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This review focuses on the possible roles of phytocannabinoids, synthetic cannabinoids, endocannabinoids,
and “transient receptor potential cation channel, subfamily V, member 1” (TRPV1) channel blockers in ep-
ilepsy treatment. The phytocannabinoids are compounds produced by the herb Cannabis sativa, fromwhich
Δ9-tetrahydrocannabinol (Δ9-THC) is the main active compound. The therapeutic applications of Δ9-THC
are limited, whereas cannabidiol (CBD), another phytocannabinoid, induces antiepileptic effects in exper-
imental animals and in patients with refractory epilepsies. Synthetic CB1 agonists induce mixed effects,
which hamper their therapeutic applications. A more promising strategy focuses on compounds that in-
crease the brain levels of anandamide, an endocannabinoid produced on-demand to counteract hyperexcit-
ability. Thus, anandamide hydrolysis inhibitors might represent a future class of antiepileptic drugs. Finally,
compounds that block the TRPV1 (“vanilloid”) channel, a possible anandamide target in the brain, have also
been investigated. In conclusion, the therapeutic use of phytocannabinoids (CBD) is already in practice, al-
though its mechanisms of action remain unclear. Endocannabinoid and TRPV1mechanisms warrant further
basic studies to support their potential clinical applications.
This article is part of the Special Issue “NEWroscience 2018".

© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

Cannabis sativa has a long history as a drug of abuse and a potential
herbal medicine [1]. This plant produces more than a hundred
compounds (phytocannabinoids), with different pharmacological ap-
plications, among which Δ9-tetrahydrocannabinol (Δ9-THC) and
cannabidiol (CBD) are of particular interest. The Δ9-THC accounts for
most of the Cannabis effects (such as abuse potential, memory impair-
ment, sedation, hyperphagia), whereas CBD lacks these typical “Δ9-
THC-like” properties [2].

The Δ9-THC and its derivatives (synthetic cannabinoids) modify
brain functions mainly through agonism (or partial agonism) at the
CB1 cannabinoid receptor [3,4]. Another cannabinoid receptor, termed
CB2 receptor, has also been characterized [5]. Both are metabotropic re-
ceptors activated in the brain by N-arachidonoyl ethanolamide (anan-
damide) and 2-arachidonoylglycerol (2-AG), which are termed
endocannabinoids [6]. The actions of anandamide and 2-AG are termi-
nated by neuronal internalization followed by the cleavage by the
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s. Antônio Carlos 6627, 31270-

eira).

A.C. De Oliveira, et al., Exploit
ebeh.2019.106832
hydrolytic enzymes fatty acid amide hydrolase (FAAH) and monoacyl-
glyceride lipase (MAGL), respectively [7–9]. Contrary to classical neuro-
transmitters, endocannabinoids function as retrograde messengers.
After a calcium influx in the postsynaptic neuron, they are synthesized
on-demand and released in the synaptic cleft to activate the CB1 canna-
binoid receptor in presynaptic neurons and modulate neuronal activity
[10,11]. The cannabinoid receptors, the endocannabinoids, and their
related enzymes are part of the so-called endocannabinoid system
(Fig. 1), which has been extensively reviewed [12–14].

The endocannabinoid systemmay include additional ligands and re-
ceptors. Of particular interest is the “vanilloid channel” or “transient re-
ceptor potential cation channel, subfamily V, member 1” (TRPV1). The
TRPV1 is a cation-permeable ion channel activated by heat, acid pH,
and capsaicin (the pungent compound from the chili pepper Capsicum
frutescens). Although it was initially identified as an “orphan” receptor,
anandamide has been proposed as its main endogenous agonist
[15–17]. Remarkably, whereas anandamide binding to the CB1 receptor
inhibits neuronal activity, TRPV1 activation depolarizes neurons and
promotes neurotransmitter release [18].

This review article focuses on the potential of cannabinoids and
related compounds for epilepsy treatment. Since the evidence
comes mainly from experimental settings, we will present a brief over-
view on animal models useful for preclinical studies with antiepileptic
ing cannabinoid and vanilloid mechanisms for epilepsy treatment, Ep-
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Fig. 1. A simplified view of the main components of the endocannabinoid
system. The endocannabinoids N-arachidonoyl ethanolamide (AEA, anandamide)
and 2-arachidoyl glycerol (2-AG) are synthesized on-demand frompostsynaptic neuronal
membranes and released in the synaptic cleft. 2-AG activates presynaptic CB1 receptor,
whereas anandamide activates both the CB1 receptor and the TRPV1 channel, which in-
hibits and facilitates excitatory neuronal activity, respectively. 2-AG and anandamide ef-
fects are terminated by the enzymes monoacylglycerol lipase (MAGL) and fatty acid
amide hydrolase (FAAH) respectively.
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drugs. Next, we will review the evidence for the potential use
of phytocannabinoids, synthetic cannabinoids, endocannabinoid hydro-
lysis inhibitors, and TRPV1 blockers in epilepsy treatment. Finally, we
will briefly discuss the few clinical trials available and summarize the
main conclusions.

2. Animal models for studying and developing antiepileptic drugs

Epilepsy is neurological disease characterized primarily by a predis-
position to epileptic seizures. These, in turn, are transient signs and/or
symptoms resulting from abnormal excessive or synchronous neuronal
activity in the brain if an abnormally long seizures occur, it is character-
ized as a status epilepticus. Spontaneous epileptic seizures may result
from a multifactorial process, termed epileptogenesis. Certain types of
epilepsy include other features and can be characterized as epileptic
syndromes [19].

The treatment of epilepsy and epileptic seizures consists mainly in
pharmacological approaches. The antiepileptic drugs restrain neuronal
Table 1
Summary of the main animal models of acute epileptic seizures, epilepsy and epileptic syndro
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Physical
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activity through various mechanisms, including blockage of sodium
channels, inhibition of excitatory neurotransmission (mainly gluta-
mate), or facilitating inhibitory neurotransmission (mainly gamma-
aminobutyric acid). Their clinical use, however, is limited by side effects
and the fact that about one-third of patients remain untreated (refrac-
tory epilepsies) [20]. Thus, there is an urge for new antiepileptic
drugs, whose development relies on preclinical research in experimen-
tal animals.

There are several types of animal models for studying and develop-
ing antiepileptic drugs [21–24]. Most of them consists in inducing
epileptic seizures in laboratory animals by applying physical stimuli
(acoustic, thermal or electrical) or injecting chemicals, such as,
pentylenetetrazol (PTZ), pilocarpine, kainic acid, cocaine, methyl-6,7-
dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM), or 4-
aminopyridine (4-AP). Genetic approaches in animals have also been
instrumental to model specific types of seizures (such as, audiogeneic
seizures) and epileptic syndromes (including Dravet and Lennox-
Gastaut Sydromes) [25]. There are protocols applying either acute or re-
peated stimuli. Acute protocols quantify seizures induced either imme-
diately at the delivery of the stimulus (such as the PTZ model) or
“spontaneous” seizures occurring after the stimulus (pilocarpine
model). The repeated protocols entail a gradual increase in seizure se-
verity as a stimulus with constant intensity is applied repeatedly (kin-
dling), although specific protocols vary across studies regarding brain
region investigated, intensity of stimulus, and time course [22].

From a pharmacological standpoint, these models are useful for the
screening of new antiepileptic drugs and the investigation of the under-
lying mechanisms. The expected readout for an antiepileptic drug can
be an increase in the intensity of stimulus required to induce seizure
or a reduction in seizure duration, frequency, severity, and lethality
after a fixed stimulus is applied. Notwithstanding the application of
thesemodels, each of themhas disadvantages and limitations regarding
face, construct, and predictive validity [21,24]. A short summary of the
animal models of epilepsy cited in this review is presented in Table 1.

3. Phytocannabinoids

The initial studies with cannabinoids in the treatment of epilepsy fo-
cused on CBD, a compound with low efficacy at the CB1 receptor and a
safer pharmacological profile as compared toΔ9-THC [13]. An early pub-
lication from Carlini's group in Brazil reported the protective effect of
CBD against convulsive agents in rodents [26]. After several years, the
interest in preclinical studies with this compound has been renewed;
CBD reduced seizures induced by cocaine intoxication [27,28] as well
as pilocarpine-induced status epilepticus (SE) [29]. In addition, it
prevented both seizures and electroencephalogram (EEG) activity in-
duced by PTZ [30,31]. This phytocannabinoid was also effective in ani-
mal models of seizures induced by electrical stimulation, including the
lamotrigine-resistant amygdala kindling [32]. Cannabidiol also de-
creased the duration, the severity, and the frequency recurrent seizures
in a genetic mouse model of Dravet syndrome [33]. One recent study
mes mentioned in this review.

stimuli
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Genetic modification
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l stimulation of the hippocampus or the
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investigated the effects of CBD in a range of animalmodels of chemically
and electrically induced seizures, further demonstrating the antiepilep-
tic effects of this compound in mice and rats [34].

The mechanisms underlying CBD antiepileptic activity remain un-
clear. It has low affinity and efficacy at the CB1 receptor and may inter-
fere with various other targets in the brain [35]. Accordingly, its
anticonvulsant effects were not reversed by CB1 receptor antagonists
in electrically induced seizures [36]. Other authors suggest that anticon-
vulsant effect of CBD is related to its actions on voltage-gated sodium
channels [37], a common antiepileptic drug target [38]. Similarly, the
protective effect of CBD in a mouse genetic model of Dravet syndrome
was not prevented by CB1 antagonists [33]. However, in the PTZ
model, its effects were reversed by CB1, CB2, and TRPV1 selective antag-
onists, suggesting that one potential mechanism might be the facilita-
tion of the endocannabinoid system [31]. In this model, 5-HT1A and
5-HT2A antagonists failed to prevent CBD effects [30]. Finally, one possi-
ble intracellular mechanism comprises the facilitation of the mamma-
lian target of rapamycin (mTOR) pathway with consequent reduction
of glutamate release [27].

Other phytocannabinoids have also been investigated, although to a
much less extent than CBD. Δ9-tetrahydrocannabivarin reduced
PTZ-induced seizures in rats [39]. Similarly, cannabidivarin-rich Canna-
bis extracts exerted anticonvulsant effects in the PTZ- and the
pilocarpine-induced seizure models [40]. Finally, β-caryophyllene, a
cannabinoid presented in several other plants, prevented PTZ-induced
seizures [41] was well as the kainic acid- and the electroshock-
induced seizures in mice [42].
4. Synthetic cannabinoids

Similar to phytocannabinoids, synthetic cannabinoids have been
investigated in various animal modes of seizure and epilepsy. The
WIN-55,212-2, a nonselective compound, showed efficacy in a CB1-
dependent manner in electrically-induced seizures [36] and in sponta-
neous recurrent epileptiform discharges in vitro [43,44]. However, the
absence of anticonvulsant activity after prolonged treatment may
indicate a tolerance to its anticonvulsant effects [43]. In pilocarpine-
induced SE in mice, the WIN-55,212-2 reduced the frequency of excit-
atory postsynaptic currents, an effect blocked by CB1 antagonists [45].
This compound also delayed seizure in the amygdala kindling model
of temporal lobe epilepsy [46]. Finally, it was shown to improve survival
and to reduce the incidence of early seizures in the lithium–pilocarpine
SE model [47].

Other studies have focused on compounds that selectively activate
the CB1 receptor. Arachidonoyl-2-chloroethylamide (ACEA) enhanced
the anticonvulsant activity of phenobarbital in electrically induced sei-
zures in mice [48] and suppressed DMCM-induced seizure in rats [49].
Similarly, arachidonoylcyclopropylamide increased the threshold for
PTZ-induced seizures [50]. However, some contrasting results indicate
that CB1 agonism may also facilitate seizures instead of decreasing
them. The WIN-55,212-2 and ACEA reduced the threshold for myo-
clonic seizures induced by PTZ and enhanced epileptiform EEG activity
in rats [51]. Moreover, AM2201 induced epileptiform behavior in
mice, which was accompanied by abnormal spike–wave discharges
and an increase in extracellular glutamate concentration in hippocam-
pus. These effects were suppressed by CB1 antagonism, but not by CB2
or vanilloid receptor antagonists [52].

The reasons for these discrepancies remain unclear. One possible
explanation is the presence of CB1 receptors in both inhibitory
gamma-aminobutyric acid (“GABAergic”) [53] and excitatory gluta-
matergic terminals [54,55]. Thus, cannabinoids might act in certain
dose ranges through the suppression of glutamate release in terminals
located in the dentate gyrus [45]. Accordingly, the genetic deletion of
CB1 from principal neurons of the forebrain caused longer seizure dura-
tion in the kindling model of temporal lobe epilepsy in mice, while the
Please cite this article as: L. Asth, L.P. Iglesias, A.C. De Oliveira, et al., Exploit
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deletion of CB1 from GABAergic forebrain neurons resulted in the oppo-
site effect [56].

5. Endocannabinoid hydrolysis inhibitors

Several lines of evidence point to the endocannabinoid system as an
endogenous anticonvulsant mechanism, including the demonstration
that anandamide is recruited on-demand in the brain to promote CB1-
mediated defense against excitotoxic stimuli [54]. Thus, the
endocannabinoid system has been proposed as a brain circuit breaker,
counteracting hyper-excitatory activity [57]. Accordingly, CB1 antago-
nism facilitated electrically-induced seizures in mice [58]. Similarly,
both anandamide and 2-AG reduced frequency of spontaneous and
tetrodotoxin-resistant excitatory postsynaptic currents in mice with
temporal lobe epilepsy in a CB1-dependent manner [45]. In addition,
the levels of anandamide are reduced in the cerebrospinal fluid of
drug-naive patients affected by temporal lobe epilepsy [59]. Also, the in-
jection of kainic acid is able to induce an increase in anandamide levels
in the brain, which could be part of a brain protective response [60].
These results suggest a role of the endocannabinoid signaling in
protecting the brain against seizure activity.

Thus, compounds that selectively inhibit the endocannabinoid-
hydrolyzing enzymes have emerged as potential new pharmacological
approaches to treat epilepsies. The majority of studies have focused on
the inhibition of anandamide hydrolysis. In the kainic acid-induced sei-
zure model, the FAAH inhibitor AM5206 and the dual FAAH/MAGL in-
hibitor AM6201 were able to reduce behavioral seizure scores and
cytoskeletal damage [60,61]. Moreover, the FAAH inhibitor URB597 in-
creased the threshold for PTZ-induced seizures and EEG epileptiform
activity in rats [51]. This compound also inhibited seizure and cell
death induced by cocaine intoxication in mice, both effects being
prevented by CB1 receptors antagonists [28]. In rats, URB597 prevented
the seizure-induced impairment of synaptic plasticity in a CB1-
dependent manner [62]. As for the 2-AG hydrolysis inhibitors, the
MAGL inhibitor JZL184 delayed the development of generalized epilep-
tic seizures in the kindling model of temporal lobe epilepsy in mice. Its
effects were abolished in the CB1 receptor knockout mice [63].

These results indicate that the inhibition of endocannabinoid hydro-
lysis may confer protection against seizures and excitotoxicity. How-
ever, contrasting results showed that mice lacking FAAH exhibit
enhanced seizure responses to kainic acid, which was increased by
anandamide administration [64]. In addition, URB597 did not affect
the development of seizures in the amygdala kindling model of tempo-
ral lobe epilepsy [46]. Thus, further studies are required to characterize
the doses and the types of seizures in which endocannabinoid-
hydrolysis inhibitor might be effective.

6. TRPV1 channel blockers

In addition to activating the CB1 receptor, anandamide has been pro-
posed as an endogenous agonist at the TRPV1 channel, although with
lower affinity [15]. However, contrary to CB1, TRPV1 activation tends
to facilitate, rather than reduce, seizures. In experiments with in vitro
preparations, anandamide induced an increase in spontaneous excit-
atory postsynaptic currents through TRPV1 channel activation [65].
Moreover, capsaicin, a TRPV1 agonist, enhanced spontaneous excitatory
postsynaptic current frequency in mice with temporal lobe epilepsy,
resulting in an increased glutamate release in dentate gyrus granule
cells [65]. Accordingly, TRPV1 knockout mice are less susceptible to
PTZ-induced seizures induced by early-life hyperthermia challenge
[66]. In addition, pilocarpine-induced SE produced an upregulation of
TRPV1 in hippocampus, while activation and inhibition of TRPV1 in-
duced an increase and decrease, respectively, in the synaptic transmis-
sion in CA1 and CA3 of epileptic animals [67].

These results suggest that TRPV1 blockers might exert antiepileptic
effects. The few results available so far seem to support this possibility.
ing cannabinoid and vanilloid mechanisms for epilepsy treatment, Ep-
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Fig. 2. A hypothesis on how dual FAAH/TRPV1 blockade might represent a potential treatment for epilepsy. Drugs acting through this mechanism increase N-arachidonoyl ethanolamide
(AEA, anandamide) levels to selectively activate the CB1 receptor, and inhibit neuronal activity. They simultaneously block the TRPV1 channel, which mediates the excitatory effects of
anandamide.
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The TRPV1 blockers induced anticonvulsant effects in 4-AP-induced ep-
ileptiform activity in vitro and in vivo [68]. They also reduced PTZ-
induced seizures [69,70] as well amygdala-induced kindling in rats
[71]. Finally, TRPV1 blockade also inhibited acoustically evoked seizures
in the genetically epilepsy-prone rat [72]. One possible mechanism
through which TRPV1 blockers reduce seizures is the reduction of Ca2
+influx. Accordingly, both PTZ and TRPV1 agonists increased Ca2+ in-
flux in the hippocampus and the dorsal root ganglion of rats [73,74].

The possible role of anandamide as an endogenous agonist at both
the CB1 receptor and TRPV1 channel can be exploited for the develop-
ment of drugs with a dual mechanism. In the PTZ-induced seizures
model in mice, anandamide administration induced a biphasic effect,
whereas a FAAH inhibitor combined with a TRPV1 blocker reduced sei-
zure in mice [75]. Accordingly, the simultaneous blockade of FAAH and
TRPV1 with the dual blocker arachidonoyl-serotonin (AA-5HT) allevi-
ates seizures in the PTZ-model in mice, an effect reversed by CB1 antag-
onism, but not completely mimicked by TRPV1 inhibition [76]. Finally,
the anticonvulsant effects of WIN-55,212-2 were potentiated by
TRPV1 blockade in a model of temporal lobe epilepsy [77]. Thus, dual
FAAH/TRPV1 blockers warrants further investigation as putative new
antiepileptic drugs.
7. Clinical studies

So far, the only cannabinoid-related compound to reach the clinics is
CBD. Early clinical trials dated from the 70s to 80s reported improve-
ment of refractory epilepsy after CBD treatment [78,79]. However, this
compound remained under-investigated until some years ago, when
clinical trials involving patients with different epileptic-related syn-
dromes started to report its beneficial effects. Cannabidiol induced a sig-
nificant reduction of seizures in patients with Lennox–Gastaut
Syndrome [80,81] and in Dravet syndrome patients after a 14-week
treatment [82]. In addition, CBD-enriched Cannabis extracts reduced
the frequency of seizures in children diagnosed with different epilepsy
syndromes and resistant to classical antiepileptic drugs [83].
Cannabidiol seems to induce adverse effects of moderate severity,
such as, sedation, decreased appetite and fatigue [84]. More extensive
studies are still required, including randomized, double-blind,
placebo-controlled trials, comparing CBD to conventional antiepileptic
drugs.
Please cite this article as: L. Asth, L.P. Iglesias, A.C. De Oliveira, et al., Exploit
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8. Conclusion

Antiepileptic drugs exert their effects by interacting with various
targets, although there are some major common mechanisms, such as,
blockade of sodium and calcium channels, glutamatergic inhibition,
and GABAergic facilitation. Unfortunately, they induce a myriad of ad-
verse effects and a subset of patients fails to respond to any of these
treatments [20]. In this context, new pharmacological approaches
must be pursued to advance the field and bring relief to patients.

Among the phytocannabinoids, CBD has been approved in some
countries for the treatment of drug-resistant epileptic syndromes
(Dravet and Lennox–Gastaut Syndromes). However, its mechanisms
of action remain to be fully elucidated. Other phytocannabinoids are
also under investigation. As for the synthetic cannabinoids, they are un-
likely to represent promising strategies, due to their “Cannabis-like” side
effects and even seizure-inducing activity. Alternatively, anandamide
hydrolysis inhibitors (FAAH inhibitors), which exploit endocannabinoid
on-demand defensive mechanisms, might represent interesting ap-
proaches. The TRPV1 blockers alsowarrant further investigation, partic-
ularly if combined with FAAH inhibitions (Fig. 2). This concept has been
discussed elsewhere for the treatment of anxiety and mood disorders
[18], and might be applied also in the search for new epilepsy
treatments.
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