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Abstract

Software testing plays a crucial role to guarantee a desired level of software
quality. Its goal is to ensure software products respect specified requirements,
function as intended and are error-free. The scope of software testing is broad, from5

functional to non-functional requirements, and is generally performed at different
levels (e.g. unit testing, integration testing, system testing, acceptance testing).
During continuous integration, development activities are typically stopped when
test failures happen and further investigations and debugging are required.

In an ideal world, all tests are deterministic: developers and testers expect the10

same outcome (pass or fail) for a test when executed twice on the same version
of their program. Unfortunately, some tests exhibit non-deterministic behaviour.
Commonly named flaky tests, they give confusing signals to developers who struggle
to understand if their software is defective or not, and tend to lower their trust in
test suites. Those occasional test failures can be difficult to reproduce and thus15

hard to debug. When test flakiness is left unaddressed, it can hinder the smooth
and rapid integration of code changes. Furthermore, it also impacts many effective
testing techniques such as test case selection, test case prioritisation, automated
program repair or fault localisation. While the phenomenon is known by many for
decades now, academic attention has only sprouted in recent years and few studies20

were carried out to better understand flakiness, its different causes and origins, and
to propose techniques helping to prevent, detect and mitigate flakiness.

In this context, the present dissertation aims at advancing research in test
flakiness prediction through five main contributions. The first two are explorative
studies. They aim at getting a better understanding of test flakiness and existing25

prediction techniques. The next two contributions are constructive studies. They
suggest new approaches and focus on yet unaddressed problems. Finally, the last
contribution is a case study carried out in a real-world context and brings new
insights important to efficiently continue test flakiness prediction research.

By conducting a qualitative study, the first contribution seeks to understand30

practitioners’ perceptions of the sources, impact and mitigation strategies of flaky
tests. The goal of this work is to grasp the current challenges revolving around
flakiness in the industry and to identify opportunities for future research. We
carried out this study by conducting a grey literature review and practitioner
interviews. Findings revealed sources of flakiness that were until now overlooked by35



previous research (such as the infrastructure, environment or testing frameworks)
and a strong negative impact on testing practices. The second contribution aims
at comforting the usability of flaky test prediction techniques. Rerunning failing
tests is still the main approach to deal with flakiness and this comes at a cost,
both time-wise and computer-wise. If accurate, predicting flaky tests can be an5

alternative to reruns and help better understand their characteristics. In this study,
we replicate an existing approach relying on code vocabulary to predict flaky tests
with three goals in mind: validating the approach in the continuous integration
context, evaluating the generalisability of the approach to different programming
languages and extending the approach by considering an additional set of features.10

Realising that predicting flaky tests is feasible but also that challenges remain to
understand the cause of flakiness, the third contribution presents a new technique
to predict the flakiness category of a given flaky test with the hope to provide
developers with better insights to debug their tests. In the fourth contribution,
we aim at identifying the cause of flakiness in the critical case where its source15

originates from within the program under test. To do so, we adapt spectrum-based
fault localisation and leverage ensemble learning to rank classes based on their
likelihood to be responsible for test flakiness.

In the fifth and final contribution, we conduct an empirical analysis of Chromium’s
continuous integration, where we found that flaky test signals should not be dis-20

carded as they reveal themselves useful to find faults caused by regressions. Thus,
we advocate for the need to predict failures (as flaky or faulty) by taking into
account the context of a test’s execution.

Overall, this thesis provides insights into how predictive models can be validated
and leveraged to better handle test flakiness in real-world contexts.25
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1
Introduction

This chapter provides an introduction to software testing. In particular, it
explains how today’s software systems are engineered, why software quality is an
important matter and how software testing is commonly conducted. It also introduces5

the challenges encountered by developers, testers and researchers particularly those
linked with flakiness; which corresponds to the scope of this thesis.
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1.1 Context
Throughout the years, our civilisation become more and more dependent on

computers. The laptop we use to access the internet is just the tip of the iceberg.
Actually, software is now present in every aspect of our life: it’s on our wrists,
driving our cars, flying our planes, powering our electricity and running our economy.5

Software is flexible, it can be leveraged to answer very specific needs and is deployed
in various forms, e.g. embedded in every object of the Internet of Things, where
power consumption is often a key challenge, or distributed across multiple platforms
such as blockchain, where traceability and reliability are expected. This shift in
our society happened fast. Over the last decades, the software industry boomed,10

relying on more powerful hardware, and answering the need of more people.

1.1.1 Software Development Life Cycle
Traditional Software Development

The software development life cycle of software systems has evolved through
the years to adapt to technical practices and customer needs. In the early days, the15

Waterfall model was widely used. It followed a linear and sequential process of the
different phases of a project, each stage being completed before the beginning of the
next one. The typical phases consisted in identifying the requirements, designing
the software, implementing it, then testing and verifying and finally deploying and
maintaining. Even though many consider the Waterfall model as a practice from20

the past, it is still adequate and efficient to rely on thanks to its clear structure in
the case of small projects or when deliverables are easily defined at the beginning.
Limits for this model arise for bigger projects, or when customer needs are complex
and evolving. While benefiting from a stronger and longer operational lifetime,
projects following the Waterfall model suffer from the difficulty of making changes25

as they would require whole new iterations of the different phases. Over the years,
the user was gradually put at the centre of attention by software companies and
constant feedback required a more flexible approach to software development [1]–[3].
Agile Software Development

Agile software development emerged as an answer to the limitations of tradi-30

tional, sequential approaches like the Waterfall model. The need for a more flexible
and adaptive approach arose due to the increasing complexity of software projects,
the desire for faster delivery, and the recognition that user requirements often evolve
during development. One of the main benefits of Agile methodology is its ability to
deliver quickly and frequently. This is made possible by breaking down the whole35

development into several software components that can be deployed easily. This
enables fast and continuous customer feedback, ensuring that the software meets
evolving needs and expectations. Agile also promotes a collaborative team culture

2



through the means of tools used for better communication and knowledge sharing
across different teams. This leads to higher team motivation and morale which
aims at a better quality output.

Nowadays, Agile is vastly used and different frameworks and practices exist to
implement Agile principles, such as Scrum, Kanban and Extreme programming.5

The goals of Agile remain the same: to foster collaboration, adaptability, and
customer satisfaction while enabling development teams to deliver high-quality
software efficiently [4]–[7].
Continuous Integration & Continuous Delivery

Continuous Integration (CI) and Continuous Delivery (CD) are practices used10

in software development to automate the process of building, testing, and delivering
software. They promote efficiency, quality, and agility in the development lifecycle.

Figure 1.1: Continuous Integration and Continuous Delivery [8]

CI refers to the practice of frequently integrating code changes from multiple
developers into a shared repository. The integrated code pieces are then automati-
cally built and tested to ensure no conflict or issue emerges. This process ensures15

that the codebase remains stable and allows development teams to identify and fix
issues early on. CI promotes collaboration, reduces the risk of integration problems,
and enables rapid feedback, enabling the delivery of higher-quality software.

CD extends the concept of CI by automating the software delivery aspects.
Continuous Delivery enables safe, quick and sustainable shipment of changes into20

production. Those changes are typically new features, bug fixes, and configuration

3



changes. CD relies on code that is always in a deployable state in order to make
deployments as easy and straightforward to facilitate automation. Figure 1.1
summarises the different steps of CI/CD.

CI/CD is closely linked to Agile methodologies. Both CI and CD foster the
principles of frequent collaboration, iterative development, and continuous improve-5

ment. By automating repetitive and error-prone tasks, CI/CD enables teams to
focus on delivering value, responding to changing requirements, and maintaining a
sustainable pace. It aligns with Agile’s emphasis on delivering working software
quickly and adapting to feedback and evolving customer needs [9]–[12].

1.1.2 Software Quality Assurance10

Software development methodologies evolved throughout the years. In this
context, one key aspect is also evolving accordingly: software quality. Users of any
application have stronger expectations over time. They require not only bug-free
products but also cheap, fast, secure, easy-to-use and respectful towards their
privacy. For any business now, software quality is of utmost importance. It saves15

time and money, as repairing bugs or patching security issues too late can be very
costly, it ensures competitiveness in the market and is also key to maintaining a
good brand reputation among customers. This is when the role of Software Quality
Assurance comes into place [13]–[15].

Software Quality Assurance (SQA) represents any set of methods, processes and20

activities applied during the life cycle of a software project to guarantee its quality,
reduce and prevent defects during its development and confirm its alignment with
the defined requirements. SQA is defined by many standards and norms across the
industry, but several principles prevail:

Prevention: The cost of software bugs is known to grow exponentially the25

longer it takes to be fixed. It is then important to allocate the necessary
efforts to identify potential issues early in the development life cycle and to
reduce the risk of shipping faulty products.
Continuous improvement: SQA is not a one-time check. It is a continuous
process that needs to be followed at all times. It is also often required to adapt30

methodologies and processes in parallel with the evolution of the software
especially at scale.
Stakeholder involvement: To achieve good quality assurance, every stake-
holder needs to be involved in the process, this includes managers, developers,
testers, but also the customers or users. Good communication between all35

parties facilitates quick feedback and enables fast reactions.
Risk prioritisation: SQA involves identifying and managing risks that could
impact the quality of the software and taking proactive steps to mitigate
them.

According to these principles, SQA activities are then defined and followed in a40
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continuous manner.
Planning: The first activity should be to clearly define quality standards
that the end product should meet. This includes specifications, acceptance
criteria and performance metrics. These blueprints should also indicate who
is responsible for each task.5

Reviews: Through the iterations of the software development life cycle,
reviews should be carried out to prevent software defects. This includes code
reviews, writing documentation, and checking the requirements. If possible,
this should be done by internal and external teams.
Testing: SQA involves testing and validating the software. Performing10

multi-level testing is important to ensure better quality. This includes unit
tests, integration tests, system tests and acceptance tests.
Monitoring: Measuring and monitoring coding activities is important to
keep track of quality indicators. This can be done using code coverage,
bug-tracking systems and testing tools.15

This dissertation focuses towards the software testing aspect.

1.1.3 Software Testing
Principles

Software testing is a crucial and necessary aspect of software development
ensuring the quality, reliability, and functionality of software systems. It involves20

systematically checking and evaluating the software against predefined requirements
to align with user needs and expectations. The primary goal of software testing
is to find bugs, defects or errors as early as possible in the development life cycle.
According to some studies [16], the cost of fixing a bug is growing exponentially
the later it is found in the different phases of development and can go up to 10025

times more costly if identified in production.

There are several key principles that guide software testing:
Exhaustiveness: Testing aims to achieve a high level of coverage, ensuring
that all relevant functionalities, scenarios, and input combinations are tested.30

While it may not be possible to test every single possibility, testing efforts
should be comprehensive to minimize the risk of undiscovered defects.
Independence: Testing should be conducted independently of the develop-
ment process to ensure impartiality. Testers should have a clear understanding
of the software’s functionality but should maintain a separate perspective to35

identify potential issues or deviations from requirements.
Early Start: Testing should commence as early as possible in the software
development life cycle. By incorporating testing from the initial stages,
defects can be identified and resolved quickly, reducing the potential impact
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on future development phases.
Reproducibility: Tests should be reproducible, allowing defects to be
isolated and fixed reliably. This principle ensures that identified issues can
be accurately communicated and resolved by the development team.
Traceability: Testing should be traceable, meaning that test cases are5

linked to requirements and documented in a structured manner. This enables
effective tracking of the testing process and ensures coverage of specific
requirements.
Continuous Improvement: Testing should be viewed as an iterative and
continuous process. It involves learning from past experiences, analyzing test10

results, and refining testing strategies to enhance efficiency and effectiveness
over time. Continuous improvement is key to optimizing the testing process
and delivering higher-quality software.

By adhering to these principles, software testing helps to identify defects,
enhance software quality, and ensure that software systems meet user requirements15

and expectations. It plays a vital role in reducing risks, enhancing customer
satisfaction, and enabling the successful deployment of reliable software products.
Levels of testing

Testing is usually performed at different levels of granularity. The main type of
tests are listed below:20

Unit testing focuses on verifying the functionality of individual components
or units of code. It is typically conducted by developers and aims to ensure
that each unit behaves as intended. Mock objects or stubs may be used to
isolate units for testing.
Integration testing verifies the interactions between different modules or25

components when they are combined. It aims to identify defects that arise
from the integration of various units and ensures the proper functioning of
the software as a whole.
System testing involves testing the complete and integrated system against
the specified requirements. It verifies the system’s compliance with functional30

and non-functional requirements, such as performance, security, and usability.
System testing is typically performed by a dedicated testing team.
End-to-end (E2E) testing validates the entire software system as a whole,
ensuring that all components work together as expected. It simulates real-
life user scenarios to identify any issues or defects that may arise from the35

interaction and integration between different parts of the system.
Figure 1.2 represents the pyramid of tests illustrating the various type of testing.

The concept of the pyramid is used to describe metaphorically the need for smaller
tests and fewer high-level tests to facilitate the development and QA team to create
and maintain high-quality software. Smaller tests like unit and integration tests are40
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typically fast and easy to automate and maintain. Higher-level tests like System
tests and E2E tests tend to be larger, more brittle and require more resources to
write and to run. This is why it is generally advised to follow this pyramid-shaped
structure when writing tests and to avoid the cupcake or ice-cream cone structure
in order to facilitate the maintainability and efficiency of software testing. This5

list is non-exhaustive and, depending on the projects, other types of tests could be
represented, such as Graphical User Interface (GUI) tests, to test visual components
in the case of graphical applications, API tests, testing the different API endpoints
or even manual testing, which is usually conducted occasionally or systematically
on the overall system [17].10

Figure 1.2: Pyramid of tests

Test coverage
One of the techniques used to assess the completeness of the testing process is

test coverage. It is typically expressed as a percentage indicating the proportion
of code or requirements covered by the tests. It can be measured at different test
levels and can rely on different approaches, such as statement coverage, branch15

coverage or function coverage. Test coverage helps identify untested or under-tested
areas of the software, enabling teams to focus their testing efforts and improve the
overall quality of the system. However, it’s important to note that achieving 100%
test coverage doesn’t guarantee the absence of defects, as it’s still possible to have
undiscovered issues in the parts that are tested [18], [19].20
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1.2 Challenges
1.2.1 Testing at Scale

Challenges arise when software systems become large and complex over time.
It is not surprising to find projects containing several hundreds of thousands of
tests in big tech companies such as Google or Meta [20], [21]. In such extreme5

contexts, where features are added at a very high rate (Google reports mention
tens of thousands of commits per day [22]) it becomes incredibly difficult to keep
testing thoroughly as running all tests for every change would require too much
time and resources. Even in optimal scenarios, final results can take several hours
to compute before being sent for feedback to developers.10

To alleviate issues linked with important time and computing resources required,
several optimisation techniques can be leveraged:

Test parallelisation relies on executing tests by dividing the test suite into
smaller subsets and running them simultaneously in parallel test environ-15

ments. Distributing test executions across multiple machines leveraging their
combined resources can help expedite the testing process and reduce feedback
time.
Commit batching involves grouping multiple code changes into a single test
run, thereby reducing the number of test executions and the overall testing20

time. Commit batching is a strategy that can help to find a good balance
between timely feedback and testing efficiency, especially when dealing with
large test suites and resource constraints environments. For example, if 10
commits are batched together and result in no test failure, then we have tested
10 commits with one execution thus saving nine executions. However, if a25

failure occurs it is not straightforward to know which build caused the failure.
A bisection is then run to isolate the failing build. Further investigations to
identify the culprit build and root cause remain challenging. Research works
have been carried out to reduce the search space of bug-inducing commits
[23]–[25].30

Test Selection is another technique that can be used to reduce the number
of tests to execute. In this case, only the relevant tests are executed based
on code changes or impacted areas. This reduces the number of tests run
and speeds up the feedback cycle. This technique is commonly referred to
as Regression Test Selection (RTS) and, even if it has been investigated for35

many years - several surveys date back to the 2000s [26]–[28] - it remains a
challenge to optimise test selection in CI [29] and to find efficient ways to
select tests.
Test Prioritisation can also be leveraged to reduce testing costs and
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feedback time. Commonly referred to as Test Case Prioritisation (TCP), the
idea consists of starting to test the critical tests or the ones having a strong
ability to identify defects. Executing high-priority tests first helps to get
rapid feedback. This approach ensures that important issues are identified
early in the testing process. As an example, if only one test will fail for a5

given test suite execution, it is then better to have this test executed among
the first ones.

1.2.2 Automated Testing Research
Many research directions are taken to help test more thoroughly software and

to help with debugging tasks in a more automated and efficient way. The list below10

presents some of the main aspects drawing attention nowadays:
Mutation Testing is a type of software testing used as a test adequacy
criteria, i.e. to assess the effectiveness and thoroughness of existing tests.
It does so by introducing artificial faults, small syntactic changes, into the
original program and then checking the ability of existing test suites to detect15

those changes. As we saw earlier, test coverage only cannot guarantee that a
program is tested thoroughly. The challenge for mutation testing is that it
can be computationally expensive and time-consuming, especially for large
codebases. Many works try to reduce the number of mutants [30], [31] (e.g.
finding equivalent mutants), to identify and select relevant mutants [32]–[34]20

and to evaluate their applicability in the software evolution context [35], [36].
Automated Test Generation can reduce the effort and time required to
create new test cases during the development process. Tools and frameworks
exist to generate relevant test cases with regards to the targeted source
code [37]–[39]. Different are commonly used for that purpose: code-based,25

property-based, random-based... One of the biggest challenge in automated
test generation is linked with the test oracle problem: tools often face the
challenge of determining the expected output or behavior of the system under
test. Without a clear oracle, it becomes difficult to evaluate whether the
generated tests are correct or not.30

Fault Localisation is a research area in software testing that focuses on
identifying the specific locations of software defects. It aims to assist devel-
opers in quickly identifying the parts of the code that are responsible for the
observed failures. Different approaches exist [40]. Spectrum-based approaches
leverage information from the program’s execution trace or coverage data35

to pinpoint potential fault locations [41], [42]. These approaches compute
suspiciousness scores for program elements (e.g., statements, branches) based
on the difference between passing and failing executions. Search-based ap-
proaches formulate fault localisation as an optimisation problem and employ
search algorithms to explore the space of possible fault locations [43]. Machine40
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learning approaches use statistical analysis or machine learning models to
identify faults [44]. They leverage various code and program characteristics,
such as code metrics, static analysis results or historical data. Common
challenges in automated fault localisation research include the accuracy of
fault localisation results, the scalability to handle large codebases or the5

generalizability across different software contexts.
Automated Program Repair aims at automatically patching defects.
Similarly to fault localisation, APR includes different approaches, like search-
based repair, constraint-based repair or pattern-based repair. Challenges
remain to evaluate patch correctness and quality, to have tools scaling with10

the size and complexity of the software system and to promote the adoption
of such approaches in real-world context [45]–[47].

1.2.3 Test Flakiness
Most, if not all, of the approaches presented above, rely on deterministic tests

and execution: when a given input results in a program state, we expect the output15

to be reproducible with similar input. This is not always the case, and developers
often face what they call flaky tests. Flaky tests are tests that pass and fail for the
same code under test.

It complicates the debugging One of the most common actions taken to
debug a test that fails is to rerun it. Unfortunately in the case of a flaky test,20

it might be difficult to reproduce the error. Developers would then understand
that something is wrong without figuring out what. This augments the time
and effort given to debug and solve flakiness [48].
It reduces developers trust Flakiness is not always under the control
of developers. A test might be flaky because of external dependencies not25

available at the time of execution or because of infrastructure issues. In this
case, developers would tend to ignore signals from their tests. This can lead
to real bugs being disregarded and ultimately results in less quality in the
software [49].
It alters existing techniques Outside the direct challenges faced by devel-30

opers, flakiness can also impact automated software techniques. As we saw
earlier, many automated testing approaches can be implemented to reduce
testing costs. The presence of flakiness brings noise altering the efficiency of
those approaches [50], [51].
It critically affects the industry Flakiness is reported to be one of the35

major software testing challenges encountered nowadays. Several reports
from the industry highlight this [21], [52]–[56]. For instance, at Google,
there are 150 million test executions per day, and almost 16% of their 4.2
million test cases have some level of flakiness [20]. This entails enormous
computational resources since 2-16% of the company’s testing budget is40
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dedicated to rerunning flaky tests [56]. Perhaps worse, over 80% of observed
transitions (false Failures or Passes) at Google workflow are caused by flaky
tests [57], indicating an important level of uncertainty in the test signal.

The next chapter will give more details about the origins of flakiness and some
examples.5

1.3 Scope of the Thesis
This dissertation largely focuses on the use of machine learning techniques to

predict different aspects of flakiness, such as if a test is flaky or not, which part
of the code under test is causing the flakiness, or which category of flakiness a
flaky test belongs to. It also intends to better understand and assess their usability10

and validity in real-world scenarios. The subjects used for the different studies are
coming from the open-source community. It is also worth noting that the studies
mainly focus on automated functional testing: unit tests, integration tests and GUI
tests but do not specifically address higher-level tests such as system tests or even
manual tests as there tend to be fewer of them in open-source software.15

1.4 Overview of the Contribution and Organisa-
tion of the Dissertation

This section presents the contributions of this dissertation to address the
aforementioned challenges related to flakiness as well as the organisation of this
dissertation as illustrated by Figure 1.3.20

1.4.1 Contributions
The contributions of this dissertation are the following:
• Chapter 4: A Qualitative Study on the Sources, Impacts, and Miti-

gation Strategies of Flaky Tests We performed a grey literature review
and interviewed 14 practitioners in order to have a better understanding of25

the challenges linked with flakiness in the industry. We explore three aspects:
the sources of flakiness within the testing ecosystem, the impacts of flakiness
and the measures adopted when addressing flakiness. Our analysis showed
that, besides the tests and code, flakiness stems from interactions between
the system components, the testing infrastructure, and external factors. We30

also highlighted the impact of flakiness on testing practices and product
quality and showed that the adoption of guidelines together with a stable
infrastructure are key measures in mitigating the problem. Furthermore, we
also identified automation opportunities enabling future research works.

35
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• Chapter 5: A Replication Study on the Usage of Code Vocabulary
to Predict Flaky Tests Recent research works explored the possibility of
detecting flaky tests using supervised learning. However, to reach industrial
adoption and practice, these techniques need to be replicated and evaluated
extensively on multiple datasets, occasions and settings. In view of this, we5

perform a replication study of a recently proposed method that predicts flaky
tests based on their code vocabulary. We thus replicate the original study
on three different dimensions. First, we replicate the approach on the same
subjects as in the original study but using a different evaluation methodology,
i.e. we adopt a time-sensitive selection of training and test sets to better10

reflect the envisioned use case. Second, we consolidate the findings of the
original study by checking the generalisability of the results for a different
programming language. Finally, we propose an extension to the original
approach by experimenting with different features extracted from the code
under test.15

• Chapter 6: Predicting Flaky Tests Categories using Few-Shot Learn-
ing While promising, existing flakiness detection approaches mainly focus
on classifying tests as flaky or not and, even when high performances are
reported, it remains challenging to understand the cause of flakiness. This20

part is crucial for researchers and developers that aim to fix it. To help with
the comprehension of a given flaky test, this chapter introduces FlakyCat,
the first approach to classify flaky tests based on their root cause category.
FlakyCat relies on CodeBERT for code representation and leverages Siamese
networks to train a multi-class classifier. We train and evaluate FlakyCat on a25

set of 451 flaky tests collected from open-source Java projects. Our evaluation
shows that FlakyCat categorises flaky tests accurately, with an F1 score of
73%. We also investigate the performance of FlakyCat for each category. In
addition, to facilitate the comprehension of FlakyCat’s prediction, we present
a new technique for CodeBERT-based model interpretability that highlights30

code statements influencing the categorisation.

• Chapter 7: Pinpointing Classes Responsible for Test Flakiness To
mitigate the effects of flakiness, both researchers and industrial experts pro-
posed strategies and tools to detect and isolate flaky tests. However, flaky35

tests are rarely fixed as developers struggle to localise and understand their
causes. Additionally, developers working with large codebases often need
to know the sources of nondeterminism to preserve code quality, i.e. avoid
introducing technical debt linked with non-deterministic behaviour, and avoid
introducing new flaky tests. To aid with these tasks, we propose re-targeting40
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Fault Localisation techniques to the flaky component localisation problem,
i.e. pinpointing program classes that cause the non-deterministic behaviour
of flaky tests. In particular, we employ Spectrum-Based Fault Localisation
(SBFL), a coverage-based fault localisation technique commonly adopted for
its simplicity and effectiveness. We also utilise other data sources, such as5

change history and static code metrics, to further improve the localisation.
Our results show that augmenting SBFL with change and code metrics ranks
flaky classes in the top-1 and top-5 suggestions, in 26% and 47% of the cases.
Overall, we successfully reduced the average number of classes inspected to
locate the first flaky class to 19% of the total number of classes covered by10

flaky tests. Our results also show that localisation methods are effective
in major flakiness categories, such as concurrency and asynchronous waits,
indicating their general ability to identify flaky components.

• Chapter 8: The Importance of Discerning Flaky from Fault-triggering15

Test Failures While promising, the actual utility of the methods predicting
flaky tests remains unclear since they have not been evaluated within a con-
tinuous integration (CI) process. In particular, it remains unclear what is the
impact of missed faults, i.e. the consideration of fault-triggering test failures
as flaky, at different CI cycles. In this chapter, we apply state-of-the-art flak-20

iness prediction methods at the Chromium CI and check their performance.
Perhaps surprisingly, we find that the application of such methods leads to
numerous faults missed, which is approximately 3/4 of all regression faults. To
explain this result, we analyse the fault-triggering failures and find that flaky
tests have a strong fault-revealing capability, i.e. they reveal more than 1/3 of25

all regression faults, indicating inevitable mistakes of methods that focus on
identifying flaky tests, instead of flaky test failures. We also find that 56.2%
of fault-triggering failures, made by non-flaky tests, are misclassified as flaky.
To deal with these issues, we build failure-focused prediction methods and
optimize them by considering new features. Interestingly, we find that these30

methods perform better than the test-focused ones, with an MCC increasing
from 0.20 to 0.42. Overall, our findings suggest that future research should
focus on predicting flaky test failures instead of flaky tests (to reduce missed
faults) and reveal the need for adopting more thorough experimental method-
ologies when evaluating flakiness prediction methods (to better reflect the35

actual practice).
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1.4.2 Organisation of the Dissertation
In the remainder of this dissertation, Chapter 2 presents the technical back-

ground useful for a good understanding of this thesis. Chapter 3 discusses the
existing works related to the contributions of this dissertation. Chapters 4 and
5 both contribute to the exploratory studies. The former presents a qualitative5

study on the sources, impacts and mitigation strategies of flakiness, and the latter
details a replication study on the usage of code vocabulary to predict flaky tests.
Chapters 6 and 7 are constructive studies. Chapter 6 presents FlakyCat, the
first approach to classify flaky tests according to their category of flakiness and
Chapter 7 introduces an approach to identify classes responsible for test flakiness.10

Chapter 8 is the last contribution of this dissertation. We present the case study of
Chromium’s continuous integration and highlight the importance of discerning flaky
from fault-triggering test failures. Finally, Chapter 9 concludes the dissertation
and presents future research directions.

Figure 1.3: Structure of this thesis.

14



2
Background

This chapter presents the background on test flakiness, machine learning and
spectrum-based fault localisation, essential for a good understanding of the different
technical aspects of this dissertation.5

Contents
2.1 Test Flakiness: Definition, Characteristics and Examples 16
2.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . 1710

2.3 Spectrum-Based Fault Localisation . . . . . . . . . . . . 19
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2.1 Test Flakiness: Definition, Characteristics
and Examples

2.1.1 Definition
In English, we refer as flaky, a person that is unreliable or someone that is

behaving in a way that is strange, not responsible or not expected. This explains5

the origin of the appellation flaky test. While generally used by developers and
practitioners to characterize tests that intermittently fail for no apparent reason,
a general definition for a flaky test is commonly adopted by the research community:

A flaky test is a test that passes and fails when executed multiple10

times on the same code.

2.1.2 Examples

Figure 2.1: Example of a flaky test caused by an asynchronous wait [58]

Figure 2.1 shows a unit test written in Java for the HBase project. This test is
flaky and was reported by Luo et al. in their empirical study. We can see that the15

test uses a cluster to initiate the server firstServer. Then, it waits for the
server to ping back by using an asynchronous wait with Thread.sleep(2000).
We know that this test was sometimes passing and sometimes failing depending on
how fast the server was put online.

Figure 2.2 shows another flaky test taken in Elastic-Job, another popular Java20

project on GitHub. This test does not initially appear to be flaky, however, it was
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Figure 2.2: Example of an order-dependent flaky test caused [59]

found by the iDFlakies tool as an order-dependent test. In their paper, Lam et
al. explain that this test is checking that an instance of a class variable is shut
down on line 3. It happens that this instance is started by another test and thus,
depending on the order of executions in the test suite, this test can pass or fail.

2.1.3 Categories5

Several studies were conducted in an attempt to categorise flaky tests based on
their root causes [49], [58], [60]–[62]. The categories slightly differ depending on
the programming languages but the prevalent ones remain. Table 2.1 list the most
common flakiness categories.

2.2 Machine Learning10

Machine learning is a subfield of artificial intelligence focusing on the develop-
ment of algorithms and models being able to learn and make predictions without
being explicitly programmed. It involves the utilisation of statistical techniques and
computational power to analyze and interpret large datasets, identifying patterns
and relationships within the data. By iteratively learning from many examples15

and experiences, machine learning algorithms improve their performance and can
generalize to make accurate predictions or take informed actions on new, unseen
data [63], [64]. Machine learning can be divided into two subgroups: supervised
learning and unsupervised learning.

2.2.1 Supervised Learning20

Supervised learning is a machine learning approach relying on using labelled
datasets. These datasets are collected and then used to train models, i.e. supervising
them, to classify data or to predict outcomes accurately. Supervised learning
problems can further be divided into two families:

Classification problems aim at predicting the particular group or category for25

a data item. Famous examples of this problem are the binary classification of
emails (spam or non-spam), or multi-class classification of a given handwritten
character (one class for each letter in the alphabet). Common algorithms used
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for classification tasks include logistic regressions, support vector machines,
decision trees and random forests.
Regression problems aim at predicting a continuous numerical output
variable based on input features. It involves building a regression model
that can learn the relationship between the input variables (also known5

as independent variables, features, or predictors) and the output variable
(also known as the dependent variable or target). Such an approach can be
used to predict the price of houses based on features like living area and
year of construction for example. Common algorithms used for regression
tasks include linear regression, polynomial regression, decision tree regression,10

random forest regression, support vector regression, and neural network
regression

2.2.2 Unsupervised Learning
Unsupervised learning is a machine learning approach that learns to discover

inherent patterns or relationships in the data and extract meaningful insights or15

representations without the need for labelled datasets. Unsupervised learning can
also be subdivided into two groups:

Clustering algorithms group similar data points together based on their
features or characteristics. The algorithm recognises patterns in the data and
assigns data points to different clusters. Examples of clustering algorithms20

include k-means clustering, hierarchical clustering, or DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) [65], [66].
Dimension reduction algorithms aim to reduce the number of features in a
dataset while preserving important information. These algorithms transform
high-dimensional data into a lower-dimensional representation. Principal25

Component Analysis (PCA) and t-SNE (t-Distributed Stochastic Neighbor
Embedding) are commonly used dimensionality reduction techniques [67],
[68].

2.2.3 Performance Evaluation
Several chapters in this dissertation leverage supervised learning with binary30

or multi-class classification problems. To evaluate the performance of binary
classification models, we rely on different metrics derived from true positives
(TP), true negatives (TN), false positives (FP) and false negatives (FN). Precision
measures the accuracy of positive predictions, while recall measures the completeness
of positive predictions. In other words, precision measures how many detected35

items are relevant. It is calculated by dividing the true positives by the overall
positive elements. Recall measures how many relevant elements were detected.
Therefore it is calculated by dividing true positives by the number of relevant
elements.
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Precision = TP

TP + FP
Recall = TP

TP + FN

In addition to Precision and Recall, the F-score or F1 score is also often given.
It’s an accuracy measure calculated as the harmonic mean between Precision and
Recall.

F1 = 2 × Precision × Recall

Precision + Recall

The accuracy of a model is sensitive to class imbalance. In particular, the preci-
sion and recall metrics can easily be impacted when one class is underrepresented.5

To alleviate this issue, we report the Matthews Correlation Coefficient (MCC)
which is a more reliable statistical rate to avoid over-optimistic results in the case
of an imbalanced dataset [69]. This metric takes into consideration all four entries
of the confusion matrix. MCC ranges from -1 to 1 and is given by the following
formula:10

MCC = TN × TP − FP × FN√
(TN + FN)(TP + FP )(TN + FP )(FN + TP )

2.3 Spectrum-Based Fault Localisation
As explained in the introduction, Chapter 7 will present solutions based on

SBFL to identify classes responsible for flakiness. This section introduces SBFL
giving the necessary details to understand the contribution.

Figure 2.3: SBFL example

Spectrum-based fault localisation is a technique that aims at identifying the15

locations of faults in a software program by analyzing the coverage-based spectrum
by running the passing and failing tests. SBFL formulas are used to compute a
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suspiciousness score for each program component. Usually, a score of 1 is given
to the most suspicious component (usually a program statement) and a score of 0
to the least. Figure 2.3 illustrates an example of a faulty program, the coverage
information about two test cases, one failing and one passing, and the suspiciousness
score derived from an SBFL formula. The bug lies on line 3 in the return statement.5

Test case t1 failed after covering the first 4 lines. Test case t2 passed without
having covered lines 3 and 4. We see that most suspicious lines are actually lines 3
and 4.

2.3.1 Formulas
Several formulas have been introduced in the literature. The most common10

ones are Tarantula [70], Ochiai [71], DStar [72] and Barinel [73].

Tarantula : S(s) = failed(s)/totalFailed

failed(s)/totalFailed + passed(s)/totalPassed

Ochiai : S(s) = failed(s)√
totalFailed ∗ (failed(s) + passed(s)

DStar : S(s) = failed(s)∗

passed(s) + (totalFailed − failed(s))

Barinel : S(s) = 1 − passed(s)
passed(s) + failed(s)

Where s denotes a statement in a program, S(s) represents the suspicious15

score computed for a given statement s, passed(s) and failed(s) are the number of,
respectively, passed and fail executions for which the statement s was covered, and
totalFailed and totalPassed are the total number of passing and failing executions.
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Table 2.1: The different categories of flakiness commonly reported by the literature.

Category Definition Sources

Asynchronous Waits

Flakiness caused by tests that involve asynchronous op-
erations and have dependencies on timing, resulting in
inconsistent behaviour if the expected response is not
received within a specified time.

[49], [58], [61], [62]

Concurrency

Flakiness caused by race conditions or synchronisation
issues when multiple threads or processes interact with
shared resources simultaneously, leading to unpredictable
outcomes.

[49], [58], [61], [62]

Time
Tests depending on specific timing conditions, such as
time-sensitive calculations or time-based events, and may
produce different results based on the time of execution.

[49], [58], [61], [62]

Order-Dependency
Flakiness resulting from tests that rely on a specific
execution order due to shared resources or dependencies,
and may fail if the order among the tests is changed.

[49], [58], [61], [62]

Randomness
Flakiness caused by tests that involve random or pseudo-
random behaviour, where different outcomes may occur
on each run, potentially leading to inconsistent results.

[49], [58], [61], [62]

Unordered Collections
Flakiness resulting from tests that rely on unordered
collections or sets, where the order of elements can vary,
causing failures if the expected order is not maintained.

[58], [61], [62]

Network

Flakiness caused by network-related issues, such as un-
reliable connections, timeouts, or network congestion,
leading to inconsistent results in tests that interact with
remote services.

[49], [58], [61], [62]

I/O (Input/Output)
Flakiness resulting from tests that involve reading from
or writing to external files, databases, or other I/O oper-
ations, where inconsistencies or errors can occur.

[49], [58], [61], [62]

Resource Leak
Flakiness caused by tests that do not release system
resources properly, resulting in resource exhaustion and
inconsistent behaviour when run repeatedly.

[49], [58], [61], [62]

Floating Point

Flakiness caused by tests that rely on the results of float-
ing point operations, which can suffer from discrepancies
and inaccuracies due to precision limitations, overflows,
non-associative addition, and other factors.

[49], [58], [62]

Platform Dependency

Flakiness stemming from tests relying on specific func-
tionalities of an operating system, library version, or
hardware vendor. These dependencies can result in incon-
sistent and non-deterministic test failures, especially in
cloud-based continuous integration environments where
tests are executed on different platforms.

[49], [61]

Test Case Timeout
Flakiness caused by tests that specify an upper limit for
the test execution duration. Often those tests will fail
because the instructions will not complete in time.

[49], [61]
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3
Related Work

This chapter presents the related work to the different contributions of this
dissertation. It focuses on flakiness research: the main empirical studies and
research tools available at the time of writing. It also covers the existing studies on5

flakiness root-causing and flakiness prediction.
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3.1 Empirical Studies on Flakiness
Flakiness is a known issue in software testing but research studies have only

gained momentum in the past few years [74].
The first study on test flakiness was carried out by Luo et al. [58]. They

analysed 201 commits from 51 open-source projects in order to understand the root5

causes of flaky tests. They showed that Async Waits, Concurrency, and Test Order
Dependency are the main categories of flakiness. Later studies replicated the work
of Luo et al., showing that other flakiness root causes can be more predominant
in different application domains. Gruber et al. [61] presented a large empirical
analysis of more than 20,000 Python projects. They found Test Order Dependency10

and Infrastructure to be among the top reasons for flakiness in those projects.
Thorve et al. [75] analysed 77 flakiness-related commits in 29 open-source Android
applications and found that 22% of these commits have flakiness caused by external
factors like Hardware, Operating System version, and third-party libraries. Other
studies also focused on particular software contexts [76]–[78] or on highlighting the15

effects of flakiness on other software testing techniques such as mutation testing
and program repair [51], [79], [80].

Several studies have been conducted to inspect flakiness in the industry. Leong
et al. [57] studied flaky tests at Google and found that more than 80% of test
output transitions are caused by flakiness.20

Eck et al. [49] surveyed 21 Mozilla developers, asking them to classify 200 flaky
tests in terms of root causes and fixing efforts. This study highlighted four new
categories of flakiness: restrictive ranges, test case timeout, test suite timeout, and
platform dependency. It also provided evidence about flakiness from the CUT and
showed that flaky tests can have organisational impacts. Other surveys were also25

conducted to replicate this one [60], [81] and Parry et al. conducted a wide literature
review amounting 76 papers [74]. In our Chapter 4, we also conduct a survey but
we leverage a qualitative approach (interviews) to address other aspects of flakiness
in practice. More specifically, we investigate broader sources of flakiness (e.g. SUT
and infrastructure) instead of the root causes (e.g. concurrency and timeouts).30

Our study also inspects the actions taken by practitioners in order to prevent,
detect, and alleviate flaky tests. Result-wise, our findings confirm the observations
of Eck et al. about (i) the impact of flakiness on the test suite reliability and (ii)
the challenges of reproducing and debugging flaky tests. Furthermore, we highlight
new flakiness impacts, on testing practices and product quality, and we synthesise35

a list of automation challenges for flakiness mitigation.
Durieux et al. [82] investigated the impact of flakiness and restarted builds on

development workflow in Travis CI projects. They found that the more complex
the project, the more likely it was to contain restarted builds. They also showed
that those builds slowed down the merge of pull requests by a factor of three.40
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3.2 Flakiness Research Tools
To help debug, reproduce, and comprehend the causes of flaky tests several tools

have been introduced. DeFlaker [83] detects flaky tests across commits, without
performing any reruns, by checking for inconsistencies in test outcomes with regard
to code coverage. Focused on test order dependencies, iDFlakies [59] detects flaky5

tests by rerunning test suites in various orders.
To increase the chances of observing flakiness, Silva et al. [84] introduced Shaker,

a technique that relies on stress testing when rerunning potential flaky tests.

3.3 Root Causing Flakiness
One of the first main contributions to flakiness root cause localisation was10

proposed by Lam et al. [85]. They introduced a framework that helps developers
at Microsoft to localise the root causes of their flaky tests. This framework uses an
instrumentation tool to log the runtime properties of the test execution. Then it
reruns the tests 100 times to produce logs for a passing and a failing execution. To
analyse these logs and localise the root cause, they propose RootFinder, a tool that15

compares the logs of passing and failing executions to identify methods that can be
responsible for flakiness. RootFinder relies on a predefined set of non-deterministic
method calls and does not explore calls of unknown methods. Hence, it can
only detect flaky tests that arise from method calls that the developer is already
suspecting. In a second study, Lam et al. presented FaTB, an automated tool that20

speeds the runtime of test suites by lowering timeouts and waits without impacting
the overall test suite flake rate. Romano et al. [76] analysed User Interface (UI)
tests and showcased the flakiness root causes and the conditions needed to fix them.

Zitfci and Cavalcanti [86] presented Flakiness Debugger, a tool that compares
the code coverage of passing and failing executions to localise the flakiness root cause.25

They ran their tool on 83 flaky tests and presented the localised root cause to two
developers asking them for their evaluation. On average the developers found that
in 48% of the cases, flakiness was due to the exact statements spotted by Flakiness
Debugger. Moreover, only 18% of the outputs were considered inconclusive, hard
to understand, or not useful. Both RootFinder and Flakiness Debugger relied on30

differences between passing and failing executions of flaky tests to localise flakiness
in the CUT. In this study, we explore a new direction by analysing the differences
between flaky and stable tests.

Following their work with iDFlakies, Shi et al. presented iFixFlakies [87] to
automatically repair flaky tests. They introduced a framework that recommends35

patches for order-dependent flaky tests based on test patterns found in non-flaky
tests that exhibit similar behaviour as flaky tests. Follow-up works were also
conducted in this area [88].
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Morán [89] presented FlakyLoc, a tool for localising the root causes of flakiness
in web applications. The tool reruns web tests while varying environmental factors
(network, memory, CPU, browser type, operating system, and screen resolution)
and records test results. Then, it uses ranking metrics (Ochiai and Tarantula [70],
[90]) to identify the environmental factor and values that are responsible for the5

flaky failure. The tool was only evaluated on one test case and it detected that
the failure was caused by low screen resolution. In Chapter 7, we will also address
flakiness localisation, but we do not focus on any specific flakiness category and
our analysis is based on the test coverage instead of environmental factors.

3.4 Flakiness Prediction10

Table 3.1: Existing machine learning-based studies aiming at detecting test flakiness.
The majority of the techniques focus on detecting flaky tests, while half of the
approaches rely on vocabulary features.

Study Model Feature category Features Benchmark Target Year
King et al. [91] Bayesian network Static & dynamic Code metrics Industrial Flaky tests 2018
Pinto et al. [92] Random forest Static Vocabulary DeFlaker Flaky tests 2020

Bertolino et al. [93] KNN Static Vocabulary DeFlaker Flaky tests 2020
Haben et al. [94] Random forest Static Vocabulary DeFlaker Flaky tests 2021

Camara et al. [95] Random forest Static Vocabulary iDFlakies Flaky tests 2021

Alshammari et al. [96] Random forest Static & dynamic Code metrics &
Smells FlakeFlagger Flaky tests 2021

Fatima et al. [97] Neural Network Static CodeBERT FlakeFlagger
iDFlakies Flaky tests 2021

Pontillo et al. [98] Logistic regression Static Code metrics &
Smells iDFlakies Flaky tests 2021

Lampel et al. [99] XGBoost Static & dynamic Job execution
metrics Industrial Flaky failures 2021

Qin et al. [100] Neural Network Static Dependency graph Industrial Flaky tests 2022
Olewicki et al. [101] XGBoost Static Vocabulary Industrial Flaky builds 2022

Ackli et al. [102] Siamese Networks Static CodeBERT Various Flaky tests 2022

While they remain scarce, the recent publication of datasets of flaky tests [59],
[61], [83] enabled new lines of work. Prediction models were suggested to identify
flaky tests from non-flaky tests. King et al. [91] presented an approach that leverages
Bayesian networks to classify and predict flaky tests based on code metrics. Pinto
et al. [92] used a bag of words representation of each test to train a model able15

to recognize flaky tests based on the vocabulary from the test code. This line of
work has gained a lot of momentum lately as models achieved higher performances.
Several works were carried out to replicate those studies and ensure their validity
in different settings [95] including the work presented in Chapter 5.

In an industrial context, Kowalczyk et al. [103] implemented a flakiness scoring20

service at Apple. Their model quantifies the level of flakiness based on their
historical flip rate and entropy (i.e. changes in test outcomes across different
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revisions). Their goal was to identify and rank flaky tests to monitor and detect
trends in flakiness. They were able to reduce flakiness by 44% with less than 1%
loss in fault detection. In the study conducted in Chapter 8, we also rely on test
history to help with flakiness prediction.

More recently, FlakeFlagger [96] has been proposed. It builds a prediction model5

using an extended set of features from the code under test together with test smells.
The research community continue to draw attention to this field by considering
other possible features to predict flaky tests, this is the case of Peeler [100] for
example, where the authors leveraged test dependency graphs to predict flaky tests.

Less attention has been given to flaky failures or false alerts prediction. Herzig10

et al. [104] used association rules to identify false alert patterns in the specific case
of system and integration tests that contain steps. They evaluated their approach
on Windows 8.1 and Microsoft Dynamics AX.

Olewicki et al. investigated the possibility of leveraging vocabulary-based fea-
tures on logs from failing builds to predict if failures are caused by defects in15

the code or by other non-deterministic issues including flaky test failures. It is
interesting to note that their work focuses on builds and not tests as we do in our
study.

Finally, a recent study by Lampel et al. [99] presented an approach that
automatically classifies jobs by deciding if a job failure originates from a bug in20

the code or from flakiness. To do so, they relied on features from job executions,
e.g. CPU load, and run time. As such they are only concerned with some form of
flaky failures and not with the utility of detecting flaky failures in CI, instead of
tests as we do in this paper.

Table 3.1 summarizes the state-of-the-art of flakiness prediction in chronological25

order. By inspecting the table, we see that most of the studies focus on flaky tests,
with just one focusing on flaky test failures. We also notice that static features like
code metrics and test smells are often used but features based on vocabulary (i.e.
bag-of-words) are the most popular ones. In Chapter 8, we will see why focusing
on flaky failures instead of tests is important and how challenging it is to get good30

prediction performance.
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4
A Qualitative Study on the Sources, Impacts and

Mitigation Strategies of Flaky Tests

At the time of writing, flakiness research was still in its early stages. Therefore,
in this chapter, we answer the need for a better understanding of the problem
by conducting a qualitative study. We interviewed practitioners and report their5

perception of the sources and impacts of flakiness as well as the mitigation strategies
they have in place to tackle the problem. We also identify automation opportunities
paving the way for future research works.

This chapter is based on the work published in the following paper:10

• S. Habchi, G. Haben, M. Papadakis, et al., “A qualitative study on the
sources, impacts, and mitigation strategies of flaky tests,” in 2022 IEEE
Conference on Software Testing, Verification and Validation (ICST), 2022,
pp. 244–255. doi: 10.1109/ICST53961.2022.0003415
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4.1 Introduction
Software Testing is critical for modern software development as it allows the

concurrent implementation and integration of features. At Google, more than 50
million test cases are executed every day to ensure the quality of their products [106].
Though, test automation faces major problems with the emergence of flaky tests5

[53]–[55]. Flaky tests are tests that, for the same versions of code and test, can
pass and fail on different runs. Such non-determinism sends confusing signals to
developers who struggle to interpret the test results. As a result, developers lose
trust in test suites, disregard their signals and integrate features containing real
failures, thereby nullifying the purpose of testing.10

Flaky tests are prevalent in large software systems and they incur significant
costs. Google reports indicate that 16% of their tests exhibit some flakiness whereas
84% of the transitions from pass to fail involve a flaky test [55].

In response to this challenge, researchers dedicate their efforts in understanding
the nature of flaky tests and the way they manifest. Empirical studies examined15

the root causes of flaky tests in open-source software [49], [58], [75], [107] and
industrial systems [85], showing that concurrency and order-dependency are among
the main categories of test flakiness. Notably, the study of Eck et al. [49] showed
that flakiness can stem from the code under test and highlighted its potential
impact on organisational aspects like resource allocation.20

Other studies investigated tools and techniques that could help developers to
cope with test flakiness. Automated tools, such as DeFlaker [83], iDFlakies [59],
and FlakeFlagger [96] have been developed in order to detect flaky tests with
a minimum number of test runs or re-runs. Unfortunately, these advances offer
only partial solutions to the problem and may not fit well within the development25

systems and organisation constraints. For instance, DeFlaker relies on coverage
and reruns of tests that do not execute changed code, which are not possible
in specific development environments that use regression test selection or when
coverage cannot be obtained. Furthermore, the fixing of flaky tests gained traction
as studies investigated the fixing effort devoted for flaky tests and tools like [87] are30

designed to fix flaky tests. Nonetheless, in order to devise flakiness solutions, we
need to understand how developers deal with flaky tests in practice. In particular,
it is necessary to identify the typical measures taken by practitioners when dealing
with flaky tests, and reflect on how research solutions could assist and improve
them.35

To shed some light on these questions, we conduct an empirical study focused
on the industrial context in which flakiness manifests. Specifically, we perform a
qualitative analysis on data collected from 14 practitioner interviews to answer the
following research questions:

RQ1: Where can we locate flakiness?40
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Goal: Differently from previous studies [49], [58], [75], [85], [107], which
focused on the root causes of flakiness, e.g. concurrency and timeouts, we
aim to identify where flakiness stems within the different components of the
development ecosystem, e.g. test, code under test, and infrastructure. This
localisation is necessary to guide both detection and fixing approaches.5

Results: In addition to tests, flakiness stems from the poor orchestration
between the system components, the testing infrastructure, and external
factors, e.g. OS and firmware. Studies should consider and leverage these
factors when addressing flaky tests and not focus solely on the test and code
under test.10

RQ2: How do practitioners perceive the impact of flakiness?
Goal: This question is commonly discussed in industrial reports and research
studies. In this paper, we examine it through direct discussions with practi-
tioners. The aim is to understand the impact of flakiness on the development
workflow and practices.15

Results: Besides dissipating development time and hindering the continuous
integration (CI), flakiness affects the testing practices and leads to a degrada-
tion of the system quality. We also shed light on the pernicious consequences
of system flakiness, i.e. buggy or non-deterministic features that are falsely
labelled as flaky tests.20

RQ3: How do practitioners address flaky tests?
Goal: This question aims at identifying and understanding the measures
taken by practitioners to address flakiness before and after it manifests in
the CI.
Results: The prevention of test flakiness is performed by building stable25

infrastructures and enforcing guidelines, whereas the detection still relies
mainly on reruns and manual inspection. Our results also highlight monitoring
and logging tasks, which are commonly dismissed in research, yet they are
key to most of the mitigation measures taken by practitioners.
RQ4: How could mitigation measures be improved with automation tools?30

Goal: This question aims to identify specific needs to be addressed by future
research.
Results: We accentuate the need for techniques that monitor and analyse the
system states to assist the prediction, debugging, and fine-grained evaluation
of flaky tests. Our participants also expressed the need for automating the35

quality assessment of software tests through static analysis and variability-
aware reruns, i.e. reruns under diverse system configurations.

We believe that the qualitative results of this study are necessary to complement
the current understanding of flakiness and advise future work.
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4.2 Preliminary Analysis
We conduct a grey literature review (GLR) to establish an initial mapping of

the measures adopted by practitioners when dealing with flaky tests. This mapping
lays the foundation for our mitigation analysis (RQ3) and helps in guiding our
interview design. With respect to this objective, this GLR is exploratory and5

non-exhaustive. In the following, we explain our process for collecting, evaluating,
and analysing data from the grey literature.

4.2.1 Search
We followed the recommendations of Kitchenham and Charters [108], for the

reviewing process in general, and the guidelines of Garousi et al. [109] for the10

aspects specific to grey literature. The research question for our review is:
RQ3: How do practitioners address flaky tests?

In order to answer this question, we focused our review on materials published by
practitioners describing their mitigation of flakiness, e.g. technical reports, presenta-
tions, blogs, etc. To collect these materials, we queried the advanced Google search15

engine with the following string: (Mitigate OR Manage OR Deal OR Control OR
Avoid OR Prevent OR Tools OR Identify OR Detect) AND (Flaky OR
Intermittent OR Unreliable OR non-deterministic) AND Tests.

This query resulted in 276, 000 results. We manually checked the top 100 articles
and only accepted articles that:20

• Are written by practitioners. Articles and Blog posts written by researchers
are excluded.

• Depict practitioners’ views on flakiness and do not only address the problem
theoretically.

We found that only 56 articles correspond to the searched material as a large25

part of the top-100 articles were dedicated to the introduction of flakiness without
addressing its mitigation.

4.2.2 Analysis
The objective of this step is to identify and categorise the flakiness mitigation

measures from the selected articles. For this purpose, we first examined the 5630

articles to check their adequacy for our analysis. We relied on the quality assessment
checklist presented by Garousi et al. [109], which is specifically designed for grey
literature sources. We found that three factors are particularly relevant in our
context and we adopted them as exclusion criteria:

Objectivity We exclude sources where the authors have a clear vested interest.35

For instance, articles that promote new tools or plugins for mitigating flaky tests
are generally biased.
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Method adequacy We found that very few sources have a clearly stated their
aim and methodology. However, from the presented content, we could identify
articles that were not based on practical experience and exclude them. For instance,
in several cases, the authors present mitigation measures from a compilation of
other sources and not based on their own experiences.5

Topic adequacy We checked whether the articles enrich our analysis or not.
More specifically, we excluded articles that do not present any mitigation measures
for flaky tests.

The full quality assessment is available with our artefacts [110]. Based on the
three exclusion criteria, we selected 38 articles that fit within the study scope and10

objectives. Two authors read these articles and iteratively synthesised a classification
of the measures described by practitioners. This consensual process is similar to
the qualitative analysis performed on the interview transcripts (cf. Section 4.3).
The results of this analysis are presented in Table 4.2 and will be discussed in
Section 4.4. Interestingly, in our grey literature analysis, we observed that the15

articles do not explain the rationale behind the choice of measures. Similarly, the
consequences of the measures are generally dismissed. Hence, we try to address
these gaps in our interviewing process.

4.3 Interviews and Analysis
The objective of the interviewing process is to explore the topics of our research20

questions with an open mind instead of testing pre-designed questions. For this
purpose, we pursue a qualitative research approach [111] based on classic Grounded
Theory concepts [112]. In this section, we explain our implementation of this
approach from the interview design to the analysis of the results.

4.3.1 Questions25

Since we already formulated our topics of interest (RQs), we opted for semi-
structured interviews. These interviews build on starter questions, which cover
the topics of interest, and according to the interviewee’s answers, they develop
follow-up questions that explore other points. While designing and conducting our
interviews, we followed the recommendations of Hove et al. [113]. In particular,30

we ensured the clarity of the discussed topics and notions before going through
the interviews. For instance, we always asked questions about the interviewee’s
definition of flakiness to avoid misunderstandings and ensure that the following
questions are interpreted correctly. We also avoided making prior assumptions
about participants’ opinions or actions. For example, we ask several questions about35

the testing practices before formulating our questions to avoid wrong assumptions
about the use of automated testing or CI. We also explained the non-judgemental
nature of the interviews and encouraged participants to express their opinions
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freely. Specifically, we mentioned that the objective is not to assess the participants’
knowledge about flakiness but rather to grasp their perception of it. Finally, we
asked follow-up questions whenever possible and we favoured open questions such
as “Why did you opt for this measure?” to incite participants to explain their
motivations. We structured our interview around the three following sections.5

Context We asked questions to characterise the project and testing infrastructure.
1. What kind of projects do you work on? If possible ask for metrics like codebase

size, architecture, and development team size.
2. Do you have automated or manual tests?
3. What kind of tests do you generally write?10

4. Do you have a continuous integration?
5. Do you have a testing policy?
6. Can you describe your testing infrastructure? Do you consider it stable?
Flakiness We asked general questions about flakiness:
7. Do you know what a flaky test is?15

8. What is your definition of flakiness?
9. How commonly do you encounter flaky tests?

10. What are the sources of flakiness in your context?
11. Do you consider flakiness as an issue? Why?
Measures We asked questions about the actions taken by participants to prevent20

and address flaky tests:
12. How do flaky tests manifest in your codebase? How do you detect them?
13. How do you treat the identified flaky tests?
14. Do you adopt any specific measures to avoid flaky tests?
15. Why did you adopt these measures?25

16. Do you face difficulties when dealing with flaky tests?
17. If yes: What are these difficulties and what could help you to overcome them?

For each measure described by the participant, we asked follow-up questions
to understand the motivations and consequences. When possible, we also asked
follow-up questions about the measures that the participants did not take, e.g. if30

they never mention fixing flaky tests, we could ask about the rationale behind it.
All the interviews were performed with online calls where we explicitly asked the
participants for recording permission. The recordings lasted from 26 to 63 minutes
with an average duration of 41 minutes.
Participants35

Our objective was to select practitioners who have experience in dealing with
flaky tests in diverse contexts. This diversity enriches the study and allows us
to have a thorough understanding of the practitioner perspective. To ensure this
diversity, we relied on several channels to invite potential participants.
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We shared our invitation with a brief description of the study objectives on online
groups for software engineering practitioners. For instance, we targeted a group
that gathers 265 practitioners that are interested in software testing and continuous
integration. The group members are from large companies like Tesla, Google,
Apple, VMWare, Netflix, Facebook, Spotify, etc. To include participants from other5

backgrounds, we also targeted groups of practitioners from FinTech companies,
average-sized IT companies, and local startups. Following these invitations, we
received answers from 19 practitioners who showed an interest in our study. After
exchanges, five participants estimated that their experience is insufficient for the
study and did not proceed with the interviews, thus our process ended up with10

14 participants. This number of interviewees is typical in studies that approach
similar topics [114], [115]. Besides, due to the specificity of the topic, it is very
challenging to find other developers that are qualified enough to take part in the
study. We conducted the interviews with the 14 participants and after the analysis,
we considered that the collected data is enough to answer our research questions15

and provide us with theoretical saturation [116]. Indeed, the three last interviews
did not lead to any changes in our analytical template and only provided new
formulations for existing categories.

Table 4.1 summarises the profile of our participants (role and years of experience)
and their current companies (number of employees, domain, and number of users).20

To preserve the anonymity of our participants, we refer to them with code names, we
omit their company names, and upon specific request, we also omit the experience
and domain. Our participants have solid experience in software engineering, their
experience ranges from 6 to 35 years, with an average of 16 years. The participants
also work in companies that vary significantly in terms of size and domain of25

activity. On top of the industrial experience, three of our participants contributed
regularly to Open Source Software (OSS) as part of their job or as a side activity.

4.3.2 Analysis
As our study builds on semi-structured interviews, we relied on the strategy

proposed by Schmidt et al. [117]. This strategy helps with inquiries where a prior30

understanding of the problem is postulated but the analysis remains open for
exploring new topics and formulations. In the following, we explain the four steps
of this analysis.

Transcription To prepare the interview analysis, we transcribed the recorded
interviews into texts following a denaturalism approach. This approach allows us to35

dismiss non-informational content and ensures a full and faithful transcription [118].
For the cases where the interviews were not conducted in English, we transcribed
them in the original language and we only proceeded to their translation at the
reporting step.
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Table 4.1: A summary of participants’ profiles.

Role Years Size Domain Users OSS
P1 Engineering Manager 24 +1K Music +200M No
P2 CTO 10 +10 Mobility - No
P3 Tech Lead 7 +200 Cloud +30K Yes
P4 QA Consultant 12 +2K FinTech +190K No
P5 CTO 14 +10 Infrastructure - No
P6 Staff Engineer 20 +1K DevOPs - Yes
P7 Vice President 17 +200 Cloud +30K Yes
P8 Architect 7 +5k Online sales +70M No
P9 Senior Researcher 35 +20 R&D - No
P10 Architect 30 +24K Virtualisation +500K No
P11 Senior Engineer 6 +10k - +500M No
P12 Principal Architect 23 +10k Payment +200M No
P13 Front-end Developer 7 +40 Banking - No
P14 Senior Engineer - +10k - +500M No

Definition of analytical categories The goal of this step is to define the
analytical categories that guide our analysis. In our case the initial categories of
interest were (i) the sources of flaky tests, (ii) the measures for mitigating flaky tests,
and (iii) the difficulties of dealing with flaky tests. After conducting four interviews,
we observed that an additional topic that is commonly mentioned by developers5

is: (iv) the impact of flakiness. Based on our preliminary discussions, this topic
provided new insights on the effects of flaky tests, as seen by practitioners. This
topic also seemed essential for understanding the efforts dedicated to the mitigation
of flaky tests. Hence, we added this topic to our categories of interest and our
interview template. After setting the analytical categories, we read each participant10

answer to identify the categories that can be associated with it. In this process, we
do not only focus on the participants’ direct answers, but we also consider their
use of terms and the aspects that they omit. For instance, in our analysis of the
second analytical category, we consider the measures taken by practitioners but
also those that they were not aware of or the ones that they discarded. On top of15

that, we carefully analyse developers’ answers to context and flakiness questions to
spot elements that can help in interpreting their answers.
Assembly of a coding guide The objective of this step is to build a guide that
can be used to code the interviews. We assembled the four analytical categories
and identified different sub-categories for them based on an initial reading of the20

interviews. The sub-categories represent different versions formulated by developers
in one analytical category. For instance, for the first analytical category, i.e. sources
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of flaky tests, the initial sub-categories were Test, Code Under Test, and Environment.
These sub-categories are not final and can be refined, omitted, or merged along the
following step. For example, the sub-category Environment is later refined to two
categories Infrastructure and Uncontrollable environment.
Coding We read the interviews to identify passages that can be related to the5

categories and sub-categories of our coding guide. This process can be repetitive
as every time a new sub-category is identified or refined, we need to read previous
texts to ensure that all passages related to it are identified. To ensure the soundness
of this process, two authors coded the interviews separately before comparing their
results. In case of disagreement, the authors discussed their views and opted for10

a negotiated solution. Besides this consensual coding, all the authors discussed
the coding guide iteratively, to ensure the clarity and precision of the identified
sub-categories.

4.4 Results
4.4.1 RQ1: Where can we locate flakiness?15

Test
8 participants mentioned that the test itself, when poorly written, is a cause

of flakiness (P1, P2, P3, P4, P6, P8, P13, P14). In particular, the participants
explained that some tests are by nature difficult to write and prone to flakiness.
For instance, GUI tests were considered as a special cause of flakiness by many20

participants. “The synchronisation points in GUI tests are a major cause of
flakiness... We wait for some elements of the web page (e.g. button) to proceed to
the testing but some other elements could be necessary and lead the test to fail" (P4).
According to participants, other cases where it is difficult to write flakiness-free
tests included time manipulation, threads, statistics, and performance tests. P825

described examples of tests that encode variables and properties that are not really
useful for the test case and lead to non-deterministic behaviour. These variables
could be related to the system, environment, or time and they can be avoided
inside the test code.
Code Under Test (CUT)30

In this sub-category, we consider flakiness that stems from the part of the
system that is directly under test. Surprisingly, only 3 participants mentioned
that their flakiness stems from the CUT (P1, P3, P7). The root causes of CUT
flakiness are similar to the causes of test flakiness, as examples, the participants
mentioned concurrency and time handling. Interestingly, flakiness in the CUT can35

have direct impacts on the product reliability and thus developers tend to take it
more seriously. “If the product itself is flaky, which is happening quite often, then
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you have got a problem because you actually publish code which is flaky, it breaks
one out of three times" (P1).

System Under Test (SUT)

This source of flakiness was mentioned by 9 participants (P2, P3, P4, P5, P6, P7,
P8, P12, P14). Differently from the CUT, this sub-category considers the system as5

a whole and not only the part under test. The SUT emerges as a source of flakiness
in complex systems where integration tests flake due to failing orchestration between
the system components. “It only takes one timeout in the communication between
two services or other middleware like databases to make a test fail randomly"
(P2). The failing interactions can be a result of a misunderstanding of the system10

architecture and its impact on tests, “the principle behind micro-services is that
every service can fail, so we need to keep that in mind when writing integration
tests" (P2). The organisational structure can also add to the difficulty of writing
stable integration tests as components can be maintained by distinct teams that
do not communicate properly. “Every team has the impression of working in a15

sandbox, they would rebase the production or generate a new sequential number and
the tests of other teams will flake because of that" (P8). Ideally, these dependencies
should be documented or formalised and integration tests should account for them.
Yet, P8 confirms that despite the recurrence of such incidents, developers remain
reluctant to invest in their documentation.20

Infrastructure

The testing infrastructure is the set of processes that support the testing activity
and ensure its stability. 8 participants considered that their tests were flaky because
of an unstable or improper testing infrastructure (P1, P4, P5, P6, P10, P11, P12,
P14). For instance, P5 explained that most of their flaky tests were caused by a25

lack of resources, “the test is getting throttled because we do not have enough CPU
or memory quota for our database". P12 showed how flaky tests can emerge from a
mismatch between the product design and its usage in the testing infrastructure, “a
single data source that would, in production, be used by only one user, now is used
by several tests that may override each other’s data". When flaky tests are caused30

by poor infrastructure, participants express more struggle in detecting and fixing
them as the search space is broader and programmers are not always qualified
for these tasks, “CI issues are not like race condition where we can have a clear
solution for it, this is difficult because it can be different things” (P6).

Environment35

11 participants explained that tests can flake because of external factors (P1,
P2, P5, P6, P7, P8, P9, P10, P11, P13, P14). This source of flakiness differs
from the infrastructure by considering all factors that developers cannot or should
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not control. One common example of the environment is the hardware on which
developers have almost no control, “sometimes one batch of RAM sticks has an
unidentified problem and the test is failing because of it" (P7). The underlying
Operating System (OS) is also subject to various changes that make it unpredictable
and therefore a potential source of flakiness. One example of such cases is given by5

P1: “if we test the app on devices, then we rely on some iPhone being up and if it
decides to upgrade its OS at the exact same time then we have a problem". On top
of the OS, tests can always be impacted by cumulative states of the machine that
developers do not account for, e.g. firmware versions, memory state, and access to
the internet.10

The impact of the environment is particularly perceptible on GUI tests since
they run on different web browsers that are prone to frequent changes. Similarly,
developers may need to write acceptance and integration tests that depend on
external resources that are hardly controllable. “I work on a command-line interface
that wraps packages from different providers, it seems simple but there are always15

random changes" (P7).
It is worth noting that the distinction between infrastructure and environment

may depend on the software, test type, and the choices of the practitioner. Some
developers can consider aspects like the OS state as part of their infrastructure and
control it to ensure the reliability of their tests, whereas others choose to ignore20

it. Likewise, aspects that seem external and futile for unit or integration tests,
e.g. firmware, must be considered and controlled as part of the infrastructure of
performance tests.

Testing framework

Two developers found that the testing framework can lead to flakiness (P1,25

P7). This issue can arise when the framework is written or customised by the
developers themselves, which makes it less stable than other widely used frameworks.
Another possible issue is the mismatch between the testing framework and the
CUT. This can occur when the framework is not adapted to the type of tests or to
the application domain. P7 describes a similar case: “We used a Cassandra cluster30

(NoSQL) and we tried to test the database consistency rules. This generated many
flaky tests. Instead, we should have used a more delicate testing framework to write
serialisation tests and produce consistency edge cases".

Tester

Two participants believed that developers and testers can constitute a source of35

flakiness (P4, P5). This is possible for manual tests where the tester actions are part
of the test execution. Indeed, being manual makes tests rely on human behaviour,
which is less deterministic and more failure-prone. Hence manual tests can flake
because of variations in the tester actions. Besides, the tester’s misunderstanding
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of the requirements and the SUT can be another point of failure. “The person
running the tests does not always have a correct and precise idea of the behaviour
expected from the system and this affects the test outcome" (P4).
Discussion According to our participants, flaky tests stem frequently from the
external factors of the environment, the interactions of the SUT, and the testing5

infrastructure. Flakiness is not limited to the test and CUT and the studies on
this topic should consider and leverage all these factors when addressing flaky
tests. Our analysis also shows that besides the well-established root causes of flaky
tests, e.g. concurrency and order-dependency, the size and scope of the test are
important flakiness factors. GUI and system tests are more prone to flakiness, yet,10

our understanding of flakiness in these types of tests remains limited and we still
lack techniques that adapt to these specific tests.

4.4.2 RQ2: How do practitioners perceive the impact of
flakiness?

It wastes developers’ time15

10 participants considered that flaky tests waste developers’ time (P2, P4, P5,
P6, P7, P8, P9, P11, P12, P14). When developers observe flaky failures, they have
to invest time and effort in investigating the root cause before realising that it is a
false alert. Besides the time wasted on investigating false alerts, our participants
affirmed that discussions about flaky tests are also costly. “It was ok when we were20

a team of five and everyone knew that the test is flaky. But as the startup grew, it
became expensive and we found ourselves constantly explaining to other developers
that these are not real failures" (P7).
It disrupts the CI

7 participants mentioned that their flaky tests disrupt the continuous integration25

process (P2, P3, P4, P8, P10, P11, P13). This impact arises from the pace of
modern development life cycles and its extent is proportional to the releasing
frequency. “Flakiness would never be an issue if we released once every two weeks.
But in a CI today with 400 deliveries per day, disruptions waste so much time"
(P2). Disruptions also affect the developer’s ability to develop confidently because30

the CI, which is supposed to guard the code quality, is halted, “five days a month,
the Jenkins of this project was red so I couldn’t develop on the project and be sure
that my work is not breaking anything at the time" (P3).
It affects testing practices

6 participants observed that flakiness affects the testing practices in their teams35

(P1, P6, P7, P8, P12, P13). In particular, they explained how developers lost
confidence in their capacity to write tests, According to P12, in the worst-case
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scenario, developers are repelled and would write fewer tests to have fewer problems.
In a phenomenon similar to the broken window theory, P1, P7, and P12 described
how developers are more inclined to introduce and accept flaky tests in a system
that is already flaky. “As the suite is unreliable, it opens the door for more flaky
tests" (P7). Ultimately, the accrual of flaky tests pushes development teams to5

adapt their testing strategies: “flakiness tends to accumulate in the system, and at
some point, it becomes so large that companies may look for completely different
solutions, like using more unit testing" (P12). The impact on testing practices is
not only related to flakiness but also to the general software quality, “the more
flakiness it is, the greater the acceptance of less than ideal test coverage, and that10

leads to a degradation of the software quality" (P12).

It undermines the system reliability

5 participants highlighted the impact of flaky tests on the reliability of both
tests and the SUT (P1, P3, P6, P7, P8). The false alerts raised by flaky tests
confuse developers and make them question the suite’s ability to detect faults15

accurately. Consequently, developers can disregard test results, which may lead to
the introduction of bugs, “if you do not fix flaky tests, people will start ignoring
them and then they will introduce real bugs in the product" (P1). Similarly, the
non-deterministic test outcomes cast doubts on the reliability of the system under
test. This doubt is all the more important in open source projects where newcomers20

can be repelled by inexplicable flaky failures. P6 who worked on a large open-source
project stated: “new contributors see CI failures, they do not know it is flakiness
and it gives them the impression that the project is not well maintained so they do
not even rerun the tests, they just give up".

It disguises bugs25

Two developers explained that flakiness can hide buggy features (P1, P6). In
some cases, the non-deterministic behaviour stems from a bug in the product, but
as developers believe it is a flaky test, they disregard it without further inspection.
“People ignore the flaky test results because it is just a flake, except it is an actual
problem in a product" (P1). Interestingly, we witnessed first-hand the confusion30

between buggy features and flaky tests while performing the interview with P9.
The participant was providing an example of non-deterministic test failures that
were caused by memory issues, and when asked about how these flaky tests were
detected, she replied: “they appear when they are in the customer premises". After
the customer complaint, the participant reran the test that covers the buggy code35

multiple times and reproduced the bug. In this case, the test has indeed a non-
deterministic outcome, but addressing it as a flaky test (false alert) is inappropriate
because the failure is real. Furthermore, the more flakiness is prevalent in a test
suite the more developers are inclined to overlook non-deterministic system failures.
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“The most important is that it actually makes people think they can introduce bugs
in the form of flaky bugs in a product and get away with it" (P1).
Discussion Our results confirm the impact of flakiness in terms of development
time and CI obstruction. Moreover, our analysis shows that the accrual of flaky
tests affects the testing practices negatively as developers become repelled by5

testing and more lenient toward testing standards, which eventually leads to a
degradation of the system quality. Our participants also raised the issue of system
buggy non-deterministic features that are falsely labelled as test flakiness and
therefore disregarded and shipped to end-users. For future studies, this shows the
necessity of distinguishing the sources of flakiness and addressing them accordingly.10

4.4.3 RQ3: How do practitioners address flaky tests?
Table 4.2 summarises the measures identified in our GLR. The columns #GL

and #Int. report the number of times where the measure was mentioned in grey
literature and interviews, respectively, while the columns %GL and %Int. report
the percentages. The full results summary is available within our artefacts [110].15

Prevention measures
This represents all proactive practices that aim to prevent the introduction of

test flakiness.
Set up a reliable infrastructure Grey literature articles that embraced pre-
vention measures estimated that a proper setup of the testing infrastructure is20

necessary for avoiding flaky tests. Several practitioners adopted hermetic servers,
a.k.a. mock servers, where tests can be run locally without the need to call external
servers [119]–[121]. Some articles also stressed the importance of using containers
to ensure that the testing environment is clean when the tests are run [122]. 9
interviewees reported the adoption of similar practices to ensure the stability of25

their infrastructure (P1, P3, P4, P5, P6, P10, P11, P13, P14). P6 explained that
they rarely observe test failures caused by infrastructure or environment thanks
to their use of virtual machines. “The virtual machine is started for the tests and
destroyed just after ... all our tests are reproducible" (P6). P4 mentioned pre-tests,
a form of sanity checks, as another solution to infrastructure flakiness. “If we have30

5 APIs involved, the pre-tests check that these APIs are up, otherwise the test is
not run" (P4).
Define testing guidelines One guideline that was recurrently mentioned is
following the testing pyramid principles [122]–[124]. These basic principles force
developers to respect the scope of each test type and avoid flakiness. The proportions35

of each test type shall also be respected to avoid the Ice cream cone and the Cupcake
anti-patterns [125], where the number of GUI tests, which are a main source of
flakiness, is exaggerated. Interestingly, only two of our interviewees (P11 & P14)
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Table 4.2: The number and percentage of grey literature articles and interviews for
each mitigation measure.

Strategy #GL %GL #Int. %Int.

Prevent

Setup a reliable infrastructure with pro-
cesses properly adapted to testing activities. 4 11% 9 64%

Define guidelines that should be respected
when writing tests and enforced through re-
views.

5 13% 9 64%

Limit external dependencies by mocking
dependencies. 9 24% 1 7%

Customise the testing framework to
avoid flaky features. 4 11% 1 7%

Detect

Rerun the failing test multiple times to check
if it is a real or a flaky failure. 14 37% 7 50%

Manually analyse the failure message and
trace to determine if the test is flaky. 17 45% 3 21%

Check the test execution history to dis-
tinguish flaky from real failures. 8 21% 2 14%

Proactively expose test flakiness before it
manifests in the CI. 5 13% 2 14%

Compare test coverage to the modifica-
tions of the commit under test to identify
flaky failures.

2 5% 1 7%

Treat

Fix the root cause of flakiness to remove the
non-deterministic behaviour. 15 39% 7 50%

Ignore flaky tests that are not common or
costly (based on the flake rate & periodicity). 2 5% 5 36%

Quarantine flaky tests by isolating them
from the blocking path that commands the
CI.

7 18% 4 23%

Remove the test permanently. 2 5% 4 23%
Document flaky tests in databases, issues,
alerts, or internal reports. 8 21% 3 21%

Support

Monitor and log system interactions and
test outcomes. 8 21% 9 64%

Establish testing workflows that protect
the CI. 2 5% 4 23%
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confirmed that their teams defined explicit guidelines to prevent flakiness. P14
considered that thanks to these explicit guidelines, she rarely encounters flaky tests
in her product, “with the investment that was done in the guidelines and tooling,
now we are able to cope with flakiness". The other participants suggested that the
absence of explicit guidelines in their companies is due to the lack of maturity5

(P8). However, many participants affirmed that with experience their teams had
developed testing practices to avoid flaky tests (P2, P3, P4, P6, P7, P10, P13).
These practices are similar to the ones identified from the grey literature. They
focus on the test scope and size and they address common flakiness sources like
concurrency and time manipulations. In order to enforce these good practices, the10

participants relied on code reviews.

Limit external dependencies This practice is more relevant for unit tests,
which are supposed to test narrow parts of the systems, than integration or GUI
tests, which have to interact with other components. The analysed articles explain
that some practitioners keep useless dependencies in their unit tests, which lead to15

flakiness [119], [124]. P3 mentioned that in order to avoid environment flakiness,
her team tries to mock external services, use test doubles, and prefer in-memory
resources (e.g. database and file system).

Customise the testing framework Sudarshan et al. [126] explained how they
built their own testing framework so they can test critical aspects like time and20

concurrency without introducing flakiness. In some cases, practitioners customise
the testing framework to disable features like animations in web and mobile
applications, which are commonly connected to flaky tests [119].

Detection measures

This category groups all actions taken by developers to identify flaky tests.25

Rerun Based on our GLR, reruns are the most common and intuitive way of
identifying flaky tests despite their computation cost. Even other measures and
mitigation steps, e.g. debugging and reproduction, require multiple test reruns. To
maximise their chances to observe flakiness and minimise the number of reruns,
the reruns can be performed in different environments (local machine, CI, etc)30

and with different settings (P4). Some participants advocated the effectiveness of
reruns especially for infrastructure and environment flakiness (P1, P2, P4, P5, P10,
P11, P12). Nevertheless, P1 warned about the consequences of solely depending
on reruns to deal with flakiness, “with reruns, you do not understand the issue and
you can ignore actual problems".35

Manually analyse test outcome When even reruns are not possible or useful,
developers manually analyse the execution trace to determine if the test is flaky or
not [127]. In the case of GUI tests, practitioners rely particularly on the screenshots
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recorded during the test run [120], [128], [129]. P2, P4, and P8 affirmed that
they prefer going through manual analysis before trying reruns or other detection
techniques. In the case of P8, this choice is due to system specifications that make
rerunning the same test in the exact same conditions impossible.

Check test history Some practitioners keep a record of the test execution5

history, i.e. all test passes and fails for each build. When a suspicious test failure is
observed, developers inspect these records to check if the test has already shown a
random behaviour. Palmer et al. [54] argue that when these records are visualised
they can help developers in distinguishing flaky failures easily and thus gain a lot
of investigation time. P11 and P14 described a system in their company, which10

relies on the execution records to score tests. Based on the past passes and failures,
a test receives a flakiness score that expresses the probability for this test to be
flaky. P14 described how these scores helped her when a flaky test manifested, “it
is very good when it tells that it is 90% flaky and you can just go on with your day
knowing that it’s because of flakiness".15

Expose As explained in RQ2, when a flaky failure occurs in the CI, it disrupts
the work progress and wastes developers’ time and efforts. For these reasons, some
practitioners attempt to reveal flaky tests before CI failures [54], [130]. In this
case, new tests are rerun several times to ensure that they are stable, before adding
them to the main test suite. Among our interviewees, only P1 and P4 reported20

adopting this practice in their companies. “Before committing the test, you should
run it a thousand times (counting different configurations and device types) and it
must be a thousand greens (passes)" (P1).

Leverage test coverage When practitioners suspect that a test failure is flaky,
they compare the coverage of the failing test to the modifications performed by the25

commit that triggered the build. If the intersection between these two is empty,
the test is considered flaky. This process can be performed manually by developers
(P14) or automatically using tools like DeFlaker [83]. However, P14 explains that,
due to hidden dependencies between projects, this technique is not always effective.

Treatment measures30

This presents actions taken by practitioners to deal with flay tests that mani-
fested.

Fix In theory, every identified flaky test should be fixed at some point. However,
according to practitioners, this point is rarely reached because the fix depends on
two challenging steps, reproducing the flaky failure and determining its root cause35

(cf. RQ4). For this reason, many flaky tests remain unaddressed or removed.
Interestingly, some participants affirmed that fixing flaky tests is easy when the root
cause is known (P2, P10). P3 also affirmed that once the flaky test is understood,
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it was only a matter of resources to fix it.

Ignore Naturally, ignoring flaky tests is not commonly recommended in the grey
literature (only 2 articles). Yet, 5 interviewees recalled situations where flaky tests
were intentionally left unaddressed (P2, P3, P6, P7, P10). For P3 and P7, this was
in a case where all team members were aware of the test flakiness and considered5

that the test is useful, so they did not isolate or remove it, but did not have enough
time or resources to fix it. For P6 and P10, this choice is motivated by the severity
of the flaky test, i.e. the flake rate. “If the test has a very low flake rate, it is not
really worth the investigation" (P10).

Quarantine According to our GLR, quarantining flaky tests is one of the most10

common measures among practitioners. While in most cases, the isolation in
quarantine is performed manually by developers when they identify a test as flaky,
in some cases this process is more sophisticated. An article from Fuchsia explained
how they designed an automated workflow where flaky tests are automatically
identified and removed from the commit queue [131]. This workflow comprises15

a benchmark that evaluates the fixed flaky tests before reinserting them in the
integration suite. By lack of better solutions, this evaluation relies on reruns. The
adoption of the quarantine is less popular among our interviewees (P1, P4, P7,
P10). Indeed, even participants who affirmed that they isolated their flaky tests,
raised several questions about the side effects of this practice. P1 suggested that20

developers can abuse this practice, “it’s a dangerous way to go because then suddenly
the number of tests goes down". P6 went further and considered that the quarantine
is a bad practice because it implies that a potential bug is being disregarded without
further investigation. “You move the problem from the developer, who will not see
the flaky failures anymore, and you transfer it to the user who may deal with a bug"25

(P6).

Remove When a flaky test is hard to reproduce, debug, or fix, many practi-
tioners recommend to remove it completely from the system to avoid its negative
effects [131]–[133]. P1, P2, P7, and P14 affirmed that if a flaky persists and they
are unable to address they choose to remove it. “I would rather remove the flaky30

test from the codebase because of its cost" (P2).

Document The documentation of flaky tests is performed for different purposes.
The most basic being informing other developers that the test is flaky so they
know how to react to its failures. The documentation is also helpful for the
reproduction and debugging of flaky tests as it keeps logs, memory dumps, system35

states, screenshots in GUI tests, etc [134]. Finally, keeping track of all flaky tests
is helpful when building a system that relies on execution history to detect flaky
failures. Indeed, three interviewees affirmed that their internal systems relied on
flaky tests that were documented in the past (P10, P11, P14) to guide developers
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when a test fails.
Support measures

This includes actions that are likely unrelated to test flakiness but are critical
for addressing flaky tests.
Monitor and log 9 interviewees explained that when addressing a flaky test they5

rely mainly on the data logged by their monitoring system (P1, P6, P8-P14). P1
explained their advanced log analysis, which automatically suggests the root cause
of the failure, “we have a probe that can identify those root causes of flakiness".
Regarding, the effect of this monitoring and analysis on their productivity, P1
added: “it takes years to do it right, but it is extremely powerful". P11 and P1410

explained that the test logs assist their flakiness prediction system. Furthermore, P6
and P10 showcased the importance of monitoring by affirming that their decisions
are always guided by the flake rate, a test score that is calculated by monitoring
and analysing test outcomes for periods of time.
Establish testing workflows For complex software systems, practitioners can15

design advanced testing paths that organise tests based on their criticality for
the integration [129], [135]. In these scenarios, due to computation costs, the
blocking path, i.e. the set of tests that decide in the CI, does not include all
tests. 4 interviewees suggested that these workflows can be leveraged to protect
the blocking path from flaky tests (P1, P10, P11, P14).20

Discussion Our analysis shows that on top of the typical detection and treatment
measures, developers take actions to prevent the introduction and manifestation
of flaky tests. Interestingly, this prevention relies mainly on the setup of the
infrastructure and the establishment of guidelines. To the best of our knowledge,
these two tasks were not identified by prior studies and none of the literature25

techniques supports them. Similarly, our results emphasise the role of supporting
measures like logging and monitoring in the accomplishment of critical mitigation
steps like detection and fixing. The study of Lam et al. [85] has already shown
that logs can be used to automatically spot the root cause of flakiness. Other
studies should follow the same path and benefit from monitoring and log analysis30

to improve flakiness detection and prediction.

4.4.4 RQ4: How could mitigation measures be improved
with automation tools?

Root cause identification and reproduction
8 participants expressed their struggle while reproducing and debugging flaky35

tests (P1, P2, P3, P4, P7, P9, P10, P11). These two tasks are tightly coupled
because reproducing a flaky failure generally requires a minimal understanding
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of the root cause. P4 explained that the difficulty of these tasks is due to the
multitude and variety of potential factors of flaky tests, both in terms of root causes
and sources (from the test itself to complete external factors). P11 added that the
broadness of factors is particularly relevant for SUT flakiness: “Trying to figure
out among 8 to 10 services what is the actual culprit of flakiness is the challenging5

part". For all the participants, except P1, the reproduction and debug are currently
performed manually, which is time and effort consuming. P7 affirmed that simple
reruns are not always effective for reproducing and more advanced solutions are
necessary, “we need tracking tools to help us reproduce flaky tests". In the same
vein, P4 said that even when logs are available, a lot of assistance is still required10

to help developers isolate the root cause and reproduce flaky tests.

Monitoring and log analysis

7 participants suggested that managing flaky tests would be easier if they were
equipped with tools to monitor the testing activity and analyse the generated logs
(P3, P4, P6, P8, P9, P12, P13). These two tasks are coupled because an automated15

analysis is critical to benefit from the data collected by the monitoring process.
Indeed, P4 said that their GUI testing system produces overwhelming amounts of
logs and yet it is impossible to manually draw insightful information from them.
The analysis of such data can help developers to:

Predict flaky tests: As shown in RQ3, analysing the logs of test history is20

useful for predicting flakiness and assisting developers when a flaky failure occurs.
Identify the source or root cause: “For debugging GUI tests, traces of all

the called APIs can help in isolating the root of failure" (P4).
Evaluate the flake rate: In RQ3, we showed that the flake rate monitoring

gives a fine grained assessment of flaky tests and therefore guides the mitigation25

strategies, e.g. ignore flaky tests that flake rarely. “This monitoring would help us
to debug and find the changes that led to increasing the flake rate", stated P6 who
explained that these tasks are currently performed manually.

Test validation

RQ3 showed that following testing guidelines is a key measure for preventing30

test flakiness. Yet, according to 9 participants, the process of enforcing these
guidelines still relies on manual reviews, and it could be assisted with:

Static analysis: P10 described how preventing flakiness through code reviews
can be redundant, “I keep rejecting tests that have sleep() statements", and suggested
that a simple static analyser could help in this regard. P4 described a similar35

situation with GUI testing reviews and affirmed that “advanced static analysis
could help to identify potential problems".

Variability-aware reruns: P4 mentioned that she currently tests the scripts
of GUI tests manually: “I test the script by crashing the browser and observing the
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outcome. This avoids pushing flaky tests that block the quality gate". P6 emphasised
the need for tools that automate such procedures: “it would be great to have a
tool that stress tests the tests to ensure their stability". Indeed, the manual test
validation could be assisted with variability-aware reruns that account for different
configurations, inputs, and system states (e.g. [136]). These variations can build5

on the known causes of non-determinism (e.g. random inputs and the system
resources) to expose, detect, and reproduce flaky tests.

Discussion: Our results confirm previous observations [49], [85], [137] and show
that reproducing and debugging flaky tests remain the most challenging tasks for
developers. Furthermore, our analysis accentuates the need for techniques and tools10

that monitor and analyse the system states to assist the prediction, debugging, and
evaluation of flaky tests. This need is particularly relevant if we consider the results
of RQ1, which suggested that flakiness can stem from the system interactions
and factors that are external to the source code. Indeed, trace analysis could be a
powerful tool that complements the current detection and prediction approaches,15

which rely mainly on the source code [59], [83], [91]–[93]. Our results also show
that a more fine-grained analysis of flaky tests, using the flake rate, can be more
insightful for developers. This aligns with the works that suggested that every
test is potentially flaky [21], and research studies should focus on (or at least
consider) the level of flakiness instead of classifying tests as flaky and non-flaky.20

Finally, our participants expressed the need for automating the quality assessment
of software tests through static analysis and variability-aware reruns. In particular,
techniques that rerun tests with different configurations or inputs, like Shaker [84]
and FLASH [107], seem very promising if we consider the role of external factors
on flakiness.25

4.5 Threats to Validity

4.5.1 Transferability

A possible threat to the generalisability of our study is the number of participants.
Unfortunately, due to the specificity of the topic, it was challenging to find developers
qualified to take part in the study. We tried to ensure the quality of our results by30

only considering practitioners with relevant experience (with flakiness in particular
and testing in general). The experience of our participants ranges from 6 to 35 years,
with an average of 16 years. Our participants also constitute a diverse set of roles,
company sizes, and application domains. Moreover, the collected data are enough
to answer our research questions and provide us a theoretical saturation [116].35
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4.5.2 Credibility
A potential threat to the credibility of our findings could be the credibility of

the analysed materials as we relied on grey literature and interview transcripts. In
grey literature, we followed the quality assessment guidelines of Garousi et al. [109],
which were specifically designed for such purposes. In interviews, we communicated5

the study objectives to the participants and clearly explained that the process is
not judgemental. Moreover, we formulated our questions to target the practitioner
experiences and observations.

4.5.3 Confirmability
A potential threat to the confirmability of our results is the accuracy of the10

analysis of the transcripts. To mitigate this threat, two authors performed consen-
sual coding and all the authors discussed the coding guide iteratively, to ensure
the clarity and precision of the identified sub-categories.

4.6 Conclusion
Our study shows that the analysis of flaky tests must consider the whole15

testing ecosystem and it should not be limited to the test and code under test.
We also highlight a broader impact of flakiness on the testing practices and the
overall system quality than what had been presented by previous work. Finally,
we synthesise 16 measures adopted by practitioners to mitigate flakiness and we
identify automation opportunities within them. These results open an avenue for20

future work:
• Flakiness stems mainly from the interactions between system components,

the testing infrastructure, and uncontrollable external factors. Future studies
can leverage monitoring and log analysis to propose techniques that assist
practitioners in addressing flakiness.25

• Establishing testing guidelines, e.g. recommendations on test size, external
resources, and assertion thresholds, is a key measure for preventing flaky
tests. Future studies can decrease the manual effort expended in enforcing
such guidelines by providing static analysis tools and code review processes.

• Future work can leverage variability-aware reruns [136] and fuzzy testing to30

effectively expose and reproduce flaky tests. Such techniques can help in
automating the current manual test validations performed by practitioners.

• Given the frequency of flaky tests and the cost of their mitigation, practitioners
rely on the flake rate to adapt their strategies. Future work should account for
this when assessing flaky tests and leverage it in their automated solutions.35

• Some practitioners may falsely label buggy and non-deterministic features
as flaky tests, and thus ignore them and treat them as false alerts. Future
studies should further investigate the impacts of such confusions.
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• Due to the difficulty of reproducing and debugging flaky tests, the fixing step
is rarely achieved by practitioners. Future work should focus on providing
tools that assist the root cause identification and reproduction of flaky tests.
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5
A Replication Study on the Usage of Code

Vocabulary to Predict Flaky Tests

In this chapter, we perform a replication of the vocabulary-based approach, one
of the main techniques used to detect flaky tests. With this study, we intend to bring
three contributions. First, we evaluate the approach under more realistic settings.5

Second, we check the generalisability of the approach by checking its application to
another programming language. Finally, we experiment using an extended set of
features in an attempt to improve the original approach.

This chapter is based on the work published in the following paper:10

• G. Haben, S. Habchi, M. Papadakis, et al., “A Replication Study on the
Usability of Code Vocabulary in Predicting Flaky Tests,” Proceedings of the
International Conference on Mining Software Repositories (MSR), 2021
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5.1 Introduction
Regression testing is an important step of software development that ensures

the stability of existing software features and allow multiple developers to work on
a shared codebase. In typical large-scale development workflows, test suites are
run after code changes to highlight any misbehaviour and validate new software5

releases. Unfortunately, software tests do not always give consistent results. This
inconsistent behaviour is often referred to as test flakiness. Flaky tests exhibit a
non-deterministic nature, i.e. they pass and fail for the same version of a program
and the test [58].

Flakiness plagues Continuous Integration (CI) as tests are generally expected to10

pass in order to merge code changes [138]. Thus, flakiness introduces uncertainty,
meaning that testers cannot be sure whether failures are true or not. Besides,
flakiness affects productivity as developers invest time in reproducing and debugging
flaky failures. Developers may also lose trust in their test suite and stop relying on
it if there are too many false signals. Consequently, they could ignore failing tests15

that are caused by real defects in the program.
Several studies and reports from industrial actors have highlighted the prevalence

and impact of flakiness [57], [85], [103].
A common approach to deal with flakiness is to rerun a failing test several

times, hoping to expose non-deterministic behaviour. Unfortunately, these reruns20

imply cost both computationally- and time-wise. In the case of Google, this leads
the company to spend between 2 and 16% of its computer resources rerunning flaky
tests [20]. Many other companies report having problems dealing with flaky tests,
including Huawei [52], Mozilla [53], Facebook [21] and Spotify [54].

To mitigate this problem, several strategies have been developed to detect25

flakiness. These can be divided into two main categories; the dynamic approaches
that involve running the tests and analysing their outputs and logs over time,
and the static approaches that attempt to identify flaky tests without any test
execution.

Micco and Memon [56] presented a dynamic approach that identifies flaky tests30

by looking for specific patterns in the test execution outcomes observed in the
recent development history (Pass to Fail, Fail to Pass), thereby proposing a simple
pattern matching approach that achieves a 90% accuracy in classifying tests [56]. A
similar approach was also presented by Apple [103], but the reality is that rerunning
tests is still the main dynamic approach used to detect flakiness [55].35

Pinto et al. [92] developed a prediction modelling approach that statically
identifies flaky tests by analysing their code (test code only). This approach is
appealing compared to the current practice due to its static nature that a) does not
require any test execution logging and analysis that is usually hard to implement
on the fly and usually not supported by the test infrastructures, and b) the low40
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overhead it entails, i.e., it reduces the execution cost caused by test reruns.
The original study (Pinto et al.) evaluated the performance of different machine

learning models on different representations of the test code and found that the
vocabulary of tests can predict test flakiness with 95% of accuracy (F1 score).
Although encouraging, the original study was performed in a dataset covering one5

programming language (Java), evaluated in a time-insensitive manner and left open
many additional questions related to the vocabulary of source code. Considering
the importance of the problem we decided to perform further investigations. We
believe that extensive and independent evaluations are also necessary to reach
industrial adoption and practice.10

Replication is essential to verify experimental results from previous studies.
They are a key aspect of empirical software engineering as they bring evidence
that observations made can hold (or not) under other conditions. Different types
of replication exist [139], [140]. An exact replication attempts to reproduce the
experiments following as closely as possible the initial procedures. By doing so,15

we learn that the first results were not caused by uncontrolled random factors. In
conceptual replication, one or more dimensions can be changed to investigate to
what extent the results hold.

In this paper, we present a conceptual replication of the study of Pinto et
al. [92]. We start by considering a different validation methodology than the one20

used in the study of Pinto et al. [92]. We thus adopt a time-sensitive validation
setting that better reflects the envisioned use case of the approach; at a given point
in time, we train our predictor with historically identified flaky tests and inspect
the model performance in predicting unseen flaky tests, i.e., with the subsequent
”future” tests. We argue that this procedure is important to confirm the results25

and avoid biasing the predictions by considering future data.
Another aspect our study aims to evaluate is the generalisation of Pinto et al.’s

findings, in particular to a different programming language. Therefore, we mine
Python projects from GitHub and build a new dataset of 837 flaky tests. Then,
we use it in order to evaluate the vocabulary-based flakiness prediction. This part30

of the analysis aims at re-validating the Pinto et al. findings on new and different
data.

Finally, we go beyond the original study by considering an extended set of
features. In particular, we attempt to predict flakiness using not only the vocabulary
of test code (like Pinto et al. did) but also the Code Under Test (CUT). This35

endeavour follows the findings of many reports[58], [75], [141] revealing that much
flakiness manifests in the CUT. Hence, we conduct a comparative study that
highlights the impact of the two feature sets, i.e. , sources of vocabulary on
flakiness prediction.

All in all, our results demonstrate that a more robust, time-sensitive validation40
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has a consistent negative impact on the reported results of the original study
(performance degrades by 7% on average) but, fortunately, do not invalidate the
key conclusions of the study, i.e. , predictions are significantly better than random
selections.

Additionally, we find re-assuring results that vocabulary-based models are more5

successful in Python than in Java (average performance of 80% in Python in
contrast to 61% in Java), and perhaps surprisingly, that the information lying in
the Code Under Test has a limited or no impact on the model performance. Taken
together, these results corroborate the conclusion that the vocabulary of tests is
indeed a viable and robust solution to the test flakiness problem.10

5.2 The Original Study
This work is a replication of the study by Pinto et al. [92]. In this section, we

briefly summarise the approach they presented for flakiness prediction. We first
present the dataset of existing flaky tests which they used in their study. Then, we
explain their source code representation and prediction model. Finally, we recall15

their evaluation methodology and results.

5.2.1 Dataset
In their original study, Pinto et al. relied on the DeFlaker dataset, which was

proposed by Bell et al. [83]. This dataset includes 1,874 flaky tests identified using
the DeFlaker tool on multiple revisions of 24 open-source Java projects. Pinto et al.20

selected 1,403 flaky tests from this dataset to build their set of flaky tests. They
also randomly selected tests that were not flagged as flaky by DeFlaker to form a
set of a priori non-flaky tests. To mitigate the problem of class imbalance, both
sets had the same size.

5.2.2 Prediction Model25

In order to prepare the classification inputs, Pinto et al. extracted identifiers
that represent the test vocabulary and complexity. This extraction takes several
steps. First, they localise the file where the test is defined. Then, they select all
identifiers contained in this test, pre-process them by splitting them according to
their camel-case syntax and converting them into lower-case. Finally, they remove30

stop words from the obtained set. Each flaky and non-flaky test is represented as
follows:

• A vector of booleans indicating for each token if it is present in the test or
not;

• The number of lines of code;35

• The number of Java keywords contained in the test.
The last two features are used as a proxy for code complexity. The authors used
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Table 5.1: Model performance of the Pinto et al. study [92]

Algorithm Precision Recall F1 MCC AUC
Random Forest 0.99 0.91 0.95 0.90 0.98
Decision Tree 0.89 0.88 0.89 0.77 0.91
Naive Bayes 0.93 0.80 0.86 0.74 0.93
Support Vector 0.93 0.92 0.93 0.85 0.93
Nearest Neighbour 0.97 0.88 0.92 0.85 0.93

these vectors as inputs for their prediction models. In particular, they evaluated
the performance of five machine learning classifiers: Random Forest, Decision Tree,
Naive Bayes, Support Vector Machine, and Nearest Neighbour.

5.2.3 Evaluation
Evaluation methodology5

The authors follow a standard methodology to train and evaluate the five
classifiers. That is, they split the whole set of test cases into a training set
containing 80% of the tests and a validation (“test”) set containing the remaining
20%.

They report the standard precision, recall and F1-score metrics. The precision10

shows the proportion of correctly classified flaky tests. The recall shows the
proportion of flaky tests found out of all existing ones. They focus their analysis on
the F1-score, which combines precision and recall to assess the model performance.
Detailed results for their different models are listed in Table 5.1.
Results15

Among the five trained models, the most promising one was Random Forest,
having a performance as high as 0.95 for the F1-score. Altogether, the five models
showed great performance on their dataset.

5.3 The Replication Study
Our key goal is to investigate whether the conclusions of Pinto et al. generalize20

to different flakiness scenarios, viz., (1) a time-sensitive prediction use case where
flakiness information about past tests are used to predict flakiness in future (new)
tests, (2) flakiness prediction in different programming languages, (3) the use of
different sets of features involving both test code and code under test. Each of
these scenarios gives rise to a research question that we answer in our study. In25

all scenarios, we use the model presented in the original study that gave the best
performance. The model is based on a bag of words and a Random Forest of
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100 trees i.e., the model which gave the best results in the original study. Our
replication package containing code, models and datasets is available online1.

5.3.1 Research Questions
We aim at answering the following research questions:

RQ1: How well do vocabulary-based models identify flaky tests when using a5

time-sensitive validation?
RQ2: How well do vocabulary-based models identify flaky tests in other
programming languages?
RQ3: Is the vocabulary of Code Under Test useful for flakiness prediction?

5.3.2 RQ1: Time-Sensitive Validation10

In the real world, one can picture different usages for a flaky test prediction
model. For instance, in Continuous Integration (CI) environments where new
changes (commits) making some tests fail are typically rejected, developers can
ignore those failing tests that are likely to be flaky and isolate them for further
investigation.15

In another setting, the prediction model can also come as an IDE plugin hinting
at tests that use keywords related to flakiness.

These scenarios illustrate the importance of the temporality of tests and code,
as the model can be trained only on flaky tests detected previously to predict
new occurrences. Moreover, the fact that the vocabulary of code changes as new20

commits are introduced makes it challenging for models trained on older data to
predict flakiness in future code versions that are temporarily distant.

The model can also be limited to flaky tests detected in one project, e.g., when
the vocabulary linked to flakiness can differ from one project to another. Indeed,
as reported in the literature [58], [85], different sources of flakiness exist such as25

concurrency issues, usage of date/time, I/O actions, API or network calls, etc.
Thus, based on the project, the flakiness sources can differ and the vocabulary
associated with it varies accordingly.

For all these reasons, we propose a novel, intra-project, time-sensitive setup for
validating flakiness prediction models. This setup evaluates a model on its ability30

to predict new flaky tests with data that is assumed to be known from the past of
the project.

To compare this setup with the one from Pinto et al., we rely on the DeFlaker
dataset, which was also used in the original study. For each project, we select
tests that were found flaky at any revision of the change history to form the Flaky35

Tests set FT . DeFlaker does not provide explicit information about tests that did
not flake, as the tool can not guarantee that a test that did not fail (yet) is not

1https://github.com/serval-uni-lu/FlakyVocabularyReplication
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Figure 5.1: Time-sensitive validation

flaky. We define Non Flaky Tests NFT as tests that were not found as flaky in
any revision, that is, NFT = TT otal − FT .

Figure 5.1 explains how FT and NFT are selected in our time-sensitive validation.
We split our dataset in order to have 80% of the FT from earlier revisions for our
training set and 20% of the FT from "future" revisions for our test set.5

We select the NFT from the revision where the last FTtrain are selected for the
training set and from the last revision where FTtest are selected for the test set.

To assess the impact of this new setup on model performance, we compare
it with a classical setup where the model is trained and tested with flaky tests
regardless of their observation date (i.e., the setup followed by Pinto et al.). In10

such setup, all flaky and non-flaky tests are grouped without accounting for their
observation date. Then, the groups are randomly split into training and test sets
following an 80/20 ratio.

To perform this comparison, we selected six projects from the DeFlaker dataset
based on their numbers of flaky tests. These projects have at least 30 flaky tests,15

which we consider as a minimum necessary for training and testing a model. Table
5.2 presents these projects with their numbers of flaky and non-flaky tests. We
also present the dates of the first and last flaky tests identified in these projects.
We split this dataset according to the two validation setups, then we build our
prediction model, train it and contrast the results of both setups.20

5.3.3 RQ2: Generalisation to other Programming Lan-
guages

Predicting flaky tests in Python
Another goal of our study is to evaluate the generalisability of the original

study to other programming languages. For this purpose, we propose to assess the25

performance of flakiness prediction models on Python projects. We chose Python
because it is the most popular language used in modern projects and it is commonly
used for machine learning, web development, game development, and many other
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Table 5.2: Details about the Java projects used in our study

Project Earliest revision Latest revision #FT #NFT

achilles 2015-10-30 2016-09-05 51 392
hbase 2010-05-17 2010-06-21 98 120
okhttp 2014-03-06 2015-01-30 102 1178
oozie 2013-03-20 2013-05-31 1039 44
oryx 2015-01-06 2015-02-27 38 286
togglz 2016-01-23 2016-06-17 20 256

applications.
Python comes with its set of testing frameworks. We focus our study on

Pytest[142]. Pytest is the equivalent of Junit for Python and enables developers
to write tests for their programs. It is one of the main testing frameworks used
in the open-source community and in the industry. Pytest comes with its lot of5

features and plugins. Especially, a specific module to handle flaky tests can be
used with Pytest: flaky2. This module allows developers to annotate tests as flaky
to automatically rerun them in case of failure. The developer can also configure
the maximum amount of reruns to attempt and the minimum number of passes
required. This annotation can be added to a test function or directly to the test10

class, giving its property to all of its tests. Figure 5.2 shows an example of a test
marked as @flaky taken from the Typed_python project3.

We mined GitHub using the source-graph API4, searching for Python projects
containing the annotation @flaky. This process yielded 110 projects with a total of
1,304 tests marked as flaky. Similarly to our first experimentation, we only select15

projects in which we have enough flaky tests to train and test a model, i.e. 30 flaky
tests. This results in a dataset of 9 projects and 837 tests marked by developers
as flaky. Table 5.3 shows these projects with their number of flaky and non-flaky
tests. Compared to the Java dataset, we were able to obtain more projects with
more flaky tests for our study. To the best of our knowledge, this is the first dataset20

of flaky tests in Python.
It is worth noting that in this research question, we evaluate the performance of

the model to predict flaky tests in a single revision. Therefore, we reuse the typical
80/20 dataset split as followed by Pinto et al.. That is, we are rather focusing
on confirming that the approach works as well in Python and that a model can25

learn features differentiating tests labelled as @flaky from the ones that are not. To

2https://pypi.org/project/flaky/
3https://github.com/APrioriInvestments/typed_python
4https://sourcegraph.com/search
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Figure 5.2: Example of a test labelled @flaky

extract these features, we use a bag of words representation of the test, as in Java.
We also carefully remove the @flaky annotations, as keeping it in the vocabulary
would bias our model towards recognising this annotation rather than the code
vocabulary.

Predicting manifest flaky tests5

We perform further analysis in Python to assess the usefulness of a vocabulary-
based model. Our objective is to evaluate the ability of a model to identify manifest
flaky tests based on training with tests labelled as flaky by developers. We consider
as manifest flaky, every test for which we are able to observe non-deterministic
behaviour dynamically. This means that the test fails and passes at least once after10

several reruns. To identify these manifest flaky tests, we reran 200 to 300 times the
test suite of the three projects Bokeh, Celery and Python-telegram-bot. We run
the test suites on a Mac machine with a 2,4 GHz 8-Core i9 processor and 32Gb
of RAM. The results of these reruns are presented in the table 5.4. The column
#@flaky shows the number of tests labelled as flaky in each project.15

We observe that despite the high number of reruns (800), only 23 tests have
a flaky behaviour. This outcome is not surprising as flaky tests are, by nature,
difficult to reproduce. To assess the model performance in detecting manifest
flaky tests, we focus on the only project that has a reasonable amount of manifest
flaky tests, namely Python-telegram-bot. We use the 20 manifest flaky tests found20
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Table 5.3: Python projects used in our study

Project SHA #FT #NFT

bokeh ddc22b8 100 2505
cassandra-dtest 8cb6bd2 72 4221
celery 0833a27 54 2890
jira 7fa3a45 131 59
pipenv 8e64873 32 1612
python-amazon 84c16f5 35 15
python-telegram-bot 8e7c0d6 186 1382
spyder 413c994 173 1086
typed-python 96e7ebd 54 6034

Table 5.4: Classifier performance for Python projects with manifest flaky tests

Project #reruns #@flaky #manifest FT

bokeh 200 100 1
celery 300 54 2
python-telegram-bot 300 186 20

during our reruns as a test set, completed by 20 randomly selected tests that are
not labelled as flaky. For the training set, we use the flaky and non-flaky tests
minus the tests present in the test set.

5.3.4 RQ3: Extended Set of Features
So far, the flakiness prediction is only based on features taken from the test5

code. However, flaky tests can be due to infrastructure or environmental issues
(e.g. lack of available resources in the CI, service or network unavailable, etc), to
the test itself (e.g. usage of dates, randomness, order dependency, etc), or to the
CUT (e.g. non-determinism, concurrency, etc). Notably, Luo et al. [58] showed
that 24% of the fixes for flaky tests were applied to the CUT and that among them,10

94% fixed a bug in the CUT. Hence, it can be judicious to consider information
from the CUT in flakiness prediction models. We propose to extend the original
study by including the vocabulary of the CUT in test representation.

The main issue when considering the CUT is that computing the code coverage of
each test during each revision would bring significant overheads. Besides, retrieving15

the exact code coverage dynamically goes against the goal of static prediction,
which is to reduce dynamic costs. To avoid this overhead, we propose a lightweight
approach that relies on Information Retrieval (IR) to estimate the CUT.
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IR techniques have been used to solve different software engineering prob-
lems [143]–[145]. IR aims at quickly and automatically retrieving relevant infor-
mation among a set of documents based on keywords taken from a user query. In
our case, the query is the tokens of a test and the set of documents is the set of
all functions (or methods) defined in the project. Our hypothesis is that functions5

from the CUT of a test are likely to use similar keywords (i.e. variable names,
API calls, etc) as the test. We are then looking for the most similar functions to
our test function. To do so, we use a cosine similarity between a test case and a
function from the CUT. Cosine similarity is defined with:

cosSimilarity = cos(Tc, Func) = Tc · Func

|Tc||Func|

where Tc is the vector representing the test code and Func is the vector representing10

the function code. The result of a cosine similarity ranges from -1, meaning that
the query - our test case - is completely different from the document - our function
- to 1, where the query is perfectly similar to the document. In our case, we select
the top three most similar functions for each test.

Algorithm 1 describes the process of associating the CUT to each test. In order15

to compute the cosine similarity between the test and a function, we use the Text
tokenisation utility class from the Keras library5. We first fit the Tokeniser with
the vocabulary from all tests and functions. Then, we transform the text of test
and function bodies by creating a vector for each one of them of a length equal to
the size of the vocabulary. In this vector, each element represents the number of20

times a word appears in the body. After extracting the vectors, we compute the
cosine similarity between the current test and all functions and store results. We
finally filter to only keep functions that have a high score, i.e. that they are the
closest to the test. The body representation of the selected functions is used as a
new set of features for the flakiness prediction model.25

5.4 Results
5.4.1 RQ1: Time-Sensitive Validation

In this research question, we compare prediction model performance using a
time-sensitive validation and a classical validation.

Figures 5.3-5.5 show the performance of our Random Forest classifier under30

time-sensitive and classical validation. Overall, we observe that the validation
setup has an impact on the classifier performance. This impact varies significantly
depending on the project, its size, and history of flaky tests. The projects Achilles,
Hbase, OkHttp, and Togglz observe a decrease in their MCC score. The largest

5https://keras.io/api/preprocessing/text/
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Algorithm 1: Cost effective retrieval of the CUT
Inputs:
Test[]
Function[]
Outputs:
TestWithCUT[]
Procedure CUT_SELECTION(Test[], Function[])
foreach test T ∈ Test[] do

similarityMeasures[]
Tvector = transform(T)
foreach function F ∈ Function[] do

fit(T + F )
Fvector = transform(F)
cosTF = cosSimilarity(Tvector, Fvector)
similarityMeasures.Append(cosTF)

end
similarityMeasures.Sort()
similarityMeasures.Slice(0, 2)
T.append(similarityMeasures)
TestWithCUT.append(T)

end
return TestWithCUT[]
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Figure 5.3: Precision under classi-
cal and time-sensitive validations.

Figure 5.4: Recall under classical
and time-sensitive validations.

Figure 5.5: MCC under classical
and time-sensitive validations.

performance drop is observed in the OkHttp project, where the MCC dropped from
0.39 to 0.18. The two exceptions are for Oozie and Oryx, where MCC increased by
0.10 and 0.13 points respectively. In the case of Oryx, this can be explained by the
fact that most of the flaky tests come from one revision, thus, the time-sensitive
validation has little to no impact. The difference can then be explained by the5

random selection of the samples when splitting the training and test set. The
phenomenon is only present for this project. In the case of Oozie, there is a
considerable imbalance between the number of flaky tests (1039) and non-flaky
tests (44). Hence, the test set contains only 9 non-flaky tests, which might not be
enough to draw conclusions.10

RQ1: The performances of a vocabulary-based model decrease under a time-
sensitive validation (MCC value drops up to 0.21). Nonetheless, the approach is
still able to decently predict flaky tests.
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Table 5.5: Classifier performance for Python projects

Project Precision Recall F1 MCC AUC

bokeh 1.00 0.91 0.95 0.95 0.95
cassandra-dtest 0.96 0.43 0.58 0.63 0.71
celery 0.85 0.54 0.64 0.66 0.77
jira 0.98 0.99 0.99 0.95 0.98
pipenv 0.78 0.19 0.30 0.37 0.60
python-amazon 0.97 1.00 0.99 0.95 0.96
python-telegram-bot 1.00 0.99 1.00 0.99 1.00
spyder 0.92 0.77 0.83 0.82 0.88
typed-python 1.00 0.86 0.91 0.92 0.93

5.4.2 RQ2: Generalisation to other Programming Lan-
guages

Predicting flaky tests in Python
Table 5.5 reports on the model performance when predicting flaky tests in 9

Python projects.5

First, we observe that for 5 projects out of 9, the model reaches a great
performance with MCC values greater than 0.9. For the rest of the projects, these
scores are always higher than 0.50, except for Pipenv, which shows the lowest results
with an MCC value of 0.37. Similarly, all the studied projects have a F1-score
greater than 90% and 7 out of the 9 studied projects have a precision higher than10

60%. These observations show that the vocabulary-based model is able to predict
flaky tests with decent performance in Python projects.
Predicting manifest flaky tests

Table 5.6 shows the model performance in detecting manifest flaky tests based
on tests marked as flaky by developers. The results show a perfect performance15

with MCC and F1-score values of 1 and 100% respectively, confirming that a model
trained on tests labelled by developers can be used to predict manifest flaky tests.
Interestingly, 2 of the 20 manifest tests were not labelled as flaky by the developers
and were only identified with the reruns. Yet, the model was able to predict them
by only learning from tests marked by developers. In a real-world scenario, we20

could picture the model finding those tests and automatically annotating them.
Figure 5.6 shows the test test_idle() from the class TestUpdater6. Over

300 reruns, this test failed intermittently because of a concurrency issue where a
6https://github.com/python-telegram-bot/python-telegram-bot
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Table 5.6: Classifier performance for manifest flaky test in the Python-telegram-bot
project

Project Precision Recall F1 MCC AUC

python-telegram-bot 1.00 1.00 1.00 1.00 1.00

scheduler has been shut down. Indeed, the test body contains several keywords
related to time and concurrency, which are common causes of flakiness, e.g. Thread,
sleep, idle. In order to understand how the model predicted that this test is
flaky, we analyse the most important features of the model. These features do
not completely reflect the model prediction and they can be biased [146], but they5

give us an idea of the vocabulary that the classifier is using for its predictions.
In the project Python-telegram-bot, we found that the top ten features include
the keywords: process, timeout, duration, seconds, which are also related
to time and concurrency. Hence, the model’s ability to predict the test flakiness
based on the vocabulary.10

Figure 5.6: A manifest flaky test not labelled @flaky

Figure 5.7 shows the test test_to_dict() from the class TestStickerSet,
which is also manifestly flaky but the developers did not mark it as such. Unordered
collections have been identified as a cause of flakiness by several works as developers
can wrongly assume that elements of a collection will be returned in a specific
order [58], [107]. In Python, the return order of dictionaries has varied over the15

different versions [147], [148]. In our case, we found that the keyword dict, which
is present in a large number in this test, was among the first eight most important
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features of our classifier. This feature allowed the vocabulary-based model to
predict that this test is flaky.

Figure 5.7: A manifest flaky test not labelled @flaky

We conclude that the approach is extendable to the Python language, sup-
porting the idea that the vocabulary-based prediction can be generalisable to
other projects and programming languages. Moreover, we saw that we can take5

advantage of a flaky tests classifier using vocabulary-based features in order to
identify vocabulary linked to flakiness and help developers write better quality tests.

RQ2: Vocabulary-based models can be generalised to other projects and pro-
gramming languages. Besides, these models can leverage annotated flaky tests
to predict and annotate manifest flaky tests that were not known to developers.

5.4.3 RQ3: Extended Set of Features10

Figures 5.8-5.10 show the results of our prediction model in Java projects, while
figures 5.11-5.13 present the model performance in Python projects.

In figures 5.8-5.10, we observe that the impact of including the CUT does
not have a consistent impact on the model performance in Java projects. Adding
the CUT improves the model performance in Hbase, Okhttp and Togglz, with an15

increase of the MCC value between 0.01 and 0.07. However, the opposite effect is
observed in the projects Achilles and Oryx where the MCC dropped by 0.06 and
0.02 respectively. As for the Oozie project, including the CUT does not seem to
impact the model performance. Nonetheless, these performance improvements and
losses remain minor in all the studied Java projects.20

Figures 5.11-5.13 show a similar effect of the CUT usage in Python projects.
Out of the nine studied, six projects report a lower performance when adding the
CUT to the features. This performance loss is up to 0.13 (MCC) in the projects
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Figure 5.8: Precision score in
Java projects

Figure 5.9: Recall score in Java
projects

Figure 5.10: MCC score in Java
projects

Figure 5.11: Precision score in
Python projects

Figure 5.12: Recall score in
Python projects

Figure 5.13: MCC score in
Python projects

69



Jira and Python-amazon. On the other hand, the projects Cassandra-dtest, Pipenv,
and Typed_python have better predictions when the CUT is used — an increase
in the MCC value by 0.02, 0.06 and 0.02 respectively.

Based on the observations in both Java and Python, we conclude that including
the CUT does not consistently improve the performance of a vocabulary-based5

model for predicting flaky tests.

RQ3: Surprisingly, the vocabulary of the Code Under Test, which is commonly
considered as a source of flakiness, does not improve the performance of flakiness
prediction models.

5.5 Threats to Validity
5.5.1 Construct Validity

One possible threat to the study’s construct validity is our choice and selection10

of flaky tests in Python. It is possible that tests that are marked as flaky by
developers are not actually flaky. In particular, developers could abuse of the
annotation and mark non-flaky tests to forecast flaky behaviour. To inspect this
point, we manually analysed projects from our dataset to check if this behaviour
is prevalent. We found that some projects (like Jira and Python-telegram-bot)15

use the annotations to mark all class tests as flaky. However, this usage seems
judicious as the class tests performed GUI testing, which is known for being a major
cause of flakiness. Moreover, an abusive usage of this annotation by developers
seems unlikely considering the rerun costs. When running the test suites, we
observed that one pass can take a long time. Hence, it is not in the best interest20

of developers to mark as many tests as flaky to anticipate flakiness as this would
largely increase the execution time as soon as there are test failures. We believe
that the usage of annotated flaky tests in our study is reasonable given the lack
of large datasets of flaky tests, especially for programming languages other than
Java. Ideally, the annotated flaky tests would be validated by rerunning them25

and exhibiting their non-deterministic behaviour. Nevertheless, the reproduction
remains very challenging for flaky tests in general and even tests identified in other
datasets are hardly reproducible [92], [137].

Another threat to construct validity could be the approach we use to retrieve
the CUT. Intending to design a fast and lightweight approach, we used Information30

Retrieval to estimate the real code coverage of each test. This approximation can
be responsible for the noise brought in the features. To investigate this point, we
assessed the CUT effect when using other retrieval approaches. First, we retrieved
an approximation of the CUT by using Static Call Graph. We selected all functions
called by the test as the CUT and we do not explore what those functions call.35
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Even if this approach only includes a subset of the CUT and flakiness can be caused
by functions deeper in the call graph, we believe that keywords in the top functions
should serve as a proxy. Results for this approach were similar to the ones presented
in RQ3. The performance scores slightly decrease or increase from one project
to another without showing a significant impact on the prediction performance.5

Furthermore, we computed the code coverage for projects where we managed to
build and run the test suite. This task is challenging, especially in Java where the
flaky revisions are from several years ago and dependencies are easily missing from
central repositories. We successfully retrieved the real code coverage for revisions of
Togglz and Oryx using the GZoltar tool [149]. This tool allows us to get a coverage10

matrix representing each line covered by the test case. We used this matrix to
retrieve the exact CUT and include it as a feature for our prediction model. For
both projects, the CUT inclusion had an impact on the model performance, which
is very similar to the one observed with the CUT retrieved with IR. Hence, we
believe that the results observed in RQ3 are not flawed by the CUT retrieval.15

5.5.2 Internal Validity
One possible threat to internal validity is the definition of non-flaky tests. The

datasets that we used for both Java and Python, only mark flaky tests and do
not provide information about non-flaky tests. Consequently, we considered all
tests that were not marked as flaky to be non-flaky. Yet, some of these tests can20

be flaky even though DeFlaker or the developer did not mark them as such. This
limitation is not unique to our study as it is theoretically impossible to prove that
a test is not flaky. To the best of our knowledge, there are no datasets, neither
in formal nor in grey literature, that mark explicitly non-flaky tests. On top of
that, our study results show that there is a clear distinction between the classes of25

flaky and non-flaky tests. Accordingly, it is unlikely that a significant fraction of
the non-flaky tests is actually flaky.

One common threat to the internal validity of replication studies is potential
errors in the reproduction (e.g. settings and library usage). To alleviate this
threat, we carefully examined the GitHub repository of the original work [150] to30

understand and reproduce their implementation details. Besides, the goal of our
study is not to exactly reproduce the original work and our results align well with
the original findings.

5.5.3 External Validity
The main threat to our external validity is the size and nature of our datasets.35

For Java, we relied on the DeFlaker dataset since it is the largest open-source
set of flaky tests and it has already been used in many flakiness studies [92], [93].
As for Python, we built a dataset of 837 flaky tests from 9 projects by mining
GitHub repositories. For the sake of generalisability, it would have been preferable
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to include more projects and flaky tests. Nevertheless, our intra-project setting
required a minimum number of flaky tests per project and limited our choices.
We encourage future studies to replicate this study on larger datasets, including
industrial projects.

5.6 Conclusion5

This paper explored the usability and performance of vocabulary-based models
in predicting flaky tests. We presented a conceptual replication of the study of
Pinto et al., following three axes.

• First, we evaluated the prediction performances under a time-sensitive vali-
dation setting that better reflects the envisioned use case for the approach.10

We found that a more robust validation has a consistent negative impact on
the reported results of the original study (performance degrades by 7% on
average). Fortunately, this performance degradation does not invalidate the
key conclusions of the study as the model predictions are significantly better
than random selections.15

• Second, we evaluated the generalisability of a vocabulary-based model to other
programming languages. We found re-assuring results that vocabulary-based
models are more successful in Python than in Java (average performance of
80% in Python in contrast to 61% in Java). We also showed that these models
can leverage flaky tests annotated by developers to predict and annotate20

manifest flaky tests that were not known to developers.
• Third, we conducted a comparative study that highlights the impact of

features lying in the CUT on the prediction performance. Surprisingly, we
found that the vocabulary of the CUT, which is commonly considered as a
source of flakiness, does not improve the performance of vocabulary-based25

models.
On top of these findings, this paper presents a new large dataset of flaky tests

mined from developer annotations in Python projects on GitHub. This dataset
and our experiment toolset are available in a comprehensible replication package.
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6
Predicting Flaky Tests Categories using Few-Shot

Learning

The last two chapters explored the challenges linked with test flakiness and in
particular flaky test prediction. We identified the need for both researchers and
developers to better understand the root cause of a flaky test once detected. Thus,5

we present in this chapter FlakyCat, the first approach to classify flaky tests based
on their category of flakiness. This technique, based on CodeBERT for source code
representation, leverages few-shot learning and Siamese networks to learn from a
limited set of examples. To enable a better comprehension of the predictions, we
also introduce an interpretability technique for CodeBERT-based models.10

This chapter is based on the work published in the following paper:

• A. Akli, G. Haben, S. Habchi, et al., “Predicting flaky tests categories using
few-shot learning,” in Proceedings of the 4th ACM/IEEE International Con-15

ference on Automation of Software Test, ser. AST ’23, Melbourne, Australia:
Association for Computing Machinery, 2023, isbn: 9781450392860
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6.1 Introduction
Continuous Integration (CI) plays a key role in nowadays software development

life cycle [10], [138]. CI ensures the quick application of changes to a main code
base by automatically running a variety of tasks. Those changes are responsible for
building the program and its dependencies, performing checks (e.g. static analysis),5

and running test suites to maintain code integrity and correctness. An important
assumption for practitioners is that tasks are deterministic, i.e. regardless of the
execution’s context of a same task, results need to remain similar.

Unfortunately, in practice, this is not always the case. Previous research has
identified test flakiness as one of the main issues in the application of automated10

software testing [20], [57], [151]. A flaky test is a test that passes and fails when
executed on the same version of a program. Flakiness hinders CI cycles and prevents
automatic builds due to false signals, resulting in undesirable delays. Furthermore,
surveys [49], [81], [105] show that flakiness affects developers’ productivity, as they
spend a considerable time and effort investigating the nature and causes of flaky15

tests.
To alleviate this issue, researchers have proposed tools that help detect flaky

tests. In particular, IDFlakies [59] and Shaker [84] detect flakiness in test suites by
running tests in different setups. However, rerunning tests, especially for a large
number of times, is resource-intensive and might not be a scalable solution. For20

this reason, researchers recently suggested alternative approaches to detect flaky
tests based on features that do not require any test execution [57], [91], [92], [152].
Although promising, these approaches mainly focus on classifying tests as flaky or
not without any additional explanation. Unfortunately, the absence of additional
information prevents a proper comprehension of flaky failure causes. Hence, further25

investigation is required to understand the nature of flakiness and identify the
culprit code elements that need to be fixed [49].

Another important line of research in the area regards automated approaches
that aim at helping to locate the root causes and suggest potential flakiness
fixes [85], [86], [89]. However, research on automatically fixing flakiness is still at an30

early stage: tools often focus on one category of flakiness and with few examples.
For instance, iFixFlakies [87] and ODRepair [88] focus only on dealing with test
order dependencies, which is one of the main causes of test flakiness. Flex [107]
automatically fixes flakiness due to algorithmic randomness in machine learning
algorithms.35

We believe that both developers and researchers would benefit from additional
information that could assist them in gaining a better understanding of flaky tests,
once they have been detected. Therefore, we propose FlakyCat, a learning-based
flakiness categorisation approach that identifies the key reason/category of the test
failures.40
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One limitation of previous work, relying on supervised learning, regards the
need for large volumes of available data. Unfortunately, debugged flaky test data
is scarce, inhibiting the application of learning-based methods. To deal with this
issue, we leverage the Few-Shot learning capabilities of Siamese networks, which
we combine with the CodeBERT representations to learn flakiness categories from5

a limited set of data (flaky tests).
To evaluate FlakyCat, we gather a set of 451 flaky tests annotated with their

category of flakiness issued from previous studies and projects that we mined from
GitHub.

Our empirical evaluation aims at answering the following research questions:10

RQ1: How effective is FlakyCat compared to approaches based on other
combinations of test representation and classifier?
Findings: Our results show that FlakyCat is capable of predicting flakiness
categories with an F1 score of 73%, outperforming classifiers based on tradi-
tional supervised machine learning.15

RQ2: How effective is FlakyCat at predicting each of the considered flakiness
categories?
Findings: FlakyCat classifies accurately flaky tests related to Async waits,
Test order dependency, Unordered collection, and Time, with the best F120

score of 81% for the Async waits category. However, the approach shows
difficulty in classifying concurrency-related flaky tests (an F1 score of 39%),
since these cases are related to the interaction of threads and processes and
are easily confused with Asynchronous waits.

25

RQ3: How do statements of the test code influence the predictions of Flaky-
Cat?
Findings: We found that some statement types are specific to certain flaki-
ness categories. This is the case for assert statements in Unordered collections
and statements using date or time for the Time category. We also found that30

some flaky categories have similar statement types like the presence of thread
usages in both Async waits and Concurrency categories.

In summary, our contributions can be summarized as follows:
Dataset We collected 451 flaky tests alongside their categories.
Model We present FlakyCat, a new approach using Few-Shot Learning and35

CodeBERT to classify flaky tests based on their flakiness category.
Interpretability We introduce a novel technique to explain what information
is learnt by models using CodeBERT as code representation.

To enable the reproducibility of our work, we make the dataset used to evaluate
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FlakyCat and the scripts publicly available in our replication package 1.
The paper is organized as followed: Section 6.2 presents the designed im-

plementation of FlakyCat. Section 6.3 introduces our interpretability technique.
Section 6.4 describes how we collected our dataset and evaluated our study. Sec-
tion 6.5 presents the results of our study. We further discuss different use cases in5

Section 6.6. Finally, Section 6.8 discusses threats to the validity of this study.

6.2 FlakyCat

Figure 6.1: An overview of FlakyCat, which combines the use of the pre-trained
model CodeBERT, and Few Shot Learning based on the Siamese network.

In this section, we present the design and implementation of our approach.
Figure 6.1 presents an overview of the main steps of FlakyCat, code transformation
and classification.10

6.2.1 Step 1: Flaky Test Transformation
Scope

We rely on the test code to assign flaky tests to different categories. Previous
studies showed that flakiness finds its root causes in the test in more than 70% of
the cases[58], [62]. Hence, focusing on the test code allows us to capture the nature15

of flakiness while minimizing the overall cost of FlakyCat. Indeed, considering the
code under test would require running the tests and collecting the coverage, which
entails additional requirements and costs.
Flaky Test Vectorisation

In order to perform a source code classification task, we first need to transform20

the code into a suitable representation that will be fed to the classification model.
1https://github.com/serval-uni-lu/FlakyCat
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Among previous studies predicting flaky tests statically, two main approaches were
used to transform code into vectors: using test smells [96], [152] and using code
vocabulary [92], [94], [95]. Both approaches seem promising, as different studies
report high-performance models. As their encoding enables flaky test prediction,
we believe they could also be used for flakiness category prediction, and we compare5

them with our approach.
Recently, code embeddings from pre-trained language models were also con-

sidered for source code representation [97], [153]. Pre-trained language models
allow the encoding of code semantics and are intended for general-purpose tasks
such as code completion, code search, and code summarisation. Considering these10

benefits, we use the pre-trained language model CodeBERT [154] to generate source
code embeddings. CodeBERT can learn the syntax and semantics of the code and
doesn’t require any predefined features [155]. Considering this aspect, we decide to
rely on the CodeBERT test representation.

CodeBERT has been developed with a multi-layer transformer architecture [156]15

and trained on over six million pieces of code involving six programming languages
(Java, Python, JavaScript, PHP, Ruby, and Go).

To get the code representation using CodeBERT model, we first filter out extra
spaces such as line breaks and tabs from the source code. In our case, we use each
test method’s source code as individual sequences. We then tokenise sequences by20

converting each token into IDs. Each sequence is passed to the CodeBERT model,
which returns a vector representation. Figure 6.2 illustrates this process.

Next, we explain the inputs and outputs of CodeBERT.

Inputs CodeBERT is able to process both source code and natural language,
e.g. comments and documentation. In our case, we did not exploit the possibility25

of using comments as the input length of CodeBERT is limited. Furthermore,
comments can add noise since they represent unstructured text, possibly written by
different developers, so we decided to solely rely on the code semantics. Hence, the
given input to CodeBERT only considers code tokens, surrounded by two special
tokens for boundaries. This is represented as follows:30

[CLS], c1, c2, ..., cm, [SEP ].

Where Ci is a sequence of code tokens, the special token [SEP] indicates the end
of the sequence, and [CLS] is a special token placed in the beginning, whose final
representation is considered as the representation of the whole sequence which we
use for classification.35

Outputs CodeBERT output includes two representations. The first one is the
context matrix where each token is represented by a vector, and the second one is
the CLS representation, having a size of 768, which is an aggregation of the context
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matrix and represents the whole sequence. For the purpose of FlakyCat, we are
interested in the CLS vector that represents the complete test code.

Figure 6.2: The process of converting the source code of each test case to a vector
using CodeBERT, going through tokenisation, then converting to IDs and applying
the CodeBERT model to get the representation (CLS vector). Ǵ represent spaces,
< s > used for CLS, and < /s > for SEP.

6.2.2 Step 2: Flaky Test Categorisation
Classification process

Unlike traditional machine learning classifiers that attempt to learn how to5

match an input x to a probability y by training the model in a large training dataset
and then generalizing to unseen examples, Few-Shot Learning (FSL) classifiers
learn what makes the elements similar or belonging to the same class from only
a few data. Facing the scarcity of data on flaky tests, selecting an FSL classifier
seems then to be a promising choice.10

In FSL, we call the item we want to classify a query, and the support set is a
small set of data containing few examples for each class used to help the model to
make classifications based on similarity as shown in Figure 6.1. To classify flaky
tests according to their flakiness category, we compute the similarity between the
query and all examples of each flakiness category in our Support Set and assign15

the label having the maximum similarity with the query. This classification is
obviously performed in a space where all elements of the same class are similar or
close to each other. This is achieved by a model called Siamese network. Its task is
to transform the data and project it into a space where all the elements of a same
class are close to each other, and then to classify the elements by computing their20

similarity.
The Siamese network has knowledge of the similarity of elements of the same

class. It processes two vectors in input and applies transformations that allow
minimizing the distance between the two vectors if they share similar characteristics.
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Figure 6.3 shows an example of the visualisation of flaky test vectors before and
after the Siamese network is applied. Since CodeBERT has no knowledge of the
characteristics of flaky tests and only generates a general representation of the
source code, the vectors produced are all similar. However, the Siamese networks
learn which characteristics in these vectors are shared by tests of the same class,5

and thus allow to project vectors into a space that groups tests of the same flakiness
category. After this step, it becomes possible to classify them using a similarity
computation.

Figure 6.3: Visualisation of our data before and after training of the Siamese
network with the triplet loss, which brings together the elements of the same class.

Model training
Siamese networks have two identical sub-networks, each sub-network processes10

the input vector and performs transformations. Both sub-networks are trained by
calculating the similarity between the two inputs and using the similarity difference
as a loss function. Accordingly, the weights are adjusted to have a high similarity
if the inputs belong to the same class. For the architecture of the sub-networks, we
used a dense layer of 512 neurons and a normalisation layer as shown in Figure 6.1.15

We also performed a linear transformation to keep relations learnt by CodeBERT
using the attention mechanism introduced in the transformer architecture [156].
This model is trained using a Triplet Loss function, based on the calculation of
similarity difference.

Let the Anchor A be the reference input (it can be any input), the positive20

example P is an input that has the same class as the Anchor, the negative example
N is an input that has a different class than the Anchor, s() is the cosine similarity
function, and m is a fixed margin. The idea behind the Triplet Loss function is
that we maximize the similarity between A and P , and minimize the similarity
between A and N , so ideally s(A, P ) is large and s(A, N) is small. The formula25
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for this loss function is:

Loss = max(s(A, N) − s(A, P ) + m, 0)

m is an additional margin as we do not want s(A, P ) to be very close to s(A, N),
which would lead to a zero loss.

To train the Siamese network with the triplet loss, we give as input batches of5

pairs with the same classes, and any other pair of a different class can be used as a
negative example. We select the closest negative example to the anchor, such as
s(A, N) ≃ s(A, P ), which generates the largest loss and constitutes a challenge for
model learning.

6.3 Interpretability10

Model interpretability refers to one’s ability to interpret the decisions, recom-
mendations, or in our case the predictions, of a model. Interpretability is a crucial
step to increase trust in using a machine learning model. Indeed, it allows model
creators to investigate potential biases in the learning processes and better assess
the overall performance of their models. On top of that, providing developers with15

information about how the model came to its prediction can enhance the model
adoption [157].

Flakiness prediction approaches often relied on Information Gain to explain
what features in the model appeared to be the most useful [92], [96], [152]. In
the case of tree-based models, the reported information gain is given by the Gini20

importance (also known as Mean Decrease in Impurity) [158]. Parry et al. [159]
used SHapley Additive explanations (SHAP), which is another popular technique
for model interpretability [160].

As FlakyCat uses the CodeBERT representation of tests as input, using the
previously mentioned techniques would not give understandable features. To our25

knowledge, there are no existing techniques used for CodeBERT-based model inter-
pretability. Thus, we introduce a novel approach to better understand the decisions
of CodeBERT-based models. Following the main motivation of helping developers
better understand flaky tests once detected, our goal with this interpretability
technique is to arm FlakyCat users with a more fine-grained explanation for the30

model’s decision.
Our technique is inspired by delta debugging algorithms. Delta debugging is

used to minimize failure-inducing inputs to a smaller size that still induces the
same failure [161]. In our case, we are interested in the particular code statements
linked with the most influential information for the model’s decision. To identify35

them, we proceed with the following: We classify all the original test cases and
save their similarity scores. We create new versions of each test. Each version is a
copy of the original test minus one statement that was removed.
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Next, we feed the new versions to FlakyCat. Among all new versions for one
test, we keep the one for which the similarity score endured the biggest drop
compared to the original prediction score. We consider the statement removed in
this version as the most influential one.

6.4 Evaluation5

In this section, we explain our evaluation setting for FlakyCat. First, we
describe our data curation process, then, we present our approach for answering
each of the three research questions.

6.4.1 Data Curation
Collection10

For our study, we had to collect a set of flaky tests containing their source code
and their flakiness category. We focused our collection efforts on one programming
language, as training a classifier using code and tokens from different programming
languages is more challenging. For the language choice, we opted for Java, which is
the most common language in previous flakiness studies (and thus datasets). To15

increase the amount of data used in this study, we also collected a new set of flaky
tests mined from GitHub that we classified manually.

Table 6.1: Data filtering performed on the different datasets used in this study.
Collected represents the new dataset we retrieved.

Filters Datasets
[58] [162] [163] [87] Collected

Inspected commits 201 170 40 101 270
Commit not found 12 12 4 3 3
Duplicated commit 0 2 0 0 3

Open commit 0 0 0 33 0
Flaky test not found 45 21 13 0 42

Configuration problems 3 8 0 0 0
Not Java 15 5 0 0 8

Category hard to classify 40 57 4 0 22
Considered commits 86 65 19 65 192
Total of extracted tests 109 65 20 65 192

Existing datasets There is no large public dataset of flaky tests labelled accord-
ing to their category of flakiness. Most of the existing studies, such as FlakeFlag-
ger [96] and DeFlaker [83], are limited to list detected flaky tests which are later20
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used for binary classification. Regarding the data classified into flakiness categories
defined by Luo et al. [58] and Eck et al. [49], there is only limited data available in
previous empirical studies about flakiness. We retrieved tests from the empirical
study of flaky tests across programming languages of Costa et al. [162] and from
a recent study about pinpointing causes of flakiness by Habchi et al. [163]. We5

also retrieved the flaky tests from iFixFlakies [87] as Test order dependency is a
flakiness category that received a large interest in the community [59], [88], [159],
[164].

We gathered a total of 512 commits/pull requests from the existing datasets we
could access, referenced in Table 6.1.10

New dataset To expand existing datasets, we explore GitHub projects and
search for flakiness-fixing commits for which developers explained the reason (i.e.
category) of flakiness.

In this search, we use flakiness-related keywords such as Flaky and Intermit in
the commit messages. To ensure that the commit refers to a flakiness category,15

we further filter commits by specific keywords related to each category: thread,
concurrence, deadlock, race condition for Concurrency, time, hour, seconds, date
format, local date for Time, port, server, network, http, socket for Network and
rand for Random. After the search, we rely on the developer’s explanation in the
commit message and on the provided fix to classify tests into the different flakiness20

categories listed in the literature. This collection allowed us to obtain 270 commits
fixing flaky tests to be classified manually.

Filtering

The previous step allowed us to collect a total of 782 categorized commits/issues.
In this step, we filter out commits and data that are not adequate for our study.25

We filter out commits hard to classify, duplicated ones, and those where flaky tests
are not written in java. Costa et al. [162] classified issues, and Luo et al. [58]
classified old SVN revisions. In some cases, the corresponding commit could no
longer be found in the projects. Some data points were missing necessary attributes,
such as the name of the flaky test. Particularly, in commits where the fix is in the30

production code or in a configuration file, and the test name of the involved flaky
test is not indicated in the commit message, we were not able to identify the flaky
test, so we filtered them out. The number of tests extracted for each dataset is
shown in Table 6.1. The considered commits row accounts for commits where all
information needed was present i.e. the test name, source and category of flakiness.35

Note that the number of considered commits and extracted tests vary in some
cases as developers sometimes addressed more than one flaky test per commit. We
obtained a total of 259 flaky tests after filtering the existing datasets. For the
data we collected ourselves, we successfully extracted 192 test cases. To ensure the
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correctness of our manual classification and filtering, the first two authors of the
paper performed a double-check on the newly collected dataset.

Processing

After filling in all the necessary attributes: the test case name, flakiness category,
test file name, and project URL, we download the code files and extract test methods5

using the spoon library2. At this stage, all comments have been deleted from the
source code to restrict CodeBERT to code statements.

Final dataset

The final dataset contains 451 flaky tests distributed over 13 flakiness categories.
Table 6.2 illustrates this distribution.10

The collected flaky tests are not distributed evenly across categories of flakiness.
Just as shown in past empirical studies [58], [61], some categories, such as Async
waits, are more prevalent than others. Our approach uses FSL to learn from limited
datasets. Still, it requires a certain amount of examples to learn common patterns
from each category. We decided to have at least 30 tests in a category to consider15

it. This number is commonly accepted by statisticians as a threshold to have
representativeness [165], since learning from very few examples is not feasible. In
our dataset, some flakiness categories contain no more than 5 flaky tests. We were
not able to gather more data for those non-prevalent categories and thus decided
to focus on five of the most common flakiness categories, highlighted in grey in the20

table: Async waits, Test order dependency, Unordered collections, Concurrency,
and Time.

Data augmentation

Facing the challenge of learning from few data, we over-sampled our training
set similarly to SMOTE [166] by applying elementary perturbations. In the same25

way, as we increase the imagery data by rotating and resizing, for the source code,
we generate variants of our tests by mutating only the code elements that have
no influence on flakiness. This includes variable names, constants such as strings,
test method names, and by adding declarations of unused variables. In this way,
the model will learn useful code elements instead of learning from variable names30

and strings. We used the Spoon library for the detection of these elements, and we
replaced them with randomly generated significant words. As a result, the total
number of tests after data augmentation is 964.

2https://github.com/INRIA/spoon
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Table 6.2: Final dataset. The highlighted rows are the data used to train and test
the model. The original data refers to the data we collected, short data are tests
with less than 512 tokens, and the augmented data are the data we obtained after
augmentation.

Class Data
Original Short Augmented

Async waits 125 97 300
Test order dependency 103 100 284
Unordered collections 51 48 146

Concurrency 48 40 124
Time 42 38 110

Network 31 25 /
Randomness 17 14 /

Test case timeout 14 9 /
Resource leak 10 7 /

Platform dependency 2 2 /
Too restrictive range 3 2 /

I/O 2 2 /
Floating point operations 3 1 /

Total 451 385 964
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6.4.2 Experimental Design

Baseline

To the best of our knowledge, we are the first to introduce an automatic classification
of flaky tests according to their category. However, to get a better appreciation of the5

performance of the solution we propose in this paper, we seek to compare FlakyCat
with test representations commonly used by flaky test detection approaches. Our
intuition is that test representations giving good performance in binary classification
(i.e. detecting flaky tests and non-flaky tests) have a good chance to be helpful for
the classification of tests according to their category of flakiness. Thus, we use the10

following representations for our multi-classification task: the vocabulary-based
approach [92] which is a keyword-based approach, and the smell-based approach
[152] which exploits the correlation between test smells and test flakiness. Our
overall motivation is to determine whether it is possible to make this classification
based on limited data and to know which combination of classifier and code15

representation delivers the best results.
For the classification based on test smells, we use the 21 smells detected by

tsDetect [167], to generate vectors indicating the presence of each smell detected
by the tool, in the same way as in the study of Camara et al. [152]. As for the
vocabulary-based classification, we use token occurrence vectors, as in the article20

by Pinto et al. [92]. We tokenize the code and apply standard pre-processing like
stemming, then calculate occurrences of each token.

In addition to various test representations, we compare our FSL-based approach
with traditional classifiers from the Scikit-learn library [168] used by previous
studies on flakiness prediction [92], [95], [152]: Random Forest (RF), Support25

Vector Machine (SVM), Decision Tree (DT) and K-Nearest Neighbour (KNN).
To validate each model, we split our data into 75% for training and 25% for

final validation. We use a 10-fold stratified cross-validation on the training data to
select the best model parameters and use those parameters to evaluate the model
on the unseen hold-out set.30

As the augmented samples in our dataset are variants of the original ones,
it was important to keep them in the same sets, to ensure that no similar data
pairs are included in both the training and test sets. For the support set used for
classification, we select the most centred examples to represent each class.

FlakyCat relies on a Siamese network. It is trained with combinations of data35

by indicating whether these data are similar or not so that the model can learn
what makes them similar. Since we train with combined data, the balancing of
data is not required, because it is automatically over-sampled.
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Parameters

We tuned FlakyCat’s parameters on the training set using the Random Search
method [169] and a 10-fold cross-validation, by testing random combinations of the
most important parameters that have a direct impact on the model performance,5

which include the similarity margin used in the triplet loss function, the learning
rate, the number of warm-up steps, and the support set size.

Figure 6.4 shows the resulting weighted F1 score for each tested parameter
combination using a 10-folds cross-validation. A high learning rate and a number of
warm-up steps have a negative impact on the performances, while other parameters10

have a lower influence. Following these results, for the final validation on the
hold-out set, we use the best parameter combination identified in the Figure 6.4: a
similarity margin of 0.30, a learning rate of 0.001, a number of warm-up steps of
400, and a support set with 10 examples from each category.

For baseline classifiers, we keep the standard values used by previous works.15

We varied the number of trees in the Random Forest classifier, we tested values
from 100 to 1000 with a step of 100. We observed that this does not make much
difference regarding the F1 score (≤ 3%), and we identified 1000 as the number
giving the best results.

Figure 6.4: F1 score for different values of parameter combinations using Random
Search and a 10-Folds cross-validation. The combinations on the Y axis have the
form : (learning rate, number of warm-up steps, similarity margin, support set
size).
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Evaluation metrics

We use the standard evaluation metrics to compare classifiers, including precision,
recall, Matthews correlation coefficient (MCC), F1 score, and Area under the
ROC curve (AUC). These metrics have been used to evaluate the performance of5

classifiers, including binary classification of flaky tests [92], [97], [152]. Since our
dataset is unbalanced, weighted metrics are more suitable for our evaluation.

Research questions

RQ1: How effective is FlakyCat compared to approaches based on other
combinations of test representation and classifier?10

This question aims to evaluate FlakyCat and compare it to other test rep-
resentation techniques, i.e. vocabulary and test-smell-based and traditional
classifiers, i.e. SVM, KNN, decision tree and random forest.

RQ2: How effective is FlakyCat in predicting each of the considered flakiness15

categories?
This question evaluates FlakyCat’s ability to classify the different categories
of flakiness. To perform this, we split the dataset into five sets following
the categories: Async waits, Test order dependency, Unordered collections,
Concurrency, and Time. Then, we use the same settings as for RQ1 to tune20

the Siamese network, train it, and evaluate it for each category.

RQ3: How do statements of the test code influence the predictions of
FlakyCat?
We applied the technique we introduced in Section 6.3 for CodeBERT-based25

model interpretability to FlakyCat. We classified all original short data (323
tests). For 16 tests, the score doesn’t decrease by deleting one statement, and
thus we collected 307 statements of interest, important for FlakyCat’s decision-
making. To better understand what information emerges, we proceeded
with the following analysis. First, we regroup statements by category of30

flakiness (according to the flaky test they belong to). Then, we want to share
information on what type of statements FlakyCat found useful. To do so, we
look through the list of statements and attempt to identify recurring code
statements and categorize them. The process of identifying statement types
is exploratory and inspired by qualitative research. Two of the authors of35

this paper went through the list of statements and identified nine recurring
types of statements:

– Control flow: Includes decision-making statements, looping statements,
branching statements, Exception handling statements.
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– Asserts: All types of assertions in tests.
– Threads: statements related to threads and runnables.
– Constants: Constant values such as strings, numbers and boolean

values independent of variables, and final variables.
– Waits: All explicit wait statements.5

– Usage of date/time: Statements that perform operations on time
values, dates.

– Network: Statements related to data exchange in a local or external
network between two endpoints, and session management.

– I/O: Statements related to input/output, database and file access.10

– Global variables: Includes the use of global variables.
With this question, we investigate the prevalence of these statement types in each
flakiness category.

6.5 Results
6.5.1 RQ1: How effective is FlakyCat compared to ap-15

proaches based on other combinations of test repre-
sentation and classifier?

Table 6.3: Comparing performances of FlakyCat (CodeBERT and Few-Shot Learn-
ing) with traditional machine learning classifiers

Model Smells-based Vocabulary-based CodeBERT-based
Precision Recall MCC F1 AUC Precision Recall MCC F1 AUC Precision Recall MCC F1 AUC

SVM 0.11 0.34 0.00 0.17 0.50 0.61 0.52 0.37 0.45 0.66 0.27 0.43 0.22 0.33 0.60
KNN 0.24 0.37 0.11 0.29 0.55 0.44 0.48 0.31 0.45 0.65 0.56 0.53 0.37 0.51 0.68
DT 0.31 0.33 0.10 0.23 0.53 0.53 0.53 0.39 0.52 0.69 0.49 0.50 0.34 0.49 0.67
RF 0.32 0.34 0.12 0.24 0.54 0.72 0.61 0.49 0.56 0.72 0.68 0.66 0.55 0.62 0.76

FSL 0.13 0.18 -0.01 0.13 0.50 0.69 0.68 0.58 0.67 0.79 0.74 0.73 0.65 0.73 0.83

Following the outlined experimental design, we trained and tested FlakyCat
and the four traditional classifiers, using the three source code representations, the
vectors obtained from CodeBERT, the vectors based on vocabulary, and the ones20

based on test smells. The obtained results are presented in Table 6.3. The results
show that FlakyCat achieves the best performance for all evaluation metrics. It
obtained an average weighted F1 score of 73% and a precision of 74%. We get an
MCC of 0.65 (bounds for this metric are between -1 and 1), being close to 1 means
a perfect classification. Finally, the AUC of 0.83 shows that the model is able to25

distinguish flaky tests from different classes.
Representation effect Regarding the three code representations, CodeBERT
achieves the best performance for RF, KNN, and FSL, with an F1 score between
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0.51 and 0.73 for the three classifiers. When using the vocabulary-based vectors,
SVM and DT perform better than using CodeBERT. With this representation,
all classifiers do not exceed an F1 score of 0.67. The representation based on test
smells yields lower results, with the best F1 score being 0.29. The CodeBERT
representation seems then promising to use when learning to classify flaky tests5

according to their categories.

Classifier effect Regarding the choice of classifier, we find that the FSL classifier
based on similarity achieves the best performance using the representations based
on CodeBERT and vocabulary. Among traditional classifiers, Random Forest
obtains the best results, as reported in previous flaky test classification studies [92],10

[94]. Classifiers relying on the smell-based representation have more difficulty to
classify flaky tests. Using this code representation, the KNN classifier achieved the
best F1 score: 0.29. Two categories had a positive impact to achieve this score:
Async wait, and Test order dependency. This can be explained by the presence
of test smells strongly related to these two categories, including Sleepy test and15

Resource optimism. Other flakiness categories seem to be more challenging to
predict using existing test smells.

Random-guessing comparison In the previous paragraph, we compared dif-
ferent models and different code representations and saw that FlakyCat gave the
best results. Because all the existing approaches were designed to detect flaky tests20

from non-flaky tests, they might not be suitable for the specific task of classifying
flaky tests according to their categories. As no other category-based classification
technique exist so far, we show the performance of a random guesser as another
baseline. We consider two random guessing approaches, the first one where we
randomly affect a class to each flaky test and the second one where we weigh the25

random affectation according to the prevalence of flaky tests in each category. Both
approaches are considered as the dataset balance might be different from the one
found in various projects. Results are listed in Table 6.4. F1 scores for Random
and Weighted Random are respectively of 0.21 and 0.25. With an F1 score of 0.73,
we see that FlakyCat performs better than the two considered random-guessing30

approaches.

RQ1: Overall, our results show that automatic classification of flaky test
categories with a limited amount of data is a challenging but feasible and
promising task.
The representation based on CodeBERT gives better results compared to the
ones based on test smells and vocabulary. We also found that Few Shot Learning
performs better than traditional machine learning classifiers.
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Table 6.4: Performance of random guessing approach

Method Precision Recall MCC F1 AUC
Random 0.25 0.20 -0.01 0.21 0.50

Weighted Random 0.25 0.26 0.02 0.25 0.51

6.5.2 RQ2: How effective is FlakyCat in predicting each of
the considered flakiness categories?

Figure 6.5: Precision and Recall per flakiness category using FlakyCat

Figure 6.5 shows performances achieved by FlakyCat for each of the five flaki-
ness categories. Results show that the category Async wait is the easiest for the
model to classify, with an F1 score of 0.81. The category Test order dependency,5

Unordered collections and Time respectively have an F1 score of 0.80, 0.78 and
0.66. Concurrency performances are lower with an F1 score of 0.39. We suspect
that concurrency issues happen in many cases in the code under test. As FlakyCat
only relies on the test source code, this would indeed explain why performances are
lower in this case. Another supposition is that concurrency issues and asynchronous10

waits are sometimes closely related. We discuss an example of this in Section 6.6.1.

RQ2: While the four flakiness categories Async waits, Test order dependency,
Unordered collections, and Time show good ability to be detected automatically,
Concurrency remains difficult to detect by relying only on the test case code.
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Table 6.5: Prevalence of different types of statements in each flakiness category for
true positive predictions

#Statements Control flow Constants Asserts Threads Waits Network Global variables Usage of Date/time I/O
Async Waits 80 16,25% 55% 20% 20% 27,5% 25% 11,25% 3,75% 6,25%
Concurrency 34 23,53% 47,06% 17,65% 29,41% 14,70% 14,70% 5,88% 17,65% 2,94%

Test order dependency 69 8,69% 60,87% 13,04% 0% 4,35% 8,69% 2,90% 7,25% 47,82%
Time 32 18,75% 56,25% 50% 0% 0% 0% 9,375% 62,5% 6,25%

Unordered collections 42 4,76% 66,67% 38,09% 0% 0% 2,38% 4,76% 0% 4,76%

6.5.3 RQ3: How do statements of the test code influence
the predictions of FlakyCat?

Table 6.5 reports the prevalence (%) of the different types of statements among
all influential statements per flakiness category, e.g. 100% Asserts in the Time
category would mean that all influential statements for the Time category contain5

assert statements.

Compared to other flakiness categories, the percentage of assertions in the
influential statements of Time and Unordered collections is high, 50% and 38.09%
respectively. Based on our analysis, this includes in particular assertions that
perform exact comparisons, such as assertEquals(), between constant values10

and collection items, or dates for example. 29,41% of influential statements in
the Concurrency category include thread manipulation, and 20% for the Async
Waits category, while the rest of the categories have none. Statements containing
explicit waits represent respectively 27,5% and 14,7% for Async Waits and Concur-
rency categories, but below 5% for Test order dependency and zero for the others.15

Statements containing date or time values are most common in the Time category
with 62,5%. We note that they appear as well in a small proportion, 17,65%, for
Concurrency. Statements from the I/O calls group are mainly found in the Test
order dependency. For Control flow, Constants, and Global variables statements
are almost evenly distributed. We include a spreadsheet containing all statements20

analyzed in our replication package.

RQ3: The interpretability technique we presented enable us to find which
statements impact FlakyCat’s decision. We also find hints that specific flakiness
categories have distinct statement types (e.g. Usage of Date/time for the
Time category) while some others have similar prevalence (e.g. Threads for
Async Waits and Concurrency categories). By highlighting these statements,
our interpretability technique may provide information to developers to better
understand flaky tests, their categories and their causes.
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6.6 Discussion
6.6.1 Reasoning about the statements influencing FlakyCat

and the usage of flakiness categories
Listing 6.1 gives an example of a flaky test taken from the Neo4J project3 found

during the data collection part. As explained in the commit message, the flakiness5

was caused by a race condition and thus, we affected it to the Concurrency category.
FlakyCat classified this test as Async wait. The interpretability technique that we
introduced in Section 6.3 reveals that the statement on line 6 is the most influential
for the model’s decision. It contains the await() function, and this is likely the
reason why the flaky test was categorized as Async wait. Furthermore, similarity10

score for the Concurrency category is high, and it comes as FlakyCat’s second
guess.

When looking at the test, we understand that an asynchronous wait was per-
formed to wait for a thread. We also found similar examples concerning other
categories, such as waits relying on network resources. First, we argue that our15

interpretability technique can help to understand the cause of flakiness, even when
FlakyCat apparently mislabelled the test. Secondly, we advance that flakiness
categories as commonly defined in research studies [49], [58] can overlap, i.e. a
flaky test can belong to several categories. The application of machine learning to
determine the causes of flakiness is promising and should receive attention. It would20

also benefit from a more precise, orthogonal classification of flakiness categories.

Listing 6.1: A flaky test belonging to two categories
1 @Test
2 public void shouldPickANewServer[...]() throws Throwable {25

3 [...]
4 Thread thread = new Thread( () -> {
5 try {
6 startTheLeaderSwitching.await();
7 CoreClusterMember theLeader = cluster.30

8 awaitLeader();
9 switchLeader( theLeader );

10 } catch ( TimeoutException | InterruptedException e ) {
11 // ignore
12 }});35

13 [...]
14 }

3https://github.com/neo4j/neo4j/commit/c77e579b40b02087
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6.6.2 The effect of considering an additional category
Our results showed that flakiness categories can be classified automatically. We

carried out our main experiments with five categories of flakiness for which we had
a reasonable number of tests. Still, we believe that one interesting aspect of our
study is to understand the impact of adding other categories to FlakyCat. For this,5

we investigate the performance of FlakyCat for each category (similarly to RQ2),
but we add to our set the Network category, which is the next category with the
most samples in our dataset (25 tests). F1 scores and the accuracy obtained for
each category are presented in Figure 6.6.

Compared to the results previously reported in Table 6.3, we observe that the10

performances of each category are slightly impacted. The Async waits category is
the most impacted one. Indeed, after adding the Network category, we get an overall
F1 score of 0.68. The added category gets the worst results. This performance drop
can be explained by multiple factors. First, having more categories to differentiate
makes it more challenging for FlakyCat to distinguish between them. Secondly,15

the overall F1 score is strongly affected by the poor performance observed in the
new category. The performance for the Network category can be a result of the too
low number of examples in this category (25). Despite using FSL, the model still
requires enough data points in each category. While collecting data, we noticed
that flaky tests caused by Network were not common. These findings align with the20

ones about the prevalence of the different categories reported in previous empirical
studies [49], [58]. In addition, flaky tests related to Network issues could also be
considered as Asynchronous waits in many cases, as previously explained.

Figure 6.6: Precision and Recall per flakiness category when adding the category
"Network"
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6.7 Threats to Validity
6.7.1 Internal Validity

One threat to the internal validity is related to the dataset we used in our study.
Flaky tests were gathered from different sources, as explained in Section 6.4.1. It is
possible that flaky tests were assigned to the wrong label, which would impact the5

training and evaluation of our model. Certifying the category based on the test
source code is complex and can as well be subjective. To ensure the quality of the
data, the first two authors reviewed the collected flaky tests and confirmed their
belonging to the assigned category.

Similarly, the identification of statement types in RQ3 required a manual10

analysis of the most influential statements. Hence, the identified types can be
subjective and the assignment of statements is prone to human errors. To mitigate
this risk, we kept the statement types factual, e.g. control flow and asserts. This
allows us to avoid assignment ambiguities and intersections between the different
statement types.15

6.7.2 External Validity
The first threat to external validity is the generalizability of our approach. In

this study, we train a model to recognize flaky tests from four of the most prevalent
categories, but we are not sure of the performances in other categories. We discussed
the addition of two categories (Network and Randomness) and retrieved that the20

number of examples is one of the influencing factors.

6.7.3 Construct Validity
One potential threat to construct validity regards the metrics used for the

evaluation study. To alleviate this threat, we report MCC, F1 score, and AUC
metrics in addition to the commonly-used precision and recall. As our data is not25

evenly distributed across the different categories, we report the weighted F1 score.

6.8 Conclusions
Test flakiness is considered as a major issue in software testing as it disrupts CI

pipelines and breaks trust in regression testing.
Detecting flaky tests is resourceful, as it can require many reruns to reproduce30

failures. To facilitate the detection, more and more studies suggest static and
dynamic approaches to predict if a test is flaky or not. However, detecting flaky tests
constitutes only a part of the challenge, since it remains difficult for developers to
understand the root causes of flakiness. Such understanding is vital for addressing
the problem, i.e. fixing the cause of flakiness. At the same time, researchers would35

gain more insights based on this information. So far, only a few automated fixing
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approaches were suggested and these are focusing on one category of flakiness.
Knowing the category of flakiness for a given flaky test is thus a piece of key
information.

With our work, we propose a new approach to this problem that aims at
classifying previously identified flaky tests into their corresponding category. We5

propose FlakyCat, a Siamese network-based multi-class classifier that relies on
CodeBERT’s code representation. FlakyCat addresses the problem of data scarcity
in the field of flakiness by leveraging the Few-Shot Learning capabilities of Siamese
networks to allow the learning of flakiness categories from small sets of flaky tests.
As part of our evaluation of FlakyCat, we collect and make available a dataset of10

451 flaky tests with information about their flakiness categories.
Our empirical evaluation shows that FlakyCat performs the best compared to

other code representations and traditional classification models used by previous
flakiness prediction studies. In particular, we reach an F1 score of 73%. We also
analyzed the performances with respect to each category of flakiness, showing that15

flaky tests belonging to Async waits, Test order dependency, Unordered collections,
and Time are the easiest to classify, whereas flaky tests from the Concurrency
category are more challenging. Finally, we present a new technique to explain
CodeBERT-based machine learning models. This technique helps in explaining
what code elements are learnt by models and give more information to developers20

who wish to understand flakiness’s root causes.
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7
Pinpointing Classes Responsible for Test Flakiness

Still with the goal of helping to debug flakiness, we present in this chapter a new
approach to locate the source of flakiness when it originates from the code under
test. This represents a specific but critical case as the cause of non-determinism lies5

in the program itself. The approach leverages Spectrum-Based Fault Localisation
techniques, code and change metrics and ensemble learning to rank classes the most
likely to be responsible for flakiness.

This chapter is based on the work published in the following paper:10

• S. Habchi, G. Haben, J. Sohn, et al., “What made this test flake? pinpointing
classes responsible for test flakiness,” in 2022 IEEE International Conference
on Software Maintenance and Evolution (ICSME), 2022, pp. 352–363. doi:
10.1109/ICSME55016.2022.0003915
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7.1 Introduction
Regression testing is a key component of continuous integration (CI) that

checks whether code changes integrate well in the codebase without breaking any
existing functionality. To this end, it is assumed that failing tests indicate the
presence of faults, introduced by the latest changes. However, some tests break this5

assumption by failing for reasons other than faults, as for instance, they exhibit
non-deterministic behaviour, thereby sending confusing signals to developers. Such
tests are usually called flaky tests.

Academic and industrial reports have emphasised the adverse effects of test
flakiness in software development. Specifically, Google reported that 16% of their10

tests manifested some level of flakiness, while more than 90% of their test transitions,
either to failing or passing, were due to flakiness [57]. As the de facto approach for
detecting flaky tests is to rerun them [81], [105], detecting large numbers of flaky
tests can be time- and resource-consuming. Indeed, Google reports that between
2 to 16% of their CI resources are dedicated in rerunning flaky tests [20]. It is15

noted that other companies, like Microsoft [141], Spotify [54] and Mozilla [170],
also report similar issues when dealing with test flakiness.

Perhaps more importantly, test flakiness affects team productivity and software
quality [105]. This is because flaky failures interrupt the CI and make developers
waste time in investigating false issues [49], [56], [57], [105]. Additionally, the accrual20

of flaky tests breaks the trust in regression testing, leading developers to disregard
legitimate failure signals believing them to be false [81], [105]. This situation often
results in faults slipping into production systems [170]. Moreover, code quality is
often linked with the level of flakiness incurred [105] and thus, developers need
to know where it comes from and understand the causes of flakiness to avoid25

introducing and spreading it.
Given the adverse effects of test flakiness, engineers and researchers aim at

developing
detection techniques that can predict whether a test is potentially flaky. These

approaches rely on a number of runs and re-runs, such as iDFlakies [59] and30

Shaker [84], coverage analysis like DeFlaker [83], or static and dynamic test
features [92], [94]–[97], [152], [171]. Evaluated on open-source projects, these
approaches showed promising detection accuracy and considerably decreased the
amount of time and resources needed to detect flaky tests.

Although flakiness detection methods are important, alone, they cannot reduce35

the prevalence of test flakiness. This is because on the one hand there are only partial
approaches to the problem, such as iFixFlakies [87] and Flex [172] that are only
applicable to specific cases, and the inherent difficulties in isolating/controlling the
flakiness causes on the other. For instance, iFixFlakies [87] fixes order-dependent
tests by identifying helper statements in other tests, whereas Flex [172] identifies40
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assertion bounds that minimise flakiness stemming from algorithmic randomness.
At the same time, many prevalent categories of flakiness, e.g. Asynchronous Waits
and Concurrency [49], [58], [61], [76], remain unaddressed by fixing approaches.
This is mainly due to the difficulty of identifying and controlling the cause of
flakiness [49].5

Flakiness root cause localisation is both important and difficult. It is important
since it allows developers to understand the sources of flakiness, hence enabling
better control of non-determinism. It is also difficult because of the difficulty to
reproduce failures, the diversity in potential issues, e.g. time and network, and the
large scope of potential culprits, e.g. the tests, the code under test (CUT), and the10

infrastructure [61]. Consequently, practitioners struggle to identify the causes of
non-determinism in their codebases that trigger flakiness and consider this step as
the main challenge in automating flakiness mitigation strategies [49].

In this paper, we address this challenge by re-targeting Fault Localisation (FL)
techniques in order to help identify components (program classes in particular)15

that are responsible for the non-deterministic behaviour of flaky tests. For the
sake of simplicity, we refer to these classes as flaky classes. Such techniques can be
useful to support the analysis of codebases and of flaky tests. Thus, given a failure,
either known as flaky or unknown, engineers can rely on localisation methods
to investigate the specific scenario (condition) that causes the test transition.20

Additionally, flakiness localisation techniques can help with code comprehension
and make engineers aware of code areas linked with flaky behaviour, assisting them
in both development and testing tasks.

In view of this, we investigate the appropriateness of a variety of fault localisation
methods, such as Spectrum-Based Fault Localisation (SBFL), change history25

metrics, and static code metrics in identifying flaky classes. Our study aims to
answer the following four research questions:

RQ1: Are SBFL-based approaches effective in identifying flaky classes?
RQ2: How do code and change metrics contribute to the identification of
flaky classes?30

RQ3: How can ensemble learning improve the identification of flaky classes?
RQ4: How does an SBFL-based approach perform for different flakiness
categories?

To answer these questions, we analyse five Open Source projects where test
flakiness has been fixed during the project evolution. Our analysis shows that:35

• An ensemble of models based on SBFL, change, and size metrics, yields the
best results, with 61% of flaky classes in the top 10 and 26% of them at the
top. This method also reduces the average effort wasted by developers to
19% of the effort spent when inspecting all classes covered by the flaky test.

• The ensemble method is effective for major flakiness categories. Concurrency40
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Table 7.1: Collected Data. ffc: number of flakiness-fixing commits. all: number of
commits in the project.

Proj. #Commits #Tests #Classes
ffc all min - max avg min – max avg

Hbase 8 18,990 138 - 2,089 1,113 734 – 1366 1053.4
Ignite 14 27,903 15 - 1,018 174 72 – 1767 1262.3
Pulsar 10 8,516 194 - 1,326 626 171 – 422 259.7
Alluxio 3 32,560 315 - 694 473 131 – 817 360.3
Neo4j 3 71,824 21 - 5,782 2,139 40 – 1663 581.3
Total 38 15 - 5,782 905 40 – 1767 820.2

and Asynchronous Waits are identified effectively, with 38% and 30% of their
flaky classes ranked at the top, respectively.

To facilitate the reproducibility of this study, we provide all used scripts, the
set of collected flaky classes, and detailed results in a comprehensive package1.

7.2 Data Collection5

The objective of our study is to assess the effectiveness of FL techniques in
identifying flaky classes. To achieve this, we need a set of flaky tests for which the
responsible classes are already known. For this, we rely on flakiness-fixing commits
as they provide information about classes that were modified as part of the fix.
Our assumption is that such classes are, at least, part of the root cause. To collect10

flaky classes, we followed a four-step process.
Search This step aims to identify Java projects containing the highest number
of flakiness-fixing commits. For this, we relied on two sets of projects to consider.
We built the first set by using the SEART GitHub Search Engine [173]. Out of the
81,180 available Java projects, we selected the top 200 projects for each of those15

criteria: number of commits, contributors, stars, releases, issues, and files. This
sorting was made with the aim of finding the bigger and more complex projects,
thus maximising our chance to find flakiness-fixing commits. Keeping only unique
projects in those sets, we ended up with a first list of 902 projects. As a second
set, we use the 187 projects available in the iDFlakies dataset [59]. For each of20

the 1,089 projects, 902 from the first and 187 from the second set, we query the
GitHub API looking for commits with messages containing the keyword flaky. This
led to the identification of 16,501 commits. We look further into whether these
commits are truly suitable for our purpose through the following processes.
Inspection The objective of this step is to filter commits that do not provide a25

clear indication about the flaky class. Hence, we look for flakiness-fixing commits
1https://github.com/serval-uni-lu/sherlock.replication
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containing any of the following keywords: fix, repair, solve, correct, patch, prevent.
Then, we analyse each commit and keep the ones that:
• The fix affects the code under test (not only the test itself);
• The changes are atomic enough (i.e. containing only relevant changes) allowing
us to discern the flaky class(es).5

This led to the selection of 85 commits from five projects. We further discarded
22 commits for which the flaky tests or commits were not retrievable (e.g. rejected
pull request), leaving 63 commits in the end.
Test execution This step aims to select commits that are usable in our evaluation.
Our first question inspects the effectiveness of SBFL, a technique that requires a10

coverage matrix indicating the classes covered by each test. Hence, for a commit to
be usable in our analysis, its test suite should be runnable allowing us to extract
the coverage matrix. To ensure this, we used GZoltar2, a Maven plugin that
allows collecting coverage information for each commit.

For 11 commits, we were unable to run GZoltar due to an incompatible Java15

version. We also found that the flakiness patches were irrelevant in 10 commits.
For instance, some commits were fixing modules in other programming languages
or modifying non-source code files. Lastly, we filtered out four additional commits
since the reported flaky failures were not flaky test failures. Consequently, we
dropped 25 commits in addition. Table 7.1 summarises the retained projects. The20

complete list of flakiness-fixing commits is available in our replication package.
Extraction For each collected flakiness-fixing commit, we retrieve the source
code, the test suite, the fixed flaky test, and the flaky class. To retrieve the flaky
classes, two authors manually analysed the commit diff and message to identify
them. Overall, the identification was obvious since we selected atomic commits25

beforehand. Hence, there were no disagreements between the authors at this step.
The identified classes are considered the ground truth of our study.

7.3 Study Design
7.3.1 RQ1: Effectiveness
Motivation30

The objective of our study is to investigate the usability of well-founded FL
techniques to help in mitigating flaky tests. The literature on FL proposes a
wide variety of categories such as ML-based techniques [174]–[176], mutation-
based techniques [177], [178], and qualitative reasoning-based techniques [179].
Nonetheless, spectrum-based fault localisation remains one of the most distinguished35

FL categories thanks to its effectiveness and simplicity [180].
2https://github.com/GZoltar/gzoltar/blob/master/com.gzoltar.ant/
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SBFL requires only the test coverage matrix to compute the likelihood for a code
entity to include the root cause of an observed test failure. The main assumption
of SBFL is that code entities covered by more failing tests and fewer passing tests
are more suspicious than those less covered by failing tests and more by passing
tests [181]. This assumption can be revised to identify the root causes of flaky tests5

instead of bugs. In particular, if we separate tests into two groups: flaky and stable,
instead of failing and passing, we can leverage the coverage matrix to rank classes
based on their correlation with flaky tests. In this case, the assumption would be
that classes covered by more flaky tests and fewer stable tests have a higher chance
to be responsible for test flakiness. In this RQ, we assess the effectiveness of this10

adaptation of SBFL in identifying flaky classes.

Approach

Relying on the data collected in Section 7.2, we use the GZoltar plugin to
run the test suites of each commit and build coverage matrices. Based on these
matrices, we compute for each class the spectrum data: (es, ef , ns, nf ). In our case,15

for each class, es and ef represent the number of stable and flaky tests executing it,
respectively. On the other hand, ns and nf represent the number of stable and flaky
tests that do not execute it, respectively. To compute classes’ suspiciousness scores,
we inject these spectrum data in classical SBFL formulæ. Table 7.2 summarises the
four formulæ adopted in our study with the necessary adaptations for flakiness. For20

DStar, the notation ‘*’ is a variable that we set to 2 based on the recommendation
of Wong et al. [72]. With each formula, we compute the suspiciousness scores of
each class and then rank them in descending order: classes with the highest scores
are ranked first.

Recently, it has been theoretically proven that no SBFL formula can outperform25

all others [182]. In addition, Xuan and Monperrus proposed a new approach that
learns to combine multiple SBFL formulæ [183]. Their approach, called Multric,
successfully outperformed all the input formulæ, opening a trend to use multiple
formulæ to overcome the limitation of using a single SBFL formula [175], [184],
[185]. Following this trend, we used Genetic Programming to evolve a new formula30

that combines all four SBFL formulæ.
Genetic Programming (GP) evolves a solution (i.e. a program) for a given

problem under the guidance of a (fitness) function. GP can also generate non-
linear models and learn a model flexibly from input instead of defining a fixed
formula. Hence, GP was employed to generate risk evaluation formulæ for fault35

localisation [186], [187]. For the same reasons, we employ GP to evolve a model (i.e.
a formula) for the flaky class identification problem. We configure the GP to have
a population of 40 individuals and to stop and return the best model found so far
after 100 generations. Each individual in the population denotes a single candidate
formula and is generated using (i) six arithmetic operators (subtraction, addition,40
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Table 7.2: SBFL formulae adapted to flakiness.

Name Formula
Ochiai [71] ef√

(ef +nf )(ef +es)

Barinel [73] 1 − es

es+ef

Tarantula [189], [190]
ef

ef +nf
ef

ef +nf
+ es

es+ns

DStar [72] e∗
f

es∗nf

multiplication, division, square root, and negation) and (ii) the features that GP
takes as input. We define our fitness function as the average ranking of flaky classes.
To make most of the data and avoid overfitting, we use ten-fold cross-validation,
using one fold for test and the others for training. We also normalise all input
data between 0 and 1 using min-max normalisation. Finally, to compensate for5

the inherently stochastic nature of GP, we run GP 30 times with different random
seeds and report the results of a model with the median fitness. We used DEAP
v.1.3.1 [188].

7.3.2 RQ2: Code and Change Metrics
Motivation10

The objective of this question is to explore the benefits of augmenting the SBFL
technique with additional signals from the software. Recent studies showed that
the performances of SBFL can be improved by incorporating signals from code
and change metrics. More specifically, Sohn and Yoo [187] showed that combining
SBFL with code and change metrics widely adopted in the fault prediction commu-15

nity [191], such as age, change frequency (i.e. churn), and size, can significantly
improve the approach’s performances.

The assumption is that code entities with higher complexity and change fre-
quency are more likely to be faulty. Several studies suggested that the test size
and complexity can also be an indicator of flakiness [91], [92], [152]. However,20

it is unclear if such metrics correlate also with classes that are responsible for
test flakiness. Therefore, in this RQ, we assess the benefits of these metrics in
spotting flaky classes. Besides these metrics, we investigate the effects of metrics
that are specific to the nature of flaky tests. Multiple empirical studies analysed
the root causes of flakiness and showed that the main categories are: Async Waits,25

Concurrency, Order-dependency, Network, Time, I/O operations, Unordered collec-
tions and Randomness [58], [61], [62], [74]. We derived a list of static metrics that
describe each of these categories in Java projects. We exclude order-dependency
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Table 7.3: Code and change metrics used to augment SBFL.

Metric Definition

Fl
ak

in
es

s

#TOPS Number of time operations performed by the class.
#ROPS Number of calls to the random() method in the class.
#IOPS Number of input/output operations performed by the class.
#UOPS Number of operations performed on unordered collections by

the class.
#AOPS Number of asynchronous waits in the class.
#COPS Number of concurrent calls in the class.
#NOPS Number of network calls in the class.

C
ha

ng
e Changes Number of unique changes made on the class.

Age Time interval to the last changes made on the class.
Developers Number of developers contributing to the class.

Si
ze

LOC The number of lines of code.
CC Cyclomatic complexity.
DOI Depth of inheritance.

because order-dependent tests generally stem from tests themselves instead of the
CUT, thus, they are not concerned by our approach. In the following, we describe
our approach for (i) calculating these metrics and (ii) defining an FL formula based
on them.

Approach5

Metric collection Table 7.3 summarises the full list of metrics used in our
study. To compute these metrics, we first retrieve the source code of the project
at the commit of interest (i.e. the parent commit of the flakiness-fixing commit
identified by the data collection step). Then, for calculating flakiness-specific
metrics, we use Spoon [192]. Spoon is a framework for Java-based program analysis10

and transformation that allows us to build an abstract syntax tree and a call graph.
Using the graph and tree, we extract classes and their metrics (e.g. #COPS and
#ROPS). For size metrics, we also use these code analysis results from Spoon
(e.g. DOI). As for change metrics, we analyse the change history and extract the
following information: the date of each commit, files modified and renamed by each15

commit, and authors of individual commits. Using this information, we compute
the three change metrics: Unique Changes, Age, and Developers.

Ranking model Similarly to RQ1, we use GP in order to generate models that
combine our metrics with suspiciousness scores generated by SBFL formulæ. In
particular, for each type of metrics (i.e. flakiness, size, and change), we evolve a20
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model that takes as input its metrics with SBFL scores and outputs a ranking for
each candidate class. Afterwards, we compare the performances of these models to
infer the contribution of each type of metrics.

7.3.3 RQ3: Ensemble Method
Motivation5

This question explores the potential for improvement by exploiting all the
formulæ generated using GP while at the same time making the most of the
resources spent on model generation. For this aim, we use voting as our ensemble
learning method. We opted for voting since it does not require an additional cost for
model generation and its effectiveness has already been demonstrated by previous10

fault localisation studies [193], [194]

Approach

Voting between models is performed in two phases: candidate selection and
voting. During the candidate selection phase, all the participating models compute
their own suspiciousness scores for the candidates. A candidate, in our case, is an15

individual class of the CUT. Individual models compute their own suspiciousness
scores for the candidates and select those placed within the top N as their candidates
to vote. In the voting phase, each model votes for its own top N candidates. If M
number of models participating in the voting, we can have the maximum N × M
number of voted candidates in total. The votes from the models are then aggregated,20

and the voted candidates are reordered from the most voted to the least voted.
Previous studies on voting-based FL showed that varying the number of votes

that each candidate receives based on its actual rank in individual models can
improve the localisation performance even further [193], [194]. Hence, rather than
assigning the same number of votes to each candidate, we allow individual models25

to cast a different number of votes for each candidate based on its location in the
ranking. For instance, a candidate ranked at the top will obtain a complete one vote,
whereas a candidate ranked in the third place will get 1

3 vote. As mentioned in 7.3.6,
candidates can be tied with other candidates since their ranks are computed from
ordinal scores. When a candidate fails to be in the top N due to being tied with30

others, we allow every tied candidate (c) to receive the following number of votes:
votes = 1

rankbest(c)×ntied(c) votes. Here rankbest denotes the best (highest) rank a
tied candidate can have, and ntied is the total number of tied candidates, including
itself. The equation below summarises the number of votes a candidate (c) can
obtain. rank(c) is the rank of the candidate c.35 

1
rank(c) if rank(c) ≤ N

1
rankbest(c)×ntied(c) if rankbest(c) ≤ N

0 otherwise
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7.3.4 RQ4: Flakiness Categories
Motivation

The literature on flaky tests reports different categories of flakiness [58], [61],
[62], [74]. These categories can manifest differently both in the test and CUT
and as a result the identification of flaky classes can also be affected by such5

differences. That is, a technique might identify decently the classes responsible for
non-deterministic network operation, but struggles in pinpointing classes causing
race conditions. This RQ aims to investigate the performances of an SBFL-based
approach among distinct flakiness categories.
Approach10

Many studies manually analysed flakiness-fixing commits to categorise them [58],
[75] based on their commit message and code changes. In our study, we followed a
similar process where two authors manually analysed the commits separately to
assign them to one of the categories derived by Luo et al. [58]. As our manual
analysis does not intend to build a new taxonomy or identify new categories, it15

is reasonable to adopt an existing taxonomy as a reference. The two authors had
a disagreement over one commit, where one author only suggested one category
whereas the other suggested two categories. After discussion, the authors decided
to keep two categories to avoid discarding relevant information. The results of this
analysis are available in our replication package. After labelling the flakiness-fixing20

commits, we analyse the performance of our SBFL-based approach among different
flakiness categories.

7.3.5 Evaluation metrics
For the evaluation of our approach, we use two metrics: accuracy and wasted

effort. Both acc@n and wef are based on the absolute number of code entities25

instead of percentages. This conforms to the recommendations of Parnin and
Orso [195] who suggested that absolute metrics reflect the actual amount of effort
required from developers better than percentages. The accuracy (acc@n) calculates
the number of cases where the flaky classes were ranked in the top n. In our study,
we report the acc@n with 1, 3, 5, and 10 as n values. In the cases of multiple flaky30

classes, we consider the flaky class to be among the top n, if at least one of the
flaky classes is. The second metric, wasted effort (wef ), allows us to measure the
effort wasted while searching for the flaky class. It is formally defined as [183]:

wef = |susp(x) > susp(x∗)| + |susp(x) = susp(x∗)|/2 + 1/2

Where susp() provides the suspiciousness score of the class x, x∗ is the flaky class,
and |.| provides the number of elements in the set. Accordingly, wef measures the35

absolute number of classes inspected before reaching the real flaky class x∗.
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For our approach to be useful for developers, it should provide guidance beyond
currently available information. When a program fails due to flaky tests, one thing
that can be helpful to identify the cause is a list of classes covered by the flaky
tests. Hence, in this paper, we count the total number of classes covered by flaky
tests (i.e. our baseline) and compare it with the number of classes inspected to5

locate a flaky class (i.e. wef +1). More specifically, in addition to the two absolute
metrics, we measure the relative effort defined as:

Rwef = 100 × (wef + 1)
# of classes covered by flaky tests , 0 < Rwef ≤ 100

If Rwef is smaller than 50, we consider our approach to outperform the baseline
since it saves more than the expected effort (i.e. average) of the baseline.

7.3.6 Tie-breaking10

Both SBFL and our evolved formulæ compute an ordinal score for each class.
As a result, multiple classes can have the same score, being tied to each other. Ties
are generally harmful as they force developers to inspect more classes. Among
various tie-breakers introduced and adopted to handle this problem [196], we use a
max tie-breaker that assigns the lowest rank (i.e. the maximum) to all tied entities.15

We choose the max tie-breaker to avoid overinterpretation of the results.

7.4 Results
7.4.1 RQ1: Effectiveness

Table 7.4 shows the localisation results of SBFL formulæ. Among the four
SBFL formulæ, Dstar yields the worst results both in accuracy and wasted effort,20

while the other three perform similarly. Out of 38 analysed flaky classes, Dstar
ranks 18 (47%) in the top 10. Ochiai, which performs the best, places 53% of flaky
classes (i.e. 21) within the top 10 and 16% (6) at the top. Nevertheless, regardless
of which formula we use, our SBFL-based approach outperforms the baseline of
inspecting classes covered by flaky tests: for all four SBFL formulæ, Rwef is always25

smaller than 50 in total, especially in its median. It is worth noting that since the
total number of classes covered by flaky tests differs in each flaky commit, Rwef

does not always concur with wef. For Ochiai, Rwef reduces to 6, meaning we only
need to inspect 6% of the classes covered by flaky tests.

Table 7.5 presents the evaluation results of our GP model evolved to combine30

the four SBFL formulæ. As explained in Section 7.3.1, we report only the results
of the model with the median fitness among 30 models. In contrast to what we
expected from combining the four SBFL formulæ using GP, we fail to observe any
meaningful improvement compared to the results of Ochiai, the best of the four
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Table 7.4: RQ1: Effectiveness of SBFL formulæ. (#) denotes the total number of
flaky commits for each project. The row Perc contains the percentage of flaky

commits whose triggering flaky classes are ranked in the top n; these values are
computed only for acc@n.

Dstar Ochiai Tarantula Barinel
Proj. (#) acc wef (Rwef ) acc wef (Rwef ) acc wef (Rwef ) acc wef (Rwef )

@1 @3 @5 @10 mean med @1 @3 @5 @10 mean med @1 @3 @5 @10 mean med @1 @3 @5 @10 mean med
Hbase (8) 0 3 4 4 33.0 (17) 7 (5) 2 5 5 5 14.9 (13) 1 (4) 1 4 4 5 11.9 (12) 4 (4) 1 4 4 5 11.6 (12) 4 (4)
ignite (14) 0 2 2 2 214.7 (21) 31 (4) 0 3 3 4 212.0 (20) 20 (4) 0 3 3 4 177.1 (17) 20 (4) 0 3 3 4 175.1 (17) 20 (4)
Pulsar (10) 1 3 6 9 9.9 (21) 4 (6) 3 5 6 9 9.2 (13) 3 (6) 3 5 6 9 9.2 (13) 3 (6) 3 5 6 9 9.2 (13) 3 (6)
Alluxio (3) 0 0 0 1 60.7 (43) 72 (31) 0 0 0 1 71.0 (46) 72 (41) 0 0 0 0 92.7 (59) 73 (58) 0 0 0 0 105.3 (66) 87 (65)
Neo4j (3) 1 2 2 2 12.0 (41) 1 (18) 1 2 2 2 12.0 (41) 1 (18) 1 2 2 2 23.0 (43) 1 (18) 1 2 2 2 23.7 (43) 1 (18)
Total (38) 2 10 14 18 94.4 (24) 11 (17) 6 15 16 21 90.2 (21) 7 (6) 5 14 15 20 79.3 (21) 8 (7) 5 14 15 20 79.6 (21) 8 (7)
Perc (%) 5 26 37 47 - - 16 39 42 55 - - 13 37 39 53 - - 13 37 39 53 - -

Table 7.5: RQ1: The effectiveness of GP evolved formulæ using Ochiai, Barinel,
Tarantula, and DStar.

Project Total acc wef (Rwef)
@1 @3 @5 @10 mean med

Hbase 8 1 4 5 5 13.12 (16) 2.5 (5)
Ignite 14 0 3 3 5 214.93 (21) 20.0 (4)
Pulsar 10 3 5 6 9 9.20 (23) 3.0 (9)
Alluxio 3 0 0 0 1 101.67 (65) 86.0 (83)
Neo4j 3 1 2 2 2 23.33 (43) 1.0 (18)
Total 38 5 14 16 22 94.24 (26) 6.5 (8)
Percentage (%) 100 13 37 42 58 - -

formulæ: the acc@10 and the median wasted effort improve only marginally, and
Rwef degrades.

To understand these observations, we inspect the intersection between the sets
of classes ranked in the top 5 by these four SBFL formulæ. Figure 7.1 presents
this intersection in a Venn diagram. Out of 14,16,15,15 flaky classes ranked within5

the top 5 by Dstar, Ochiai, Tarantula, and Barinel, 13 of them are the same
flaky classes. There are two additional classes that are ranked in the top 5 by all
except Dstar and one extra class by only Ochiai and Dstar. Overall, the diagram
demonstrates that there are large overlaps between the results of these four SBFL
formulæ. Thus, we can conclude that the GP-evolved formula did not lead to10

substantial improvements because there was no space for improvement as all four
input formulæ provided similar signals. This conclusion brings out the need for
introducing external signals from other code and change metrics, which will be
discussed in the following research question.
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Figure 7.1: Venn-diagram of flaky classes ranked in the top 5 by the four SBFL
formulæ.

RQ1: Using SBFL, we were able to localise flaky classes by inspecting only
21-24% (6-7%) of classes covered by flaky tests on average (median). With
Ochiai, flaky classes are ranked at the top and in the top 10 for 16% and 55% of
total flaky commits.

7.4.2 RQ2: Code and Change Metrics
Table 7.6 shows the evaluation results for GP-evolved models using SBFL scores

with change and code metrics. The table shows that the addition of signals from
change and size metrics leads to an improvement in the identification of flaky classes.5

In particular, by adding change metrics, the percentage of classes ranked at the
top reaches 24%. This percentage is much higher than the maximum percentage
achieved with SBFL alone, which is 16% with Ochiai. On the contrary, we do not
observe any significant improvements in the number of flaky tests ranked in the
top 10 or top 5. Combined, these results imply that these change and size metrics10

can give additional signals that break ties between the classes located near the top,
allowing developers to identify the exact cause of flakiness more precisely. The
comparison with the results of GP with only SBFL formulæ in Table 7.5 further
supports the usefulness of change and size metrics. Specifically, by adding change
and size metrics, the percentage of flaky classes ranked at the top (acc@1) goes15

from 13% to 24% and 18%, respectively. In addition, average Rwef improves 5%
with change metrics and 4% with size metrics.

With regard to flakiness metrics, their combination with SBFL scores does
not lead to any notable improvements in the ranking of classes at the top. The
percentage of classes at the top is 11% and the percentage of classes in the top 1020

is 53%. One possible explanation for this is that our flakiness metrics are derived
from a flakiness taxonomy that focuses on the test instead of the CUT. Hence,
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using metrics derived from such categories may not be helpful in the identification
of CUT components that are responsible for flakiness. To alleviate this, future
studies should consider categories and metrics that are derived from the CUT, and
existing flakiness taxonomies should be updated accordingly.

Table 7.6: RQ2: The contribution of flakiness, change, and size metrics to the
identification of flaky classes.

SBFL & flakiness SBFL & change SBFL & size
Proj. (#) acc wef (Rwef ) acc wef (Rwef ) acc wef (Rwef )

@1 @3 @5 @10 mean med @1 @3 @5 @10 mean med @1 @3 @5 @10 mean med
Hbase (8) 1 4 5 5 11.9 (12) 3 (4) 2 4 4 5 16.9 (13) 4 (4) 2 4 5 5 11.4 (12) 3 (3)
Ignite (14) 0 2 2 4 230.9 (26) 63 (4) 2 4 4 4 222.3 (24) 18 (4) 1 3 3 5 220.1 (24) 43 (4)
Pulsar (10) 2 5 6 8 10.2 (15) 3 (8) 3 5 7 9 8.0 (12) 2 (5) 2 5 7 9 6.9 (13) 2 (6)
Alluxio (3) 0 0 1 1 97.7 (51) 73 (65) 0 0 1 1 75.7 (49) 94 (39) 0 0 1 1 90.7 (49) 77 (58)
Neo4j (3) 1 2 2 2 19.3 (42) 1 (18) 2 2 2 2 6.7 (37) 0 (9) 2 2 2 2 23.0 (40) 0 (10)
Total (38) 4 13 16 20 99.5 (24) 8 (8) 9 15 18 21 94.1 (21) 5 (6) 7 14 18 22 94.3 (22) 5 (7)

Percentage (%) 11 34 42 53 - - 24 39 47 55 - - 18 37 47 58 - -

To further investigate the impact of change and size metrics on the identification5

performance, we analyse the involvement of each metric in our GP-evolved formulæ.
Table 7.7 shows the frequency of change and size metrics in the GP evolved formulæ
generated under the configuration of using SBFL and change metrics (i.e. SBFL
& Change) and the configuration of using SBFL and size metrics (i.e. SBFL &
Size). As shown in this table, both change and size metrics are frequently involved10

in the final formulæ, confirming that our observed improvement did not come only
from using GP. Based on these results, we posit that change and size metrics can
contribute positively to the identification of flaky classes.

Table 7.7: Frequency of metrics in GP-evolved formulæ (from 0 to 1). ‘Changes’
and ‘Dev’ denote ‘Unique Changes’ and ‘Developers’, respectively. The column
‘SBFL’ contains the average frequency of the four SBFL metrics.

SBFL Changes Dev Age LOC DOI CC
SBFL & Change 0.45 0.50 0.37 0.53 - - -
SBFL & Size 0.50 - - - 0.71 0.37 0.73

RQ2: The augmentation of Spectrum-Based Fault Localisation with change or
size metrics lets more flaky classes be ranked near the top; by adding change
metrics, we can rank 24% flaky classes at the top. In contrast, metrics specific
to flakiness categories do not provide any beneficial signals to the identification
approach.
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7.4.3 RQ3: Ensemble Method

Table 7.8 presents the evaluation results for the voting method with 60 GP-
evolved models, half from using SBFL and change metrics and the other half from
using SBFL and size metrics. We decided to exclude the models that build on
flakiness metrics since their usage did not improve the performance any further.5

As explained in Section 7.3.3, there can be a case where none of the participating
models succeeds to vote for the true candidate since individual models vote only for
those ranked within the top n. For this case, we report the median of all rankings
of the models as an alternative.

The results show that the voting step further improves the ranking results.10

The most notable improvement is the accuracy at the top 3, which reaches 47%.
Although the improvements in the other accuracy metrics are not as noticeable as
what we have seen in the accuracy at the top 3, there are constant improvements
over the results without voting. The average of wasted effort remains almost the
same while the median improves from the voting, dropping to 3.5. These results15

imply that the voting allows those near the top to shift further to higher ranks based
on the agreement among the models that exploit and capture different features of
flaky classes. Nonetheless, the constant improvements in Rwe, both per project and
in total, suggest that through the voting, we can rank flaky classes further near
to the top; for example, in Alluxio, where Rwef is always near 50, average Rwef20

reduces to 22 and its median to 10. These results imply that voting can leverage
the complementarity between different models, further improving the localisation
of flakiness.

Table 7.8: RQ3: The effectiveness of the voting between 60 different GP-evolved
models, 30 from SBFL with change metrics, and 30 from using SBFL with size

metrics. ‘Perc’ denotes Percentage

Project Total acc wef (Rwef)
@1 @3 @5 @10 mean med

Hbase 8 3 5 6 6 9.62 (12) 1.5 (2)
Ignite 14 2 4 4 4 228.61 (24) 17.5 (4)
Pulsar 10 3 6 7 9 7.30 (12) 2.0 (5)
Alluxio 3 1 1 1 2 61.83 (22) 9.0 (10)
Neo4j 3 1 2 2 2 19.67 (42) 1.0 (18)
Total 38 10 18 20 23 94.61 (19) 3.5 (5)
Perc (%) 100 26 47 53 61 - -
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RQ3: A voting between models based on SBFL, change, and size metrics,
provides the best ranking for flaky classes. 47% of flaky classes are ranked in the
top 3 and 26% of them are ranked at the top. The average Rwef further reduces
to 19, highlighting the practical usefulness of our approach.

7.4.4 RQ4: Flakiness Categories

Table 7.9 presents the performances of the voting method on the different flaki-
ness categories encountered in our dataset. The “Ambiguous" category represents
cases where the flaky tests could not be assigned to any of the known flakiness5

categories. First, we observe that the most common categories are Concurrency
and Asynchronous Waits. This aligns with observations from previous studies [49],
[58], [62] and confirms that the taxonomy adopted for our metrics is adequate for
our distribution. Furthermore, we observe a discrepancy between the performances
in different categories. Classes responsible for Async Waits are well identified with10

80% of the classes in the top 10, and 30% of them at the top. Classes responsible
for Concurrency also show good performances with 50% of them in the top 10, and
38% of them at the top; the average Rwef is below ten, eight precisely, meaning
we can locate flaky classes by inspecting less than 10% of the total number of the
classes covered by flaky tests.15

Categories such as Time and I/O show much lower performances, with 33%
and 0% of flaky classes in the top 10, respectively. Nevertheless, given the low
number of instances for these categories, it is hard to discuss or generalise their
results. With only two instances, the category Unordered Collections shows curious
results as one class is ranked second and the other one ranked 663. To understand20

the reasons behind the bad ranking, we manually inspected this case3. We found
that the concerned test, testUnstableTopology, was executed twice due to a
retry mechanism. Both executions led to failure, but interestingly, we found that
the two failures have different causes. One of them is due to a lack of context
initialisation and is likely to be the reason behind flakiness. As the two failure25

causes are different, the coverage is also different in them. Specifically, one of
the failures did not cover the flaky class, and as the coverage of this failure was
leveraged in the SBFL, the flaky class was not considered suspicious. We discuss
other reasons responsible for poor ranking in Section 7.5.

3https://github.com/apache/ignite/commit/188e4d52c2
4One flaky class belongs to two categories: Network and Unordered Collections.
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Table 7.9: RQ4: The effectiveness per flakiness category

Flakiness acc wef (Rwef)
Category @1 @3 @5 @10 mean med
Concurrency (16) 6 (38) 7 (44) 7(44) 8 (50) 147.53 (27) 9.5 (9)
Async wait (10) 3 (30) 6 (60) 8 (80) 8 (80) 21.05 (8) 1.5 (3)
Ambiguous (4) 1 (25) 2 (50) 2 (50) 3 (75) 18.88 (5) 3.5 (5)
Time (3) 0 (0) 0 (0) 0 (0) 1 (33) 88.33 (16) 14.0 (10)
Network (2) 0 (0) 2 (100) 2 (100) 2 (100) 1.00 (10) 1.0 (10)
Unordered
collections (2) 0 (0) 1 (50) 1(50) 1 (50) 331.5 (33) 331.5 (33)
I/O (1) 0 (0) 0 (0) 0(0) 0 (0) 12.50 (3) 12.5 (3)
Random (1) 0 (0) 1 (100) 1 (100) 1 (100) 2.00 (75) 2.0 (75)
Total (394) 10 18 20 23 94.47 (19) 3.5 (5)
Perc (%) 26 47 53 61 - -

RQ4: The most prominent flakiness categories, Concurrency and Asynchronous
Waits, are identified effectively, with 38% and 30% of their flaky classes ranked
at the top, respectively. In the Concurrency category, flaky classes are identified
by examining 8% of classes covered by flaky tests on average.

7.5 Discussion
In this section, we discuss our results in light of the existing literature on

test flakiness and fault localisation. Our approach uses existing fault localisation
techniques to identify flaky classes in the CUT. While we leverage various data5

sources, the main strength of our approach comes from adopting existing SBFL
techniques, as explained in RQ2. The effectiveness of other data, such as change
metrics, is limited in providing additional signals that break ties between the
classes already ranked near the top. Hence, the performance of our approach
largely depends on the applicability of SBFL to our flaky class identification10

problem.
The flaky class identification problem and traditional fault localisation problems

are similar in the way they are debugged (i.e. from the reproduction and cause
identification to the fix). As described in 7.3.1, this resemblance allows us to redefine
SBFL techniques to identify flaky classes instead of faulty ones. Nevertheless, there15

is one significant difference between them: the characteristics of a test suite.
Many fault localisation studies assume a test to cover a single functionality,

and the subjects they studied often follow this assumption [174], [175], [197]. In
contrast, we did not consider such an assumption for test subject selection to
reflect a realistic scenario of flaky test failure. This difference may restrict the20

applicability of existing fault localisation techniques to the flaky class identification
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problem, especially test coverage-based techniques, such as SBFL. Indeed, although
we identified 26% and 61% of flaky classes at the top and within the top 10, we
failed to reach the performance reported in prior work on fault localisation [180].
Hence, we investigate the diagnosability of the test suite of our subjects using the
Density, Diversity, and Uniqueness (DDU) metric [198].5

DDU diagnoses the adequacy of SBFL for a software system by considering
three properties of its test suite: Density, Diversity, and Uniqueness. Each property
covers a distinct feature of a test suite, and DDU is computed as the multiplication
of these three properties. Density evaluates how frequently a code entity, in our
case a class, is covered by tests. Diversity is about whether tests cover code entities10

in a diverse fashion. Lastly, uniqueness guarantees that different code entities are
covered by different sets of tests. All these three components of DDU have values
between 0 and 1. The higher the DDU is, the more adequate the test suite is for
SBFL.

Table 7.10 presents DDU values for the five projects analysed in this study.15

While all five projects generally have high diversity values (i.e. all above 0.9), they
have relatively low uniqueness and density values, which results in low DDU scores.
Among the five projects, Pulsar has the highest DDU score of 0.289, followed by
Neo4j, Alluxio, Ignite, and Hbase. Since both Neo4j and Alluxio have only three
flaky classes, which might be too small to discuss the identification results, we will20

skip these two for the following discussion. Among the remaining three projects, all
our flaky class identification methods, ranging from pure SBFL to voting, perform
the best on Pulsar, the one with the highest DDU score, in acc@n and wef. For
instance, even the pure SBFL approach that often performs the worst successfully
localised nine out of ten flaky classes of Pulsar within the top 10 and more than25

half within the top five. The same trend was observed in both GP and voting-based
methods. Compared to HBase, while Ignite has a slightly higher average for the
DDU score, it has a far lower Uniqueness score (i.e. 0.188 for Ignite and 0.413
for HBase). Uniqueness evaluates whether a code entity is distinguishable; we
assume that the flaky classes have different coverage than non-flaky classes. Thus,30

we suspect that Ignite having a lower Uniqueness is why our methods were not
as effective on Ignite as on HBase: we have the worst results on Ignite in both
absolute (i.e. acc@n and wef ) and relative effort (i.e. Rwef ).

Based on these results, we argue that while our outcome may not be as good
as those reported by prior fault localisation studies[186], [187], that is mainly due35

to the inherently low diagnosability of a test suite (e.g. covering too many classes
in the same fashion). This test-suite adequacy issue commonly exists in the fault
localisation field[193] and is not limited to flaky class identification. Hence, we
posit that the performance of our approach can improve along with the advances
in fault localisation techniques.40
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Table 7.10: DDU metrics for the analysed test suites.

Project Density Diversity Uniqueness DDU
min max mean min max mean min max mean min max mean

Hbase 0.049 0.477 0.248 0.995 0.999 0.997 0.188 0.553 0.413 0.021 0.116 0.091
Ignite 0.368 0.993 0.736 0.918 1.000 0.979 0.045 0.486 0.188 0.034 0.466 0.132
Pulsar 0.029 0.998 0.491 0.984 0.998 0.994 0.520 0.786 0.609 0.019 0.518 0.289
Alluxio 0.414 0.833 0.591 0.958 0.996 0.982 0.226 0.615 0.362 0.101 0.322 0.201
Neo4j 0.127 0.739 0.515 0.894 0.993 0.931 0.268 0.791 0.585 0.088 0.522 0.258

In an attempt to shed light on the 15 cases where the class was ranked outside
the top 10 by our voting approach, we extended our inspection to reason about
such performances. We observed that flaky tests covering a high number of
classes are more likely to result in low performances. For example, the flaky test
shutdownDatabaseDuringIndexPopulations in Neo4j covers 480 classes and its5

flaky class was ranked 59 by our voting approach whereas the other flaky tests in
Neo4j (having their corresponding flaky classes ranked 1 and 2) cover fewer than
10 classes. When we inspect the DDU score of the specific commit that contains
this test, it has a relatively low DDU score compared to the other two commits.
Additionally, most of the mis-ranked classes are found in the Ignite project (10/15),10

whose DDU score is the second-lowest, and its tests cover on average 492 classes.
Due to this consequent number of covered classes, we suspect these tests to be
of a higher level, i.e. integration or end-to-end tests. This aligns with studies
highlighting the prevalence of flakiness in integration and system tests [103], [104].
Still, our approach does not systematically fail to identify flaky classes covered by15

higher-level tests as nine of them (flaky test covering more than 100 classes) are
listed in the top 10.

7.6 Threats to Validity
7.6.1 External Validity

The main threat to the external validity of this study is the dataset size. To20

ensure the generalisability of our results, it would have been preferable to include
more flaky tests in our experiments. Nonetheless, the datasets of flaky tests
are generally limited in size due to the elusiveness of flakiness [94], [96], [199].
Moreover, as explained in Section 7.2, the requirements of this study limited the
set of candidates considerably. For a commit to be eligible in our study, it needs25

to have atomic changes fixing flakiness in the CUT. However, only 24% of flaky
tests actually stem from the CUT, which limits the size of potential subjects [58].
Besides, the creation of our dataset required a substantial amount of manual work
to identify suitable commits and perform necessary changes to retrieve coverage
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matrices. For instance, for each commit, we had to modify the build script to
match Gzoltar requirements, i.e. find the test executor version that matches
both the program under test and the plugin. We iteratively removed non-essential
listeners and other plugins that could interfere with the instrumentation. Moreover,
we had to find and adapt the execution environment to match the program under5

test and the testing environment. Finally, compared to the works of Lam et al. [85]
and Zitfci and Cavalcanti [86], which were conducted on proprietary software, this
study is the first to leverage open-source software to localise flakiness root causes.
Thus, our dataset and ground truth can be valuable for future studies on flakiness
debugging.10

7.6.2 Internal Validity
One potential threat to our internal validity is our definition of flakiness root

causes within the CUT, i.e. flaky classes. We rely on flakiness-fixing commits to
identify classes that are responsible for flakiness. However, we cannot be certain
that (i) the flakiness fix is effective, and (ii) the modified class is the one responsible15

for flakiness. Indeed, a study by Lam et al. [62] showed that developers may
wrongly claim that their commits fix flaky tests before realising that the fix is
ineffective. Additionally, there are no guarantees that the classes included in the
fix are the ones responsible for flakiness. Nonetheless, if the class was part of the
proclaimed fix, this means that the developers found it, at least, relevant. Hence,20

its identification by our approach is still helpful for developers willing to understand,
debug, and fix flaky tests.

7.6.3 Construct Validity
One potential threat to our construct validity is our measurement of the coverage

for flaky tests. A flaky test can pass and fail for the same version of the program,25

but in practice, it may be extremely difficult to reproduce both the pass and
failure [96], [137]. Hence, a test can be observed as flaky by the project developers
and therefore fixed, yet we are unable to reproduce the pass and failure in our
experiments even with a large number of reruns [96]. For this reason, we focused
on the available status, i.e. pass or failure, and retrieve its coverage. It is possible30

that including the coverage of both the pass and failure from the flaky tests might
lead to different results with spectrum-based fault localisation. Thus, we encourage
future studies to investigate this direction. Another possible threat is whether
the evaluation results of our approach truly support what we claim. We use two
absolute metrics, acc@n and wef , that can reflect the realistic debugging effort of35

developers, following the suggestion from Parnin and Orso [195], and one relative
metric, Rwef , to compare with the baseline of inspecting classes covered by flaky
tests.
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7.7 Conclusion
Root-causing flaky tests is a young nonetheless important research area. Surveys

showed how difficult flakiness debugging can be for developers, even when knowing
which test is flaky (post-detection) [49], [105]. We leveraged our results to elaborate
on a few recommendations for future works. We presented the first empirical5

evaluation of SBFL as a potential approach for identifying flaky classes. We
investigated three approaches: pure SBFL, SBFL augmented with change and code
metrics, and an ensemble of them. We evaluated these approaches on five open-
source Java projects. Our results show that SBFL-based approaches can identify
flaky classes relatively well, especially with code and change metrics, suggesting10

that code components responsible for flakiness exhibit similar properties with faults.
This finding highlights the potential of existing fault localisation techniques for
flakiness identification. At the same time, the results show that flaky tests can
have unique failure causes that may mislead any coverage-based root cause analysis,
stressing the need to consider these flakiness-specific causes in future studies.15

Our study forms the first step towards flakiness localisation. We believe that
there is a lot of room for improvement and encourage future studies to explore
additional techniques, fault prediction metrics, and devise techniques that can
further improve and support flakiness localisation.
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8
The Importance of Discerning Flaky from

Fault-triggering Test Failures

While promising, the actual utility of the methods predicting flaky tests remains
unclear since they have not been evaluated within a continuous integration (CI)
process. In particular, it remains unclear what is the impact of missed faults, i.e.5

the consideration of fault-triggering test failures as flaky, at different CI cycles. In
this chapter, we apply state-of-the-art flakiness prediction methods at the Chromium
CI and check their performance. Perhaps surprisingly, we find that the application
of such methods leads to numerous faults missed, which is approximately 3/4 of all
regression faults. To explain this result, we analyse the fault-triggering failures and10

find that flaky tests have a strong fault-revealing capability. Overall, our findings
suggest that future research should focus on predicting flaky test failures instead of
flaky tests (to reduce missed faults) and reveal the need for adopting more thorough
experimental methodologies when evaluating flakiness prediction methods (to better
reflect the actual practice).15

This chapter is based on the work in the following paper:

• G. Haben, S. Habchi, M. Papadakis, et al., The importance of discerning
flaky from fault-triggering test failures: A case study on the chromium ci,20

2023. arXiv: 2302.10594 [cs.SE]
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8.1 Introduction
Continuous Integration (CI) is a software engineering process that allows de-

velopers to frequently merge their changes in a shared repository [138]. To ensure
a fast and efficient collaboration, the CI automates parts, if not all, of the devel-
opment life cycle. Regression testing is an important aspect of CI as it ensures5

that new changes do not break existing functionality. Test suites are executed for
every commit and test results signal whether changes should be integrated into the
operational codebase or not.

Tests are an essential part of the CI as they prevent faults from enterring
the codebase, and they ensure smooth code integration and overall good software10

function. Unfortunately, some tests, named flaky tests, exhibit a non-deterministic
behaviour as they both pass and fail for the same version of the codebase. When
flaky tests fail, they send false alerts to developers about the state of their applica-
tions and the integration of their changes.

Indeed, developers spend time and effort investigating flaky failures, as they15

can be difficult to reproduce, only to discover that they are false alerts [49]. These
false alerts occur frequently in open-source and industrial projects [57], [59], [83],
[103] and make developers lose not only time but also their trust in the test signal.
This trust issue in turn introduces the risk of ignoring fault-triggering test failures.
This way, false alerts defy the purpose of software testing and hinder the flow of20

the CI.
To deal with test flakiness, many techniques aiming at detecting flaky tests have

been introduced. A basic approach is to rerun tests multiple times and observe their
outcomes. While to some extent effective, test reruns are extremely expensive [57],
[83] and unsafe. To this end, researchers have proposed several approaches relying25

on static (the test code) [57], [91], [92], [97], [152] or dynamic (test executions) [59],
[83], [86] information (or both) [96] to predict whether a given test is flaky.

Among the many flakiness prediction methods, the vocabulary-based ones [92]–
[95], [101] are the most popular [74]. They rely on machine learning models
that predict test flakiness based on the occurrences of source code tokens of30

the candidate tests. Interestingly, previous research has found these approaches
particularly precise, with current state-of-the-art achieving accuracy values higher
than 95% [92], [94], [95], [97], [152].

At the same time, vocabulary-based approaches are static and text-based, thus,
they are both portable, i.e. limited to a specific language, and interpretable,35

i.e. users may understand the cause of flakiness based on the keywords that
impact the model’s decisions. All these characteristics (precision, portability and
interpretability) make vocabulary-based approaches appealing; they are flexible
and easy to use in practice. In view of this, we decided to replicate these techniques
on an industrial project (the Chromium project) and evaluated their ability to40
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effectively support the detection of flaky tests during the CI operation cycles.
Perhaps not surprisingly, we found a similar prediction performance (99.2%

precision 98.4% recall) to the ones reported by previous studies. Surprisingly though,
we noticed numerous fault-triggering failures (approximately 76% of all fault-
triggering failures) being marked as flaky by these prediction methods. This means5

that, in the case where the Chromium teams were to follow the recommendations
of these techniques, they would have missed at least 76% of all regression faults
(considering their respective test failures as flaky) that were captured by their test
suites.

The significantly high fault loss experienced (fault-triggering failures considered10

as flaky) motivated the investigation of the fault-triggering failures. To this end,
we made the following three findings:

• Flaky tests have a strong fault-revealing capability, i.e. more than 1/3 of all
regression faults are triggered by a test that exhibits flaky behaviour at some
point in time. This means that methods aiming at detecting flaky tests,15

inevitably flag as flaky fault-triggering test failures made by these tests. This
indicates an inherent limitation of all methods focusing on identifying flaky
tests, a fact that is largely ignored by previous studies.

• Many fault-revealing tests have characteristics similar to flaky ones and thus,
are mistakenly flagged as flaky by the flakiness prediction methods. In our20

data, the set of fault-triggering failures made by non-flaky tests that are
mistakenly predicted as flaky represents 56.2% of all fault-triggering failures.

• The majority of the flaky tests fail frequently (87.9% of the flaky tests have
also flaked in the past), making prediction methods mark them as flaky based
on the test history, instead of the characteristics of their failures. In particular,25

a dummy method that classifies as flaky any test that flaked at least once
in the past achieves precision and recall values of 99.8% and 87.8% when
predicting flaky test failures.

The above findings motivate the need for techniques focusing on flaky test
failures, instead of flaky tests, i.e. discriminating between fault-triggering and30

flaky test failures, an essential problem that has largely been ignored by previous
research [74]. Therefore, we adapt the vocabulary-based methods for failure-focused
predictions and check their performance. Although they miss fewer fault-triggering
test failures than the test-focused methods (20.3% FPR compared to 76.2% FPR),
their ability to detect fault-triggering failures remains poor, MCC value of 0.25.35

With the hope of improving the methods’ performance, we augment their feature
set with dynamic features related to (flaky) test executions (e.g. run duration
and historical flake rate) that we find useful for flakiness diagnosis. We achieve a
better –but still not acceptable performance – MCC value of 0.42, indicating an
improvement to detect fault-triggering failures when considering dynamic features.40
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Overall, our study demonstrates the need for methods that can effectively
predict flaky test failures (instead of flaky tests), to reduce the faults missed, and
the need for adopting more thorough experimental methodologies, reflecting the
needs of the domain of the actual practice (not just classification metrics), when
evaluating flakiness predictions.5

In summary, the contributions of our paper are:
• We present a large empirical study on flakiness prediction, based on the

Chromium project – one of the biggest open-source industrial projects –
involving 10,000 builds, more than 200,000 unique tests and 1.8 million test
failures. Our study is the first to study the suitability of applying flakiness10

prediction into a CI pipeline by focusing on the potential losses that they
introduce: missed fault-triggering failures.

• We provide empirical evidence that flaky test prediction methods, despite
being very precise, are practically non-actionable since they flag as flaky a
majority, approximately 76.2%, of all fault-triggering failures (56.2% due to15

misclassifications of fault-revealing tests and 20% due to correct classification
of flaky tests that reveal faults).

• We provide empirical evidence that flaky tests have strong fault-revealing
capabilities, indicating an inherent limitation of existing methods. At the same
time, our results motivate the need for failure-focused prediction techniques.20

Unfortunately, we also show that existing vocabulary-based methods are
insufficiently precise, calling for additional research in this area.

• We investigate whether imbuing the training data with additional dynamic
features can enhance the failure prediction effectiveness. These results show
improvement (MCC values are up to 0.42), but indicate that more work25

remains to be done to develop deployable flakiness prediction for real-world
systems.

To support future research, we share our dataset, experimental data and related
code, in a replication package.1

8.2 Chromium30

8.2.1 Overview
Started in 2008, with more than 2,000 contributors and 25 million lines of code,

the Chromium web browser is one of the biggest open-source projects currently ex-
isting. Google is one of the main maintainers, but other companies and contributors
are also taking part in its development.35

Chromium relies on LuCI as a CI platform [201]. It uses more than 900
parallelized builders, each one of them used to build Chromium with different

1https://github.com/serval-uni-lu/DiscerningFlakyFailures
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settings (e.g. different compilers, instrumented versions for memory error detection,
fuzzing, etc) and to target different operating systems (e.g. Android, Mac OS,
Linux, and Windows).

Each builder is responsible for a list of builds triggered by commits made to
the project. If a builder is already busy, a scheduler creates a queue of commits5

waiting to be processed. This means that more than one change can be included in
a single build execution if the development pace is faster than what the builders
can process. Within a build, we find details about build properties, start and end
times, status (i.e. pending, success or failure), a listing of the steps and links to
the logs.10

At the beginning of the project, building and testing were sequential. Builders
used to compile the project and zip the results to builders responsible for tests.
Testing was taking a lot of time, slowing developers’ productivity and testing
Chromium on several platforms was not conceivable. A swarming infrastructure was
then introduced in order to scale according to the Chromium development team’s15

productivity, to keep getting the test results as fast as possible and independently
from the number of tests to run or the number of platforms to test. Currently, a
fleet of 14,000 build bots runs tasks in parallel. This setup helps to run tests with
low latency and handle hundreds of commits per day [202].

In this study, we focus on testers, i.e. builders only responsible for running tests.20

They do not compile the project: when triggered, they simply extract the build from
their corresponding builder and run tests on this version. At the time of writing,
we found 47 testers running Chromium test suites on distinct operating systems
versions. About 200,000 tests are divided into different test suites, the biggest ones
being blink_web_tests (testing the rendering engine) and base_unittests with more25

than 60,000 tests each.
For each build performed by any tester, we have access to information about test

results. Figure 8.1 illustrates the decision process followed by LuCI to determine
a test outcome in a specific build. A test is labelled as pass when it successfully
passed after one execution. In case of a failure, LuCI automatically reruns the30

test up to 5 times. If all reruns fail, the test is labelled as unexpected and will
trigger a build failure. In the remaining, we will be referring to unexpected tests
as fault-revealing tests. If a test passes after having one or more failed executions
during the same build, it is labelled as flaky and will not prevent the build from
passing.35

8.2.2 Example of a Flaky Test
Figure 8.2 shows a flaky test found in build 119,0392 of the Linux Tester. This

test, printing/webgl-oversized-printing.html, ensures that no crash happens
2https://ci.chromium.org/ui/p/chromium/builders/ci/Linux%20Tests/119039/
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Figure 8.1: Decision tree representing how test outcomes are determined in a build
by the Chromium CI. PASS depicts successful tests, FLAKY depicts tests
that passed after failing at least once, while UNEXPECTED depicts tests that
persistently failed.

on the main thread of the rendering process when using the system. Unfortunately,
on its first execution, the test failed after 31 seconds. The run status indicates
that a TIMEOUT happened. On the second execution, the test passed after 15
seconds and thus was labelled as flaky. In this case, an issue has been opened in
Chromium’s bug tracking system.3 Developers state that "this test makes a huge5

memory allocation in the GPU process which intermittently causes OOM and a
GPU process crash".

Timeout is a run status that intuitively leads to possible flakiness, as we can
easily think of other executions of the same test being completed before reaching
the time limit. In addition to this feature, we can also look for hints of flakiness10

in the source code. As with many UI tests in Chromium, this one is handled by
testRunner: a test harness in charge of their automatic executions. We can see
the testRunner making a call to waitUntilDone() on line 19. Vocabulary about
waits is common in Chromium’s web tests. This keyword, for example, could

3https://bugs.chromium.org/p/chromium/issues/detail?id=1393294
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Figure 8.2: An example of a flaky test caused by a timeout. The test consists of
an HTML file printing/webgl-oversized-printing.html, build 119,039 of the
Linux Tester. The call to waitUntildone() on line 19 is likely the reason for the
failure.

potentially be leveraged by flakiness detectors to classify tests or failures.

8.3 Data
8.3.1 Definitions

Some of our definitions are slightly different from the ones used by previous
work since Chromium has its specific continuous integration setup. To make things5

clear, we define the elements we will discuss in this section. In the scope of a single
build, we employ the following definitions:

• Fault-revealing test: A test that consistently failed after reruns in the
same build, revealing a regression fault.

• Flaky test: A test that failed once or more and then passed after reruns in10

the same build.
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• Flaky failure: A test failure caused by a flaky test.
• Fault-triggering failure: A test failure caused by a fault-revealing test.

8.3.2 Data Collection
To perform our study, we collected test execution data from 10,000 consecutive5

builds completed by the Linux Tester by querying the LuCI API. This represents a
period of time of about 9 months taken between March 2022 and December 2022.

Table 8.1 summarises the list of information extracted and computed for
all tests executed in all builds. The buildId corresponds to the build in which
tests were executed. runDuration is the execution time spent to run the test.10

runStatus gives information about the run result (e.g. passing, failing, and
skipped) and runTagStatus returns more precise information about the result of
a run depending on the type of test or test suite (e.g. timeout and failure on exit).
We retrieved information about the tests’ source code by querying Google Git 4.
As builds often handle several commits, we select the revision corresponding to15

the head of the blame list: the one on which tests were executed. The testSuite
is simply the name of the test suite the test belongs to and testId is a unique
identifier for a test composed of the test suite and the test name (the same test
name can be present in different test suites).

All the scripts used to collect the data alongside the created dataset are available20

in our replication package.

8.3.3 Computing the Flake Rate
The historical sequence of test results is a valuable piece of information commonly

used in software testing at scale [57], [103]. We analyse the history of fault-revealing
tests and flaky tests by relying on their flakeRate.25

This means that for a test t failing (due to flaky or fault-triggering failure) in a
build bn, we analyse all the builds from a time window w (i.e. from bn−w to bn−1)
to calculate its flake rate as follows:

flakeRate(t, n) =
∑n−1

x=n−w flake(t, x)
w

(8.1)30

where flake(t, x) = 1 if the test t flaked in the build bx and 0 otherwise. This
metric allows us to understand if the flakiness history of a test can help in the
flakiness prediction tasks. The test execution history (a.k.a. heartbeat) has been
used in multiple studies (especially industrial ones [57], [103]) to detect flaky tests.35

These studies assume that many flaky tests have distinguishable failure patterns

4https://chromium.googlesource.com/chromium/src/+/HEAD/
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Table 8.1: Description of our features. Column Feature Name specifies the identifiers
used in our dataset, while Column Feature Description details the features

Feature Name Feature Description
buildId The build number associated

with the test execution
flakeRate The flake rate of the test over the last

35 builds
runDuration The time spent for this test execution
runStatus ABORT

FAIL
PASS
CRASH
SKIP

runTagStatus CRASH
PASS
FAIL
TIMEOUT
SUCCESS
FAILURE
FAILURE_ON_EXIT
NOTRUN
SKIP
UNKNOWN

testSource The test source code
testSuite The test suite the test belongs to
testId The test name

over builds and hence can be detected by observing their history. We check whether
this assumption also holds in the case of Chromium.

To illustrate the flake rate differences between flaky and fault-revealing tests, we
plot the flake rate for both test categories in Figure 8.3. The flake rate is computed
using a window of 35 builds. To set this time window, we checked the number5

of flaky tests having a flakeRate() = 0 for build windows ranging from 0 to 40
builds with a step of 5. We observed a convergence at size 35, meaning that higher
numbers of builds do not provide additional information.

In the majority of cases, flaky tests have a history of flakiness: the percentage of
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Table 8.2: Data collected from the Chromium CI. We used the Linux Tests tester,
with 10,000 Builds mined over nine months. We extracted Passing, Flaky and
Fault-revealing tests and their associated Flaky and Fault-triggering Failures.

Tester Nb of Builds Period of Time Number of Tests Number of Failures
From To Passing Flaky Fault-revealing Flaky Fault-triggering

Linux Tests 10,000 Mar 2, 2022 Dec 1, 2022 198,273 23,374 2,343 1,833,831 17,171

flaky tests having a flakeRate() > 0 is in fact 87.9%. Furthermore, we see a pike
for flakeRate() == 1, 9.5% of flaky tests were always flaky in their 35 previous
builds. Still, there is a non-negligible amount (45.3%) of fault-revealing tests that
were flaky at least once in previous builds considered: with a flakeRate() > 0.
From these observations, we may suggest that the flakeRate() can be used to detect5

flakiness. Nevertheless, there is still an important overlap between the history of
flaky tests and fault-revealing tests.

8.4 Objectives and Methodologies
8.4.1 Research Questions

We start our analysis by assessing the effectiveness of the existing flakiness10

prediction methods in our project by considering the critical cases where fault-
revealing test failures are flagged as flaky by the prediction methods in various CI
cycles. We thus are interested in investigating the methods’ performance under
realistic settings, i.e., correctly detected and missed flaky and fault-triggering test
failures, when trained with past CI data and evaluated on future ones. In contrast15

to previous work, this analysis introduces a new dimension in the evaluation of
flakiness predictions which is the investigation of what we lose when adopting a
prediction method (the fault-triggering failures classified as flaky). Therefore, we
ask:

RQ1: How well do flaky test prediction methods discern flaky test failures from20

fault-triggering ones?

To establish realistic settings, we train the prediction models using the informa-
tion available (flaky tests and non-flaky ones) at a given point in time, where we
have sufficient historical data to train on. We then evaluate the models in subse-
quent builds with respect to flaky and fault-triggering test failures. We replicate25

the vocabulary-based methods since they are popular, easy to implement and quite
effective, and aimed at learning to predict flaky tests, as done by previous studies.

After checking the prediction performance in a realistic setting (test failures),
we repeat the entire process but now we train on historical test failures instead of
tests. We make this adaptation with the hope of improving further our predictions30
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Figure 8.3: Flake rate (x-axis) for Flaky and Fault-revealing tests. Density (y-axis)
is the probability density function. The area under curves integrates to one. Many
flaky tests are always flaky in their previous builds. A majority of fault-revealing
tests have no history of flakiness at all.

and perhaps improving our understanding of the impact that such predictions may
have on missed fault-triggering test failures (those marked by the models as flaky).
Hence, we ask:
RQ2: How well do flaky test failure prediction methods discern flaky test failures

from fault-triggering ones?5

Finally, we wish to be comprehensive, so we also optimize and extend the
prediction methods with additional features, some of which were suggested by
previous studies (the flake rate [103], the run duration [96]) and some dynamic
features (test run status, test run tag status, test run duration) that we found by
us when experimenting with the flaky tests. Thus, we ask:10

RQ3: Can we improve the accuracy of the flaky test failure predictions by consid-
ering dynamic test execution features?

To answer RQ3, we repeat the analysis carried out for RQ2 but now we are
training and optimising for the additional features that we determined during our
analysis and check the performance we achieve with regards to test failures, as15

performed in RQ2.
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8.4.2 Experimental Procedure
Selection of a flaky test detection approach

Being a recent topic of interest, several techniques have been introduced in the
scientific literature. Approaches relying on code coverage such as FlakeFlagger [96]
or DeFlaker [83] are challenging to implement in our case. Chromium’s code base5

consists of several languages and code coverage is both costly and non-trivial to
retrieve. Test smells [152] approaches are also difficult to extract as tests are written
in many different languages and tools do not always exist.

Having those constraints in mind, we decide to use the vocabulary-based
approach introduced by Pinto et al. [92]. It received significant attention with several10

replication studies conducted [94], [95] and follow-up studies and its portability
makes it easy to implement regardless of the languages being used.

Training and validation of the existing approaches (RQ1)

We evaluate the ability of the vocabulary-based approach, trained to differentiate
flaky from non-flaky tests and used to predict flaky test failures. To do so, we divide15

our dataset into a training set (containing test information about the first 8,000
builds) and a test set (containing test information about the last 2,000 builds). We
train our model following the existing methodologies. The flaky set includes all tests
marked as flaky in the training set. The non-flaky set includes all fault-revealing
tests and all passing tests in the 8,000th build (i.e. the last build of the training20

set) minus the tests that are found as flaky in any of the builds under study (to
increase the confidence of being non-flaky). The test set includes all flaky test
failures and all fault-triggering failures (reported by fault-revealing tests). The test
set is common in all RQs.

Implementation of a failure classifier (RQ2 and RQ3)25

We select flaky failures in our dataset as all failures produced by flaky tests and
fault-triggering failures are all failures produced by fault-revealing tests. There are
no duplicated data in the case of test failures, as each test execution is unique. For
RQ2, we train our classifier on non-flaky executions (passing and fault-revealing
tests execution) and flaky failures. In RQ3, we report the performance of a model30

using execution features (run duration and flake rate).

Time-sensitive evaluation

We split our data in two parts: the first 80% builds are selected as a training set
and the last 20% as a holdout set. By doing so, we respect the evolution of failures
across time and avoid any data leakage that could occur by randomly selecting35

data. This time-sensitive aspect is very important to consider. We found that
not taking this condition into account and training a model on a shuffled dataset
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Figure 8.4: The data collected from Chromium’s CI consists of flaky, fault-revealing
and passing tests spread across 10,000 builds. The build timeline ranges from
build b0 to b10,000 and depicts the distribution of the collected tests: flaky tests are
spread across all builds and fault-revealing tests happen occasionally. Due to a
large number of passing tests, we collected them from the b8,000 build (i.e. at the
end of our training set).

would greatly overestimate the performance. Figure 8.4 shows a representation
of our dataset. Flaky tests are present in all builds and Fault-revealing tests are
occasional: they happen in 1/4 of builds (See Section 8.6). To mitigate imbalance,
we collected all passing tests for 1 build: b8,000 and use them in our set of non-flaky
tests, for training.5

Classifier selection and pipeline description
We use a random forest classifier to perform the predictions. Unfortunately, our

dataset is imbalanced with the minority class being 1% of the data. Using a simple
random forest would greatly increase the chance of having few or no elements from
our minority class in the different trees, making the overall model poor in predicting10

the class of interest. To alleviate this issue, we decide to use a Balanced Random
Forest classifier[203] to facilitate the learning. This implementation artificially
modifies the class distribution in each tree so that they are equally represented.
Furthermore, we use SMOTE in the training phase to augment data for the minority
class [166].15

To represent the tests, we use CountVectorizer to convert texts as a matrix
of token counts. This technique, known as bag-of-words, is used in previous
vocabulary-based approaches [92]–[95], [101]. These vectors initially contain as
many features as the words appearing in source code of the tests. As the generated
dictionary can become big (in terms of size) we need to use feature selection to20

reduce it, remove irrelevant features (reducing noise in the data) and select the
most informative features. Feature selection is thus, helping to reduce the model
training time and to improve the overall performance and interpretability of the
model.

We use SelectKBest[204] which retains the k highest score features based on the25
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univariate statistical test χ2. Hyper-parameters of the machine learning pipeline,
i.e. the number of trees in the forests, the sampling strategy for SMOTE and
the number of features to be retained are tuned using a grid search approach and
cross-validation in the training set. Once optimized, we retrain a model fitted on
the whole training set and evaluate it on the holdout set.5

In addition to the precision, recall and MCC metrics, we also report the
false positive rate (FPR), that is in our case, the ratio of fault-triggering failures
misclassified as flaky over all fault-triggering failures. It is defined by:

FPR = FP

FP + TN

8.5 Experimental Results
8.5.1 RQ1: Discerning flaky from fault triggering test fail-10

ures when training on tests
We trained a model on 69,159 passing tests, 910 fault-revealing tests and 8,857

flaky tests (unique tests). Then, we evaluated it on 217,503 failures caused by flaky
tests and 2,320 fault-triggering failures caused by fault-revealing tests. Table 8.3
reports the obtained performance. Similar to the performance achieved by previous15

vocabulary-based models on other datasets, our model was able to reach high
accuracy with a precision of 99.2% and a recall of 98.9%. However, we note a high
false-positive rate. This is due to an important amount (76.2%) of fault-triggering
failures classified as flaky (FP). This is concerning: fault-triggering failures should
not be misclassified as they reflect the existence of real faults. Overall, the MCC20

value is equal to 0.20, which is relatively low and shows that the model struggles
(compared to random selection) to identify fault-triggering failures.

Table 8.3: Vocabulary-based model performance for the prediction of flaky test
failures vs fault-triggering failures when trained on flaky vs non-flaky (fault-revealing
and passing tests). Despite a high accuracy on flaky failures, the low MCC and
high FPR show us that it remains challenging for the model to classify negative
elements (in our case: fault-triggering failures)

Precision Recall MCC FPR

99.2% 98.9% 0.20 76.2%

The confusion matrix of our model decisions is depicted in Figure 8.5. The x-axis
reports the predicted label and the y-axis the actual label. Correct classifications
are displayed in the top left (TN) and bottom right (TP). We clearly observe25
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Figure 8.5: Confusion matrix for the vocabulary-based model. High accuracy is
reached similar to the performance reported in previous works. Nonetheless, 1,768
(76.2%) out of the 2,320 fault-triggering failures are mislabeled as flaky.

that the model is able to detect flaky tests with high precision. We also see that
2,435 flaky tests are classified as non-flaky (FN). This number is also important to
consider: it translates in all cases where developers will be required to investigate
irrelevant failures.

We want to further understand the reasons behind the classification of fault-5

triggering failures. Therefore, we analyse the (fault-revealing) tests causing those
failures. Out of the 2,320 fault-triggering failures, 1,768 are in the set of false
positives (76.2%) among which we found 463 (20% of all fault-triggering failures)
whose tests have a history of flakiness (flakeRate > 0) and 1,305 (56.2% of all
fault-triggering failures) without flakiness history. Here it must be noted that10

depending on the size of the history considered, we may have more tests with past
flakiness or less. Overall in our data, 1/3 of all fault-triggering failures are due to
tests that have exhibited flakiness behaviour.

RQ1: Similar to previous studies, we report accurate predictions when aiming
at flaky tests. However, a high proportion (76.2%) of all fault-triggering failures
is classified as flaky (missed faults) and still an important number (2,435) of
flaky tests are marked as fault-triggering failures (false alerts).

8.5.2 RQ2: Discerning flaky from fault triggering test fail-15

ures when training on test failures
The results from RQ1 show that a vocabulary-based model trained to detect

flaky tests would still yield an important number of missed faults and false alerts
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despite having high accuracy. Thus, our goal with RQ2 is to check whether by
training our vocabulary-based model we can improve the performance of recognising
fault-triggering failures.

Table 8.4 reports the results of such a model. In particular, the first row reports
results based on failure training while the second row reports results related to RQ3.5

Similar to RQ1, we see a high precision and recall, 99.7% and 91.3% respectively,
when predicting flaky failures. More interestingly, the MCC slightly increased to
0.25.

RQ2: When training on test failures, solely relying on test code vocabulary as
features, to predict if a test failure is flaky or fault-triggering, model performance
slightly improves but is still not effective in the context of the Chromium CI.

Table 8.4: Vocabulary-based model performance for the prediction of flaky failures
vs fault-triggering failures when training on flaky vs non-flaky (fault-triggering and
passing test executions). The approach does not work when solely relying on static
features (i.e. the test source code) and is improved when considering execution
features.

Execution features Precision Recall MCC FPR

No 99.7% 91.3% 0.25 20.3%
Yes 99.5% 98.7% 0.42 42.3%

8.5.3 RQ3: Improving the accuracy of the flaky test failure10

predictions
In this RQ we check the performance of the vocabulary-based models on

the failure classification task when considering additional features from the test
executions (run duration, and tests’ historical flake rate). These features reflect
better the characteristics of the test executions and are linked with test flakiness15

thereby leading to better results.
In particular, the second row of Table 8.4 reports the related performance. We

observe an improvement compared to the model that relies only on vocabulary
(RQ2). This new model achieves a similar precision and recall of 99.5% and 98.7%
and an improved MCC value 0.42, indicating a better performance in comparison20

to randomly picked selections. We see that the FPR increased to 42.3%. Together,
the results can be explained by fewer false alerts: flaky failures being marked as
fault-triggering by the model.
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RQ3 When equipped with execution-related features, the vocabulary-based
prediction methods do a better job of distinguishing flaky failures from fault-
triggering failures (0.42 MCC). Still, the need remains for dedicated methods to
successfully learn this challenging classification task.

8.6 Discussion
We seek to better understand the results showing that existing approaches

targeting the detection of flaky tests missed a non-negligible part (76.2%) of fault-
triggering failures by classifying them as flaky. To do so, we investigate the following5

aspects regarding the entire dataset.
We first report general information about the prevalence of flaky tests and

fault-revealing tests in order to have a better view of the failures occurring in each
build. Then, we report the number of fault-revealing tests also found as flaky by the
Chromium CI (reruns) in other builds (we further refer to them as fault-revealing10

flaky tests). Finally, we also check for the number of failing builds that only contain
fault-revealing flaky tests. We consider these builds important since the related
faults are not detected by any non-flaky test and would be missed if flaky test
detectors were used.

Figure 8.6: Number of flaky tests and fault-revealing tests per build. On average,
there are 250 flaky tests per build and 1 fault-revealing test per failing build.

Figure 8.6 shows the distribution of flaky tests and fault-revealing tests in the15

studied builds. We observe that there is an average of 178 flaky tests per build with
a low standard deviation (41), showing that flakiness is prevalent in the Chromium
CI. In the case of fault-revealing tests, taking into account all builds would result
in an average number of tests close to 0 as a majority of builds are exempt from
them. Thus, for better visualisation, we only considered builds containing at least20
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one fault-revealing test (i.e. failing builds). The average number of fault-revealing
tests per failing build is 2.7.

The standard deviation for fault-revealing tests is 14.9 and the number of
fault-revealing tests reported in one build goes up to 579 in our dataset.

Table 8.5: Number of builds containing each studied test type. All builds contain
flaky tests. 1/4 contain fault-revealing tests. Among the failing builds, 3/4 contain
only fault-revealing tests that are flaky in other builds.

Builds containing Number

Flaky tests 10,000
Fault-revealing tests 2,415

Fault-revealing flaky tests 1,974
Exclusively fault-revealing flaky tests 1,766

Table 8.5 provides, for each type of test, the number of builds that contain5

at least one instance of this type. We note that all builds contain at least one
flaky test (a test that flaked during this build). In Chromium CI, flaky tests are
non-blocking and will not cause a build failure. That is, tests flaking within the
build are ignored during this build.

Developers are expected to investigate test failures only when they occur10

consistently across 5 reruns (resulting in a fault-revealing test). Such fault-revealing
tests occur in 24.15% of the builds (i.e. in 2,415 builds). Interestingly, 1,974 of
these builds (i.e. 81.73%) contain fault-revealing tests that flaked in previous builds,
indicating that tests with a flake history should not be ignored in future builds.
Perhaps worse, in 1,766 builds all fault-revealing tests have flaked in some previous15

builds, indicating that no "reliable" tests identified the fault(s).
By investigating the status of all tests across all builds – see Figure 8.7. Among

the 209,530 tests of the Chromium project, 24,820 have failed in at least one build,
including 22,477 that were always flaky. Thus, 2,343 tests were fault-revealing in at
least one build, i.e., they attested the presence of faults, 897 were also flaky in at20

least one other build. That is, 38.3% of tests that have been useful to detect faults
have also a history of flakiness.

Flakiness affects all Chromium CI builds and mixes critical (fault-revealing)
signals with false (flakiness) signals. Indeed, 81.7% of builds contain fault-
revealing tests that were flaky in some previous builds, and 38.3% of all tests
flake in some builds and reveal faults in other builds.
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Figure 8.7: Distribution of tests in our dataset. 22,477 tests are exclusively flaky
among all builds. 2,343 tests are fault-revealing, among which 1/3 are flaky in other
builds.

8.7 Threats to Validity

8.7.1 Internal Validity
The main threat to the internal validity of our study lies in the use of vocabulary-

based approaches as predictors of flaky tests and failures. Approaches leveraging
other features, i.e. dynamic, static, or both, could perform differently. As explained5

in section 8.4.2, many features are difficult to extract in the case of Chromium (e.g.
test smells or test dependency graphs) and features relying on code coverage are not
considered due to the overheads they introduce and the difficulty of instrumenting
the entire codebase. Although this limits our feature set, the same situation appears
in many major companies such as Google and Facebook. Nevertheless, our key10

insight is that many regression faults are discovered by flaky tests, meaning that
they would have been missed even by any flaky test detector that correctly considers
them as flaky.

As seen in previous sections, most of the research on flakiness prediction focuses
on classifying tests. Although in this paper we highlight the need for —and focus15

on— detecting failures, one may wonder what would be the performance of the
studied techniques when aiming at detecting flaky tests (instead of flaky test
failures). To this end, we trained a model using our dataset to distinguish flaky
from non-flaky tests and found similar results with those reported by the literature,
i.e., MCC 0.77 when shuffling data and MCC 0.52 when performing a time-sensitive20

evaluation. The above result shows that the problem of targeting flaky tests is
easier and more predictable. However, as shown by our analysis it is misleading as
more than 2/3 of the regression faults are missed by such methods.
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8.7.2 External Validity
We show that detecting flaky tests (instead of failures) is harmful as it can

miss many regression faults. This is the case for the Chromium project and,
while we believe Chromium to be representative of other software systems, we
cannot guarantee that findings would generalise to other projects. Similarly, the5

performance of the different models we report may vary depending on the project.
Here, we mainly focus on web/GUI tests and flakiness might have different causes
in HTML and Javascript testing compared to other programming languages.

Nevertheless, we believe that flaky tests are useful since developers tend to keep
them instead of discarding them. Therefore, flaky test signals should not always10

be considered as false.

8.7.3 Construct Validity
We assume that all fault-revealing tests in our dataset indeed reveal one or

several issues in the code. This is the information reported by the Chromium CI
as of today. It is possible that some fault-revealing tests are actually flaky tests15

as they might not be executed in a sufficient amount of time. However, reruns
cannot guarantee that a test is not flaky. As this information is currently used
by Chromium’s developers and further verification is non-trivial, we rely on it as
ground truth for our dataset. Passing tests used as non-flaky tests could also be
mislabeled in our dataset. Though, there is a consequent number of passing tests20

and it is unlikely that many would actually be flaky. Furthermore, to strengthen
our confidence in our set of non-flaky tests, we remove from the set of passing tests
any tests that were found to be either flaky or fault-revealing in any of the 10,000
builds.

Additionally, it is possible that more than one regression fault is present in the25

case of several fault-revealing tests that fail in one build. Although this could alter
the results we report in RQ1, it would actually strengthen our key message as even
more faults could have been missed.

8.8 Conclusion
In this paper, we investigated the utility of existing vocabulary-based flaky30

test prediction methods in the context of a continuous integration pipeline. To
do so, we collected data about 23,374 flaky tests and 2,343 fault-revealing tests
composing a dataset of 1.8 million test failures representing the actual development
process of more than 10,000 builds corresponding to a period of 9 months. Thus,
we empirically evaluated the prediction methods and found similar performance35

compared to previous studies in terms of precision and recall. Despite the (very) high
accuracy to detect flaky test failures, we also found that 76.2% of fault-triggering
test failures were misclassified as flaky by the prediction methods, indicating major
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losses on the fault revelation capabilities of the test suites. Going a step further,
we also showed that flaky tests have a strong ability to detect faults, with 1/3 of all
regression faults being revealed by tests that have experienced flaky behaviour at
some point in the lifetime of the project under analysis.

These findings motivated the need for failure-focused prediction methods. To5

this end, we extended our analysis by checking the performance of failure-focused
models (trained on failures instead of tests) and found that they result in similar
accuracy and fewer false positives. We also found that considering test execution
features such as the run duration and the historical flake rate was helpful to increase
its ability to discern flaky failures and fault-triggering failures. However, our results10

still miss a large number of test failures, 42.3%. Therefore, we believe that the
current performance is not actionable and that additional research is needed in
order to tackle this vastly ignored problem of flaky test failure prediction over flaky
tests.

Our future research agenda aims at improving the performance of flaky test15

failure detection techniques by using additional features and artificial data (aug-
menting the training data with new positive examples to tackle the class imbalance
issues). We also plan to develop failure-cause interpretations for the techniques so
that they could be usable by the Chromium developers.
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9
Conclusion & Future Work

This chapter presents the overall conclusion of the dissertation and proposes
potential research directions.

5
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9.1 Summary of Contributions
This dissertation aimed at addressing test flakiness, one of the major challenges

of modern software testing. It consists of five main scientific contributions: two
exploratory studies giving more insights into flakiness in practice, two constructive
studies presenting different approaches suggesting new ways of tackling flakiness5

and a case study evaluating the usefulness of existing prediction techniques in an
industrial context. More precisely:

We first performed a grey literature review and interviewed 14 practitioners
in order to have a better understanding of the challenges linked with flakiness in10

the industry. We explore three aspects: the sources of flakiness within the testing
ecosystem, the impacts of flakiness and the measures adopted when addressing
flakiness. Our analysis showed that, besides the tests and code, flakiness stems
from interactions between the system components, the testing infrastructure, and
external factors. We also highlighted the impact of flakiness on testing practices15

and product quality and showed that the adoption of guidelines together with a
stable infrastructure are key measures in mitigating the problem. Furthermore, we
also identified automation opportunities enabling future research works.

In the second contribution, we performed a replication study of a recently20

proposed method that predicts flaky tests based on their code vocabulary. We thus
replicated the original study on three different dimensions. First, we replicated
the approach on the same subjects as in the original study but using a different
evaluation methodology, i.e. we adopted a time-sensitive selection of training and
test sets to better reflect the envisioned use case. Second, we consolidated the25

findings of the original study by checking the generalisability of the results for a
different programming language. Finally, we proposed an extension to the original
approach by experimenting with different features extracted from the code under
test.

30

Existing flakiness detection approaches mainly focus on classifying tests as flaky
or not and, even when high performances are reported, it remains challenging to
understand the cause of flakiness. This part is crucial for researchers and developers
that aim to fix it. To help with the comprehension of a given flaky test, the third
contribution introduced FlakyCat, the first approach to classify flaky tests based35

on their root cause category. FlakyCat relies on CodeBERT for code representation
and leveraged Siamese networks to train a multi-class classifier. We trained and
evaluated FlakyCat on a set of 451 flaky tests collected from open-source Java
projects. Our evaluation showed that FlakyCat categorises flaky tests accurately,
with an F1 score of 73%. We also investigated the performance of FlakyCat for40
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each category. In addition, to facilitate the comprehension of FlakyCat’s prediction,
we presented a new technique for CodeBERT-based model interpretability that
highlights code statements influencing the categorisation.

To mitigate the effects of flakiness, both researchers and industrial experts5

proposed strategies and tools to detect and isolate flaky tests. However, flaky
tests are rarely fixed as developers struggle to localise and understand their causes.
Additionally, developers working with large codebases often need to know the
sources of nondeterminism to preserve code quality, i.e. avoid introducing technical
debt linked with non-deterministic behaviour, and avoid introducing new flaky tests.10

To aid with these tasks, we proposed with the fourth contribution re-targeting
Fault Localisation techniques to the flaky component localisation problem, i.e.
pinpointing program classes that cause the non-deterministic behaviour of flaky
tests. In particular, we employed Spectrum-Based Fault Localisation (SBFL), a
coverage-based fault localisation technique commonly adopted for its simplicity15

and effectiveness. We also utilised other data sources, such as change history and
static code metrics, to further improve the localisation. Our results showed that
augmenting SBFL with change and code metrics ranks flaky classes in the top-1 and
top-5 suggestions, in 26% and 47% of the cases. Overall, we successfully reduced
the average number of classes inspected to locate the first flaky class to 19% of20

the total number of classes covered by flaky tests. Our results also showed that
localisation methods are effective in major flakiness categories, such as concurrency
and asynchronous waits, indicating their general ability to identify flaky components.

While promising, the actual utility of the methods predicting flaky tests remained25

unclear since they have not been evaluated within a continuous integration (CI)
process. In particular, it remained unclear what is the impact of missed faults,
i.e. the consideration of fault-triggering test failures as flaky, at different CI cycles.
In the last contribution, we applied state-of-the-art flakiness prediction methods
at the Chromium CI and checked their performance. Perhaps surprisingly, we30

find that the application of such methods led to numerous faults missed, which
is approximately 3/4 of all regression faults. To explain this result, we analysed
the fault-triggering failures and find that flaky tests have a strong fault-revealing
capability, i.e. they reveal more than 1/3 of all regression faults, indicating inevitable
mistakes of methods that focus on identifying flaky tests, instead of flaky test35

failures. We also found that 56.2% of fault-triggering failures, made by non-flaky
tests, are misclassified as flaky. To deal with these issues, we built failure-focused
prediction methods and optimized them by considering new features. Interestingly,
we found that these methods perform better than the test-focused ones, with an
MCC increasing from 0.20 to 0.42. Overall, our findings suggested that future40
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research should focus on predicting flaky test failures instead of flaky tests (to reduce
missed faults) and revealed the need for adopting more thorough experimental
methodologies when evaluating flakiness prediction methods (to better reflect the
actual practice).

9.2 Perspectives5

In the following, we discuss potential future research that follows the contribu-
tions and ideas presented in this dissertation:

• Failure Prediction: As we saw in Chapter 8, one of the real challenges is
to detect flaky from relevant test failures, i.e. knowing when the developers
should investigate issues. While promising, an approach using a limited set10

of features does not enable efficient performance to reach industrial adoption.
Future research should focus on that problem and investigate the use of other
features that can be linked with flakiness such as the time of the day tests
were executed or the parameters, state and load of the machine running the
tests. Many studies in software testing rely on the history of each test to15

draw conclusions [145], [197]. While we used the flake rate as a feature in
our approach, we could think of more elaborative ways to leverage it as done
in other studies [103], [205].

• Machine Learning Interpretability: Interpretability and explainability
of machine learning models are one of the main challenges in AI at the20

moment. This often restrains the usage of such approaches by practitioners
as reliability is often a prerequisite to performance. Nowadays, more and
more tools leverage large language models to attempt to solve software
engineering problems. However, it would be interesting to investigate, in
parallel, techniques to interpret model outcomes and increase the reliability25

of their usage. Some approaches already exist, like SHAP [160] or Lime [206]
but are unsuitable for large language models. As we saw in Chapter 6, this
can be useful for developers to know more about the reasons behind the
flakiness of a test to debug it and the lack of ground truth for precise root
causes opens doors for future research.30

• Practitioners’ studies: In our contributions, we explored different ap-
proaches regarding prediction techniques helping with the problem of flak-
iness. Particularly, Chapters 6 and 7 are constructive studies and aim at
assisting developers and researchers in investigating and fixing their flaky
tests. Chapter 8 also envisions scenarios where such prediction models would35

be included in the CI, potentially replacing other techniques like reruns.
Another valuable research contribution would be to further conduct surveys
and studies directly on developers and practitioners. This is crucial to bridge
the gap between academia and the industry and while it often requires lots
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of effort to pursue them, it can bring many benefits to better understand
concrete needs, limits and to collect new evidence from software development
and testing in practice.
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