y).τ MNσ−−−→{x/u} | τ
Sum-L

x : {x/u} | M(y)+M(y).τ MNσ−−−→{x/u} | τ x # ∅, M, Nσ
Res

∅ : νx. ({x/u} | M(y)+M(y).τ) MNσ−−−→ νx.({x/u} | τ)

By (5) in Fig. 2.14 and the openness of R we have Aa
matchσ R Bτσ.

Case 2.3.b. The process Ayσ can make the transition M Nσ, where N is s.t.
Nσ ̸=E u to the state Ab

matchσ ≜ νx.({x/u} | [x = N{x/u}σ] τ) justified by the follow-
ing proof tree.

M =E M
Inp

x : {x/u} | M(y). [x = y] τ
MNσ−−−→{x/u} | [x = N{x/u}σ] τ

Sum-L

x : {x/u} | M(y)+M(y).τ + M(y). [x = y] τ
MNσ−−−→{x/u} | [x = N{x/u}σ] τ x # ∅, M, Nσ

Res

∅ : νx. ({x/u} | M(y)+M(y).τ + M(y). [x = y] τ)
MNσ−−−→ νx.({x/u} | [x = N{x/u}σ] τ)

2.2. Quasi-open bisimilarity 37

Notice that in Sum-L we have also used the following observation: Nσ{x/u} =

N{x/u}σ, as in 2.2.3.a.
There exists a state B0σ ≜ νx.({x/u} | 0) to which the extended process Byσ ≜

νx. ({x/u} | M(y)+M(y).τ) can make the transition M Nσ, where N is s.t. Nσ ̸=E u
justified by the following proof tree.

M =E M
Inp

x : {x/u} | M(y) MNσ−−−→{x/u} | 0
Sum-L

x : {x/u} | M(y)+M(y).τ MNσ−−−→{x/u} | 0 x # ∅, M, Nσ
Res

∅ : νx. ({x/u} | M(y)+M(y).τ) MNσ−−−→ νx.({x/u} | 0)

By (6) in Fig. 2.14 and the openness of R we have Ab
matchσ R B0σ.

Case 3. A0 ≜ νx.({x/u} | 0) R νx.({x/u} | 0) ≜ B0.
Notice that any substitution σ # u has no effect on A0 and B0: A0σ = A0,

B0σ = B0.
There are no valid transitions that the process A0σ can make since A0σ is

deadlocked. There is no state to which the process B0σ can make a transition since
B0σ is deadlocked.

Case 4. Aτ ≜ νx.({x/u} | τ) R νx.({x/u} | τ) ≜ Bτ.
By definition R is open, hence for a substitution σ # u we have Aτσ R Bτσ.
The process Aτσ ≜ νx.({x/u} | τ) can make the transition τ to the state A0σ ≜

νx.({x/u} | 0). There is a state B0σ ≜ νx.({x/u} | 0) to which the process Bτσ ≜
νx.({x/u} | τ) can make the transition τ.

By (3) in Fig. 2.14 and the openness of R we have A0σ R B0σ.
Case 5. Aa

match ≜ νx.({x/u} | [x = N{x/u}] τ) R νx.({x/u} | τ) ≜ Bτ, and N =E u.
By definition R is open, hence for a substitution σ # u we have Aa

matchσ R Bτσ.
The process Aa

matchσ ≜ νx.({x/u} | [x = N{x/u}σ] τ) can make the transition τ

to the state A0σ ≜ νx.({x/u} | 0) justified by the following proof tree.

x : {x/u} | τ
τ−→{x/u} | 0 x =E N{x/u}σ , since Nσ =E u

Match

x : {x/u} | [x = N{x/u}σ] τ
τ−→{x/u} | 0 x # ∅, n(τ)

Res

∅ : νx.({x/u} | [x = N{x/u}σ] τ)
τ−→ νx. ({x/u} | 0)

There is a state B0σ ≜ νx.({x/u} | 0) to which the process Bτσ ≜ νx.({x/u} | τ)

can make the transition τ justified by the following proof tree.

x : {x/u} | τ
τ−→{x/u} | 0 x # ∅, n(τ)

Res

∅ : νx.({x/u} | τ)
τ−→ νx.({x/u} | 0)

By (3) in Fig. 2.14 and the openness of R we have A0σ R B0σ.
Case 6. Ab

match ≜ νx.({x/u} | [x = N{x/u}] τ) R νx.({x/u} | 0) ≜ B0, and N ̸=E u.
By definition R is open, hence for a substitution σ # u we have Ab

matchσ R B0σ.
Given the condition N ̸=E u there is no state to which the process Ab

matchσ ≜
νx.({x/u} | [x = N{x/u}σ] τ) can make a transition.

There is no state to which the process B0σ ≜ νx.({x/u} | 0) can make a transi-
tion since it is deadlocked either.

38 Chapter 2. Background: quasi-open bisimilarity

Openness Above we have already considered the general case where the appro-
priate substitution is applied to either side of the relation. The proof trees presented
illustrate that it is enough to consider transitions for the core cases comprising the
proof certificate, and to check that accessibility mechanism as in Def. 4 does not
invalidate these proof trees.

Static equivalence. We conclude the proof by demonstrating that any two pro-
cesses related by R are statically equivalent. There are only two cases to consider.

Case 1. νx.a⟨x⟩. (a(y)+a(y).τ + a(y). [x = y] τ) R νx.a⟨x⟩. (a(y)+a(y).τ). The
substitution of the process on the left considered as a state consists of identity
substitution id. The same holds for the process on the right. Therefore for any
pair of messages M and N such that x⃗ # M, N the equality Mid =E Nid holds if
and only if Mid =E Nid. Static equivalence also holds if a substitution σ, fresh for
the domain of id, is applied to the related processes since such substitution doesn’t
affect id.

Case 2. Any extended process from (2)-(6) in Fig. 2.14 related by R contains
the substitution θ :={x/u}. Therefore for any pair of messages M and N such that
M, N # x⃗ the equality Mθ =E Nθ holds if an only if Mθ =E Nθ. Static equivalence
still holds for any pair of extended processes in the lines (2)-(6) obtained by the
application of the substitution σ fresh for the domain of θ (which is u) since such σ

does not affect the substitution θ as x is a bound variable.
The example above demonstrates how one verifies that two processes are quasi-

open bisimilar. It requires two main steps: (i) defining a candidate relation like in
Fig. 2.14, and then (ii) checking that this relation indeed satisfies the definition
for quasi-open bisimulation 5. We would like to draw the attention of the reader
that the ingenious step is to provide a candidate relation while verifying it is a
quasi-open bisimulation is tedious yet repetitive. In the next chapters, where we
consider processes with replication (thereby representing infinitely many runs of
the protocol) that exchange messages subject to a non-trivial equational theory, the
reader will notice that the complexity of the step i increases, while the step ii still
remains repetitive and mechanical, which yet again justifies the importance of proof
certificates certifying two processes are indistinguishable.

2.3 Quasi-open bisimilarity, an elevator pitch

In this chapter we have introduced and justified the bisimilarity congruence called
quasi-open bisimilarity (Def. 5) as a method for reasoning about protocols ex-
pressed using the applied π-calculus. A key innovation in the definition of quasi-
open bisimilarity over classical labelled bisimilarity is that our relation is open
(Def. 4), which endows an attacker with a power to systematically consider dif-
ferent execution environments by manipulating messages that depend on free vari-
ables. Perhaps surprisingly, it gives rise to two seemingly unrelated properties of
quasi-open bisimilarity.

2.3. Quasi-open bisimilarity, an elevator pitch 39

• Firstly, the openness endows quasi-open bisimilarity with a sound and com-
plete characterisation by a certain modal logic as we explain in Sec. 2.2.3,
where the completeness as in Theorem 2 is especially valuable since it en-
sures that we can describe attacks when the verification fails. This means that
the logic is capable of describing all attacks on such privacy properties, even
if a coarser equivalence is employed. For the counterexample, we explain in
Sec. 2.2.5 why the failure of a privacy property in terms of a finer equiva-
lence, such as open bisimilarity, does not necessarily indicate the presence of
an attack strategy.

• Secondly, the openness makes quasi-open bisimilarity congruence (Theorem 3),
which enables compositional reasoning allowing us to reduce the amount of
work needed for verification by reducing to a smaller system, which we have
demonstrated with the example of a generic authentication protocol without
shared secrets in Theorem 4.

Lastly, in Sec. 2.2.6, we explain that modal logic formulas and quasi-open
bisimulations serve as the basis of proof certificates which can be valuable for au-
tomation that we see as the main direction for future work. In the next two chap-
ters we offer two detailed checks of certificates witnessing that a privacy property
holds. We will see that the ingenious step is to provide a candidate for quasi-open
bisimulation, while checking that it satisfies three conditions in Def. 5 is somewhat
mechanical.

41

Chapter 3

Case study: smartcard-based
payments

In the following chapter, we develop and verify a privacy-preserving smartcard-
based payment protocol. This discussion, however, would not be complete without
explaining EMV, the most prevalent [emv22] payment method using smartcards –
as of 2022 more than 91% of transactions are EMV. In this chapter we introduce
the basics of EMV: we describe the stages of a typical EMV transaction and present
an attack, allowing to bypass PIN verification, thereby demonstrating that to this
date EMV cannot be called secure. We also show, that EMV lacks privacy either, as
the communication between the card and the terminal is not encrypted, allowing
the identifying information about the card to be exposed during the transaction.
Finally, we discuss the Blinded Diffie-Hellman (BDH) protocol, a privacy enhance-
ment proposed by the developers of the standard, show that BDH does not protect
the privacy of the cardholder in the presence of realistic active attackers, and pro-
pose a minor enhancement of BDH that does account for active attackers.

As a payment method, EMV came into place in the mid-1990s to replace mag-
netic stripe cards as they are incapable of computation and easy to clone. Payment
providers such as American Express, Banrisul, Dankort, JCB, Mastercard, MIR,
UnionPay, Visa, etc. follow the EMV standard [emv11], a series of documents that
specify how exactly payments should be done with the main focus on card-terminal
communication. The standard is maintained by EMVCo, a consortium of payment
processing companies that include several ones from the above list. While there
are other than EMV smartcard payment methods, e.g. parking lot cards or top-up
shopping centre cards, their use is limited, and they follow proprietary protocols
– in contrast, EMV is widely accepted and open. The standard is quite flexible –
only minimal requirements must be respected, so it is up to the payment system
that implements EMV, which additional options to include. Hence, the standard
describes not a single protocol but a whole variety of configurations.

To start off, we introduce transaction flow and the respective infrastructure
assumed by EMV in Fig. 3.1. The card C is manufactured by the issuing bank BC
in collaboration with the payment system PaySys (e.g. Visa). The terminal T is
connected to an acquiring bank BT supporting PaySys that processes payments on
behalf of the terminal. The acquiring bank BT processes payments by connecting to
the PaySys network that exchanges messages between banks.

A successful run of the protocol results in the generation of an Application
Cryptogram AC by the card C. AC is eventually sent by the terminal T to the

42 Chapter 3. Case study: smartcard-based payments

3,5

C T

BTBC
PaySys

B

Figure 3.1: Payment architecture.

acquiring bank BT, either before or after the payment is approved by the terminal,
depending on whether the payment is online or offline, respectively. The issuing
bank BC receiving AC, decides to decline or accept the transaction, and replies
with the appropriate message. Since the processing method on the banks’ side
specified in the standard is not mandatory as “issuers may decide to adopt other
methods” [emv11, Book 2, Section 8], and the internal processing used by PaySys
is proprietary and PaySys-specific, when modelling the system, BT, PaySys, and BC
are often merged into a single agent B, modelling their common interface with the
terminal when processing payments, as indicated in Fig. 3.1.

It was shown several times that some configurations allowed by the stan-
dard are not secure [DM07,MDAB10,BST21b,BST21a,RCN+22], making fraudulent
transactions possible. The important aspect of EMV is that it also supports con-
tactless cards, making it easier for a man-in-the-middle attacker to interact with
the card without the cardholder being aware, thereby lowering the sophistication
of, e.g. eavesdropping or relaying1 the communication between the card and the
terminal. Examples of attacks on EMV leading to fraudulent payment include PIN
bypassing [MDAB10, BST21b, BST21a], downgrade attacks [MDAB10], pre-play at-
tacks [BCM+14,BCM+15], etc. The majority of attacks alike are rooted in the failure
of the selected EMV configuration to deliver authentication guarantees, i.e. mes-
sages between the parties can be altered on the way leading to different views
on the same transaction. In contrast, relay attacks [DM07, BCDD20], where mes-
sages can be unaltered, but simply relayed (e.g. between the card in the wallet and
the terminal), stand out and require the introduction of distance-bounding tech-
niques [CdRS18, MSTPTR18], s.t. the parties are guaranteed to be close in order
to execute the transaction. Finally, relaying can be combined with a man-in-the-
middle attack to execute a fraudulent payment, as has been demonstrated by, e.g.
Radu et al. in [RCN+22] where they describe how to bypass the Apple Pay (work-
ing with Visa card) lock screen. The term skimming is often used to describe the
situation when an attacker secretly activates a contactless card and communicates
with it. A skimming attack may be a part of a relay attack and will serve as the
basis of the attack on the unlinkability for the EMV privacy update we discuss later
in this chapter. Habraken et al. constructed an antenna in the form of a gate of up

1Being contactless, however, is not a requirement for passive eavesdropping, or active man-in-the-
middle attacks. In case of contact transactions, an unnoticeable “shim” properly installed inside the
reader is enough for the eavesdropping/transactions data collection [BCM+14]; suitable devices that
can alter messages and, for instance, trick the terminal that the right PIN was entered when the PIN
is unknown, exist [MDAB10].

3.1. EMV standard overview 43

to 100cm width that can power the card and communicate with it [HDPdR15]. For
a passive counterpart of skimming, an eavesdropping attack, that does not require
powering up a contactless card, Engelhardt et al. achieved a distance of almost
20m [EPFB13].

Both eavesdropping and skimming play an important role when it comes to
the privacy of EMV payments. To this day, the communication between the card
and the terminal is not encrypted and valuable sensitive data, as we will see below,
such as the card number PAN (Primary Account Number), the amount, the coun-
try code, and the time, are exposed, and an attacker eavesdropping on wireless
communications can profile cardholders engaged in transactions. In addition, an
active attacker can power up a contactless card without a cardholder being aware
using an antenna [HDPdR15], e.g., at a doorway or by a seat on public transport. A
powered-up card is ready to start an EMV session and to present its PAN – a strong
form of identity. This enables an attacker to silently track the movements of anyone
who holds a payment card, even without a genuine EMV transaction involved. In
EMV both passive eavesdroppers and active skimmers have access to PAN and can
link sessions made with the same card, exactly as in the unlinkability example in
Fig. 2.1 we have started the privacy discussion with in the previous chapter. In
addition, since an attacker is able to observe the card’s identity PAN at each run of
the protocol, the anonymity, as we have discussed briefly in Sec. 3.4 is also violated.

Such total lack of privacy should not come up as a surprise, as the primary
objective of EMV is the security of money in the cardholder’s account, not privacy.
However, even to achieve this primary goal, one should carefully select a secure
configuration and avoid insecure ones.

In Sec. 3.2 we will demonstrate yet another insecure configuration that is still
permitted by the standard, however, firstly, we describe the main stages of a generic
EMV transaction in Sec. 3.1. Finally, in Sec. 3.3 and Sec. 3.5 we apply techniques
described in Chapter 2 to formally show that the key establishment proposed by
EMVCo to enhance the privacy of payments [rfc12], does not protect from active
attackers; and that it is possible to update this key establishment to mitigate them.

3.1 EMV standard overview

The official specification of the EMV protocol is about 2000 pages long [emv11] and
is spread across multiple volumes. For the sake of completeness, in this section we
give a high-level description of a generic EMV transaction. We warn the reader that
our goal is to demonstrate how convoluted the EMV standard is, and how easily
an insecure configuration can be picked up for implementation; rather than giving
a comprehensive description of all possible configurations of EMV. For the latter,
we refer the reader to the technical report [vdBOYPdR16] by van den Breekel et al.,
where such description is given in a clear and concise form that still takes 33 pages
of text. More than one hundred citations [emv] of this report back up the claim
made by the authors in the abstract: “it is hard to grasp the essence of the protocols
from the – long and complex – official specifications”.

We reiterate that the EMV standard mainly specifies communications between
the card and the terminal. This communication is a series of Application Protocol

44 Chapter 3. Case study: smartcard-based payments

Data Unit (APDU) command/response exchanges. Each command may come with
a payload that either the expected data, specified by the protocol, or, the data re-
quested on a previous step with a so-called Data Object List (DOL), a list of data
elements that must be sent in response. For instance, using PDOL, as we will see be-
low in detail, a card may request specific transaction data that the terminal should
present.

C T

Initialisation

Offline Data Authentication

Cardholder Verification

Transaction Authorisation

Figure 3.2: The EMV 1st Gen protocol stages.

Cryptography cheat sheet. This overview is informal, but for the sake of com-
pleteness we recall three main cryptographic primitives the reader will encounter
in this section and provide the respective equations. Asymmetric encryption is
already formalised in Sec. 2.1.1, and assumes two algorithms: encryption, which
produces an encrypted message from a given message and a public key, and de-
cryption which produces the message from the given encrypted message and the
respective secret key.

adec(aenc(M, pk(K)) , K) =E M

Digital signature also assumes two algorithms: signing, which produces the signa-
ture from the given message and a secret key, and checking which produces the
message from the signature and the respective public key. Hence, we need two
ingredients for signature verification: the original message and the signature itself.
The signature is verified if the message coincides with the result of applying the
check function to the signature using the appropriate public key. In what follows,
the certificate stands for the message-signature pair.

check(sig(M, K) , pk(K)) =E M

Finally, we have Hash-Based Message Authentication Code (HMAC) that requires
a pre-shared secret. HMAC of a message is the hash of a message paired with
the secret Mhmac = h(⟨M, sk⟩). To verify the authenticity of the message M upon
receiving ⟨M, Mhmac⟩, one checks that the message M hashed with the secret (the re-
ceiving party already has) coincides with Mhmac, the second element of the received
pair.

3.1. EMV standard overview 45

A transaction consists of at most four phases presented in Fig. 3.2 among
which only the Initialisation, where the card receives the transaction details, and,
the Transaction Authorisation, where the card generates the AC are mandatory.
Optional intermediate steps include Offline Data Authentication(ODA), where the
terminal validates the card using the public key of the payment system, and, Card-
holder Verification, where the terminal verifies the cardholder via, e.g. the PIN
entered in the terminal’s pad. The information the card permanently stores include
several certificates, the signing secret key c, and the shared secret mk with the bank
(often called a master key). Other information the card may store will be clear from
the context below. The terminal only stores the payment system’s public key pk(s)
used to verify the data on the card. Now we will take a closer look at each step and
summarise the security and privacy issues that may arise.

3.1.1 Initialisation

C

certs, c, mk

T

pk(s)

SELECT 1PAY.SYS.DDF01

⟨AID1, . . . , AIDn⟩

SELECT AIDx

PDOL

GPO tx_data

⟨AIP, AFL⟩

READ RECORD

⟨exp_date, PAN, CDOL1, CDOL2, certs, . . .⟩
. . .
. . .

Figure 3.3: Initialisation of the EMV protocol.

The initialisation phase is presented in Fig. 3.3. Firstly, the terminal asks which
applications the card supports by issuing the SELECT command with a payload de-
pending on the transaction type – if the transaction is contact, the 1PAY.SYS.DDF01

message is added to the command, if the transaction is contactless, 2PAY.SYS.DDF01
is added. The card responds with a list of payment application identifiers (AID),
e.g. Visa Debit, Maestro, etc. Then the terminal selects a particular application from
the presented list.

Having selected the application, the card sends the PDOL specifying which
transaction details (e.g. the amount, the date, the currency, etc.) the terminal should

46 Chapter 3. Case study: smartcard-based payments

send to the card. Next, in one message, the terminal sends the requested PDOL data
and requests the AIP list, specifying the functions supported by the card including
authentication methods and the AFL list, specifying memory addresses where the
card stores the data needed to complete the transaction. Finally, the terminal uses
the addresses from the AFL list to read the actual data from the card. Only the
following is mandatory for the card to have as specified in the standard [emv11,
Book 3, Section 7].

• Application Expiry Date

• The card number PAN

• Card Risk Management Data Object Lists (CDOLs)

The terminal uses the expiry date to check that the card is valid at the time of
the purchase, the PAN is used to route the AC through the network to the issuing
bank at the last stage of the transaction, and CDOLs specify the information the card
needs from the terminal to generate the AC, e.g. the country code, the terminal
nonce, etc. Typically, certain certificates, digitally signed data, that the terminal
should check using the appropriate public key is also among the data indicated by
the AFL for the terminal to then read.

Since in what follows, the use of certain secret keys and the corresponding pub-
lic keys will be important, we explain the so-called chain of certificates that cards
usually have among the data retrieved by the terminal. Let the payment system, the
issuing bank, and the card hold the secret keys s, b, and c, respectively. Also, let the
public key of the payment system be already loaded in the terminal supporting this
payment system such that the terminal can use it to check signatures issued using
s. The chain of certificates, denoted as certs in figures in this section, comprised of
two ingredients.

• The certificate on the issuing bank’s public key pk(b) signed with the private
key of the payment system s.

• The certificate on the card’s public key pk(c) signed with the private key of
the issuing bank b.

The terminal uses these certificates to verify the legitimacy of the card. Firstly
it checks the bank’s certificate using the public key of the payment system, thereby
ensuring that the bank’s public key is legitimate. Secondly, it checks the car’s
certificate using the bank’s public key from the bank’s certificate, thereby ensuring
that the card’s public key is legitimate.

Notice that none of the data provided by the card is authenticated at this stage
and will be explained below. From the privacy standpoint, we can see already
that a lot of sensitive data is exposed to the environment as the communication is
in cleartext. Data elements that are unique only to a group of cards such as the
list of supported applications, or the AIP, contribute to the card’s fingerprint, thus
enabling profiling. Data elements that are unique to a card, such as the PAN or the
chain of certificates certs can be used to link sessions made with the same card, thus
violating both anonymity and unlinkability as in Fig. 2.1.

3.1. EMV standard overview 47

3.1.2 Offline data authentication

Offline Data Authentication (ODA) is an optional step in the EMV protocol at which
point the terminal authenticates the data previously received from the card during
the Initialisation step. The ODA can be completed in several ways. We briefly
describe each.

C

certs, c, mk

T

pk(s), pk(c), pk(b)

SSAD = sig(⟨exp_date, PAN, . . . ⟩ , b)

Figure 3.4: ODA: Static Data Authentication mode.

Static Data Authentication (SDA). SDA is schematically presented in Fig. 3.4. In
this mode the terminal uses the bank’s public key to check the signature on the
card’s data retrieved by the terminal at the initialisation step (indicated by the AFL)
issued with the bank’s secret key b. Security-wise, the authentication property
called aliveness fails if SDA is selected – as the signature is constant, from one
session to the next, after executing the protocol, it is not necessarily the case that
the real card was alive and communicating, thereby the use of SDA enables card
cloning as both the card’s data, and the signature is exposed. Privacy-wise, since
the signature is unique to a card, it can be used to link sessions with that card.

C
certs, c, mk

T
pk(s), pk(c), pk(b)

nC nT
DDOL, SSAD = sig(⟨exp_date, PAN, certs, . . . ⟩ , b)

INTERNAL AUTHENTICATE ddol_data = ⟨nT, . . . ⟩

SDAD = sig(⟨nC, ddol_data⟩, c)

Figure 3.5: ODA: Dynamic Data Authentication mode.

Dynamic Data Authentication (DDA). DDA mode is presented schematically in
Fig. 3.5. It mitigates the card cloning vulnerability of SDA and is essentially a
terminal’s check of a signature generated by the card over certain dynamic data.
At the initialisation phase, the card could provide the DDOL indicating the data
elements that the terminal must send to the card if DDA is selected. The only

48 Chapter 3. Case study: smartcard-based payments

mandatory element that the terminal should provide (even if the DDOL is not
present) is a nonce nT. To perform DDA the terminal firstly authenticates the AFL
data, as in SDA, secondly, it provides the DDOL data together with issuing the
INTERNAL AUTHENTICATE command to the card and thirdly, it uses the card’s public
key to check the signature generated with the card’s secret key c over the provided
DDOL data and the card’s dynamic data, typically including the card’s nonce nC.
In EMV lingo the data with the card’s signature over it is called SDAD (Signed
Dynamic Authentication Data).

In contrast to SDA, the signature checked uses the session-specific data gener-
ated by both parties during the session, hence cannot be forged and used in card
cloning. From the privacy perspective, while the DDOL (or the lack of) identifies
the card to a degree and contributes to the card’s fingerprint.

Combined Data Authentication (CDA). This mode is similar to DDA, however,
it does not require additional messages. The signature, in this case, is generated
by the card over the card’s nonce and includes transaction-specific data, e.g. the
AC and is checked by the terminal during the Transaction Authorisation phase
explained below in Sec. 3.1.4.

We conclude by summarising or main security and privacy observations for
this step of an EMV transaction. SDA is vulnerable to card cloning, and each ODA
mode requires the data unique to a card being revealed – in case SDA is selected, the
static signature that includes the mandatory PAN is unique, and in case DDA/CDA
is selected, the card’s unique public key (transferred at the initialisation) is required
to check the card-generated signature. Given that the communication is in cleart-
ext, even an eavesdropper can recognise if the same card is used across different
sessions and, thereby, track the cardholder.

3.1.3 Cardholder Verification

Cardholder Verification is an optional step in the current EMV transaction process
intended to prove that the person using the card is indeed a legitimate cardholder.
Cards supporting cardholder verification provide the Cardholder Verification Meth-
ods list CVM_list that the card supports in the Initialisation step. The main security
issue here is that it is not required by the EMV standard, that the CVM_list is part
of the static data to be authenticated, hence, if not, it can be altered by man-in-
the-middle with the goal to bypass cardholder verification2. Privacy-wise CVM_list
varies from card to card, hence contributing to its fingerprint. Verification methods
include a handwritten signature, PIN, and verification via the consumer’s device
(e.g. through biometric data entered via a mobile phone), which is out of the scope
of the standard. An important dimension of the cardholder verification phase is
who is held liable for the disputed transaction. In EMV, it depends on the method
– if the cardholder was verified using the paper signature, the merchant is liable, if
instead, PIN has been used, the cardholder is liable. Below we describe PIN-based
CVMs.

2The card brand mixup attack [BST21a], however, demonstrates that even if this list is authenti-
cated, it can be downgraded to offline cleartext PIN-only list.

3.1. EMV standard overview 49

C

certs, c, mk

T

pk(s), pk(c), pk(b)

VERIFY PIN

SUCCESS/63Cx

Figure 3.6: CVM: Offline cleartext PIN.

Offline Cleartext PIN. In this mode, the PIN, entered into the terminal by the
cardholder, is sent to the card in clear text together with the VERIFY command as
indicated in Fig. 3.6. If the PIN is correct, the card responds with a constant message
indicating success. Otherwise, the card responds with 63Cx message, where x is the
number of tries left.

The first security threat here is that the PIN is exposed to eavesdroppers, mak-
ing it straightforward to use the stolen/cloned card or relay messages from some-
one’s pocket to a terminal to make payment. We stress the passive nature of the
eavesdroppers here, as entering the PIN assumes a user action and the awareness of
the cardholder being in the middle of a purchase. In contrast, the PIN is not among
the data that an attacker secretly activating the card can silently gather. The second
security threat is that the card’s response is not authenticated, making it possible
for a man-in-the-middle attacker to lie about the PIN verification outcome. At the
same time, while the PIN is not necessarily unique to a card, the likelihood of trans-
actions in which the same PIN is used are made with the same card is high, hence
the PIN could be used to link sessions and track the cardholder. Moreover, since
the response may contain the number of tries left (if the entered PIN is wrong), it
also reveals the identifying information about the card – not all cards have their try
counter synchronised.

C
certs, c, mk

T
pk(s), pk(c), pk(b)

nC
GET CHALLENGE

nC

VERIFY aenc(⟨nC, PIN⟩ , pk(c))

SUCCESS/63Cx

Figure 3.7: CVM: Offline encrypted PIN mode. The digit x is the number of tries left.

50 Chapter 3. Case study: smartcard-based payments

Offline Encrypted PIN. The PIN leak vulnerability of the above Offline Cleartext
PIN CVM can be addressed by encrypting the PIN, as shown in Fig. 3.7. To perform
the Offline Encrypted PIN CVM the terminal firstly issues the GET CHALLENGE com-
mand to the card, and then uses the public key of the card to encrypt the received
card’s nonce nC and the PIN. The verification result is then received unauthenti-
cated.

While this CVM mode indeed hides the PIN from the eavesdropper, it also
makes the encryption of the PIN local to the current session, thus avoiding the
replay attack and making it impossible to use the encrypted PIN to link sessions.
However, the response from the card can still be blocked and replaced with, e.g.
the SUCCESS even if the entered PIN was wrong.

Online encrypted PIN. Finally, if the terminal can perform online transactions
instead of the card, the (encrypted) PIN is transmitted to the issuing bank for veri-
fication. In this case, the CVM is part of the Transaction Authorisation phase.

3.1.4 Transaction Authorisation

Transaction Authorisation (TA) is the ultimate and mandatory phase at which the
terminal asks the card to generate the Application Cryptogram AC. The cryp-
togram is then sent to the issuing bank to either claim the funds of the cardholder,
request authorisation or log the failed attempt. Hence there are three respective
types of cryptogram that the terminal may ask the card to generate based on the in-
ternal policies of the terminal, e.g. the ceiling limit for offline transactions: a success
cryptogram TC (Transaction Cryptogram), an authorisation request ARQC (Autho-
risation Request Cryptogram) for online transaction, and the failure cryptogram
AAC (Application Authentication Cryptogram).

A cryptogram is typically an HMAC generated over the data coming both from
the card and the terminal (specified by CDOL objects the terminal has received
in the Initialisation phase). The key for this HMAC is derived from the shared
secret mk between the card and the issuing bank called the master key, and the
Application Transaction Counter (ATC), a counter on the card that increments each
time the GET PROCESSING OPTIONS command is issued3. The main intention behind
the use of monotonically increasing counter ATC is to prevent the re-use of old
cryptograms. The minimum set of data elements to be included in the cryptogram
recommended by the EMVCo [emv11, Book 2, Section 8] contains, for instance,
ATC, AIP, terminal country code, transaction date, amount, etc. Together with the
cryptogram, the data that it was generated over must be provided to verify the
cryptogram. As this data is not encrypted and may contain identifying information
about the card (e.g. the counter ATC), linkability issues may arise. In what follows,
when we talk about cryptograms we consider both its elements: the data and the
HMAC it is generated over.

Before explaining both offline and online modes, we clarify how the CDA mode
for offline data authentication works, as it is part of the Transaction Authorisation

3Notice, that an attacker can use a device capable of communicating with the card to issue enough
GET PROCESSING OPTIONS commands to max-out the two-byte ATC.

3.1. EMV standard overview 51

step. If CDA is selected, the SDAD (similar to as in DDA explained in Sec. 3.1.2) is
sent to the terminal instead of the cryptogram, but the SDAD should be generated
over the cryptogram, the terminal’s nonce nC, the card’s nonce nT, the type of the
cryptogram CID (Cryptogram Information Data), and the hash of the transaction
details. The SDAD is only generated when the cryptogram is TC/ARQC, and is
never generated if the requester cryptogram is AAC. In what follows, we assume
that CDA is not selected for offline authentication of the card’s data (or ODA is
skipped).

C

certs, c, mk

T

pk(s), pk(c), pk(b)

Initialisation

Offline Data Authentication

Cardholder Verification

GENERATE AC cdol1_data

TC = h(⟨CID, ATC, cdol1_data, . . . , f (⟨mk, ATC⟩)⟩)

⟨CID, ATC, cdol1_data, . . . , TC⟩

Figure 3.8: Transaction authorisation in the offline mode.

Offline authorisation. We present the offline TA in Fig. 3.8. The terminal asks
the card to generate the TC by issuing the GENERATE AC command together with
the data indicated in CDOL1 and the payload indicating the type of the requested
cryptogram and a parameter indicating whether the CDA is requested. The card
responds with the Cryptogram Information Data (CID) indicating the type of the
cryptogram, the counter ATC, the cryptogram itself, and, optionally, proprietary
Issuer Application Data (IAD) to be sent to the issuing bank. Though the terminal
does not check the TC, and sends it to the issuing bank later, an offline transaction
at this stage is complete, and the goods are released to the cardholder.

Online authorisation. Online TA proceeds as in Fig. 3.9. In an online transaction,
two cryptograms are generated. Firstly the terminal requests the card to gener-
ate ARQC cryptogram by issuing GENERATE AC and providing CDOL1 data, the
cryptogram type and the CDA flag similarly to the offline mode. Then the termi-
nal immediately requests the issuing bank to authorise the current transaction by
forwarding the ARQC to the bank, together with the transaction details and the
(encrypted) PIN in case online PIN CVM was selected. When the confirmation

52 Chapter 3. Case study: smartcard-based payments

C

certs, c, mk

T

pk(s), pk(c), pk(b)

Initialisation

Offline Data Authentication

Cardholder Verification

GENERATE AC cdol1_data

ARQC = h(⟨CIDa, ATC, cdol1_data, . . . , f (⟨mk, ATC⟩)⟩)

⟨CIDa, ATC, cdol1_data, . . . , ARQC⟩

GENERATE AC cdol2_data

TC = h

(
⟨CIDb, ATC, cdol2_data, . . . , f (⟨mk, ATC⟩)⟩

)
⟨CIDb, ATC, cdol2_data, . . . , TC⟩

Figure 3.9: Transaction authorisation in the online mode.

from the bank and further data4 has been received, the terminal issues the second
GENERATE AC command to the card asking the card to generate the TC and pro-
viding CDOL2 data which includes the bank’s response. When the TC is received
by the terminal, the transaction is completed, and the goods are released to the
cardholder.

Contactless transactions. In the above, we have described contact transactions.
The main difference of the contactless case is that the application cryptogram is
generated right away when the transaction data is received and is sent to the termi-
nal in response to the GPO command (see Sec. 3.1.1). Moreover, neither user input
nor reply from the bank can be received by the card, as the reader should keep the
card within the reader’s field throughout the whole session.

As the reader may observe by now, the EMV standard is flexible. A transaction
contains a variety of optional messages that the card and the terminal may or may
not include in the communication. Moreover, there are optional phases (ODA, CV)
perfectly allowed to skip if a particular payment system decides to implement the

4The data received from the bank may also contain instructions for the card to update certain data
inside it. Despite being part of the online TA, in EMV, this script processing step is often regarded as
a separate optional phase of the transaction.

3.2. An insecure EMV configuration 53

“reduced” version of the standard. Formulations such as “the recommended mini-
mum set of data elements to be included in . . .”, “ it is strongly recommended . . .”,
etc., common for the EMV books suggest that deviating from recommendations is
allowed since there are also explicit mandatory requirements. Insecure configura-
tions to this date are part of the EMV standard, as has been recently demonstrated
by Basin, Sasse, and Toro-Pozo in “The EMV Standard: Break, Fix, Verify” [BST21b]
where in particular they analysed 24 EMV contact configurations among which
only three has been found to guarantee secure transactions. One such configuration
has been independently discovered by the author of this dissertation by studying
the EMV standard with a naked eye and is presented in the next section.

3.2 An insecure EMV configuration

In this section we focus on a few observations made above when explaining the
main stages of the EMV transaction, and combine them to come up with an EMV
configuration that does not contradict the standard, however, is vulnerable to a
PIN bypassing attack. This attack belongs to the same family as the long-known
vulnerability disclosed by Murdoch et al. [MDAB10] and root in the fact that certain
message(s) coming from the card are not authenticated. We are clear that this attack
is theoretical and can be executed only for a very particular configuration. We
can neither guarantee the existence of cards which carry this configuration (hence
vulnerable to the attack) nor the opposite. The point we are stressing in this section
is that insecure configurations are still part of the EMV standard, while they should
not be allowed in the first place.

The first observation regards the Initialisation and the ODA phases. Notice that
the CVM_list is not required to be included in SSAD, the data to be authenticated
by the terminal, hence, if not, it can be altered by the man-in-the-middle attacker.
The second observation regards the CV phase – the response to PIN verification
from the card is never authenticated, hence, again, it can be altered by the man-
in-the-middle attacker. Finally, the third observation is also regards the CV phase
– the PIN is sent to the card in case of offline PIN verification, while it is sent to
the bank in case of online PIN verification. Hence, the strategy of an attacker is to
introduce the disagreement between the online and offline modes as presented in
Fig. 3.10.

PIN PINPIN

OFFLINE PINOFFLINE PIN

Figure 3.10: Overview of the strategy of an attacker.

To develop this strategy into a full attack, we assume particularly configured
card and terminal. The CVM_list on the card should not be included in the SSAD
and should comprise a unique CVM, online PIN. The terminal should be offline and
support offline PIN verification. We then present a full attack in Fig. 3.11, which
proceeds as follows. At the Initialisation, the man-in-the-middle attacker replaces
the online PIN entry in the CVM_list with any version of the offline PIN verification,

54 Chapter 3. Case study: smartcard-based payments

e.g. offline encrypted PIN. The terminal then executes the chosen offline CVM
while the man-in-the-middle blocks any messages regarding the PIN verification
from reaching the card and ultimately responds with the SUCCESS message. Then
the terminal completes the offline transaction asking the card to generate the TC
allowing an attacker to successfully use the card without knowing the PIN while
the cardholder would be liable for this fraudulent transaction as the PIN-based
CVM has been used.

C

certs, c, mk

E T

pk(s), pk(c), pk(b)

.

READ RECORDREAD RECORD

PAN, . . . , CVM_list = ⟨ONLINE⟩ PAN, . . . , CVM_list = ⟨OFFLINE ENC.⟩

Skips CVM

nE

GET CHALLENGE

nC

VERIFY, aenc(⟨nE, PIN⟩ , pk(c))

SUCCESS/63Cx

GENERATE AC cdol1_dataGENERATE AC cdol1_data

⟨CID, ATC, cdol1_data, . . . , TC⟩ ⟨CID, ATC, cdol1_data, . . . , TC⟩

auth

Figure 3.11: Attack bypassing the PIN in an offline transaction.

Finally, we make an observation that the card never authenticates the terminal
and its choice of the CVM. Hence, in case CVM_list = [ONLINE, OFFLINE] is
authenticated, i.e. is included if the SSAD, the described attack is still possible.

This section completes the description of the current EMV standard and high-
lights the security and privacy issues it has. Ill-configured versions of the protocol
still exist in the standard without the indication that they should never be imple-
mented. Sensitive data allowing either to identify or profile cards is exposed to
eavesdroppers. Relatively recently, the EMVCo proposed to enhance the privacy

3.3. Enhancing the privacy of EMV transactions: Blinded Diffie-Hellman key
establishment proposal

55

of transactions, and mitigate eavesdroppers by encrypting the communication be-
tween the card and the terminal [rfc12]. In the next sections we will analyse this
enhancement using the machinery developed in Chapter 2.

3.3 Enhancing the privacy of EMV transactions: Blinded
Diffie-Hellman key establishment proposal

As we have just seen, currently, the EMV standard trivially does not satisfy pri-
vacy properties such as anonymity and unlinkability due to transferring the card
number in cleartext during a transaction. Hence transaction data allows us to link
transactions made with the same card and effortlessly track cardholders. The fact
that no actual payments need to be made eases the task of the adversary when
tracking a contactless card, as it is ready to present its identity to any device.

In 2011 EMVCo launched the development of a new version of the standard,
the EMV 2nd Gen, where the card should be protected against eavesdropping. To
facilitate this, EMVCo proposed the use of secret channels. A secret channel is a
symmetric key that the card and the terminal establish at the start of each session
and use to encrypt further communications. A channel establishment procedure
is based on Diffie-Hellman key agreement with a twist: the card uses a freshly
blinded static certified public key instead of an ephemeral public key. Hence, the
name of the proposed protocol, Blinded Diffie-Hellman (BDH) [rfc12]. In this section
we analyse this proposal in detail.

The BDH protocol is meant to satisfy the official requirements for channel
establishment from the architecture overview of the EMV 2nd Gen [ove14]:

• Use elliptic-curve based cryptography (ECC).

• Computational resources of the card are respected.

• An attacker who passively eavesdrops on communications cannot identify a
particular card.

Several authors published a security proof for the Blinded Diffie-Hellman pro-
tocol [BSWW13, GZZH14] and established that a passive eavesdropper, that only
listens to transmitted messages, cannot reidentify a card, therefore BDH satisfies
the above requirements. Brzuska, Smart, Warinschi, and Watson [BSWW13] named
this property of BDH “external unlinkability”.

It is natural to discuss a potential strengthening of the requirements for BDH
listed above, i.e. to lift the limitation of attackers being passive. In the context of
contactless payments the requirement that any attacker cannot identify a particular
card is realistic, since it is easy for an attacker to initiate sessions with contactless
cards using devices, such as smartphones, that need not be official terminals. In
fact, different capabilities must be considered in a wireless environment depending
on their distance from the card as we have briefly mentioned in the introduction to
this chapter. It is difficult to perform an eavesdropping attack outside of the ap-
proximately 20m radius [PFB12]. However, successful attacks executed by a passive
attacker are reported within the range between 20m and 100cm [NGFR08, EPFB13]

56 Chapter 3. Case study: smartcard-based payments

and, with the right equipment, within 100cm an active attacker can power up the
card and start executing the protocol [HDPdR15]. A close active attacker is a real
threat to the privacy of anyone having a card in their pocket, since the distance of
100cm is easily achievable, e.g. at doorways or checkouts.

Unsurprisingly, the proposed BDH protocol is no longer secure in such strictly
stronger threat model. To show that we firstly introduce the Blinded Diffie-Hellman
key establishment protocol from the original EMVCo request for comments [rfc12],
secondly, we define our target privacy notion, unlinkability, that accounts for active
attackers, and thirdly, we demonstrate an attack invalidating our strong unlinka-
bility goal on Blinded Diffie-Hellman, in the form initially proposed by EMVCo
described by a modal logic formula.

3.3.1 Blinded Diffie-Hellman and external unlinkability

To present the BDH protocol we define the syntax of messages in Fig. 3.12. The
syntax for messages includes abstractions for the arithmetic operations on elliptic
curves enabling us to represent protocols symbolically. We leave the cryptographic
details for multiplication, scalar multiplication and public key operations together
with ECC domain parameters as a footnote5. The exact signing mechanism mod-
elled by sig(M, N) is not specified by EMVCo in the proposal [rfc12]. Hash, pair
and symmetric encryption are standard and auth is a message that upon being
output indicates that the terminal believes it has authenticated the card.

M, N ::= g DH group generator (constant)
| x variable
| M · N multiplication
| ϕ(M, N) scalar multiplication
| pk(M) public key
| sig(M, N) signature
| h(M) hash (for key derivation)
| ⟨M, N⟩ pair
| {M}N symmetric encryption
| check(M, N) check signature
| fst(M) get first
| snd(M) get second
| dec(M, N) symmetric decryption
| auth authenticate

Figure 3.12: Blinded Diffie-Hellman syntax.

The equational theory E0 axiomatising the properties of the cryptographic
functions is given in Fig. 3.13 The first three equations capture the interaction be-
tween field arithmetic and scalar multiplication followed by standard destructors:

5The public parameters are as follows: a finite field Fp; a Diffie-Hellman group G, defined over an elliptic
curve E(Fp); the (prime) order q of G; the generator g ∈ G; the key-derivation function h; the public key of the
payment system pk(s) for the certificate verification. We employ (left) group action notation ϕ : F×

q × G → G
for group operation: we write ϕ(r, Q) for the element Q added with itself r times and call ϕ scalar multiplication.
The symbol · denotes multiplication between two scalars (field elements). All freshly generated values are picked
uniformly at random from Fq. The secret key k is an element of Fq and the corresponding public key is of the form
ϕ(k, g). Blinding of the element Q uses a fresh scalar a and internally works as a scalar multiplication: ϕ(a, Q).

3.3. Enhancing the privacy of EMV transactions: Blinded Diffie-Hellman key
establishment proposal

57

projections, decryption, and signature check. We model signature verification in
a manner that is standard when symbolically verifying protocols: the signature is
verified iff the message is successfully extracted by applying check from sig(K, M)

using the corresponding public key pk(K) as we have already described informally
in the introduction to Sec. 3.1.

M · N =E0 N · M
(M · N) · K =E0 M · (N · K)
ϕ(M · N, K) =E0 ϕ(M, ϕ(N, K))
fst(⟨M, N⟩) =E0 M
snd(⟨M, N⟩) =E0 N
dec({M}K, K) =E0 M
check(sig(M, K) , pk(K)) =E0 M

Figure 3.13: Equational theory E0 for the Blinded Diffie-Hellman protocol.

The Blinded Diffie-Hellman protocol is presented in Fig. 3.14. There are two
agents in the system that participate in the execution of the protocol: the card C
and the terminal T. The payment system holds a secret key s and acts as a cer-
tification authority. The private key c, the public key ϕ(c, g) and the certificate
⟨ϕ(c, g) , sig(ϕ(c, g) , s)⟩ are permanently embedded in the card when it is manu-
factured. The card can only be issued by the bank in cooperation with payment
systems like Amex, Visa, etc. The terminal, in contrast to the card, can be manu-
factured by anyone. To verify the legitimacy of the card, the terminal uses a public
key of the payment system pk(s) that is available on the system’s website. No-
tice that in our model of BDH we have reduced the chain of certificates described
in Sec. 3.1.1 to just one certificate. This simplification is in line with the already
published computational analysis of BDH [BSWW13, GZZH14].

The card starts the communication by sending its public key ϕ(c, g) blinded
with a fresh scalar a to the terminal. In response, the terminal sends ephemeral
public key ϕ(t, g) to the card. This is enough to establish a common secret key kc=

kt. The card uses this key to encrypt the authentication data: blinding scalar a, static
public key ϕ(c, g), and the certificate ⟨ϕ(c, g) , sig(ϕ(c, g) , s)⟩⟩. Finally, the terminal
verifies the received certificate by checking the signature against the public key of
the payment system pk(s), checks that ϕ(c, g) blinded with a coincides with the
first message z1 received from the card. Upon success, the terminal authenticates
the card and is ready to continue with the transaction on the encrypted channel.

3.3.2 Blinded Diffie-Hellman and active attackers

In order to verify that blinding the card’s public key protects against eavesdrop-
pers external to the execution, the property of external unlinkability was introduced
in [BSWW13]. In an externally unlinkable payment system, an attacker observing
a message exchange between a card and a terminal cannot link that card’s current
session with a previous session from the same card.

In the real world, anyone could build a device imitating the terminal, for in-
stance, an app on a smartphone supporting NFC or a skimming gate [HDPdR15].

58 Chapter 3. Case study: smartcard-based payments

C

pk(s), c
⟨ϕ(c, g) , sig(ϕ(c, g) , s)⟩

T
pk(s)

fresh a fresh t
z1 := ϕ(a, ϕ(c, g))

ϕ(t, g)

kc:= h(ϕ(a · c, ϕ(t, g))) kt:= h(ϕ(t, z1))

z2 := {⟨⟨a, ϕ(c, g)⟩, ⟨ϕ(c, g) , sig(ϕ(c, g) , s)⟩⟩}kc

⟨m1, m2⟩ := dec(z2, kt)
verify(m2, pk(s))
ϕ(fst(m1) , snd(m1)) = z1

auth

Figure 3.14: EMV 2nd Gen key establishment.

Such a device need not be certified or connected to any bank. Taking this into
account, there is a straightforward attack on the BDH protocol (Fig. 3.14) in the
presence of malicious terminals:

1. A malicious terminal establishes a key with an honest card, then successfully
decrypts the message z2 and obtains the card’s public key ϕ(c, g).

2. Another terminal operated by the attacker runs a new session with the same
card to obtain again the card’s public key ϕ(c, g); and hence recognises the
card.

This attack however would not be considered to be an attack on external un-
linkability, due to the fact that the attacker actively starts communicating with the
card. Since it is easy to activate a contactless card, e.g. while the card is in the wal-
let, external unlinkability is too weak. This compels us to adopt a stronger notion
of unlinkability which can be used to discover the above attack formally.

The above attack suggests that any network of malicious powerful terminal-
like devices unrelated to any payment system may track selected contactless cards
in real-time without the cardholder being aware simply by starting sessions with the
card in the cardholder’s pocket. Thus we propose to view unlinkability as a property
of the card in a hostile environment that should hold with or without the presence
of honest terminals supporting the compositionality argument we have made in
Sec. 2.2.4. The attack also highlights why the BDH protocol is not unlinkable in the
presence of active attackers – the ability of the terminal to obtain the card’s public
key which serves as the card’s identity.

3.3. Enhancing the privacy of EMV transactions: Blinded Diffie-Hellman key
establishment proposal

59

3.3.3 Blinded Diffie-Hellman is not unlinkable

To show formally that the BDH protocols fails to deliver unlinkability we firstly give
the formal specification (that uses the equational theory E0 from Fig. 3.13) for the
roles in the BDH protocol presented in Fig. 3.14. Then we provide the unlinkability
definition that accounts for active attackers. In the specification we also include
the so-called events, starting with ev:, needed later for the verification of security
properties. Until Sec. 3.5.3, where we clarify their meaning, events can be ignored.

Crfc(s, c, ch) ≜ νa.ch⟨ϕ(a, ϕ(c, g))⟩.
ch(y).
let kc := h(ϕ(a · c, y)) in
let cert := ⟨ϕ(c, g) , sig(ϕ(c, g) , s)⟩ in
ev:CRunning (ϕ(a, ϕ(c, g)) , y, {⟨⟨a, ϕ(c, g)⟩ , cert⟩}kc)

ch⟨{⟨⟨a, ϕ(c, g)⟩ , cert⟩}kc⟩

Trfc(pks, ch) ≜ νt.ch(z1).

ch⟨ϕ(t, g)⟩.
ch(z2).
let kt := h(ϕ(t, z1)) in

let ⟨m1, m2⟩ :=
⟨fst(dec(z2, kt)) , snd(dec(z2, kt))⟩ in
if snd(m1) = check(snd(m2) , pks) then

if ϕ(fst(m1) , snd(m1)) = z1 then

ev:TCommit (z1, ϕ(t, g) , z2)

ch⟨auth⟩

The card role process is parametrised by the secret key s of the payment sys-
tem, the secret key c of the card and the session channel ch. The terminal role is
parametrised only by the system’s public key pks and ch. The action ch⟨auth⟩ is an
event used to indicate at what point the terminal believes it has authenticated the
card.

To define unlinkability for our key agreement we follow the pattern in Fig. 2.1,
and consider the idealised situation. Obviously, if cards immediately expire after
one use, it is impossible to link two sessions. Hence, if the real world system
(implementation), where cards are used multiple times, is indistinguishable by an
attacker from an idealised unlinkable world system (specification), in which cards
are disposed of after each use, then unlinkability of is achieved.

Let C(s, c, ch) be the card process scheme parametrised by the payment sys-
tem’s secret key s, communication channel ch and the card’s secret key c. Then we
have the following.

60 Chapter 3. Case study: smartcard-based payments

Definition 9. (unlinkability) A card process scheme C is unlinkable whenever

νs.out⟨pk(s)⟩.!νc.νch.card⟨ch⟩.C(s, c, ch)

∼
νs.out⟨pk(s)⟩.!νc.!νch.card⟨ch⟩.C(s, c, ch)

The process on the left of the above relation models the idealised world where
a card participates in no more than one transaction. This process starts by creating
the secret key of the payment system s. Then the public key pk(s) of the payment
system is made available via the output on the public channel out. Each newly man-
ufactured card c is allowed to participate in the execution of the payment protocol
just once. The process on the right of the above relation models the more realistic
situation where each card c may participate in several runs of the protocol. If the
idealised situation is equivalent to the real world one, where the equivalence we
employ is quasi-open bisimilarity (Def. 5), we say that the payment system satis-
fies unlinkability. Notice that this definition is simply the revised, according to the
remark in the end of Sec. 2.2.4, version of the AU-unlinkability (Def. 7). The The-
orem 4, indeed allows us to check unlinkability for a subsystem comprising cards
only and be sure that the presence of any terminals would not make the whole
system linkable.

∼
……

Now, given the formal definition of unlinkability in Def. 9 we can establish that
the Blinded Diffie-Hellman protocol from Fig. 3.14 is not unlinkable.

Theorem 6. Crfc(s, c, ch) violates unlinkability.

Proof. To describe the attack on unlinkability of the BDH protocol we present the
proof certificate in the form of modal logic formula, as Sec. 2.2.3. Consider the fol-
lowing processes, where Crfc is defined in the beginning of this section (Sec. 3.3.3).

RFCspec ≜ νs.out⟨pk(s)⟩.!νc.νch.card⟨ch⟩.Crfc

RFCimpl ≜ νs.out⟨pk(s)⟩.!νc.!νch.card⟨ch⟩.Crfc

To show that RFCspec ≁ RFCimpl we present a formula that is satisfied by
RFCimpl, but not by RFCspec. Let the formula ψ be as follows.〈

out(pks)
〉〈

card(u1)
〉〈

u1(v1)
〉〈

u1 ϕ(y1, g)
〉〈

u1(w1)
〉〈

card(u2)
〉〈

u2(v2)
〉〈

u2 ϕ(y2, g)
〉〈

u2(w2)
〉(

snd(dec(w1, h(ϕ(y1, v1)))) = snd(dec(w2, h(ϕ(y2, v2))))
)

3.4. On different privacy notions 61

The above formula exactly reflects the attack described informally in Sec. 3.3.2
and represents two sessions of the BDH protocol, which, for RFCimpl, can be with
the same card, say c1. The equality test at the end of ψ compares the certificates
obtained from each session to each other, which the terminal can decrypt in both
sessions. This certificate can be the same for both sessions of RFCimpl involving
the same card, since it is bound to the card’s identity c1. Therefore RFCimpl |= ψ.
Indeed, at the point of the equality test the accumulated substitution comprising
the messages available on the network is as follows.{

pk(s)/pks

}
◦
{

ch1, ϕ(a1,ϕ(c1,g)), n1(a1,ϕ(y1,g))/u1,v1,w1

}
◦
{

ch2, ϕ(a2,ϕ(c2,g)), n2(a2,ϕ(y2,g))/u2,v2,w2

}
Where nd(a, x) := {⟨⟨a, ϕ(cd, g)⟩ , ⟨ϕ(cd, g) , sig(ϕ(cd, g) , s)⟩⟩}h(ϕ(a·cd,x)). Applying
the substitution above to the equality from the formula we verify that the two
sides are equal given the equational theory E0. In contrast, RFCspec ̸|= ψ since
every session is with a new card and hence the equality test never holds, since the
certificates will always differ.

Since we have just demonstrated that active attackers playing the role of hon-
est terminals can track cardholders by the certificate the card gives away in each
session, it is natural to consider an improvement to BDH that protects from such
attackers. In the next section we presents an updated version of BDH that satisfies
the unlinkability Def. 9. However, before doing that we would like to take a break
and reflect on different privacy notions. The readers who are not interested in this
discussion can safely skip and continue directly to Sec. 3.5.

3.4 On different privacy notions

As mentioned in the introduction to the previous chapter, our main reference for
privacy is the ISO/IEC standard 15408 [cc17], which includes informal definitions
for anonymity and unlinkability. Arapinis et al. [ACRR10] formalised unlinkability
and anonymity making the distinction between weak and strong variants of each
(not to be confused with weak/strong bisimilarity, see the remark in Sec. 2.2.4). his
section is an informal comment to their paper.

Strong unlinkability vs weak unlinkability. Since our running example is un-
linkability, called “strong unlinkability” in [ACRR10], we would like to draw a
clear distinction with the weak variant. The weak unlinkability, formulated as a
trace property in [ACRR10], assumes that an attacker can “link two particular mes-
sages as being part of different sessions executed by the same principal”, while
the unlinkability we are discussing in this thesis requires that a world where an
agent can participate in the protocol multiple times is no different from the ide-
alised world where an agent can participate in the protocol more than once as in
Fig. 2.1, Def. 7, Def. 9 While weak unlinkability follows from strong unlinkability
as Arapinis et al. prove, the converse does not hold demonstrated by the following
example, where the process on the right outputs the OK message only if it receives
the identity of the left process twice.

62 Chapter 3. Case study: smartcard-based payments

WUimpl ≜ νa. (!νid.!a⟨id⟩| !a(x).a(y).if x = y then c⟨OK⟩)

The protocol above satisfies weak unlinkability – since the input for the right
process is on the private channel a, there are no message belonging to the same
id for an attacker to link, the input is executed silently using τ-transition. Strong
unlinkability, however, is violated. To see that, let us define the respective ide-
alised world, where the left process cannot execute the protocol more then once by
removing the second replication.

WUspec ≜ νa. (!νid.a⟨id⟩| !a(x).a(y).if x = y then c⟨OK⟩)

Since in WUspec the process on the right can never receive the same identity
twice, it never outputs any message, and we have the formula

〈
τ
〉〈

τ
〉〈

cu
〉
(u = OK),

satisfied by WUimpl, but not WUspec demonstrating WUimpl ≁ WUspec.

Anonymity. We would like to discuss anonymity, only informally. As written in
the ISO/IEC standard 15408 [cc17], “anonymity ensures that a subject may use a
resource or service without disclosing its user identity”. Arapinis et al. interpret
this formulation such that in a weakly anonymous protocol an attacker cannot tell
when a transition is initiated by one agent or another; and in a strongly anonymous
protocol, a real world where an agent simply executes its role is no different from
the idealised world, where the same role can be executed by an agent with another
identity, never seen before. Similarly to unlinkability, there is a counter-example
demonstrating a protocol satisfying weak, but not strong anonymity.

Unlinkability ⇍⇒ anonymity? We repeat the point made in [ACRR10], that
neither unlinkability guarantee anonymity nor vice-versa. Consider a protocol de-
scribed by the following process.

νk.!νid.!c⟨{id}k⟩

An attacker here can identify two messages coming from the same identity, yet they
cannot infer any identity itself, hence unlinkability is not ensured by anonymity. At
the same time the following process represents an unlinkable, yet not anonymous
protocol.

Uimpl ≜ νa, b
(

!νid.a⟨id⟩.!b(x).if x = id then c⟨id⟩| !a(x).b⟨x⟩
)

The process on the left can output the identity at at most once, hence anonymity
is violated, while the unlinkability is preserved exactly because no identity is re-
vealed twice, and an attacker observes only a stream of distinct identities. To
demonstrate this formally, we define the idealised protocol and a bisimulation R
as the least symmetric open relation satisfying conditions in Fig. 3.15.

Uspec ≜ νa, b
(

!νid.a⟨id⟩.b(x).if x = id then c⟨id⟩| !a(x).b⟨x⟩
)

3.4. On different privacy notions 63

Uspec RUimpl

νa, b, id1 . . . idl.
(

σ | P1 | . . . Pl

| !Tspec | !R
) R

νa, b, id1 . . . idl.
(

θ | Q1 | . . . Ql

| !Timpl | !R
)

Tspec ≜ νid.a⟨id⟩.b(x).if x = id then c⟨id⟩

Timpl ≜ νid.a⟨id⟩.!b(x).if x = id then c⟨id⟩

R ≜ a(x).b⟨x⟩

for any A, B, Γ, ∆ partitioning L := {1, . . . l} and a derangement f of ∆ such that
the following hold

uiσ = idi if i ∈ Γ uiθ = idi if i ∈ Γ

Pi ≜

b(x).if x = idi then c⟨idi⟩| b⟨idi⟩ if i ∈ A
if idi = idi then c⟨idi⟩| 0 if i ∈ B
0 | 0 if i ∈ Γ
if id f (i) = idi then c⟨idi⟩| 0 if i ∈ ∆

Qi ≜

!b(x).if x = idi then c⟨idi⟩| b⟨idi⟩ if i ∈ A
if idi = idi then c⟨idi⟩| !b(x).if x = idi then c⟨idi⟩| 0 if i ∈ B
0 | !b(x).if x = idi then c⟨idi⟩| 0 if i ∈ Γ
if id f (i) = idi then c⟨idi⟩| !b(x).if x = idi then c⟨idi⟩| 0 if i ∈ ∆

c # a, b, id1, . . . idl and ui, i ∈ Γ are distinct variables s.t. ui # c, a, b, id1, . . . idl

Figure 3.15: Relation R verifying Uspec ∼ Uimpl

Or... Unlinkability =⇒ anonymity? The first example in the previous para-
graph works due to the notion of identity. In the protocol described by νk.!νid.!c⟨{id}k⟩
the identity id is formally always hidden, while intuitively it is clear that the term
{id}k plays the role of the user’s identity as it uniquely identifies the user.

With an enforced notion of identity6as a term that an attacker uses to identify
the user unambiguously, we can informally declare the property of per-session
anonymity. Per-session anonymity holds if an attacker cannot construct a message
term allowing to re-identify the user from the messages contributing a protocol run.

For the examples let us extend temporarily the message theory with the as-
sociative and commutative XOR operator ⊕ which have a property M ⊕ N ⊕ M ⊕
K =E N ⊕ K. Then consider the protocol described by the following process.

νk.!νid.!νa.c⟨ϕ(a, id)⟩c⟨ϕ(a, sig(id, k))⟩

It is per-session anonymous since both forms of identity: id and sig(id, k) are hid-
den from an attacker and, as we hypothesise, it is impossible to construct from the
messages of the form ϕ(a, id) and ϕ(a, sig(id, k)) a term that could allow to identify
user in the next session. At the same time the following protocol where we use ⊕

6A term “pseudonym” can also be found in the literature, while ISO/IEC standard 15408 [cc17]
makes no distinction between terms “identity” and “pseudonym” – identity is defined as a repre-
sentation “uniquely identifying entities . . . For a human user, the representation can be the full or
abbreviated name or a (still unique) pseudonym“.

64 Chapter 3. Case study: smartcard-based payments

instead of ϕ, is not per-session anonymous.

νk.!νid.!νa.c⟨a ⊕ id⟩c⟨a ⊕ sig(id, k)⟩

Indeed, since the term a ⊕ id ⊕ a ⊕ sig(id, k) =E id ⊕ sig(id, k) is constant through-
out all sessions and is tied to the identity of the user, an attacker can identify
sessions with that user.

With the notion of per-session anonymity we conclude this section with the
following informal hierarchy of privacy properties.

Unlinkability =⇒ Weak unlinkability =⇒ Per-session anonymity
̸⇕

Anonymity =⇒ Weak Anonymity

3.5 An unlinkable key agreement for EMV payments

In this section, we propose our improvement to the BDH protocol proposed by
EMVCo called Unlinkable BDH (UBDH). This improvement makes use of a certifi-
cation scheme with certificates invariant under blinding. We point to an existing
instance of such a certification scheme, the Verheul certification scheme, and, finally,
we prove that our improvement indeed makes the Blinded Diffie-Hellman protocol
unlinkable [rfc12].

3.5.1 Unlinkable Blinded Diffie-Hellman UBDH

Recall from Section 3.3.2 and Theorem 6 that the reason behind the failure of un-
linkability of the BDH protocol proposed by EMVCo is that the card gives away
its static certificate and its blinding factor. While this allows an honest terminal to
authenticate the card, the public key of the card ultimately obtained by the termi-
nal may be used to track the card in the future. We demonstrate in this section
that authentication can still be performed without disclosing the public key or the
signature. In order to achieve this, we specify more precisely the signature scheme
(initially unspecified by EMVCo) used for certificate verification. In particular, we
require that blinding and signing operations must commute. In this case, the signa-
ture can be blinded with the same nonce as the card’s public key at the beginning of
the session and later checked against the public key of the payment system directly
in its blinded form. As a result, only the blinded version of the card’s public key is
ever revealed.

The equational theory E for the improved protocol is the equational theory E0

in Fig. 3.13 extended with the property expressed in Fig. 3.16, which permits scalar
multiplication and signing to commute.

ϕ(M, sig(N, K)) =E sig(ϕ(M, N) , K)

Figure 3.16: Equation for blinding extending the equational theory in Fig. 3.13.

3.5. An unlinkable key agreement for EMV payments 65

It now follows from the blinding condition above and the last equation in
Fig. 3.13 that the check of the signature, blinded with some blinding factor, re-
turns the message, blinded with the same factor. This property of signatures in the
equational theory E is used by the terminal when authenticating the card in our
proposed update of the BDH protocol. The updated BDH protocol is presented
informally in Fig. 3.17 and the corresponding formal π-calculus specification of the
two roles involved is presented below.

C

pk(s), c
⟨ϕ(c, g) , sig(ϕ(c, g) , s)⟩

T
pk(s)

fresh a fresh t
z1 := ϕ(a, ϕ(c, g))

ϕ(t, g)

kc:= h(ϕ(a · c, ϕ(t, g))) kt:= h(ϕ(t, z1))

z2 := {⟨ϕ(a, ϕ(c, g)) , ϕ(a, sig(ϕ(c, g) , s))⟩}kc

⟨m1, m2⟩ := dec(z2, kt)
verify(⟨m1, m2⟩ , pk(s))
m1 = z1

auth

Figure 3.17: The Unlinkable BDH protocol.

Our version differs from the original proposal in message z2 sent by the card
to the terminal, i.e. now only the (encrypted) blinded certificate is transferred. At
no point in the protocol, can the terminal unblind the card’s public key since the
blinding factor a is never revealed to any terminal.

We conclude this subsection by mentioning that there is a signature scheme
satisfying both the blinding condition in Fig. 3.16, and the technical requirements
of the BDH protocol [rfc12], namely the Verheul certification scheme [Ver01]. The
scheme has been implemented on smart cards [BHJ+10] by Batina et al., using BN7

curves [BN06] with time presenting one blinded certificate of 0.45 seconds, which
is within the limit of 500ms of the card present in the reader field [emv21]. In
the proposal [rfc12] EMVCo intends to use p256 curve, however switching over
to a pairing-friendly BN curve would not introduce any slow-downs, compared
to p256 curve, in on-card computation as was shown by Dzurenda et al. in the
performance analysis [DRHM17a] of different elliptic curves on smart cards. It is
now left to verify that UBDH is indeed unlinkable.

7The original paper [Ver01], in contrast, describes the system using symmetric pairings on a su-
persingular curve. This approach historically precedes the asymmetric pairings, making certain De-
cisional Diffie-Hellman problem simple and requires greater field size (which would slow down
on-card computation) to achieve the same level of security as a non-supersingular curve based sys-
tem [FST10].

66 Chapter 3. Case study: smartcard-based payments

Cupd(s, c, ch) ≜ νa.ch⟨ϕ(a, ϕ(c, g))⟩.
ch(y).
let kc:= h(ϕ(a · c, y)) in
let m := ⟨ϕ(a, ϕ(c, g)) , ϕ(a, sig(ϕ(c, g) , s))⟩ in
ev:CRunning (ϕ(a, ϕ(c, g)) , y, {m}kc)

ch⟨{m}kc⟩

Tupd(pks, ch) ≜ νt.ch(z1).

ch⟨ϕ(t, g)⟩.
ch(z2).
let kt:= h(ϕ(t, z1)) in

let ⟨m1, m2⟩ :=
⟨fst(dec(z2, kt)) , snd(dec(z2, kt))⟩ in
ifm1 = check(m2, pks) then

ifm1 = z1 then

ev:TCommit (z1, ϕ(t, g) , z2)

ch⟨auth⟩

3.5.2 The proof of unlinkability of UBDH

This section is dedicated entirely to a detailed proof of unlinkability of the UBDH
protocol in Fig. 3.17. Firstly we define UPDspec and UPDimpl processes representing
the idealised and the real-world behaviours of UBDH, and then formulate the main
theorem of this chapter.

UPDspec ≜ νs.out⟨pk(s)⟩.!νc.νch.card⟨ch⟩.Cupd(s, c, ch)

UPDimpl ≜ νs.out⟨pk(s)⟩.!νc.!νch.card⟨ch⟩.Cupd(s, c, ch)

Theorem 7. Cupd(s, c, ch) satisfies unlinkability.

Proof. By Def. 9 of unlinkability, we must show that UPDspec ∼ UPDimpl. Therefore
we shall provide a quasi-open bisimulation relation R such that UPDspec R UPDimpl.

To define such R we have to introduce some notation. Let L, D ∈ N be the
number of sessions and the number of cards in the system, respectively. We use
indices l ∈ {1, . . . , L} and d ∈ {1, . . . , D} to track sessions and cards.

Define md(a, y) as the encrypted blinded certificate parametrised by the blind-
ing factor a and the input y:

md(a, y) := {⟨ϕ(a, ϕ(cd, g)) , ϕ(a, sig(ϕ(cd, g) , s))⟩}h(ϕ(a·cd,y))

Define a partition Ψ := {α, β, γ δ} of the set of all sessions {1, . . . , L}, where
α is the set of sessions in which the channel is created, but no message has been
sent; β is the set of sessions in which the blinded public key has been sent but the
response has not been received; γ is the set of all sessions in which the response

3.5. An unlinkable key agreement for EMV payments 67

has been received but the encrypted blinded certificate has not been sent; δ is the
set of all sessions in which the encrypted blinded certificate has been sent.

Define a partition Ω := {ζ1, . . . , ζD} of the set of all sessions {1, . . . , L}, where
ζd is the set of all sessions with the card d.

Let Y⃗ := (Y1, . . . , YL) be the list of inputs, where Yl is the input in session l.
Recall that Yl can refer to messages already output on the network (as reflected
in the last line of Fig. 3.18). Let K := |β ∪ γ ∪ δ| be the number of started ses-
sions. Since we consider processes up to α-conversion and permutation of names
(aka equivariance), we assume that al is the blinding factor in session l.

Finally, we define the following process subterms, which correspond to the
elements of the partition Ψ.

E d(ch) ≜ νa.ch⟨ϕ(a, ϕ(cd, g))⟩.F d(ch, a)

F d(ch, a) ≜ ch(y).Gd(ch, a, y)

Gd(ch, a, y) ≜ ch
〈
md(a, y)

〉
Hd ≜ 0

The bisimulation relation R is defined as the least symmetric open relation satisfy-
ing the constraints8 in Fig. 3.18. Spelled out, we pair the reachable states of UPDspec

and UPDimpl based on the number of sessions and the respective stages of the card
in a session. Notice that UPDspec R UPDimpl by the definition of R.

To prove that R is indeed a quasi-open bisimulation, according to Def. 5, we
must demonstrate

1. (bisimulation) Whenever A R B, and A π−→ A′, there exists B′ such that B π−→ B′

and A′ R B′.

2. (openness) R is closed under the application of a substitution fresh for the
domain of the frame of any of the related states.

3. (static equivalence) Whenever A R B, A is statically equivalent to B.

Bisimulation. Since R is by definition a symmetric relation, we provide proof
only for the cases when the left-side process starts first. Below we present the
exhaustive list of possible transitions for the defining conditions of the relation R

in Fig. 3.18. Each transition is justified by the dedicated proof tree. In the proof trees
by Rule

n below we assume n applications of the transition rule Rule from Fig. 2.9.
In case of n consecutive applications of rules Par-L, Par-R we write Par

n. Notice
that α-conversion is often used – in particular when the rule Extrude is applied. For
better presentation of proof trees we define the following subprocesses of UPDspec

and UPDimpl and two lists of private values.

S ≜ νc.νch.card⟨ch⟩.Cupd(s, ch, c)
I ≜ νc.!νch.card⟨ch⟩.Cupd(s, ch, c)
s⃗p = (s, c1, . . . , cL, ch1, . . . , chL, al1 , . . . , alK)

i⃗m = (s, c1, . . . , cD, ch1, . . . , chL, al1 , . . . , alK)

8The relation R may not be the smallest quasi-open bisimilarity satisfying UPDspec R UPDimpl.

68 Chapter 3. Case study: smartcard-based payments

UPDspec R UPDimpl

UPDΨ
spec(Y⃗) ≜ νs, c1, . . . , cL, ch1, . . . , chL,

al1 , . . . , alK .(σ

| C1 | . . . | CL

| !νc.νch.card⟨ch⟩.Cupd(s, c, ch))

R

UPDΨ,Ω
impl(Y⃗) ≜ νs, c1, . . . , cD, ch1, . . . , chL,

al1 , . . . , alK .(θ

| . . . | Cd
l | . . . | !νch.card⟨ch⟩.Cupd(s, cd, ch)

| !νc.!νch.card⟨ch⟩.Cupd((s, ch, c)))

Cl =

E l(chl) if l ∈ α

F l(chl , al) if l ∈ β

G l(chl , al , Ylσ) if l ∈ γ

Hl if l ∈ δ

Cd
l =

E d(chl) if l ∈ ζd ∩ α

F d(chl , al) if l ∈ ζd ∩ β

Gd(chl , al , Ylθ) if l ∈ ζd ∩ γ

Hd if l ∈ ζd ∩ δ
pksσ = pk(s)
ulσ = chl if l ∈ {1, . . . , L}
vlσ = ϕ(al , ϕ(cl , g)) if l ∈ β ∪ γ ∪ δ

wlσ = ml(al , Ylσ) if l ∈ δ

pksθ = pk(s)
ulθ = chl if l ∈ {1, . . . , L}
vlθ = ϕ(al , ϕ(cd, g)) if l ∈ ζd ∩ (β ∪ γ ∪ δ)
wlθ = md(al , Ylθ) if l ∈ ζd ∩ δ

Ψ := {α, β, γ, δ}, Ω := {ζ1, . . . ,ζD} are partitions of {1,...,L}

K := |β ∪ γ ∪ δ| l1, . . . , lK ∈ β ∪ γ ∪ δ

pks, ul , vl , wl # {card, s} ∪ {cl , chl , al |l ∈ {1, . . . , L}}

Yl # {s} ∪ {cl , chl , al |l ∈ {1, . . . , L}}

fv(Yl) ∩ ({vi|i ∈ α} ∪ {wi|i ∈ α ∪ β ∪ γ ∪ {l}}) = ∅

Figure 3.18: Defining conditions for the bisimulation relation R.

To make it easier for the reader to navigate, each transition case starts with a
new page.

3.5. An unlinkable key agreement for EMV payments 69

Case 1. out(pks), UPDspec R UPDimpl.
The process UPDspec can do the transition out(pks) to the state UPD∅

spec(∅), as
justified by the proof tree in Fig. 3.19.

There is a state UPD∅,∅
impl(∅) to which the process UPDimpl can do the transition

out(pks), as justified by the proof tree in Fig. 3.20.
By the definition of R we have UPD∅

spec(∅) R UPD∅,∅
impl(∅).

pks # out, s, !S out =E out
Out

s : out⟨pk(s)⟩.!S out(pks)−−−−→
({

pk(s)/pks

})
| !S s # out, pks

Res

∅ : UPDspec
out(pks)−−−−→ νs.

({
pk(s)/pks

})
| !S

Figure 3.19: Case 1. Transition UPDspec
out(pks)−−−−→ UPD∅

spec(∅).

pks # out, s, !I out =E out
Out

s : out⟨pk(s)⟩.!I out(pks)−−−−→
({

pk(s)/pks

})
| !I s # out, pks

Res

∅ : UPDimpl
out(pks)−−−−→ νs.

({
pk(s)/pks

})
| !I

Figure 3.20: Case 1. Transition UPDimpl
out(pks)−−−−→ UPD∅,∅

impl(∅).

70 Chapter 3. Case study: smartcard-based payments

Case 2. card(uL+1), UPDΨ
spec(Y⃗) R UPDΨ,Ω

impl(Y⃗).

The process UPDΨ
spec(Y⃗) can do the transition card(uL+1) to the state CHspec ≜

UPD{α∪{L+1},β,γ,δ}
spec ((Y1, . . . , YL, ∅)) as justified by the proof tree in Fig. 3.21.
Following the transition card(uL+1), in the process UPDΨ,Ω

impl some card d starts
a new session with the following resulting state.

CHimpl ≜ UPD{α∪{L+1},β,γ,δ},{...,ζd∪{L+1},...}
impl ((Y1, . . . , YL, ∅))

The transition is justified by the proof tree in Fig. 3.22.
Or, following the same transition card(uL+1) in the process UPDΨ,Ω

impl the new
card is created and the resulting state is as follows.

CHCimpl ≜ UPD{α∪{L+1},β,γ,δ},Ω∪{{L+1}}
impl ((Y1, . . . , YL, ∅))

The transition is justified by the proof tree in Fig. 3.23.
In both cases we have CHspec R CHimpl and CHspec R CHCimpl by the definition

of R.

3.5.
A

n
unlinkable

key
agreem

entfor
EM

V
paym

ents
71

uL+1 # card, ch, Cupd(s, cL+1, chL+1), σ

cardσ =E card
Out

s⃗p ∪ (cL+1, chL+1) :

card⟨chL+1⟩.Cupd(s, cL+1, chL+1)

card(uL+1)−−−−−→

σ◦
{

chL+1/uL+1

}
| E L+1(chL+1)

cL+1, chL+1 #
card, uL+1, σ

Extrude
2

s⃗p :

σ | S
card(uL+1)−−−−−→

νcL+1, chL+1.(σ◦
{

chL+1/uL+1

}
| E L+1(chL+1))

cL+1, chL+1,
uL+1 # S

Rep-act

s⃗p :

σ | !S
card(uL+1)−−−−−→

νcL+1, chL+1.(σ◦
{

chL+1/uL+1

}
| E L+1(chL+1) | !S)

cL+1, chL+1, uL+1 #
Ci, i ≤ L

Par
L

s⃗p :

σ | C1 | . . . | CL | !S
card(uL+1)−−−−−→

νcL+1, chL+1.(σ◦
{

chL+1/uL+1

}
| C1 | . . . | CL | E L+1(chL+1) | !S)

s, ci, chi, ak

i ≤ L, k ∈ β ∪ γ ∪ δ #
card, uL+1

Res
1+2L+K

∅ : UPDΨ
spec(Y⃗)

card(uL+1)−−−−−→ νs⃗p ∪ (cL+1, chL+1).(σ◦
{

chL+1/uL+1

}
| C1 | . . . | CL | E L+1(chL+1) | !S)

Figure 3.21: Case 2. Transition UPDΨ
spec(Y⃗)

card(uL+1)−−−−−−→ UPD{α∪{L+1},β,γ,δ}
spec ((Y1, . . . , YL, ∅)).

72
C

hapter
3.

C
ase

study:sm
artcard-based

paym
ents

uL+1 # card, chL+1, Cupd(s, cd, chL+1), θ

cardθ =E card
Out

i⃗m ∪ (chL+1)

θ | card⟨chL+1⟩.Cupd(s, cd, chL+1)

card(uL+1)−−−−−→

θ◦
{

chL+1/uL+1

}
| E d(chL+1)

chL+1 #

card, uL+1, θ

Extrude

i⃗m :

θ | νch.card⟨ch⟩.Cupd(s, cd, ch)
card(uL+1)−−−−−→

νchL+1.(θ◦
{

chL+1/uL+1

}
| E d(chL+1)

chL+1, uL+1 #

νch.card⟨ch⟩.
Cupd(s, cd, ch)

Rep-act

i⃗m :

θ | !νch.card⟨ch⟩.Cupd(s, cd, ch)
card(uL+1)−−−−−→

νchL+1.(θ◦
{

chL+1/uL+1

}
| E d(chL+1) | !νch.card⟨ch⟩.Cupd(s, cd, ch))

chL+1, uL+1 #

Ci
j, i ≤ D, j ≤ max

i≤D
Li;

νch.card⟨ch⟩.
Cupd(s, ci, ch),

i ≤ D, i ̸= d; !I
Par

D+L

i⃗m :

θ | . . . | !νch.card⟨ch⟩.Cupd(s, cd, ch) | . . . | !I
card(uL+1)−−−−−→

νchL+1.(θ◦
{

chL+1/uL+1

}
| . . . | E d(chL+1) | !νch.card⟨ch⟩.Cupd(s, cd, ch) | . . . | !I)

s, ci, chj, ak,

i ≤ D, j ≤ L, k ∈ β ∪ γ ∪ δ #
card, uL+1

Res
1+D+L+K

∅ : UPDΨ,Ω
impl(Y⃗)

card(uL+1)−−−−−→ νi⃗m ∪ (chL+1).(θ◦
{

chL+1/uL+1

}
| . . . | E d(chL+1) | !νch.card⟨ch⟩.Cupd(s, cd, ch) | . . . | !I)

Figure 3.22: Case 2. Transition UPDΨ,Ω
impl(Y⃗)

card(uL+1)−−−−−−→ UPD{α∪{L+1},β,γ,δ},{...,ζd∪{L+1},...}
impl ((Y1, . . . , YL, ∅)): card d starts new session.

3.5.
A

n
unlinkable

key
agreem

entfor
EM

V
paym

ents
73

uL+1 # card, chL+1, Cupd(s, cD+1, chL+1), θ

cardθ =E card
Out

i⃗m ∪ (cD+1, chL+1) :

θ | card⟨chL+1⟩.Cupd(s, cD+1, chL+1)

card(uL+1)−−−−−→

θ◦
{

chL+1/uL+1

}
| ED+1(chL+1)

chL+1 #
card,
uL+1, θ

Extrude

i⃗m ∪ (chL+1) :

θ | νch.card⟨ch⟩.Cupd(s, cD+1, ch)
card(uL+1)−−−−−→

νchL+1.(θ◦
{

chL+1/uL+1

}
| ED+1(chL+1)

chL+1, uL+1 #

νch.card⟨ch⟩.
Cupd(s, cD+1, ch)

Rep-act

i⃗m ∪ (chL+1) :

θ | !νch.card⟨chL+1⟩.Cupd(s, cD+1, ch)
card(uL+1)−−−−−→

νchL+1.(θ◦
{

chL+1/uL+1

}
| ED+1(chL+1) | !νch.card⟨ch⟩.Cupd(s, cD+1, ch))

cD+1 #

card,
uL+1, θ

Extrude

i⃗m :

θ | I
card(uL+1)−−−−−→

νcD+1, chL+1.(θ◦
{

chL+1/uL+1

}
| ED+1(chL+1) | !νch.card⟨ch⟩.Cupd(s, cD+1, ch))

cD+1,
chL+1,
uL+1 # I

Rep-act

i⃗m :

θ | !I
card(uL+1)−−−−−→

νcD+1, chL+1.(θ◦
{

chL+1/uL+1

}
| ED+1(chL+1) | !νch.card⟨ch⟩.Cupd(s, cD+1, ch) | !I)

cD+1, chL+1,

uL+1 # Ci
j,

i ≤ D, j ≤ max
i≤D

Li;

νch.card⟨ch⟩.
Cupd(s, cd, ch)

Par
D+L

i⃗m :

θ | . . . | !I
card(uL+1)−−−−−→

νcD+1, chL+1.(θ◦
{

chL+1/uL+1

}
| . . . | ED+1(chL+1) | !νch.card⟨ch⟩.Cupd(s, cD+1, ch) | !I)

s, ci, chj, ak,

i ≤ D, j ≤ L,
k ∈ β ∪ γ ∪ δ #
card, uL+1 Res

1+D+L+K

∅ : UPDΨ,Ω
impl(Y⃗)

card(uL+1)−−−−−→ νi⃗m ∪ (cD+1, chL+1).(θ◦
{

chL+1/uL+1

}
| . . . | ED+1(chL+1) | !νch.card⟨ch⟩.Cupd(s, cD+1, ch) | !I)

Figure 3.23: Case 2. Transition UPDΨ,Ω
impl(Y⃗)

card(uL+1)−−−−−−→ UPD{α∪{L+1},β,γ,δ},Ω∪{{L+1}}
impl ((Y1, . . . , YL, ∅)): a new card is created.

74 Chapter 3. Case study: smartcard-based payments

Case 3. ul(vl), UPDΨ
spec(Y⃗) R UPDΨ,Ω

impl(Y⃗), and l ∈ α.

The process UPDΨ
spec(Y⃗) can make the transition ul(vl) to the state APKspec ≜

UPD{α\{l},β∪{l},γ,δ}
spec (Y⃗) as justified by the proof tree in Fig. 3.24.

There is a state APKimpl ≜ UPDα\{l},β∪{l},γ,δ},Ω
impl (Y⃗) to which the process UPDΨ,Ω

impl(Y⃗)
can do the transition ul(vl) as justified by the proof tree in Fig. 3.25.

By the definition of R we have APKspec R APKimpl.

3.5.
A

n
unlinkable

key
agreem

entfor
EM

V
paym

ents
75

vl # ul , al ,F l(chl , al), σ

ulσ =E chl Out

s⃗p ∪ (al) : σ | chl⟨ϕ(al , ϕ(cl , g))⟩.F l(chl , al)
ul(vl)−−−→ σ◦

{
ϕ(al ,ϕ(cl ,g))/vl

}
| F l(chl , al) al # ul , vl , σ

Extrude

s⃗p : σ | νa.chl⟨ϕ(a, ϕ(cl , g))⟩.F l(chl , a)
ul(vl)−−−→ νal .(σ◦

{
ϕ(al ,ϕ(cl ,g))/vl

}
| F l(chl , al)) al , vl # Ci, i ≤ L, i ̸= l; !S

Par
L

s⃗p : σ | C1 | . . . | E l(chl) | . . . | CL | !S
ul(vl)−−−→ νal .(σ◦

{
ϕ(al ,ϕ(cl ,g))/vl

}
| . . . | CK | . . . | F l(chl , al) | . . . | !S)

s, ci, chi, ak

i ≤ L, k ∈ β ∪ γ ∪ δ # ul , vl Res
1+2L+K

∅ : UPDΨ
spec(Y⃗)

ul(vl)−−−→ νs⃗p ∪ (al).(σ◦
{

ϕ(al ,ϕ(cl ,g))/vl

}
| . . . | CK | . . . | F l(chl , al) | . . . | !S)

Figure 3.24: Case 3. Transition UPDΨ
spec(Y⃗)

ul(vl)−−−→ UPD{α\{l},β∪{l},γ,δ}
spec (Y⃗), l ∈ α.

vl # ul , al ,F d(chl , al), θ

ulθ =E chl Out

i⃗m ∪ (al) : θ | chl⟨ϕ(al , ϕ(cd, g))⟩.F d(chl , al)
ul(vl)−−−→ θ◦

{
ϕ(al ,ϕ(cd,g))/vl

}
| F d(chl , al) al # ul , vl , θ

Extrude

i⃗m : θ | νa.chl⟨ϕ(a, ϕ(cd, g))⟩.F d(chl , a)
ul(vl)−−−→ νal .(θ◦

{
ϕ(al ,ϕ(cd,g))/vl

}
| F d(chl , al))

al , vl # Ci
j,

i ≤ D, j ≤ max
i≤D

Li,

j ̸= l; !I
Par

D+L

i⃗m : θ | . . . | E d(chl) | . . . | !I
ul(vl)−−−→ νal .(θ◦

{
ϕ(al ,ϕ(cd,g))/vl

}
| . . . | F d(chl , al) | . . . | !I)

s, ci, chj, ak

i ≤ D, j ≤ L, k ∈ β ∪ γ ∪ δ #
ul , vl Res

1+D+L+K

∅ : UPDΨ,Ω
impl(Y⃗)

ul(vl)−−−→ νi⃗m ∪ (al).(θ◦
{

ϕ(al ,ϕ(cd,g))/vl

}
| . . . | F d(chl , al) | . . . | !I)

Figure 3.25: Case 3. Transition UPDΨ,Ω
impl(Y⃗)

ul(vl)−−−→ UPDα\{l},β∪{l},γ,δ},Ω
impl (Y⃗), l ∈ α.

76 Chapter 3. Case study: smartcard-based payments

Case 4. ul Yl , UPDΨ
spec(Y⃗) R UPDΨ,Ω

impl(Y⃗), and l ∈ β.

Let χl(Y⃗, M) be the list of message terms obtained from Y⃗ by the replacement
of lth entry in Y⃗ with M. The process UPDΨ

spec(Y⃗) can make the transition ul Yl

to the state INspec ≜ UPD{α,β\{l},γ∪{l},δ}
spec (χl(Y⃗, Yl)) as justified by the proof tree in

Fig. 3.26.
There is a state INimpl ≜ UPD{α,β\{l},γ∪{l},δ},Ω

impl (χl(Y⃗, Yl)) to which the initial

process UPDΨ,Ω
impl(Y⃗) can make the transition ul Yl , as justified by the proof tree in

Fig. 3.27.
By the definition of R we have INspec R INimpl.

3.5.
A

n
unlinkable

key
agreem

entfor
EM

V
paym

ents
77

ulσ =E chl
Inp

s⃗p : σ | chl(y).G l(chl , al , y)
ul Yl−−→ σ | G l(chl , al , Ylσ)

Par
L

s⃗p : σ | C1 | . . . | F l(chl , al) | . . . | CL | !S
ul Yl−−→ σ | . . . | G l(chl , al , Ylσ) | . . . | !S

s, ci, chi, ak

i ≤ L, k ∈ β ∪ γ ∪ δ # ul , Yl Res
1+2L+K

∅ : UPDΨ
spec(Y⃗)

ul Yl−−→ νs⃗p.{σ | . . . | G l(chl , al , Ylσ) | . . . | !S}

Figure 3.26: Case 4. Transition UPDΨ
spec(Y⃗)

ul Yl−−→ UPD{α,β\{l},γ∪{l},δ}
spec (χl(Y⃗, Yl)), l ∈ β.

ulθ =E chl
Inp

i⃗m : θ | chl(y).Gd(chl , al , y)
ul Yl−−→ θ | Gd(chl , al , Ylσ)

Par
D+L

i⃗m : θ | . . . | F d(chl , al) | . . . | !I
ul Yl−−→ θ | . . . | Gd(chl , al , Ylσ) | . . . | !I

s, ci, chj, ak

i ≤ D, j ≤ L, k ∈ β ∪ γ ∪ δ #
ul , Yl Res

1+D+L+K

∅ : UPDΨ,Ω
impl(Y⃗)

ul Yl−−→ νi⃗m.{θ | . . . | Gd(chl , al , Ylσ) | . . . | !I}

Figure 3.27: Case 4. Transition UPDΨ,Ω
impl(Y⃗)

ul Yl−−→ UPD{α,β\{l},γ∪{l},δ},Ω
impl (χl(Y⃗, Yl)) if there is a card at the stage F .

78 Chapter 3. Case study: smartcard-based payments

Case 5. ul(wl), UPDΨ
spec(Y⃗) R UPDΨ,Ω

impl(Y⃗), and l ∈ β.

The process UPDΨ
spec(Y⃗) can make a transition ul(wl) to the state CRTspec ≜

UPD{α,β,γ\{l},δ∪{l}}
spec (Y⃗), as justified by the proof tree in Fig. 3.28, where σ′ defines

the substitution accumulated at the point of input of Yl .
There is a state CRTimpl ≜ UPD{α,β,γ\{l},δ∪{l}},Ω

impl (Y⃗) to which UPDΨ,Ω
impl(Y⃗) can

make a transition chl(wl), as justified by the proof tree in Fig. 3.29, where θ′ the
frame accumulated at the point of input of Yl .

By the definition of R we have CRTspec R CRTimpl.

3.5.
A

n
unlinkable

key
agreem

entfor
EM

V
paym

ents
79

wl # ul , ml(al , Ylσ
′), σ

ulθ =E chl Out

s⃗p : σ | chl

〈
ml(al , Ylσ

′)
〉 ul(wl)−−−→ σ◦

{
ml(al ,Ylσ

′)/wl

}
| Hl

Par
L

s⃗p : σ | C1 | . . . | G l(chl , al , Ylσ
′) | . . . | CL | !S

ul(wl)−−−→ σ◦
{

ml(al ,Ylσ
′)/wl

}
| . . . | Hl | . . . | !S

s, ci, chi, ak

i ≤ L, k ∈ β ∪ γ ∪ δ # ul , wl Res
1+2L+K

∅ : UPDΨ
spec(Y⃗)

ul(wl)−−−→ νs⃗p.{σ◦
{

ml(al ,Ylσ
′)/wl

}
| . . . | Hl | . . . | !S}

Figure 3.28: Case 5. Transition UPDΨ
spec(Y⃗)

ul(wl)−−−→ UPD{α,β,γ\{l},δ∪{l}}
spec (Y⃗), l ∈ γ.

wl # ul , md(al , Ylθ
′), θ

ulθ =E chl Out

i⃗m : θ | chl

〈
md(al , Ylθ

′)
〉 ul(wl)−−−→ θ◦

{
md(al ,Ylθ

′)/wl

}
| Hd

Par
D+L

i⃗m : θ | . . . | Gd(chl , al , Ylθ
′) | . . . | !I

ul(wl)−−−→ θ◦
{

md(al ,Ylθ
′)/wl

}
| . . . | Hd | . . . | !I

s, ci, chj, ak

i <≤ D, j ≤ L, k ∈ β ∪ γ ∪ δ #
ul , wl Res

1+D+L+K

∅ : UPDΨ,Ω
impl(Y⃗)

ul(wl)−−−→ νi⃗m.{θ◦
{

md(al ,Ylθ
′)/wl

}
| . . . | Hd | . . . | !I}

Figure 3.29: Case 5. Transition UPDΨ,Ω
impl(Y⃗)

ul(wl)−−−→ UPD{α,β,γ\{l},δ∪{l}},Ω
impl (Y⃗), l ∈ γ.

80 Chapter 3. Case study: smartcard-based payments

Openness. R, by definition, is open: whenever A R B, then A′ R B′ for any A′,
B′ accessible from A, B by the environment extension ν⃗z.ρ satisfying conditions in
Def. 4. Accessibility cannot disable transitions available from the initial extended
process – the only variables that can be affected by ν⃗z.ρ are channel names out, card,
and free variables in the inputs Yl . Recall, that if the free channel name is affected,
as briefly explained in Sec. 2.2.2 after Def. 4, then the channel name is available for
using as the message alias, hence the transition label remains the same. In case free
variables in the entries of the input vector Y⃗ are affected, it is straightforward to re-
place Y⃗ with Y⃗ρ := (Y1ρ, . . . , YLρ), where ∅ρ := ∅ and modify freshness conditions
in the proof trees above by applying the substitution ρ. Notice that by α-conversion
we may assume that the range of ρ does not contain variables “reserved” for future
outputs or private nonces: fv(yρ) ∩ ({s, pks} ∪ {ci, chi, ai, ui, vi, wi|l ∈ N}) = ∅ for
any y.

Static equivalence. To conclude, we prove that A is statically equivalent to B
whenever A R B. There is nothing to prove in the case of UPDspec R UPDimpl since
frames are empty. The proof for the case UPDΨ

spec(Y⃗) R UPDΨ,Ω
impl(Y⃗) is presented

separately in Lemma 1.

Recall that the static equivalence (Def. 3) captures the indistinguishability be-
tween two snapshots (frames) of the system, i.e. νx⃗.(σ | _) is statically equivalent
to νy⃗.(θ | _) whenever Mσ =E Nσ if and only if Mθ =E Nθ for any messages M, N
that cannot refer to private names in x⃗ and y⃗ called recipes. Our high-level strategy
of proving static equivalence is as follows. Firstly, we identify building blocks of
message terms in the range of substitutions of the extended processes UPDΨ

spec(Y⃗)
and UPDΨ,Ω

impl(Y⃗), moreover we enforce these building blocks to be in a certain nor-
mal form that we call weak. Secondly, we prove static equivalence by induction
on the structure of the weak normal form of Nσ exploring all cases allowed by the
grammar in Fig. 3.12.

We start by introducing the weak notion of the normal form M⇂ of a message
term M, that captures the least complex, up to multiplication, expression of M;
and the notion of the normalisation of a frame νx⃗.(σ | _) with respect to the equa-
tional theory E, which is a saturation of the range of σ with weak normal forms of
messages that have a recipe under σ. Recipes can be conveniently recorded in the
domain of normalisation. While both notions depend on the message theory, we
will drop the name E of the message theory everywhere except definitions as it is
clear from the context. First we introduce few technical notions.

Definition 10. (m-atomic, ϕ-atomic) A message term M is m-atomic if there are no such
M1, M2, s.t. M =E M1 · M2; it is ϕ-atomic if there are no such M1, M2, s.t. M =E

ϕ(M1, M2)

Definition 11. (m-atomic, ϕ-atomic) A subterm N of M is an immediate m-factor if it
is m-atomic and there is a message term K, s.t. N · K = M.

Definition 12. (non-trivial recipe) The recipe M is non-trivial under σ if fv(M⇂) ∩
dom(σ) ̸= ∅.

3.5. An unlinkable key agreement for EMV payments 81

The weak normal form M⇂ of a term M with respect to E captures the least
complex (up to multiplication) expression of M. Notice that we do not require the
weak normal form to be unique.

Definition 13. (E-weak normal form) The E-weak normal M⇂ of a message term M is
defined inductively on the structure of M:

• M = g or M is a variable, then M⇂= M.

• M = M1 · M2, then M⇂= M1⇂ ·M2⇂.

• M = ϕ(M1, M2), then M⇂= ϕ(M1⇂, M2⇂) if M2⇂ is ϕ-atomic. Otherwise M⇂=
ϕ(M1⇂ ·M′

2⇂, M′′
2 ⇂), where M2 =E ϕ(M′

2, M′′
2) and M′′

2 ⇂ is ϕ-atomic.

• M = ⟨M1, M2⟩, then M⇂= ⟨M1⇂, M2⇂⟩.

• M = h(M1) or M = pk(M1), then M⇂= h(M1⇂) or M⇂= pk(M1⇂) respectively.

• M = sig(M1, M2), then M⇂= sig(M1⇂, M2⇂) if M1⇂ is ϕ-atomic. Otherwise
M⇂= ϕ(M′

1⇂, sig(M′′
1 ⇂, M2⇂)), where M1 = ϕ(M′

1, M′′
1) and M′′

1 ⇂ is ϕ-atomic.

• M = fst(⟨M1, M2⟩) or M = snd(⟨M1, M2⟩) then M⇂= M1⇂ or M⇂= M2⇂
respectively.

• M = dec({M1}M2 , M2), then M⇂= M1⇂.

• M = check(sig(M1, M2) , pk(M2)), then M⇂= M1⇂.

• Otherwise M⇂= M.

The normalisation of a frame ν⃗z.(ρ | _) denoted as ρ⇂⃗z
E, is a frame with recipes

allowed in the domain constructed as follows.

1. uρ = M for any u ∈ dom(ρ) is replaced by uρ = M⇂.

2. If uρ = K1 · K2 and there is a recipe M1 for an immediate m-factor K1, then
M1ρ is added to the normalisation. If there is a recipe M2 for an immediate
m-factor K2, then M2ρ is also added to the normalisation.

3. If uρ = ⟨K1, K2⟩, then uρ is replaced by fst(u) ρ = K1 and snd(u) ρ = K2.

4. If uρ = {K1}K2 and there is a recipe M2 for K2, then uρ is replaced by
dec(u, M2) ρ = K1.

5. If uρ = sig(N1, N2) and there is a recipe M2 for N2, then uρ is replaced by
check(u, pk(M2)) ρ = N1.

6. If uρ = sig(N1, N2) and there is a recipe M2 for pk(N2), then check(u, M2) ρ =

N1 is added to the normalisation.

To give an example, consider the following frame.

ν⃗z.(ρ | _) ≜ νs, a, b.
({

pk(s),{h(a)}b,b,sig(⟨a,x⟩,s)/pks,u1,u2,u3

}
| _

)

82 Chapter 3. Case study: smartcard-based payments

Then the normalisation of ρ is given below.

pksρ = pk(s)
dec(u1, u2) ρ = h(a)
u2ρ = b
fst(check(u3, pks)) ρ = a
snd(check(u3, pks)) ρ = x
u3ρ = sig(⟨a, x⟩ , s)

We conclude the proof of Theorem 7 with the following.

Lemma 1. UPDΨ
spec(Y⃗) is statically equivalent to UPDΨ,Ω

impl(Y⃗).

Proof. Considering the definition of R in Fig. 3.18, let νx⃗. (σ | P) ≜ UPDΨ
spec(Y⃗) and

νy⃗. (θ | Q) ≜ UPDΨ,Ω
impl(Y⃗). We aim to show that νx⃗. (σ | _) is statically equivalent to

νy⃗. (θ | _). Since x⃗ is always a superset of y⃗, we prove that for all messages M and
N, s.t. x⃗ # M, N, we have Mσ =E Nσ if and only if Mθ =E Nθ.

Recall the definition of md(a, y):

md(a, y) := {⟨ϕ(a, ϕ(cd, g)) , ϕ(a, sig(ϕ(cd, g) , s))⟩}h(ϕ(a·cd,y))

Since it is sufficient to consider normalisations when proving static equiva-
lence, we present the normalisations σ⇂x⃗

E and θ⇂x⃗
E of νx⃗. (σ | _) and νx⃗. (θ | _) re-

spectively for a fixed partitions {α, β, γ, δ}, {ζ1, . . . , ζD} of the set of all sessions
{1, . . . , L} of νx⃗. (σ | _) and νx⃗. (θ | _) with respect to E below.

pksσ = pk(s)
ulσ = chl if l ∈ {1, . . . , L}
vlσ = ϕ(al · cl , g) if l ∈ β ∪ γ ∪ δ

if l ∈ δ and Yl = ϕ(Tl , g)
fst(dec(wl , h(ϕ(Tl , vl)))) σ = ϕ(al · cl , g)
snd(dec(wl , h(ϕ(Tl , vl)))) σ = ϕ(al · cl , sig(g, s))
check(snd(dec(wl,h(ϕ(Tl, vl)))) , pks)σ = ϕ(al · cl,g)
if l ∈ δ and Yl ̸= ϕ(Tl , g)
wlσ = ml(al , Ylσ)

pksθ = pk(s)
ulθ = chl if l ∈ {1, . . . , L}
vlθ = ϕ(al · cd, g) if l ∈ ζd ∩ (β ∪ γ ∩ δ)

if l ∈ ζd ∩ δ and Yl = ϕ(Tl , g)
fst(dec(wl , h(ϕ(Tl , vl)))) θ = ϕ(al · cd, g)
snd(dec(wl , h(ϕ(Tl , vl)))) θ = ϕ(al · cd, sig(g, s))
check(snd(dec(wl,h(ϕ(Tl, vl)))) , pks) θ = ϕ(al · cd,g)
if l ∈ ζd ∩ δ and Yl ̸= ϕ(Tl , g)
wlθ = md(al , Ylθ)

Notice that a message term in the range of the normalisation can have more
then one recipe, e.g. there are three ways to obtain ϕ(al · cl , g). We then proceed by
induction on the structure of the weak normal form of Nσ considering all messages

3.5. An unlinkable key agreement for EMV payments 83

allowed by the grammar in Fig. 3.12. We present proofs starting from the equation
under the frame σ. The argument for the converse case is the same. From now on
M, Mk, N, Nk are always fresh for x⃗.

Case 1. Nσ =E g.
Case 1.1. N = g. If M is a recipe for g, then M = g, since there is no non-trivial

recipe for g under the normalisation of σ. Then we have gσ =E gσ if and only if
gθ =E gθ as required.

Case 1.2. N ̸= g. There is nothing to prove in this case, since there is no
non-trivial recipe for g under the normalisation of σ.

Case 2. Nσ =E z, z is a variable.
Case 2.1. N = z. If M is a recipe for z, then M = z, since there is no non-trivial

recipe for z under the normalisation of σ. Then we have zσ =E zσ if and only if
zθ =E zθ as required.

Case 2.2. Nσ =E chl . Since N is fresh for x⃗, N = ul . There is unique recipe
M = ul for chl and we have ulσ =E ulσ if and only if ulθ =E ulθ as required.

Case 3. Nσ = K1 · K2.
Any message term in the normalisation of σ is m-atomic, hence no message

is an immediate m-factor of another message in the normalisation of σ. Therefore
there is only one case to consider.

Case 3.1. N = N j1
1 · . . . · N jk

k , that is Nσ is generated by m-factors which have
a recipe under the normalisation of σ: Nσ = N j1

1 σ · . . . · N jk
k σ. By the induction

hypothesis suppose that for all recipes Mi for an m-factor Niσ of Nσ, we have
Miσ =E Niσ if and only if Miθ =E Niθ, i ∈ {1, . . . , k}. By applying multiplication,
we have Mj1

1 θ · . . . · Mjk
k θ = (Mj1

1 · . . . · Mjk
k)θ =E (N j1

1 · . . . · N jk
k)θ = N j1

1 θ · . . . · N jk
k θ

as required, and Niθ is an m-factor of Nθ.
Case 4. Nσ = ϕ(K1, K2).
Let us define

V1 := vl , V2 := fst(dec(wl , h(ϕ(Tl , vl)))) ,

V3 := snd(dec(wl , h(ϕ(Tl , vl))))

V4 := check(snd(dec(wl , h(ϕ(Tl , vl)))) , pks)

Case 4.1. Nσ = ϕ(al · cl , g) and Yl = ϕ(Tl , g). Since N is fresh for x⃗, N ∈ {V1, V2, V4}.
Let M be a recipe for ϕ(al · cl , g), then M ∈ {V1, V2, V4} and we have Mσ =E Nσ if
and only if Mθ =E Nθ for any N and M as required. In case Yl ̸= ϕ(Tl , g), N = V1,
there is unique recipe M1 = V1 and the argument is the same.

Case 4.2. Nσ = ϕ(al · cl , sig(g, s)) and Yl = ϕ(Tl , g). Since N is fresh for x⃗,
N = V3 and there is unique recipe M = V3 for ϕ(al · cl , g), and we have V3σ =E V3σ

if and only if V3θ =E V3θ as required. If Yl ̸= ϕ(Tl , g), there is no recipe for
ϕ(al · cl , sig(g, s)) and there is nothing to prove.

Case 4.3. N = ϕ(N1, N2), N2 ∈ {V1, V2, V3, V4} and Yl = ϕ(Tl , g). By the in-
duction hypothesis suppose that for all recipes M1 for N1σ , we have M1σ =E

N1σ if and only if M1θ =E N1θ, then multiply N2 by a scalar M1 and obtain
ϕ(M1θ, N2θ) = ϕ(M1, N2) θ =E ϕ(N1, N2) θ = ϕ(N1θ, N2θ) for any N2 as required.
In case Yl ̸= ϕ(Tl , g), N2 = V1 and the argument is the same.

84 Chapter 3. Case study: smartcard-based payments

Case 4.4. N = sig(. . . sig(N1, N2) . . . , Nk), N1 ∈ {V1, V2, V3, V4} and Yl =

ϕ(Tl , g). By the induction hypothesis suppose that for all recipes Mi for Niσ we
have Miσ =E Niσ if and only if Miθ =E Niθ, i ∈ {2, . . . , k}. By applying the
signature operation to N1, we have

sig(. . . sig(N1, M2) . . . , Mk)θ =

sig(. . . sig(N1θ, M2θ) . . . , Mkθ) =E

sig(. . . sig(N1θ, N2θ) . . . , Nkθ) =

sig(. . . sig(N1, N2) . . . , Nk)θ

as required. In case Yl ̸= ϕ(Tl , g), N1 = V1 and the argument is the same.
Case 4.5. N = ϕ(N1, N2). Similar to case 3.1 with ji = 1, i ∈ {1, 2}.
Case 5. Nσ = ⟨K1, K2⟩.
Since no pair is contained in the normalisation of σ, there is only one case to

consider.
Case 5.1. N = ⟨N1, N2⟩. Similar to case 4.5.
Case 6. Nσ = h(K1). Similar to case 5 with ji = 1, i = 1.
Case 7. Nσ = pk(K1).
Case 7.1. Nσ = pk(s). Then N = pks, since N is fresh for x⃗. There is a unique

recipe M = pks for pk(s) and we have pksσ =E pksσ if and only if pksθ =E pksθ as
required.

Case 7.2. N = pk(N1). Similar to case 6.
Case 8. Nσ = sig(K1, K2). Similar to case 5.
Case 9. Nσ = {K1}K2 .
If Yl = ϕ(Tl , g) no encrypted message term is contained in the normalised

frame and there is only one case to consider.
Case 9.1. N = {N1}N2 . Similar to case 5.
If Yl ̸= ϕ(Tl , g), there is also the following.
Case 9.2. Nσ =E ml(al , Ylσ). Since N is fresh for x⃗, N = wl . There is unique

recipe M = wl for ml(al , Ylσ) and we have wlσ = wlσ if and only if wlθ = wlθ as
required.

Lemma 1 concludes the proof of the unlinkability of UBDH. To conclude this
section we would like to highlight few crucial moments of our method of verifying
the unlinkability of the UBDH protocol.

• We have identified that the key agreement proposed by EMVCo exactly matches
the AU-authentication situation described is Sec. 2.2.4. Hence in the definition
of unlinkability we can consider only one party, and be sure (by the composi-
tional approach enabled by the quasi-open bisimilarity) that the unlinkability
would be preserved in the full system.

• The proof consists of identifying a candidate relation for quasi-open bisimu-
lation between two worlds described in Def. 9, and verifying that such candi-
date satisfies the definition of quasi-open bisimilarity Def. 5. The ingenious
step here is to define the candidate relation, for which we followed the pattern

3.5. An unlinkable key agreement for EMV payments 85

that has already appeared in the private server example in Fig. 2.13, i.e. we
parametrise the paired states by the partition of the set of started sessions.

• While the matching transitions and the openness is straightforward to verify,
the static equivalence requires more effort. The key step here is to define the
normalisations of the frames associated to the related states that captures all
possible ways to simplify messages, thereby considering all recipes for the
messages that cannot be simplified further.

In the next chapter we will apply our method verify the unlinkability of the full
scale payment protocol. However, firstly we should complete the discussion of the
EMVCo key establishment proposal and verify that the twofold aim of the initial
BDH protocol – to guarantee unlinkability of the card, while allowing the terminal
to authenticate the card, is not broken.

3.5.3 Authentication in BDH and UBDH

In this section we will verify, using the ProVerif tool, that both BDH and UBDH
protocols satisfy the target authentication property – injective agreement [Low97].
The process scheme below specifies the behaviour of honest terminals and honest
cards.

SYS ≜ νs.
(

!νc.!νchc.card⟨chc⟩.C(s, c, chc) |
out⟨pk(s)⟩.!νcht.term⟨cht⟩.T(pk(s) , cht)

)
The attacker model we use for verification of is a standard Dolev-Yao at-

tacker [DY83] who controls the communications between the card and the terminal.
Such attackers can intercept, block, modify, and inject messages. In the presence of
contactless payments the Dolev-Yao attacker is particularly relevant since, within a
range close enough, an attacker can force the card to run the protocol, explaining
why we insist on this attacker model when verifying key establishment protocols
in this chapter and the full transaction protocol in the next.

In the process scheme above, the processes C and T can be instantiated with
Crfc and Trfc or with Cupd and Tupd to obtain SYSrfc and SYSupd, respectively. The
injective agreement property is standard [Low97, CM12]. Agreement here means
that when a terminal thinks it has authenticated a card, an honest card really exe-
cuted the protocol while exchanging the same messages as the terminal. Injectivity
strengthens agreement by ensuring that every successfully authenticating run of a
terminal corresponds to a separate run of a card.

The formal model specifying the injective agreement relies on events recorded
during the execution of the protocol. An event is declared in the specification using
a construct of the form ev:EVT (t1, . . . , tn), where EVT is the name of the correspond-
ing event, and t1, . . . , tn are the corresponding parameters. We rely on the following
two events to be included at relevant points in the specification of BDH and UBDH.

• TCommit(cbkey, tkey, ecert): the terminal commits to the session with the card
after receiving the message cbkey, sending its own message tkey, and receiving
(and checking) the encrypted certificate ecert, the third message, meaning that

86 Chapter 3. Case study: smartcard-based payments

it is convinced that the card is involved in the corresponding key establish-
ment session.

• CRunning(cbkey, tkey, ecert): the card is running a BDH/UBDH session after
sending its own message cbkey, receiving tkey and generating the encrypted
certificate ecert.

To specify the injective agreement of BDH and UBDH formally in ProVerif we
rely on a restricted class of corresponding assertions, whose syntax and semantics
we introduce informally in the following, referring to e.g. [Bla09] for more details. A
(simplified) correspondence assertion is a formula of the form Φ0 =⇒ Φ1, where
Φ0 is a conjunction of events, and Φ1 is a conjunction of disjunctions of events.
A protocol specification satisfies such a formula if, for any execution trace of the
protocol where the events in Φ0 are true, it is the case that one of the events in each
conjunct of Φ1 is true. The variables of Φ0 have an implicit universal quantifier,
while the variables in Φ1 (that are not in Φ0) are quantified existentially. Using the
events introduced above, authentication in both BDH and UBDH is specified by the
correspondence assertion presented in Fig. 3.30. Notice that the list of parameters
repeating on both sides indicates the card exchanging the same messages as the
terminal.

TCommit(cbkey, tkey, ecert) ⇒ CRunning(cbkey, tkey, ecert)

Figure 3.30: The correspondence assertion for authentication in BDH/UBDH.

The message theory that faithfully models the cryptographic primitives used
in BDH and UBDH is currently outside the scope of ProVerif. There are two sources
of complexity in the theory. One is scalar multiplication of an unbounded number
of terms with an element of the elliptic curve group, as modelled by the first three
equations in Fig. 3.13. We handle this problem by extending a standard abstraction
used in ProVerif to model the Diffie-Hellman based key agreement. Instead of the
first three equations from Fig. 3.13, we have the following two equations:

ϕ(M, ϕ(N, g)) =E ϕ(M, ϕ(N, g))
ϕ(L, ϕ(M, ϕ(N, g))) =E ϕ(M, ϕ(L, ϕ(N, g)))

which together cover all permutations of three scalar multipliers on top of the
group generator g. They are sufficient for modelling the blinded Diffie-Hellman
key agreement as used in our protocol: the three scalars are the secret key of
the card, the blinding factor chosen by the card, and the scalar chosen by the
terminal in the first message to the card. A second source of complexity is the
equation in Fig. 3.16, which allows us to homomorphically push scalar multi-
plication inside a signature. We handle this second problem by replacing the
homomorphic equation ϕ(M, sig(N, K)) =E sig(ϕ(M, N) , K) with the equation
check(ϕ(N, sig(M, K)) , pk(K)) =E ϕ(N, M), which allows us to verify a multiplied
signature directly, without pushing the multiplication inside the signature.

3.6. Highlighting what we have learned 87

It takes less then 1 minute for ProVerif to verify that our target functional
property holds [see the repository [repa] for the code], i.e. we can establish that
both SYSrfc and SYSupd satisfy injective agreement. The immediate consequence of
this is that indeed the card and the terminal share the same key since they share
the same messages.

3.6 Highlighting what we have learned

The first, high-level, take away message from the this chapter is the characterisation
of EMV [emv11] as a protocol with questionable security and non-existent privacy.
As we demonstrate in Sec. 3.2 to this day insecure configurations are the part of the
EMV standard [emv11], i.e. it is possible to come up with a version of the EMV
protocol that does not contradict the standard, but is vulnerable to PIN bypassing
attack. As we demonstrate in Sec. 3.1, the data allowing to identify the card, e.g.
the card number, is exposed to the environment at each transaction.

The second, core, take away message from the chapter is related to the threat
model in the EMVCo proposal of secure channel establishment [rfc12]. The anti-
eavesdropping requirement in the BDH and 2nd Gen specifications [rfc12, ove14]
form a reasonable privacy enhancement guided by the current state of the EMV
standard and the infrastructure already deployed. We, however, have taken the
liberty to look beyond passive eavesdropping and considered the implications of
realistic active attackers, as captured in Def. 9. We support this investigation by
observing that, the anti-tracking requirement explicitly mentioned in the BDH pro-
posal remains open to interpretation, specifically [rfc12], “The protocol is designed
to protect against eavesdropping and card tracking.” We conclude that unlinkable
EMV key agreement, under such assumptions, is feasible as we prove formally in
Theorem 6. Yet, unlinkability in the presence of an active attacker is difficult to
extend to the full EMV 1st Gen due to EMVCo never has made precise how BDH
and the rest of the current EMV protocol coexist. Given the overview of the EMV
standard in Sec. 3.1 it is straightforward that the full protocol would not satisfy
unlinkability if the existing communication would be simply encrypted, regardless
of the key establishment employed. Since the PAN should always be transferred to
the terminal in EMV, an active attacker can establish the symmetric key with the
card, e.g., using UBDH, and obtain the same PAN in two different sessions, thereby
linking this sessions repeating an attack scheme explained in Sec. 3.3.2, 3.3.3.

The third, more general, take away message concerns our method for verifying
properties defined in terms of a process equivalence problem. Our unlinkability
definition, Def. 9, based on the notion of quasi-open bisimilarity, which is a con-
gruence, enables compositional reasoning about protocols, such as UBDH, without
a shared key. Our approach to bisimilarity checking facilitates proving that the
property holds for the unbound number of sessions, where the main challenge is
to define the relation in Fig. 3.18, after which we apply the method to show that
the relation is a quasi-open bisimulation. Furthermore, the equational theory we
employ is not yet covered by equivalence checking tools, so our proof proof may
help inform the extension of tools to this class of problems.

89

Chapter 4

How to design an unlinkable
smartcard-based payment protocol.

In the previous chapter, we have shown that the ubiquitous smart card-based pay-
ment method, EMV [emv11], lacks any privacy, as the valuable information such
as transaction details and the card number is sent in cleartext, enabling the pro-
filing and tracking of cardholders. Such lack of privacy in EMV should not be
viewed as the fundamental flaw the developers of the standard have overlooked –
the privacy of payments has never been among the explicit requirements of EMV.
In this chapter, we consider adding a privacy requirement, namely, unlinkability,
to the initial EMV requirements and investigate what it takes to design an unlink-
able smartcard-based payment protocol in the presence of a realistic active attacker
without compromising essential security guarantees and functional properties of
EMV.

Our position is that unwanted data collection should be mitigated at the proto-
col level since legal sanctions are not enough to ensure privacy – we have examples
of their violation [ger22, rsf21]. EMVCo has already made a step towards enhanc-
ing privacy in EMV and has proposed to encrypt communications by employing
the BDH protocol, an authenticated key establishment protocol [rfc12] that protects
from eavesdropping. However, even in the presence of encryption, the problem of
active attackers persists. As discussed in the previous chapter, the card still sends
its signed public key, a strong form of identity, to the terminal allowing the attacker
to trace the card. The threat of active attackers pretending to be honest terminals
and capable of starting communicating with the card threat is real, as attackers
may use unauthorised devices like smartphones or custom-made antennas [HD-
PdR15] to secretly power up the card, run the protocol session and thereby track
the cardholder using the data transferred. To rule out such active attackers while
maintaining the initial EMV privacy goals [rfc12], we have proposed the UBDH
protocol, an unlinkable version of the BDH protocol, where an attacker cannot link
key establishment sessions with the same card. The essence of UBDH is that the
public key of the card appears to be fresh in each session, yet a terminal can still
authenticate that the card was issued by a recognised payment system.

According to the proposal of EMVco [rfc12], a transaction in the 2nd generation
EMV would consist of a key establishment phase followed by data exchange. Hence
we need to consider the unlinkability of the full protocol, as an active attacker in
the second phase could gather the information allowing to link payment sessions
even if the first phase, key agreement, is unlinkable. If we simply follow what EMV

90 Chapter 4. How to design an unlinkable smartcard-based payment protocol.

offers now, this information includes the card’s explicit identity PAN used by the
payment system to route payments through the network, hence neither BDH nor
UBDH would prevent an attacker to silently obtain the PAN in each session and
track the cardholder.

In what follows, we identify the requirements for an unlinkable payment pro-
tocol, discuss how exactly the information that enables linking payment sessions
with the same card can be hidden from the terminal, and present a protocol that
we prove to satisfy these privacy requirements while preserving key requirements
of EMV. The protocol we introduce respects the current flow of EMV discussed in
Sec. 3.1 and its infrastructure in Fig. 3.1, supports contactless online transactions,
as nowadays they prevail [for21], as well as offline transactions requiring a PIN.

We begin by presenting a design space where we determine the requirements
of an unlinkable payment protocol in Sec. 4.1, and draw attention to trade-offs
between functional and privacy requirements. We then present an unlinkable pay-
ment protocol UTX in Sec. 4.2, and provide formal analysis in Sec. 4.3.

4.1 Design space for unlinkable transactions

In this section, we explore the design space for a privacy-preserving payment pro-
tocol. This top-level design space is narrowed down later to guide the design of
our proposed protocol. In what follows, we assume the architecture of a payment
system explained in the introduction to Chapter 3 and emphasise the functional,
security and privacy requirements.

An unlinkable protocol should satisfy three types of requirements: functional,
security and privacy requirements. Functional and security requirements are ex-
tracted from the current EMV specification [emv11] explained briefly in the pre-
vious chapter. Some security requirements are strengthened, and privacy require-
ments that were not previously present in EMV are introduced.

4.1.1 Functional requirements.

We consider smart card-based payments, hence we rely only on the computational
resources of the smart card and the terminal. Devices like smartphones that can
establish direct communication between the card and the bank are excluded from
the discussion in this paper. We also prohibit indirect card-bank communication by
means of, e.g. synchronised clocks since the card has no long-term power source.

The card should use ECC-based cryptography, as already required for the
new iteration of the EMV standard [ove14] and in the Blinded Diffie-Hellman pro-
posal [rfc12] we have discussed. Since, currently, the card must be present within
the reader’s field for at most 500ms [emv21, Section 10], computationally-heavy
general-purpose zero-knowledge proofs are out of scope.

The protocol should support contact and contactless transactions. For the
purpose of this analysis, we consider the PIN as the only cardholder verification
method, and the PIN is always required for high-value transactions. Hardware
solutions that might help to replace the PIN, e.g. cards with built-in fingerprint
sensors [biob, bioa] are beyond our scope.

4.1. Design space for unlinkable transactions 91

Cards can optionally support offline transactions, which carry two risks result-
ing in the terminal not being paid (when the cryptogram AC is finally processed
by the bank): either there is not enough money in the cardholder’s account, or the
card is blocked, e.g. reported as stolen. If offline transactions are supported, the
insurance policy must cover these risks.

4.1.2 Security requirements.

Recall that some configurations of EMV have been shown to be insecure [BST21b].
The primary security goals we extract from good configurations of EMV are the
following authentication and secrecy properties.

• T must be sure that the presented card is a legitimate card that was issued by
the PaySys that T supports and that C is not expired.

• If B accepts the transaction, then T, C, and B must agree on the transaction.

• Keys for message authentication and PIN are secret.

Notice that the card does not authenticate the terminal. The reason is, in the
philosophy of the EMV standard, that the payment system allows anyone to man-
ufacture terminals. We strengthen these requirements by assuring the card that if
the cryptogram is processed, then it is processed by a legitimate bank.

In addition to the requirements extracted from EMV above, we introduce the
additional requirement that the application cryptogram AC must be secret. This is
in line with the proposal of secret channel establishment [rfc12], where a session-
specific secret channel is used to protect all messages between the card and the ter-
minal from eavesdroppers. As we have said, currently, the communication between
the card and the terminal is in cleartext, and the AC, which contains transaction
details, is always exposed. Formal security definitions reflecting these requirements
are introduced in Section 4.3.6, where we present the analysis of our proposal for a
protocol.

4.1.3 Privacy requirements.

As thoroughly explained in the previous chapter, currently, no privacy properties
are preserved by EMV. The privacy property we aim for is unlinkability in a sense
expressed in Fig. 2.1 at the beginning of this dissertation, i.e. we will call transac-
tions unlinkable if an attacker cannot distinguish between a system where a card
can participate in multiple transactions and another system where a card can partic-
ipate in at most one transaction. In the discussion in Sec. 3.4 comparing anonymity
and unlinkability, we have seen that neither of the notions is strictly stronger. How-
ever, unlinkability is strictly stronger than per-session anonymity, meaning that if in
two sessions the identity (e.g. the card number) is exposed, then they can be linked,
but the converse does not hold. This explains why we have chosen unlinkability as
a benchmark for privacy.

We will define unlinkability formally in Sec. 4.3.3, where we prove that the pro-
tocol we introduce in later sections satisfies unlinkability, however, let us reiterate
here as well the informal meaning of unlinkability.

92 Chapter 4. How to design an unlinkable smartcard-based payment protocol.

A real-world scenario where the card is issued and within its lifespan can par-
ticipate in several protocol sessions, and an idealised scenario, where cards are dis-
posed of after each transaction and can participate in one payment session at most
(hence sessions are trivially unlinkable) should be indistinguishable to an attacker
for a given payment protocol. Guaranteeing this property without compromising
the aforementioned security and privacy requirements is our primary challenge.

We explain that unlinkability cannot hold in all contexts if we aim to fulfil also
our functional and security requirements. As mentioned above, two sessions that
are not per-session anonymous can be linked. Therefore, to achieve unlinkabil-
ity, certainly, any identity unique either to the card or the cardholder must never
be revealed to an attacker. We call such identities strong, and they include the
cardholder’s name, the PAN, the card’s public key, and any signature on the data
specific to the card.

On the other hand, even if strong identities were protected, coarse identities
that are common to a group of cards may enable tracking of groups of cardhold-
ers. Coarse identities include the payment system, the validity date, the format of
transaction data, and other implementation-specific features. Some coarse identi-
ties are inevitably exposed as a consequence of the requirements in Sec. 4.1.1, 4.1.2.
For instance, the terminal needs to know which payment system the card uses to
authenticate the card and needs to be able to distinguish between valid and expired
cards. In certain contexts coarse identity may even play the role of the strong one,
e.g. if the card exposes the application identifier (as it does at the initialisation
phase of EMV) in a country where such identifier is not used, this card is linkable
with a high probability in that country, since cards around do not carry such appli-
cation identifier. Other coarse identities include the network traffic response times,
which may reveal information about whether the card belongs to a local or foreign
bank.

Coarse identities can be combined to fingerprint a card. Thus we are obliged
to accept that unlinkability can only be achieved up to their fingerprint, that is, we
can link two sessions with the same fingerprint only. However, we require that this
fingerprint is minimised, thereby limiting the capability of an attacker to perform
unauthorised profiling of cardholders and their behaviours.

4.2 The UTX protocol

In this section, we introduce the UTX (Unlinkable Transactions) protocol that sat-
isfies the security and privacy requirements introduced in Sec. 4.1. We pay partic-
ular attention to minimising the fingerprint given by the coarse identities, thereby
maximising unlinkability. We start by discussing the initialisation phase, then we
introduce the message theory representing cryptographic primitives employed in
the protocol. We then explain the key distribution between the participants. Fi-
nally, we thoroughly explain transactions that can either be offline, online, high, or
low-value.

4.2. The UTX protocol 93

4.2.1 Application selection

Recall from the description of the Initialisation phase of EMV in Sec. 3.1.1 that the
card can generally support several payment methods, colloquially called applica-
tions. We show schematically in Fig. 4.1 the shortened version of the Initialisation
phase regarding the application selection. First, the terminal asks the card to send
the list of supported applications, then the card provides the list and the terminal
selects one (possibly with the help of the cardholder). Knowing the payment sys-
tem, the terminal can select the appropriate public key to authenticate the data on
the card. Notice that the list of payment applications is a coarse identity of the card
even if this list consists of a single application since it can still be distinguished
from other cards.

C T

SELECT PaySys_List

PaySys1 . . . PaySysn

SELECT PaySysi

PaySysi transaction

Figure 4.1: Payment System Selection.

In order to avoid a coarse identity being exposed at this point, we design the
protocol such that the card presents a list comprising a single element, Unlinkable.
This means that a group of payment systems agree to provide privacy-preserving
payments using the name Unlinkable for the respective application. Terminals, thus,
should also be upgraded to support Unlinkable in order to accept unlinkable pay-
ments before such cards are rolled out. An alternative is to allow each payment
system to provide its own unlinkable application and to tolerate that the payment
system becomes part of the coarse identity of the card. Our analysis covers both
choices.

4.2.2 Keys required to set up Unlinkable

Here we explain who generates and holds keys and signatures involved in the UTX
protocol. An authority, who is either a payment system or a delegate acting on
behalf of a group of payment systems, produces signatures involved in the protocol
using two types of signing keys. Firstly, a secret key s, is used to produce certificates
for banks, which are kept by the terminal and used by the card to check that the
terminal is connected to a legitimate bank. Secondly, a list of secret keys χMM is
maintained for each new calendar month. They are used by the authority upon
request from the payment system to generate month certificates unique to each card
supporting Unlinkable for every month the card is valid. A card valid for five years

94 Chapter 4. How to design an unlinkable smartcard-based payment protocol.

would store 61 such month certificates, that the terminal checks to be sure that the
card is valid at the month of a particular purchase. The public key for checking
month certificates is broadcast to terminals from the first of every month.

We take care to prohibit an attacker from learning the expiry or the issuing
month, which would allow many cards to be distinguished. To do so, we introduce
the following pointer mechanism. The card maintains a pointer to the most recent
month certificate that has been used in response to a legitimate request by the
terminal. When the terminal asks the card to show the certificate for the month, the
card compares the pointer with the received month. If the received month is greater
than what the pointer references, the card advances the pointer to this month and
shows the respective certificate. If either the received month coincides with or is one
month behind the pointer, the card simply shows the certificate for this month, and
the pointer remains untouched. Otherwise, if the month requested is older than
two months, the card terminates the session. A terminal cannot request a month
in the future, assuming that the public keys for verification are carefully managed,
such that they are never released in advance.

We allow a window of two months to allow time for offline terminals to even-
tually receive the most recent public key for the month. For this reason, a new card
valid for 60 months is loaded with 61 month certificates with a pointer referencing
the issuing month. That way, a newly issued card cannot be distinguished from
cards already in circulation as it is ready to present the certificate for the month
prior to the month in which it was issued. Thus, the only coarse identities revealed
are whether the card is outdated or has not been used since the beginning of the
month.

4.2.3 Message theory

We now introduce cryptographic primitives employed by the UTX protocol. The
message theory we use to define UTX differs from the one we have used to define
UBDH by just one primitive – instead of using Verheul signatures exclusively, we
now also include a generic signature scheme. As usual for symbolic analysis that
we conduct later in Sec. 4.3, we assume perfect cryptography and omit low-level
details such as ECC domain parameters. Fig. 4.2 presents the message theory for
the UTX protocol that consists of the syntax that defines messages agents can form
and the equational theory E, that axiomatises cryptographic operations.

Our message theory admits operations for ECC-based cryptography, i.e. mul-
tiplication between two field elements (scalars) and multiplication between a scalar
and an element of the DH group. As before, when we say that “a message is
blinded with a scalar,” we mean multiplication by that scalar. Next, we include a
standard set of cryptographic operations such as hashing, symmetric key cryptog-
raphy, n-tuples, and generic digital signatures. Finally, we introduce the already
familiar Verheul signature scheme [Ver01], which is invariant under blinding of the
message-signature pair with the same scalar (hence can appear as “new” in each
session). We also define several constants employed in UTX.

The equational theory E captures the two types of multiplication and con-
tains conventional destructor functions: decryption, projection, and two versions
of signature verification. A digital signature is successfully verified whenever the

4.2. The UTX protocol 95

M, N ::=g DH group generator (constant)
|x variable
|M · N multiplication
|ϕ(M, N) scalar multiplication
|h(M) hash
|{M}N symmetric encryption
| ⟨M1, . . . , Mk⟩ n-tuple
|pk(M) public key
|sig(M, N) signature
|vpk(M) Verheul public key
|vsig(M, N) Verheul signature
|check(M, N) check signature
|vcheck(M, N) check Verheul signature
|pi(N) ith projection
|dec(M, N) symmetric decryption
|⊥ empty messsage
|ok PIN success reply
|accept bank success reply
|auth transaction authorisation
|lo, hi low and high amount

M · N =E N · M
(M · N) · K =E M · (N · K)
ϕ(M · N, K) =E ϕ(M, ϕ(N, K))
pi(⟨M1, . . . , Mk⟩) =E Mi

dec({M}K, K) =E M
check(sig(M, K) , pk(K)) =E M
vcheck(vsig(M, K) , vpk(K)) =E M
ϕ(M, vsig(N, K)) =E vsig(ϕ(M, N) , K)

Figure 4.2: UTX message theory.

message corresponds to the message extracted from the signature by applying the
appropriate check function. Notice that the last equation ensures that if the function
vcheck(_, _) is applied to the signature, blinded with some scalar and the matching
Verheul public key, it returns the message, blinded with the same scalar.

4.2.4 Before running the protocol: the setup

Before describing the protocol, we explain how the payment system issues a card
in collaboration with the issuing bank, how the acquiring bank joins the payment
system, and how the terminal connects to the acquiring bank. In the next section,
where we describe the transaction, we collapse the payment system, the issuing
bank, and the acquiring bank into a single agent.

Issuing a card. Here we outline how a card could be manufactured involving
signing authority that payment systems could share as explained in Sec. 4.2.2.

To issue a card, the payment system generates a new card’s private key c,
computes the card’s public key ϕ(c, g), and asks the signing authority to generate

96 Chapter 4. How to design an unlinkable smartcard-based payment protocol.

the following list of month Verheul signatures {⟨MM, vsig(ϕ(c, g) , χMM)⟩}60
MM=0 which

it loads to the card together with pk(s), c, ϕ(c, g), PAN, and PIN. Then the card is
sent to the issuing bank together with ϕ(c, g), PAN, and PIN; the bank generates
and loads to the card a new master key mk, and finally sends the card to the user.
Since no one should ever have access to c except the card, we assume the payment
system never shares or stores c.

The keys used by the terminal to connect to the payment system. To allow an
acquiring bank supporting the payment system to process payments in the month
MM, the authority knowing s issues a certificate ⟨⟨MM, ϕ(bt, g)⟩, sig(⟨MM, ϕ(bt, g)⟩, s)⟩
to each acquiring bank, where bt is the private key of the bank. In turn, the acquir-
ing bank loads the terminal with both this data and a symmetric key kbt used for
secure communication between the terminal and the bank. The terminal presents
the bank’s certificate at each run of the protocol. As explained in Section 4.2.2,
the terminal and the bank must update the month key certificate and the month
validation key regularly without being offline for more than two months.

Firstly we explain why the month MM is signed. Recall the card points to the
most recent month it has seen. Hence, if this month requested by the terminal is the
month pointed to by the card or the month before, it is safe to reveal that it is valid
for either of these two months. The signature sig(⟨MM, ϕ(bt, g)⟩, s) containing the
month MM is required in the situation where the next month is requested, in which
case this signature serves as proof to the card that the next month has arrived. This
prevents attackers from learning whether the card is valid next month and also
avoids the pointer being advanced too quickly, thereby invalidating the card in the
current month. Notice that vpk(χMM) is publicly known for the past few months
and could have been transferred by the terminal to the card and used by the card
to check whether a request for the next month is valid. However, since checking
Verheul signatures is too expensive for the card, we avoid using keys vpk(χMM),
and instead only check the certificate ⟨⟨MM, ϕ(bt, g)⟩, sig(⟨MM, ϕ(bt, g)⟩, s)⟩ against
the generic pk(s) already present in the card which can employ a more efficient
signature scheme since it does not need to support blinding.

Secondly, the bank’s certificate enables the card to verify that ϕ(bt, g) is a public
key for a legitimate bank connected to the payment system providing Unlinkable,
hence it can safely use ϕ(bt, g) to encrypt the application cryptogram and the related
data at the end of the transaction. This signature helps to avoid the situation when
an attacker introduces their own public key and thereby can look inside the message
encrypted for the bank to gather sensitive information including the PAN.

In principle, the signature on the month and the signature on the bank’s pub-
lic key could be separate, yet it is efficient to transmit them in a single message.
Moreover, the bank’s public key introduces certain padding to small and publically
known constants MM representing months. If a bank requires multiple keys, multiple
certificates could be produced.

The secure channel between the bank and the terminal modelled here as a
symmetric key kbt could be established by other means, which is consistent with
EMV as it is not specified.

4.2. The UTX protocol 97

4.2.5 The UTX transaction

We introduce online and offline modes of the UTX protocol in Fig. 4.3. We annotate
offline and online high-value modes, for which the PIN is always asked, as offl

and onl respectively. In the offline mode, the PIN is sent to the card. As the PIN
must be transferred to the card, and the card cannot leave the session until the
PIN is entered, high-value offline transactions are always performed as a contact
payment. In online mode, the PIN is not sent to the card, instead, it is sent to the
bank together with the application cryptogram. Parts of the protocol involving the
PIN check are indicated by dashed lines and annotated as offl and onl indicating
these two modes of operation. In Fig. 4.3 the two messages exchanged between
the terminal and the bank are either executed during the transaction (online mode)
or postponed to the moment when the terminal goes online to upload collected
cryptograms and, optionally, to update its bank’s certificate (offline mode).

Initialisation. When the card is close enough to the terminal, it is powered up,
and the terminal asks which payment methods the card supports by issuing the
SELECT command. The card supporting unlinkable payments replies with a single-
ton list containing only Unlinkable, as explained in Sec. 4.2.1 above. The terminal
then selects this payment method and sends to the card the ephemeral public key
ϕ(t, g). The card in response sends to the terminal ϕ(a, ϕ(c, g)), which is its public
key, blinded with a fresh scalar a. After that, the card and the terminal establish the
symmetric session key kc:= h(ϕ(a · c, ϕ(t, g))) =E h(ϕ(t, ϕ(a, ϕ(c, g)))) =: kt which
they use to encrypt all further communications. We represent that all communica-
tions between the card and the terminal are encrypted by putting the box around
the messages they exchange.

A passive eavesdropper who only listens and intercepts messages is now locked
out of the session since it has no access to the derived key. On the other hand, an
active attacker can choose their own public key and engage in the handshake, so
we must explain below how such active attacker is mitigated. The only information
about the card exposed at this point is the fact that the card supports the application
Unlinkable.

Validity check. After the secret key is established, the card presents evidence that
it is valid. To do so, firstly, the terminal sends to the card the current month cer-
tificate ⟨⟨MM, ϕ(bt, g)⟩, sig(⟨MM, ϕ(bt, g)⟩, s)⟩. The card verifies this certificate against
the public key pk(s), hence believes that this terminal is connected to a legitimate
acquiring bank and that MM, and ϕ(bt, g) are authentic.

Having received this legitimate request to show the certificate corresponding
to MM, the card updates its pointer, leaves it untouched or, aborts the transaction as
described in Sec. 4.2.2. After the decision about the pointer has been made, the card
blinds the appropriate month Verheul signature vsig(ϕ(c, g) , χMM) with the scalar a
and sends to the terminal ⟨ϕ(a, ϕ(c, g)) , ϕ(a, vsig(ϕ(c, g) , χMM))⟩.

The terminal verifies this blinded message-signature pair against the current
month Verheul public key vpk(χMM) and additionally checks that the first element
of the received pair coincides with the card’s blinded public key used to establish

98 Chapter 4. How to design an unlinkable smartcard-based payment protocol.

C

pk(s), ⟨{⟨MM, vsig(ϕ(c, g) , χMM)⟩}60
MM=0⟩,

c, ϕ(c, g), mk, PAN, PIN

T

⟨⟨MM, ϕ(bt, g)⟩, sig(⟨MM, ϕ(bt, g)⟩, s)⟩,
vpk(χMM) , kbt,TX′

B

bt, kbt, ϕ(c, g), mk,
PAN, PIN

SELECT PaySys_List

⟨Unlinkable⟩

fresh a fresh t
SELECT Unlinkable, Z1 := ϕ(t, g)

Z2 := ϕ(a, ϕ(c, g))

kc := h(ϕ(a · c,Z1)) kt := h(ϕ(t,Z2))

⟨MC,MCs⟩ := ⟨⟨MM, ϕ(bt, g)⟩, sig(MC, s)⟩

check(MCs, pk(s)) = MC

[B,Bs] := ⟨ϕ(a, ϕ(c, g)) , ϕ(a, vsig(ϕ(c, g) , χMM))⟩

vcheck(Bs, vpk(χMM)) = B

B = Z2

TX := TX
′, uPIN

offl

high-value

Enter uPIN

uPIN = PIN
offl

kcb := h(ϕ(a · c, ϕ(bt, g)))

⟨AC,AChmac⟩ := ⟨⟨a, PAN,TX, ok ⟩, h(⟨AC, mk⟩)⟩

{⟨AC,AChmac⟩}kcb
, ok

kc= kt

TX
′,Z2, {⟨AC,AChmac⟩}kcb

, uPIN
onl

kbc := h(ϕ(bt,Z2)) [= kcb]

h(⟨AC, mk⟩) = AChmac
TX = TX′

ϕ(a, ϕ(c, g)) = Z2
⟨PAN,TX, a⟩is unique

uPIN = PIN
onl

TX, accept

kbt

Figure 4.3: The UTX protocol.

4.2. The UTX protocol 99

a session key. This check ensures that the terminal is still communicating with the
same card.

Since both elements of the message coming from the card at this stage are
freshly blinded, as for the session key, they are distinct in each session, hence the
terminal cannot use it to reidentify the card in future sessions by simply requesting
the same month. At this point in the protocol, the card exposes that it is valid at
the month MM (since the key vpk(χMM) fits) which is not a coarse card’s identity, as
all other cards that have not yet expired and support unlinkable payments, expose
the same information.

Cardholder verification (high-value). In case of a high-value offline transaction,
the terminal asks the cardholder to enter the PIN and sends the entered number
uPIN to the card together with the transaction details. If this input matches the ac-
tual card’s PIN, the card includes the ok message both in the reply to the terminal
and in the cryptogram to indicate to the issuing bank that the PIN has been success-
fully verified on the card’s side. Otherwise, the card includes the ⊥ message in the
reply and in the cryptogram, which the terminal has to send to the bank anyway to
log failed attempts to enter the PIN for auditing purposes. In case of a high-value
online transaction, the terminal also asks the cardholder to enter the PIN but instead
keeps it and sends it to the acquiring bank together with the cryptogram.

Cryptogram generation. The terminal sends to the card the transaction details
TX′ comprising the currency, the amount, and the date; and either ⊥ (when the
transaction is low-value), or, the entered uPIN (when the transaction is high-value
offline). The card computes kcb:= h(ϕ(a · c, ϕ(bt, g))), which serves as a symmetric
session key between the card and the acquiring bank for this transaction only. Then
the card generates one of the cryptograms.

• AC := ⟨a, PAN,TX⟩ if no uPIN has been received.

• ACok := ⟨a, PAN,TX, ok⟩ if the received uPIN is correct.

• AC⊥ := ⟨a, PAN,TX,⊥⟩ otherwise.

Finally, the card uses the master key mk that has already been shared between
the card and the issuing bank to compute hash-based message authentication code
of the form h(⟨AC, mk⟩) and replies, respectively, with one the following messages
to the terminal.

• {⟨AC, h(⟨AC, mk⟩)⟩}kcb

• ⟨{⟨ACok, h
(
⟨ACok, mk⟩

)
⟩}kcb , ok⟩

• ⟨{⟨AC⊥, h
(
⟨AC⊥, mk⟩

)
⟩}kcb ,⊥⟩

Each of these messages corresponds to the cryptograms described and contains
additional information on whether the PIN was successfully verified by the card (ok
entry) or the PIN verification has failed (⊥ entry) since the terminal cannot open
the cryptogram encrypted for the acquiring bank.

100 Chapter 4. How to design an unlinkable smartcard-based payment protocol.

Notice that the card includes a nonce a in each of the cryptograms to make it
unique per session. The fact that the same a is used for blinding the card’s public
key at the initialisation step allows the bank to strongly connect the cryptogram
to the current session, thereby avoiding the cryptogram being replayed in other
sessions. Although a trusted terminal is already assured that a valid card generated
the cryptogram in the current session, it is beneficial for the bank to also check
this. This is because the bank may not fully trust the terminal to be implemented
correctly, in which case, if the terminal fails to authenticate the card properly as
described in the validity check stage above, the terminal cannot be reimbursed for
the cryptogram generated by an honest card in another session and replayed in a
session with an unauthenticated device posing as a card. Therefore UTX ensures the
recent aliveness of the card from the perspective of the bank, even in the presence
of compromised terminals.

Message integrity is outside of the symbolic model we use to analyse the UTX
protocol. In practice, however, the integrity of this last message from the card to
the terminal should be guaranteed. It is especially important for high-value of-
fline transactions, as an attacker with the stolen card may attempt to use that card
without knowing the PIN by altering bits corresponding to the ok element of the
response, therefore tricking the terminal into believing that the PIN was verified
successfully. The application cryptogram will later be rejected by the bank, how-
ever, an attacker would be gone with the goods. The integrity of the message
may be achieved by computing two different keys (thus avoiding potential key-
cycles [AR02, Lau02]) instead of one kc=E kt at the initialisation step as follows. A
shared key material is padded with 0, and then hashed to obtain a session symmet-
ric key ks

c:= h(⟨ϕ(a · c, ϕ(t, g)) , 0⟩) =E h(⟨ϕ(t, ϕ(a, ϕ(c, g))) , 0⟩) =: ks
t . The same key

material is padded with 1, and then hashed to obtain a key to verify the message
integrity kh

c := h(⟨ϕ(a · c, ϕ(t, g)) , 1⟩) =E h(⟨ϕ(t, ϕ(a, ϕ(c, g))) , 1⟩) =: kh
t . Then the

card would respond with ⟨M, h
(
⟨M, kh

c ⟩
)
⟩, where M is one of the three responses

above. The terminal could then verify the integrity of the card’s response by com-
paring the hash of the first element of the received message with kh

c , and the second
element of the received message in a similar way the bank verifies the integrity of
the cryptogram in Transaction authorisation step we describe next.

Transaction authorisation. In the final stage of the protocol, the terminal asks the
bank to authorise the payment. The terminal uses the pre-established secret key kbt
that is shared with the acquiring bank to send the following.

• The transaction details TX′.

• The blinded card’s public key Z2 := ϕ(a, ϕ(c, g)).

• The encrypted cryptogram of one of the three types described above that it
has received from the card.

• The user-entered PIN uPIN in case the transaction is high-value online, or the
message ⊥ otherwise.

Recall that B in Fig. 4.3 represents both the acquiring and the issuing banks.
The acquiring bank uses its private key bt and the received card’s blinded public

4.3. Unlinkability and security analysis 101

key Z2 to compute the session symmetric key with the card kbc:= h(ϕ(bt,Z2)) =

h(ϕ(bt, ϕ(a, ϕ(c, g)))) and to decrypt the cryptogram. Internally to B, the acquiring
bank uses the PAN from the decrypted cryptogram to forward all the information
received from the terminal to the issuing bank. In turn, the issuing bank bank de-
termines mk, ϕ(c, g), and the PIN corresponding to the PAN received and performs
the following.

• It checks that the first element of the cryptogram hashed with mk equals the
second element, making sure the cryptogram is authentic.

• It checks that the transaction details TX′ received from the terminal match the
transaction details from the cryptogram: TX′ = TX

• It checks that the blinding factor a from the cryptogram multiplied by the
card’s public key ϕ(c, g) matches the blinded public key Z2 received from the
terminal: ϕ(a, ϕ(c, g)) = Z2.

• It checks the transaction history of the card and ensures that the received a
has not been used for an identical transaction, hence preventing a replay of
the cryptogram. This replaces the transaction counter (ATC) mechanism from
the EMV standard.

• If the transaction value is high, the bank checks if the ok tag is present in
the cryptogram and proceeds with the reply, otherwise, if the ok tag is not
present, the bank checks if the received uPIN matches the card’s PIN: uPIN =

PIN and proceeds with the reply.

If the above is successful, the terminal receives the reply message ⟨TX, accept⟩
encrypted with kbt.

Notice that in UTX the payment system still uses the PAN to route payments
between acquiring and issuing banks, however, it is now hidden from the terminal
in contrast to the current EMV standard, where it is exposed. The main changes
to the infrastructure to roll out UTX are as follows. The acquiring bank requires a
key for decrypting the cryptogram. The issuing bank requires to ensure itself that
the nonce from the cryptogram is tied to the legitimate card-terminal session. In
addition, a substantial update is needed for public key infrastructure explained in
Sec 4.2.2, 4.2.4.

4.3 Unlinkability and security analysis

As in the previous chapter, where we have analysed only the key agreement phase,
we will employ quasi-open bisimilarity to define and then verify the unlinkability
of UTX, and we will use the ProVerif tool with its corresponding assertions mecha-
nism to define and then verify the security properties of UTX. We focus the analysis
on the core component of our protocol, modelling its key agreement and transac-
tion authorisation steps. We omit the application selection step as it involves only
constant messages that are the same for all sessions. We also restrict the analysis
to the case where all cards are synchronised to execute within the same month MM,

102 Chapter 4. How to design an unlinkable smartcard-based payment protocol.

leaving the modelling and verification of what happens when there is a transition
from one month to the next as future work.

Validity and unlinkability. Exposing the fact that the card is valid within the
current month carries two following risks. Firstly, it would be relatively easy to
distinguish expired cards from most cards since they will fail to provide a certificate
for the current month. However, it is natural to expect that cardholders are issued
new cards before they expire, and those expired cards are destroyed, and hence
we do not consider this to be a privacy concern. Secondly, cards that are not used
every month (such as a card for a savings account) can be distinguished from more
regularly used cards since they may be ready to present certificates to an active
attacker more than a month out of date. However, we consider such cards to be
outliers excluded from the analysis of unlinkability.

4.3.1 Attacker model

It is worth reflecting on the attacker model we assumed in the previous chapter.
As usual, our attacker is the implicit environment that interacts with honest partic-
ipants. What is special is that we assume that cardholders only enter their PIN into
honest terminals. In other words, the cardholder uses terminals at reputable points
of sale that observe adequate security measures, such as security cameras, i.e. an
attacker that secretly interacts with the card without the cardholder’s awareness
cannot obtain the card’s PIN. The properties of unlinkability and PIN secrecy are
immediately compromised if the PIN is entered into a malicious terminal which
reveals the PIN to attackers. If an attacker possesses a PIN, clearly the card can
be stolen and then used for high-value purchases for which the PIN is required.
While theft may be mitigated by cancelling cards, an attacker knowing the PIN
may authorise high-value purchases via a relay attack, making it difficult for the
cardholder to dispute the transaction, as legally a cardholder is always held liable
for transactions authorised by a PIN; and hence the primary goal of the security of
money in the account would be compromised. Supposing that relay attacks were
mitigated, an attacker knowing the PIN may still attack unlinkability as follows.
For high-value transactions, it becomes possible for a terminal that remembers the
PIN to track cards by the fact that the same PIN is used. Moreover, even in a low-
value contact scenario not requiring the PIN, the PIN can nonetheless be used to
track specific individuals since such terminals remembering PINs can run a fake
session with a high-value amount requiring the PIN to be sent from the terminal
to the card in order to check if it has already seen this card before processing the
legitimate low-value transaction. In contrast to the above, for low-value contactless
payments, unlinkability is preserved even if the PIN is compromised.

Definitely, there are other attacker models we could have verified with respect
to. An example of a weaker one, which our analysis covers, is the attacker assumed
in the EMVCo proposal for key establishment [rfc12] we have discussed in the
previous chapter. An example of a stronger one, which is out of our scope, is an
adversary capable of side-channel attacks, e.g. by measuring the execution time of
cryptographic operations or the response time from the bank.

4.3. Unlinkability and security analysis 103

4.3.2 Formal specification of the protocol

We have three processes that model the three roles in UTX: the terminal, the card,
and the bank. We also have a top-level process in Fig. 4.7 representing the im-
plementation of UTX that expresses how three role processes are assembled and
instantiated across multiple payment sessions in full execution of the protocol.

The card. Th process below, represents the execution of a payment session by a
card.

νch.card⟨ch⟩.C(ch, c, ϕ(s, g) , vsigMM, PAN, mk, PIN)

The card’s process C, defined in Fig. 4.4, is parametrised by the session channel ch,
the card’s secret key c, the system-wide public key pks used to check the bank’s
certificate crt received from the terminal, the signature vsigMM on the card’s public
key for the current month (considering the currently valid month only simplifies
the initial analysis), the card number PAN, and the PIN.

C(ch, c, pks, vsigMM, PAN, mk, PIN) ≜

ch(z1).
νa. letz2 := ϕ(a, ϕ(c, g)) in

ch⟨z2⟩.
let kc:= h(ϕ(a · c, z1)) in

ch(m).
let ⟨⟨MM, yB⟩,MCs⟩ := dec(kc, m) in

if check(MCs, pks) = ⟨MM, yB⟩ then
ch⟨{⟨ϕ(a, ϕ(c, g)) , ϕ(a, vsigMM)⟩}kc⟩.
ch(x).
let ⟨TX, uPin⟩ := dec(kc, x) in
letAC := ⟨a, PAN,TX⟩in
letACok := ⟨a, PAN,TX, ok⟩in
letAC⊥ := ⟨a, PAN,TX,⊥⟩in
let kcb:= h(ϕ(a · c, yB)) in

if uPin =⊥ then

ch
〈
{{⟨AC, h(⟨AC, mk⟩)⟩}kcb}kc

〉
else if uPin = PIN then

ch
〈
{⟨{⟨ACok, h(⟨ACok, mk⟩)⟩}kcb , ok⟩}kc

〉
else

ch
〈
{⟨{⟨AC⊥, h(⟨AC⊥, mk⟩)⟩}kcb ,⊥⟩}kc

〉
Figure 4.4: Specifications of the card’s role in UTX.

First, the card establishes a key with the terminal, then checks the certificate
of the terminal and sends back its own monthly certificate (comprising its public
key and the corresponding Verheul signature) blinded with the scalar a used in

104 Chapter 4. How to design an unlinkable smartcard-based payment protocol.

the shared key establishment. Using the data provided in the terminal’s certifi-
cate, the card also generates kcb, which is a fresh symmetric key to be used by the
card to communicate securely with the bank (the terminal cannot obtain this key).
Upon receiving the transaction details, the card decides as follows: if no PIN has
been provided or the corresponding PIN matches its own PIN, the card accepts
the transaction and replies with the corresponding cryptogram. Otherwise, the
rejection cryptogram AC⊥ is generated and sent as a reply to the terminal.

The terminal. The modes in which a terminal can operate are combined in a role
T defined as follows:

νch.term⟨ch⟩.T(user, ch, pubMM, crt, kbt)

where ch identifies the communication channel used in that session, user is a secret
channel name used to enter the PIN, pubMM is the public key used for verifying the
card certificate for the given month, and kbt is a shared secret key between the ter-
minal and the bank. To incorporate various operation modes for the terminal, we
have three types of processes from which the terminal process T is made of: the pro-
cess for Online High-Value transactions Tonhi, for Offline High-Value transactions
Tonhi, and for Low-Value transactions Tlo, i.e. T is defined as Tonhi + Toffhi + Tlo.

Tonhi(user, ch, pkMM, crt, kbt) ≜
νTXdata.
letTX := ⟨TXdata, hi⟩ in
νt.letz1 := ϕ(t, g) in

ch⟨z1⟩.
ch(z2).
let kt:= h(ϕ(t, z2)) in

ch⟨{crt}kt⟩.
ch(n).
let ⟨B,Bs⟩ := dec(kt, n) in
if vcheck(Bs, pkMM) = B then

if B = z2 then

user(uPIN).

ch⟨{⟨TX,⊥⟩}kt⟩.
ch(y).

ch⟨{⟨TX, z2, dec(kt, y) , uPIN⟩}kbt⟩.
ch(r).
if dec(kbt, r) = ⟨TX, rtype⟩
if rtype = accept then

ch⟨auth⟩

Figure 4.5: Specification of the online high-value terminal’s role in UTX.

4.3. Unlinkability and security analysis 105

Initially, each terminal proceeds with the key establishment phase with the
card, then it sends its certificate, and checks the received month certificate. High-
Value terminals rely on the PIN received from the user channel to perform transac-
tion authorisation. To represent the different types of transactions that can occur, we
have constants lo and hi for low-value and, respectively, high-value transactions.
The Online High-Value terminal process is given in Fig. 4.5. Since the transaction
is high-value, the PIN is required, and after the initialisation, the user enters the
PIN using the channel user. The terminal sends the transaction details to the card,
receives the cryptogram as a response, and sends it together with the entered PIN
to the bank. Since we are in online mode, the terminal authorises the transaction
only after the confirmation from the bank has been received.

The Offline High-Value and Low-Value terminal behaviours are similar, and
their specifications appear in the proof of Theorem 8 in Sec. 4.3.3 where we analyse
the unlinkability of UTX. In the Offline High-Value, the user enters the PIN after
the initialisation, and the terminal sends this PIN for verification to the card since
the transaction is offline. The terminal accepts the transaction only if it receives
the ok reply from the card. Regardless of the outcome, the terminal also sends
the cryptogram to the bank. The Low-Value terminal does not require the PIN.
Depending on the mode, online or offline, the terminal authorises a transaction,
respectively, after receiving the confirmation from the bank or after receiving the
application cryptogram from the card.

The bank. The process B, specified in Fig. 4.6, that connects to a terminal session
identified by the shared key kbt is represented as follows.

νch.bank⟨ch⟩.B(ch, si, kbt, bt)

In addition to kbt, its parameters are the session channel ch, the system-wide chan-
nel si that is used by the payment system to access the card database, and the
bank’s secret key bt. We model each entry inserted into the card database using
the instruction !⟨si, PAN⟩⟨⟨PIN, mk, ϕ(c, g)⟩⟩, and the corresponding entry can be
read by receiving a message on the channel consisting of the pair ⟨si, PAN⟩ where
the first component of the channel keeps the database private to the bank and the
second component indicates the entry to look up.

After receiving a transaction request from a terminal, the bank derives the
symmetric key with the card kbc, obtains the PAN from the application cryptogram,
and uses it to obtain the card’s PIN, its master key mk, and the public key ϕ(c, g)
from the database channel si. The integrity of the cryptogram is then checked
against the corresponding information from the database, taking into account the
verification of the PIN if the transaction is high value. If all the checks are ok, the
transaction is accepted, otherwise not; and in all cases, a confirmation message is
sent in reply to the terminal.

106 Chapter 4. How to design an unlinkable smartcard-based payment protocol.

B(ch, si, kbt, bt) ≜

ch(x).
let ⟨TX′, z2,EAC, uPIN⟩ := dec(kbt, x)
let kbc:= h(ϕ(bt, z2)) in

let ⟨AC,AChmac⟩=dec(kbc,EAC)in
let ⟨xa,PAN,TX,pinV⟩ = AC in

⟨si, PAN⟩(PIN, mk, pkc).
if h(⟨AC, mk⟩) = AChmac then

if TX = TX' then

if ϕ(xa, pkc) = z2

let ⟨TXdata,TXtype⟩ := TX' in

if TXtype = lo then

ch⟨{⟨TX', accept⟩}kbt⟩
else if TXtype = hi then

if (pinV=ok)∨(uPIN=PIN) then

ch
〈
{⟨TX′, accept⟩}kbt

〉
.

else

ch⟨{⟨TX', reject⟩}kbt⟩.

Figure 4.6: Specification of the bank’s role in UTX.

The full protocol. To complete the specification, we present the full system in
Fig. 4.7a. It operates as follows. At the start, the system-wide parameters are
generated and public data that includes the system public key pk(s) and the month
public key vpk(χMM) is announced on the public channel out. A new card is issued
by the generation of the card-specific parameters PIN, mk, c, and PAN, and can
participate in many sessions, hence the red replication operator “!”. Notice that
together with the card the system has a user⟨PIN⟩ process that models the user
entering PIN into a terminal on the channel user known only to terminals; and the
process ⟨si, PAN⟩⟨⟨PIN, mk, ϕ(c, g)⟩⟩ that models the entry into the card database
that the bank can access to get the card’s data. The bottom part of the figure
specifies the back end of the system, i.e. the banks and the terminals. There is
a system-wide secret key of the bank bt and session-wise (hence the replicated)
symmetric key between the bank and the terminal kbt. Notice that, as previously,
we endow our attacker with the power to observe which agents are communicating
using public session channels ch. In what follows, we reason about the protocol in
this strong adversarial setting.

4.3. Unlinkability and security analysis 107

(a) The real protocol specification UTXimpl.

ν user, s, si, χMM.out⟨pk(s)⟩.out⟨vpk(χMM)⟩.
(

!νPIN, mk, c, PAN.
(

let crtC := vsig(ϕ(c, g) , χMM) in
!νch.card⟨ch⟩.C(ch, c, ϕ(s, g) , crtC, PAN, mk, PIN)

| !user⟨PIN⟩| !⟨si, PAN⟩⟨⟨PIN, mk, ϕ(c, g)⟩⟩
)
|

νbt.!νkbt.
(

νch.bank⟨ch⟩.B(ch, si, kbt, bt) |
let crt := ⟨⟨MM, ϕ(bt, g)⟩, sig(⟨MM, ϕ(bt, g)⟩, s)⟩in
νch.term⟨ch⟩.T(user, ch, vpk(χMM) , crt, kbt)

))
(b) The ideal unlinkable protocol specification UTXspec.

ν user, s, si, χMM.out⟨pk(s)⟩.out⟨vpk(χMM)⟩.
(

!νPIN, mk, c, PAN.
(

let crtC := vsig(ϕ(c, g) , χMM) in
νch.card⟨ch⟩.C(ch, c, ϕ(s, g) , crtC, PAN, mk, PIN)

| !user⟨PIN⟩| !⟨si, PAN⟩⟨⟨PIN, mk, ϕ(c, g)⟩⟩
)
|

νbt.!νkbt.
(

νch.bank⟨ch⟩.B(ch, si, kbt, bt) |
let crt := ⟨⟨MM, ϕ(bt, g)⟩, sig(⟨MM, ϕ(bt, g)⟩, s)⟩in
νch.term⟨ch⟩.T(user, ch, vpk(χMM) , crt, kbt)

))
Figure 4.7: Specifications for the real UTX protocol and its ideal unlinkable version.

4.3.3 The proof of unlinkability of UTX

In this section, we give the formal definition of unlinkability for UTX protocol and
formally prove that the UTX is unlinkable.

The formal definition of unlinkability. Recall that the core of the unlinkabil-
ity scheme is the equivalence between the idealised and the real-world system.
We define both in Fig. 4.7. Notice that in the system UTXimpl defining the real-
world scenario the card with the private key c can participate in any number
of sessions, while in the specification UTXspec defining the idealised situation,
the card can only participate in one session at most. The possibility of entering
the PIN arbitrarily many times is given by the process !user⟨PIN⟩, and access-
ing the database in arbitrarily many bank-terminal sessions given by the process
!⟨si, PAN⟩⟨⟨PIN, mk, ϕ(c, g)⟩⟩, remains the same for both real and idealised worlds.

We are ready to give the unlinkability definition for the UTX protocol.

Definition 14. (unlinkability) We say that the payments are unlinkable if UTXimpl ∼
UTXspec.

There is a difference with the Def. 9 of unlinkability for key establishment given
in Sec. 3.3.3 where the terminal and the bank are deliberately omitted. The reason
is that the key establishment in isolation requires no shared secret between the

108 Chapter 4. How to design an unlinkable smartcard-based payment protocol.

parties, yet to execute, for instance, a full high-value transaction, at least the PIN is
required to be shared between all three parties involved in the protocol. In addition,
to validate a transaction there is a secret mk shared between the bank and the card,
meaning that, even if only transactions without the PIN are modelled, the bank and
card must be explicitly modelled in a transaction and we cannot incorporate the
compositionality argument from Theorem 4 in Sec. 2.2.4, however compositionality
will appear in the corollary of the theorem we are ready to formulate.

Theorem 8. The UTX protocol is unlinkable.

Proof. It is worth outlining the idea of the proof first. As in the examples from Chap-
ter 2 and Theorem 7 from the previous chapter to prove that UTXspec ∼ UTXimpl

we construct a relation R, s.t. UTXspec RUTXimpl and then check that it is a quasi-
open bisimulation (Def. 5 from Sec. 2.2.2). i.e. we verify that each state can match
each other’s actions, that R is open, i.e. that an attacker to distinguish between
two worlds by manipulating free variables (Def. 4 from Sec. 2.2.2), and that any
related states are statically equivalent (Def. 3 from Sec. 2.2.2). We form the relation
R by pairing the states based on the number of sessions started with terminals,
cards, and banks and the respective stages of each session; we ignore the number
of exhausted processes that model entering the PIN and accessing the database for
card’s details.

First, let us define three parameters lists χ⃗ := (ch, c, s, χMM, PAN, mk, PIN)1,
ψ⃗ := (ch, pkMM, crt, ch), and ω⃗ := (ch, si, ch, bt); and “tail” subprocesses represent-
ing different stages of the execution for each role specification. A process high-
lighted in blue defines the process starting from the next line, i.e. each tail sub-
process defines actions left to complete the protocol. For instance, C2(χ⃗, z1) ≜
νa.ch⟨ϕ(a, ϕ(c, g))⟩.C3(χ⃗, z1, a). For terminal tails to be properly defined we include
the output of the auth message when the respective terminal accepts the transac-
tion.

1χ⃗, that always comes without vector, should not be confused with the private key χMM, that always
cones with a subscript MM.

4.3.
U

nlinkability
and

security
analysis

109

C(ch, c, pks, vsigMM, PAN, mk, PIN) ≜

C1(χ⃗)

ch(z1).
C2(χ⃗, z1)

νa.ch⟨ϕ(a, ϕ(c, g))⟩.
C3(χ⃗, z1, a)
let kc:= h(ϕ(a · c, z1)) in

ch(m).
C4(χ⃗, kc, a, m)

let ⟨MC,MCs⟩ := dec(kc, m) in

if check(MCs, pks) = MC then

if p1(MC) = MM then

ch⟨{⟨ϕ(a, ϕ(c, g)) , ϕ(a, vsigMM)⟩}kc⟩.
C5(χ⃗, kc, a, m)

ch(x).
C6(χ⃗, kc, a, m, x)
let ⟨TX, uPin⟩ := dec(kc, x) in
letAC := ⟨a, PAN,TX⟩in
letACok := ⟨a, PAN,TX, ok⟩in
letAC⊥ := ⟨a, PAN,TX,⊥⟩in
let kcb:= h(ϕ(a · c, p3(p1(dec(kc, m))))) in

if uPin =⊥ then

ch
〈
{{⟨AC, h(⟨AC, mk⟩)⟩}kcb}kc

〉
if uPin = PIN then

ch
〈
{⟨{⟨ACok, h

(
⟨ACok, mk⟩

)
⟩}kcb , ok⟩}kc

〉
else ch

〈
{⟨{⟨AC⊥, h

(
⟨AC⊥, mk⟩

)
⟩}kcb ,⊥⟩}kc

〉
C7 ≜ 0

B(ch, si, kbt, bt) ≜

B1(ω⃗)

ch(x).
B2(ω⃗, x)
let dx := dec(kbt, x) in
letPAN := p2(p1(dec(ϕ(bt, p2(dx)) , p3(dx)))) in
⟨si, PAN⟩(y).
B3(ω⃗, x, y)
let ⟨TX′, z2,EAC, uPIN⟩ := dec(kbt, x)
let kbc:= h(ϕ(bt, z2)) in

let ⟨AC,AChmac⟩ = dec(kbc,EAC) in
let ⟨PIN, mk, pkc⟩ := y
if h(⟨AC, mk⟩) = AChmac then

if p3(AC) = TX′ then

if ϕ(p1(AC) , pkc) = z2

let r := ⟨TX′, accept⟩in
if p2

(
TX′) = lo then

ch⟨{r}kbt⟩
if p2

(
TX′) = hi then

if p4(AC) = ok then

ch⟨{r}kbt⟩
else if uPIN = PIN then

ch⟨{r}kbt⟩
B4 ≜ 0

110
C

hapter
4.

H
ow

to
design

an
unlinkable

sm
artcard-based

paym
entprotocol.

Tonhi(user, ch, pkMM, crt, kbt) ≜

T ONH1(user, ψ⃗)

νTXdata.letTX := ⟨TXdata, hi⟩in
νt.ch⟨ϕ(t, g)⟩.
T ONH2(user, ψ⃗, t,TX)
ch(z2).

T ONH3(user, ψ⃗, t,TX, z2)

let kt:= h(ϕ(t, z2)) in

ch⟨{crt}kt⟩.
T ONH4(user, ψ⃗, t,TX, z2)

ch(n).

T ONH5(user, ψ⃗, t,TX, z2, n)
let ⟨B,Bs⟩ := dec(kt, n) in
if vcheck(Bs, pkMM) = B then

if B = z2 then

user(uPIN).

T ONH6(user, ψ⃗, t,TX, z2, n, uPIN)

ch⟨{⟨TX,⊥⟩}kt⟩.
T ONH7(user, ψ⃗, t,TX, z2, n, uPIN)
ch(y).

T ONH8(user, ψ⃗, t,TX, z2, n, uPIN, y)

ch⟨{⟨TX, z2, dec(kt, y) , uPIN⟩}kbt⟩.
T ONH9(user, ψ⃗, t,TX, z2, n, uPIN, y)
ch(r).

T ONH10(user, ψ⃗, t,TX, z2, n, uPIN, y, r)
if p1(dec(kbt, r)) = TX then

if p2(dec(kbt, r)) = accept then

ch⟨auth⟩T ONH11 ≜ 0

Toffhi(user, ch, pkMM, crt, kbt) ≜

T OFH1(user, ψ⃗)

νTXdata.letTX := ⟨TXdata, hi⟩in
νt.ch⟨ϕ(t, g)⟩.
T OFH2(user, ψ⃗, t,TX)
ch(z2).

T OFH3(user, ψ⃗, t,TX, z2)

let kt:= h(ϕ(t, z2)) in

ch⟨{⟨crt⟩}kt⟩.
T OFH4(user, ψ⃗, t,TX, z2)

ch(n).

T OFH5(user, ψ⃗, t,TX, z2, n)
let ⟨B,Bs⟩ := dec(kt, n) in
if vcheck(Bs, pkMM) = B then

if B = z2 then

user(uPIN).

T OFH6(user, ψ⃗, t,TX, z2, n, uPin)

ch⟨{⟨TX, uPin⟩}kt⟩.
T OFH7(user, ψ⃗, t,TX, z2, n, uPin)
ch(y).

T OFH8(user, ψ⃗, t,TX, z2, n, uPin, y)
if p2(dec(kt, y)) = ok then

ch⟨auth⟩.
T OFH9(user, ψ⃗, t,TX, z2, n, uPin, y)

ch⟨{⟨TX, z2,EAC,⊥⟩}kbt⟩
T OFH10(user, ψ⃗, t,TX, z2, n, uPin, y)
if p2(dec(kt, y)) ̸= ok then

ch⟨{⟨TX, z2,EAC,⊥⟩}kbt⟩T OFH11 ≜ 0

Tlo(ch, pkMM, crt, kbt) ≜

T LO1(ψ⃗)

νTXdata.letTX := ⟨TXdata, lo⟩in
νt.ch⟨ϕ(t, g)⟩.
T LO2(ψ⃗, t,TX)
ch(z2).

T LO3(ψ⃗, t,TX, z2)

let kt:= h(ϕ(t, z2)) in

ch⟨{crt}kt⟩.
T LO4(ψ⃗, t,TX, z2)

ch(n).

T LO5(ψ⃗, t,TX, z2, n)
let ⟨B,Bs⟩ := dec(kt, n) in
if vcheck(Bs, pkMM) = B then

if B = z2 then

ch⟨{⟨TX,⊥⟩}kt⟩.
T LO6(ψ⃗, t,TX, z2, n)
ch(y).

T LO7(ψ⃗, t,TX, z2, n, y)

ch⟨{⟨TX, z2, dec(kt, y) ,⊥⟩}kbt⟩.
T LO8(ψ⃗, t,TX, z2, n, y)
ch(r).

T LO9(ψ⃗, t,TX, z2, n, y, r)
if p1(dec(kbt, r)) = TX then

if p2(dec(kbt, r)) = accept then

ch⟨auth⟩T LO10 ≜ 0

4.3. Unlinkability and security analysis 111

The idea behind forming R is to pair all reachable states based on the num-
ber of sessions, yet ignoring the number of existing cards. If not specified oth-
erwise, below we talk about started sessions, i.e. the ones with the announced
channel, hence we define the following sets of sessions: D := {1 . . . D} for cards,
FG := {1 . . . F + G} for terminals, and FM := {1 . . . F + M} for the bank, where F
is the number of bank-terminal sessions with a shared secret key kbt. These reach-
able states are defined by partitions of the session sets, where the element of the
partition defines all sessions at a certain stage. We consider the following parti-
tions. A := {α1 . . . α7} of D, Γ := {γon

1 . . . γon
11 , γof

1 . . . γof
1 1, γlo

1 . . . γlo
10} of FG, and

B := {β1 . . . β4} of FM. Here, e.g. α2 defines all sessions where the actions left
are defined by the process of the form C2(·), or, similarly, γof

5 defines all offline
high-value terminal sessions where the actions left are defined by T OFH5(·).

We also define the list of global parameters ϵ⃗ := (user, s, si, χMM), introduce the
shorthand for different transaction types TXi := ⟨TXdatai, lo⟩ or ⟨TXdatai, hi⟩, and
define the numbers E :=

⋃7
i=3 αi and L :=

⋃11
i=2 γon

i ∪ ⋃11
i=2 γof

i ∪ ⋃10
i=2 γlo

i standing
for the number of session where fresh blinding factor ai or fresh ephemeral private
key ti has already been generated.

The following processes are also required to make the definition of R less
bulky.

PCspec ≜νPIN, mk, c, PAN.(

νch.card⟨ch⟩.C(ch, c, ϕ(s, g) , vsig(ϕ(c, g) , χMM) , PAN, mk, PIN) |
!user⟨PIN⟩|
!⟨si, PAN⟩⟨⟨PIN, mk, ϕ(c, g)⟩⟩)

PCimpl ≜ νPIN, mk, c, PAN.!(

νch.card⟨ch⟩.C(ch, c, ϕ(s, g) , vsig(ϕ(c, g) , χMM) , PAN, mk, PIN) |
user⟨PIN⟩|
⟨si, PAN⟩⟨⟨PIN, mk, ϕ(c, g)⟩⟩)

PBT ≜ νbt.!νkbt.(

νch.bank⟨ch⟩.B(ch, si, ch, bt) |
let crt := ⟨⟨MM, ϕ(bt, g)⟩, sig(⟨MM, ϕ(bt, g)⟩, s)⟩in
νch.term⟨ch⟩.Tonhi(user, ch, vpk(χMM) , crt, kbt) +
νch.term⟨ch⟩.Toffhi(user, ch, vpk(χMM) , crt, kbt) +
νch.term⟨ch⟩.Tlo(ch, vpk(χMM) , crt, kbt))

112 Chapter 4. How to design an unlinkable smartcard-based payment protocol.

We define the processes corresponding to different stages of the bank’s and
card’s executions, and the processes corresponding to the user entering the PIN,
and the bank looking up for the card’s details. In what follows kc

i (a, x) := h(ϕ(a · ci, x)).
Also, let K be the total number of card sessions for which the channel is not yet an-
nounced in the spec world, H be the number of cards in the impl world, the list
K⃗ := {K1, . . . , KH} be s.t. Kh defines the number of sessions with the card h for
which the channel is not yet announced in the impl world, Λ := {λ1 . . . λH} be the
partition of D, where λh is the set of sessions with the card h in the impl world, and
finally Dh := |λh|. To keep track of inputs in the card, bank, and terminal sessions
we use matricies X

D×3
, Y

G×1
and Z

F×4
respectively; the element (i, j) defines jth input

in the ith session.

Bi =

νch.bank⟨ch⟩.B(ch, si, kbti, bt) if i ∈ FG \ FM
B1(ω⃗i) if i ∈ β1

B2(ω⃗i, Yi
1σ) if i ∈ β2

B3(ω⃗i, Yi
1σ, DB) if i ∈ β3

B4 if i ∈ β4

Ci =

νch.card⟨ch⟩.
C(ch, ci, ϕ(s, g) , vsig(ϕ(c, g) , χMM) , PANi, mki, PINi)

if i /∈ D, i ≤ K

C1(χ⃗i) if i ∈ α1

C2(χ⃗i, X1
i σ) if i ∈ α2

C3(χ⃗i, X1
i σ, ai) if i ∈ α3

C4(χ⃗i, kc
i (ai, X1

i σ), ai, X2
i σ) if i ∈ α4

C5(χ⃗i, kc
i (ai, X1

i σ), ai, X2
i σ) if i ∈ α5

C6(χ⃗i, kc
i (ai, X1

i σ), ai, X2
i σ, X3

i σ) if i ∈ α6

C7 if i ∈ α7

Cj
i =

νch.card⟨ch⟩.C(ch, cj, ϕ(s, g) , vsig(ϕ(c, g) , χMM) , PANj, mk j, PINj) if i /∈ D, i ≤ Kj

C1(χ⃗j) if i ∈ α1 ∩ λj

C2(χ⃗j, X1
i σ) if i ∈ α2 ∩ λj

C3(χ⃗j, X1
i σ, ai) if i ∈ α3 ∩ λj

C4(χ⃗j, kc
j (ai, X1

i σ), ai, X2
i σ) if i ∈ α4 ∩ λj

C5(χ⃗j, kc
j (ai, X1

i σ), ai, X2
i σ) if i ∈ α5 ∩ λj

C6(χ⃗j, kc
j (ai, X1

i σ), ai, X2
i σ, X3

i σ) if i ∈ α6 ∩ λj

C7 if i ∈ α7 ∩ λj

U j
i =

0

if j ≤ H and ∃l ∈ ⋃11
t=6 γon

t or l ∈⋃9
t=6 γof

t s.t. PINj is consumed in session
l

user
〈
PINj

〉
if j ≤ H and else

DBj
i =

0

if j ≤ H and ∃l ∈ β3 ∪ β4, s.t. param-
eters of the card j are consumed in the
session l

⟨si, PANj⟩
〈
⟨PINj, mk j, ϕ

(
cj, g

)
⟩
〉

if j ≤ H and else

4.3. Unlinkability and security analysis 113

We define the processes corresponding to different stages of the terminal’s
execution.

Ti =

T ONH1(user, ψ⃗i) if i ∈ γon
1

T ONH2(user, ψ⃗i, ti, TXi) if i ∈ γon
2

T ONH3(user, ψ⃗i, ti, TXi, Z1
i σ) if i ∈ γon

3
T ONH4(user, ψ⃗i, ti, TXi, Z1

i σ) if i ∈ γon
4

T ONH5(user, ψ⃗i, ti, TXi, Z1
i σ, Z2

i σ) if i ∈ γon
5

T ONH6(user, ψ⃗i, ti, TXi, Z1
i σ, Z2

i σ, uPIN) if i ∈ γon
6

T ONH7(user, ψ⃗i, ti, TXi, Z1
i σ, Z2

i σ, uPIN) if i ∈ γon
7

T ONH8(user, ψ⃗i, ti, TXi, Z1
i σ, Z2

i σ, uPIN, Z3
i σ) if i ∈ γon

8
T ONH9(user, ψ⃗i, ti, TXi, Z1

i σ, Z2
i σ, uPIN, Z3

i σ) if i ∈ γon
9

T ONH10(user, ψ⃗i, ti, TXi, Z1
i σ, Z2

i σ, uPIN, Z3
i σ, R) if i ∈ γon

10
T ONH11 if i ∈ γon

11
T OFH1(user, ψ⃗i) if i ∈ γof

1
T OFH2(user, ψ⃗i, ti, TXi) if i ∈ γof

2
T ONH3(user, ψ⃗i, ti, TXi, Z1

i σ) if i ∈ γof
3

T ONH4(user, ψ⃗i, ti, TXi, Z1
i σ) if i ∈ γof

4
T ONH5(user, ψ⃗i, ti, TXi, Z1

i σ, Z2
i σ) if i ∈ γof

5
T ONH6(user, ψ⃗i, ti, TXi, Z1

i σ, Z2
i σ, uPIN) if i ∈ γof

6
T ONH7(user, ψ⃗i, ti, TXi, Z1

i σ, Z2
i σ, uPIN) if i ∈ γof

7
T ONH8(user, ψ⃗i, ti, TXi, Z1

i σ, Z2
i σ, uPIN, Z3

i σ) if i ∈ γof
8

T ONH9(user, ψ⃗i, ti, TXi, Z1
i σ, Z2

i σ, uPIN, Z3
i σ) if i ∈ γof

9
T ONH10(user, ψ⃗i, ti, TXi, Z1

i σ, Z2
i σ, uPIN, Z3

i σ) if i ∈ γof
10

T ONH11 if i ∈ γof
11

T LO1(ψ⃗i) if i ∈ γlo
1

T LO2(ψ⃗i, ti, TXi) if i ∈ γlo
2

T LO3(ψ⃗i, ti, TXi, Z1
i σ) if i ∈ γlo

3
T LO4(ψ⃗i, ti, TXi, Z1

i σ) if i ∈ γlo
4

T LO5(ψ⃗i, ti, TXi, Z1
i σ, Z2

i σ) if i ∈ γlo
5

T LO6(ψ⃗i, ti, TXi, Z1
i σ, Z2

i σ) if i ∈ γlo
6

T LO7(ψ⃗i, ti, TXi, Z1
i σ, Z2

i σ, Z3
i σ) if i ∈ γlo

7
T LO8(ψ⃗i, ti, TXi, Z1

i σ, Z2
i σ, Z3

i σ) if i ∈ γlo
8

T LO9(ψ⃗i, ti, TXi, Z1
i σ, Z2

i σ, Z3
i σ, R) if i ∈ γlo

9
T LO10 if i ∈ γlo

10

Or, otherwise

Ti =

νch.term⟨ch⟩.Tonhi(user, ch, vpk(χMM) , crt, kbti) +

νch.term⟨ch⟩.Toffhi(user, ch, vpk(χMM) , crt, kbti) +

νch.term⟨ch⟩.Tlo(ch, vpk(χMM) , crt, kbt)i

if i ∈ FM\FG

114 Chapter 4. How to design an unlinkable smartcard-based payment protocol.

Now we define the generic state (K, F, A, Γ, B)spec(X, Y, Z) in the spec world.

(K, F, A, Γ, B)spec(X, Y, Z) ≜
ν ϵ⃗, PIN1...D+K, mk1...D+K, c1...D+K, PAN1...D+K,

ċh1...D, a1...E, bt, ch1...F+G+M, c̈h1...F+G,
...
ch1...F+M, t1...L,TX1...L.(σ |

C1 | . . . | 0 | !user⟨PIN1⟩|
. . . | 0 | !⟨si, PAN1⟩⟨⟨PIN1, mk1, ϕ(c1, g)⟩⟩) |

. . .

Ci | . . . | 0 | !user⟨PINi⟩|
. . . | 0 | !⟨si, PANi⟩⟨⟨PINi, mki, ϕ(ci, g)⟩⟩) |

. . .

CD+K | . . . | 0 | !user⟨PIND+K⟩|
. . . | 0 | !⟨si, PAND+K⟩⟨⟨PIND+K, mkD+K, ϕ(cD+K, g)⟩⟩) |

!PCspec |
B1 | T1 |
. . . |
Bj | Tj |
. . . |
BF+G+M | TF+G+M | !PBT)

4.3. Unlinkability and security analysis 115

(K⃗, F, A, Γ, B, Λ)impl(X, Y, Z) defines the generic state in impl scenario.

(K⃗, F, A, Γ, B, Λ)impl(X, Y, Z) ≜
ν⃗ϵ, PIN1...H, mk1...H, c1...H, PAN1...H, ċh1...D,

a1...E, bt, ch1...F+G+M, c̈h1...F+G,
...
ch1...F+M

t1...L,TX1...L.(θ |
C1

1 | U1
1 | DB1

1 |
. . .
C1

i1 | U1
i1 | DB1

i1 |. . .
C1

D1+K1
| U1

D1+K1
| DB1

D1+K1
|

!(νch.card⟨ch⟩.C(ch, cj, ϕ(s, g) , vsig(ϕ(c, g) , χMM) , PANj, mk j, PINj) |
user⟨PIN1⟩| DB(si, PAN1, mk1, PIN1)) |. . .
Ch

Dh−1+Kh−1+1 | Uh
Dh−1+Kh−1+1 | DBh

Dh−1+Kh−1+1 |
. . .
Ch

ih
| Uh

ih
| DBh

ih
|

. . .
Ch

Dh−1+Kh−1+Dh+Kh
| Uh

Dh−1+Kh−1+Dh+Kh
|

DBh
Dh−1+Kh−1+Dh+Kh

|
!(νch.card⟨ch⟩.C(ch, ch, ϕ(s, g) , vsig(ϕ(c, g) , χMM) , PANh, mkh, PINh) |
user⟨PINh⟩| DB(si, PANh, mkh, PINh)) |. . .
CH

DH−1+KH−1+1 | UH
DH−1+KH−1+1 | DBH

DH−1+KH−1+1 |
. . .
CH

iH
| UH

iH
| DBH

iH
|

. . .
CH

DH−1+KH−1+DH+KH
| UH

DH−1+KH−1+DH+KH
|

DBH
DH−1+KH−1+DH+KH

|
!(νch.card⟨ch⟩.C(ch,cH,ϕ(s,g),vsig(ϕ(c,g),χMM),PANH,mkH,PINH) |
user⟨PINH⟩| DB(si, PANH, mkH, PINH)) |
!PCimpl |
B1 | T1 |
. . . |
Bj | Tj |. . . |
BF+G+M | TF+G+M | !PBT)

116 Chapter 4. How to design an unlinkable smartcard-based payment protocol.

Using the notation introduced above we are ready to define the relation R

as the least symmetric open relation satisfying the conditions in Fig. 4.10. Notice
that the generic impl state is additionally parametrised by the partition Λ which
elements track all sessions with a particular card (similarly to the partition Ω in the
proof of Theorem 7).

UTXspec R UTXimpl

UTX1
spec ≜

ν⃗ϵ.(
{
pk(s)/pks

}
|

out⟨vpk(χMM)⟩.(!PCspec | νbt.!PBT))

R

UTX1
impl ≜

ν⃗ϵ.(
{
pk(s)/pks

}
|

out⟨vpk(χMM)⟩.(!PCimpl | νbt.!PBT))

UTX2
spec ≜ ν⃗ϵ.(σ0 | !PCspec | νbt.!PBT) R ν⃗ϵ.(σ0 | !PCimpl | νbt.!PBT) ≜ UTX2

impl

(K, F, A, Γ, B)spec(X, Y, Z) R (K⃗, F, A, Γ, B, Λ)impl(X, Y, Z)

Figure 4.10: Defining conditions for the bisimulation relation R.

To conclude the definition of R we should clarify which messages are available
to an attacker at a given state, i.e. to define the substitutions σ0, σ and θ. The
definition of σ0 is straightforward.

σ0 =
{
pk(s),vpk(χMM)/pks,pkMM

}
To define of σ and θ we introduce the following shorthand for messages.

ecert(t̂, x) = {⟨⟨MM, ϕ(bt, g)⟩, sig(⟨MM, ϕ(bt, g)⟩, s)⟩}
h(ϕ(t̂,x))

emcert(a, c, x) = {⟨ϕ(a, ϕ(c, g)) , ϕ(a, vsig(ϕ(c, g) , χMM))⟩}h(ϕ(a·c,x))

etx(t, tx, x) = {⟨tx,⊥⟩}h(ϕ(t,x))
etxpin(t, tx, x, uPIN) = {⟨tx, uPIN⟩}h(ϕ(t,x))
Let AC= ⟨a,PAN,p1(dec(h(ϕ(a ·c,x)) ,z))⟩,ACok= ⟨a,PAN,p1(dec(h(ϕ(a ·c,x)) ,z)) ,ok⟩
AC⊥ = ⟨a, PAN, p1(dec(h(ϕ(a · c, x)) , z)) ,⊥⟩, k̂bt = p3(p1(dec(h(ϕ(a · c, x)) , y))) in

eaclo(a, c, mk, PAN, x, y, z) = {{⟨AC, h(⟨AC, mk⟩)⟩}
h(ϕ(a·c,k̂bt))}h(ϕ(a·c,x))

eachi(a, c, mk, PAN, x, y, z) = {⟨{⟨ACok, h
(
⟨ACok, mk⟩

)
⟩}

h(ϕ(a·c,k̂bt))⟩, ok}h(ϕ(a·c,x))

eacfail(a, c, mk, PAN, x, y, z) = {⟨{⟨AC⊥, h
(
⟨AC⊥, mk⟩

)
⟩}

h(ϕ(a·c,k̂bt))⟩,⊥}h(ϕ(a·c,x))

To present σ and θ in the next two pages we introduce the index function ind :
{σ, θ} → D defined for a substitution ρ ∈ {σ, θ} as follows: ind(σ) = i, ind(θ) = j.

4.3.
U

nlinkability
and

security
analysis

117

The aliases for the messages output in session i, and available to the attacker are as follows. Terminal’s, card’s, and bank’s channels are
labelled as chti, chci, and chbi respectively. Terminal’s messages are labelled as uai, ubi, uci, udi, and uei. Card’s messages as vai, vbi, vci. Bank’s
reply as wai.

We start with a natural freshness conditions, i.e. that message labels from dom(σ), dom(θ) cannot refer to neither bound nor free names.

for any i, k ∈ D ∪F ∪ G, l ∈ {1 . . . 3}, m ∈ {1 . . . 4}
pks, pkMM, chti, chci, chbi, uai, vai, ubi, vbi, uci, vci, udi, wai, uei, Xl

i , Y1
i , Zm

i #
FV ∪ {user, s, si, χMM, bt, PINk, mkk, ck, ċhk, ak, chk, c̈hk, tk,TXk}
where FV = {card, term, ok,⊥, accept, auth, lo, hi}

fv
(
X1

i
)

{vai, vbi, vci}
fv
(
X2

i
)

{vbi, vci}
fv
(
X3

i

)
{vci}

fv
(
Z1

i
)

{ubi, uci, udi, uei}
fv
(
Z2

i
)

{uci, udi, uei}
fv
(
Z3

i

)
{udi, uei}

fv
(
Z4

i
)

{uei}

fv
(
Y1

i
)

{wai}

chtiρ = c̈hi if i ∈ FG

chciρ = ċhi if i ∈ D

chbiρ =
...
chi if i ∈ FM

uaiρ = ϕ(ti, g) if i ∈ ⋃11
l=2 γon

l or
⋃11

l=2 γof
l or

⋃10
l=2 γlo

l

vaiρ = ϕ
(

ai, ϕ
(

cind(ρ), g
))

if i ∈ ⋃7
l=3 αl (and, if ρ = θ, i ∈ λj)

ubiρ = ecert(ti, Zi
1ρ) if i ∈ ⋃11

l=4 γon
l or

⋃11
l=4 γof

l or
⋃10

l=4 γlo
l

vbiρ = emcert(ai, cind(ρ), Xi
1ρ)

if i ∈ ⋃7
l=5 αl (and, if ρ = θ, i ∈ λj) and

check
(
p2

(
dec

(
h
(

ϕ
(

ai · cind(ρ), X1
i ρ
))

, X2
i ρ
))

, pk(s)
)
= p1

(
dec

(
h
(

ϕ
(

ai · cind(ρ), X1
i ρ
))

, X2
i ρ
))

and

p1

(
p1

(
dec

(
h
(

ϕ
(

ai · cind(ρ), X1
i ρ
))

, X2
i ρ
)))

= MM

118
C

hapter
4.

H
ow

to
design

an
unlinkable

sm
artcard-based

paym
entprotocol.

uciρ = etxpin(ti, txi, Zi
1ρ, uPIN)

if i ∈ ⋃11
l=7 γof

l and
vcheck

(
p2
(
dec

(
h
(
ϕ
(
ti, Z1

i ρ
))

, Z2
i ρ
))

, vpk(χMM)
)
= p1

(
dec

(
h
(
ϕ
(
ti, Z1

i ρ
))

, Z2
i ρ
))

and
p1
(
dec

(
h
(
ϕ
(
ti, Z1

i ρ
))

, Z2
i ρ
))

= Zi
1ρ

= etx(ti, txi, Zi
1ρ)

if i ∈ ⋃11
l=7 γon

l or
⋃10

l=6 γlo
l and

vcheck
(
p2
(
dec

(
h
(
ϕ
(
ti, Z1

i ρ
))

, Z2
i ρ
))

, pkMM
)
= p1

(
dec

(
h
(
ϕ
(
ti, Z1

i ρ
))

, Z2
i ρ
))

and
p1
(
dec

(
h
(
ϕ
(
ti, Z1

i ρ
))

, Z2
i ρ
))

= Zi
1ρ

vciρ = eaclo(ai, cind(ρ), mki, PANi, Xi
1ρ, Xi

2ρ, Xi
3ρ) if i ∈ α7 (and, if ρ = θ, i ∈ λj) and p2

(
dec

(
h
(

ϕ
(

ai · cind(ρ), X1
i ρ
))

, X3
i ρ
))

=⊥

= eachi(ai, cind(ρ), mki, PANi, Xi
1ρ, Xi

2ρ, Xi
3ρ) if i ∈ α7 (and, if ρ = θ, i ∈ λj) and p2

(
dec

(
h
(

ϕ
(

ai · cind(ρ), X1
i ρ
))

, X3
i ρ
))

= PINi

= eacfail(ai, cind(ρ), mki, PANi, Xi
1ρ, Xi

2ρ, Xi
3ρ) if i ∈ α7 (and, if ρ = θ, i ∈ λj) and else

udiρ = {⟨TXi, Zi
1ρ, dec

(
h
(
ϕ
(
ti, Zi

1ρ
))

, Zi
3ρ
)

, uPIN⟩}kbti if i ∈ ⋃11
l=9 γon

l

= {⟨TXi, Zi
1ρ, p1

(
dec

(
h
(
ϕ
(
ti, Zi

1ρ
))

, Zi
3ρ
))

,⊥⟩}kbti if i ∈ γof
11

= {⟨TXi, Zi
1ρ, dec

(
h
(
ϕ
(
ti, Zi

1ρ
))

, Zi
3ρ
)

,⊥⟩}kbti if i ∈ ⋃10
l=8 γlo

l

waiρ = {⟨p1(dyi) , accept⟩}kbti

let dyi = dec
(
kbti, Y1

i ρ
)

and ⟨PINj, mk j, ϕ
(
cj, g

)
⟩ = DB

if i ∈ β4 and ∃j, s.t. j ∈ α7 and
h
(
⟨p1(dec(h(ϕ(bt, p2(dyi))) , p3(dyi))) , mk j⟩

)
= p2(dec(h(ϕ(bt, p2(dyi))) , p3(dyi))) and

p3(p1(dec(h(ϕ(bt, p2(dyi))) , p3(dyi)))) = p1(dyi) and
ϕ
(
p1(p1(dec(h(ϕ(bt, p2(dyi))) , p3(dyi)))) , ϕ

(
cj, g

))
= p2(dyi) and(

p2(p1(dyi))=lo or p2(p1(dyi))=hi and p4(p1(dec(h(ϕ(bt,p2(dyi))) ,p3(dyi))))=ok or else if p4(dyi)=PINj
)

ueiρ = auth
if i ∈ γof

9 ∪ γof
11 and p2

(
dec

(
h
(
ϕ
(
ti, Z1

i
))

, Z3
i

))
= ok or

if i ∈ γon
11 or i ∈ γlo

10 and p1
(
dec

(
kbti, Zi

4

))
= TXi and p2

(
dec

(
kbti, Zi

4

))
= accept

4.3. Unlinkability and security analysis 119

Bisimulation. Now, when the relation is defined, we can start consider all pos-
sible moves each side can make. Since we have defined R as a symmetric relation,
we consider only the cases when the spec process starts first.

Case 1. out(pks), UPspec R UPimpl.
The process UPspec can make the transition out(pks) to the state UP1

spec. There
is a state UP1

impl to which the process UPimpl can make the transition out(pks). By
the definition of R we have UP1

spec R UP1
impl.

Case 2. out(pkMM), UP1
spec R UP1

impl.
Identical to Case 1.
Case 3. card(chcD+1).
From now on, we will only track the effect of the transition on the parameters

defining the state, hence the parameters not affected by the transition are omitted.
The spec process either creates a new card and outputs the channel, hence

transits to α1 ∪ {D + 1} or outputs a channel for the waiting card evolving to K −
1, α1 ∪ {D + 1}. The impl process can match by either creating a new card and
announcing the channel α1 ∪ {D + 1}, Λ ∪ {D + 1}, starting new session for the
existing card h making the transition to α1 ∪ {D + 1}, λh ∪ {D + 1} or outputting
the channel for the waiting card h evolving to Kh − 1, α1 ∪ {D + 1}, λh ∪ {D + 1}.
In either case the resulting states are related by R.

Case 4. term(chtF+G+1).
Either the spec process starts a new on, of or lo terminal session by also creat-

ing a symmetric bank-terminal symmetric key transiting to respectively γon
1 ∪ {F +

G + 1}, γof
1 ∪ {F + G + 1} or γlo

1 ∪ {F + G + 1}. Or the spec process starts a new
on, of or lo terminal session for the existing bank-terminal key transiting to respec-
tively F + 1, γon

1 ∪ {F + G + 1}, F + 1, γof
1 ∪ {F + G + 1} or F + 1, γlo

1 ∪ {F + G + 1}.
The impl process can always match and the resulting states are related by R.

Case 5. bank(chbF+G+1).
Identical to Case 4. Notice that in cases 3-5, as new card terminal or bank ses-

sions started, the input matrices X, Y and Z also grow by one row to accommodate
future inputs.

Case 6. chti(uai), i ∈ γon
1 , i ∈ γof

1 or i ∈ γlo
1 .

The spec process moves to the respective state γon
1 \ {i}, γon

2 ∪{i}, γof
1 \ {i}, γof

2 ∪
{i} or γlo

1 \ {i}, γlo
2 ∪ {i}. The impl process can always match by transiting to the

state parametrised identically, hence the resulting states are related by R.
Case 7. chci X1

i , i ∈ α1.
The spec process moves to the respective state α1 \ {i}, α2 ∪ {i} where the (i, 1)

element of the matrix X is replaced by X1
i . The impl process can always match by

transiting to the state parametrised identically, hence the resulting states are related
by R.

Case 8. chci(vai), i ∈ α2.
The spec process moves to the respective state α2 \ {i}, α3 ∪ {i}. The process

on the right can always match, it is parametrised by the same partition, hence the
resulting states are related by R.

Case 9. chti Z1
i , i ∈ γon

2 , i ∈ γof
2 or i ∈ γlo

2 .
The spec process moves to the respective state γon

2 \ {i}, γon
3 ∪{i}, γof

2 \ {i}, γof
3 ∪

{i} or γlo
2 \ {i}, γlo

3 ∪ {i} where the (i, 1) element of the matrix Z is replaced by Z1
i .

120 Chapter 4. How to design an unlinkable smartcard-based payment protocol.

The impl process can always match by transiting to the state parametrised identi-
cally, hence the resulting states are related by R.

Case 10. chti(ubi), i ∈ γon
3 , i ∈ γof

3 or i ∈ γlo
3 .

The spec process moves to the respective state γon
3 \ {i}, γon

4 ∪{i}, γof
3 \ {i}, γof

4 ∪
{i} or γlo

3 \ {i}, γlo
4 ∪ {i}. The impl process can always match by transiting to the

state parametrised identically, hence the resulting states are related by R.
Case 11. chci X2

i , i ∈ α3.
The spec process moves to the state α3 \ {i}, α4 ∪ {i} where the (i, 2) element

of the matrix X is replaced by X2
i . The impl process can always match by transiting

to the state parametrised identically, hence the resulting states are related by R.
Case 12. chci(vbi), i ∈ α4 and the conditions for vbiσ in the definition of σ in

Fig. ?? are satisfied given the inputs (X, Y, Z).
Let α4 \ {i}, α5 ∪ {i} define the resulting state in which the spec process can

make the transition. Consider the second condition. We can rewrite this con-
dition as X2

i σ = {⟨⟨MM, M1⟩, M2⟩}h(ϕ(ai ·ci ,X1
i σ)), where M1 and M2 are arbitrary

messages. As MM is a global constant and M1 and M2 are arbitrary attacker’s
inputs, the term ⟨⟨MM, M1⟩, M2⟩ can always be produced. Since at the point of
input of X2

i the only message on the network that refers to (some multiple) of
ai is ϕ(ai, ϕ(ci, g)) available through the alias vai, the key is either of the form
h(vai) or h

(
ϕ
(
t̂, vai

))
for some t̂ before σ is applied. In either case we then con-

clude that X2
i θ = {⟨⟨MM, M1⟩, M2⟩}h(ϕ(ai ·ch,X1

i θ)) holds since vaiθ = ϕ(ai, ϕ(ch, g))
for some card h and we have established that the second condition holds also in
the impl case. The case when the spec process stats first is similar. Now no-
tice, that from the second equation it follows that dec

(
h
(
ϕ
(
ai · ci, Xi

1σ
))

, X2
i σ

)
=

dec
(
h
(
ϕ
(
ai · ch, Xi

1σ
))

, X2
i θ
)
= ⟨⟨MM, M1⟩, M2⟩, and the first condition becomes as

follows check(pk(s) , p2(⟨⟨MM, M1⟩, M2⟩)) = p1(⟨⟨MM, M1⟩, M2⟩) which is indepen-
dent of σ and θ and trivially holds in the impl case. We conclude that the impl pro-
cess can always match by transiting to the state parametrised by α4 \ {i}, α5 ∪ {i}
and the resulting states are related by R.

Case 13. chti Zi
2, i ∈ γon

4 , i ∈ γof
4 or i ∈ γlo

4
The spec process moves to the state γon

4 \ {i}, γon
5 ∪ {i}, γof

4 \ {i}, γof
5 ∪ {i} or

γlo
4 \ {i}, γlo

5 ∪ {i} and the element (i, 2) of the matrix Z is replaced by Z2
i . The impl

process can always match by transiting to the state parametrised identically, hence
the resulting states are related by R.

Case 14. τ, i ∈ γon
5 or i ∈ γof

5 and the conditions for uciσ in the definition of σ

are satisfied given the inputs (X, Y, Z).
Let γon

5 \ {i}, γon
6 ∪ {i} or γof

5 \ {i}, γof
6 ∪ {i} define the resulting state in which

the spec process can make the transition. Similarly to Case 12 consider the sec-
ond condition. We can rewrite it as Z2

i σ = {⟨Zi
1σ, M⟩}

h(ϕ(ti ,Z1
i σ)) for some M.

Since at the point of input of X2
i the only message on the network that refers to

a multiple of ti is ϕ(ti, g) available through the alias uai, the key is either of the
form h(uai) or h

(
ϕ
(
t̂, uai

))
for some t̂ before σ is applied. In either case we con-

clude that Z2
i θ = {⟨Zi

1θ, M⟩}
h(ϕ(ti ,Z1

i θ)) holds since uaiθ = ϕ(ti, g), so we have
established that the second condition holds also in the impl case. The case when
the spec process stats first is similar. Now notice that if follows from the second
equation that dec

(
h
(
ϕ
(
ti, Z1

i σ
))

, Z2
i σ

)
= ⟨Z1

i σ, M⟩ and the first condition becomes

4.3. Unlinkability and security analysis 121

vcheck(M, vpk(χMM)) = Z1
i σ, i.e. the input Z1

i σ is signed with the signing key χMM,
hence can only be the multiple of some ϕ(cl , g) for some l. The only message on
the network of this form is ϕ(al , ϕ(cl , g)) available through the alias val , hence the
input Z1

i is either val or ϕ(ŝ, val) which, under θ also give signed inputs in the impl
case. We conclude that the impl process can always match by transiting to the state
parametrised by γon

5 \ {i}, γon
6 ∪ {i} or γof

5 \ {i}, γof
6 ∪ {i} and the resulting states

are related by R. Notice that there is no PIN check at this point and either “right”
or “wrong” PINs are always available, hence whenever the user enters a PIN on the
spec/impl side, the same type of PIN can always be entered on the impl/spec side
respectively.

Case 15. chti(uci), i ∈ γon
6 , i ∈ γof

6 , or i ∈ γlo
5 and the conditions for uciσ in the

definition of σ are satisfied given the inputs (X, Y, Z).
The spec process moves to the respective state γon

6 \ {i}, γon
7 ∪{i}, γof

6 \ {i}, γof
7 ∪

{i} or γlo
5 \ {i}, γlo

6 ∪ {i}. Notice that the lo case is similar to Case 14. The impl
process can always match by transiting to the state parametrised identically, hence
the resulting states are related by R.

Case 16. chci X3
i , i ∈ α5.

The spec process moves to the state α5 \ {i}, α6 ∪ {i} where the (i, 3) element
of the matrix X is replaced by X3

i . The impl process can always match by transiting
to the state parametrised identically, hence the resulting states are related by R.

Case 17. chci(vci), i ∈ α6 and the conditions for vciσ in the definition of σ are
satisfied given the inputs (X, Y, Z).

Let α6 \ {i}, α7 ∪ {i} define the resulting state in which the spec process can
make the transition. Consider either the case when either the ⊥ or PINi is the
element of the received input. We can rewrite these guards as follows X3

i σ =

{⟨M, N⟩}
h(ϕ(ai ·ci ,X1

i σ)) where M is arbitrary, N ∈ {⊥, PINi} and apply the argument
from Case 12. The else branch is identical to Case 19.4. We conclude that the impl
process can always match by transiting to the state parametrised by α6 \ {i}, α7 ∪{i}
and the resulting states are related by R.

Case 18. chti Zi
3, i ∈ γon

7 , i ∈ γof
7 or i ∈ γlo

6 .
The spec process moves to the state γon

7 \ {i}, γon
8 ∪ {i} or γof

7 \ {i}, γof
8 ∪ {i}

or γlo
6 \ {i}, γlo

7 ∪ {i} and the element (i, 3) of the matrix Z is replaced by Z3
i . The

impl process can always match by transiting to the state parametrised identically,
hence the resulting states are related by R.

Case 19.1. chti(udi), i ∈ γon
8 .

The spec process moves to the state γon
8 \ {i}, γon

9 ∪ {i} as online terminal sim-
ply adds the entered PIN and sends the cryptogram to the bank. The impl process
can always match by transiting to the state parametrised identically, hence the re-
sulting states are related by R.

Case 19.2.“Right” PIN. chti(uei), i ∈ γof
8 and the condition for ueiσ that the card

replied affirmatively in the definition of σ is satisfied given the inputs (X, Y, Z).
Let γof

8 \ {i}, γof
9 ∪ {i} define the resulting state in which the spec process can

make the transition. The check that the condition holds in the impl case for the
substitution θ is identical to Case 12. We conclude that the impl process can always
match by transiting to the state parametrised by γof

8 \ {i}, γof
9 ∪{i} and the resulting

states are related by R.

122 Chapter 4. How to design an unlinkable smartcard-based payment protocol.

Case 19.3. “Right” PIN. chti(udi), i ∈ γof
9 .

Let γof
9 \ {i}, γof

11 ∪ {i} define the resulting state in which the spec process can
make the transition as offline terminal simply forwards the cryptogram to the bank.
The impl process can always match by transiting to the state parametrised identi-
cally, hence the resulting states are related by R.

Case 19.4. “Wrong” PIN. chti(udi), i ∈ γof
1 0 and the condition for ueiσ that

the card replied affirmatively in the definition of σ does not hold given the inputs
(X, Y, Z).

Let γof
1 0 \ {i}, γof

11 ∪ {i} define the resulting state in which the spec process can
make the transition. By the Def. 2 in [HMY21] the inequality holds whenever there
is no unifying the left and the right part substitution ρ that cannot refer private val-
ues in its domain or range. Consider the opposite for impl, i.e. that there is a unify-
ing substitution ρ (in case D + K > H w.l.o.g. we assume that ρ does not refer PINi,
mki, ci, PANi, i ∈ {H + 1, . . . , D + K}), i.e. p2

(
dec

(
h
(
ϕ
(
tiρ, Z1

i θρ
))

, Z3
i θρ

))
= okρ

or, p2
(
dec

(
h
(
ϕ
(
ti, Z1

i ρθ
))

, Z3
i ρθ

))
= okρ. Then applying the argument from Case

12 we conclude that ρ also unifies the condition for the spec state, which contra-
dicts the initial condition. We conclude that the impl process can always match by
transiting to the state parametrised by γof

1 0 \ {i}, γof
11 ∪ {i} and the resulting states

are related by R.
Case 19.5. chti(udi), i ∈ γlo

7 .
Identical to Case 19.1, the resulting state where the spec process can make the

transition is γlo
7 \ {i}, γof

8 ∪ {i}. The impl process can always match by transiting to
the state parametrised identically, hence the resulting states are related by R.

Case 20. chbi Yi
1, i ∈ β1.

The spec process moves to the state β1 \ {i}, β2 ∪ {i} and the element (i, 1) of
the matrix Y is replaced by Y1

i . The impl process can always match by transiting to
the state parametrised identically, hence the resulting states are related by R.

Case 21. τ, i ∈ β2.
Let β2 \ {i}, β3 ∪ {i} define the resulting state in which the spec process can

make the transition. Notice that the database process ⟨si, PANj⟩
〈
⟨PINj, mk j, ϕ

(
cj, g

)
⟩
〉

can only be accessed in case that there is a terminal in session i ∈ γon
9 ∪ γ

o f
11 ∪ γlo

8
(and using kbti) and a corresponding card’s session j where the cryptogram con-
taining legitimate PANj has been sent to the terminal. Also, since the card’s data
retrieved by the card from the database is obtained privately using the shared se-
cret si, and the legitimate PANj it is always “right” in contrast to the PIN entered
to the terminal (the “wrong” PIN can be entered). Hence the subsequent integrity
checks for the cryptogram always using the correct data for the received cryp-
togram. The impl process can always match by transiting to the state parametrised
by β2 \ {i}, β3 ∪ {i} and the resulting states are related by R.

Case 22. chbi(wai), i ∈ β3 and the conditions for waiσ hold given the inputs
(X, Y, Z).

Let β3 \ {i}, β4 ∪ {i} define the resulting state in which the spec process can
make the transition. Since the communication between the terminal and the bank
is private as discussed in Case 20, the conditions for waiθ also hold since they
depend only on whether the input Y1

i θ can be successfully decrypted. Also notice
that since high-value terminals had infinite supply of both right and wrong PINs,

4.3. Unlinkability and security analysis 123

the respective transactions are either accepted or declined (by not passing the PIN
guard) simultaneously by spec and impl processes. The impl process can always
match by transiting to the state parametrised by chbi(wai), i ∈ β3 and the resulting
states are related by R.

Case 23. chti Z4
i , i ∈ γon

9 or i ∈ γlo
8 .

The spec process moves to the state γon
9 \ {i}, γon

10 ∪ {i} or γof
8 \ {i}, γof

9 ∪ {i}
and the element (i, 4) of the matrix Z is replaced by Z4

i . The impl process can
always match by transiting to the state parametrised identically, hence the resulting
states are related by R.

Case 24. chti(uei), i ∈ γon
10 or i ∈ γlo

9 and the conditions for ueiσ hold given the
inputs (X, Y, Z).

Identical to Case 22 since the communication between the bank and the termi-
nal is private. The resulting state where the spec process can make the transition
is γon

10 \ {i}, γon
11 ∪ {i} or γlo

9 \ {i}, γlo
10 ∪ {i} The impl process can always match by

transiting to the state parametrised identically, hence the resulting states are related
by R.

Openness. Intuitively, the relation is open if an attacker with the power to
manipulate free variables by applying a substitution φ that cannot refer to the vari-
ables bound by ν, and the message aliases from the dom(σ) = dom(θ), and with
the power to extend the environment by declaring some free variables private (and
out messages referring to them on the network) cannot reach the pair of states that
are not related as formally stated in Def. 4 from Sec. 2.2.2.

The relation R is open by definition, and it is straightforward that manipu-
lating free variables that include out, card, term, bank, MM, auth, ⊥, ok, lo, hi, and,
possibly, free variables that inputs may contain, introduce neither new transitions
not considered above nor affects static equivalence (see below) as these variables
distributed symmetrically in the related states.

Static equivalence. We proceed by proving that any two states related by R are
statically equivalent. Static equivalence trivially holds when frames are both empty
or both are σ0, hence we proceed with a general case in a separate Lemma 2 below.

To prove static equivalence, we follow the steps of Lemma 1 in Sec. 3.5.2, i.e.
we firstly identify building blocks for messages available to an attacker in a unique
form up to multiplication and then conduct the proof by induction on the structure
of Nσ from the Def. 3 of static equivalence. Since the message theory in Fig. 4.2 for
UTX differs from the one in the previous chapter for UBDH by the presence of a
generic signature scheme, we must update the definitions for E-weak normal form
and E-normalisation of the frame. Both notions are defined and presented in full
below.

Definition 15. (E-weak normal form) The E-weak normal M⇂ of a message term M is
defined inductively on the structure of M:

• M = g or M is a variable, then M⇂= M.

• M = M1 · M2, then M⇂= M1⇂ ·M2⇂.

124 Chapter 4. How to design an unlinkable smartcard-based payment protocol.

• M = ϕ(M1, M2), then M⇂= ϕ(M1⇂, M2⇂) if M2⇂ is ϕ-atomic. Otherwise M⇂=
ϕ(M1⇂ ·M′

2⇂, M′′
2 ⇂), where M2 =E ϕ(M′

2, M′′
2) and M′′

2 ⇂ is ϕ-atomic.

• M = {M1}M2 , then M⇂= {M1⇂}M2⇂.

• M = ⟨M1, . . . , Mn⟩, then M⇂= ⟨M1⇂, . . . , M2⇂⟩.

• M = h(M1), M = pk(M1), or M = vpk(M1) then M⇂= h(M1⇂), M⇂= pk(M1⇂),
or M⇂= vpk(M1⇂).

• M = sig(M1, M2), then M⇂= sig(M1⇂, M2⇂).

• M = vsig(M1, M2), then M⇂= vsig(M1⇂, M2⇂) if M1⇂ is ϕ-atomic. Otherwise
M⇂= ϕ(M′

1⇂, vsig(M′′
1 ⇂, M2⇂)), where M1 = ϕ(M′

1, M′′
1) and M′′

1 ⇂ is ϕ-atomic.

• M = check(sig(M1, M2) , pk(M2)), then M⇂= M1⇂.

• M = vcheck(vsig(M1, M2) , vpk(M2)), then M⇂= M1⇂.

• M = p
k
(⟨M1, . . . , Mn⟩) then M⇂= Mk⇂.

• M = dec({M1}M2 , M2), then M⇂= M1⇂.

• Otherwise M⇂= M.

The normalisation of a frame ν⃗z.(ρ | _) with respect to the equational theory
E capturing the saturation of the range of ρ with weak normal forms of messages
that have recipes under ν⃗z.(ρ | _) and is defined by the following procedure.

1. uρ = M for any u ∈ dom(ρ) is replaced by uρ = M⇂.

2. If uρ = K1 · K2 and there is a recipe M1 for an immediate m-factor K1, then
M1ρ is added to the normalisation. If there is a recipe M2 for an immediate
m-factor K2, then M2ρ is also added to the normalisation.

3. If uρ = ⟨K1, . . . , Kn⟩, then uρ is replaced by pi(uρ) = Ki, 1 ≤ i ≤ n.

4. If uρ = {K1}K2 and there is a recipe M2 for K2, then uρ is replaced by
dec(u, M2) ρ = K1.

5. If uρ = sig(N1, N2) and there is a recipe M2 for N2, then uρ is replaced by
check(u, pk(M2)) ρ = N1.

6. If uρ = sig(N1, N2) and there is a recipe M2 for pk(N2), then check(u, M2) ρ =

N1 is added to the normalisation.

7. If uρ = vsig(N1, N2) and there is a recipe M2 for N2, then uρ is replaced by
vcheck(u, pk(M2)) ρ = N1.

8. If uρ = vsig(N1, N2) and there is a recipe M2 for vpk(N2), then vcheck(u, M2) ρ =

N1 is added to the normalisation.

Now we can conclude the proof of Theorem 8 with the following.

4.3. Unlinkability and security analysis 125

Lemma 2. (K, F, A, Γ, B)spec(X, Y, Z) is statically eq. to (K⃗, F, A, Γ, B, Λ)impl(X, Y, Z).

Proof. Firstly we define the normalisations σ⇂x⃗
E and θ⇂y⃗

E of the frames νx⃗.(σ | _) and
νy⃗.(θ | _), where x⃗ and y⃗ define the sets of bound names in (K, F, A, Γ, B)spec(X, Y, Z)
and (K⃗, F, A, Γ, B, Λ)impl(X, Y, Z) respectively. To define normalisations we, again,
use the index function ind : {σ, θ} → D, s.t. ind(σ) = i, ind(θ) = j. We also denote
the attacker’s input in session i as A1

i , B1
i .

126
C

hapter
4.

H
ow

to
design

an
unlinkable

sm
artcard-based

paym
entprotocol.

chtiρ = c̈hi if i ∈ FG

chciρ = ċhi if i ∈ D

chbiρ =
...
chi if i ∈ FM

uaiρ = ϕ(ti, g) if i ∈ ⋃11
l=2 γon

l or
⋃11

l=2 γof
l or

⋃10
l=2 γlo

l

vaiρ = ϕ
(

ai · cind(ρ), g
)

if i ∈ ⋃7
l=3 αl (and, if ρ = θ, i ∈ λj)

p1
(
p1
(
dec

(
h
(
ϕ
(

B1
i , uai

))
, ubi

)))
ρ = MM if Z1

i = ϕ
(

B1
i , g

)
and i ∈ ⋃11

l=4 γon
l or

⋃11
l=4 γof

l or
⋃10

l=4 γlo
l

p2
(
p1
(
dec

(
h
(
ϕ
(

B1
i , uai

))
, ubi

)))
ρ = ϕ(bt, g)

p2
(
dec

(
h
(
ϕ
(

B1
i , uai

))
, ubi

))
ρ = sig(⟨MM, ϕ(bt, g)⟩, s)

p1
(
check

(
p2
(
dec

(
h
(
ϕ
(

B1
i , uai

))
, ubi

))
, pks

))
ρ = MM

p2
(
check

(
p2
(
dec

(
h
(
ϕ
(

B1
i , uai

))
, ubi

))
, pks

))
ρ = ϕ(bt, g)

ubiρ = ecert(ti, Zi
1ρ) = {−}− if Z1

i ̸= ϕ
(

B1
i , g

)
and i ∈ ⋃11

l=4 γon
l or

⋃11
l=4 γof

l or
⋃10

l=4 γlo
l

p1
(
dec

(
h
(
ϕ
(

Ai
1, vai

))
, vbi

))
ρ = ϕ

(
ai · cind(ρ), g

) if X1
i = ϕ

(
A1

i , g
)

and if i ∈ ⋃7
l=5 αl (and, if ρ = θ, i ∈ λj) and

check
(
p2

(
dec

(
h
(

ϕ
(

ai · cind(ρ), X1
i ρ
))

, X2
i ρ
))

, pk(s)
)
= p1

(
dec

(
h
(

ϕ
(

ai · cind(ρ), X1
i ρ
))

, X2
i ρ
))

and

p1

(
p1

(
dec

(
h
(

ϕ
(

ai · cind(ρ), X1
i ρ
))

, X2
i ρ
)))

= MM

p2
(
dec

(
h
(
ϕ
(

Ai
1, vai

))
, vbi

))
ρ = ϕ

(
ai · cind(ρ), vsig(g, χMM)

)
vcheck

(
p2
(
dec

(
h
(
ϕ
(

Ai
1, vai

))
, vbi

))
, pkMM

)
ρ = ϕ

(
ai · cind(ρ), g

)

4.3.
U

nlinkability
and

security
analysis

127

vbiρ = emcert(ai, cind(ρ), Xi
1ρ) = {−}−

if X1
i ̸= ϕ

(
A1

i , g
)

and if i ∈ ⋃7
l=5 αl (and, if ρ = θ, i ∈ λj) and

check
(
p2

(
dec

(
h
(

ϕ
(

ai · cind(ρ), X1
i ρ
))

, X2
i ρ
))

, pk(s)
)
= p1

(
dec

(
h
(

ϕ
(

ai · cind(ρ), X1
i ρ
))

, X2
i ρ
))

and

p1

(
p1

(
dec

(
h
(

ϕ
(

ai · cind(ρ), X1
i ρ
))

, X2
i ρ
)))

= MM

uciρ = etxpin(ti, txi, Zi
1ρ, uPIN) = {−}−

if i ∈⋃11
l=7 γof

l and
vcheck

(
p2
(
dec

(
h
(
ϕ
(
ti, Z1

i ρ
))

, Z2
i ρ
))

,vpk(χMM)
)
= p1

(
dec

(
h
(
ϕ
(
ti, Z1

i ρ
))

, Z2
i ρ
))

and
p1
(
dec

(
h
(
ϕ
(
ti, Z1

i ρ
))

, Z2
i ρ
))

= Zi
1ρ

= etx(ti, txi, Zi
1ρ) = {−}−

if i ∈⋃11
l=7 γon

l or
⋃10

l=6 γlo
l and

vcheck
(
p2
(
dec

(
h
(
ϕ
(
ti, Z1

i ρ
))

, Z2
i ρ
))

, pkMM
)
= p1

(
dec

(
h
(
ϕ
(
ti, Z1

i ρ
))

, Z2
i ρ
))

and
p1
(
dec

(
h
(
ϕ
(
ti, Z1

i ρ
))

, Z2
i ρ
))

= Zi
1ρ

vciρ = eaclo(ai, cind(ρ), mki, PANi, Xi
1ρ, Xi

2ρ, Xi
3ρ) = {−}− if i ∈ α7 (and, if ρ = θ, i ∈ λj) and p2

(
dec

(
h
(

ϕ
(

ai · cind(ρ), X1
i ρ
))

, X3
i ρ
))

=⊥

= eachi(ai, cind(ρ), mki, PANi, Xi
1ρ, Xi

2ρ, Xi
3ρ) = {−}− if i ∈ α7 (and, if ρ = θ, i ∈ λj) and p2

(
dec

(
h
(

ϕ
(

ai · cind(ρ), X1
i ρ
))

, X3
i ρ
))

= PINi

= eacfail(ai, cind(ρ), mki, PANi, Xi
1ρ, Xi

2ρ, Xi
3ρ) = {−}− if i ∈ α7 (and, if ρ = θ, i ∈ λj) and else

udiρ = {⟨TXi, Zi
1ρ, dec

(
h
(
ϕ
(
ti, Zi

1ρ
))

, Zi
3ρ
)

, uPIN⟩}kbti if i ∈ ⋃11
l=9 γon

l

= {⟨TXi, Zi
1ρ, p1

(
dec

(
h
(
ϕ
(
ti, Zi

1ρ
))

, Zi
3ρ
))

,⊥⟩}kbti if i ∈ γof
11

= {⟨TXi, Zi
1ρ, dec

(
h
(
ϕ
(
ti, Zi

1ρ
))

, Zi
3ρ
)

,⊥⟩}kbti if i ∈ ⋃10
l=8 γlo

l

waiρ = {⟨p1(dyi) , accept⟩}kbti

let dyi = dec
(
kbti, Y1

i ρ
)

and ⟨PINj, mk j, ϕ
(
cj,g

)
⟩ = DB

if i ∈ β4 and ∃j, s.t. j ∈ α7 and
h
(
⟨p1(dec(h(ϕ(bt,p2(dyi))) ,p3(dyi))) , mk j⟩

)
= p2(dec(h(ϕ(bt,p2(dyi))) ,p3(dyi))) and

p3(p1(dec(h(ϕ(bt,p2(dyi))) ,p3(dyi)))) = p1(dyi) and
ϕ
(
p1(p1(dec(h(ϕ(bt,p2(dyi))) ,p3(dyi)))) , ϕ

(
cj,g

))
= p2(dyi) and(

p2(p1(dyi)) = lo or p2(p1(dyi)) = hi and p4(p1(dec(h(ϕ(bt,p2(dyi))) ,p3(dyi)))) = ok or else if p4(dyi) = PINj
)

ueiρ = auth
if i ∈ γof

9 ∪ γof
11 and p2

(
dec

(
h
(
ϕ
(
ti, Z1

i
))

, Z3
i

))
= ok or

if i ∈ γon
11 or i ∈ γlo

10 and p1
(
dec

(
kbti, Zi

4

))
= TXi and p2

(
dec

(
kbti, Zi

4

))
= accept

128 Chapter 4. How to design an unlinkable smartcard-based payment protocol.

Notice that y⃗ ⊃ x⃗, hence it is enough to prove that for all messages M and N,
s.t. x⃗ # M, N, we have Mσ =E Nσ iff Mθ =E Nθ. As promised, we conduct the
proof of static equivalence by induction on the structure of the weak normal form
of Nσ. Below we always start from the equation in the frame νx⃗.(σ | _), since the
converse case is similar. In what follows Mi, Ni are recipes, i.e. are fresh for x⃗.

Case 1. Nσ =E g.
Case 1.1. N = g. If M is a recipe for g, then M = g, since there is no non-trivial

recipe for g under σ⇂x⃗
E and we have gσ =E gσ iff gθ =E gθ as required.

Case 1.2. N ̸= g. There is nothing to prove, since there is no non-trivial recipe
for g under σ⇂x⃗

E.
Case 2. Nσ =E z, z is a variable.
Case 2.1. N = z. If M is a recipe for z, then M = z, since there is no non-trivial

recipe for z under σ⇂x⃗
E and we have zσ =E zσ if and only if zθ =E zθ as required.

Case 2.2. Nσ =E chi, where chi ∈ {ċhi, c̈hi,
...
chi, }. Since N is fresh for x⃗, N ∈

{chci, chti, chbi}, and in either case there is a unique recipe M ∈ {chci, chti, chbi} for
chi under σ⇂x⃗

E, and we have Mσ =E Nσ iff Mθ =E Nθ as required.
Case 3. Nσ =E K1 · K2.
Notice that all message terms in the range of σ⇂x⃗

E are m-atomic, hence no mes-
sage is an immediate m-factor of another message. Therefore Nσ is generated by
m-factors which have a recipe under σ⇂x⃗

E.
Case 3.1. N = Nϵ1

1 · . . . · Nϵk
k , and we have Nσ = Nϵ1

1 σ · . . . · Nϵk
k σ. By the

induction hypothesis suppose that for all recipes Mi for an m-factor Niσ of Nσ, we
have Miσ =E Niσ iff Miθ =E Niθ for i ∈ {1, . . . , k}. By applying multiplication, we
have Mϵ1

1 θ · . . . · Mϵk
k θ = (Mϵ1

1 · . . . · Mϵk
k)θ =E (Nϵ1

1 · . . . · Nϵk
k)θ = Nϵ1

1 θ · . . . · Nϵk
k θ

as required, and Niθ is an m-factor of Nθ.
Case 4. Nσ =E ϕ(K1, K2).
We have several recipes of the form ϕ(·, ·) in the domain of σ⇂x⃗

E.

V1 := uai, V2 := vai

V3 := p2
(
p1
(
dec

(
h
(
ϕ
(

B1
i , uai

))
, ubi

)))
V4 := p2

(
check

(
p2
(
dec

(
h
(
ϕ
(

B1
i , uai

))
, ubi

))
, pks

))
V5 := p1

(
dec

(
h
(
ϕ
(

Ai
1, vai

))
, vbi

))
V6 := p2

(
dec

(
h
(
ϕ
(

Ai
1, vai

))
, vbi

))
V7 := vcheck

(
p2
(
dec

(
h
(
ϕ
(

Ai
1, vai

))
, vbi

))
, pkMM

)
Case 4.1. Nσ =E ϕ(ti, g). Since N is fresh for x⃗, N = V1. Let M be a recipe for

ϕ(ti, g), then M = V1 and we have V1σ =E V1σ iff V1θ =E V1θ as required.
Case 4.2. Nσ =E ϕ(ai · ci, g) and X1

i = ϕ
(

A1
i , g

)
. Since N is fresh for x⃗, N ∈

{V2, V5, V7}. Let M be a recipe for ϕ(ai · ci, g), then M ∈ {V2, V5, V7} and we have
Mσ =E Nσ iff Mθ =E Nθ for any N and M as required. If X1

i ̸= ϕ
(

A1
i , g

)
, N = V2,

there is only one recipe M1 = V1 and the argument is the same.
Case 4.3. Nσ =E ϕ(bt, g) and Z1

i = ϕ
(

B1
i , g

)
. Since N is fresh for x⃗, N ∈ {V3, V4}.

Let M be a recipe for ϕ(bt, g), then M ∈ {V3, V4} and the argument is identical to
Case 4.1. If Z1

i ̸= ϕ
(

B1
i , g

)
there is no recipe for ϕ(bt, g) and there is nothing to

prove.
Case 4.4. Nσ =E ϕ(ai · ci, vsig(g, χMM)) when X1

i = ϕ
(

A1
i , g

)
. Identical to Case

4.1, where N = M = V6, and there is nothing to prove if X1
i ̸= ϕ

(
A1

i , g
)
.

4.3. Unlinkability and security analysis 129

Case 4.5. N = ϕ(N1, N2), N2 ∈ {V1, . . . V7} for Z1
i = ϕ

(
B1

i , g
)

and X1
i = ϕ

(
A1

i , g
)
.

By the induction hypothesis suppose that for all recipes M1 for N1σ , we have
M1σ =E N1σ iff M1θ =E N1θ, then by multiplying N2 by M1 we get ϕ(M1θ, N2θ) =

ϕ(M1, N2) θ =E ϕ(N1, N2) θ = ϕ(N1θ, N2θ) for any N2 as required. In case Z1
i ̸=

ϕ
(

B1
i , g

)
and X1

i = ϕ
(

A1
i , g

)
we have N2 ∈ {. . . V̂3, V̂4 . . .}; in case Z1

i = ϕ
(

B1
i , g

)
and X1

i ̸= ϕ
(

A1
i , g

)
we have N2 ∈ {. . . V̂5, V̂6, V̂7}; and in case Z1

i ̸= ϕ
(

B1
i , g

)
and

X1
i ̸= ϕ

(
A1

i , g
)

we have N2 ∈ {V1, V2}, and the argument is the same.
Case 4.6. N = sig(. . . sig(N1, N2) . . . , Nk), N1 ∈ {V1, . . . , V7} for Z1

i = ϕ
(

B1
i , g

)
and X1

i = ϕ
(

A1
i , g

)
. By the induction hypothesis suppose that for all recipes Mi for

Niσ we have Miσ =E Niσ iff Miθ =E Niθ for any i ∈ {2, . . . , k}. By applying the
vsig(·, ·) function to N1, we have

vsig(. . . vsig(N1, M2) . . . , Mk)θ =

vsig(. . . vsig(N1θ, M2θ) . . . , Mkθ) =E

vsig(. . . vsig(N1θ, N2θ) . . . , Nkθ) =

vsig(. . . vsig(N1, N2) . . . , Nk)θ

as required. In case Z1
i ̸= ϕ

(
B1

i , g
)

and X1
i = ϕ

(
A1

i , g
)

we have N1 ∈ {. . . V̂3, V̂4 . . .};
in case Z1

i = ϕ
(

B1
i , g

)
and X1

i ̸= ϕ
(

A1
i , g

)
we have N1 ∈ {. . . V̂5, V̂6, V̂7}; and in case

Z1
i ̸= ϕ

(
B1

i , g
)

and X1
i ̸= ϕ

(
A1

i , g
)

we have N1 ∈ {V1, V2}, and the argument is the
same.

Case 4.7. N = ϕ(N1, N2). Identical to Case 3.1, where ϵ1 = ϵ2 = 1, k = 2.
Case 5. Nσ =E ⟨K1, K2⟩.
The range of σ⇂x⃗

E contains no pair, hence the only option is N = ⟨N1, N2⟩, which
is identical to Case 4.7.

Case 6. Nσ =E h(K1). Identical to Case 3.1, where ϵ1 = 1, k = 1.
Case 7. Nσ =E pk(K1).
Case 7.1. Nσ =E pk(s). Then N = pks, since N is fresh for x⃗. There is a unique

recipe M = pks for pk(s) and we have pksσ =E pksσ if and only if pksθ =E pksθ as
required.

Case 7.2. N = pk(N1). Identical to Case 6.
Case 8. Nσ =E vpk(K1). Identical to Case 7, since there is a unique recipe pkMM

in the range of σ⇂x⃗
E.

Case 9. Nσ =E vsig(K1, K2). Identical to Case 5.
Case 10. Nσ =E sig(K1, K2). Identical to Case 7, since there is a unique recipe

p2
(
dec

(
h
(
ϕ
(

B1
i , uai

))
, ubi

))
in the range of σ⇂x⃗

E if Z1
i = ϕ

(
B1

i , g
)
, and there is noth-

ing to prove if Z1
i ̸= ϕ

(
B1

i , g
)
.

Case 11. Nσ =E {K1}K2 .
Cases 11.1-11.4 are identical to Case 2.2, however we list all possibilities for the

sake of completeness. Let ENK = {uciσ, vciσ, udiσ, waiσ}.
Case 11.1. Nσ =E enk, where enk ∈ ENK, and Z1

i = ϕ
(

B1
i , g

)
and X1

i = ϕ
(

A1
i , g

)
.

Case 11.2. Nσ =E enk, where enk ∈ ENK ∪ {ubiσ}, and Z1
i ̸= ϕ

(
B1

i , g
)

and
X1

i = ϕ
(

A1
i , g

)
.

Case 11.2. Nσ =E enk, where enk ∈ ENK ∪ {vbiσ}, and Z1
i = ϕ

(
B1

i , g
)

and
X1

i ̸= ϕ
(

A1
i , g

)
.

Case 11.4. Nσ =E enk, where enk ∈ ENK ∪ {ubiσ, vbiσ}, and Z1
i ̸= ϕ

(
B1

i , g
)

and
X1

i ̸= ϕ
(

A1
i , g

)
.

130 Chapter 4. How to design an unlinkable smartcard-based payment protocol.

Case 11.5. N = {N1}N2 . identical to Case 5.
Case 12. Nσ =E MM.
Case 12.1. N = MM. Identical to Case 1.1.
Case 12.2. N ̸= MM, and Nσ =E MM. Identical to Case 2.2, when Z1

i = ϕ
(

B1
i , g

)
.

Case 13. Nσ ∈ {⊥, ok, accept, auth, lo, hi}. Identical to Case 1.

Concluding remarks on the proof method. To prove that the UTX protocol is
unlinkable, we have followed the steps identified in Sec. 3.5.2 after the proof of
Lemma 1 with two major differences. Firstly, we could not withdraw any party from
the protocol and apply the compositionality right in the definition since parties now
have shared secrets. This has led us to a significant increase in the work because we
have had to consider all possible moves the process specifying the terminals and the
banks could do. Secondly, the change in message theory has forced us to update
the definitions for E-weak normal form and the respective frame normalisation.
Beyond this, yet again, we identify constructing a quasi-open bisimulation serving
as a proof certificate as the most creative step in the proof. Below, however, we
demonstrate how compositionality can still play its role in the context of UTX.

4.3.4 Further results obtained by compositionality

In this subsection we demonstrate how the Theorem 3, stating that quasi-open
bisimilarity is a congruence relation, could be employed to show that the UTX
protocol is unlinkable in the presence of multiple signing authorities. We also
hypothesise that the verification effort can be significantly reduced by dropping
terminals entirely in case all transactions are low-value, i.e. not requiring the PIN.

Unlinkability in the face of coarse identities. To permit the situation where mul-
tiple signing authorities exist at the same time it is enough to put the replication
in front of UTXspec and UTXimpl from Fig. 4.7. The following corollary, then, is
straightforward.

Corollary 1. !UTXimpl ∼ !UTXspec.

Proof. By Theorem 8 we have UTXimpl ∼ UTXspec. By Theorem 3 quasi-open bisim-
ilarity is a congruence relation, i.e. it holds in any context. Consider the context
O(·) := !(·) which, after either UTXimpl or UTXspec being put in O gives a system
with multiple signing authorities, i.e. we obtain !UTXimpl ∼ !UTXspec.

Thereby we permit a coarse identity, a signing authority, to exist in the sys-
tem, as represented by building multiple authorities into the specification !UTXspec,
without compromising unlinkability. This justifies the observation in Sec. 4.1.3
where we have pointed out that unlinkability can only be achieved up to the fin-
gerprint comprising the coarse identities of the card being revealed. In particular,
Corollary 1 concerns the case where multiple payment systems might not agree to
provide a common application for unlinkable payments as discussed in Sec. 4.2.1,
and therefore these different payment systems form a coarse identity of the card.
Corollary 1 ensures that even in this scenario UTX remains unlinkable.

4.3. Unlinkability and security analysis 131

Unlinkability in case all payments are low-value. Here we expand on the point
made at the end of Sec. 4.3.1 that for low-value contactless payments, unlinkability
is preserved even if the PIN, the card’s strong identity, is compromised. The key
observation is that low-value terminals do not require the PIN, i.e. no input on the
private channel user is expected.

To model the situation when all payments are low-value, we drop high-value
terminals Tonhi and Toffhi from the picture and simplify how banks communicate
with honest terminals, i.e. Instead of session-specific bank-terminal symmetric key
kbt, as in Fig. 4.7, we use one global shared symmetric key. Fig. 4.11 contains
the real-world and the idealised-unlinkable versions of system with low-value pay-
ments only. Let us call such reduced version of the protocol UTXL (UTX Low).

(a) The real protocol specification UTXLimpl.

ν s, si, χMM, bt, kbt.outs⟨pk(s)⟩.
(

!νPIN, mk, c, PAN.
(

opin⟨PIN⟩.
let crtC := vsig(ϕ(c, g) , χMM) in

!νch.card⟨ch⟩.C(ch, c, ϕ(s, g) , crtC, PAN, mk, PIN) |
!⟨si, PAN⟩⟨⟨PIN, mk, ϕ(c, g)⟩⟩

)
|

!νch.bank⟨ch⟩.B(ch, si, kbt, bt) |
let crt := ⟨⟨MM, ϕ(bt, g)⟩, sig(⟨MM, ϕ(bt, g)⟩, s)⟩in
outv⟨vpk(χMM)⟩.
outc⟨crt⟩.

!νch.term⟨ch⟩.Tlo(ch, vpk(χMM) , crt, kbt)
)

(b) The ideal unlinkable protocol specification UTXLspec.

ν s, si, χMM, bt, kbt.outs⟨pk(s)⟩.
(

!νPIN, mk, c, PAN.
(

opin⟨PIN⟩.
let crtC := vsig(ϕ(c, g) , χMM) in

νch.card⟨ch⟩.C(ch, c, ϕ(s, g) , crtC, PAN, mk, PIN) |
!⟨si, PAN⟩⟨⟨PIN, mk, ϕ(c, g)⟩⟩

)
|

!νch.bank⟨ch⟩.B(ch, si, kbt, bt) |
let crt := ⟨⟨MM, ϕ(bt, g)⟩, sig(⟨MM, ϕ(bt, g)⟩, s)⟩in
outv⟨vpk(χMM)⟩.
outc⟨crt⟩.

!νch.term⟨ch⟩.Tlo(ch, vpk(χMM) , crt, kbt)
)

Figure 4.11: Specifications for the real UTXL protocol and its ideal unlinkable version.

132 Chapter 4. How to design an unlinkable smartcard-based payment protocol.

Besides the differences with the full system in Fig. 4.7 emphasised above, in the
system with low-value transactions only we explicitly output PINs on the public
channel opin, and the public information that an attacker may use to construct
a low-value accepting terminal – the public key to verify the card, and the bank’s
certificate – in the channels outv, outc next to the terminal’s process ((outv⟨vpk(χMM)⟩,
outc⟨crt⟩)). To verify the unlinkability of UTXL, we should show that UTXLimpl ∼
UTXLspec, however in that case we could reduce the amount of work needed for
verification using compositionality and verify a strictly smaller system.

Let us consider in Fig. 4.12 the respective real-world and idealised subsystems
of UTXL called SUTXL (Small UTXL) comprising only cards and banks.

(a) The real protocol specification SUTXLimpl.

ν s, si, χMM, bt.

let crt := ⟨⟨MM, ϕ(bt, g)⟩, sig(⟨MM, ϕ(bt, g)⟩, s)⟩in

outv⟨vpk(χMM)⟩.

outc⟨crt⟩.

outs⟨pk(s)⟩.
(

!νPIN, mk, c, PAN.
(

opin⟨PIN⟩.
let crtC := vsig(ϕ(c, g) , χMM) in

!νch.card⟨ch⟩.C(ch, c, ϕ(s, g) , crtC, PAN, mk, PIN) |
!⟨si, PAN⟩⟨⟨PIN, mk, ϕ(c, g)⟩⟩

)
|

!νch.bank⟨ch⟩.B(ch, si, kbt, bt)
)

(b) The ideal unlinkable protocol specification SUTXLspec.

ν s, si, χMM, bt.

let crt := ⟨⟨MM, ϕ(bt, g)⟩, sig(⟨MM, ϕ(bt, g)⟩, s)⟩in

outv⟨vpk(χMM)⟩.

outc⟨crt⟩.

outs⟨pk(s)⟩.
(

!νPIN, mk, c, PAN.
(

opin⟨PIN⟩.
let crtC := vsig(ϕ(c, g) , χMM) in

νch.card⟨ch⟩.C(ch, c, ϕ(s, g) , crtC, PAN, mk, PIN) |
!⟨si, PAN⟩⟨⟨PIN, mk, ϕ(c, g)⟩⟩

)
|

!νch.bank⟨ch⟩.B(ch, si, kbt, bt)
)

Figure 4.12: Subsystem specifications for SUTXL.

In SUTXL we not only assume that all transactions are low-value and executed

4.3. Unlinkability and security analysis 133

with any unauthorised device constructed using public information, but we also
allow the bank to process any transactions received, as the variable kbt in SUTXL
specification is not bound (in contrast to UTXL). To justify that it is enough to verify
that SUTXLimpl ∼ SUTXLspec, we provide the following lemma.

Lemma 3. If SUTXLimpl ∼ SUTXLspec, then UTXLimpl ∼ UTXLspec.

Proof. Consider the following context.

L{·} ≜ ν outv, outc, kbt. ({·} |
outv(pkMM).outc(crt).

out′v⟨pkMM⟩.out′c⟨crt⟩.
!νch.term⟨ch⟩.Tlo(ch, pkMM, crt, kbt)

)
Similarly to the proof of Theorem 4, after we plug in the context L{·} either

SUTXLimpl or SUTXLspec, it will take two τ transitions and the application of the

substitution
{

outv,outc/out′v,out′c

}
(since quasi-open bisimilarity is closed under substi-

tutions) to obtain the initial bigger system (UTXLimpl and UTXLspec respectively).
Therefore the context above leads to the correct representation of the full system,
and we can verify against the reduced definition, dropping low-value terminals
completely.

To conclude that the system where all payments are low-value, it is still left to
verify that the subsystem represented by the SUTXL protocol in Fig. 4.12 is unlink-
able. We formulate this claim separately as a hypothesis since we are leaving the
proof for future work, however we expect such proof to be quite close to the proof
of the Theorem 8 since it considers a more general case.

Hypothesis 1. SUTXL(UTXL) is unlinkable, i.e. SUTXLimpl ∼ SUTXLspec.

4.3.5 On future unlinkability proofs

As mentioned at the beginning of this section, we restrict our analysis to the case
where all cards are synchronised to execute within the same month MM. However,
we would like to expand on the model that admits a transition from one month to
the next. In this small section, we call such an enhanced model UTXMM.

To reflect such behaviour of cards, we require each card to respond to two
months at any time and, whenever the new month is asked, to invalidate the oldest
of two months. Notice that this requires a card to carry the state, i.e. to “remember”
that it should respond only to the recent month and never return responding to the
older months if asked. Below we show how we can employ recursion to model
such behaviour.

Without loss of generality, we restrict the model to three months M1, M2, M3, and
populate the world with two types of cards – responding to M1, M2 or to M2, M3.

Notice that a card can advance its pointer to the next month only in the real-
world system, where it can participate in multiple transactions. In contrast, in the
idealised scenario, where cards are disposable, no change in the state of a given
card is required. This requires us to have two different role specifications for cards.

134 Chapter 4. How to design an unlinkable smartcard-based payment protocol.

In Fig. 4.13, we give the specification for the card’s role in the real-world sys-
tem.

Crwrec(c, pks, vsigM1, vsigM2, vsigM3, PAN, mk, PIN) ≜

νch.card⟨ch⟩.
ch(z1).
νa. letz2 := ϕ(a, ϕ(c, g)) in

ch⟨z2⟩.
let kc:= h(ϕ(a · c, z1)) in

ch(m).
let ⟨⟨MM, yB⟩,MCs⟩ := dec(kc, m) in

if check(MCs, pks) = ⟨MM, yB⟩
if MM = M1 then

Contrec(ch, c, pks, vsigM1, vsigM2, vsigM3, PAN, mk, PIN)

else if MM = M2 then

Contrec(ch, c, pks, vsigM1, vsigM2, vsigM3, PAN, mk, PIN)

else if MM = M3 then

νχM4.let crtC4 := vsig(ϕ(c, g) , χM4) in

Contrec(ch, c, pks, vsigM2, vsigM3, crtC4, PAN, mk, PIN)

else

Crwrec(c, pks, vsigM1, vsigM2, vsigM3, PAN, mk, PIN)

Contrec(ch, c, pks, vsigM1, vsigM2, vsigM3, PAN, mk, PIN) ≜

ch⟨{⟨ϕ(a, ϕ(c, g)) , ϕ(a, vsigMM)⟩}kc⟩.
ch(x).
let ⟨TX, uPin⟩ := dec(kc, x) in
letAC := ⟨a, PAN,TX⟩ in
letACok := ⟨a, PAN,TX, ok⟩ in
letAC⊥ := ⟨a, PAN,TX,⊥⟩ in
let kcb:= h(ϕ(a · c, yB)) in

if uPin =⊥ then

ch
〈
{{⟨AC, h(⟨AC, mk⟩)⟩}kcb}kc

〉
.

Crwrec(c, pks, vsigM1, vsigM2, vsigM3, PAN, mk, PIN)

else if uPin = PIN then

ch
〈
{{ACok, h(ACok, mk)}kcb , ok}kc

〉
.

Crwrec(c, pks, vsigM1, vsigM2, vsigM3, PAN, mk, PIN)

else

ch
〈
{{AC⊥, h(AC⊥, mk)}kcb ,⊥}kc

〉
.

Crwrec(c, pks, vsigM1, vsigM2, vsigM3, PAN, mk, PIN)

Figure 4.13: The real-world specification of the card’s role in UTXMM.

4.3. Unlinkability and security analysis 135

The specification of the card’s behaviour in the real-world scenario is split into
two parts. In the initial part, represented by the process Crwrec, the card decides
if it needs to advance the pointer to the next month, and the rest, represented
by Contrec. The card is initially set up to respond for months M1, M2. Whenever
one of the two is asked, the process Contrec at the end of the transaction refers
to Crwrec with the same parameters, but if the month asked is M3, the process
Contrec at the end of the run calls the process Crwrec with a “shifted” list of month
signatures: vsigM2, vsigM3, crtC4. The possibility to complete the session responding
to the month M1 is now lost for the card c – it simply aborts the protocol by restarting
the session (the else branch in the last line of Crwrec).

The card’s role in the idealised world is specified in Fig. 4.14. There is no
recursion in the card’s role in contrast to the real-world spec. The card simply
continues the run replying to any month asked, and then is getting disposed of.

136 Chapter 4. How to design an unlinkable smartcard-based payment protocol.

Cid(ch, c, pks, vsigM1, vsigM2, vsigM3, PAN, mk, PIN) ≜

ch(z1).
νa. letz2 := ϕ(a, ϕ(c, g)) in

ch⟨z2⟩.
let kc:= h(ϕ(a · c, z1)) in

ch(m).
let ⟨⟨MM, yB⟩,MCs⟩ := dec(kc, m) in

if check(MCs, pks) = ⟨MM, yB⟩
if MM = M1 then

Cont(ch, c, pks, vsigM1, vsigM2, vsigM3, PAN, mk, PIN)

else if MM = M2 then

Cont(ch, c, pks, vsigM1, vsigM2, vsigM3, PAN, mk, PIN)

else if MM = M3 then

νχM4.let crtC4 := vsig(ϕ(c, g) , χM4) in

Cont(ch, c, pks, vsigM2, vsigM3, crtC4, PAN, mk, PIN)

Cont(ch, c, pks, vsigM1, vsigM2, vsigM3, PAN, mk, PIN) ≜

ch⟨{⟨ϕ(a, ϕ(c, g)) , ϕ(a, vsigMM)⟩}kc⟩.
ch(x).
let ⟨TX, uPin⟩ := dec(kc, x) in

letAC := ⟨a, PAN,TX⟩ in
letACok := ⟨a, PAN,TX, ok⟩ in
letAC⊥ := ⟨a, PAN,TX,⊥⟩ in
let kcb:= h(ϕ(a · c, yB)) in

if uPin =⊥ then

ch
〈
{{⟨AC, h(⟨AC, mk⟩)⟩}kcb}kc

〉
else if uPin = PIN then

ch
〈
{{ACok, h(ACok, mk)}kcb , ok}kc

〉
else

ch
〈
{{AC⊥, h(AC⊥, mk)}kcb ,⊥}kc

〉
Figure 4.14: The ideal-world specification of the card’s role in UTXMM.

4.3. Unlinkability and security analysis 137

Finally, we define the spec and imp worlds of UTXMM in Fig. 4.15.

(a) The real protocol specification UTXMMimpl.

ν user, s, si, χM1, χM2, χM3.out⟨pk(s)⟩.out⟨vpk(χM1)⟩.out⟨vpk(χM2)⟩.out⟨vpk(χM3)⟩.
(

!νPIN, mk, c, PAN.
(

let crtC1 := vsig(ϕ(c, g) , χM1) in
let crtC2 := vsig(ϕ(c, g) , χM2) in
let crtC3 := vsig(ϕ(c, g) , χM3) in

Crwrec(c, ϕ(s, g) , crtC1, crtC2, crtC3, PAN, mk, PIN)+
νχM4.let crtC4 := vsig(ϕ(c, g) , χM4) in
Crwrec(c, ϕ(s, g) , crtC2, crtC3, crtC4, PAN, mk, PIN)

| !user⟨PIN⟩| !⟨si, PAN⟩⟨⟨PIN, mk, ϕ(c, g)⟩⟩
)
|

νbt.!νkbt.
(

νch.bank⟨ch⟩.B(ch, si, kbt, bt) |
let crt1 := ⟨⟨M1, ϕ(bt, g)⟩, sig(⟨M1, ϕ(bt, g)⟩, s)⟩in
let crt2 := ⟨⟨M2, ϕ(bt, g)⟩, sig(⟨M2, ϕ(bt, g)⟩, s)⟩in
let crt3 := ⟨⟨M3, ϕ(bt, g)⟩, sig(⟨M3, ϕ(bt, g)⟩, s)⟩in
νch.term⟨ch⟩.T(user, ch, vpk(χM1) , crt1, kbt)+
νch.term⟨ch⟩.T(user, ch, vpk(χM2) , crt2, kbt)+

νch.term⟨ch⟩.T(user, ch, vpk(χM3) , crt3, kbt)
))

(b) The ideal unlinkable protocol specification UTXMMspec.

ν user, s, si, χM1, χM2, χM3.out⟨pk(s)⟩.out⟨vpk(χM1)⟩.out⟨vpk(χM2)⟩.out⟨vpk(χM3)⟩.
(

!νPIN, mk, c, PAN.
(

let crtC1 := vsig(ϕ(c, g) , χM1) in
let crtC2 := vsig(ϕ(c, g) , χM2) in
let crtC3 := vsig(ϕ(c, g) , χM3) in

νch.card⟨ch⟩.Cid(ch, c, ϕ(s, g) , crtC1, crtC2, crtC3, PAN, mk, PIN)+
νχM4.χlet crtC4 := vsig(ϕ(c, g) , χM4) in
νch.card⟨ch⟩.Cid(ch, c, ϕ(s, g) , crtC2, crtC3, crtC4, PAN, mk, PIN)

| !user⟨PIN⟩| !⟨si, PAN⟩⟨⟨PIN, mk, ϕ(c, g)⟩⟩
)
|

νbt.!νkbt.
(

νch.bank⟨ch⟩.B(ch, si, kbt, bt) |
let crt1 := ⟨⟨M1, ϕ(bt, g)⟩, sig(⟨M1, ϕ(bt, g)⟩, s)⟩in
let crt2 := ⟨⟨M2, ϕ(bt, g)⟩, sig(⟨M2, ϕ(bt, g)⟩, s)⟩in
let crt3 := ⟨⟨M3, ϕ(bt, g)⟩, sig(⟨M3, ϕ(bt, g)⟩, s)⟩in
νch.term⟨ch⟩.T(user, ch, vpk(χM1) , crt1, kbt)+
νch.term⟨ch⟩.T(user, ch, vpk(χM2) , crt2, kbt)+

νch.term⟨ch⟩.T(user, ch, vpk(χM3) , crt3, kbt)
))

Figure 4.15: Specifications for the real UTXMM protocol and its ideal unlinkable version.

138 Chapter 4. How to design an unlinkable smartcard-based payment protocol.

We would like to highlight two crucial differences with the respective specifica-
tion of UTX presented previously in Fig. 4.7. Firstly, since we consider two types of
cards that respond either to M1, M2 or to M2, M3 we are taking care of populating the
system with both types. Right at the start, there are cards with the pointer already
advanced, represented by the second branch in the choice in the card’s part of the
specification, i.e. νχM4.let crtC4 := Secondly, the replication in the UTXMMimpl

is now implicit since the process Crwrec is recursive.
We expect an enhanced model of the UTX protocol described in this section to

be also unlinkable. However, the full proof would require at least the same amount
of work as the proof of Theorem 8 plus some additional complications of handling
the recursion since the evidence that UTXMM is unlinkable is left as future work,
we formulate the following.

Hypothesis 2. UTXLMM is unlinkable, i.e. UTXMMimpl ∼ UTXMMspec.

4.3.6 Authentication and secrecy in UTX

Our security definition relies on correspondence assertions between events of the
ProVerif tool [B+01, Bla09] and the authentication property of injective agreement,
which we have already explained and used in Sec. 3.5.3.

Recall that injective agreement [Low97] between parties X and Y ensures the
following two conditions are satisfied.

• agreement When, e.g., X thinks it has authenticated Y, then Y executed the
protocol exchanging the same messages as X.

• injectivity Each run of X corresponds to a unique run of Y.

To verify the security requirements identified in Sec. 4.1.2 we establish that
the UTX protocol satisfies the injective correspondences between events listed in
Fig. 4.16, 4.17. The events are parametrised by the messages the card, the terminal
and the bank exchange, i.e., z1, z2 stand for the ephemeral terminal’s key and the
blinded card’s public key, ecert, emcert, etx, eac represent the messages the card
exchanges with the terminal and req, resp the message the terminal exchanges with
the bank. In Fig. 4.18, 4.19, 4.18 we present the exact locations where we place these
events in each of the role specifications.

The terminal agrees with the card
TCommitWithC(z1, z2, ecert, emcert, etx, eac) ⇒ CRunning(z1, z2, ecert, emcert, etx, eac)

The terminal agrees wih the bank and the card
TCommitWithBC(req, resp, z1, z2, ecert, emcert, etx, eac) ⇒ (BRunningWithT(req, resp) ∧

CRunning(z1, z2, ecert, emcert, etx, eac))

The bank agrees with the terminal and the card
BCommitWithTC(req) ⇒ (TRunningWithBC(req, z1, z2, ecert, emcert, etx, eac) ∧

CRunning(z1, z2, ecert, emcert, etx, eac))

Figure 4.16: Correspondence assertions for injective agreement in UTX.

4.3. Unlinkability and security analysis 139

The first assertion in Fig. 4.16 is straightforward – whenever the terminal thinks
it has executed the session with the card, they have exchanged the same messages,
thereby agreeing on crucial data such as the derived keys, transaction details, the
cryptogram, etc. The second assertion ensures that when the terminal has com-
pleted a session after receiving the response from the bank, the bank and the card
have the same information as the terminal has. Similarly, the third assertion veri-
fies that when the bank received the message from the terminal, then the terminal
and the card completed the session in which they agreed on all messages they
exchanged.

Furthermore we check that the additional functional properties presented in
Fig. 4.17 are satisfied in UTX.

Transaction security
TAccept(kbt,TX) ⇒ ¬BReject(kbt,TX)

Bank agrees with the card on the encrypted cryptogram
BCommitWithC(EAC) ⇒ CRunningWithB(EAC)

Figure 4.17: Additional functional properties of UTX.

The natural property of transaction security ensures that if a terminal accepts
a transaction after a payment session with the card (and therefore, the merchant
delivered the goods), then it should be the case that the issuing bank always accepts
that transaction (and therefore the merchant gets effectively paid). In addition, we
check that the bank and the card agree on a single piece of data the card intends to
send to the bank, the encrypted cryptogram.

Our ProVerif specification of the UTX protocol slightly differs from the one
presented in Fig. 4.7a. in two aspects and is presented below. Firstly, we drop
session channels and use common open public channels card, bank and term in role
specifications. Secondly, we allow all three types of terminals to run in parallel
since the non-deterministic choice + operator is not supported in ProVerif.

ν user, s, si, χMM.out⟨pk(s)⟩.out⟨vpk(χMM)⟩.
(

!νPIN, mk, c, PAN.
(

let crtC := vsig(ϕ(c, g) , χMM) in

!C(card, c, ϕ(s, g) , crtC, PAN, mk, PIN)

| !user⟨PIN⟩| !⟨si, PAN⟩⟨⟨PIN, mk, ϕ(c, g)⟩⟩
)
|

νbt.!νkbt.
(

B(bank, si, kbt, bt) |
let crt := ⟨⟨MM, ϕ(bt, g)⟩, sig(⟨MM, ϕ(bt, g)⟩, s)⟩in
Tonhi(user, term, vpk(χMM) , crt, kbt) |
Toffhi(user, term, vpk(χMM) , crt, kbt) |
Tlo(term, vpk(χMM) , crt, kbt)

))
Below we revisit role specifications in Fig. 4.4, 4.5, 4.6 and demonstrate the

exact locations where we insert the events involved in injective correspondences
from Fig. 4.16, 4.17.

140 Chapter 4. How to design an unlinkable smartcard-based payment protocol.

C(ch, c, pks, vsigMM, PAN, mk, PIN) ≜

ch(z1).
νa. letz2 := ϕ(a, ϕ(c, g)) in

ch⟨z2⟩.
let kc:= h(ϕ(a · c, z1)) in

ch(m).
let ⟨⟨MM, yB⟩,MCs⟩ := dec(kc, m) in

if check(MCs, pks) = ⟨MM, yB⟩ then
let emcert = {⟨ϕ(a, ϕ(c, g)) , ϕ(a, vsigMM)⟩}kc in

ch⟨emcert⟩.
ch(x).
let ⟨TX, uPin⟩ := dec(kc, x) in

letAC := ⟨a, PAN,TX⟩ in
letACok := ⟨a, PAN,TX, ok⟩ in
letAC⊥ := ⟨a, PAN,TX,⊥⟩ in
let kcb:= h(ϕ(a · c, yB)) in

if uPin =⊥ then

let eac := {{⟨AC, h(⟨AC, mk⟩)⟩}kcb}kc in

ev:CRunningWithB (eac)
ev:CRunning (z1, z2, m, emcert, x, eac)

ch⟨eac⟩
else if uPin = PIN then

let eac := {⟨{⟨ACok, h(⟨ACok, mk⟩)⟩}kcb , ok⟩}kc in

ev:CRunningWithB
(
{⟨ACok, h(⟨ACok, mk⟩)⟩}kcb

)
ev:CRunning (z1, z2, m, emcert, x, eac)

ch⟨eac⟩
else

let eac := {⟨{⟨AC⊥, h(⟨AC⊥, mk⟩)⟩}kcb ,⊥⟩}kc in

ev:CRunningWithB
(
{⟨AC⊥, h(⟨AC⊥, mk⟩)⟩}kcb

)
ev:CRunning (z1, z2, m, emcert, x, eac)

ch⟨eac⟩

Figure 4.18: Events in the card’s role.

4.3. Unlinkability and security analysis 141

Tonhi(user, ch, pkMM, crt, kbt) ≜
νTXdata.
letTX := ⟨TXdata, hi⟩ in
νt.letz1 := ϕ(t, g) in

ch⟨z1⟩.
ch(z2).
let kt:= h(ϕ(t, z2)) in

ch⟨{crt}kt⟩.
ch(n).
let ⟨B,Bs⟩ := dec(kt, n) in

if vcheck(Bs, pkMM) = B then

if B = z2 then

user(uPIN).

ch⟨{⟨TX,⊥⟩}kt⟩.
ch(y).
ev:TCommitWithC (z1, z2, {crt}kt , n, {⟨TX,⊥⟩}kt , y)
let req = {⟨TX, z2, dec(kt, y) , uPIN⟩}kbt in

ev:TRunningWithBC (req, z1, z2, {crt}kt , n, {⟨TX,⊥⟩}kt , y)

ch⟨req⟩.
ch(r).
if dec(kbt, r) = ⟨TX, rtype⟩ then
ev:TCommitWithBC (req, r, z1, z2, {crt}kt , n, {⟨TX,⊥⟩}kt , y)
if rtype = accept then

ev:TAccept (kbt,TX)

ch⟨auth⟩

Figure 4.19: Events in the terminal’s role.

142 Chapter 4. How to design an unlinkable smartcard-based payment protocol.

B(ch, si, kbt, bt) ≜

ch(x).
let ⟨TX′, z2,EAC, uPIN⟩ := dec(kbt, x)
let kbc:= h(ϕ(bt, z2)) in

let ⟨AC,AChmac⟩=dec(kbc,EAC)in
let ⟨xa,PAN,TX,pinV⟩ = AC in

⟨si, PAN⟩(PIN, mk, pkc).
if h(⟨AC, mk⟩) = AChmac then

if TX = TX' then

if ϕ(xa, pkc) = z2

let ⟨TXdata,TXtype⟩ := TX' in

if TXtype = lo then

ev:BCommitWithC (EAC)

ev:BRunningWithT (x, {⟨TX', accept⟩}kbt)

ev:BCommitWithTC (x)

ch⟨{⟨TX', accept⟩}kbt⟩
else if TXtype = hi then

if (pinV = ok) ∨ (uPIN = PIN) then

ev:BCommitWithC (EAC)

ev:BRunningWithT
(
x, {⟨TX′, accept⟩}kbt

)
ev:BCommitWithTC (x)

ch
〈
{⟨TX′, accept⟩}kbt

〉
.

else

ev:BReject (kbt,TX')
ev:BCommitWithC (EAC)

ev:BRunningWithT (x, {⟨TX', reject⟩}kbt)

ev:BCommitWithTC (x)

ch⟨{⟨TX', reject⟩}kbt⟩.

Figure 4.20: Events in the bank’s’s role.

4.3. Unlinkability and security analysis 143

The respective ProVerif file can be found in the repository [repb]. The code
contains the full specification of the UTX protocol and of the correspondences, en-
suring injective agreement and the additional functional properties from Fig. 4.17.
It also contains queries corresponding to the expected secrecy of the private data
that includes the master key between the card and the bank, of the PIN, and of
the cryptogram and the reachability queries attesting that honest participants can
successfully complete the protocol. All properties are successfully verified within
80 minutes.

4.3.7 Compromised scenarios

Finally, using ProVerif, we analyse two scenarios where the terminal accepts a po-
tentially fake card. The code verifying these additional scenarios described below
is provided in the directory compromised of the repository [repb].

Security under compromised terminals. Firstly, we support the point made at
the Cryptogram generation part of Section 4.2.5 that even if a terminal neglects to
perform the checks required to authenticate the card, the bank is still ensured that
a valid card is executing a transaction. To model that, we remove the Verheul
signature verification in the terminal’s process. In that case, the first property that
the terminal authenticates the card fails as expected, while others are preserved.

Security under compromised χMM. Secondly, we consider that the key χMM is leaked,
allowing attackers to manufacture cards passing the terminal’s check by producing
valid Verheul signatures. The verification outcome in this case is similar – the
terminal-card agreement fails, making offline transactions insecure, while online
transactions are still safe, i.e. the injective agreement involving the bank holds.
Therefore, the payment system should notify terminal owners to stop accepting
offline payments if χMM has been compromised.

4.3.8 The estimate of the runtime performance

Concluding the analysis, we give a rough estimate of the runtime performance
of the UTX protocol focusing on the card operations. Indeed since the terminal
is a more powerful device than the card we expect its contribution to the run-
time to be minuscule. We make our assessment based on the estimations reported
in [MDHM18, DRHM17b] for the Multos Card ML3 supporting ECC scalar multi-
plication. The table below summarises the amount of time for individual operations
performed by the card. As we expect the equality check and forming n-tuples op-
erations to be negligible, we omit them in our calculation. Overall the numbers add
up to 700ms per on-card computation per session. We expect that further optimisa-
tion and using more recent smart card platforms would lower this number within
the current 500 ms recommendation [emv21].

Operation ϕ(·, ·) h(·) dec(·, ·) {·}· check(·, ·)
of ops 6 3 2 3 1
ms per op 61 11 13 13 228

144 Chapter 4. How to design an unlinkable smartcard-based payment protocol.

The numbers from the third line correspond to the 256-bit security level for
ϕ and check operations, which are evaluated using the Barreto-Naehrig pairing-
friendly curve since Verheul signatures are pairing-based, and ECDSA, respectively.
To the best of our knowledge, there is no credible source for 256-bit security as-
sessment for the rest, hence we use the available benchmarks – dec and { } are
evaluated using 128-bit key AES in CBC mode on 128-bit message, and, finally, h
has been tested using SHA-256 on 128-bit message.

4.4 Summary and future work

In this chapter, we have identified in Sec. 4.1 the requirements for an unlinkable
smartcard-based payments protocol and have demonstrated that at least one pro-
tocol satisfying these requirements (as established in Sec. 4.3) exists – the UTX
protocol presented in Fig. 4.3.

We provide precisely three modes which agents should implement to process
UTX payments. The modes of payment should be standardised and be common to
all cards supporting UTX. This avoids cards being distinguished by implementation
differences. This is in contrast to the current EMV standard, which, as we explain in
Chapter 3 has many different modes of operation contained in over 2000 pages split
into several books, as the particular implementation of the protocol serves as a coarse
identity of the card. Moreover, having a concise, coherent, and linear presentation
can improve the reliability of the system. Our message sequence chart in Fig. 4.3
and the applied π-calculus specification of UTX in Fig. 4.4, 4.5, 4.6 go some way
towards this aim.

We admit that the set of functional requirements we have identified comprise
the essential minimum for a useful unlinkable smartcard-based payment protocol.
There is a variety of “nice to have” and even “essential” in one’s view features that
some EMV cards nowadays support. To incorporate such features in the UTX pro-
tocol while preserving its security and privacy properties may give rise to certain
challenges.

An example of a feature that is straightforward to include is a dynamic limit
LIM, which defines a threshold above which high-value transactions require a PIN.
Such limit can be updated without reissuing the card by including it in the certifi-
cate that the terminal presents ⟨⟨MM, LIM, ϕ(bt, g)⟩, sig(⟨MM, LIM, ϕ(bt, g)⟩, s)⟩.

An example of a feature that would require a non-incremental update to UTX is
introducing relay protection [RCN+22] which would mitigate the situation where a
high-value online transaction is compromised via relay attack if the PIN is exposed
as we mention in Sec. 4.3.1.

Relay protection would also be essential in combination with another “essen-
tial” feature, PIN tries counter, that should limit the number of incorrect attempts
to enter the PIN. An active attacker near the honest terminal waiting to process an
online high-value transaction can relay messages to the card and can enter the PIN
incorrectly enough times to exceed the limit thereby blocking the card from any
online transactions. More specifically, this attack forces the card to obtain a coarse
identity – the fact that it cannot participate in online transactions. Then to iden-
tify such cards an attacker should yet again relay communication between the card

4.4. Summary and future work 145

and an online terminal – transactions would be declined with an explicit reason
of the PIN tries exceeded. Relay protection would mitigate against this scenario
as it would make it impossible to enter the PIN remotely since the user should be
physically close and, thereby, aware of someone entering the PIN. Notice that in
case of offline high-value purchases an active attacker could not exceed PIN tries,
as asking the PIN offline we always assume a contact transaction, i.e. the user is
already close.

Finally, a proof of concept implementation is needed to clarify that UTX is fast
enough to be usable contactlessly and verify the estimate presented in Section 4.3.8.

147

Chapter 5

Conclusion

In the age of automated data collection, privacy is essential when it comes to fun-
damental rights such as freedom, security, and dignity. It is only a matter of time
before private data will be harvested with the purpose of manipulation and surveil-
lance if there is a technical capacity to do so. Billions of people are at threat of being
actively tracked by an unauthorised party just by the fact that they carry a payment
card. As we explain in the introduction to Chapter 3 tracking the movements of the
cardholder is enabled by the protocol the majority of card use, the EMV protocol.
In this dissertation, we have addressed this by offering the UTX (Fig. 4.3) protocol,
a smartcard-based payment protocol that satisfies the initial functional and security
requirements of the current EMV (Sec. 4.1.1, 4.1.2) and at the same time provides
strong privacy guarantees to cardholders (Sec. 4.1.3), which include anti-tracking.
We are confident making such claims since we have proven that UTX delivers what
it intends to deliver using formal methods. We have used a state-of-the-art ProVerif
tool to specify and verify the security properties of UTX (Sec. 4.3.6), and applied the
methodology described in Chapter 2 to reason about privacy in UTX (Sec. 4.3.3).

Our UTX protocol is not the first attempt to introduce privacy in card pay-
ments, in fact the developers of EMV themselves were aware of privacy issues at
least since 2013, when they proposed to introduce encryption in the next generation
of EMV by running the BDH key agreement (Fig. 3.14), which we have investigated
(Sec. 3.3), as the first phase of the transaction. We have demonstrated, that BDH
would not protect the cardholder against tracking since the card running BDH
exposes its strong form of identity to active attackers (Sec. 3.3.2). We have demon-
strated how to use a generic signature scheme that respects blinding to improve
the BDH protocol (Sec. 3.5.1), thereby achieving UBDH (Fig. 3.17), that protects
the cardholder against tracking (Theorem 7) without compromising the initial au-
thentication requirement of BDH (Sec. 3.5.3). Moreover it serves as a basis to UTX.
To support our solution, we have pointed out that at least one existing signature
scheme meets our requirements, namely Verheul signatures.

The UTX protocol fills the vacuum left by the withdrawal of the next genera-
tion of EMV in October 2019, when the developers officially announced they were
abandoning their efforts to enhance privacy [emv19] and, in fact, strengthens the
initial security requirements of EMV (Sec. 4.1.2). In particular, we have requested
that the application cryptogram is secret and can only be processed by a legitimate
acquiring bank. This requirement is addressed in UTX by using the certified bank’s
public key that the card obtains at the beginning of each transaction and uses to
encrypt the cryptogram (Sec. 4.2.4, Cryptogram generation in Sec. 4.2.5). We have also

148 Chapter 5. Conclusion

summarised how we have utilised ProVerif to prove that UTX satisfies all security
requirements we have identified (Fig. 4.16, 4.17).

We have chosen unlinkability as our privacy requirement and have highlighted
that the fingerprint of the card, comprising coarse identities of a card, that permits
groups of cards to be tracked, should be minimised (Sec. 4.1.3). Since strong iden-
tities compromise unlinkability, we have hidden any strong identity of the card by
utilising signatures satisfying blinding condition (Fig. 3.16) to make the validity
signature distinct in every session (Validity check in Sec. 4.2.5), and by encrypting
the cryptogram that contains the card number PAN to hide it from the terminal
(Cryptogram generation in Sec. 4.2.5). We have minimised the card’s fingerprint by
introducing certificates that reveal that the card is valid for the current and pre-
vious months without revealing the expiry date (Keys required to set up Unlinkable,
Validity check in Sec. 4.2.5). If payment systems agree on a common certification au-
thority, we may reduce the card’s fingerprint further by introducing the Unlinkable

application (Sec. 4.2.1). We then have proven that these measures indeed achieve
unlinkability in UTX (Theorem 8).

Finally, we have justified the use of quasi-open bisimilarity (Def. 5) to define
the unlinkability of BDH/UBDH and UTX protocols (Def. 9, 14) by the following
pros.

• Quasi-open bisimilarity captures a realistic attacker which is capable of ob-
serving not only the exchanged data, but also making dynamic decisions to
manipulate the execution and, thereby evaluating the behaviour of the system
(Sec. 2.2.1).

• The verification outcome is always decisive, thanks to the completeness of the
modal logic intuitionistic FM (Sec. 2.2.3) characterising quasi-open bisimilar-
ity (Theorem 2).

• It is possible to reduce the amount of work needed for verification, thanks to
quasi-open bisimilarity being congruence (Theorem 3, 4).

In the following revision of the research questions we highlight how exactly
we have utilised the pros above to reason about privacy in studied protocols

Research Question 1

Can we identify the requirements for equivalence notion suitable for mod-
elling indistinguishability properties of security protocols?

At the start of Chapter 2, we have made several observations about a useful
equivalence notion.

• Since we target the effective verification of indistinguishability/privacy prop-
erties, we have demanded that the equivalence failure always leads to an ex-
ecutable attack (Fig. 2.2). With the private server example (Fig. 2.11) we have
demonstrated that the equivalence that does not have such property may lead
to incorrect verification results.

Chapter 5. Conclusion 149

• Since there are real-world situations when a protocol should satisfy a natu-
ral privacy requirement when there is no shared secret between the parties,
we have demanded that the target equivalence should enable compositional-
ity (Fig. 2.3). While being a requirement, compositionality has a nice bonus
as it also supports effective verification – it might be possible to reduce the
amount of work, as we have illustrated by the example of authentication to
an untrusted device (Sec. 2.2.4) and the discussion about the BDH protocol
(Sec. 3.3).

• Since we do not want to underestimate the attacker’s capabilities, as the ver-
ification result would be, in this case, useless, we have demanded the target
equivalence be some form of bisimilarity that explicitly endows an attacker
with the ability to make decisions dynamically. We have supported this point
with the story about the BAC protocol in the introduction – this protocol is
only correct if an attacker can follow the pre-defined sequence of actions.

Thus we conclude that we have identified natural requirements for the equivalence
notion and can start answering the follow-up question.

Research Question 2

Can we identify a canonical equivalence notion satisfying the demands iden-
tified?

We have picked quasi-open bisimilarity (Def. 5), the coarsest (Theorem 5)
equivalence relation from the region identified in Fig.2.4. We have explained pre-
cisely the capabilities of an attacker it captures (Sec. 2.2.1), among which the most
innovative is the ability to consider systematically different ways to “stage” an at-
tack by instantiating and grounding free variables. We have drawn special atten-
tion to the notion of proof certificates (Sec. 2.2.6) serving the evidence that can
be checked independently when there is either an attack (hence the certificate is a
modal logic formula that one side of the relation fails to satisfy) or there is no attack
(hence the certificate is a quasi-open bisimulation between the idealised specifica-
tion and the real-world implementation) on the protocol.

Research Question 3

Can we reason effectively about security protocols using the equivalence
identified?

In definitions of unlinkability of BDH/UBDH and UTX protocols (Def. 9, 14),
we have employed the fact that quasi-open bisimilarity is a congruence relation
which has helped to simplify verification – in the first case, we have withdrawn
terminals from the picture as they share no secret with cards if we consider the
key agreement in isolation; in the second case, we have automatically extended
our analysis to the case where each payment system provides its own unlinkable
payments (Corollary 1), and demonstrated the it is enough to verify a subsystem
comprising only cards and terminals in case no no transaction requires the PIN
(Lemma 3).

150 Chapter 5. Conclusion

We have also demonstrated by the respective proofs of unlinkability of UBDH
and UTX (Theorems 7, 8) that the verification can be broken down into two major
phases – preliminary phase comprising ingenious steps and the mechanical phase
comprising checking the conditions for quasi-open bisimulation. We would like to
stop here on the “hard” preliminary phase.

The first ingenious step is to construct a quasi-open bisimulation (Fig. 3.18, 4.10)
for which we have several informal hints.

• We pair states based on the number of started sessions for each role.

• We define all possible “tail” subprocesses of processes specifying the roles in
the protocol.

• We use these subprocesses to define partitions of the set of sessions corre-
sponding to different phases of the protocol execution and use these partitions
to parametrise the related states.

The second ingenious step is message theory-dependent and consists of defin-
ing frame normalisations (Def. 13, 15). The main hint is the following.

• Find all ways to apply destructors to messages in the range of a frame, thereby
finding all recipes for messages that cannot be simplified further.

We have demonstrated that it is possible to construct frame normalisations to then
prove static equivalence in the presence of a sophisticated equational theory (Lem-
mas 1, 2). However, the limitations of our approach it is yet to be discovered, which
we consider the first step for future work.

In conclusion we should say that we still expect stakeholders to take the pos-
sibility of making payments unlinkable seriously. Not only because awareness of
privacy issues is growing, and supporting legislation, such as GDPR, is emerging,
but also because methods, such as ours, which enable the verification of privacy
properties for the unbounded case, are improving. The UTX protocol, proven to
satisfy the identified security and privacy requirements, demonstrates the feasibil-
ity of privacy-preserving smartcard-based payments.

The ultimate research goal for future work is the automation of our approach
since handwritten proofs are not only error-prone, they cannot be independently
checked by a non-professional. The nature of the proofs we have provided identifies
what we think is feasible for a future tool – a tool that consumes a man-made proof
certificate and verifies it. In a world where the lesson in the protocol design that
we give in Chapter 4 is learned, the developers of the protocol produce such a
certificate, and its inclusion in the documentation is a necessary step for further
implementation. We view this dissertation as a step towards this idealised situation.

151

Bibliography

[ABF17] Martín Abadi, Bruno Blanchet, and Cédric Fournet. The applied pi
calculus: Mobile values, new names, and secure communication.
Journal of the ACM (JACM), 65(1):1–41, 2017. doi:10.1145/3127586.

[AC06] Martín Abadi and Véronique Cortier. Deciding knowledge in secu-
rity protocols under equational theories. Theoretical Computer Sci-
ence, 367(1-2):2–32, 2006. doi:10.1016/j.tcs.2006.08.032.

[ACRR10] Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark Ryan.
Analysing unlinkability and anonymity using the applied pi cal-
culus. In Computer Security Foundations Symposium (CSF), pages
107–121. IEEE, 2010. doi:10.1109/CSF.2010.15.

[AF01] Martín Abadi and Cédric Fournet. Mobile values, new names, and
secure communication. In Symposium on Principles of Programming
Languages (POPL), pages 104–115. ACM SIGPLAN-SIGACT, 2001.
doi:10.1145/360204.360213.

[AF04] Martín Abadi and Cédric Fournet. Private authentication. Theo-
retical Computer Science, 322(3):427–476, 2004. doi:10.1016/j.tcs.
2003.12.023.

[AFN17] Mauricio Ayala-Rincón, Maribel Fernández, and Daniele Nantes-
Sobrinho. Intruder deduction problem for locally stable theo-
ries with normal forms and inverses. Theoretical Computer Science,
672:64–100, 2017. doi:10.1016/j.tcs.2017.01.027.

[AHT17] Ki Yung Ahn, Ross Horne, and Alwen Tiu. A characterisation of
open bisimilarity using an intuitionistic modal logic. In Interna-
tional Conference on Concurrency Theory (CONCUR), pages 7:1–7:17,
2017. doi:10.4230/LIPIcs.CONCUR.2017.7.

[AHT21] Ki Yung Ahn, Ross Horne, and Alwen Tiu. A characterisation
of open bisimilarity using an intuitionistic modal logic. Logical
Methods in Computer Science, 17:2:1–2:40, 2021. doi:10.46298/lmcs-
17(3:2)2021.

[AR02] Martín Abadi and Phillip Rogaway. Reconciling two views of
cryptography (the computational soundness of formal encryption).
Journal of cryptology, 15(2):103–127, 2002. doi:10.1007/s00145-

001-0014-7.

https://doi.org/10.1145/3127586
https://doi.org/10.1016/j.tcs.2006.08.032
https://doi.org/10.1109/CSF.2010.15
https://doi.org/10.1145/360204.360213
https://doi.org/10.1016/j.tcs.2003.12.023
https://doi.org/10.1016/j.tcs.2003.12.023
https://doi.org/10.1016/j.tcs.2017.01.027
https://doi.org/10.4230/LIPIcs.CONCUR.2017.7
https://doi.org/10.46298/lmcs-17(3:2)2021
https://doi.org/10.46298/lmcs-17(3:2)2021
https://doi.org/10.1007/s00145-001-0014-7
https://doi.org/10.1007/s00145-001-0014-7

152 BIBLIOGRAPHY

[B+01] Bruno Blanchet et al. An efficient cryptographic protocol verifier
based on prolog rules. In Computer Security Foundations Symposium
(CSF), pages 82–96. IEEE, 2001. doi:10.1109/CSFW.2001.930138.

[BAF08] Bruno Blanchet, Martín Abadi, and Cédric Fournet. Automated
verification of selected equivalences for security protocols. Journal
of Logic and Algebraic Programming, 75(1):3–51, 2008. doi:10.1016/

j.jlap.2007.06.002.

[BC14] Paolo Baldan and Silvia Crafa. A logic for true concurrency. Journal
of the ACM, 61(4):24:1–24:36, 2014. doi:10.1145/2629638.

[BCD14] Sergiu Bursuc, Hubert Comon-Lundh, and Stéphanie Delaune. De-
ducibility constraints and blind signatures. Information and Compu-
tation, 238:106–127, 2014. doi:10.1016/j.ic.2014.07.006.

[BCDD20] Ioana Boureanu, Tom Chothia, Alexandre Debant, and Stéphanie
Delaune. Security analysis and implementation of relay-resistant
contactless payments. In Conference on Computer and Communi-
cations Security (CCS), pages 879–898. ACM SIGSAC, 2020. doi:

10.1145/3372297.3417235.

[BCM+14] Mike Bond, Omar Choudary, Steven J. Murdoch, Sergei Skoroboga-
tov, and Ross Anderson. Chip and skim: Cloning EMV cards with
the pre-play attack. In Symposium on Security and Privacy (S&P),
pages 49–64. IEEE, 2014. doi:10.1109/SP.2014.11.

[BCM+15] Mike Bond, Marios O. Choudary, Steven J. Murdoch, Sergei Sko-
robogatov, and Ross Anderson. Be prepared: The EMV preplay
attack. In Symposium on Security and Privacy (S&P), pages 56–64.
IEEE, 2015. doi:10.1109/MSP.2015.24.

[BDM20] David Baelde, Stéphanie Delaune, and Solène MOREAU. A
method for proving unlinkability of stateful protocols. In Computer
Security Foundations Symposium (CSF). IEEE, 2020. doi:10.3233/

JCS-171070.

[BHJ+10] Lejla Batina, Jaap-Henk Hoepman, Bart Jacobs, Wojciech
Mostowski, and Pim Vullers. Developing efficient blinded attribute
certificates on smart cards via pairings. In International Conference
on Smart Card Research and Advanced Applications (CARDIS), pages
209–222. Springer, 2010. doi:10.1007/978-3-642-12510-2_15.

[bioa] Idex biometrics. URL: https://www.idexbiometrics.com.

[biob] Mastercard biometric card. URL: https://www.mastercard.

us/en-us/business/overview/safety-and-security/

authentication-services/biometrics/biometrics-card.html.

[Bla04] Bruno Blanchet. Automatic proof of strong secrecy for security
protocols. In Symposium on Security and Privacy (S&P), pages 86–
100. IEEE, 2004. doi:10.1109/SECPRI.2004.1301317.

https://doi.org/10.1109/CSFW.2001.930138
https://doi.org/10.1016/j.jlap.2007.06.002
https://doi.org/10.1016/j.jlap.2007.06.002
https://doi.org/10.1145/2629638
https://doi.org/10.1016/j.ic.2014.07.006
https://doi.org/10.1145/3372297.3417235
https://doi.org/10.1145/3372297.3417235
https://doi.org/10.1109/SP.2014.11
https://doi.org/10.1109/MSP.2015.24
https://doi.org/10.3233/JCS-171070
https://doi.org/10.3233/JCS-171070
https://doi.org/10.1007/978-3-642-12510-2_15
https://www.idexbiometrics.com
https://www.mastercard.us/en-us/business/overview/safety-and-security/authentication-services/biometrics/biometrics-card.html
https://www.mastercard.us/en-us/business/overview/safety-and-security/authentication-services/biometrics/biometrics-card.html
https://www.mastercard.us/en-us/business/overview/safety-and-security/authentication-services/biometrics/biometrics-card.html
https://doi.org/10.1109/SECPRI.2004.1301317

BIBLIOGRAPHY 153

[Bla09] Bruno Blanchet. Automatic verification of correspondences for se-
curity protocols. Journal of Computer Security, 17(4):363–434, 2009.
doi:10.3233/JCS-2009-0339.

[Bla16] Bruno Blanchet. Modeling and verifying security protocols with
the applied pi-calculus and proverif. Foundations and Trends in Pri-
vacy and Security, 1(1-2):1–135, 2016. doi:10.1561/3300000004.

[BN99] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cam-
bridge university press, 1999.

[BN06] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly el-
liptic curves of prime order. In Selected Areas in Cryptography,
pages 319–331. Springer Berlin Heidelberg, 2006. doi:10.1007/

11693383_22.

[BNP01] Michele Boreale, Rocco De Nicola, and Rosario Pugliese. Proof
techniques for cryptographic processes. SIAM Journal of Computing,
31(3):947–986, 2001. doi:10.1137/S0097539700377864.

[BST21a] David Basin, Ralf Sasse, and Jorge Toro-Pozo. Card brand mixup
attack: Bypassing the PIN in non-Visa cards by using them for
Visa transactions. In USENIX Security Symposium, pages 179–
194. USENIX Association, 2021. URL: https://www.usenix.org/
conference/usenixsecurity21/presentation/basin.

[BST21b] David A. Basin, Ralf Sasse, and Jorge Toro-Pozo. The EMV stan-
dard: Break, Fix, Verify. In Symposium on Security and Privacy (S&P),
pages 1766–1781. IEEE, 2021. doi:10.1109/SP40001.2021.00037.

[BSWW13] Christina Brzuska, Nigel P. Smart, Bogdan Warinschi, and Gaven J.
Watson. An analysis of the EMV channel establishment protocol.
In Conference on Computer and Communications Security (CCS), pages
373–386. ACM SIGSAC, 2013. doi:10.1145/2508859.2516748.

[cal21] CALYPSO Handbook. Technical report, Calypso Net-
works Association, 2021. Accessed: 01-02-2023. URL:
https://calypsostandard.net/specifications/public-

documents/150-100324-calypso-handbook.

[cc17] Common criteria for information technology security evaluation.
part 2: Security functional components. Technical report, 2017.
Version 3.1, Revision 5, CCMB-2017-04-002.

[CCCK16] Rohit Chadha, Vincent Cheval, Ştefan Ciobâcă, and Steve Kre-
mer. Automated verification of equivalence properties of crypto-
graphic protocols. Transactions on Computational Logic, 17(4):23:1–
23:32, 2016. doi:10.1145/2926715.

https://doi.org/10.3233/JCS-2009-0339
https://doi.org/10.1561/3300000004
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/11693383_22
https://doi.org/10.1137/S0097539700377864
https://www.usenix.org/conference/usenixsecurity21/presentation/basin
https://www.usenix.org/conference/usenixsecurity21/presentation/basin
https://doi.org/10.1109/SP40001.2021.00037
https://doi.org/10.1145/2508859.2516748
https://calypsostandard.net/specifications/public-documents/150-100324-calypso-handbook
https://calypsostandard.net/specifications/public-documents/150-100324-calypso-handbook
https://doi.org/10.1145/2926715

154 BIBLIOGRAPHY

[CCLD17] Vincent Cheval, Hubert Comon-Lundh, and Stéphanie Delaune. A
procedure for deciding symbolic equivalence between sets of con-
straint systems. Information and Computation, 255(Part 1):94–125,
2017. doi:10.1016/j.ic.2017.05.004.

[CDD17] Véronique Cortier, Antoine Dallon, and Stéphanie Delaune. SAT-
Equiv: An efficient tool for equivalence properties. In Computer
Security Foundations Symposium (CSF), pages 481–494. IEEE, 2017.
doi:10.1109/CSF.2017.15.

[CdRS18] Tom Chothia, Joeri de Ruiter, and Ben Smyth. Modelling
and analysis of a hierarchy of distance bounding attacks. In
USENIX Security Symposium (USENIX), pages 1563–1580. USENIX
Association, 2018. URL: https://www.usenix.org/conference/

usenixsecurity18/presentation/chothia.

[CKR18] Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. DEEPSEC:
Deciding equivalence properties in security protocols theory and
practice. In Symposium on Security and Privacy (S&P), pages 529–
546. IEEE, 2018. doi:10.1109/SP.2018.00033.

[CM12] Cas Cremers and Sjouke Mauw. Operational Semantics and Verifica-
tion of Security Protocols. Springer, 2012. doi:10.1007/978-3-540-

78636-8.

[CS11] Véronique Cortier and Ben Smyth. Attacking and fixing Helios: An
analysis of ballot secrecy. In Computer Security Foundations Sympo-
sium (CSF), pages 297–311. IEEE, 2011. doi:10.1109/CSF.2011.27.

[CSS15] Tom Chothia, Ben Smyth, and Chris Staite. Automatically checking
commitment protocols in proverif without false attacks. In Interna-
tional Conference on Principles of Security and Trust (POST), pages
137–155. Springer, 2015.

[Del18] Stéphanie Delaune. Analysing privacy-type properties in cryp-
tographic protocols. In International Conference on Formal Struc-
tures for Computation and Deduction (FSCD), pages 1:1–1:21. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2018. doi:10.4230/

LIPIcs.FSCD.2018.1.

[DM07] Saar Drimer and Steven J. Murdoch. Keep your enemies close:
Distance bounding against smartcard relay attacks. In USENIX Se-
curity Symposium (USENIX), pages 7:1–7:16. USENIX Association,
2007.

[DNV95] Rocco De Nicola and Frits Vaandrager. Three logics for branching
bisimulation. Journal of the ACM (JACM), 42(2):458–487, 1995. doi:
10.1145/201019.201032.

https://doi.org/10.1016/j.ic.2017.05.004
https://doi.org/10.1109/CSF.2017.15
https://www.usenix.org/conference/usenixsecurity18/presentation/chothia
https://www.usenix.org/conference/usenixsecurity18/presentation/chothia
https://doi.org/10.1109/SP.2018.00033
https://doi.org/10.1007/978-3-540-78636-8
https://doi.org/10.1007/978-3-540-78636-8
https://doi.org/10.1109/CSF.2011.27
https://doi.org/10.4230/LIPIcs.FSCD.2018.1
https://doi.org/10.4230/LIPIcs.FSCD.2018.1
https://doi.org/10.1145/201019.201032
https://doi.org/10.1145/201019.201032

BIBLIOGRAPHY 155

[Dob05] Ernst-Erich Doberkat. Stochastic relations: congruences, bisimula-
tions and the Hennessy-Milner theorem. SIAM Journal on Comput-
ing, 35(3):590–626, 2005. doi:10.1137/S009753970444346X.

[DP03] Josée Desharnais and Prakash Panangaden. Continuous stochastic
logic characterizes bisimulation of continuous-time Markov pro-
cesses. Journal of Logic and Algebraic Programming, 56(1):99–115,
2003. doi:10.1016/S1567-8326(02)00068-1.

[DRHM17a] Petr Dzurenda, Sara Ricci, Jan Hajny, and Lukas Malina. Perfor-
mance analysis and comparison of different elliptic curves on smart
cards. In Conference on Privacy, Security and Trust (PST), pages 365–
36509. IEEE, 2017. doi:10.1109/PST.2017.00050.

[DRHM17b] Petr Dzurenda, Sara Ricci, Jan Hajny, and Lukas Malina. Perfor-
mance analysis and comparison of different elliptic curves on smart
cards. In 2017 15th Annual Conference on Privacy, Security and Trust
(PST), pages 365–36509, 2017. doi:10.1109/PST.2017.00050.

[DY83] Danny Dolev and Andrew Yao. On the security of public key pro-
tocols. IEEE Transactions on Information Theory, 29(2):198–208, 1983.
doi:10.1109/TIT.1983.1056650.

[emv] Google scholar. https://scholar.google.com/scholar?cites=

18303427262500543559&as_sdt=2005&sciodt=0,5. Accessed: 03-
02-2023.

[emv11] EMV Integrated Circuit Card Specifications for Payment Systems.
Books 1-4. Technical report, EMVCo LLC, 2011. Accessed: 26-08-
2021. URL: https://www.emvco.com/document-search/.

[emv19] EMVCo Statement – The Advancement of EMV Chip Spec-
ifications. Technical report, EMVCo LLC, 2019. Accessed:
23-09-2020. URL: https://www.emvco.com/wp-content/uploads/
documents/2nd-Gen-External-Statement-FINAL.pdf.

[emv21] EMV Contactless Specifications for Payment Systems. Book A.
Technical report, EMVCo LLC, 2021. Accessed: 20-09-2021. URL:
https://www.emvco.com/document-search/.

[emv22] Worldwide EMV Deployment Statistics, 2022. Accessed: 26-01-
2023. URL: https://www.emvco.com/about-us/worldwide-emv-

deployment-statistics/.

[EPFB13] Maximilian Engelhardt, Florian Pfeiffer, Klaus Finkenzeller, and
Erwin Biebl. Extending ISO/IEC 14443 type a eavesdropping range
using higher harmonics. In European Conference on Smart Objects,
Systems and Technologies (SmartSysTech), pages 1–8. IEEE, 2013. URL:
https://ieeexplore.ieee.org/document/6525242.

https://doi.org/10.1137/S009753970444346X
https://doi.org/10.1016/S1567-8326(02)00068-1
https://doi.org/10.1109/PST.2017.00050
https://doi.org/10.1109/PST.2017.00050
https://doi.org/10.1109/TIT.1983.1056650
https://scholar.google.com/scholar?cites=18303427262500543559&as_sdt=2005&sciodt=0,5
https://scholar.google.com/scholar?cites=18303427262500543559&as_sdt=2005&sciodt=0,5
https://www.emvco.com/document-search/
https://www.emvco.com/wp-content/uploads/documents/2nd-Gen-External-Statement-FINAL.pdf
https://www.emvco.com/wp-content/uploads/documents/2nd-Gen-External-Statement-FINAL.pdf
https://www.emvco.com/document-search/
https://www.emvco.com/about-us/worldwide-emv-deployment-statistics/
https://www.emvco.com/about-us/worldwide-emv-deployment-statistics/
https://ieeexplore.ieee.org/document/6525242

156 BIBLIOGRAPHY

[Fag87] François Fages. Associative-commutative unification. Journal of
Symbolic Computation, 3(3):257–275, 1987. doi:10.1016/S0747-

7171(87)80004-4.

[FHMS19] Ihor Filimonov, Ross Horne, Sjouke Mauw, and Zach Smith. Break-
ing unlinkability of the ICAO 9303 standard for e-passports using
bisimilarity. In ESORICS, volume 11735 of LNCS, pages 577–594.
Springer, 2019. doi:10.1007/978-3-030-29959-0_28.

[for21] How The Pandemic Made Contactless Payments The New
Normal, Forbes, 2021. Accessed: 07-07-2022. URL:
https://www.forbes.com/sites/forbestechcouncil/2021/

04/15/how-the-pandemic-made-contactless-payments-the-

new-normal/?sh=e21bb183b7a4.

[FST10] David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of
pairing-friendly elliptic curves. Journal of Cryptology, pages 224–
280, 2010. doi:10.1007/s00145-009-9048-z.

[ger22] German police used a tracing app to scout crime wit-
nesses, The Washington Post, 2022. Accessed: 25-01-
2022. URL: https://www.washingtonpost.com/world/2022/01/

13/german-covid-contact-tracing-app-luca/.

[GZZH14] Yanfei Guo, Zhenfeng Zhang, Jiang Zhang, and Xuexian Hu. Se-
curity analysis of EMV channel establishment protocol in an en-
hanced security model. In International Conference on Information
and Communications Security (ICICS), volume 8958 of LNCS, pages
305–320. Springer, 2014. doi:10.1007/978-3-319-21966-0_22.

[HALT18] Ross Horne, Ki Yung Ahn, Shang-wei Lin, and Alwen Tiu. Quasi-
open bisimilarity with mismatch is intuitionistic. In Symposium on
Logic in Computer Science (LICS), pages 26–35. ACM/IEEE, 2018.
doi:10.1145/3209108.3209125.

[HBD16] Lucca Hirschi, David Baelde, and Stéphanie Delaune. A method
for verifying privacy-type properties: the unbounded case. In Sym-
posium on Security and Privacy (S&P), pages 564–581. IEEE, 2016.
doi:10.1109/SP.2016.40.

[HDPdR15] René Habraken, Peter Dolron, Erik Poll, and Joeri de Ruiter.
An RFID skimming gate using higher harmonics. In Radio Fre-
quency Identification, pages 122–137. Springer International Publish-
ing, 2015. doi:10.1007/978-3-319-24837-0_8.

[HM85] Matthew Hennessy and Robin Milner. Algebraic laws for nondeter-
minism and concurrency. Journal of the ACM (JACM), 32(1):137–161,
1985. doi:10.1145/2455.2460.

https://doi.org/10.1016/S0747-7171(87)80004-4
https://doi.org/10.1016/S0747-7171(87)80004-4
https://doi.org/10.1007/978-3-030-29959-0_28
https://www.forbes.com/sites/forbestechcouncil/2021/04/15/how-the-pandemic-made-contactless-payments-the-new-normal/?sh=e21bb183b7a4
https://www.forbes.com/sites/forbestechcouncil/2021/04/15/how-the-pandemic-made-contactless-payments-the-new-normal/?sh=e21bb183b7a4
https://www.forbes.com/sites/forbestechcouncil/2021/04/15/how-the-pandemic-made-contactless-payments-the-new-normal/?sh=e21bb183b7a4
https://doi.org/10.1007/s00145-009-9048-z
https://www.washingtonpost.com/world/2022/01/13/german-covid-contact-tracing-app-luca/
https://www.washingtonpost.com/world/2022/01/13/german-covid-contact-tracing-app-luca/
https://doi.org/10.1007/978-3-319-21966-0_22
https://doi.org/10.1145/3209108.3209125
https://doi.org/10.1109/SP.2016.40
https://doi.org/10.1007/978-3-319-24837-0_8
https://doi.org/10.1145/2455.2460

BIBLIOGRAPHY 157

[HM21] Ross Horne and Sjouke Mauw. Discovering ePassport vulner-
abilities using bisimilarity. Logical Methods in Computer Science,
17(2):24:1–24:52, 2021. doi:10.23638/LMCS-17(2:24)2021.

[HMY21] Ross Horne, Sjouke Mauw, and Semen Yurkov. Compositional
analysis of protocol equivalence in the applied π-calculus us-
ing quasi-open bisimilarity. In Theoretical Aspects of Computing
(ICTAC), pages 235–255. Springer International Publishing, 2021.
doi:10.1007/978-3-030-85315-0_14.

[HMY23] Ross Horne, Sjouke Mauw, and Semen Yurkov. When privacy fails,
a formula describes an attack: A complete and compositional ver-
ification method for the applied pi-calculus. Theoretical Computer
Science, 2023. doi:10.1016/j.tcs.2023.113842.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

[iso18] Cards and security devices for personal identification — contactless
proximity objects — part 3: Initialization and anticollision. Tech-
nical Report 14443-3, ISO/IEC, 2018. URL: https://www.iso.org/
standard/73598.html.

[KK16] Steve Kremer and Robert Künnemann. Automated analysis of
security protocols with global state. Journal of Computer Security,
24(5):583–616, 2016. doi:10.3233/JCS-160556.

[KR05] Steve Kremer and Mark Ryan. Analysis of an electronic voting pro-
tocol in the applied pi calculus. In Programming Languages and Sys-
tems: European Symposium on Programming (ESOP at ETAPS), vol-
ume 3444 of LNCS, pages 186–200. Springer-Verlag, 2005. doi:

10.1007/978-3-540-31987-0_14.

[Lau02] Peeter Laud. Encryption cycles and two views of cryptography.
In Nordic Workshop on Secure IT Systems (NORDSEC), volume 31,
pages 85–100. CiteSeer, 2002. doi:10.1007/s00145-001-0014-7.

[Low96] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-
key protocol using FDR. In Proc. Workshop on Tools and Algorithms
for Construction and Analysis of Systems (TACAS), volume 1055 of
LNCS, pages 147–166. Springer-Verlag, 1996.

[Low97] Gavin Lowe. A hierarchy of authentication specifications. In
Computer Security Foundations Workshop, pages 31–43. IEEE, 1997.
doi:10.1109/CSFW.1997.596782.

[MDAB10] Steven J. Murdoch, Saar Drimer, Ross Anderson, and Mike Bond.
Chip and PIN is broken. In Symposium on Security and Privacy
(S&P), pages 433–446. IEEE, 2010. doi:10.1109/SP.2010.33.

https://doi.org/10.23638/LMCS-17(2:24)2021
https://doi.org/10.1007/978-3-030-85315-0_14
https://doi.org/10.1016/j.tcs.2023.113842
https://www.iso.org/standard/73598.html
https://www.iso.org/standard/73598.html
https://doi.org/10.3233/JCS-160556
https://doi.org/10.1007/978-3-540-31987-0_14
https://doi.org/10.1007/978-3-540-31987-0_14
https://doi.org/10.1007/s00145-001-0014-7
https://doi.org/10.1109/CSFW.1997.596782
https://doi.org/10.1109/SP.2010.33

158 BIBLIOGRAPHY

[MDHM18] Lukas Malina, Petr Dzurenda, Jan Hajny, and Zdenek Marti-
nasek. Assessment of cryptography support and security on pro-
grammable smart cards. In 2018 41st International Conference on
Telecommunications and Signal Processing (TSP), pages 1–5, 2018.
doi:10.1109/TSP.2018.8441334.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus
of mobile processes, Part I and II. Information and Computation,
100(1):1–100, 1992. doi:10.1016/0890-5401(92)90008-4.

[MPW93] Robin Milner, Joachim Parrow, and David Walker. Modal logics
for mobile processes. Theoretical Computer Science, 114(1):149–171,
1993. doi:10.1016/0304-3975(93)90156-N.

[MSCB13] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin.
The Tamarin prover for the symbolic analysis of security pro-
tocols. In International Conference on Computer Aided Verification
(CAV), volume 8044 of LNCS, pages 696–701. Springer, 2013. doi:

10.1007/978-3-642-39799-8_48.

[MSTPTR18] Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and Rolando Trujillo-
Rasua. Distance-bounding protocols: Verification without time and
location. In Symposium on Security and Privacy (S&P), pages 549–
566. IEEE, 2018. doi:10.1109/SP.2018.00001.

[NGFR08] David R Novotny, Jeffrey R Guerrieri, Michael Francis, and Kate
Remley. HF RFID electromagnetic emissions and performance. In
International Symposium on Electromagnetic Compatibility, pages 1–7.
IEEE, 2008. doi:10.1109/ISEMC.2008.4652133.

[NS78] Roger M Needham and Michael D Schroeder. Using encryption for
authentication in large networks of computers. Communications of
the ACM, 21(12):993–999, 1978.

[ove14] EMV next generation. next generation kernel system architecture
overview. Technical report, EMVCo LLC, 2014.

[pas15] Machine readable travel documents. part 11: Security mechanisms
for MRTDs. Technical Report Doc 9303. Seventh Edition, Interna-
tional Civil Aviation Organization (ICAO), 2015. URL: https://
www.icao.int/publications/Documents/9303_p11_cons_en.pdf.

[PBE+21] Joachim Parrow, Johannes Borgström, Lars-Henrik Eriksson, Ra-
munas Gutkovas, and Tjark Weber. Modal logics for nominal tran-
sition systems. Logical Methods in Computer Science, 17(1):6:1–6:49,
2021. doi:10.23638/LMCS-17(1:6)2021.

https://doi.org/10.1109/TSP.2018.8441334
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0304-3975(93)90156-N
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1109/SP.2018.00001
https://doi.org/10.1109/ISEMC.2008.4652133
https://www.icao.int/publications/Documents/9303_p11_cons_en.pdf
https://www.icao.int/publications/Documents/9303_p11_cons_en.pdf
https://doi.org/10.23638/LMCS-17(1:6)2021

BIBLIOGRAPHY 159

[PFB12] Florian Pfeiffer, Klaus Finkenzeller, and Erwin Biebl. Theoretical
limits of ISO/IEC 14443 type A RFID eavesdropping attacks. In Eu-
ropean Conference on Smart Objects, Systems and Technologies (Smart-
SysTech), pages 1–9. IEEE, 2012. URL: https://ieeexplore.ieee.
org/document/6468861.

[Plo72] Gordon Plotkin. Building-in equational theories. Machine intelli-
gence, 7:73–90, 1972.

[RCN+22] Andreea-Ina Radu Radu, Tom Chothia, Christopher JP Newton,
Ioana Boureanu, and Liqun Chen. Practical EMV relay protection.
In Symposium on Security and Privacy (S&P), pages 1737–1756. IEEE,
2022. doi:10.1109/SP46214.2022.9833642.

[repa] ProVerif model of BDH and UBDH. Accessed: 25-02-2023. URL:
https://github.com/ubdhutx/UBDH.

[repb] ProVerif model of UTX. Accessed: 18-03-2023. URL: https://

github.com/ubdhutx/UTX.

[rfc12] EMV ECC key establishment protocols. Rfc until 28th january
2013, EMVCo LLC, 2012. Accessed: 01-04-2020. URL: http:

//www.emvco.com/specifications.aspx?id=243.

[RS99] Peter YA Ryan and Steve A Schneider. Process algebra and non-
interference. In Computer Security Foundations Workshop, pages 214–
227. IEEE, 1999. doi:10.1109/CSFW.1999.779775.

[rsf21] European Court of Human Rights admits RSF complaint against
the BND’s mass surveillance, Reporters Without Borders, 2021.
Accessed: 25-01-2022. URL: https://rsf.org/en/news/european-
court-human-rights-admits-rsf-complaint-against-bnds-

mass-surveillance.

[RSG+01] Peter Ryan, Steve A Schneider, Michael Goldsmith, Gavin Lowe,
and Bill Roscoe. The modelling and analysis of security protocols: the
CSP approach. Addison-Wesley Professional, 2001.

[San96] Davide Sangiorgi. A theory of bisimulation for the π-calculus. Acta
Informatica, 33(1):69–97, Feb 1996. doi:10.1007/s002360050036.

[Sim04] Alex Simpson. Sequent calculi for process verification: Hen-
nessy–Milner logic for an arbitrary GSOS. Journal of Logic and
Algebraic Programming, 60-61:287–322, 2004. doi:10.1016/j.jlap.

2004.03.004.

[Sti81] Mark E Stickel. A unification algorithm for associative-
commutative functions. Journal of the ACM (JACM), 28(3):423–434,
1981. doi:10.1145/322261.322262.

https://ieeexplore.ieee.org/document/6468861
https://ieeexplore.ieee.org/document/6468861
https://doi.org/10.1109/SP46214.2022.9833642
https://github.com/ubdhutx/UBDH
https://github.com/ubdhutx/UTX
https://github.com/ubdhutx/UTX
http://www.emvco.com/specifications.aspx?id=243
http://www.emvco.com/specifications.aspx?id=243
https://doi.org/10.1109/CSFW.1999.779775
https://rsf.org/en/news/european-court-human-rights-admits-rsf-complaint-against-bnds-mass-surveillance
https://rsf.org/en/news/european-court-human-rights-admits-rsf-complaint-against-bnds-mass-surveillance
https://rsf.org/en/news/european-court-human-rights-admits-rsf-complaint-against-bnds-mass-surveillance
https://doi.org/10.1007/s002360050036
https://doi.org/10.1016/j.jlap.2004.03.004
https://doi.org/10.1016/j.jlap.2004.03.004
https://doi.org/10.1145/322261.322262

160 BIBLIOGRAPHY

[SW01a] Davide Sangiorgi and David Walker. On barbed equivalences in
π-calculus. In Kim G. Larsen and Mogens Nielsen, editors, Interna-
tional Conference on Concurrency Theory (CONCUR), volume 2154 of
LNCS, pages 292–304. Springer, 2001. doi:10.1007/3-540-44685-

0_20.

[SW01b] Davide Sangiorgi and David Walker. π-Calculus: A Theory of Mobile
Processes. Cambridge University Press, 2001.

[TNH16] Alwen Tiu, Nam Nguyen, and Ross Horne. SPEC: An equivalence
checker for security protocols. In Asian Symposium on Programming
Languages and Systems (APLAS), volume 10017 of LNCS, pages 87–
95. Springer, 2016. doi:10.1007/978-3-319-47958-3_5.

[vdBOYPdR16] Jordi van den Breekel, Diego A Ortiz-Yepes, Erik Poll, and Joeri
de Ruiter. EMV in a nutshell. Technical report, 2016. URL: https:
//www.cs.ru.nl/~erikpoll/papers/EMVtechreport.pdf.

[Ver01] Eric R Verheul. Self-blindable credential certificates from the Weil
pairing. In International Conference on the Theory and Application of
Cryptology and Information Security, volume 2248 of LNCS, pages
533–551. Springer, 2001. doi:10.1007/3-540-45682-1_31.

[vG93] Rob J van Glabbeek. The linear time-branching time spectrum II.
In International Conference on Concurrency Theory (CONCUR), LNCS,
pages 66–81. Springer, 1993. doi:10.1007/3-540-57208-2_6.

[VG01] Rob J Van Glabbeek. The linear time-branching time spectrum
I. The semantics of concrete, sequential processes. In Handbook
of process algebra, pages 3–99. Elsevier, 2001. doi:10.1016/b978-

044482830-9/50019-9.

https://doi.org/10.1007/3-540-44685-0_20
https://doi.org/10.1007/3-540-44685-0_20
https://doi.org/10.1007/978-3-319-47958-3_5
https://www.cs.ru.nl/~erikpoll/papers/EMVtechreport.pdf
https://www.cs.ru.nl/~erikpoll/papers/EMVtechreport.pdf
https://doi.org/10.1007/3-540-45682-1_31
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1016/b978-044482830-9/50019-9
https://doi.org/10.1016/b978-044482830-9/50019-9

161

Curriculum Vitae

2019 – 2023 Ph.D. student, University of Luxembourg, Luxembourg
2010 – 2012 M.Sc. in Economics, Higher School of Economics, Moscow, Russia.
2008 – 2010 Ed.S. in Mathematics, Kuzbass State Pedagogical Academy, Novokuznetsk, Russia.
2004 – 2008 Undergraduate in Mathematics, Novosibirsk State University, Novosibirsk, Russia.

Born on April 30, 1987, Novokuznetsk, USSR.

	Introduction
	Contributions
	Layout and the author's contribution

	Background: quasi-open bisimilarity
	Applied -calculus
	Message theory
	Process syntax in the applied -calculus
	The semantics of the applied -calculus

	Quasi-open bisimilarity
	Attacker's capabilities
	The definition of quasi-open bisimilarity
	Whenever quasi-open bisimilarity fails, a modal logic formula describes an attack
	Quasi-open bisimilarity enables compositional reasoning
	Quasi-open bisimilarity is the coarsest bisimilarity congruence
	Proof certificates vs. formal proofs

	Quasi-open bisimilarity, an elevator pitch

	Case study: smartcard-based payments
	EMV standard overview
	Initialisation
	Offline data authentication
	Cardholder Verification
	Transaction Authorisation

	An insecure EMV configuration
	Enhancing the privacy of EMV transactions: Blinded Diffie-Hellman key establishment proposal
	Blinded Diffie-Hellman and external unlinkability
	Blinded Diffie-Hellman and active attackers
	Blinded Diffie-Hellman is not unlinkable

	On different privacy notions
	An unlinkable key agreement for EMV payments
	Unlinkable Blinded Diffie-Hellman UBDH
	The proof of unlinkability of UBDH
	Authentication in BDH and UBDH

	Highlighting what we have learned

	How to design an unlinkable smartcard-based payment protocol.
	Design space for unlinkable transactions
	Functional requirements.
	Security requirements.
	Privacy requirements.

	The UTX protocol
	Application selection
	Keys required to set up Unlinkable
	Message theory
	Before running the protocol: the setup
	The UTX transaction

	Unlinkability and security analysis
	Attacker model
	Formal specification of the protocol
	The proof of unlinkability of UTX
	Further results obtained by compositionality
	On future unlinkability proofs
	Authentication and secrecy in UTX
	Compromised scenarios
	The estimate of the runtime performance

	Summary and future work

	Conclusion
	Bibliography
	Curriculum Vitae

