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Abstract

We establish new explicit bounds on the Gaussian approximation of Poisson functionals based
on novel estimates of moments of Skorohod integrals. Combining these with the Malliavin-Stein
method, we derive bounds in the Wasserstein and Kolmogorov distances whose application requires
minimal moment assumptions on add-one cost operators – thereby extending the results from (Last,
Peccati and Schulte, 2016). Our applications include a CLT for the Online Nearest Neighbour
graph, whose validity was conjectured in (Wade, 2009; Penrose and Wade, 2009). We also apply
our techniques to derive quantitative CLTs for edge functionals of the Gilbert graph, of the k-
Nearest Neighbour graph and of the Radial Spanning Tree, both in cases where qualitative CLTs
are known and unknown.
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1 Introduction

1.1 Overview

The aim of this paper is to establish a new collection of probabilistic inequalities, yielding quantitative
CLTs for sequences of Poisson functionals under minimal moment assumptions. We will see below that
our findings substantially extend and refine the second order Poincaré inequalities proved in [LPS16]
(see also [LRSY19, SY19, SY21]), and heavily rely on new moment inequalities for Skorohod integrals
(see Theorem 4.2) that we believe to be of independent interest. As demonstrated in Section 5, our
findings are specifically tailored to deriving quantitative CLTs for functionals of spatial random graphs
based on Poisson inputs, in critical or near-critical regimes.

One prominent example dealt with in the present work is the Online Nearest Neighbour Graph
(ONNG), devised by Berger et al. in [BBB+07] as a simplified version of the FKP model of the internet
graph (see [FKP02]). The set-up is the following: Take a Poisson measure on Rd× [0, 1], in such a way
that each point of the measure has a spatial coordinate in Rd and an arrival time in [0, 1]. Within a
bounded observation window, connect each point to its nearest neighbour in space which has smaller
arrival time. The resulting ONNG is a tree growing in time – a simple model for an expanding network.
Other graphs of interest include the Gilbert graph, where two points are connected if they are close
enough to one another, or nearest-neighbour type graphs like the k-Nearest Neighbour graph and
the Radial Spanning Tree (see Section 5).

For graphs like these, one quantity of interest is the total edge-length, or more generally, the
α-power weighted total edge-length:

F =
∑

e edge

|e|α. (1.1)

The main question is to understand how such a sum fluctuates as the graph expands. For the ONNG,
convergence to the normal law was shown by Penrose [Pen05] in the exponent range α ∈

(
0, d

4

)
and

conjectured in [Wad09, PW09] for the range α ∈
[
d
4 ,

d
2

]
. This conjecture has remained open until now:

as an application of our abstract bounds, we settle it in this article by providing a quantitative central
limit theorem for the centred and rescaled sum of power-weighted edge-lengths with powers α ∈

(
0, d

2

]
(see Theorem 5.3).
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1.2 Main contributions

As announced in Section 1.1, our theoretical findings refine the main bounds in [LPS16], where the
authors proved second order Poincaré inequalities on configuration spaces – thus extending the Gaus-
sian second order Poincaré estimates established in [Cha09, NPR09, Vid20, ERTZ21] to the Poisson
case. The results of [LPS16] are based on the combination of Stein’s method [CGS11, NP12, PR16]
and Malliavin Calculus on configuration spaces [Las16, LP18].

The starting point of Stein’s method is the fact that a real-valued random variable N is standard
Gaussian if and only if

Ef(N)N = Ef ′(N) (1.2)

for a suitable collection of functions f : R → R. This allows one to represent the probability distance
between a random variable F and a standard normal N as

d(F,N) = sup
h∈H

|Efh(F )F − Ef ′
h(F )|, (1.3)

where H is a suitable collection of functions depending on the choice of distance and the function fh
is the canonical solution to the differential equation

f ′
h(x) = xfh(x) + h(x) − Eh(N). (1.4)

The crucial idea behind the results of [LPS16] is that, for random variables F = F (η) depending on a
Poisson measure η on a space X, one can control quantities such as (1.3) by using integration by parts
formulae involving the add-one cost operator

Dx F (η) := F (η + δx) − F (η), (1.5)

where x ∈ X and δx is the Dirac measure in x, as well as its iteration D(2)
x,y = Dx Dy F . As demonstrated

in [LPS16, LRSY19, SY19, LRPY20, SY21, SBP22]) such an approach leads to flexible bounds in
the Kolmogorov and Wasserstein distances, bounds that are particularly adapted for dealing with
functionals displaying a form of geometric stabilisation – see e.g. [PY01, Pen05, PY05, LRSY19,
LRPY20] for a discussion of this concept, as well as [KL96] for the first seminal contribution on the
topic.

One of the shortcomings of the bounds established in [LPS16, LRSY19, SY19, LRPY20, SBP22]) is
that their use in concrete applications typically requires one to uniformly bound over X the moments
of order (4 + ϵ) (with ϵ > 0) of DF and D(2) F . Such a uniform bound is not achievable in many
relevant applications, e.g. for edge functionals of the ONNG in the exponent range α ∈

[
d
4 ,

d
2

]
, the

range where the central limit theorem was conjectured to hold. We substantially extend the main
results from [LPS16] in two ways:

1. In Theorem 3.4 we establish explicit bounds in the Kolmogorov and Wasserstein distances, whose
use only requires one to uniformly bound the moments of order 2 + ϵ of add-one cost operators.
(See also [Tri19] for qualitative CLTs requiring both bounds on the moments of order 2 + ϵ and
weak stabilisation). To motivate the reader, we will now give a simple example of a consequence
of Theorem 3.4.

Let ν be a centred probability measure on R such that

c :=

∫
R
|u|2+ϵν(du) < ∞ (1.6)

for some ϵ > 0. Define σ2 :=
∫
R |u|2ν(du) and let η be a Poisson measure on R × [0,∞) with

intensity ν(du) ⊗ ds. Let T > 0 and define

FT :=

∫ T

0

∫
R
u η(du, ds). (1.7)
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Then FT is equal in law to
∑N(T )

i=1 Xi, where X1, X2, ... are i.i.d random variables distributed
according to ν and independent of N(T ), a Poisson distributed random variable with parameter
T .

One can compare this to the random variable

Gn :=

n∑
i=1

Xi, (1.8)

where the number of points is deterministically given by n. By an extension of the classical
Berry-Esseen theorem given by Petrov in [Pet75, Theorem 6, p.115], one has the following bound
on the Kolmogorov distance between the laws of (nσ2)−1/2Gn and a standard Gaussian N :

dK

(
Gn√
nσ

,N

)
⩽

c

σ2+ϵ
n−ϵ/2. (1.9)

For the functional FT , our Theorem 3.4 implies

dW

(
FT√
Tσ

,N

)
⩽

2c

σ2+ϵ
T−ϵ/2 (1.10)

and

dK

(
FT√
Tσ

,N

)
⩽

(4c)
1

1+ϵ/2

σ2
T− ϵ/2

1+ϵ/2 (1.11)

for the Wasserstein and Kolmogorov distances respectively. The speed of convergence in Wasser-
stein distance corresponds exactly to the one given by Petrov. For the Kolmogorov distance we
find a slightly slower speed, which is however still converging much faster than the square root of
the Wasserstein distance, which is implied by the classic estimate dK(., N) ⩽ 2

√
dW (., N) (see

e.g. [NP12, Remark C.2.2]).

In Section 5, we apply Theorem 3.4 to edge-statistics of the form (1.1) of the Online Nearest
Neighbour Graph in the exponent range α ∈

(
0, d

2

)
and of the Gilbert graph for exponents α ∈(

−d
2 ,∞

)
(extending existing results from [RST17]); we also deal with the k-Nearest Neighbour

Graph and the Radial Spanning Tree for a general class of decreasing functions ϕ : (0,∞) →
(0,∞) applied to the edge-lengths. In all our applications, the speeds we find are the same in
the Wasserstein and Kolmogorov distances. Roughly speaking, a 2p-moment bound leads to a
speed of convergence of td(1/p−1), where td is the order of the variance and p ∈ (1, 2]. If p = 2, we
recover the speed of order ‘square root of the variance’, which is often presumed to be optimal
and has in some contexts been shown to be optimal. If however p < 2, the resulting speed is

slower. Comparing with the above example and setting 2p = 2 + ϵ, it corresponds to t−d
ϵ/2

1+ϵ/2 in
both Wasserstein and Kolmogorov distances. Whether or not this speed is optimal remains an
open question.

2. The case of an edge functional of the type (1.1) with α = d
2 for the ONNG is of a different nature.

The variance contains an additional logarithmic factor (as conjectured and partially shown in
[Wad09], and fully established in Theorem 5.3) and a 2 + ϵ moment bound proves too strong
a condition. To deal with this particular case, we develop in Theorem 3.3 an estimate of the
Wasserstein distance that depends on a time parameter. Taking η to be a Poisson measure on a
space X× [0, 1] with intensity λ⊗ds, the estimate contains moments of E

[
D(x,s) F

∣∣η|X×[0,s)

]
and

E
[

D
(2)
(x,s),(y,u) F

∣∣η|X×[0,s∨u)

]
instead of D(x,s) F and D

(2)
(x,s),(y,u) F . This distinction is crucial and

leads to a quantitative central limit theorem in the critical case α = d
2 , stated in Theorem 5.3.
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The underlying result making these improved estimates possible is a new inequality, stated in
Theorem 4.2, providing a bound on the pth moment of a Skorohod integral δ(h) (see Section 2 for
a definition), with p ∈ [1, 2]. Even more generally, a bound is provided for quantities of the type
|Eϕ(δ(h))|, where ϕ : R → R is differentiable with (p − 1)-Hölder continuous derivative for some
p ∈ (1, 2]. To the best of our knowledge, no comparable inequality exists to date and this result is
of independent interest. In particular, Theorem 4.2 implies generalisations of the classical Poincaré
inequality according to which for a Poisson functional F ∈ L2(Pη), it holds that

E
[
F 2
]
− E[F ]2 ⩽ E

∫
(Dx F )

2
λ(dx). (1.12)

As shown in Corollary 4.3 and Remark 4.4, the Poincaré inequality remains true (up to a multiplying
constant) if the exponent 2 is replaced by p, thus for p ∈ [1, 2]:

E|F |p − |EF |p ⩽ 22−pE
∫
X
|Dx F |p λ(dx). (1.13)

If the functional F is non-negative or centred, this inequality follows from modified log-Sobolev type
inequalities shown in [Cha04] and also [APS22]. We stress, however, that the bound in Theorem 4.2
is much more general and not directly deducible from [Cha04, APS22].

If we work over the time-augmented space X × [0, 1], it has been shown by Last and Penrose in
[LP11b, Thm. 1.5] that

Var(F ) = E
∫
X

∫ 1

0

E[D(x,t) F |η|X×[0,t)]
2λ(dx)dt. (1.14)

Correspondingly, the inequality in Corollary 4.3 can be refined even further by conditioning on the
information up to time t:

E|F |p − |EF |p ⩽ 22−pE
∫
X

∫ 1

0

∣∣E[D(x,t) F |η|X×[0,t)]
∣∣p λ(dx)dt. (1.15)

This inequality is of great importance for improving estimates of both Wasserstein and Kolmogorov
distances. Another consequence of Theorem 4.2 is a more technical inequality given in Corollary 4.7,
this one being crucial when refining the bound on the Kolmogorov distance.

The proof of Theorem 4.2 relies on a new version of Itô formula, shown in Theorem 4.1. In contrast
to the classical Itô formula for Poisson point processes as given in [IW81, Theorem II.5.1], our version
does not assume the process to be a semi-martingale or the integrand to be predictable. In turn, we
only use the term corresponding to the integral with respect to a compensated Poisson measure. A
detailed discussion of differences and similarities with the classical Itô formula and comparable results
in the literature is provided in Section 4.1. We believe this result also to be of independent interest, as
to the best of our knowledge no such formula for anticipative integrands and general Poisson processes
exists in the literature.

Remark 1.1. As demonstrated in the forthcoming Section 5, the principal achievement of this paper is
the derivation of probabilistic bounds requiring minimal moment assumptions, that one can directly
apply to a variety of models without implementing truncation or smoothing procedures. That said, it
is plausible to expect that alternate bounds to some of those derived in Section 5 could be derived by
combining the results of [LPS16] with a truncation procedure similar to the ones implemented e.g. in
[Wu00, proof of Theorem 1.1] or [NPY20, proof of Corollary 3.2]. In order to keep the length of this
paper within reasonable limits, the comparison between the two approaches (in situations where both
apply) will be discussed elsewhere.

Plan of the paper: In Section 2 we provide a short background on Poisson processes and Malliavin
Calculus, with a more detailed account to be found in Appendix A. In Section 3, we discuss second
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order p-Poincaré inequalities, while Section 4 contains our version of Itô formula and the new estimates
for Skorohod integrals. Applications are discussed in Section 5, in particular the ONNG is dealt with
in Section 5.1. All proofs can be found in the appendices: in Appendix B we present the proof of Itô
formula (Theorem 4.1), Appendix C contains the proofs for Theorem 4.2 and its corollaries, and the
second order Poincaré inequalities (Theorems 3.2, 3.3 and 3.4) are shown in Appendix D. The ONNG
is discussed in Section E and the proofs for the Gilbert graph, the k-Nearest Neighbour graphs and
the Radial Spanning Tree can be found in Appendices F, G and H respectively.

Acknowledgment. I would like to thank my supervisor Giovanni Peccati for extensive discussions
and his invaluable help on this project. I would also like to thank Pierre Perruchaud for his contribution
to the computation of the constant discussed in Lemmas E.24 and E.25. I am grateful to Günter Last,
Matthias Schulte and Mark Podolskij for useful discussions and comments.

2 Framework and notations

We provide here an overview of the most relevant (in the context of this article) properties of Poisson
point processes and elements of Poisson Malliavin calculus. Further definitions and properties that
will be necessary for the proofs can be found in Appendix A. We refer the reader to [Las16, LP18] for
an exhaustive discussion of the material presented below.

Poisson random measure. Let (W,W, ν) be a σ-finite measure space and let NW be the set of N0∪{∞}-
valued measures on (W,W). Define the σ-algebra NW on NW as the smallest σ-algebra such that
∀W ∈ W, the map NW ∋ ξ 7→ ξ(W ) ∈ N ∪ {∞} is measurable. If it is clear from context which space
we refer to, we will write N and N instead of NW and NW.

A Poisson random measure with intensity ν is a (N,N )-valued random element χ defined on
some probability space (Ω,F ,P) such that

� for all W ∈ W and all k ∈ N0, we have P(χ(W ) = k) = exp(−ν(W ))ν(W )k

k! (with the convention
that χ(W ) = ∞ P-a.s. if ν(W ) = ∞);

� for W1, ...,Wn ∈ W disjoint, the random variables χ(W1), ..., χ(Wn) are mutually independent.

Existence and uniqueness of such a measure is shown in [LP18, Chapter 3]. We denote by Pχ the law
of χ in (N,N ) and we say that χ is a (W, ν)-Poisson measure.

In view of the σ-finiteness of (W, ν) and using [LP18, Corollary 6.5] we can and will assume
throughout the paper that the Poisson measure χ is proper, i.e. that there exist independent random
elements W1,W2, ... ∈ W and an independent N0 ∪ {∞}-valued random variable κ such that P-a.s.

χ =

κ∑
n=1

δWn
, (2.1)

where δw is the Dirac mass at the point w ∈ W. All our results only depend on the law of χ, hence
this assumption has no impact on them. In this context, we will often identify χ with its support, i.e.
with the random collection of points {W1,W2, ...}.

Poisson functionals. For p ⩾ 0, denote by Lp(Pχ) the set of random variables F such that there is a
measurable function f : N → R such that F = f(χ) P-a.s. and, if p > 0, such that E|F |p < ∞. We
call F a Poisson functional and f a representative of F . All results that follow do not depend
on the choice of the representative f and hence, throughout the article, we will use the symbol F
indiscriminately to represent both f and F .
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Add-one cost and Malliavin derivative. For a Poisson functional F ∈ L0(Pχ) and w ∈ W, define the
add-one cost operator of F as

Dw F := F (χ + δw) − F (χ), (2.2)

and inductively set D(n)
w1,...,wn

F := Dwn
D(n−1)

w1,...,wn−1
F for n ⩾ 1 and w1, ..., wn ∈ W, where D(0) F = F

and D(1) F = DF . It can be shown that D(n) F is jointly measurable in all variables and symmetric
in w1, ..., wn (cf. [Las16, p. 5]). We denote by dom D the set of all F ∈ L2(Pχ) such that

E
∫
W

(Dw F )2ν(dx) < ∞. (2.3)

The restriction of the operator D to dom D is called the Malliavin derivative of F (see [Las16,
Theorem 3]). Note that for F ∈ L1(Pη), the LHS of (2.3) is well-defined and (2.3) is sufficient for F
to be in dom D (as follows from the L1(Pη)-Poincaré inequality as stated in [Las16, Cor. 1]).
For F,G ∈ L0(pχ), we have the following formula for the add-one cost of a product:

D(FG) = (DF )G + F (DG) + (DF )(DG). (2.4)

Chaotic decomposition. For a function g ∈ L2(Wn, ν(n)), denote by In(g) the nth Wiener-Itô integral

of g. Then for F ∈ L2(Pχ), we have the Wiener-Itô chaos expansion

F =

∞∑
n=0

I(fn), (2.5)

where fn(w1, ..., wn) = 1
n!ED(n)

w1,...,wn
F and the series converges in L2(Pχ) (cf. [Las16, Theorem 2]).

Mecke formula. Denote by Lp(N × W) the quotient set of all measurable functions h : N × W → R
such that, if p > 0, one has E

∫
W

|h(χ,w)|pν(dw) < ∞.
Next, we introduce the so-called Mecke formula (cf. [Las16, (7)]), which holds for h ∈ L1(N×W)

and for h : N×W → [0,∞) measurable:

E
∫
W
h(χ,w)χ(dw) = E

∫
W
h(χ + δw, w)ν(dw). (2.6)

In particular, combined with the fact that χ is assumed to be proper, this implies that for a function
h ∈ L1(N×W), the integral ∫

W
h(χ− δw, w)χ(dw) (2.7)

is well-defined.

Skorohod integrals. If h ∈ L2(N ×W), then for ν-a.e. w ∈ W, we have h(., w) ∈ L2(Pχ) and thus we
can write

h(χ,w) =

∞∑
n=0

In(hn(w, .)), (2.8)

with hn(w,w1, ..., wn) = 1
n!ED(n)

w1,...,wn
h(χ,w) (cf. [Las16, (42)]). We say that h ∈ dom δ if

∞∑
n=0

(n + 1)!

∫
Wn+1

h̃2
ndν

n+1 < ∞, (2.9)

where h̃n is the symmetrisation of hn given by

h̃n(w1, ..., wn+1) =
1

n + 1

n+1∑
k=1

hn(wk, w1, ..., wk−1, wk+1, ..., wn+1). (2.10)
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For h ∈ dom δ we define the Skorohod integral of h by

δ(h) :=

∞∑
n=0

In+1(hn), (2.11)

which converges in L2(Pχ). Note that, by [Las16, Theorem 5], the following condition is sufficient for
h ∈ L2(N×W) to be in dom δ:

E
∫
W

∫
W

(Dx h(χ, y))
2
ν(dx)ν(dy) < ∞. (2.12)

If h ∈ L1(N×W) ∩ dom δ, then by [Las16, Theorem 6], we have P-a.s.

δ(h) =

∫
W
h(χ− δw, w)χ(dw) −

∫
W
h(χ,w)ν(dw), (2.13)

where the RHS is well-defined for any h ∈ L1(N×W) by (2.7).

Extension to a marked space. It will often be convenient to endow the space W with marks representing
time. As we are only interested in the law of the Poisson functionals in question, we can always suppose
that the (W, ν)-Poisson measure χ is the marginal of a (W× [0, 1], ν ⊗ ds)-Poisson measure η. Indeed,
η(.× [0, 1]) has the same law on NW as χ. For a functional F ∈ L0(Pχ), define

G(η) := F (η(.× [0, 1])). (2.14)

Then G(η) has the same law under Pη as F (χ) under Pχ. Moreover, for any (x, s) ∈ W× [0, 1],

D(x,s) G(η) = Dx F (η(.× [0, 1])), (2.15)

which is equal in law to Dx F (χ).

Predictability. We call a measurable function h : NW×[0,1] × W × [0, 1] → R predictable if for all
(y, s) ∈ W× [0, 1] and all ν ∈ NW×[0,1]

h(ν, y, s) = h(ν|W×[0,s), y, s). (2.16)

This definition of predictability appears e.g. in [LP11a, (2.5)], where it is argued that this version of
predictability is comparable to predictability in the classical sense (as defined e.g. in [IW81, Defini-
tion I.5.2]). It is also shown in [LP11a, Proposition 2.4] that if h ∈ L2(N×W× [0, 1]) satisfies (2.16),
then h ∈ dom δ.

Conditional expectations and Clark-Ocône formula. Let η be a (W × [0, 1], ν ⊗ ds)-Poisson measure.
Using that the measures η|W×[0,s) and η|W×[s,0] are independent, one can define a version of conditional
expectation for any non-negative or integrable random variable G ∈ L0(Pη) by

E[G|η|W×[0,s)] :=

∫
G(η|W×[0,s) + ξ)Πs(dξ), (2.17)

where Πs is the law of η|W×[s,1]. If it is finite, the conditional expectation E[G|η|W×[0,s)] is predictable.
In particular, for F ∈ L2(Pη) the quantity E[D(x,s) F |η|W×[0,s)] is well-defined, finite and predictable
and the following Clark-Ocône type formula is shown in [LP11a, Theorem 2.1] (see also [Wu00, HP02]):

F = EF + δ(E[D(x,s) F |η|W×[0,s)]) Pχ − a.s. (2.18)

This formula will be essential in the proof of Corollary 4.3.

8



Generic sets. Let µ ⊂ Rd be a finite set. We say that µ is generic if all pairwise distances between
points are distinct. We say that a set µ ⊂ Rd is generic with respect to points x, y ∈ Rd if x, y /∈ µ
and µ∪ {x, y} is generic. Note that for compact sets H ⊂ Rd, any (H, dx)-Poisson measure χ can a.s.
be identified with its support and this support is a.s. generic. To simplify the presentation, we will at
times adopt the notation

F (µ) := F (ξµ), where ξµ =
∑
x∈µ

δx (2.19)

for a finite set µ ∈ Rd and a measurable functional F : NRd → R. Similar notation will be used for
DF (µ), D(2) F (µ) etc.

2.1 Notation

For x ∈ Rd and r > 0, we write Bd(x, r) to indicate the (open) ball of centre x and radius r. For
a measurable set A ⊂ Rd, we denote by |A| the Lebesgue measure of A, unless A is finite, in which
case |A| denotes the number of elements in A. We use A to denote the closure of A. Throughout this
paper, κd = |Bd(0, 1)|. We use the symbols ∧ (resp. ∨) to denote a minimum (resp. maximum) of
two elements. We shall use LHS and RHS to denote ‘left hand side’ and ‘right hand side’ and use |x|
to denote the Euclidean norm of x ∈ Rd. The supremum norm of a function f : R → R is denoted

by ∥f∥∞. By
d
= and

d−→ we mean equality and convergence in distribution respectively. We use the
symbol ≃ (resp. ≲) if there is equality (resp. inequality) up to multiplication by a positive constant.

3 Second order p-Poincaré inequalities in Wasserstein and Kol-
mogorov distances

In this section we state our new bounds on the distance between the distribution of a Poisson func-
tional and the Normal law. These bounds are called second order p-Poincaré inequalities, following a
nomenclature coined in [Cha09], where bounds of this type were given for the first time in a Gaussian
context. We make use of the well-established Malliavin-Stein method, which was pioneered in [NP09]
in the Wiener case, used for the first time in the Poisson case in [PSTU10] and subsequently extended
and developed in a wide range of articles – see the references given in [LPS16], the survey [APY18],
the monograph [PR16] and the website [Mal]. Related bounds in the Kolmogorov distance have been
studied in various places [ET14, Sch16, LPS16, LRPY20].

Recall that for an integrable random variable F and a standard Gaussian N , the Wasserstein
distance between the distributions of F and N is given by

dW (F,N) = sup
h∈H

|Eh(F ) − Eh(N)| (3.1)

where H is the set of Lipschitz-continuous functions h : R → R with Lipschitz constant ∥h∥L ⩽ 1. On
the other hand, the Kolmogorov distance between the distributions of F and N is defined as

dK(F,N) = sup
z∈R

|P(F ⩽ z) − P(N ⩽ z)|. (3.2)

See e.g. [NP12, Appendix C], and the references therein, for a discussion of the basic properties of dW
and dK .

Remark 3.1. For the rest of this section, we fix a σ-finite measure space (X,X , λ). Before we state our
main theorems, we introduce some simplified notation to improve legibility of the following results.
Write Y := X × [0, 1] and λ̄ = λ ⊗ dt. We introduce a total order on Y by saying that x < y if
x = (z, s), y = (w, u) and s < u. In the following, η will be a (Y, λ̄)-Poisson measure and χ will be
a (X, λ)-Poisson measure. We will write ηx for η|X×[0,s). Integrals with respect to λ̄ are taken over Y
and integrals with respect to λ are taken over X.
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The next statement contains the general abstract bounds on which our analysis will rely.

Theorem 3.2. Let F ∈ L2(Pη) ∩ dom D such that EF = 0 and EF 2 = 1. Then for any q ∈ [1, 2]

dW (F,N) ⩽

√
2

π
E
∣∣∣∣1 −

∫
Y

Dy F E[Dy F |ηy]λ̄(dy)

∣∣∣∣+ 2E
∫
Y
|E[Dy F |ηy]| · |Dy F |qλ̄(dy) (3.3)

and

dK(F,N) ⩽ E
∣∣∣∣1 −

∫
Y

Dy F E[Dy F |ηy]λ̄(dy)

∣∣∣∣
+ sup

z∈R
E
∫
Y

∣∣E[Dy F
∣∣ηy]∣∣Dy F · Dy(Ffz(F ) + 1{F>z})λ̄(dy).

(3.4)

As a next step, we derive the upper bounds we use in applications. Define the following quantities:

β1 :=
22/p

√
2√

π
σ−2

(∫
Y

(∫
Y
E
[
E
[
|Dy F |

∣∣ηy]2p] 1
2p · E

[
E
[
|D(2)

x,y F |
∣∣ηx∨y

]2p] 1
2p

λ̄(dy)

)p

λ̄(dx)

)1/p

β2 :=
22/p√

2π
σ−2

(∫
Y

(∫
Y
1{x<y}E

[
E
[
|D(2)

x,y F |
∣∣ηy]2p]1/p λ̄(dy)

)p

λ̄(dx)

)1/p

β3 := 2σ−(q+1)E
∫
Y

∣∣E [Dy F | ηy]
∣∣q+1

λ̄(dy),

β4 := 23−qσ−(q+1)

∫
Y

∫
Y
1{y⩽x}E

[
E[Dy F |ηy]2

]1/2 · E [∣∣E[D(2)
x,y F |ηx]

∣∣2q]1/2 λ̄(dx)λ̄(dy)

The following statement is our first bound on Wasserstein distances, expressed in terms of moments
of the first and second order add-one costs conditional on past behaviour.

Theorem 3.3. Let η be a (Y, λ̄)-Poisson-measure and let F ∈ L2(Pη)∩dom D. Define σ :=
√

Var(F )

and F̂ := (F − EF )σ−1. Let p, q ∈ (1, 2]. Then

dW (F̂ , N) ⩽ β1 + β2 + β3 + β4. (3.5)

The proof can be found in Appendix D.
Now define

γ1 :=
22/p

√
2√

π
σ−2

(∫
X

(∫
X
E
[
|Dy F |2p

] 1
2p · E

[
|D(2)

x,y F |2p
] 1

2p

λ(dy)

)p

λ(dx)

)1/p

γ2 :=
22/p√

2π
σ−2

(∫
X

(∫
X
E
[
|D(2)

x,y F |2p
]1/p

λ(dy)

)p

λ(dx)

)1/p

γ3 := 2σ−(q+1)

∫
X
E |Dy F |q+1

λ(dy)

and

γ4 := σ−2

(
4

∫
X
E
[
|Dy F |2p

]
λ(dy)

)1/p

γ5 := σ−2

(
4p

∫
X

∫
X
E
[
|D(2)

x,y F |2p
]
λ(dy)λ(dx)

)1/p

γ6 := σ−2

(
22+pp

∫
X

∫
X
E
[
|D(2)

x,y F |2p
]1/2

· E
[
|Dx F |2p

]1/2
λ(dy)λ(dx)

)1/p

γ7 := σ−2

(
8p

∫
X

∫
X

(
E|D(2)

x,y F |2p
) 1

2p ·
(
E|Dx F |2p

) 1
2p ·

(
E |Dy F |2p

)1−1/p

λ(dy)λ(dx)

)1/p

.
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Note that the quantities β1, ..., β4 and γ1, ..., γ7 only contain expressions related to DF and D(2) F .
The next statement contains our main estimates on Wasserstein and Kolmogorov distances, given

in terms of moments of first and second order add-one costs (without conditioning).

Theorem 3.4. Let χ be a (X, λ)-Poisson measure and let F ∈ L2(Pχ) ∩ dom D. Define σ :=
√

VarF

and F̂ := (F − EF )σ−1. Then
dW (F̂ , N) ⩽ γ1 + γ2 + γ3 (3.6)

and

dK(F̂ , N) ⩽
√

π
2 γ1 +

√
π
2 γ2 + γ4 + γ5 + γ6 + γ7. (3.7)

Remark 3.5. Using Hölder’s inequality, one can replace the term γ7 by the slightly larger but simpler
bound

σ−2

(∫
X

∫
X

(
E|D(2)

x,y F |2p
) 1

2p ·
(
E|Dx F |2p

)1− 1
2p λ(dx)λ(dy)

)1/p

. (3.8)

We will use this bound in the proof of Theorem 5.8 in the context of the Radial Spanning Tree.

Remark 3.6 (Discussion of literature). Our results in this section are a substantial extension of [LPS16].
The bounds given in [LPS16, Theorems 1.1 and 1.2] contain moments of first and second order add-one
costs with exponent 4 (or even 4 + ϵ, see [LPS16, Proposition 1.4]). While this is a very powerful tool
for showing asymptotically Gaussian behaviour, a finite 4th moment is too strong a condition for some
applications, most notably for the ONNG discussed in Section 5.1. Our Theorem 3.4 reduces this
condition to finite 2p moments, where p ∈ (1, 2], while retaining similar bounds in the case p = 2. In
particular, [LPS16, Theorem 6.1 and Proposition 1.4] follow from our Theorem 3.4. (See also [Tri19]
for qualitative results requiring bounds on moments of order 2p under weak stabilisation assumptions).

The proofs of Theorems 3.2, 3.3 and 3.4 follow in spirit the ideas from [LPS16] and [LRPY20,
Theorem 1.12] (for the Kolmogorov distance). However, we work on a space X × [0, 1] extended
by a time component and systematically replace the operator L−1 by the conditional expectation
E[D(x,t) .|η|X×[0,t)] (see [PT13] for a similar approach for Poisson measures on the real line). Moreover,
we apply the inequalities established in Section 4 to achieve the improvement in the exponent. For
the Wasserstein distance, we also use an improvement due to [BOPT20] to obtain the terms β3, β4, γ3.
For the Kolmogorov distance, our bound in Theorem 3.4 makes use of an improvement implemented
in [LRPY20], but we remove a strong condition on F . The resulting bound is close in spirit to the
one given in [LPS16, Theorem 1.2], but with an improvement from 4th moments to 2pth moments.
Moreover, our bound does not need the term corresponding to [LPS16, term γ3, p. 670] and replaces
the term corresponding to [LPS16, term γ4, p. 671] by a term depending only on the add-one cost
operators of F instead of EF 4.

In Theorem 3.3, we do not take moments of the first and second order add-one costs of our func-
tionals, but of their expectation conditional on ‘past behaviour’. A bound of this type is new and the
distinction is crucial to solve the critical case of the ONNG (see Theorem 5.3). As of now, such a
bound is only available in the Wasserstein distance.

4 Ancillary results: new estimates for Skorohod integrals

4.1 A version of Itô formula

We start this section by giving a version of Itô formula for Poisson integrals with anticipative integrands.
This is a crucial ingredient for the proof of the new estimates given in Theorem 4.2. In the following,
we will take η to be a (X× [0, 1],X ⊗B([0, 1]), λ(dx)⊗ds)-Poisson measure, where (X,X , λ) is a σ-finite
measure space.
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Theorem 4.1 (Itô formula for non-adapted integrands). Let h ∈ L1(N × X × [0, 1]) be bounded and
let X0 ∈ R. For t ∈ [0, 1], define

Xt(η) := X0 +

∫
X×[0,t]

h(η − δ(y,s), y, s)η(dy, ds) −
∫
X

∫ t

0

h(η, y, s)λ(dy)ds. (4.1)

Then the process (Xt)t∈[0,1] is well-defined and P-a.s. càdlàg. Let ϕ ∈ C1(R). Then, ∀ t ∈ [0, 1],

ϕ(Xt) = ϕ(X0) +

∫
X×[0,t]

(
ϕ
(
Xs− + h(η − δ(y,s), y, s)

)
− ϕ(Xs−)

)
η(dy, ds)

−
∫
X

∫ t

0

ϕ′(Xs)h(η, y, s)λ(dy)ds P-a.s. (4.2)

and the quantities in (4.2) are well-defined.

In the next three items we compare our version of Itô formula with the classical one given in [IW81,
Theorem II.5.1].

1. The main difference between (4.2) and [IW81, Thm. II.5.1] consists in the fact that we do not
assume the integrand h to be predictable. There exist Itô formulae for anticipative integrands in
various settings, e.g. in the Wiener case in [AN98] and [NP88]) and for pure jump and general
Lévy processes in [DNMBOP05] and [ALV08] respectively. To the best of our knowledge, our
setting of a general Poisson point process is new.

2. Assume h to be predictable in the sense of (2.16). It follows that h(η−δ(y,s), y, s) = h(η, y, s) for
all (y, s) ∈ X× [0, 1]. For ϕ ∈ C2(R), formula (4.2) is now roughly equivalent to the Itô formula
given in [IW81, Theorem II.5.1] in the special case where the semi-martingale in the statement
of [IW81, Theorem II.5.1] has the following properties:

� the point process in question is a Poisson point process;

� the only non-zero part is the one with respect to the compensated Poisson measure;

� the integrand h is both in L2 and in L1.

3. Our setting is thus both more general (ϕ ∈ C1(R) and h anticipative) and more restrictive
(h ∈ L1 ∩ L2 instead of h ∈ L2,loc and the Gaussian, finite variation and non-compensated
Poisson terms are zero) than the one given by Ikeda and Watanabe. The proof of our result
relies however on the same ideas as the proof of [IW81, Theorem II.5.1].

4.2 Moment Inequalities

In this section, we present a number of functional inequalities that are of independent interest and also
crucial to the improved bounds on Wasserstein and Kolmogorov distances presented in earlier sections.

To the best of our knowledge, Theorem 4.2 is the first bound of its kind on functionals of general
Poisson-Skorohod integrals. Partial results are known in the particular case where h is predictable, see
Corollary 4.3 and the discussion thereafter. In particular, Theorem 4.2 below contains the first general
estimate in terms of add-one costs for p-moments of the Skorohod integral, where p ∈ [1, 2], the cases
p = 1 and p = 2 being the only ones known. See also [LMS22].

In the special case ϕ(x) = x2, the theorem below follows immediately from the isometry relation
reported in formula (A.4) of Appendix A.
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Theorem 4.2. Let h ∈ L2(N × X × [0, 1]) satisfy (2.12). Let ϕ : R → R be a differentiable function
with (p− 1)-Hölder continuous derivative, for some p ∈ (1, 2] and assume that ϕ(0) = 0. Then

|Eϕ(δ(h))| ⩽ cϕ
p
E
∫
X
λ(dy)

∫ 1

0

ds |h(η, y, s)|p

+ cϕE
∫
X
λ(dy)

∫ 1

0

ds

∫
X
λ(dx)

∫ s

0

dt
∣∣D(y,s) h(η, x, t)

∣∣ · ∣∣D(x,t) h(η, y, s)
∣∣p−1

+ 2cϕE
∫
X
λ(dy)

∫ 1

0

ds

∫
X
λ(dx)

∫ s

0

dt
∣∣D(y,s) h(η, x, t)

∣∣ · |h(η, y, s)|p−1
, (4.3)

where cϕ is the Hölder constant of ϕ′. In particular, this inequality holds with ϕ(x) = |x|p and cϕ =
p22−p, for p ∈ [1, 2].

Our first corollary is a version of the above inequality for predictable functions h and contains a
generalisation of the classical Poincaré inequality.

Corollary 4.3. Let h ∈ L2(N× X× [0, 1]) be predictable in the sense of (2.16). Let ϕ : R → R be a
differentiable function with (p−1)-Hölder continuous derivative, for some p ∈ (1, 2]. Assume ϕ(0) = 0.
Then

|Eϕ(δ(h))| ⩽ cϕ
p
E
∫
X
λ(dy)

∫ 1

0

ds|h(η, y, s)|p. (4.4)

Moreover, for F ∈ L2(Pη) and p ∈ [1, 2],

E|F |p − |EF |p ⩽ 22−pE
∫
X

∫ 1

0

∣∣E[D(x,t) F |ηX×[0,t)]
∣∣p λ(dx)dt. (4.5)

Remark 4.4. 1. We can extend inequality (4.5) to F ∈ L1(Pη) at the cost of introducing an addi-
tional absolute value on the RHS:

E|F |p − |EF |p ⩽ 22−pE
∫
X

∫ 1

0

E[|D(x,t) F ||ηX×[0,t)]
pλ(dx)dt. (4.6)

This can be seen easily by approximating F by Fn := (F ∧ n) ∨ (−n) and using monotone and
dominated convergence.

2. When removing the conditional expectation in (4.5) using Jensen’s inequality, the inequality
can be extended to functionals G ∈ L1(Pχ), where χ is a (X, λ)-Poisson measure without time
component. Indeed, as discussed in Section 2, the marginal η(. × [0, 1]) has the same law as χ,
which means one can see G as a functional on NX×[0,1]. We have then

E|G|p − |EG|p ⩽ 22−pE
∫
X
|Dx G|p λ(dx). (4.7)

Remark 4.5 (Literature review). The proof of Theorem 4.2 relies on a combination of the Clark-Ocône
type representation result (2.18) and the version of Itô formula given in Theorem 4.1. This method of
combining a Clark-Ocône result with Itô formulae to deduce functional inequalities has been applied
before in various settings, e.g. in [Wu00] and [Cha04], where it was used to deduce a modified log-
Sobolev inequality and Φ-Sobolev inequalities respectively.

Inequalities (4.4), (4.5) and (4.7) can be seen as part of a larger family of functional inequalities
on the Poisson space. The first to mention is the classical Poincaré inequality, given e.g. in [Las16,
Theorem 10] (see also [HPA95, Cor. 4.4] for a very early appearance of this inequality). Our inequality
extends the classical one, which is (4.7) in the case p = 2. Another well-known inequality is the
modified log-Sobolev inequality shown in [Wu00] (see also [AL00]). It is extended in [Cha04, (5.10)] to
the so-called Φ-Sobolev inequalities, which in the case Φ(x) = xp, imply (4.7) when F ⩾ 0 or EF = 0.
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Similarly, the Beckner type p inequalities discussed in [APS22, Section 4.6] imply (4.7) when F ⩾ 0 or
EF = 0, albeit with a worse constant. [Zhu10, Theorem 3.3.2] gives a version of (4.4) for p-norms in
martingale type p Banach spaces. Although we did not check the details, it is reasonable to assume
that one can deduce (4.4) in the case ϕ(x) = |x|p from such a result when applied to Rd.

Remark 4.6 (Comparison with the Gaussian case and extensions when p ⩾ 2).

1. Inequality (4.7) for p < 2 does not hold for functionals of Gaussian random measures, as can
be seen by taking G = Wt and letting t → 0, with W a standard Brownian motion. This is in
contrast with the classical Poincaré inequality (p = 2) which holds in both Gaussian and Poisson
settings.

2. Inequality (4.7) (and hence also (4.5)) is false in general for p > 2. Indeed, consider (X, λ) =
(Rd, dx) and G = χ(A) − λ(A) for some measurable A ⊂ Rd. Then EG = 0, EG2 = λ(A) and
Dx G = 1A(x). On the LHS we have E|G|p ⩾ (EG2)p/2 = λ(A)p/2 by Jensen’s inequality and on
the RHS ∫

X
E|Dx G|pλ(dx) = λ(A). (4.8)

However, since p > 2, we have λ(A)p/2 ≫ λ(A) for λ(A) large enough. Hence the inequality fails
for any multiplying constant.

3. Moment estimates for p ⩾ 2 are given in [GST21, Theorem 4.1] and [APS22, Proposition 4.20].
The RHSs of these inequalities involve related, but different quantities.

The versatility of Theorem 4.2 can be appreciated when considering the following corollary, which
will be crucial in finding a bound on the Kolmogorov distance.

Corollary 4.7. Let h ∈ L1(N× X× [0, 1]) and G ∈ L0(Pη) bounded by a constant cG > 0. Then for
any p ∈ [1, 2],∣∣∣∣E∫

X

∫ 1

0

h(η, x, s) D(x,s) Gλ(dx)ds

∣∣∣∣
⩽ cG

(
22−pE

∫
X

∫ 1

0

|h(η, x, s)|pλ(dx)ds

+ p22−pE
∫
X

∫ 1

0

∫
X

∫ 1

0

|D(x,s) h(η, y, u)|pλ(dx)dsλ(dy)du

+p23−p

∫
X

∫ 1

0

∫
X

∫ 1

0

1{s<u}E[|D(y,u) h(η, x, s)|p]1/pE[|h(η, x, s)|p]1−1/pλ(dx)dsλ(dy)du

)1/p

. (4.9)

Remark 4.8. Provided that we upper bound the indicator in the third term on the RHS of (4.9) by 1,
this inequality can be extended to a space X without time component.

5 Applications

In this section, we look at four types of graphs built on Poisson measures and assess the speeds of
convergence to Normality of α-power-weighted edge-lengths such as (1.1). As was found in previous
work [LPS16, ST17], we find for certain ranges of exponents α that the speed is given by t−d/2, which
corresponds to the order of the square root of the variance. This is the presumably optimal speed
corresponding to the one in the classical Berry-Esseen theorem (see e.g. [Pet75, Theorem 4, p.111]).
Beyond a certain threshold, we find a slower speed of convergence that depends on α. Generally
speaking, a 2pth moment integrability of the first and second order add-one costs of the functionals
leads to a speed of convergence of t−d(1−1/p). Whether this speed is optimal or not is an open question.
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5.1 Online Nearest Neighbour Graph

Let µ ⊂ Rd× [0, 1] be a finite set such that the projection of µ onto Rd is generic and does not contain
any multiplicities and the projections onto [0, 1] are distinct. The ONNG on µ is an (undirected) graph
in Rd constructed as follows:

� Vertices are given by {x ∈ Rd : (x, s) ∈ µ}

� Let (x, s) ∈ µ. If µ ∩
(
Rd × [0, s)

)
is non-empty, then the online nearest neighbour of (x, s) is

given by the point (z, u) ∈ µ∩
(
Rd × [0, s)

)
which minimises |x− z|. In this case there is an edge

from x to z and we denote this event by {(x, s) → (z, u) in µ}.

For a point (x, s) ∈ µ, the coordinate s can be seen as the arrival time of the point x ∈ Rd, or its
mark. Any point (x, s) ∈ µ has exactly one online nearest neighbour, except for the point in µ whose
mark is minimal, which has none. Even though the graph is undirected, we think of arrows going from
a point to its nearest neighbour, as this simplifies the discussion.

The ONNG is a relatively simple model for networks growing in time. Already mentioned in [Ste89],
the Online Nearest Neighbour graph came to general attention in [BBB+07], where is was presented as
a simplified version of the FKP model developed in [FKP02], used to model the internet graph. The
name of the graph was coined in [Pen05], where the martingale method is used to show central limit
theorems for stabilising random systems satisfying a 4th moment condition.

To define our functional of interest, let

e(x, s, µ) :=

{
inf{|x− z| : (z, u) ∈ µ ∩

(
Rd × [0, s)

)
}, if µ ∩

(
Rd × [0, s)

)
̸= ∅

0, otherwise,
(5.1)

for (x, s) ∈ µ. This is the length of the edge from x to its online nearest neighbour if there is
one, and zero otherwise. Note that one can find a unique online nearest neighbour in µ for any
point (x, s) ∈ Rd × [0, 1] such that the time coordinate s and the position x do not occur in µ. For
convenience, we shall extend the above definitions to any such (x, s) ∈ Rd × [0, 1] and tacitly adopt
the corresponding notation.

We will be studying the sums of power-weighted edge-lengths defined as follows: for α > 0, let

F (α)(µ) :=
∑

(x,s)∈µ

e(x, s, µ)α. (5.2)

Note that here we make use of the convention explained in Section 2 to identify a set of points µ with
the point measure whose support is given by µ.

Let η be a Poisson measure on Rd × [0, 1] with Lebesgue intensity. Let H ⊂ Rd be a convex body.
For t ⩾ 1, define

F
(α)
t := F (α)(η|tH×[0,1]). (5.3)

For this functional, a CLT is shown in [Pen05]:

Theorem 5.1 ([Pen05, Theorem 3.6]). For 0 ⩽ α < d
4 , there is a constant σα,d > 0 such that as

t → ∞,

t−d Var
(
F

(α)
t

)
−→ σα,d and

F
(α)
t − EF (α)

t

td/2
d−→ N (0, σα,d). (5.4)

A quantitative counterpart to this result is shown in [LRPY20]. Our Theorem 5.3 provides a speed
of convergence that is faster than the one given in [LRPY20].

In [Pen05, PW08, Wad09], results similar to Theorem 5.1 were conjectured to hold for α ∈
[
d
4 ,

d
2

]
.

In particular, part of the Conjectures 2.1 and 2.2. in [Wad09] states
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Figure 1: Realisation of the Online Nearest Neighbour graph

Conjecture 5.2 ([Wad09]). For α ∈
[
d
4 ,

d
2

)
, there is a constant σα,d > 0 such that (5.4) holds.

For α = d
2 , there is a constant σd > 0 such that

log(t)−1t−d Var
(
F

(α)
t

)
−→ σd and

F
(α)
t − EF (α)

t

log(t)1/2td/2
d−→ N (0, σd). (5.5)

Our forthcoming Theorem 5.3 confirms this conjecture by giving quantitative central limit theorems
for α ∈

(
0, d

2

]
and upper and lower bounds for the variances that match the conjectured orders. Upper

bounds of the conjectured orders were already given in [Wad09, Theorem 2.1] for the variances involved.
They are shown for an ONNG built on n uniformly distributed random variables and the corresponding
result for the Poisson version follows by Poissonisation. For the sake of completeness, we will give purely
Poissonian proofs of the upper bounds, following however a similar strategy as in [Wad09]. A law of
large numbers is shown in [Wad07] and the case α > d

2 is discussed in [PW08] (especially for d = 1)
and in [Wad09], where it is shown that a limit exists in this case, but is non-Gaussian for α > d. For
more related results we refer to the survey [PW09] (for results up to 2010) and to the paper [LM21].

Theorem 5.3. For 0 < α < d
2 , and for every 1 < p < d

2α such that p ⩽ 2, there is a constant c1 > 0
such that for all t ⩾ 1 large enough

max

dW

F
(α)
t − EF (α)

t√
Var

(
F

(α)
t

) , N
 , dK

F
(α)
t − EF (α)

t√
Var

(
F

(α)
t

) , N
 ⩽ c1t

−d(1− 1
p ), (5.6)

where N denotes a standard normal random variable. Moreover, there are constants c2, C2 > 0 such
that for all t ⩾ 1 large enough

c2t
d < Var(F

(α)
t ) < C2t

d. (5.7)

For α = d
2 , there is a constant c3 > 0 such that for all t ⩾ 1 large enough

dW

F
(d/2)
t − EF (d/2)

t√
Var

(
F

(d/2)
t

) , N

 ⩽ c3 log(t)−1. (5.8)
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Figure 2: Realisation of the Gilbert graph

Moreover, there are constants c4, C4 > 0 such that for all t ⩾ 1 large enough

c4t
d log(td) < Var(F

(d/2)
t ) < C4t

d log(td). (5.9)

The constants c1, c2, C2, c3, c4, C4 may depend on H, α, d and p.

Note that, in the special case 0 < α < d
4 , we find a speed of convergence of t−d/2, which corresponds

to the square root of the order of the variance.

5.2 Gilbert Graph

For a finite set µ ⊂ Rd and a real number ϵ > 0, the Gilbert graph G(µ, ϵ) has vertex set µ and an
edge between x, y ∈ µ, x ̸= y if and only if |x − y| < ϵ. To construct our functional of interest, we
consider

� W ⊂ Rd a convex body;

� for every t > 0, we take ηt a (W, t dx)-Poisson measure;

� (ϵt)t>0 a sequence of positive real numbers s.t. ϵt → 0 as t → ∞.

Then for α ∈ R, define

L
(α)
t :=

∑
e∈G(ηt,ϵt)

|e|α =
1

2

∑
x,y∈ηt,x ̸=y

1{|x−y|⩽ϵt}|x− y|α, (5.10)

where e denote the edges of the graph and |e| their length.
Define

L̂
(α)
t :=

L
(α)
t − EL(α)

t√
Var

(
L
(α)
t

) . (5.11)
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Remark 5.4. For the sake of continuity with the article [RST17], we use the convention that the
intensity t dx of η grows and the observation window W stays constant. In the other applications
presented in this article, we keep the intensity constant and instead let the observation window grow
as tW . Note that one can pass from one setting to the other by a simple rescaling. Indeed, consider η̃
a Poisson measure on Rd and Lebesgue intensity and for s ⩾ 1, construct a Gilbert graph on η̃|sH by
connecting two points x ̸= y ∈ η̃|sH if and only if |x− y| < ϵ̃s. For α ∈ R, let

F (α)
s :=

1

2

∑
x,y∈η̃|sW ,x ̸=y

1{|x−y|<ϵ̃s}|x− y|α. (5.12)

Then F
(α)
t is equal in law to sαL

(α)

sd
with ϵsd = s−1ϵ̃s. The central limit theorem for F

(α)
t can be

deduced from the one for L
(α)
t .

The first mention of the Gilbert graph was by Gilbert in [Gil61], in dimension d = 2. It has been
treated in many works under various names: geometric or proximity graph, interval graph (when d = 1)
or disk graph (when d = 2). The book [Pen03] provides a vast background and literature review and
we also refer to [LRP13a, LRP13b] for central limit theorems of generalisations of the Gilbert graph
and [RS13] for a quantitative CLT on a sum of weighted edge-lengths. For a comprehensive overview
of the Gilbert graph in the context of U -statistics, see [LRR16], especially Section 4.3. See also
[McD03, Mü08, HM09, BP14, DST16, GT20]. In [RST17], the authors give a complete picture of the

asymptotic behaviour of L̂
(α)
t for α ∈ R. In particular, they show that for α > −d

2 , the quantity L̂
(α)
t

converges in distribution to a standard Gaussian as t → ∞, provided that t2ϵ2t → ∞. They also give
a quantitative bound on the speed of convergence in Kolmogorov distance in the case α > −d

4 . As
an application of our estimates, we recover this speed of convergence below and extend to the case
−d

2 < α ⩽ −d
4 . The authors of [RST17] show that CLTs hold also for −d < α ⩽ −d

2 with different
rescalings; however, establishing corresponding speeds of convergence in this range is still an open
problem.

Theorem 5.5. Let α > −d
2 and assume that t2ϵdt → ∞ as t → ∞. Then for t ⩾ 1 large enough

� if α > −d
4 , there is a constant c1 > 0 such that

max
{
dW

(
L̂
(α)
t , N

)
, dK

(
L̂
(α)
t , N

)}
⩽ c1

(
t−1/2 ∨ (t2ϵdt )−1/2

)
. (5.13)

� if −d
2 < α ⩽ −d

4 , then for any 1 < p < − d
2α , there is a constant c2 > 0 such that

max
{
dW

(
L̂
(α)
t , N

)
, dK

(
L̂
(α)
t , N

)}
⩽ c2

(
t−1+1/p ∨ (t2ϵdt )−1+1/p

)
. (5.14)

Remark 5.6. A careful inspection of the bounds applied to γ3 in the proof of Theorem 5.5 reveals that
in the sparse regime (tϵdt → 0) when −d

2 < α ⩽ −d
4 , a slightly improved rate can be found for the

Wasserstein distance. Indeed, for any 1 < p < − d
2α and any 0 < r < − d

α − 2, there is a constant c > 0
such that

dW (L̂
(α)
t , N) ⩽ c

(
t−1+1/p ∨ (t2ϵdt )−r/2

)
. (5.15)

Since r
2 ∈

(
0,− d

2α − 1
)

and 1 − 1
p ∈

(
0, 1 + 2α

d

)
and 1 + 2α

d < − d
2α − 1, one can choose r

2 > 1 − 1
p .

This then gives a slightly faster convergence rate. As an illustrating example, consider the case where
ϵdt = t−θ with 1 < θ < 2. Then tϵdt → 0 and t2ϵdt → ∞. Theorem 5.5 provides the rate of convergence

t(−1+ 1
p )(2−θ), and by following this strategy it can be improved to t−1+ 1

p ∨ t−
r
2 (2−θ) with r

2 > 1 − 1
p .
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Figure 3: Realisation of a 6-Nearest Neighbour graph

5.3 k-Nearest Neighbour graphs

For a finite generic set µ ⊂ Rd and a positive integer k ∈ N, the k-Nearest Neighbour graph has
vertex set µ and an edge between x, y ∈ µ if and only if y is one of the k nearest points to x or
vice-versa.

For our functional of interest, consider the following framework:

� H ⊂ Rd is a convex body;

� η is an (Rd, dx)-Poisson measure;

� ϕ : (0,∞) → (0,∞) is a decreasing function such that there is an r > 2 verifying∫ 1

0

ϕ(s)rsd−1ds < ∞. (5.16)

For any finite generic set µ ⊂ Rd, define

F (µ) :=
1

2

∑
x,y∈µ,x ̸=y

1{x∈N(y,µ) or y∈N(x,µ)}ϕ(|x− y|), (5.17)

where N(x, µ) is the set of k-nearest neighbours of x in µ. For t ⩾ 1, define Ft := F (η|tH) and set

F̂t := (Ft − EFt) Var(Ft)
−1/2.

The k-nearest neighbour graph is a model frequently used in e.g. social sciences or geography, see
[Wad07] for a discussion of applications. Quantitative central limit theorems for edge-related quantities
were shown in [AB93, PY05] and subsequently improved in [LPS16]. For a discussion of the literature,
we refer to [LPS16].

In [LPS16], the authors give a quantitative central limit theorem for the sum of power-weighted
edge-lengths with powers α ⩾ 0, at a speed of convergence of t−d/2. We complement this result by
dealing with the case α ∈

(
−d

2 , 0
)
. Note that in this case, the CLT is new even in its qualitative version.

In the regime α ∈
(
−d

4 , 0
)
, we also recover the same, presumably optimal, speed of convergence of

t−d/2 as in [LPS16], whereas in the case α ∈
(
−d

2 ,−
d
4

]
, we find a speed of convergence that decreases
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as α approaches −d
2 . It is natural to ask what happens when α ⩽ −d

2 . We consider this a separate
issue and leave it open for further research.

Theorem 5.7. Under the conditions stated above, for any p ∈ (1, 2] such that p < r
2 , there is a

constant c > 0 such that, for t ⩾ 1,

max
{
dW
(
F̂t, N

)
, dK

(
F̂t, N

)}
⩽ ctd(1/p−1). (5.18)

This inequality holds in particular for the function ϕ(x) = x−α with 0 < α < d
2 , for any p ∈ (1, 2] such

that p < d
2α .

5.4 Radial Spanning Tree

Let µ ⊂ Rd \ {0} be a finite set, generic with respect to the point 0. The radial spanning tree on µ, in
short RST (µ), is constructed as follows:

� The set of vertices is given by µ ∪ {0};

� for every x ∈ µ, we add exactly one edge to the point z ∈ µ ∪ {0} ∩ Bd(0, |x|) which minimises
|x− z|. We call z the radial nearest neighbour of x and say ‘x connects to z’, denoted by ‘x → z
in µ’. We denote the length |x− z| by g(x, µ).

In order to define our functional of interest, consider the following setting:

� H ⊂ Rd a convex body such that Bd(0, ϵ) ⊂ H for some ϵ > 0;

� η is an (Rd, dx)-Poisson measure;

� ϕ : (0,∞) → (0,∞) is a decreasing function such that there is an r > 2 satisfying∫ 1

0

ϕ(s)rsd−1ds < ∞. (5.19)

For any finite set µ ⊂ Rd generic with respect to 0, define

F (µ) :=
∑
x∈µ

ϕ(g(x, µ)) (5.20)

and for t ⩾ 1, define Ft := F (η|tH). Set F̂t := (Ft − EFt) Var(Ft)
−1/2.

The radial spanning tree was developed in [BB07] as a model related to the minimal directed
spanning tree and to Poisson forests. The paper also discusses various applications, most notably in
communication networks. Further work on the radial spanning tree has been done in [PW09, BCT13,
ST17]. In [ST17], the authors give a quantitative central limit theorem for sums of power-weighted
edge-lengths of the radial spanning tree for powers α ⩾ 0. The framework is one where the intensity
of the Poisson measure increases while the observation window stays constant. After rescaling to our
framework of a constant intensity and a growing window, one obtains by [ST17, Theorem 1.2] a speed
of convergence of t−d/2. We add quantitative central limit theorems for α ∈

(
−d

2 , 0
)
, recovering the

same speed of t−d/2 for α ∈
(
−d

4 , 0
)
. Note that this CLT is new even in its qualitative version. As for

the k-Nearest Neighbour graph, the case α ⩽ −d
2 will be the object of further research.

Theorem 5.8. Under the conditions stated above, for any p ∈ (1, 2] such that p < r
2 , there is a

constant c > 0 such that for t ⩾ 1,

max
{
dW
(
F̂t, N

)
, dK

(
F̂t, N

)}
⩽ ctd(1/p−1). (5.21)

This inequality holds in particular for the function ϕ(x) = x−α with 0 < α < d
2 , for any p ∈ (1, 2] such

that p < d
2α .

The rest of the paper is devoted to providing the proofs of the results in Sections 3 to 5.
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Figure 4: Realisation of the Radial Spanning Tree

A Background on Malliavin Calculus

In this section, we present several useful notions related to Malliavin calculus. Unless otherwise
indicated, these results are explained in [Las16]. We work in the setting of Section 2: in particular, χ
indicates a (W, ν)-Poisson measure.

We start with three useful isometry relations. Let f ∈ L2(Wn, ν(n)) and g ∈ L2(Wm, ν(m)). Then

E In(f) Im(g) = 1{m=n}n!

∫
Wn

f̃(x)g̃(x) ν(n)(dx), (A.1)

where f̃ and g̃ are the symmetrisations of f and g defined by

f̃(x1, ..., xn) =
1

n!

∑
σ∈Σn

f(xσ(1), ..., xσ(n)), (A.2)

the set Σn being the set of all permutations of {1, ..., n}. See [Las16, Lemma 4] and the remark
thereafter on page 10 for a proof.

Relation (A.1) implies that for F,G ∈ L2(Pχ) having an expansion (2.5) with kernels fn and gn
respectively,

EFG = EFEG +

∞∑
n=1

n!

∫
Wn

fngn dν
(n). (A.3)

By [Las16, Theorem 5], if h ∈ L2(N×W) satisfies (2.12), then

Eδ(h)2 = E
∫
W
h(χ,w)2ν(dw) + E

∫
W

∫
W

Dz h(χ,w) Dw h(χ, z) ν(dz)ν(dw). (A.4)

A well-known relation in Malliavin calculus is the so-called integration by parts formula: for
F ∈ dom D and h ∈ dom δ, we have E

∫
W h(χ,w) Dw Fν(dw) = E[Fδ(h)] (cf. [Las16, Theorem 4]). The

condition on F is however suboptimal in our context, which is why we need a version of integration
by parts under slightly different assumptions.
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Lemma A.1. Let h ∈ dom δ ∩ L1(N×W) and F ∈ L0(Pχ) bounded. Then

E
∫
W
h(χ,w) Dw Fν(dw) = E[Fδ(h)]. (A.5)

Proof. Since h ∈ dom δ ∩ L1(N × W), it is easy to check that the expectations appearing in the
statement are well-defined and finite. Note that

E
∫
X

Dw F h(χ,w)ν(dw) = E
∫
X

(F (χ + δw) − F (χ))h(χ,w)ν(dw)

= E
∫
X
F (χ + δw)h(χ,w)ν(dw) − E

∫
X
F (χ)h(χ,w)ν(dw), (A.6)

where the last line is justified by the fact that F is bounded and h ∈ L1(N×W), so both integrals are
well-defined. We now apply Mecke formula (2.6) to deduce that (A.6) equals

E
∫
X
F (χ)h(χ− δw, w)χ(dw) − E

∫
X
F (χ)h(χ,w)ν(dw)

= EF (χ)

(∫
X
h(χ− δw, w)χ(dw) −

∫
X
h(χ,w)ν(dw)

)
. (A.7)

Since h ∈ dom δ ∩ L1(N× X),∫
X
h(χ− δw, w)χ(dw) −

∫
X
h(χ,w)ν(dw) = δ(h) P-a.s. (A.8)

The result follows. ■

Next, we introduce the Ornstein-Uhlenbeck operator Pτ . For F ∈ L1(Pχ) and τ ∈ [0, 1], we
define

PτF =

∫
E
[
F (χτ + ξ)

∣∣χ]Πτ (dξ), (A.9)

where χτ is a τ -thinning of χ (see [Las16, p. 24] and the reference given therein) and Πτ is the law
of an independent Poisson measure with intensity measure (1 − τ)ν. It follows by Jensen’s inequality
that for all p ⩾ 1, one has

E|PτF |p ⩽ E|F |p. (A.10)

By [Las16, Lemma 6], for all F ∈ L2(Pχ) and all τ ∈ [0, 1], for ν(n)-a.e. w1, ..., wn ∈ W it holds P-a.s.
that

D(n)
w1,...,wn

(PτF ) = τnPτ D(n)
w1,...,wn

F. (A.11)

This implies that for F ∈ L2(Pχ), the following expansion holds (see also [Las16, (79)]):

PτF = EF +

∞∑
n=1

τn In(fn). (A.12)

The following lemma summarises some useful approximation properties of the Ornstein-Uhlenbeck
operator.

Lemma A.2. Let h ∈ L2(NW × W) and let τ ∈ (0, 1). Then Pτh satisfies condition (2.12) and
Pτh → h in L2(NW ×W) as τ → 1. Moreover, for w, z ∈ W, and all p ⩾ 1,

E|Pτh(χ,w)|p ⩽ E|h(χ,w)|p (A.13)

and

E|Dz Pτh(χ,w)|p ⩽ E|Dz h(χ,w)|p. (A.14)

Under the additional assumption that h ∈ dom δ, it holds that δ(Pτh) → δ(h) in L2(Pχ) as τ → 1.
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Proof. By the isometry property (A.3) and the expansions (A.12) and (2.8), we infer that

E
∫
W

∫
W

(Dw Pτh(χ, z))
2
ν(dw)ν(dz) =

∞∑
n=0

n · n! τ2n∥hn∥2n+1, (A.15)

where ∥.∥n is the norm in L2(Wn, ν(n)). Now note that supn⩾1 nτ
2n < ∞ and

∞∑
n=0

n! ∥hn∥2n+1 =

∫
W
Eh(w)2ν(dw) < ∞, (A.16)

hence Pτh satisfies (2.12). Similarly using the expansions, we deduce that

E
∫
W

(Pτh(χ,w) − h(χ,w))
2
ν(dw) =

∞∑
n=1

n! (τn − 1)2∥hn∥2n+1. (A.17)

By dominated convergence, this expression tends to 0 as τ → 1. Properties (A.13) and (A.14) follow
immediately from (A.10) and (A.11). For the last point, note that

δ(Pτh) − δ(h) =

∞∑
n=0

In+1((τn − 1)hn) (A.18)

and

E (δ(Pτh) − δ(h))
2

=

∞∑
n=0

(n + 1)!(1 − τn)2∥h̃n∥2n+1, (A.19)

which converges to 0 as τ → 1 by dominated convergence since h ∈ dom δ. ■

The following lemma is used on several occasions:

Lemma A.3 ([LP11b, Theorem 1.5]). Let η be a (W× [0, 1], ν ⊗ ds)-Poisson measure and let F,G ∈
L2(Pη). Then

E
∫
W

∫ 1

0

E[D(y,s) F |η|W×[0,1]]
2λ(dy)ds < ∞, (A.20)

and an analogous estimate holds for G. Moreover,

Cov(F,G) = E
∫
W

∫ 1

0

E[D(y,s) F |η|W×[0,1]]E[D(y,s) G|η|W×[0,1]]λ(dy)ds. (A.21)

B Proof of Theorem 4.1

Each summand on the RHS of (4.1) is well defined by virtue of Mecke formula (2.6) and the discussion
thereafter. By Mecke formula (2.6) it can be seen that h(η − δ(y,s), y, s) is almost surely integrable
with respect to the measure η(dy, ds). By assumption, h is also integrable with respect to λ(dy)ds. It
now follows by dominated convergence that the process (Xt) is càdlàg.

As a next step, we show that the integrals on the RHS of (4.2) are well-defined. For this, note that
(Xt)t∈[0,1] (and (Xt−)t∈[0,1]) are a.s. bounded on [0, 1]. Indeed,

E sup
t∈[0,1]

|Xt| ⩽ E
∫
X×[0,1]

|h(η − δ(y,s), y, s)|η(dy, ds) + E
∫
X

∫ 1

0

|h(η, y, s)|λ(dy)ds

= 2E
∫
X

∫ 1

0

|h(η, y, s)|λ(dy)ds < ∞, (B.1)
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where the second inequality follows by Mecke formula (2.6). Now write∫
X×[0,t]

∣∣ϕ(Xs− + h(η − δ(y,s), y, s)) − ϕ(Xs−)
∣∣ η(dy, ds)

⩽
∫
X×[0,1]

∣∣∣∣∫ 1

0

ϕ′ (Xs− + uh(η − δ(y,s), y, s)
)
h(η − δ(y,s), y, s)du

∣∣∣∣ η(dy, ds). (B.2)

By the boundedness of h, we infer from (B.1) that Xs− +uh(η− δ(y,s), y, s) almost surely takes values
in a compact interval. Since the function ϕ′ is continuous, this entails

sup
s,u∈[0,1],y∈X

|ϕ′(Xs− + uh(η − δ(y,s), y, s))| < ∞ P-a.s. (B.3)

Hence the RHS of (B.2) is bounded by(
sup

s,u∈[0,1],y∈X
|ϕ′(Xs− + uh(η − δ(y,s), y, s))|

)∫
X×[0,1]

|h(η−δ(y,s), y, s)|η(dy, ds) < ∞ P-a.s. (B.4)

which implies that the first integral on the RHS of (4.2) is well-defined. Similarly,

sup
s∈[0,1]

|ϕ′(Xs)| < ∞ P-a.s. (B.5)

and hence ∫
X

∫ 1

0

|ϕ′(Xs)h(η, x, s)|λ(dx)ds < ∞ P-a.s. (B.6)

This concludes the proof that all terms in (4.2) are well-defined.
To show (4.2), we start by showing it for an approximation of Xt. Let (Um)m∈N ⊂ X s.t.

⋃
m Um =

X and ∀m ∈ N, λ(Um) < ∞ and Um ⊂ Um+1. Define

X
(m)
t (η) := X0 +

∫
Um×[0,t]

h(η − δ(y,s), y, s)η(dy, ds) −
∫
Um

∫ t

0

h(η, y, s)λ(dy)ds. (B.7)

Define the event Ω0 := {η(Um × [0, 1]) < ∞,m ⩾ 1}. Then P(Ω0) = 1 and, since η is proper, ∀ω ∈ Ω0

and all m ⩾ 1 there exists a finite collection of points (y1, s1), ..., (ynm
, snm

) ∈ Um×[0, 1] (all depending
on ω) s.t.

η|Um×[0,1] =

nm∑
i=1

δ(yi,si). (B.8)

W.l.o.g. we can assume that 0 < s1 < s2 < ... < snm
< 1 and set s0 := 0 and snm+1 := 1. Now the

process X(m) can be written as

X
(m)
t =

nm∑
i=1

1{si⩽t}h(η − δ(yi,si), yi, si) −
∫
Um

∫ t

0

h(η, y, s)λ(dy)ds, (B.9)

and one has the telescopic sums:

ϕ
(
X

(m)
t

)
− ϕ(X0) =

nm+1∑
i=1

(
ϕ
(
X

(m)
si∧t

)
− ϕ

(
X

(m)
si−1∧t

))
=

nm∑
i=1

(
ϕ
(
X

(m)
si∧t

)
− ϕ

(
X

(m)
(si−)∧t

))
+

nm+1∑
j=1

(
ϕ
(
X

(m)
(sj−)∧t

)
− ϕ

(
X

(m)
sj−1∧t

))
= I1(t) + I2(t), (B.10)
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where

X
(m)
(s−)∧t =

{
X

(m)
s− if s ⩽ t

X
(m)
t if s > t.

(B.11)

The sum I1(t) represents what is happening at jump times, whereas I2(t) shows what happens in
between jump times. The index i = nm + 1 does not appear in the sum I1(t) because P-a.s. there is
no jump at time t = 1.
We first study I1(t).

I1(t) =

nm∑
i=1

(
ϕ
(
X

(m)
si∧t

)
− ϕ

(
X

(m)
(si−)∧t

))
=

nm∑
i=1

1{si⩽t}

(
ϕ
(
X

(m)
si− + h(η − δ(yi,si), yi, si)

)
− ϕ

(
X

(m)
si−

))
=

∫
Um×[0,t]

(
ϕ
(
X

(m)
s− + h(η − δ(y,s), y, s)

)
− ϕ

(
X

(m)
s−

))
η(dy, ds). (B.12)

Now consider I2(t). For s ∈ [si−1, si),

X(m)
s =

i−1∑
j=1

h(η − δ(yj ,sj)) −
∫
Um

∫ s

0

h(η, y, u)λ(dy)du (B.13)

and so for s ∈ (si−1, si)
d

ds
X(m)

s = −
∫
Um

h(η, y, s)λ(dy). (B.14)

This implies that

ϕ
(
X

(m)
(si−)∧t

)
− ϕ

(
X

(m)
si−1∧t

)
= −

∫ (si−)∧t

si−1∧t

ϕ′
(
X(m)

s

)∫
Um

h(η, y, s)λ(dy)ds. (B.15)

We conclude that

I2(t) =

nm+1∑
i=1

ϕ
(
X

(m)
(si−)∧t

)
− ϕ

(
X

(m)
si−1∧t

)
= −

nm+1∑
i=1

∫ (si−)∧t

si−1∧t

∫
Um

ϕ′
(
X(m)

s

)
h(η, y, s)λ(dy)ds

= −
∫ t

0

∫
Um

ϕ′
(
X(m)

s

)
h(η, y, s)λ(dy)ds. (B.16)

We have shown until now that

ϕ
(
X

(m)
t

)
= ϕ(X0) +

∫
Um×[0,t]

(
ϕ
(
X

(m)
s− + h(η − δ(y,s), y, s)

)
− ϕ

(
X

(m)
s−

))
η(dy, ds)

−
∫
Um

∫ t

0

ϕ′
(
X(m)

s

)
h(η, x, s)λ(dx)ds P-a.s. (B.17)

Our aim is now to let m → ∞. By dominated convergence, X
(m)
t → Xt a.s. for fixed t ∈ [0, 1]. We

would like to use dominated convergence for both the second and third terms on the RHS of (B.17).
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Start by noting that (X
(m)
t )t∈[0,1] (as well as (X

(m)
t− )t∈[0,1] and (Xt)t∈[0,1]) are P-a.s. uniformly bounded

on [0, 1] and in m. Indeed,

sup
m∈N
t∈[0,1]

max
{∣∣∣X(m)

t

∣∣∣ , ∣∣∣X(m)
t−

∣∣∣ , |Xt|
}

⩽
∫
X×[0,1]

|h(η − δ(y,s), y, s)|η(dy, ds) +

∫
X

∫ 1

0

|h(η, y, s)|λ(dy)ds < ∞ P-a.s. (B.18)

We start with the second term on the RHS of (B.17) and write∫
Um×[0,t]

∣∣∣ϕ(X(m)
s− + h(η − δ(y,s), y, s)

)
− ϕ

(
X

(m)
s−

)∣∣∣ η(dy, ds)

⩽
∫
X×[0,1]

∣∣∣∣∫ 1

0

ϕ′
(
X

(m)
s− + uh(η − δ(y,s), y, s)

)
h(η − δ(y,s), y, s)du

∣∣∣∣ η(dy, ds). (B.19)

By boundedness of h, we get that X
(m)
s− + uh(η − δ(y,s), y, s) almost surely takes values in a compact

interval independent of m. The function ϕ′ being continuous, we deduce

sup
m∈N

s,u∈[0,1]
y∈X

∣∣∣ϕ′
(
X

(m)
s− + uh(η − δ(y,s), y, s)

)∣∣∣ < ∞ P-a.s. (B.20)

Hence the RHS of (B.19) is bounded by(
sup
m∈N

s,u∈[0,1]
y∈X

∣∣∣ϕ′
(
X

(m)
s− + uh(η − δ(y,s), y, s)

)∣∣∣ ) ∫
X×[0,1]

|h(η−δ(y,s), y, s)|η(dy, ds) < ∞ P-a.s. (B.21)

We can thus apply dominated convergence and deduce that∫
Um×[0,t]

(
ϕ
(
X

(m)
s− + h(η − δ(y,s), y, s)

)
− ϕ

(
X

(m)
s−

))
η(dy, ds)

m→∞−→
∫
X×[0,t]

(
ϕ
(
Xs− + h(η − δ(y,s), y, s)

)
− ϕ (Xs−)

)
η(dy, ds) P-a.s. (B.22)

Now, similarly,∫
Um

∫ t

0

∣∣∣ϕ′
(
X(m)

s

)
h(η, x, s)

∣∣∣λ(dx)ds

⩽

 sup
m∈N
s∈[0,1]

∣∣∣ϕ′
(
X(m)

s

)∣∣∣
∫

X

∫ t

0

|h(η, x, s)|λ(dx)ds < ∞ P-a.s. (B.23)

and by dominated convergence∫
Um

∫ t

0

ϕ′
(
X(m)

s

)
h(η, x, s)λ(dx)ds

m→∞−→
∫
X

∫ t

0

ϕ′ (Xs)h(η, x, s)λ(dx)ds P-a.s. (B.24)

The fact that ϕ
(
X

(m)
t

)
→ ϕ (Xt) a.s. follows by continuity of ϕ. This concludes the proof. ■
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C Proofs of Theorem 4.2 and Corollaries 4.3 and 4.7

Lemma C.1. For p ∈ (1, 2], the function ϕ : R → R : x 7→ |x|p is continuously differentiable and its
derivative ϕ′ is (p− 1)-Hölder continuous with Hölder constant cϕ = p22−p.

Proof. We want to show that

cϕ := sup
a̸=b
a,b∈R

|ϕ′(a) − ϕ′(b)|
|a− b|p−1

= p22−p. (C.1)

First we observe that ϕ′(x) = p sgn(x)|x|p−1, with the convention that sgn(0) = 1. Let a ̸= b and
assume without loss of generality that |a| ⩾ |b| ⩾ 0. Then a ̸= 0 and

∣∣sgn(a)|a|p−1 − sgn(b)|b|p−1
∣∣

|a− b|p−1
=

∣∣∣1 − sgn
(
b
a

) ∣∣ b
a

∣∣p−1
∣∣∣∣∣1 − b

a

∣∣p−1 . (C.2)

It follows that

cϕ = p sup
x∈[−1,1)

1 − sgn(x) |x|p−1

(1 − x)p−1
=: p sup

x∈[−1,1)

f(x) (C.3)

The function f is differentiable on [−1, 1) with derivative f ′(x) = (p− 1)(1 − x)−p(1 − |x|p−2) ⩽ 0, so
f is decreasing and therefore

f(x) ⩽ f(−1) = 22−p. (C.4)

We conclude that cϕ = p22−p. ■

Proof of Theorem 4.2. We start by showing the result for an approximation of h. Let (Um)m∈N ⊂ X
s.t.

⋃
m Um = X and ∀m ∈ N, λ(Um) < ∞ and Um ⊂ Um+1. Define for µ ∈ N, (y, s) ∈ X× [0, 1]:

hm(µ, y, s) := [(h(µ, y, s) ∧m) ∨ (−m)]1{y∈Um}. (C.5)

Now hm ∈ L1(N×X× [0, 1])∩L2(N×X× [0, 1]) and hm → h in L2 as m → ∞. Moreover, |hm| ⩽ |h|
and |D(x,t) hm(η, y, s)| ⩽ |D(x,t) h(η, y, s)| for all (x, t), (y, s) ∈ X× [0, 1]. This implies that hm satisfies
(2.12) and hence hm ∈ dom δ.
Finally, hm is also bounded. In particular, for any µ ∈ N, (y, s) ∈ X× [0, 1],

|hm(µ, y, s)| ⩽ m1{y∈Um}. (C.6)

We conclude that δ(hm) is well-defined and has by (2.13) the pathwise expression

δ(hm) =

∫
X×[0,1]

hm(η − δ(y,s), y, s)η(dy, ds) −
∫
X

∫ 1

0

hm(η, y, s)λ(dy)ds. (C.7)

Define Xt as in Theorem 4.1 with h = hm and X0 = 0. Then δ(hm) = X1 and we infer from (4.2) that

ϕ(δ(hm)) − ϕ(0) =

∫
X×[0,1]

(
ϕ(Xs− + hm(η − δ(y,s), y, s)) − ϕ(Xs−)

)
η(dy, ds)

−
∫
X

∫ 1

0

ϕ′(Xs)hm(η, y, s)λ(dy)ds P-a.s. (C.8)

We would now like to take expectations on both sides of (C.8), but in order to do so, we must first
show that the terms in question are in L1(Pη). Start with a simple estimate for ϕ that uses Hölder
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continuity of ϕ′. Let a, b ∈ R. Then

|ϕ(a + b) − ϕ(a)| =

∣∣∣∣∫ 1

0

ϕ′(a + ub)b du

∣∣∣∣
⩽ |ϕ′(a)b| +

∫ 1

0

|b| · |ϕ′(a + ub) − ϕ′(a)| du

⩽ |ϕ′(0)b| + |ϕ′(a) − ϕ′(0)| · |b| + |b|
∫ 1

0

cϕ|ub|p−1du

⩽ |ϕ′(0)| · |b| + cϕ|a|p−1 · |b| +
cϕ
p
|b|p. (C.9)

We are also going to need a bound on sups∈[0,1]

{
max

{
|Xs|, |Xs−(η + δ(y,s))|

}}
. Using (C.6), we find

the following:

max
{
|Xs|, |Xs−(η + δ(y,s))|

}
⩽
∫
X×[0,1]

m1{x∈Um}η(dx, dt) +

∫
X

∫ 1

0

m1{x∈Um}λ(dx)dt

⩽ m (η(Um × [0, 1]) + λ(Um)) (C.10)

Using (C.9) with a = 0 and b = δ(hm), we get for the LHS in (C.8)

E |ϕ(δ(hm))| ⩽ |ϕ′(0)| · E|δ(hm)| +
cϕ
p
E|δ(hm)|p < ∞ (C.11)

which is finite since δ(hm) ∈ L2(Pη). To show that the first term on the RHS in (C.8) is integrable,
we first apply Mecke formula (2.6) to get

E

∣∣∣∣∣
∫
X×[0,1]

(
ϕ(Xs− + hm(η − δ(y,s), y, s)) − ϕ(Xs−)

)
η(dy, ds)

∣∣∣∣∣
⩽ E

∫
X

∫ 1

0

∣∣ϕ(Xs−(η + δ(y,s)) + hm(η, y, s)) − ϕ(Xs−(η + δ(y,s)))
∣∣λ(dy)ds. (C.12)

Now we combine (C.9), (C.10) and (C.6) to get that the RHS of (C.12) is bounded by

E
∫
X

∫ 1

0

(
|ϕ′(0)| ·m1{y∈Um} + cϕ|m (η(Um × [0, 1]) + λ(Um)) |p−1 ·m1{y∈Um}

+
cϕ
p
mp

1{y∈Um}

)
λ(dy)ds

⩽ mλ(Um)

(
|ϕ′(0)| + cϕm

p−1E
[
(η(Um × [0, 1]) + λ(Um))

p−1
]

+
cϕm

p−1

p

)
< ∞ (C.13)

which is finite since η(Um × [0, 1]) is a Poisson random variable with parameter λ(Um) and thus all
its moments are finite. This also shows that ϕ(Xs−(η + δ(y,s)) + hm(η, y, s)) − ϕ(Xs−(η + δ(y,s))) ∈
L1(N× X× [0, 1]). The second term on the RHS can be treated by the same method.
We can now take expectations on both sides of (C.8) and apply Mecke formula (2.6) to get:

Eϕ(δ(hm)) = E
∫
X

∫ 1

0

ϕ(Xs−(η + δ(y,s)) + hm(η, y, s)) − ϕ(Xs−(η + δ(y,s)))λ(dy)ds

− E
∫
X

∫ 1

0

ϕ′(Xs(η))hm(η, y, s)λ(dy)ds (C.14)

28



Now add and subtract the integral of ϕ(Xs−(η) + hm(η, y, s))− ϕ(Xs−(η)) (which can be shown to be
in L1(N× X× [0, 1]) by the same methods as above). We obtain:

Eϕ(δ(hm)) = E
∫
X

∫ 1

0

ϕ(Xs−(η + δ(y,s)) + hm(η, y, s)) − ϕ(Xs−(η + δ(y,s)))

− ϕ(Xs−(η) + hm(η, y, s)) + ϕ(Xs−(η))λ(dy)ds

+ E
∫
X

∫ 1

0

ϕ(Xs−(η) + hm(η, y, s)) − ϕ(Xs−(η)) − ϕ′(Xs(η))hm(η, y, s)λ(dy)ds

=: I1 + I2. (C.15)

To deal with I1, note that for a, b, c ∈ R

|ϕ(a + c) − ϕ(a) − ϕ(b + c) + ϕ(b)| =

∣∣∣∣∣
∫ b

a

ϕ′(u + c) − ϕ′(u)du

∣∣∣∣∣ (C.16)

⩽
∫ a∨b

a∧b

cϕ|c|p−1du (C.17)

= cϕ|a− b| · |c|p−1. (C.18)

Hence

|I1| ⩽ cϕE
∫
X

∫ 1

0

∣∣Xs−(η + δ(y,s)) −Xs−(η)
∣∣ · |hm(η, y, s)|p−1λ(dy)ds. (C.19)

Now we bound and rewrite part of the integrand on the RHS of (C.19) to find

∣∣Xs−(η + δ(y,s)) −Xs−(η)
∣∣

=

∣∣∣∣∣
∫
X×[0,s)

hm(η + δ(y,s) − δ(x,t), x, t)η(dx, dt) −
∫
X

∫ s

0

hm(η + δ(y,s), x, t)λ(dx)dt

−
∫
X×[0,s)

hm(η − δ(x,t), x, t)η(dx, dt) +

∫
X

∫ s

0

hm(η, x, t)λ(dx)dt

∣∣∣∣∣
=

∣∣∣∣∣
∫
X×[0,s)

D(y,s) hm(η − δ(x,t), x, t)η(dx, dt) −
∫
X

∫ s

0

D(y,s) hm(η, x, t)λ(dx)dt

∣∣∣∣∣
⩽
∫
X×[0,s)

∣∣D(y,s) hm(η − δ(x,t), x, t)
∣∣ η(dx, dt) +

∫
X

∫ s

0

∣∣D(y,s) hm(η, x, t)
∣∣λ(dx)dt (C.20)

Multiplying this by |hm(η, x, t)|p−1 and taking expectations, after an application of Mecke formula
(2.6) we deduce that

|I1| ⩽ cϕE
∫
X
λ(dy)

∫ 1

0

ds

∫
X
λ(dx)

∫ s

0

dt
∣∣D(y,s) hm(η, x, t)

∣∣(
|hm(η + δ(x,t), y, s)|p−1 + |hm(η, y, s)|p−1

)
λ(dx)dtλ(dy)ds. (C.21)

Since |a− b|p−1 ⩽ |a|p−1 + |b|p−1 for all a, b ∈ R, one has that

|hm(η + δ(x,t), y, s)|p−1 ⩽ |D(x,t) hm(η, y, s)|p−1 + |hm(η, y, s)|p−1 (C.22)

This implies that

|I1| ⩽ cϕE
∫
X
λ(dy)

∫ 1

0

ds

∫
X
λ(dx)

∫ s

0

dt
∣∣D(y,s) hm(η, x, t)

∣∣ · |D(x,t) hm(η, y, s)|p−1

+ 2cϕE
∫
X
λ(dy)

∫ 1

0

ds

∫
X
λ(dx)

∫ s

0

dt
∣∣D(y,s) hm(η, x, t)

∣∣ · |hm(η, y, s)|p−1. (C.23)
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Now we consider |I2|. For this, note that for a, b ∈ R,

|ϕ(a + b) − ϕ(a) − ϕ′(a)b| =

∣∣∣∣∣
∫ b

0

ϕ′(a + u) − ϕ′(a)du

∣∣∣∣∣
⩽ cϕ

∫ |b|

0

up−1du

=
cϕ
p
|b|p. (C.24)

Applying this to a = Xs(η) and h = hm(η, y, s) yields

|I2| ⩽
cϕ
p
E
∫
X

∫ 1

0

|hm(η, y, s)|pλ(dy)ds. (C.25)

Observe that in the previous computation we implicitly used the fact that, P-a.s., the set
{s ∈ [0, 1] : Xs(η) ̸= Xs−(η)} has zero Lebesgue measure. We have therefore shown the following in-
equality:

|Eϕ(δ(hm))| ⩽ cϕ
p
E
∫
X
λ(dy)

∫ 1

0

ds |hm(η, y, s)|p

+ cϕE
∫
X
λ(dy)

∫ 1

0

ds

∫
X
λ(dx)

∫ s

0

dt
∣∣D(y,s) hm(η, x, t)

∣∣ · |D(x,t) hm(η, y, s)|p−1

+ 2cϕE
∫
X
λ(dy)

∫ 1

0

ds

∫
X
λ(dx)

∫ s

0

dt
∣∣D(y,s) hm(η, x, t)

∣∣ · |hm(η, y, s)|p−1. (C.26)

By the construction of hm, the RHS of this inequality is upper bounded by

cϕ
p
E
∫
X
λ(dy)

∫ 1

0

ds |h(η, y, s)|p

+ cϕE
∫
X
λ(dx)

∫ 1

0

ds

∫
X
λ(dx)

∫ s

0

dt
∣∣D(y,s) h(η, x, t)

∣∣ · |D(x,t) h(η, y, s)|p−1

+ 2cϕE
∫
X
λ(dy)

∫ 1

0

ds

∫
X
λ(dx)

∫ s

0

dt
∣∣D(y,s) h(η, x, t)

∣∣ · |h(η, y, s)|p−1. (C.27)

In order to conclude the proof, it remains to show that Eϕ(δ(hm)) → Eϕ(δ(h)), as m → ∞. For this,
we use (C.9) with a = δ(h) and b = δ(hm) − δ(h) to get

E|ϕ(δ(hm)) − ϕ(δ(h))| ⩽ E|δ(hm) − δ(h)|
(
|ϕ′(0)| + cϕ|δ(h)|p−1 +

cϕ
p
|δ(hm) − δ(h)|p−1

)
. (C.28)

Using, in order, the Cauchy-Schwarz, Minkowski and Jensen inequalities, we obtain

E|ϕ(δ(hm)) − ϕ(δ(h))|

⩽ E
[
(δ(hm) − δ(h))

2
]1/2

E

[(
|ϕ′(0)| + cϕ|δ(h)|p−1 +

cϕ
p
|δ(hm) − δ(h)|p−1

)2
]1/2

⩽ E
[
δ(hm − h)2

]1/2(|ϕ′(0)| + cϕE
[
|δ(h)|2

](p−1)/2
+

cϕ
p
E
[
|δ(hm − h)|2

](p−1)/2
)
. (C.29)

By the isometry property (A.4) and the Cauchy-Schwarz inequality, we infer that

E
[
|δ(h)|2

]
⩽ E

∫
X

∫ 1

0

h(η, y, s)2λ(dy)ds + E
∫
X

∫ 1

0

∫
X

∫ 1

0

(
D(x,t) h(η, y, s)

)2
λ(dy)dsλ(dx)ds (C.30)
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and

E
[
|δ(hm − h)|2

]
⩽ E

∫
X

∫ 1

0

(hm(η, y, s) − h(η, y, s))2λ(dy)ds

+ E
∫
X

∫ 1

0

∫
X

∫ 1

0

(
D(x,t) hm(η, y, s) − D(x,t) h(η, y, s)

)2
λ(dy)dsλ(dx)ds. (C.31)

The RHS of (C.30) is finite because h satisfies (2.12), and the RHS of (C.31) tends to 0 as m → ∞
by dominated convergence and the assumption (2.12). This implies convergence to 0 on the RHS of
(C.29).
To show that the inequality holds in particular for ϕ(x) = |x|p with p ∈ (1, 2], it suffices to note that
by Lemma C.1, this function satisfies the conditions of the theorem. For ϕ(x) = |x|, we define hm as
in (C.5). Then hm ∈ L1(N× X× [0, 1]) ∩ L2(N× X× [0, 1]) ∩ dom δ and the pathwise representation
(2.13) holds. By the triangle inequality, we have

E|δ(hm)| ⩽ E
∫
X×[0,1]

|hm(η − δy,s, y, s)|η(dy, ds) + E
∫
X

∫ 1

0

|hm(η, y, s)|λ(dy)ds. (C.32)

By Mecke formula (2.6) and the fact that |hm| ⩽ |h|, inequality (4.3) follows with hm on the LHS
instead of h, and the second and third term on the RHS being zero. As we have shown before,
δ(hm) → δ(h) in L2(Pη) as m → ∞, hence the inequality follows for h. ■

Proof of Corollary 4.3. Step 1. We first prove the following slightly modified version of (4.3) which
holds under the weaker assumption h ∈ dom δ:

|Eϕ(δ(h))|

⩽
cϕ
p
E
∫
X
λ(dy)

∫ 1

0

ds|h(η, y, s)|p

+ cϕ

∫
X
λ(dy)

∫ 1

0

ds

∫
X
λ(dx)

∫ s

0

dt
(
E
∣∣D(y,s) h(η, x, t)

∣∣p)1/p · (E ∣∣D(x,t) h(η, y, s)
∣∣p)1−1/p

+ 2cϕ

∫
X
λ(dy)

∫ 1

0

ds

∫
X
λ(dx)

∫ s

0

dt
(
E
∣∣D(y,s) h(η, x, t)

∣∣p)1/p · (E |h(η, y, s)|p)
1−1/p

. (C.33)

For h satisfying (2.12), this is an immediate consequence of Theorem 4.2 by applying Hölder inequality.
Now let h ∈ L2(N×X× [0, 1]) and for τ ∈ (0, 1) define Pτh. By Lemma A.2, we have that Pτh satisfies
(2.12), and so inequality (C.33) holds when h is replaced by Pτh. Using (A.13) and (A.14), we deduce

|Eϕ(δ(Pτh)) − ϕ(0)| (C.34)

⩽
cϕ
p
E
∫
X
λ(dy)

∫ 1

0

ds|h(η, y, s)|p

+ cϕ

∫
X
λ(dy)

∫ 1

0

ds

∫
X
λ(dx)

∫ s

0

dt
(
E
∣∣D(y,s) h(η, x, t)

∣∣p)1/p · (E ∣∣D(x,t) h(η, y, s)
∣∣p)1−1/p

+ 2cϕ

∫
X
λ(dy)

∫ 1

0

ds

∫
X
λ(dx)

∫ s

0

dt
(
E
∣∣D(y,s) h(η, x, t)

∣∣p)1/p · (E |h(η, y, s)|p)
1−1/p

. (C.35)

It remains to show that ϕ(δ(Pτh)) → ϕ(δ(h)) in L1(η) as τ → 1. Using arguments similar to the ones
in the proof of Theorem 4.2, one shows that

E|ϕ(δ(Pτh)) − ϕ(δ(h))|

⩽ ∥δ(Pτh− h)∥L2(Pη)

(
|ϕ′(0)| + cϕ∥δ(h)∥p−1

L2(Pη)
+

cϕ
p
∥δ(Pτh− h)∥p−1

L2(Pη)

)
. (C.36)
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By the isometry property (A.1), the second moment Eδ(h)2 is finite since h ∈ dom δ and Lemma A.2
implies that ∥δ(Pτh− h)∥L2(Pη) → 0 as τ → 1.
Step 2. Let ∈ L2(N× X× [0, 1]) be predictable. Then h ∈ dom δ and (C.33) holds. If t < s, then by
predictability of h one has h(η + δ(y,s), x, t) = h(η, x, t) and hence D(y,s) h(η, x, t) = 0. It follows that
the second and third terms on the RHS of (C.33) are 0. Inequality (4.4) ensues.
Step 3. To prove (4.5) for p ∈ (1, 2], let h(η, x, s) := E[D(x,s) F |ηX×[0,s)]. This is predictable in the
sense of (2.16) (see Section 2) and by the Clark-Ocône representation (2.18), one has that

F = EF + δ(h) P-a.s. (C.37)

Define ϕ(x) := |x + EF |p − |EF |p. Then ϕ(0) = 0 and the derivative ϕ′ is (p − 1)-Hölder continuous
with Hölder constant 22−p by Lemma C.1. Moreover, it holds that

ϕ(δ(h)) = |F |p − |EF |p P-a.s. (C.38)

We can now apply (4.4) for this choice of ϕ and h and inequality (4.5) follows.
For p = 1, assume the RHS of the inequality (4.5) to be finite (else there is nothing to prove). Then
h(η, x, s) = E[D(x,s) F |ηX×[0,s)] ∈ dom δ ∩ L1(N× X× [0, 1]) and hence

δ(h) =

∫
X×[0,1]

h(η − δ(x,s), x, s)η(dx, ds) −
∫
X

∫ 1

0

h(η, x, s)λ(dx)ds. (C.39)

Using triangle inequality and Mecke formula, we deduce the chain of inequalities

E|F | − |EF | ⩽ E|F − EF |
= E|δ(h)| (C.40)

⩽ E
∫
X×[0,1]

|h(η − δ(x,t), x, t)|η(dx, dt) + E
∫
X

∫ 1

0

|h(η, x, t)|λ(dx)dt

⩽ 2E
∫
X

∫ 1

0

|h(η, x, t)|λ(dx)dt, (C.41)

which concludes the proof. ■

Proof of Corollary 4.7. Let (Un)n⩾1 ⊂ X be an increasing sequence of subsets such that
⋃

n⩾1 Un = X
and λ(Un) < ∞. Define for n ∈ N

hn(η, y, s) := 1{y∈Un}[(h(η, y, s) ∧ n) ∨ (−n)]. (C.42)

Clearly hn ∈ L1(N × X × [0, 1]) ∩ L2(N × X × [0, 1]) and we can define Pτhn for τ ∈ (0, 1). We
will start by showing (4.9) for Pτhn instead of h. Using the definition (A.9), one easily checks that
Pτhn ∈ L1(N×X× [0, 1]). By Lemma A.2, it also follows that Pτhn ∈ dom δ and hence we can apply
Lemma A.1 and deduce that

E
∫
X

∫ 1

0

Pτhn(η, x, s) D(x,s) Gλ(dx)ds = E [Gδ(Pτhn)] . (C.43)

This implies by Jensen’s inequality that for any p ∈ [1, 2]∣∣∣∣E∫
X

∫ 1

0

Pτhn(η, x, s) D(x,s) Gλ(dx)ds

∣∣∣∣ ⩽ cG (E|δ(Pτhn)|p)
1/p

. (C.44)

As by Lemma A.2 the quantity Pτhn also satisfies (2.12), we can apply Theorem 4.2 to E|δ(Pτhn)|p
with ϕ(x) = |x|p (which satisfies the required conditions by Lemma C.1). After a further application
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of Hölder inequality, this yields for p ∈ (1, 2] that

E|δ(Pτhn)|p

⩽ 22−pE
∫
X
λ(dy)

∫ 1

0

ds|Pτhn(η, y, s)|p

+ p22−p

∫
X
λ(dy)

∫ 1

0

ds

∫
X
λ(dx)

∫ s

0

dtE
[∣∣D(y,s) Pτhn(η, x, t)

∣∣p]1/p · E [∣∣D(x,t) Pτhn(η, y, s)
∣∣p]1−1/p

+ p23−p

∫
X
λ(dy)

∫ 1

0

ds

∫
X
λ(dx)

∫ s

0

dtE
[∣∣D(y,s) Pτhn(η, x, t)

∣∣p]1/p · E [|Pτhn(η, y, s)|p]
1−1/p

. (C.45)

Using Lemma A.2 and the definition of hn, we find that

E|D(x,s) Pτhn(η, y, u)|p ⩽ E|D(x,s) h(η, y, u)|p (C.46)

and

E|Pτhn(η, y, u)|p ⩽ E|h(η, y, u)|p (C.47)

hence (C.45) is upper bounded by the RHS of (4.9). For p = 1, we reason as in the proof of Corollary 4.3
to deduce that

E|δ(Pτhn)| ⩽ 2E
∫
X

∫ 1

0

|Pτhn(η, x, s)|λ(dx)ds, (C.48)

which is again upper bounded by the RHS of (4.9).
It remains to take τ → 1 and n → ∞ in the LHS of (C.44). By (A.9), one sees that Pτhn(η, x, s) =
1{x∈Un}Pτhn(η, x, s), and hence by the Cauchy-Schwarz inequality

E
∫
X

∫ 1

0

|Pτhn(η, x, s) − hn(η, x, s)| · |D(x,s) G|λ(dx)ds ⩽ 2cGλ(Un)∥Pτhn − hn∥L2(N×X×[0,1]), (C.49)

which converges to zero as τ → 1, by Lemma A.2. Therefore inequality (4.9) holds with hn instead of
h on the LHS. By dominated convergence, hn DG → hDG in L1(N×X× [0, 1]), thus inequality (4.9)
holds for h. ■

D Proofs of Theorems 3.2, 3.3 and 3.4

Throughout this section, we work with the simplified notation adopted in Remark 3.1; recall also the
definitions of the distances dW and dK given in (3.1) and (3.2), and write H to denote the set of
Lipschitz-continuous functions h : R → R with Lipschitz constant ∥h∥L ⩽ 1. Let N ∼ N (0, 1).

Given h ∈ H and ϕ(z) = P(N ⩽ z), Stein’s equation

f ′(x) = xf(x) + h(x) −
∫
R
h(y)ϕ′(y)dy, x ∈ R, (D.1)

admits a canonical solution fh satisfying the two properties: (a) fh ∈ C1(R) and ∥f ′
h∥∞ ⩽

√
2
π

and (b) f ′
h is Lipschitz-continuous with ∥f ′

h∥L ⩽ 2, see e.g. [PR16, Theorem 3, Chapter 6] and the
references therein. In particular, one has that

dW (F,N) = sup
h∈H

|f ′
h(F ) − Ffh(F )|. (D.2)

Similarly, for fixed z ∈ R, the canonical solution fz to Stein’s equation

f ′
z(x) = xfz(x) + 1(−∞,z](x) − ϕ(z), x ∈ R, (D.3)

is differentiable everywhere except at z, where it is customary to define f ′
z(z) = zfz(z)+1−ϕ(z). One

has that
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� ∥fz∥∞ ⩽
√
2π
4 and ∥f ′

z∥∞ ⩽ 1

� |xfz(x)| ⩽ 1 for all x ∈ R and the function x 7→ xfz(x) is non-decreasing for all z ∈ R,

(see e.g. [CGS11, Lemma 2.3]). We consequently have that

dK(F,N) = sup
z∈R

|f ′
z(F ) − Ffz(F )|. (D.4)

Proof of Thm. 3.2. We will show the upper bounds in (3.3) and (3.4) by exploiting the representations
(D.2) and (D.4). The proof is divided into three steps. First, we are going to derive the first terms on
the RHSs of (3.3) and (3.4) for both Wasserstein and Kolmogorov distances at the same time. Second,
we deduce the second term on the RHS of (3.3) and, as a last step, we find the second term on the
RHS of (3.4). Throughout the proof, we fix h ∈ H and z ∈ R and consider the corresponding canonical
solutions fh and fz.
Step 1. Write f for either fh or fz. Then, f is Lipschitz and there is a version of f ′ which is bounded.
Since F ∈ dom D and f ′ is bounded, the expression

Ef ′(F )

∫
Y

Dy F E[Dy F |ηy]λ̄(dy) (D.5)

is well-defined. Add and subtract this term to Ef ′(F ) − EFf(F ) and bound the resulting first term
as follows: ∣∣∣∣Ef ′(F ) − Ef ′(F )

∫
Y

Dy F E[Dy F |ηy]λ̄(dy)

∣∣∣∣
⩽ E|f ′(F )| ·

∣∣∣∣1 −
∫
Y

Dy F E[Dy F |ηy]λ̄(dy)

∣∣∣∣
⩽ ∥f ′∥∞ E

∣∣∣∣1 −
∫
Y

Dy F E[Dy F |ηy]λ̄(dy)

∣∣∣∣ . (D.6)

As ∥f ′
h∥∞ ⩽

√
2
π and ∥f ′

z∥∞ ⩽ 1, the bounds follow.

We are left to deal with ∣∣∣∣EFf(F ) − Ef ′(F )

∫
Y

Dy F E[Dy F |ηy]λ̄(dy)

∣∣∣∣ . (D.7)

Since f is Lipschitz and F ∈ L2(Pη), it follows that f(F ) ∈ L2(Pη). Hence by Lemma A.3

EFf(F ) = Cov(F, f(F )) = E
∫
Y
E[Dy F |ηy] E[Dy f(F )|ηy]λ̄(dy). (D.8)

Again by Lipschitzianity of f , it follows that |Dy f(F )| ⩽ |Dy F | and hence an application of Cauchy-
Schwarz inequality justifies that

EFf(F ) = E
∫
Y
E[Dy F |ηy] Dy f(F )λ̄(dy). (D.9)

Therefore we are left to bound

E
∫
Y
|E[Dy F |ηy]| · |f ′(F ) Dy F − Dy f(F )| λ̄(dy). (D.10)

Step 2. To bound (D.10) for the Wasserstein distance, we use an argument borrowed from the proof
of [BOPT20, Theorem 3.1] to upper bound |fh(b) − fh(a) − f ′

h(a)(b− a)|. Let a, b ∈ R. Then by the
properties stated above, fh is Lipschitz and hence

|fh(b) − fh(a) − f ′
h(a)(b− a)| ⩽ |fh(b) − fh(a)| + |f ′

h(a)(b− a)| ⩽ 2
√

2
π |b− a|. (D.11)
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But at the same time by Lipschitzianity of f ′
h,

|fh(b) − fh(a) − f ′
h(a)(b− a)| =

∣∣∣∣∣
∫ b

a

f ′
h(x) − f ′

h(a)dx

∣∣∣∣∣ ⩽ 2(b− a)2. (D.12)

We deduce that for any q ∈ [1, 2]

|fh(b) − fh(a) − f ′
h(a)(b− a)| ⩽ 2 min{|b− a|, (b− a)2} ⩽ 2|b− a|q. (D.13)

It follows that

|f ′
h(F ) Dy F − Dy fh(F )| = |fh(F (η + δy)) − fh(F (η)) − f ′

h(F (η))(F (η + δy) − F (η))|
⩽ 2|Dy F |q. (D.14)

and therefore (D.10) is bounded by

2E
∫
Y
|E[Dy F |ηy]| |Dy F |qλ̄(dy). (D.15)

The required bound in the Wasserstein distance follows suit.
Step 3. We reason as in the proof of [LRPY20, Theorem 1.12] to conclude

|f ′
z(F ) Dy F − Dy fz(F )| ⩽ Dy F · Dy(Ffz(F ) + 1{F>z}) (D.16)

Thus (D.10) is upper bounded by

E
∫
Y
|E[Dy F |ηy]|Dy F · Dy

(
Ffz(F ) + 1{F>z}

)
λ̄(dy). (D.17)

The desired bound now follows by taking the supremum over all z ∈ R. ■

Proof of Theorem 3.3. The proof will be split into two steps.
Step 1. We start by showing that under the conditions of the theorem,

E
∣∣∣∣1 −

∫
Y

Dy F E[Dy F |ηy]λ̄(dy)

∣∣∣∣ ⩽ β1 + β2. (D.18)

We can assume that EF = 0 and σ = 1 (indeed, the result then follows since D F̂ = σ−1 DF ).
For ease of notation, define

G :=

∫
Y

Dy F E[Dy F |ηy]λ̄(dy) − 1. (D.19)

As a first step, we show that EG = 0. As F ∈ dom D, we can use Fubini’s theorem and Lemma A.3 to
deduce

E
∫
Y

Dy F E[Dy F |ηy]λ̄(dy) = E
∫
Y
E[Dy F |ηy]2λ̄(dy) = Var(F ) = 1. (D.20)

Now by the modification (4.6) of Corollary 4.3 given in Remark 4.4 and since G ∈ L1(Pη), we have for
p ∈ [1, 2],

E|G| ⩽ (E|G|p)
1/p ⩽

(
22−pE

∫
Y
E[|Dx G||ηx]pλ̄(dx)

)1/p

. (D.21)

Let us now study the term

Dx G = Dx

∫
Y

Dy F E[Dy F |ηy]λ̄(dy) (D.22)

and define
h(η, y) := Dy F E[Dy F |ηy]. (D.23)
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We want to show that since h ∈ L1(N× Y),∣∣∣∣Dx

∫
Y
h(η, y)λ̄(dy)

∣∣∣∣ ⩽ ∫
Y
|Dx h(η, y)| λ̄(dy). (D.24)

and to do so we need an argument taken from the proof of [LPS16, Proposition 4.1]: Assume the RHS
of (D.24) to be finite (if it is not, then the inequality (D.24) is trivially true). Then∫

Y
|h(η + δx, y)|λ̄(dy) ⩽

∫
Y
|Dx h(η, y)| + |h(η, y)|λ̄(dy) < ∞ (D.25)

and hence

Dx

∫
Y
h(η, y)λ̄(dy) =

∫
Y

Dx h(η, y)λ̄(dy). (D.26)

The inequality (D.24) follows. We have therefore shown

E|G| ⩽
(

22−pE
∫
Y
E
[∫

Y
|Dx h(η, y)|λ̄(dy)

∣∣∣∣ ηx]p λ̄(dx)

)1/p

=

(
22−p

∫
Y
E
(∫

Y
E
[
|Dx h(η, y)|

∣∣ηx]λ̄(dy)

)p

λ̄(dx)

)1/p

, (D.27)

where the second line follows from Tonelli’s theorem. By Minkowski’s integral inequality,

E
(∫

Y
E
[
|Dx h(η, y)|

∣∣ηx]λ̄(dy)

)p

⩽

(∫
Y
E
[
E
[
|Dx h(η, y)|

∣∣ηx]p]1/pλ̄(dy)

)p

. (D.28)

By the formula (2.4) for products,

Dx h(η, y) = Dx (Dy F E[Dy F |ηy])

= D(2)
x,y F · E[Dy F |ηy] + Dy F · Dx E[Dy F |ηy] + D(2)

x,y F · Dx E[Dy F |ηy]. (D.29)

Since E[Dy F |ηy] depends on η only through ηy, it follows that Dx E[Dy F |ηy] = 0 whenever x ⩾ y.

Moreover, since F ∈ L2(Pη) implies that Dy F,D
(2)
x,y F ∈ L1(Pη) by [LP11b, Theorem 1.1], if x < y, we

can put the add-one cost operator inside the conditional expectation. Therefore

Dx E[Dy F |ηy] = 1{x<y}E[D(2)
x,y F |ηy]. (D.30)

By Minkowski’s norm inequality, it follows that

E
[
E
[
|Dx h(η, y)|

∣∣ηx]p]1/p ⩽ E
[
E
[
|D(2)

x,y F · E[Dy F |ηy]|
∣∣ηx]p]1/p

+ E
[
E
[
|Dy F · 1{x<y}E[D(2)

x,y F |ηy]|
∣∣ηx]p]1/p

+ E
[
E
[
|D(2)

x,y F · 1{x<y}E[D(2)
x,y F |ηy]|

∣∣ηx]p]1/p . (D.31)

By the properties of conditional expectations and splitting the first term into two parts, (D.31) is
bounded by

1{y⩽x}E
[
|E[|D(2)

x,y F ||ηx]p · E[Dy F |ηy]|p
]1/p

+ 1{x<y}E
[
E
[
E[|D(2)

x,y F ||ηy] · |E[Dy F |ηy]|
∣∣ηx]p]1/p

+ 1{x<y}E
[
E
[
E[|Dy F ||ηy] · |E[D(2)

x,y F |ηy]|
∣∣ηx]p]1/p

+ 1{x<y}E
[
E
[
E[|D(2)

x,y F ||ηy] · |E[D(2)
x,y F |ηy]|

∣∣ηx]p]1/p . (D.32)

36



By an application of Jensen’s inequality (D.32) is now bounded by

E
[
|E[Dy F |ηy]|p · E

[
|D(2)

x,y F |
∣∣ηx∨y

]p]1/p
+ 1{x<y}E

[
E
[
|Dy F |

∣∣ηy]p · ∣∣E[D(2)
x,y F

∣∣ηy]∣∣p]1/p
+ 1{x<y}E

[
E
[
|D(2)

x,y F |
∣∣ηy]2p]1/p . (D.33)

Plugging the conclusion from (D.28) - (D.33) into (D.27) and applying Minkowski’s norm inequality
again yields

E|G| ⩽ 22/p−1

(∫
Y

(∫
Y
E
[∣∣E[Dy F |ηy]

∣∣p · E[|D(2)
x,y F |

∣∣ηx∨y

]p]1/p
λ̄(dy)

)p

λ̄(dx)

)1/p

+ 22/p−1

(∫
Y

(∫
Y
1{x<y}E

[
E
[
|Dy F |

∣∣ηy]p · ∣∣E[D(2)
x,y F |ηy]

∣∣p]1/p λ̄(dy)

)p

λ̄(dx)

)1/p

+ 22/p−1

(∫
Y

(∫
Y
1{x<y}E

[
E
[
|D(2)

x,y F |
∣∣ηy]2p]1/p λ̄(dy)

)p

λ̄(dx)

)1/p

(D.34)

which is in turn bounded by

22/p
(∫

Y

(∫
Y
E
[
E
[
|Dy F |

∣∣ηy]p · E[|D(2)
x,y F |

∣∣ηx∨y

]p]1/p
λ̄(dy)

)p

λ̄(dx)

)1/p

+ 22/p−1

(∫
Y

(∫
Y
1{x<y}E

[
E
[
|D(2)

x,y F |
∣∣ηy]2p]1/p λ̄(dy)

)p

λ̄(dx)

)1/p

. (D.35)

The result follows by an application of the Cauchy-Schwarz inequality.
Step 2. We want to show that

E
∫
Y
|E[Dy F |ηy]| · |Dy F |qλ̄(dy) ⩽ β3 + β4. (D.36)

Again it suffices to show (D.36) for F with EF = 0 and EF 2 = 1. Assume the β3, β4 to be finite
(otherwise there is nothing to prove). Then, in particular

E
∫
Y
|E [Dy F | ηy]|q+1

λ̄(dy) < ∞ (D.37)

and we can add and subtract this term to the LHS of (D.36), yielding β3 and the following rest term:∣∣∣∣E∫
Y
|E[Dy F |ηy]| · |Dy F |qλ̄(dy) − E

∫
Y
|E [Dy F | ηy]|q+1

λ̄(dy)

∣∣∣∣
=

∣∣∣∣E∫
Y
|E[Dy F |ηy]| · E[|Dy F |q|ηy]λ̄(dy) − E

∫
Y
|E [Dy F | ηy]|q+1

λ̄(dy)

∣∣∣∣
⩽ E

∫
Y
|E[Dy F |ηy]| ·

∣∣E[|Dy F |q|ηy] − |E [Dy F | ηy]|q
∣∣λ̄(dy), (D.38)

where the equality is justified by the fact that E[G|ηy] is defined for all G ∈ L0(Pη) which are integrable
or non-negative (see the definition (2.17)).
The term E[|Dy F |q|ηy] − |E [Dy F | ηy]|q can be rewritten as

Ẽ|gy(χ)|q − |Ẽgy(χ)|q, (D.39)
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where gy(χ) = Dy F (ηy + χ) and Ẽ is the expectation with respect to χ, a Poisson measure on the
space {x ∈ Y : x ⩾ y} with intensity λ ⊗ ds, independent of η. As F ∈ dom D, it can be shown that
gy ∈ L2(Pχ) for a.e. y ∈ Y.
By (4.5) in Corollary 4.3,

Ẽ|gy(χ)|q − |Ẽgy(χ)|q ⩽ 22−qẼ
∫
Y
1{y⩽x}

∣∣Ẽ[Dx gy(χ)|χx]
∣∣qλ̄(dx). (D.40)

Plugging (D.40) into (D.38), we deduce that the RHS of (D.38) is upper bounded by

22−qE
∫
Y
|E[Dy F |ηy]|

∫
Y
1{y⩽x}Ẽ

∣∣Ẽ[Dx gy(χ)|χx]
∣∣qλ̄(dx)λ̄(dy). (D.41)

Since χ and η are independent and have the same intensity measure,

1{y⩽x}|E[Dy F |ηy]| · Ẽ
∣∣Ẽ[Dx gy(χ)|χx]

∣∣q (D.42)

has the same law as
1{y⩽x}|E[Dy F |ηy]| · E

[
|E[D(2)

x,y F |ηx]|p
∣∣ηy]. (D.43)

This implies finally that the RHS of (D.38) is upper bounded by

22−qE
∫
Y

∫
Y
1{y⩽x}|E[Dy F |ηy]| · |E[D(2)

x,y F |ηx]|qλ̄(dx)λ̄(dy) (D.44)

and the result follows by the Cauchy-Schwarz inequality. ■

Proof of Theorem 3.4. It suffices to prove this result for F such that EF = 0 and σ = 1. If Theorem 3.4
holds for all σ-finite spaces X, it holds in particular for the space X× [0, 1]. In fact, it suffices to prove
Theorem 3.4 for functionals F ∈ L2(Pη) ∩ dom D, where η is a (X × [0, 1], λ ⊗ ds)-Poisson measure.
Indeed, as discussed in Section 2, we can regard any functional F ∈ L2(Pχ), with the (X, λ)-Poisson
measure χ, as a functional of η without changing the law of F or its add-one costs. If we replace X
by X × [0, 1] and χ by η in the terms γ1, ..., γ7, the expressions do not change either since for any
F ∈ L2(Pχ) ∩ dom D, the integrands do not depend on time. For the rest of this proof, we let thus
F ∈ L2(Pη) ∩ dom D and recall the notation from Remark 3.1 where Y := X × [0, 1] and λ̄ := λ ⊗ ds
are explicitly defined.
We divide this proof into two steps: first, we discuss the bound on the Wasserstein distance, second,
we show the bound on the Kolmogorov distance.
Step 1. By a combination of Theorems 3.2 and 3.3, we see that

dW (G,N) ⩽

√
2

π
E
∣∣∣∣1 −

∫
Y

Dy F E[Dy F |ηy]λ̄(dy)

∣∣∣∣+ 2E
∫
Y
|E[Dy F |ηy]| · |Dy F |qλ̄(dy)

⩽ β1 + β2 + 2E
∫
Y
|E[Dy F |ηy]| · |Dy F |qλ̄(dy). (D.45)

To bound β1 and β2, we simply apply Jensen’s inequality and bound 1{x<y} by 1. This gives

β1 + β2 ⩽ γ1 + γ2. (D.46)

For the second term, apply Hölder’s inequality to deduce

E
∫
Y
|E[Dy F |ηy]| · |Dy F |qλ̄(dy) ⩽

∫
Y

(
E |E[Dy F |ηy]|q+1

)1/(q+1)

·
(
E|Dy F |q+1

)1−1/(q+1)
λ̄(dy).

(D.47)
A further application of Jensen’s inequality yields the result.
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Step 2. We start from inequality (3.4) in Theorem 3.2. The first term was dealt with in Step 1 of
this proof. Let us deal with the second term. Define

h(η, y) := Dy F · |E[Dy F |ηy]| (D.48)

and for z ∈ R,
Zz := Ffz(F ) + 1{F>z}. (D.49)

The term we want to bound is thus given by

sup
z∈R

E
∫
Y
h(η, y) Dy Zzλ̄(dy). (D.50)

Since F ∈ dom D, it follows by Cauchy-Schwarz inequality that h ∈ L1(N × Y). Moreover, by the
properties of fz, we have |Zz| ⩽ 2 for all z ∈ R. Hence we can apply Corollary 4.7 and get for any
p ∈ [1, 2]

E
∫
Y
h(η, y) Dy Zzλ̄(dy) ⩽ 2

(
22−pE

∫
Y
|h(η, y)|pλ̄(dy)

+ p22−pE
∫
Y

∫
Y
|Dy h(η, x)|p λ̄(dy)λ̄(dx)

+ p23−p

∫
Y

∫
Y
1{x<y} (E |Dy h(η, x)|p)

1/p · (E |h(η, y)|p)
1−1/p

λ̄(dy)λ̄(dx)

)1/p

= (I1 + I2 + I3)1/p

⩽ (I1)1/p + (I2)1/p + (I3)1/p, (D.51)

since |a + b|1/p ⩽ |a|1/p + |b|1/p.
Let us first look at I1. By applying the Cauchy-Schwarz and Jensen inequalities, it follows that

I1 = 4E
∫
Y
|Dy F |p · |E[Dy F |ηy]|pλ̄(dy)

⩽ 4

∫
Y
E
[
|Dy F |2p

]
λ̄(dy). (D.52)

Now we deal with I2. By the formula (2.4),

Dy h(η, x) = D(2)
x,y F · Dy |E[Dx F |ηx]| + D(2)

x,y F · |E[Dx F |ηx]| + Dx F · Dy |E[Dx F |ηx]|. (D.53)

By Minkowski’s norm inequality,(
E
∫
Y

∫
Y
|Dy h(η, x)|p λ̄(dy)λ̄(dx)

)1/p

⩽

(
E
∫
Y

∫
Y

∣∣∣D(2)
x,y F · Dy |E[Dx F |ηx]|

∣∣∣p λ̄(dy)λ̄(dx)

)1/p

+

(
E
∫
Y

∫
Y

∣∣∣D(2)
x,y F · |E[Dx F |ηx]|

∣∣∣p λ̄(dy)λ̄(dx)

)1/p

+

(
E
∫
Y

∫
Y

∣∣Dx F · Dy |E[Dx F |ηx]|
∣∣pλ̄(dy)λ̄(dx)

)1/p

. (D.54)

By the triangle inequality, and as in the proof of Theorem 3.3,∣∣Dy |E[Dx F |ηx]|
∣∣ ⩽ 1{y<x}|Dy E[Dx F |ηx]| ⩽ |E[D(2)

x,y F |ηx]|. (D.55)
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By the Cauchy-Schwarz and Jensen inequalities,

(I2)1/p ⩽ (4p)1/p
(∫

Y

∫
Y
E
[
|D(2)

x,y F |2p
]
λ̄(dy)λ̄(dx)

)1/p

+ 22/p+1p1/p
(∫

Y

∫
Y
E
[
|D(2)

x,y F |2p
]1/2

· E
[
|Dx F |2p

]1/2
λ̄(dy)λ̄(dx)

)1/p

. (D.56)

Lastly, we look at the term I3. Since E[Dx F |ηx] depends only on ηx, we get

1{x<y} Dy |E[Dx F |ηx]| = 0. (D.57)

Hence

1{x<y}
(
E |Dy h(η, x)|p

)1/p
= 1{x<y}

(
E
∣∣∣D(2)

x,y F · E[Dx F |ηx]
∣∣∣p)1/p . (D.58)

Applying Cauchy-Schwarz and Jensen again yields

I3 ⩽ 8p

∫
Y

∫
Y

(
E|D(2)

x,y F |2p
) 1

2p ·
(
E|Dx F |2p

) 1
2p ·

(
E |Dy F |2p

)1−1/p

λ̄(dy)λ̄(dx). (D.59)

This inequality concludes the proof. ■

E Online Nearest Neighbour Graph

The technical proofs in this section sometimes use ideas and techniques close to [Pen05, Section 3.4]
and [Wad09] (and previous papers). We will discuss the connections with this part of the literature as
the proofs unfold.

Throughout this section, we work under the setting of Section 5.1. We will adopt the following
notation: for a measurable subset A ⊂ Rd, we will write ηA for η|A×[0,1]. Moreover, we need to adapt

the definition of ‘generic’ to sets in the marked space Rd × [0, 1]. In this section only, we call a finite
set µ ⊂ Rd × [0, 1] generic if

� all projections of µ onto Rd are distinct;

� all pairwise distances between projections of µ onto Rd are distinct;

� all projections of µ onto [0, 1] are distinct.

Note that for any convex body D0 ⊂ Rd, the restriction of an (Rd× [0, 1], dx⊗ds)-Poisson measure η to
D0× [0, 1] has generic support. We call µ generic with respect to a point (or points) (x, s), (y, u) ∈
Rd × [0, 1] if µ ∪ {(x, s), (y, u)} is generic.

We start with a short discussion of the properties of the space H defined in Section 5.1. Since H
has non-empty interior, there exist δ > 0 and y0 ∈ H such that Bd(y0, δ) ⊂ H. Fix these δ and y0
throughout this section. For ϵ > 0 define

Hϵ := {x ∈ H : dist(x, ∂H) > ϵ}, (E.1)

where dist denotes the Euclidean distance and ∂H the boundary of H. For small ϵ, this set is non-
empty. By [HLS16, (3.19)], one has

|H \Hϵ| ⩽ |H + Bd(0, ϵ)| − |H|, (E.2)

where the sum is the Minkowski sum of sets. By Steiner’s formula (cf. [SW08, (14.5)]), it follows that
there is a constant βH > 0 such that

|H \Hϵ| ⩽ βH ϵ. (E.3)
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E.1 Moment estimates of conditional expectations of add-one costs

The goal of this subsection is to prove the following proposition:

Proposition E.1. Assume the conditions in the statement of Theorem 5.3. Let α > 0 and r ⩾ 1.
Then for all t ⩾ 1 and all (x, s), (y, u) ∈ tH × (0, 1] with s < u, it holds that

E
[
E
[
|D(x,s) F

(α)
t |

∣∣η|tH×[0,s)

]r]1/r
⩽ c1(s−α/d ∧ tα) (E.4)

E
[
E
[
|D(2)

(x,s),(y,u) F
(α)
t |

∣∣η|tH×[0,u)

]r]1/r
⩽ c1(u−α/d ∧ tα). (E.5)

P
(
E
[
|D(2)

(x,s),(y,u) F
(α)
t |

∣∣η|tH×[0,u)

]
̸= 0
)
⩽ C2 exp(−c2u|x− y|d). (E.6)

where c1 > 0 is a constant depending on α, r and ϵ and c2, C2 > 0 depend only on d and H.

Remark E.2. The bound (E.4) can be compared to Lemma 4.2 in [Wad09], with the difference that
we work in a Poisson setting and consider general moments r ⩾ 1, whereas [Wad09] considers uniform
random variables and r = 2.

We start with two technical lemmas.

Lemma E.3. Let ϵ, ℓ > 0. There exists 0 < q < 1 depending only on ℓ, ϵ and d such that for every
convex body D0 ⊂ Rd satisfying diam(D0) ⩽ ℓ and Bd(y0, ϵ) ⊂ D0 for some y0 ∈ D0, for every w ∈ D0

and 0 < s ⩽ ℓ, there is a point w′ ∈ D0 with

Bd(w′, qs) ⊂ D0 ∩Bd(w, s). (E.7)

In particular, this implies that

inf
w∈D0
0<s⩽ℓ

|D0 ∩Bd(w, s)|
sd

⩾ c1(ϵ, ℓ, d) (E.8)

with c1(ϵ, ℓ, d) > 0 a constant depending on ϵ, ℓ and d.

In words, this lemma means that there is a constant rate q such that for any not-too-big ball
intersecting D0, we can find a smaller ball shrunken by the factor q within the intersection. The ratio
q at which the ball is shrunk depends only on a lower bound for the in-radius of D0 and an upper
bound for the diameter of D0. This will become important in the proof of Proposition E.1, where D0

is a probabilistic object, but has deterministic upper and lower bounds.

Remark E.4. While geometric lemmas in the spirit of Lemma E.3 are already shown in [Pen05, Wad09]
and appear in some form in many papers on stochastic geometry, we need a version that allows for fine
control over the constants, in order to be able to state our results in the full generality of convex sets.

Proof. Since the ball Bd(y0, ϵ) is a subset of D0 and D0 is closed and convex, for any w ∈ D0, the
convex hull of w ∪ Bd(y0, ϵ) is inside D0. If d ⩾ 2 and for w /∈ Bd(y0, ϵ), this is a cone-like structure
with angular radius ωw = arcsin(ϵ/|w − y0|). Since diam(D0) ⩽ ℓ, it follows that

π

4
∧ inf

w∈D0

ωw ⩾
π

4
∧ arcsin

( ϵ
ℓ

)
=: θ. (E.9)

For every w ∈ D0, let C(w) be the closed cone centred at w, of angular radius θ and central axis the
half-line from w through y0 (if d = 1, take C(w) to be the closed half-line starting at w and containing
y0). The set A(w, ϵ) := C(w) ∩ Bd(w, ϵ) is now included in D0. This is clear if d = 1. If d ⩾ 2, then
if w /∈ Bd(y0, ϵ), it follows that |y0 − w| > ϵ and since θ ⩽ ωw ∧ π

4 , one deduces that A(w, ϵ) is inside

the convex hull of w ∪ Bd(y0, ϵ) (here we need θ ⩽ π
4 ). If w ∈ Bd(y0, ϵ), then by construction A(w, ϵ)

is also inside Bd(y0, ϵ) (here we need θ ⩽ π
3 ).
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Since s, ϵ ⩽ ℓ, it follows that

A
(
w,

ϵs

ℓ

)
⊂ A(w, ϵ) ∩Bd(w, s) ⊂ D0 ∩Bd(w, s). (E.10)

The set A(0, 1) = Bd(0, 1)∩C(0) is convex and of non-zero volume, therefore it contains an open ball
of some radius r > 0, centred at some point z ∈ A(0, 1). By translation and scaling,

Bd
(ϵs
ℓ
· z + w,

ϵsr

ℓ

)
⊂ A

(
w,

ϵs

ℓ

)
. (E.11)

Thus with q = ϵr
ℓ and w′ = ϵs

ℓ · z + w, we achieve

Bd(w′, qs) ⊂ A
(
w,

ϵs

ℓ

)
⊂ D0 ∩Bd(w, s). (E.12)

Since Bd(w′, qs) is open, we have Bd(w′, qs) ⊂ Bd(w, s). The statement (E.8) follows easily by taking
c1(ϵ, ℓ, d) := κdq

d. ■

For the next part, we need some additional technical definitions. Let C1(0), ..., CK(0) be a collection

of closed cones centred at 0 and of angular radius π
12 such that

⋃K
i=1 Ci(0) = Rd (for d = 1, take

C1(0) := (−∞, 0] and C2(0) := [0,∞)). Define Ci(x) := Ci(0) + x for x ∈ Rd and let C+
1 (x), ..., C+

K(x)
be the cones centred at x of angular radius π

6 such that C+
i (x) has the same central half-axis as Ci(x)

for each i (for d = 1, take C+
i (0) = Ci(0)).

For A ⊂ Rd a convex body, x ∈ A and µ ⊂ Rd × [0, 1] a finite set which is generic with respect to x,
define

� si(x,A) := diam(Ci(x) ∩A);

� Ri,θ(x,A, µ) := inf{|x− y| : (y, u) ∈
(
A ∩ C+

i (x) × [0, θ)
)
∩µ} ∧ si(x,A) for θ ∈ [0, 1] and where

inf ∅ = ∞;

� Rθ(x,A, µ) := maxi=1,...,K Ri,θ(x,A, µ).

In practice, when it is clear what A and µ are, we will omit them from the notation and write
si(x), Ri,θ(x), Rθ(x). In words, si(x,A) is the maximal distance within A from x to any point in the
cone Ci(x). The quantity Ri,θ(x,A, µ) is the distance to the closest point of µ of mark smaller then θ
within A and the larger cone C+

i (x). The quantity Rθ(x,A, µ) is such that the ball Bd(x,Rθ(x,A, µ))
either contains a point of mark less than θ, or if it doesn’t, then it contains all of A.

Remark E.5. The use of cones and the construction of the radii Rθ follows the ideas given in [Pen05,
Wad09], again with the difference that we work in a Poisson setting without passing through uniform
random vectors.

Lemma E.6. Let ϵ, ℓ > 0 and D0 ⊂ Rd be as in Lemma E.3. Take λ > 0 and x ∈ λD0, and let
0 < r ⩽ si(x, λD0) for some i ∈ {1, ...,K}. Then there is a constant c2(ϵ, ℓ, d) > 0 such that

|λD0 ∩ C+
i (x) ∩Bd(x, r)| ⩾ c2(ϵ, ℓ, d)rd. (E.13)

Remark E.7. A similar result was shown in the proof of [Wad09, Lemma 3.2], with a constant depending
on D0.

Proof. First, we show that there is a point z ∈ λD0 such that Bd(z, r
8 ) ⊂ C+

i (x) ∩ Bd(x, r). Indeed,
as r ⩽ si(x, λD0), there is by convexity a point z ∈ λD0 ∩ Ci(x) such that |x− z| = r

2 . Now consider

any point y ∈ Bd(z, r
8 ). For d = 1, one has that y ∈ C+

i (x) ∩B1(x, r). For d ⩾ 2, the angle ∠zxy will
be largest when the line (xy) is tangent to Bd(z, r

8 ), in which case

∠zxy ⩽ arcsin

(
r/8

r/2

)
= arcsin

(
1

4

)
<

π

12
. (E.14)
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Since z ∈ Ci(x), this implies that y ∈ C+
i (x) and we clearly also have |x−y| ⩽ |x−z|+|z−y| ⩽ 5

8r < r.
We infer that for all d ⩾ 1,

|λD0 ∩ C+
i (x) ∩Bd(x, r)| ⩾ |λD0 ∩Bd(z, r

8 )|. (E.15)

Now 1
λz ∈ D0 and 1

λ
r
8 ⩽ diam(D0) ⩽ ℓ, therefore Lemma E.3 implies∣∣λD0 ∩Bd

(
z, r

8

)∣∣ = λd
∣∣D0 ∩Bd

(
1
λz,

1
λ

r
8

)∣∣ ⩾ λdc1(ϵ, ℓ, d)
(

r
8λ

)d
= 8−dc1(ϵ, ℓ, d)rd, (E.16)

which yields the desired bound. ■

Lemma E.8. Let ϵ, ℓ > 0 and D0 ⊂ Rd be as in Lemma E.3. Let λ > 0, x ∈ λD0 and θ ∈ (0, 1).
Then for all β > 0, there is a constant c3(ϵ, d, ℓ, β) > 0 such that

E
[
Rθ(x, λD0, ηλD0

)β
]
⩽ c3(ϵ, d, ℓ, β)

(
θ−β/d ∧ λβ

)
. (E.17)

Remark E.9. This result is comparable to [Wad09, Lemma 3.2] and an argument in the proof of [Pen05,
Lemma 3.3], both of which worked with uniform random vectors.

Proof. It is clear that by construction Rθ(x, λD0, ηλD0) ⩽ diam(λD0) ⩽ ℓλ, thus we need only show
the bound by θ−β/d. To simplify the notation, write Rθ(x) for Rθ(x, λD0, ηλD0). We are going to study
the probability P(Rθ(x) > r). If for some r > 0, we have Rθ(x) > r, then maxi=1,...,K Ri,θ(x) > r,
implying that there is an i ∈ {1, ...,K} such that Ri,θ(x) > r. Since Ri,θ(x) ⩽ si(x), this implies in
turn that r < si(x) and that

η
((
λD0 ∩Bd(x, r) ∩ C+

i (x)
)
× [0, θ)

)
= 0. (E.18)

It follows that

P(Rθ(x) > r) ⩽ P

(
K⋃
i=1

{
η
(
(λD0 ∩Bd(x, r) ∩ C+

i (x)) × [0, θ)
)

= 0, r < si(x)
})

⩽
K∑
i=1

1{r<si(x)}P
(
η
(
(λD0 ∩Bd(x, r) ∩ C+

i (x)) × [0, θ)
)

= 0
)

=

K∑
i=1

1{r<si(x)} exp
(
−θ|λD0 ∩Bd(x, r) ∩ C+

i (x)|
)
. (E.19)

By Lemma E.6, there is a constant C := c2(ϵ, ℓ, d) > 0 such that

|λD0 ∩Bd(x, r) ∩ C+
i (x)| ⩾ Crd. (E.20)

Hence
exp

(
−θ|λD0 ∩Bd(x, r) ∩ C+

i (x)|
)
⩽ exp(−θCrd) (E.21)

and
P(Rθ(x) > r) ⩽ K exp(−θCrd). (E.22)

We can now estimate for all β > 0:

E[Rθ(x)β ] =

∫ ∞

0

P(Rθ(x) > r1/β)dr

⩽
∫ ∞

0

K exp(−θCrd/β)dr

= K
β

d
θ−β/dC−β/d

∫ ∞

0

uβ/d−1 exp(−u)du

= KC−β/dΓ

(
β

d
+ 1

)
θ−β/d, (E.23)

by the properties of the Gamma function Γ (see e.g. [AS72, 6.1.1]). ■
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Before we pass to the next lemma, we note some useful properties of the add-one cost and introduce
the quantity L(x,s) F

(α)(µ). Let (x, s) ∈ Rd × [0, 1] and µ ⊂ Rd × [0, 1] be a generic set with respect to
(x, s). Note that

D(x,s) F
(α)(µ) = e(x, s, µ)α +

∑
(y,u)∈

µ∩(Rd×(s,1])

(
e(y, u, µ + δ(x,s))

α − e(y, u, µ)α
)
. (E.24)

Define the quantity

L(x,s) F
(α)(µ) :=

∑
(y,u)∈

µ∩(Rd×(s,1])

e(y, u, µ)α1{(y,u)→(x,s) in µ+δ(x,s)}, (E.25)

where we use (as before) the notation (y, u) → (x, s) in µ + δ(x,s) in order to indicate that the point
(y, u) connects to (x, s) in the collection of points µ + δ(x,s), as was explained in Section 5.1.

We claim the following: For any convex body A ⊂ Rd such that the projection onto Rd of µ is
included in the interior of A, it holds that∣∣∣D(x,s) F

(α)(µ)
∣∣∣ ⩽ Rs(x,A, µ)α + L(x,s) F

(α)(µ). (E.26)

To show the claim, we start by noting the following: if a point (y, u) ∈ µ ∩ (Rd × (s, 1]) has an online
nearest neighbour in µ, then e(y, u, µ) ̸= 0. There are now two possibilities:

1. The point (y, u) connects to (x, s) in µ + δ(x,s). This implies that e(y, u, µ + δ(x,s)) < e(y, u, µ).

2. The point (y, u) does not connect to (x, s) in µ + δ(x,s). Then e(y, u, µ + δ(x,s)) = e(y, u, µ).

In both cases, it holds that

|e(y, u, µ + δ(x,s))
α − e(y, u, µ)α| ⩽ e(y, u, µ)α1{(y,u)→(x,s) in µ+δ(x,s)}. (E.27)

As a next step, consider three scenarios:

1. If µ ∩ Rd × [0, s) ̸= ∅, then any point (y, u) ∈ µ with u > s has an online nearest neighbour
in µ and (E.27) holds. Moreover, the point (x, s) has an online nearest neighbour in µ and by
construction, e(x, s, µ) ⩽ Rs(x,A, µ). Combining this with (E.24) and (E.27) implies that (E.26)
holds.

2. If µ∩Rd × [0, s) = ∅ but µ∩Rd × (s, 1] ̸= ∅, then the point (x, s) does not have an online nearest
neighbour in µ and e(x, s, µ) = 0. However, there is now a point (y0, u0) ∈ µ ∩Rd × (s, 1] which
is the point of lowest mark in µ and it does not have an online nearest neighbour in µ. Hence
e(y0, u0, µ) = 0 and e(y0, u0, µ+δ(x,s)) = |x−y0| since this point will connect to (x, s) in µ+δ(x,s).

Since µ ∩ Rd × [0, s) = ∅, we have that A ⊂ Bd(x,Rs(x,A, µ)) and hence |x− y0| ⩽ Rs(x,A, µ).
Any point (y, u) ∈ µ different from (y0, u0) must have an online nearest neighbour in µ, since
(y0, u0) is a potential neighbour. Thus for such (y, u), the inequality (E.27) holds and we deduce∣∣∣D(x,s) F

(α)(µ)
∣∣∣ =

∣∣∣∣|x− y0|α +
∑

(y0,u0 )̸=(y,u)∈
µ∩(Rd×(s,1])

(
e(y, u, µ + δ(x,s))

α − e(y, u, µ)α
) ∣∣∣∣ (E.28)

⩽ Rs(x,A, µ)α + L(x,s) F
(α)(µ), (E.29)

thus inequality (E.26) holds.

3. If µ = ∅, then D(x,s) F
(α)(µ) = 0 and inequality (E.26) trivially holds.

44



This concludes the proof of the claim. In the next lemma, we now provide a bound for the quantity
L(x,s) F

(α)(ηλD0
).

Lemma E.10. Let ϵ, ℓ > 0 and D0 ⊂ Rd be as in Lemma E.3. Let λ > 0 and (x, s) ∈ λD0 × [0, 1].
Then there is a constant c3(ϵ, ℓ, d, α) > 0 such that

E[L(x,s) F
(α)(ηλD0

)] ⩽ c4(ϵ, ℓ, d, α)(s−α/d ∧ λα). (E.30)

Proof. To prove (E.30), let (y, u) ∈ ηλD0
be a point connecting to (x, s) in ηλD0

+ δ(x,s). We will
proceed in three steps.
Step 1. We claim that y ∈ Bd(x,Rθ(x, λD0, ηλD0

)) for any θ < u.
As the Ci(x), i = 1, ...,K, cover Rd, there is an i such that y ∈ Ci(x). Assume that |x − y| > Rθ(x).
Since |x− y| ⩽ si(x, λD0), we must have

Ri,θ(x) ⩽ Rθ(x) < si(x, λD0) (E.31)

and hence
η ∩ ((λD0 ∩ C+

i (x) ∩Bd(x,Rθ(x))) × [0, θ)) ̸= ∅. (E.32)

So there is a point (z, v) within this set and in particular v < θ < u. We now have:

� |x− y| > Rθ(x) ⩾ |x− z|

� z ∈ C+
i (x)

� y ∈ Ci(x).

By the geometric properties of the cones Ci(x) and C+
i (x), shown in [Pen05, Lemma 3.3], this implies

that |z − y| ⩽ |x− y|. Since |z − y| ≠ |x− y| a.s., we deduce that the point y will connect to z rather
than to x, which is a contradiction. We must thus have |x− y| ⩽ Rθ(x).
Step 2. We will now derive the first part of the bound in (E.30).
For 0 ⩽ θ1 < θ2 ⩽ 1, define

H(θ1, θ2) :=
∑

(y,u)∈
η∩(λD0×(θ1,θ2])

e(y, u, ηλD0)α1{(y,u)→(x,s) in ηλD0
+δ(x,s)}. (E.33)

This is the contribution to the sum L(x,s) F
(α)(ηλD0) of points with marks in the interval (θ1, θ2], so

that

L(x,s) F
(α)(ηλD0

) = H(0, 1) = H(s, 1) =

n∑
i=1

H(θi−1, θi), (E.34)

for any partition s = θ0 < θ1 < ... < θn = 1.
Let (y, u) ∈ η ∩ (λD0 × (θi−1, θi]) be a point connecting to x. By Step 1, we have y ∈ B(x,Rθi−1(x)).
By construction, either λD0 ∩ Bd(x,Rθi−1(x)) contains a point (w, v) of η with mark less than θi−1,
in which case e(y, u, ηλD0

) ⩽ |y − w| ⩽ |x− y| + |x− w|, or λD0 ⊂ Bd(x,Rθi−1
(x)). In both cases,

e(y, u, ηλD0) ⩽ |x− y| + Rθi−1(x) ⩽ 2Rθi−1(x). (E.35)

Moreover, the number of points in λD0 × (θi−1, θi] connecting to x is upper bounded by the total
number of points in η ∩

(
(λD0 ∩Bd(x,Rθi−1(x))) × (θi−1, θi]

)
. From this we conclude that

H(θi−1, θi) ⩽ 2αRθi−1
(x)αη

(
(λD0 ∩Bd(x,Rθi−1

(x))) × (θi−1, θi]
)
. (E.36)
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To upper bound the expectation of H(θi−1, θi), we are going to use the fact that η|λD0×[0,θi−1] and
η|λD0×(θi−1,θi] are independent and Rθi−1

(x) is measurable with respect to η|λD0×[0,θi−1]. We can thus
calculate

E [H(θi−1, θi)] ⩽ 2αE
[
Rθi−1

(x)αη
(
(λD0 ∩Bd(x,Rθi−1

(x))) × (θi−1, θi]
)]

= 2αE
[
Rθi−1

(x)αE
[
η
(
(λD0 ∩Bd(x,Rθi−1

(x))) × (θi−1, θi]
)∣∣ η|λD0×[0,θi−1]

]]
= 2αE

[
Rθi−1

(x)α
∣∣λD0 ∩Bd(x,Rθi−1

(x))
∣∣(θi − θi−1)

]
. (E.37)

Upper bounding the volume of the intersection by κdRθi−1(x)d and applying Lemma E.8 yields that
(E.37) is bounded by

2ακd(θi − θi−1)E
[
Rθi−1(x)α+d

]
⩽ 2ακd(θi − θi−1)c θ

−α/d−1
i−1 , (E.38)

with c = c3(ϵ, d, ℓ, α + d). Combining this with (E.34), we infer that

E
[
L(x,s) F

(α)(ηλD0
)
]
⩽ 2ακdc

n∑
i=1

θ
−α/d−1
i−1 (θi − θi−1) (E.39)

for any partition s = θ0 < θ1 < ... < θn = 1. Letting n → ∞ and the mesh of the partition tend to 0,
we get

E
[
L(x,s) F

(α)(ηλD0)
]
⩽ 2ακdc

∫ 1

s

θ−α/d−1dθ

= 2ακdc
d

α

(
s−α/d − 1

)
⩽ c′s−α/d, (E.40)

with c′ := 2ακdc3(ϵ, d, ℓ, α + d) d
α , a constant independent of x, s and λ.

Step 3. To show the second part of (E.30), note that

L(x,s) F
(α)(ηλD0

) ⩽ L(x,0) F
(α)(ηλD0

). (E.41)

Indeed, e(y, u, ηλD0) is independent of (x, s) and hence remains unchanged for any (y, u) ∈ ηλD0 if
we reduce the arrival time of (x, s) to zero. Any point connecting to (x, s) will also connect to (x, 0),
hence no terms are deleted from the sum. Some positive terms might be added, since there may be
points connecting to (x, 0) but not to (x, s).
For any 0 < θ0 < 1,

L(x,0) F
(α)(ηλD0) = H(0, θ0) + L(x,θ0) F

(α)(ηλD0). (E.42)

A crude upper bound for the first term on the RHS is as follows:

H(0, θ0) ⩽ diam(λD0)αη(Bd(x, λdiam(D0)) × [0, θ0)). (E.43)

Taking expectation, we get
EH(0, θ0) ⩽ κd diam(D0)α+dλα+dθ0. (E.44)

On the other hand, by Step 2 we have

E
[
L(x,θ0) F

(α)(ηλD0)
]
⩽ c′θ

−α/d
0 . (E.45)

Combining (E.41)-(E.45) yields for any 0 < θ0 < 1 that

E
[
L(x,s) F

(α)(ηλD0
)
]
⩽ κd diam(D0)α+dλα+dθ0 + c′θ

−α/d
0 . (E.46)

Choosing θ0 := λ−d, we deduce

EL(x,s) F
(α)(ηλD0) ⩽

(
κd diam(D0)α+d + c′

)
λα. (E.47)

The bound in (E.30) follows with c4(ϵ, ℓ, d, α) := κd diam(D0)α+d + c′. ■
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Proof of Prop. E.1. Proof of (E.4). We will show that there is a constant C1 > 0 such that for all
(x, s) ∈ tH × [0, 1] and t ⩾ 1

E
[
|D(x,s) F

(α)
t |

∣∣η|tH×[0,s)

]
⩽ C1Rs(x, tH, ηtH)α, (E.48)

where C1 does not depend on x, s or t. The claim (E.4) then follows by Lemma E.8.
From here on, write Rs(x) for Rs(x, tH, ηtH).
By (E.26) and since e(x, s, ηtH) ⩽ Rs(x), which is measurable with respect to η|tH×[0,s), it is enough
to show that

E
[
|L(x,s) F

(α)
t |

∣∣η|tH×[0,s)

]
⩽ C2Rs(x)α, (E.49)

for some constant C2 > 0.
As established in the proof of Lemma E.10, all points connecting to (x, s) are points of η inside the
set A(t, x, s) := (tH ∩ Bd(x,Rs(x))) × (s, 1]. Since this is included in tH, a set of finite measure, the
total number of points in η ∩ A(t, x, s) is almost surely finite. Denote the points connecting to (x, s)
by (y1, s1), ..., (ym, sm), ordered by increasing mark, i.e. s1 < s2 < ... < sm.
With this notation, we have

L(x,s) F
(α)
t =

m∑
i=1

e(yi, si, ηtH)α. (E.50)

When removing all points of η outside of A(t, x, s), i.e. all points further than Rs(x) from x and all
points of mark less than s, then for each of the points y2, ..., ym, the edge-length to its online nearest
neighbour in ηtH will either stay constant or increase. It will never be zero because y1 remains as a
potential nearest neighbour. In formulas:

e(yi, si, ηtH) ⩽ e(yi, si, η|A(t,x,s)), for i = 2, ...,m. (E.51)

For i = 1, we know as in the proof of Lemma E.10 that

e(y1, si, ηtH) ⩽ 2Rs(x). (E.52)

Combining (E.50) with the above discussion, we get

L(x,s) F
(α)
t ⩽ 2αRs(x)α +

m∑
i=2

e(yi, si, η|A(t,x,s)). (E.53)

Using that edge-lengths are non-negative, we have

L(x,s) F
(α)
t ⩽ 2αRs(x)α +

∑
(y,u)∈

η∩A(t,x,s)

e(y, u, η|A(t,x,s))
α
1{(y,u)→(x,s) in η|A(t,x,s)+δ(x,s)}. (E.54)

Here we have added the edge contributions from points that would not connect to (x, s) in ηtH +δ(x,s),
but that do connect to (x, s) in the smaller set A(t, x, s) + δ(x,s). The sum on the RHS on (E.54) still
includes the points (yi, si) for i ⩾ 2.
Observe that Rs(x) > 0 a.s. and define

D0 := Rs(x)−1
(
tH ∩Bd(x,Rs(x))

)
. (E.55)

Now we have A(t, x, s) = Rs(x)D0 × (s, 1] and we can write the second term in (E.54) as∑
(y,u)∈

η∩(Rs(x)D0×(s,1])

e(y, u, η|Rs(x)D0×(s,1])
α
1{(y,u)→(x,s) in η|Rs(x)D0×(s,1]+δ(x,s)}. (E.56)
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By the properties of Poisson measures, η|tH×[0,s) (and hence also Rs(x)) is independent of η|tH×(s,1].

Conditioning on η|tH×[0,s), the sum (E.56) is equal in law to L(x,0) F
(α)(η′|λD0×[0,1−s)), where λ = Rs(x)

and η′ is an independent copy of η.
We clearly have that

L(x,0) F
(α)(η′|λD0×[0,1−s)) ⩽ L(x,0) F

(α)(η′|λD0×[0,1]) = L(x,0) F
(α)(η′λD0

) (E.57)

since adding points of higher mark only adds more edges to the graph.
By inequality (E.30) of Lemma E.10,

Eη′

[
L(x,0) F

(α)(η′λD0
)
]
⩽ c4(ϵ, ℓ, d, α)λα = c4(ϵ, ℓ, d, α)Rs(x)α, (E.58)

where ℓ is an upper bound for diam(D0) and ϵ is such that there is a point x0 ∈ D0 with Bd(x0, ϵ) ⊂ D0.
Our claim (E.49) is proven if we can find such deterministic ℓ and ϵ that do not depend on x, s or t.
We have that

D0 = Rs(x)−1tH ∩Bd(Rs(x)−1x, 1), (E.59)

therefore diam(D0) ⩽ 2 =: ℓ. To find an ϵ, let w := t−1x ∈ H and r := t−1Rs(x). Since Rs(x) ⩽
tdiam(H), we have r ⩽ diam(H) and by Lemma E.3, there exists a 0 < q < 1 depending on H and
its properties such that there is a point w′ ∈ H with

Bd(w′, qr) ⊂ H ∩Bd(w, r). (E.60)

Multiplying by tRs(x)−1 yields

Bd(tRs(x)−1w′, q) ⊂ Rs(x)−1
(
tH ∩Bd(x,Rs(x))

)
= D0. (E.61)

We can thus pick ϵ := q and the result is shown.
Proof of (E.5). By Lemma E.8, it suffices to show that

E
[
|D(2)

(x,s),(y,u) F
(α)
t |

∣∣η|tH×[0,u)

]
⩽ cRu(y)α, (E.62)

for some constant c > 0.
By the triangle inequality,

|D(2)
(x,s),(y,u) F

(α)
t | ⩽ |D(y,u) F

(α)(ηtH)| + |D(y,u) F
(α)(ηtH + δ(x,s))|. (E.63)

The inequality (E.48) deals with the first term on the RHS. For the second term, we use (E.26) to say

|D(y,u) F
(α)(ηtH + δ(x,s))| ⩽ Ru(y, tH, ηtH + δ(x,s))

α + L(y,u) F
(α)(ηtH + δ(x,s)). (E.64)

Reusing arguments from the proof of Lemma E.10, one sees that

Ru(y, tH, ηtH + δ(x,s)) ⩽ Ru(y, tH, ηtH), (E.65)

which yields the required bound for this term. On the other hand, if we remove a point of mark lower
than the one of y, more points might connect to y, and no points already connected to y will change
neighbour. Therefore

L(y,u) F
(α)(ηtH + δ(x,s)) ⩽ L(y,u) F

(α)(ηtH). (E.66)

The result now follows using (E.49).
Proof of (E.6). Using ideas explained in [LPS16, p.673], we will show that for any convex body
A ⊂ Rd, for all (x, s), (y, u) ∈ A× [0, 1] with s < u and any finite set µ ⊂ A× [0, 1] generic with respect
to (x, s) and (y, u), the condition

|x− y| > 3Ru(y,A, µ), (E.67)
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implies that D
(2)
(x,s),(y,u) F

(α)(µ) = 0. This property is related to the theory of stabilisation, see [LPS16,

p.673] for a discussion. Recall that

D(y,u) F
(α)(µ)

= e(y, u, µ)α +
∑

(z,v)∈
µ∩(Rd×(u,1])

(
e(z, v, µ + δ(y,u))

α − e(z, v, µ)α
)
1{(z,v)→(y,u) in µ+δ(y,u)} (E.68)

and
D

(2)
(x,s),(y,u) F

(α)(µ) = D(y,u) F
(α)(µ + δ(x,s)) − D(y,u) F

(α)(µ). (E.69)

Condition (E.67) implies that A ̸⊂ Bd(y,Ru(y,A, µ)) and hence that (y, u) has an online nearest
neighbour in µ and e(y, u, µ) ̸= 0. Thus e(y, u, µ + δ(x,s)) = |x− y| ∧ e(y, u, µ), but at the same time

e(y, u, µ) ⩽ Ru(y,A, µ) < |x− y|. (E.70)

It follows that e(y, u, µ + δ(x,s)) = e(y, u, µ). Let (z, v) be a point that connects to (y, u) in µ + δ(y,u).
Then as shown previously,

|z − y| ⩽ Ru(y,A, µ) and e(z, v, µ) ⩽ 2Ru(y,A, µ). (E.71)

By conditions (E.67) and (E.71),

|x− z| ⩾ |x− y| − |z − y| > 2Ru(y,A, µ) ⩾ max{|z − y|, e(z, v, µ)} (E.72)

and as before e(z, v, µ) ̸= 0, since (y, u) has an online nearest neighbour in µ. Put together, this implies
that (z, v) will not connect to (x, s), neither in µ + δ(x,s), nor in µ + δ(y,u) + δ(x,s). It follows that

e(z, v, µ + δ(y,u)) = e(z, v, µ + δ(y,u) + δ(x,s)) and e(z, v, µ) = e(z, v, µ + δ(x,s)). (E.73)

This means that the addition of (x, s) does not induce any changes to D(y,u) F
(α)(µ) and we deduce

that
D(y,u) F

(α)(µ + δ(x,s)) = D(y,u) F
(α)(µ) (E.74)

and thus D
(2)
(x,s),(y,u) F

(α)(µ) = 0.

Note that Ru(y,A, µ) and the reasoning above only depend on µ|A×[0,u) and thus for any finite χ ⊂
A × (u, 1], by the same reasoning one concludes that Ru(y,A, µ|A×[0,u) ∪ χ) = Ru(y,A, µ|A×[0,u)) =
Ru(y,A, µ) and

D
(2)
(x,s),(y,u) F

(α)(µ|A×[0,u) ∪ χ) = 0 if |x− y| > 3Ru(y,A, µ). (E.75)

In particular, this implies that for (x, s), (y, u) ∈ tH × [0, 1] with s < u and |x− y| > 3Ru(y, tH, ηtH),

E
[

D
(2)
(x,s),(y,u) F

(α)
t

∣∣η|tH×[0,u)

]
=

∫
D

(2)
(x,s),(y,u) F

(α)
t (η|tH×[0,u) + χ)Πu(dχ) = 0, (E.76)

where Πu is the law of η|tH×(u,1].
We conclude that

P
(
E
[

D
(2)
(x,s),(y,u) F

(α)
t

∣∣η|tH×[0,u)

]
̸= 0
)
⩽ P (|x− y| < 3Ru(y, tH, ηtH)) . (E.77)

As in the proof of Lemma E.8, there is a constant c > 0 such that

P
(
1
3 |x− y| < Ru(y, tH, ηtH)

)
⩽ K exp(−uc|x− y|d), (E.78)

which concludes the proof. ■

Remark E.11. The proofs of Lemma E.10 and the inequality (E.4) given in Proposition E.1 build on
and extend ideas used in [Wad09]. In particular, the proof of (E.4) adapts a rescaling argument from
the proof of [Wad09, Lemma 3.2] and extends it to the Poisson setting and to arbitrary convex bodies.
As already discussed, in our proof we need the fine control over constants introduced in Lemma E.3.
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E.2 Moment estimates of add-one costs

To find the speed of convergence in the Kolmogorov distance, we need bounds on quantities of the

type E|D(x,s) F
(α)
t |r, with r ⩾ 1.

Proposition E.12. We work under the conditions of Theorem 5.3. Let α > 0 and r ⩾ 1. For every
ϵ > 0 and for all t ⩾ 1 and all (x, s), (y, u) ∈ tH × (0, 1] with s < u,

E
[
|D(x,s) F

(α)
t |r

]1/r
⩽ c1s

−α/d−ϵ (E.79)

E
[
|D(2)

(x,s),(y,u) F
(α)
t |r

]1/r
⩽ c1u

−α/d−ϵ (E.80)

P
(

D
(2)
(x,s),(y,u) F

(α)
t ̸= 0

)
⩽ C2 exp(−c2u|x− y|d), (E.81)

where c1 > 0 is a constant depending on α, r and ϵ and c2, C2 > 0 are absolute.

Remark E.13. The bound (E.79) is an extension to arbitrary exponents r ⩾ 1 of what was shown
in [Pen05, Lemma 3.4]. The proof below builds on the same arguments, but without using uniform
random vectors.

Proof. Proof of (E.79). By (E.26) and (E.35), it can be seen that

|D(x,s) F
(α)
t |r ⩽ Rs(x)rα2r−1 (1 + 2rα|A(x, s)|r) . (E.82)

where A(x, s) := {(y, u) ∈ η|tH×(s,1] : (y, u) → (x, s) in ηtH + δ(x,s)} is the set of points in ηtH that
will connect to (x, s) upon addition of this point. Recall that any point connecting to (x, s) must be
inside Bd(x,Rs(x)). For each i = 1, ...,K, define

Ai(x, s) := {(y, u) ∈ ηtH ∩ (Ci(x) ∩Bd(x,Rs(x)) × (s, 1]) :

|x− y| < |x− z| ∀(z, v) ∈ ηtH ∩ (Ci(x) ∩Bd(x,Rs(x)) × (s, u))}. (E.83)

This is the set of points (y, u) in ηtH inside the intersection of the cone Ci(x) with Bd(x,Rs(x)) that
are closer to x than any other point of mark between s and u within this cone. Any point (y, u)
connecting to (x, s) must be within such a set for some i, else there is a point closer to y than x and
of lower mark, i.e. a potential neighbour. Hence

|A(x, s)|r ⩽

(
K∑
i=1

|Ai(x, s)|

)r

⩽ Kr−1

(
K∑
i=1

|Ai(x, s)|r
)
. (E.84)

Define m := ⌈r⌉ and fix i ∈ {1, ...,K}. Since |Ai(x, s)| is a non-negative integer and a
m ⩽ a−k

m−k for
0 ⩽ k ⩽ m− 1 and a ⩾ m, we have

|Ai(x, s)|r ⩽ |Ai(x, s)|m ⩽ mm

(
|Ai(x, s)|

m

)
+ (m− 1)m. (E.85)

Our goal is now to estimate
(|Ai(x,s)|

m

)
. First, let

Gi := ηtH ∩
(
Ci(x) ∩Bd(x,Rs(x)) × (s, 1]

)
(E.86)

be the set of points in ηtH that are closer than Rs(x) to x, within the cone Ci(x) and of mark higher
than s. Any point connecting to x must be within this set. Let Ni := |Gi| be the random number of
points inside Gi and note that Ni is almost surely finite. Given Ni, the points in Gi can be denoted
by the random coordinates {(y1, s1), ..., (yNi , sNi)}, where y1, ..., yNi are the spatial coordinates of the
points and s1, ..., sNi are the marks of the points.
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As Ni is almost surely finite, we can assume w.l.o.g. that the points y1, ..., yNi
are ordered by increasing

distance to x. We now condition on the event Ni = n ̸= 0 and, given this conditioning, we also take
conditional expectation with respect to the σ-algebra generated by the random coordinates yj . Since
Ai(x, s) ⊂ Gi, we have

E
[(

|Ai(x, s)|
m

)∣∣∣∣Ni = n, y1, ..., yn

]
=

∑
{z1,...,zm}⊂{y1,...,yn}

distinct

E
[
1{z1,...,zm∈Ai(x,s)}

∣∣Ni = n, y1, ..., yn
]

=
∑

1⩽j1<j2<...<jm⩽n

P ({yj1 , ..., yjm} ⊂ Ai(x, s)|Ni = n, y1, ..., yn)

(E.87)

Note that this expression is zero if n < m.
Conditional on the event Ni = n, the marks s1, ..., sn are independent of the spatial coordinates
y1, ..., yn and i.i.d. uniformly distributed in (s, 1]. Hence any ordering of the marks is equally likely.
Conditional on the spatial coordinates y1, ..., yn, the event {yj1 , ..., yjm} ⊂ Ai(x, s) happens if and only
if yj1 has the smallest mark among the points y1, y2, ..., yj1 , and yj2 has the smallest mark among the
points y1, y2, ..., yj2 etc. The probability that this happens is exactly given by (j1j2...jm)−1. Thus

E
[(

|Ai(x, s)|
m

)∣∣∣∣Ni = n, y1, ..., yn

]
=

∑
1⩽j1<j2<...<jm⩽n

(j1j2...jm)−1 ⩽
1

m!

 n∑
j=1

1

j

m

. (E.88)

It holds that
n∑

j=1

1

j
⩽
∫ n

1

1

x
dx + 1 = log(n) + 1. (E.89)

The bounds developed in (E.85)-(E.89) yield for n ̸= 0:

E [|Ai(x, s)|r|Ni = n] ⩽ mm 1

m!
(log(n) + 1)m + (m− 1)m. (E.90)

For any ϵ′ > 0, the function g : [1,+∞) → R : x 7→
(
mm 1

m! (log(x) + 1)m + (m− 1)m
)
x−ϵ′ is bounded

by a constant c > 0 (dependent on r and ϵ′), implying that

E [|Ai(x, s)|r|Ni = n] ⩽ cnϵ′ . (E.91)

If n = 0, then |Ai(x, s)| = 0, hence the bound (E.91) continues to hold. Therefore

E [|Ai(x, s)|r|Ni] ⩽ cN ϵ′

i . (E.92)

Conditional on η|tH×[0,s), the random variable Ni is equal in law to η′(tH∩Ci(x)∩Bd(x,Rs(x))×(s, 1]),

where η′ is an independent copy of η. This quantity in turn is upper bounded by η′(Bd(x,Rs(x)) ×
[0, 1]). Hence

E
[
|Ai(x, s)|r

∣∣η|tH×[0,s)

]
⩽ cE

[
η′(Bd(x,Rs(x)) × [0, 1])ϵ

′ ∣∣η|tH×[0,s)

]
⩽ c(κdRs(x)d)ϵ

′
, (E.93)

where we applied Jensen’s inequality to pass to the second inequality. Plugging this bound into (E.85),
we deduce

E
[
|A(x, s)|r|η|tH×[0,s)

]
⩽ cKrκϵ′

d Rs(x)ϵ
′d. (E.94)

Combining (E.94) with (E.82) leads to

E
[
|D(x,s) F

(α)
t |r

]
⩽ c0ERs(x)rα(1 + Rs(x)ϵ

′d). (E.95)
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for some constant c0 > 0. By Lemma E.8, the RHS is bounded by c1s
−rα/d−ϵ′ for some constant

c1 > 0. For ϵ′ = ϵr, we get

E
[
|D(x,s) F

(α)
t |r

]1/r
⩽ c

1/r
1 s−α/d−ϵ. (E.96)

Proof of (E.80). As in the proof of (E.5), we have

|D(x,s),(y,u) F
(α)
t | ⩽ |D(y,u) F

(α)(ηtH)| + Ru(y)α + L(y,u) F
(α)(ηtH) (E.97)

and the result follows by the proof of (E.79).
Proof of (E.81). As in the proof of (E.6), one see that if |x− y| > 3Ru(y), then

D(x,s),(y,u) F
(α)
t = 0. (E.98)

Hence for some constants c1, c2 > 0,

P(D(x,s),(y,u) F
(α)
t ̸= 0) ⩽ P(|x− y| > 3Ru(y)) ⩽ c1 exp(−c2u|x− y|d), (E.99)

as seen in Lemma E.8. ■

E.3 The orders of the variances

The goal of this subsection is to show the orders of the variances given in (5.7) and (5.9). For the sake
of legibility, we will split the proof into several propositions.

Proposition E.14. There are constants c1, c2 > 0 such that for 0 < α < d
2 ,

Var(F
(α)
t ) ⩽ c1t

d (E.100)

and
Var(F

(d/2)
t ) ⩽ c2t

d log t. (E.101)

Remark E.15. The bounds in this proposition were already shown in [Wad09, Theorem 2.1] via proving
the result for uniform vectors and subsequent Poissonisation. We include a proof for the sake of
completeness. It is similar in spirit to the one given in [Wad09], but works in a purely Poisson setting.

Proof. Let 0 < α ⩽ d
2 . Since F

(α)
t ⩽ (diam(H)t)αη(tH × [0, 1]), it is clear that F

(α)
t ∈ L2(Pη). Hence

by Lemma A.3, we have

Var
(
F

(α)
t

)
= E

∫
tH

∫ 1

0

E
[

D(y,u) F
(α)
t

∣∣η|tH×[0,u)

]2
dydu. (E.102)

Applying (E.48) to the RHS of (E.102) yields

Var
(
F

(α)
t

)
⩽ c E

∫
tH

∫ 1

0

Ru(y, tH, ηtH)2α dydu (E.103)

for some constant c > 0. Now applying Lemma E.8 to the RHS of (E.103) gives

Var
(
F

(α)
t

)
⩽ c′

∫
tH

∫ 1

0

(
t2α ∧ u−2α/d

)
dydu (E.104)

for some other constant c′ > 0. Integrating now yields the result. ■

Proposition E.16. For α > 0, there is a constant c > 0 such that

ctd ⩽ Var
(
F

(α)
t

)
. (E.105)
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The proof will make use of [LPS16, Theorem 5.2].

Proof of Prop. E.16. Recall that there are y0 ∈ H and δ > 0 such that Bd(y0, δ) ⊂ H, as defined at the
beginning of this Section E. Also recall the definition of the cones C+

1 (0), ..., C+
K(0) from section E.1.

For i ∈ {1, ...,K}, define
Vi := C+

i (0) ∩Bd(0, 1) \Bd
(
0, 1

2

)
. (E.106)

Now for 0 < τ < δ
2 , define

Uτ :=

{
(x, s, x + τz1, s1, ..., x + τzK , sK) : (x, s) ∈ tBd

(
y0,

δ
2

)
×
[
1
2 , 1
]
,

and (zi, si) ∈ Vi ×
[
0, 1

2

)
, i = 1, ...,K

}
. (E.107)

Note that Uτ ⊂ (tH × [0, 1])K+1. For [LPS16, Theorem 5.2] to yield a lower bound as in (E.105), we
need to show that for a suitably chosen τ to be defined later,

1. There is a constant c1 > 0 such that for all (x, s, z̃1, s1, ..., z̃K , sK) ∈ Uτ ,∣∣∣∣∣EF (α)

(
ηtH + δ(x,s) +

K∑
i=1

δ(z̃i,si)

)
− F (α)

(
ηtH +

K∑
i=1

δ(z̃i,si)

)∣∣∣∣∣ ⩾ c1. (E.108)

2. There is a constant c2 > 0 such that

min
∅̸=J⊂{1,...,K+1}

inf
V⊂Uτ

λ(K+1)(V )⩾λ(K+1)(Uτ )/2
K+2

λ(|J|) (ΠJ(V )) ⩾ c2t
d. (E.109)

Proof of 1. We use a construction similar to the one in [LPS16, Lemma 7.1] for the k-Nearest
Neighbour graph. Let (x, s) ∈ tBd

(
y0,

δ
2

)
×
[
1
2 , 1
]

and (zi, si) ∈ Vi ×
[
0, 1

2

)
for all i = 1, ...,K. Define

Aτ := ηtH +

K∑
i=1

δ(x+τzi,si). (E.110)

By the choice of the points z1, ..., zK , we infer that

Rs(x, tH,Aτ ) ⩽ τ (E.111)

and no point outside Bd(x, τ) will connect to x, since there is always a point zi which is closer (by
Lemma 3.3 in [Pen05]).
If η(Bd(x, τ) × [0, 1]) = 0, then no point at all will connect to x and the only change upon addition
of x is the addition of the edge from x to its online nearest neighbour. Since there is no point of η in
Bd(x, τ), the online nearest neighbour of x must be one of the points z1, ..., zK . But |x − zi| ⩾ τ

2 for
all i = 1, ...,K and we deduce

D(x,s) F
(α)(Aτ ) ⩾ 2−ατα. (E.112)

If η(Bd(x, τ) × [0, 1]) ̸= 0, we use that by (E.26) and the proof of Lemma E.10,

|D(x,s) F
(α)(Aτ )| ⩽ e(x, s,Aτ )α + L(x,s) F

(α)(Aτ )

⩽ Rs(x, tH,Aτ )α + (2Rs(x, tH,Aτ ))αη(Bd(x, τ) × [0, 1])

⩽ τα + (2τ)αη(Bd(x, τ) × [0, 1]) (E.113)
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to find the following bound:∣∣∣E1{η(Bd(x,τ)×[0,1])̸=0} D(x,s) F
(α)(Aτ )

∣∣∣ ⩽ P(η(Bd(x, τ) × [0, 1]) ̸= 0)τα + (2τ)αEη(Bd(x, τ) × [0, 1])

= τα(1 − exp(−κdτ
d)) + (2τ)ακdτ

d. (E.114)

Combining (E.112) and (E.114), we find∣∣∣ED(x,s) F
(α)(Aτ )

∣∣∣
⩾ E1{η(Bd(x,τ)×[0,1])=0} D(x,s) F

(α)(Aτ ) −
∣∣∣E1{η(Bd(x,τ)×[0,1])̸=0} D(x,s) F

(α)(Aτ )
∣∣∣

⩾ 2−ατα exp(−κdτ
d) − τα(1 − exp(−κdτ

d)) − (2τ)ακdτ
d

= τα
(
exp(−κdτ

d)2−α − (1 − exp(−κdτ
d)) − 2ακdτ

d
)

=: cτ . (E.115)

But we have
lim
τ→0

exp(−κdτ
d)2−α − (1 − exp(−κdτ

d)) − 2ακdτ
d = 2−α > 0, (E.116)

which means that we can choose τ > 0 small enough such that cτ > 0. This choice of τ depends only
on α and d. We fix this τ for the rest of the proof.
Proof of 2. We follow the same type of reasoning as was used in the proof of [LPS16, Theorem 5.3].
First, note that

|Uτ | = κd2−d−K−1δd|V1|Ktd. (E.117)

Let ∅ ̸= J = {i1, ..., i|J|} ⊂ {1, ...,K + 1}. For any (y, u) = (y1, u1, ..., yK+1, uK+1) ∈
(
Rd × [0, 1]

)K+1
,

write (y, u)J = (yi1 , ui1 , ..., yi|J| , ui|J|). If (y, u) ∈ U , then for any i, j ∈ {1, ...,K + 1}, we have that

yj ∈ Bd(yi, 2τ) and uj ∈
[
0, 1

2

)
. This implies that for any (y, u)J ∈

(
Rd × [0, 1]

)|J|
,

λ(K+1−|J|)
(

(y, u)Jc ∈
(
Rd × [0, 1]

)K+1−|J|
: ((y, u)J , (y, u)Jc) ∈ U

)
⩽
(
2d−1τdκd

)K+1−|J|
, (E.118)

where we use λ for Lebesgue measure. Thus for any V ⊂ U ,

λ(K+1)(V ) ⩽
∫
(Rd×[0,1])K+1

1{(y,u)J∈ΠJ (V )}1{((y,u)J ,(y,u)Jc )∈U}λ
(K+1)(d(y, u))

⩽
(
2d−1τdκd

)K+1−|J|
λ(|J|) (ΠJ(V )) . (E.119)

Hence any V ⊂ U with λ(K+1)(V ) ⩾ λ(K+1)(U)2−(K+2) satisfies

λ(|J|) (ΠJ(V )) ⩾
(
2d−1τdκd

)−(K+1−|J|)
2−(K+2)κd2−d−K−1δd|V1|Ktd. (E.120)

This in turn is lower bounded by c2t
d, where

c2 := min
{

1,
(
2d−1τdκd

)−K
}
κd2−d−2K−3δd|V1|K . (E.121)

This concludes the proof. ■

Proposition E.17. There are constants c > 0 and T0 ⩾ 1 such that for all t ⩾ T0,

ctd log(t) ⩽ Var
(
F

(d/2)
t

)
. (E.122)

Remark E.18. By inspection of the arguments in Lemmas E.19-E.25, one sees that

d
(
1 − π

2 + c(d)
)
⩽ lim inf

t→∞

Var
(
F

(d/2)
t

)
td log(t)

, (E.123)

54



where c(d) is a positive constant such that c(d) > π
2 −1 for d ⩾ 1. We believe this bound to correspond

to the exact asymptotic order of Var
(
F

(d/2)
t

)
. We can however only provide a closed form of c(d) in

dimension d = 1. For dimension d = 2, we numerically estimate c(2) and for dimensions d ⩾ 3, we use
a lower bound which is smaller than the LHS of (E.123):

d
(

1 − π

4
− c̃(d)

)
⩽ lim inf

t→∞

Var
(
F

(d/2)
t

)
td log(t)

, (E.124)

where 0 < c̃(d) < 1 − π
4 for d ⩾ 3 and c̃(d) → 0 as d → ∞.

Lemma E.19. Let α > 0 and t ⩾ 1. Let ℓ := diam(H). Then

Var(F
(α)
t ) = I1(t) + I2(t) − I3(t) + I4(t) − I5(t), (E.125)

where the terms are defined as follows:

I1(t) =

∫
tH

dy

∫ 1

0

dv

∫ (tℓ)2α

0

ds
(

exp(−v|tH ∩Bd(y, s1/(2α))|) − exp(−v|tH|)
)

I2(t) = 2

∫
tH

dx

∫
tH

dy

∫ 1

0

dv

∫ 1

0

du

∫ (tℓ)α

0

ds

∫ (tℓ)α

0

dr 1{u<v}1{s<|x−y|α}

exp
(
−u|tH ∩Bd(x, r1/α)|

)
exp

(
−v|tH ∩Bd(y, s1/α)|

)
[
exp

(
u|tH ∩Bd(x, r1/α) ∩Bd(y, s1/α)|

)
− 1
]

I3(t) = 2

∫
tH

dx

∫
tH

dy

∫ 1

0

dv

∫ 1

0

du

∫ (tℓ)α

0

ds

∫ (tℓ)α

0

dr 1{u<v}1{s>|x−y|α}

exp
(
−u|tH ∩Bd(x, r1/α)|

)
exp

(
−v|tH ∩Bd(y, s1/α)|

)
I4(t) = 2

∫
tH

dx

∫
tH

dy

∫ 1

0

dv

∫ 1

0

du

∫ (tℓ)α

0

ds

∫ (tℓ)α

0

dr 1{u+v⩾1}

exp
(
−u|tH ∩Bd(x, r1/α)|

)
exp (−v|tH|)

I5(t) =

∫
tH

dx

∫
tH

dy

∫ 1

0

dv

∫ 1

0

du

∫ (tℓ)α

0

ds

∫ (tℓ)α

0

dr exp (−u|tH|) exp (−v|tH|)

Proof. We start by pointing out a few identities. The functional F
(α)
t can be written

F
(α)
t =

∫
tH×[0,1]

e(y, v, η)αη(dy, dv). (E.126)

Moreover, for (y, v), (x, u) ∈ tH × [0, 1] with u < v, we have

e(y, v, η)α = 1{η(tH×[0,v)) ̸=0}

∫ (tℓ)α

0

ds 1{η(tH∩Bd(y,s1/α)×[0,v))=0} (E.127)

and

e
(
y, v, η + δ(x,u)

)α
= |x− y|α1{η(tH×[0,v))=0}

+ 1{η(tH×[0,v)) ̸=0}

∫ |x−y|α

0

ds 1{η(tH∩Bd(y,s1/α)×[0,v))=0}. (E.128)
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Note also that e(y, v, η) = e(y, v, η|tH×[0,v)), a fact we are going to use repeatedly.

Combining (E.126) and (E.127) with Mecke equation (2.6) allows us now to calculate EF (α)
t :

EF (α)
t =

∫
tH

dy

∫ 1

0

dv

∫ (tℓ)α

0

dr E1{η(tH×[0,v)) ̸=0}1{η(tH∩Bd(y,r1/α)×[0,v))=0}

=

∫
tH

dy

∫ 1

0

dv

∫ (tℓ)α

0

dr
(

exp
(
− v|tH ∩Bd(y, r1/α)|

)
− exp(−v|tH|)

)
. (E.129)

To calculate E
[
(F

(α)
t )2

]
, note first that

E

(∫
tH×[0,1]

e(y, v, η)αη(dy, dv)

)2

=

∫
tH

dy

∫ 1

0

dv E e(y, v, η)2α +

∫
tH

dx

∫
tH

dy

∫ 1

0

du

∫ 1

0

dv E e(y, v, η + δ(x,u))
αe(x, u, η + δ(y,v))

α,

(E.130)

as can be seen by applying Mecke equation twice or other means. The first term on the RHS of (E.130)

is equal to E
[
F

(2α)
t

]
, which by (E.129) is equal to I1(t).

The second term on the RHS of (E.130) can by symmetry be written as

2

∫
tH

dx

∫
tH

dy

∫ 1

0

du

∫ 1

0

dv 1{u<v}E e(y, v, η + δ(x,u))
αe(x, u, η)α. (E.131)

Plugging in (E.127) and (E.128) and using that the product 1{η(tH×[0,u)) ̸=0}1{η(tH×[0,v))=0} is zero,
leads to

2E
∫
tH

dx

∫
tH

dy

∫ 1

0

du

∫ 1

0

dv

∫ (tℓ)α

0

dr

∫ (tℓ)α

0

ds 1{u<v}1{s<|x−y|α}

1{η(tH×[0,u)) ̸=0}1{η(tH∩Bd(x,r1/α)×[0,u))=0}1{η(tH∩Bd(y,s1/α)×[0,v))=0}. (E.132)

Writing

1{η(tH∩Bd(y,s1/α)×[0,v))=0} = 1{η(tH∩Bd(y,s1/α)×[0,u))=0}1{η(tH∩Bd(y,s1/α)×[u,v))=0} (E.133)

and taking expectation, using that η|tH×[0,u) and η|tH×[u,v) are independent, (E.132) is equal to

2

∫
tH

dx

∫
tH

dy

∫ 1

0

du

∫ 1

0

dv

∫ (tℓ)α

0

dr

∫ (tℓ)α

0

ds 1{u<v}1{s<|x−y|α} exp
(
−(v − u)|tH ∩Bd(y, s1/α)|

)
(

exp
(
− u|tH ∩ (Bd(x, r1/α) ∪Bd(y, s1/α))|

)
− exp(−u|tH|)

)
. (E.134)

Combining (E.134) with (E.129), we have

Var
(
F

(α)
t

)
= I1(t) + A(t) + B(t) + C(t) (E.135)
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with

A(t) = 2

∫
tH

dx

∫
tH

dy

∫ 1

0

du

∫ 1

0

dv

∫ (tℓ)α

0

dr

∫ (tℓ)α

0

ds 1{u<v}1{s<|x−y|α}

exp
(
−(v − u)|tH ∩Bd(y, s1/α)|

)
exp

(
− u|tH ∩ (Bd(x, r1/α) ∪Bd(y, s1/α))|

)
B(t) = −2

∫
tH

dx

∫
tH

dy

∫ 1

0

du

∫ 1

0

dv

∫ (tℓ)α

0

dr

∫ (tℓ)α

0

ds 1{u<v}1{s<|x−y|α}

exp
(
−(v − u)|tH ∩Bd(y, s1/α)|

)
exp(−u|tH|)

C(t) = −

(∫
tH

dy

∫ 1

0

dv

∫ (tℓ)α

0

ds
(

exp
(
− v|tH ∩Bd(y, s1/α)|

)
− exp(−v|tH|)

))2

It can easily be seen that
C(t) = C1(t) + C2(t) − I3(t) − I5(t) (E.136)

with

C1(t) = −2

∫
tH

dx

∫
tH

dy

∫ 1

0

du

∫ 1

0

dv

∫ (tℓ)α

0

dr

∫ (tℓ)α

0

ds 1{u<v}1{s<|x−y|α}

exp(−v|tH ∩Bd(y, s1/α)|) exp(−u|tH ∩Bd(x, r1/α)|)

C2(t) = 2

∫
tH

dx

∫
tH

dy

∫ 1

0

du

∫ 1

0

dv

∫ (tℓ)α

0

dr

∫ (tℓ)α

0

ds exp(−v|tH ∩Bd(y, s1/α)|) exp(−u|tH|)

It remains to show that I2(t)+I4(t) = A(t)+B(t)+C1(t)+C2(t). Let us first show that A(t)+C1(t) =
I2(t). Indeed, denote R := Bd(x, r1/α) and S := Bd(y, s1/α). Then

exp(−(v − u)|tH ∩ S|) exp(−u|tH ∩ (S ∪R)|)
= exp(−v|tH ∩ S|) exp(−u|tH ∩R|) exp(u|tH ∩ S ∩R|) (E.137)

and hence

A(t) + C1(t) = 2

∫
tH

dx

∫
tH

dy

∫ 1

0

du

∫ 1

0

dv

∫ (tℓ)α

0

dr

∫ (tℓ)α

0

ds 1{u<v}1{s<|x−y|α}

exp(−v|tH ∩ S|) exp(−u|tH ∩R|) (exp(u|tH ∩ S ∩R|) − 1) = I2(t). (E.138)

To see that B(t)+C2(t) = I4(t), it suffices to perform a change of variables in B(t) by taking ṽ := v−u,
dṽ = dv. ■

In the following we are going to deal with the different terms in Lemma E.19 in the case α = d
2 .

Lemma E.20. In the notation of Lemma E.19 and with α = d
2 ,

I1(t) ⩾ |H|κ−1
d td log(td) + O(td). (E.139)

Proof. First, we show that the second part of the expression I1(t) is O(td). Indeed,∫
tH

dy

∫ 1

0

dv

∫ (tℓ)d

0

ds exp(−v|tH|) = tdℓd(1 − exp(−td|H|)) = O(td). (E.140)
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Note that since |tH ∩Bd(y, s1/d)| ⩽ κds, the first part of the expression I1(t) is lower bounded by∫
tH

dy

∫ 1

t−d

dv

∫ (tℓ)d

0

ds exp(−vκds), (E.141)

which after integrating in y and s and the change of variables u = tdv, is equal to

td|H|κ−1
d

(
log(td) −

∫ td

1

du u−1 exp(−uκdℓ
d)

)
. (E.142)

Since
∫∞
1

du u−1 exp(−uκdℓ
d) < ∞, this term is equal to td|H|κ−1

d log(td) + O(td), concluding the
proof. ■

Lemma E.21. In the notation of Lemma E.19 and with α = d
2 , there is a constant T0 ⩾ 1 such that

for all t ⩾ T0, we have

I3(t) ⩽ |H|κ−1
d

π

2
td log(td) + O(td). (E.143)

See the proof of [Wad09, Lemma 3.6] for a similar computation to the one done below.

Proof. Start with a change of variables:

x̃ = t−1x, dx = tddx̃

ỹ = t−1y, dy = tddỹ

s̃ = t−d/2s, ds = td/2ds̃

r̃ = t−d/2r, dr = td/2dr̃

ũ = tdu, du = t−ddũ

ṽ = tdv, dv = t−ddṽ,

(E.144)

which leads to

I3(t) = 2td
∫
H

dx

∫
H

dy

∫ td

0

dv

∫ v

0

du

∫ ℓd/2

0

ds

∫ ℓd/2

0

dr 1{s>|x−y|d/2}

exp
(
−u|H ∩Bd(x, r2/d)|

)
exp

(
−v|H ∩Bd(y, s2/d)|

)
. (E.145)

We can reduce the integration interval of the variable v to [τ0, t
d], for some large constant τ0 and

large enough t, since the rest term is clearly O(td). For any v ⩾ τ0, we then have |H \H2v−1/(2d) | ⩽
βH2v−1/(2d) by the discussion at the start of Section 5.1.
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We can now split the above expression as follows:

I3(t) = 2td
∫ τ0

0

dv

∫ v

0

du

∫
H

dx

∫
H

dy

∫ ℓd/2

0

ds

∫ ℓd/2

0

dr 1{s>|x−y|d/2}

exp
(
−u|H ∩Bd(x, r2/d)|

)
exp

(
−v|H ∩Bd(y, s2/d)|

)
+ 2td

∫ td

τ0

dv

∫ v

0

du

∫
H\H

2v−1/(2d)

dx

∫
H

dy

∫ ℓd/2

0

ds

∫ ℓd/2

0

dr 1{s>|x−y|d/2}

exp
(
−u|H ∩Bd(x, r2/d)|

)
exp

(
−v|H ∩Bd(y, s2/d)|

)
+ 2td

∫ td

τ0

dv

∫ v

0

du

∫
H

2v−1/(2d)

dx

∫
H

dy

∫ ℓd/2

v−1/4

ds

∫ ℓd/2

0

dr 1{s>|x−y|d/2}

exp
(
−u|H ∩Bd(x, r2/d)|

)
exp

(
−v|H ∩Bd(y, s2/d)|

)
+ 2td

∫ td

τ0

dv

∫ v

0

du

∫
H

2v−1/(2d)

dx

∫
H

dy

∫ v−1/4

0

ds

∫ ℓd/2

v−1/4

dr 1{s>|x−y|d/2}

exp
(
−u|H ∩Bd(x, r2/d)|

)
exp

(
−v|H ∩Bd(y, s2/d)|

)
+ 2td

∫ td

τ0

dv

∫ v

0

du

∫
H

2v−1/(2d)

dx

∫
H

dy

∫ v−1/4

0

ds

∫ v−1/4

0

dr 1{s>|x−y|d/2}

exp
(
−u|H ∩Bd(x, r2/d)|

)
exp

(
−v|H ∩Bd(y, s2/d)|

)
= O(td) + R1(t) + R2(t) + R3(t) + I ′3(t) (E.146)

Note that in I ′3(t), due to the choice of sets we are integrating over, we have Bd(x, r2/d) ⊂ H and
Bd(y, s2/d) ⊂ H. Hence I ′3(t) is upper bounded by

2td
∫ td

1

dv

∫ v

0

du

∫ ∞

0

ds

∫ ∞

0

dr

∫
H

dx

∫
Bd(x,s2/d)

dy exp
(
−uκdr

2
)

exp
(
−vκdr

2
)

(E.147)

which is equal to |H|κ−1
d

π
2 t

d log(td). Hence

I ′3(t) ⩽ |H|κ−1
d

π
2 t

d log(td). (E.148)

It remains to show that the three rest terms R1(t), R2(t), R3(t) are O(td). To this end, recall from
Lemma E.3 that there is a constant cH > 0 such that |H ∩Bd(w, s)| ⩾ cHsd for any w ∈ H and s ⩽ ℓ.
This implies that

R1(t) ⩽ 2td
∫ ∞

τ0

dv

∫ v

0

du

∫ ∞

0

ds

∫ ∞

0

dr

∫
H\H

2v−1/(2d)

dx

∫
Bd(x,s2/d)

dy exp
(
−ucHr2

)
exp

(
−vcHs2

)
(E.149)

which in turn is upper bounded by

tdπκdc
−2
H βH

∫ ∞

τ0

v−1−1/(2d) = O(td). (E.150)

By the same reasoning, we get

R2(t) ⩽ 2|H|κdt
d

∫ ∞

τ0

dv

∫ v

0

du

∫ ∞

v−1/4

ds

∫ ∞

0

dr s2 exp
(
−ucHr2

)
exp

(
−vcHs2

)
(E.151)
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and

R3(t) ⩽ 2|H|κdt
d

∫ ∞

τ0

dv

∫ v

0

du

∫ ∞

0

ds

∫ ∞

v−1/4

dr s2 exp
(
−ucHr2

)
exp

(
−vcHs2

)
. (E.152)

both of which can be shown to be O(td). ■

Lemma E.22. In the notation of Lemma E.19 and with α = d
2 , one has I4(t) = O(td) and I5(t) =

O(td).

Remark E.23. Since I4(t) ⩾ 0, it is not necessary to calculate the order of this term to find a lower

bound of Var(F
(d/2)
t ). However, we include the proof for completeness.

Proof. Perform the same change of variables and upper bound as in the proof of Lemma E.21 to find

I4(t) ⩽ 2td
∫
H

dx

∫
H

dy

∫ td

0

dv

∫ td

0

du

∫ ℓd/2

0

ds

∫ ℓd/2

0

dr 1{u+v⩾td} exp
(
−ucHr2

)
exp (−v|H|) .

(E.153)
Integrating over x, y, s and v yields the upper bound

I4(t) ⩽ 2|H|ℓd/2td
∫ td

0

du

∫ ℓd/2

0

dr exp(−ucHr2)
(
exp(−(td − u)|H|) − exp(−td|H|)

)
. (E.154)

The integrand is bounded by exp(−(td − u)|H|). Introducing the change of variable ũ = td − u yields
the upper bound

I4(t) ⩽ 2|H|ℓd/2td
∫ td

0

du

∫ ℓd/2

0

dr exp(−u|H|) ⩽ 2ℓdtd = O(td). (E.155)

As for I5(t), integrating over all variables yields that

I5(t) = tdℓd(1 − exp(−t|H|))2 = O(td). (E.156)

■

Lemma E.24 (Joint work with Pierre Perruchaud). In the notation of Lemma E.19 and with α = d
2 ,

for every ϵ > 0, there is a constant T0 ⩾ 1 such that for all t ⩾ T0,

I2(t) ⩾ (|H|κ−1
d c(d) − ϵ)td log(td) + O(td), (E.157)

where

c(d) =

∫
Rd

dz

∫ ∞

0

dr 1{|z|⩾1}

((
|Bd(0, r2/d) ∪Bd(z, 1)|

)−1

− κ−1
d (r2 + 1)−1

)
. (E.158)

Proof. Fix ϵ̃ > 0 such that (|H| − ϵ̃)(c(d) − ϵ̃) ⩾ |H|c(d) − ϵ and let δ̃ > 0 be such that βH δ̃ < ϵ̃ and
|Hδ̃| ⩾ |H| − ϵ̃ (which is possible by property (E.3)).

Assume that x ∈ tHδ̃, y ∈ Bd(x, tδ̃
2 ), r ⩽ (tδ̃)d/2 and s ⩽ |x−y|d/2. Then Bd(x, tδ̃) ⊂ tH, Bd(x, r2/d) ⊂

tH and Bd(y, s2/d) ⊂ tH. In the integrals making up I2(t), we can reduce the intervals of integration
to the ones stated here and hence I2(t) is lower bounded by

2

∫
tHδ̃

dx

∫
Bd(x, tδ̃2 )

dy

∫ (tδ̃)d/2

0

dr

∫ |x−y|d/2

0

ds

∫ 1

0

dv

∫ v

0

du

exp(−uκdr
2) exp(−vκds

2)
(

exp(u|Bd(0, r2/d) ∩Bd(y − x, s2/d)|) − 1
)
. (E.159)

60



Now carry out the following changes of variables:
ũ = v−1u, dũ = v−1du

z = v1/d(y − x), dz = vdy

s̃ = v1/2s, ds̃ = v1/2ds

r̃ = v1/2r, dr̃ = v1/2dr

(E.160)

and deduce that the above expression is equal to

2

∫ 1

0

dv

∫ 1

0

dũ

∫
tHδ̃

dx

∫
Bd(0,tv1/dδ̃/2)

dz

∫ (tv1/dδ̃)d/2

0

dr̃

∫ |z|d/2

0

ds̃

v−1 exp(−ũκdr̃
2) exp(−κds̃

2)
(

exp(ũ|Bd(0, r̃2/d) ∩Bd(z, s̃2/d)|) − 1
)

(E.161)

Assume now that t ⩾ δ̃−1τ0 =: T0 for some τ0 > 0 and lower bound this expression by reducing to the
integration interval where v1/d ⩾ t−1δ̃−1τ0. Integrating additionally over x, we get the lower bound

td|Hδ̃|

(∫ 1

(t−1δ̃−1τ0)d
dv v−1

)
2

∫ 1

0

du

∫
Bd(0,τ0/2)

dz

∫ τ
d/2
0

0

dr

∫ |z|d/2

0

ds

exp(−uκdr
2) exp(−κds

2)
(

exp(u|Bd(0, r2/d) ∩Bd(z, s2/d)|) − 1
)
. (E.162)

For τ0 large enough, this is lower bounded by

td(|H| − ϵ̃)(log(td) − d log(δ̃−1τ0))(c0(d) − ϵ̃) ⩾ (|H|c0(d) − ϵ)td log(td) + O(td) (E.163)

with

c0(d) := 2

∫ 1

0

du

∫
Rd

dz

∫ ∞

0

dr

∫ |z|d/2

0

ds exp(−uκdr
2) exp(−κds

2)(
exp(u|Bd(0, r2/d) ∩Bd(z, s2/d)|) − 1

)
. (E.164)

The last thing that remains to do is to show that c0(d) = κ−1
d c(d). Perform the successive change of

variables r̃ = u1/2r, z̃ = u1/dz, s̃ = u1/2s and ũ = u−1, then integrate over ũ to get

c0(d) = 2

∫
Rd

dz

∫ ∞

0

dr

∫ |z|d/2

0

ds κ−1
d s−2 exp(−κds

2) exp(−κdr
2)(

exp(|Bd(0, r2/d) ∩Bd(z, s2/d)|) − 1
)
. (E.165)

Then change variables z̃ = s−2/dz and r̃ = s−1r and integrate over s to find c0(d) = κ−1
d c(d). ■

Combining Lemmas E.20, E.21, E.22 and E.24, we have shown that for every ϵ > 0, there is a
T0 ⩾ 1 such that for all t ⩾ T0,

Var
(
F

(d/2)
t

)
⩾ td log(td)

[
|H|κ−1

d

(
1 + c(d) − π

2

)
− ϵ
]

+ O(td). (E.166)

It remains thus to show that for d ∈ N,

c(d) >
π

2
− 1 ≈ 0.57, (E.167)

which will be shown in the following lemma.
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Lemma E.25 (Joint work with Pierre Perruchaud). In the notation of Lemma E.24, for d ∈ N,

c(d) >
π

2
− 1 ≈ 0.57. (E.168)

Proof. We start by showing a lower bound on c(d). Indeed, for all x ∈ (0, 1),

1

1 − x
− 1 =

x

1 − x
⩾ x. (E.169)

Hence

1

|Bd(0, r2/d) ∪Bd(z, 1)|
− 1

κd(r2 + 1)

= κ−1
d (r2 + 1)−1

(
1

1 − κ−1
d (r2 + 1)−1|Bd(0, r2/d) ∩Bd(z, 1)|

− 1

)
⩾ κ−2

d (r2 + 1)−2|Bd(0, r2/d) ∩Bd(z, 1)|. (E.170)

A lower bound for c(d) is thus given by∫ ∞

0

dr κ−2
d (r2 + 1)−2

∫
Rd

dz 1{|z|⩾1}|Bd(0, r2/d) ∩Bd(z, 1)|. (E.171)

Looking only at the inner integral over z, note that we can rewrite it as follows:∫
Rd

dz 1{|z|⩾1}|Bd(0, r2/d) ∩Bd(z, 1)| =

∫
Rd

dz

∫
Rd

dx 1{|z|⩾1}1{|x|⩽r2/d}1{|x−z|⩽1}

=

∫
Rd

dx 1{|x|⩽r2/d}

∫
Rd

dz
(
1{|x−z|⩽1} − 1{|x−z|⩽1}1{|z|⩽1}

)
=

∫
Bd(0,r2/d)

dx
(
κd − |Bd(0, 1) ∩Bd(x, 1)|

)
. (E.172)

Plugging this into the lower bound (E.171), we obtain∫ ∞

0

dr κ−2
d (r2 + 1)−2

∫
Bd(0,r2/d)

dx
(
κd − |Bd(0, 1) ∩Bd(x, 1)|

)
, (E.173)

which can be written as ∫ ∞

0

dr (r2 + 1)−2r2 − c̃(d) =
π

4
− c̃(d) (E.174)

with

c̃(d) :=

∫ ∞

0

dr κ−2
d (r2 + 1)−2

∫
Bd(0,r2/d)

dx |Bd(0, 1) ∩Bd(x, 1)|. (E.175)

Hence c(d) ⩾ π
4 − c̃(d) and to show that c(d) ⩾ π

2 − 1, it suffices to show that c̃(d) ⩽ 1 − π
4 ≈ 0.215.

First, note that

|Bd(0, 1) ∩Bd(x, 1)| = 2κd−11{|x|⩽2}

∫ 1

|x|
2

dy (1 − y2)
d−1
2 . (E.176)

which can be seen by integrating over the d − 1-dimensional hyperspheres making up the spherical
caps of the intersection, or by following the development in [Li11]. Hence c̃(d) can be written

c̃(d) = 2κd−1κ
−2
d

∫ 1

0

dy

∫ ∞

0

dr

∫
Rd

dx 1{|x|⩽r2/d∧2y}(r2 + 1)−2(1 − y2)
d−1
2

= 2κd−1κ
−1
d

∫ 1

0

dy

∫ ∞

0

dr
(
r2 ∧ (2y)d

)
(r2 + 1)−2(1 − y2)

d−1
2 , (E.177)
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d β1(d)
3 0.203
4 0.175
5 0.150
6 0.128
7 0.110
8 0.094
9 0.081

Table 1: Values of β1(d)

where we integrated over x in the second line. For any u ⩾ 0, define

g(u) := 2

∫ ∞

0

dr (r2 ∧ u2)(r2 + 1)−2 =
π

2
u2 + (1 − u2) arctan(u) − u. (E.178)

Then it can be verified by standard methods that g(0) = 0, as well as limu→∞ g(u) = π
2 and the

function is strictly increasing. Moreover, g′(u) ⩽ πu, therefore g(x) ⩽ π
2x

2.
We now have

c̃(d) = κd−1κ
−1
d

∫ 1

0

dy (1 − y2)
d−1
2 g

(
(2y)d/2

)
. (E.179)

Change variables u = 1−y
2 to get

c̃(d) = 2dκd−1κ
−1
d

∫ 1/2

0

du u
d−1
2 (1 − u)

d−1
2 g

(
2d/2(1 − 2u)d/2

)
(E.180)

and note that

2dκd−1κ
−1
d

∫ x

0

du u
d−1
2 (1 − u)

d−1
2 = Ix

(
d + 1

2
,
d + 1

2

)
, (E.181)

where Ix(a, b) is the regularized incomplete beta function (see [Par] for details).
Let us now deal with dimensions d ∈ {3, ..., 9}. Split the integration interval [0, 1

2 ] into intervals [ i−1
40 , i

40 ]

for i ∈ {1, 2, ..., 20} and upper bound g
(
2d/2(1 − 2u)d/2

)
by g

(
2d/2(1 − i−1

10 )d/2
)

for u ∈ ( i−1
40 , i

40 ]. We
deduce the following bound:

c̃(d) ⩽
20∑
i=1

g

((
2 − i− 1

10

)d/2
)(

I i
40

(
d + 1

2
,
d + 1

2

)
− I i−1

40

(
d + 1

2
,
d + 1

2

))
=: β1(d) (E.182)

This results in the values in Table 1, all of which are smaller than 1 − π
4 ≈ 0.215.

For d ⩾ 10, take θ = 0.32 and split c̃(d) as follows:

c̃(d) = 2dκd−1κ
−1
d

(∫ θ

0

du u
d−1
2 (1 − u)

d−1
2 g

(
2d/2(1 − 2u)d/2

)
︸ ︷︷ ︸

⩽π
2

+

∫ 1/2

θ

du u
d−1
2 (1 − u)

d−1
2 g

(
2d/2(1 − 2u)d/2

)
︸ ︷︷ ︸

⩽π2d−1(1−2θ)d

)

⩽
π

2
Iθ

(
d + 1

2
,
d + 1

2

)
+ π2d−1(1 − 2θ)dI1/2

(
d + 1

2
,
d + 1

2

)
, (E.183)

where the second line follows by (E.181). Since I1/2
(
d+1
2 , d+1

2

)
= 1

2 , it follows that c̃(d) is upper
bounded by

β2(d) :=
π

2

(
Iθ

(
d + 1

2
,
d + 1

2

)
+ 2d−1(1 − 2θ)d

)
. (E.184)
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Now β2(10) ≈ 0.208 < 1− π
4 . By Proposition 4 in [BC21], for any x ∈ (0, 1

2 ), the function α 7→ Ix(α, α)
is decreasing. Hence β2(d) is decreasing in d and thus for all d ⩾ 10, one has β2(d) ⩽ β2(10).
For dimension d = 1, it is possible to show that c(1) =

(
5
2 −

√
2
)
π − 2

√
2 ≈ 0.583 > π

2 − 1. For
dimension d = 2, one can numerically estimate that c(2) ≈ 0.606 > π

2 − 1.
The following python code was used to carry out this estimation with an approximate error of 1.5×10−8.
It can be used to estimate c(d) at other small values of d.

import math
from math import gamma
import s c ipy as sc
import s c ipy . s p e c i a l
import s c ipy . i n t e g r a t e
import numpy as np

# volume ( s p h e r i c a l cap ) /volume ( un i t b a l l )
# r : radius , a : base d i s t anc e to cap , d : dimension
de f capvol ( r , a , d ) :

i f a>=0:
re turn 1/2*( r **d) * sc . s p e c i a l . be ta inc ( ( d+1)/2 ,1/2 ,1=a**2/ r **2)

# sma l l e r cap
e l s e :

r e turn r **d=capvol ( r ,=a , d) #l a r g e r cap

# volume ( i n t e r s e c t i o n o f b a l l s ) /volume ( un i t b a l l )
# x : d i s t anc e between c e n t r e s o f b a l l s , r1 , r2 : r a d i i , d : dimension
de f vo l (x , r1 , r2 , d ) :

i f x >= r1+r2 : #no i n t e r s e c t i o n
return 0

e l i f x <= abs ( r1=r2 ) : #one b a l l with in the other
re turn min ( r1 , r2 ) **d

e l s e :
c1 = ( x**2+r1**2= r2 **2) /(2*x ) #d i s t a n c e s to bases o f caps
c2 = ( x**2= r1**2+r2 **2) /(2*x )
re turn capvol ( r1 , c1 , d)+capvol ( r2 , c2 , d ) #sum of both s p h e r i c a l

caps

# the integrand
# r , a : v a r i a b l e s , d : dimension
de f i n t e g r ( r , a , d ) :

q1 = 1+a**d=vo l ( r , 1 , a , d )
q2 = 1 + a**d
return 2*d**2/4* r **(d=1)/a **(d/2+1) *(1/ q1=1/q2 )

# the constant c (d)
de f c s t (d) :

opt i ons={ ’ l i m i t ’ :200}
r e s = sc . i n t e g r a t e . nquad ( lambda a , r : i n t e g r ( r , a , d ) ,\

[ lambda r : [ 0 , r ] , [ 0 , np . i n f ] ] , opts =[ opt ions , opt ions ] )
r e turn r e s #re tu rn s the r e s u l t and the maximal e r r o r made

■

Proof of Proposition E.17. Combine Lemmas E.19 - E.25. ■
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E.4 Proof of Theorem 5.3

The inequalities (5.7) and (5.9) are shown in Propositions E.14, E.16 and E.17. In the following, we
will write c to indicate the presence of a constant. The value of c might change from line to line, or
indeed, within one line.
We have for 0 < α ⩽ d

2 :

|F (α)
t | ⩽ (diam(H)t)αη(tH × [0, 1]) (E.185)

and using (E.26),

|D(x,s) F
(α)
t | ⩽ (diam(H)t)α(η(tH × [0, 1]) + 1), (E.186)

hence F
(α)
t ∈ L2(Pη) ∩ dom D.

E.4.1 Wasserstein distance when α = d
2

We use the bound given in Theorem 3.3 with (Y, λ̄) = (tH × [0, 1], dx⊗ ds) and p = q = 2.
Recall that, combining Propositions E.1 and E.17, we have for r ⩾ 1 the following bounds:

E
[
E
[
|D(x,s) F

(d/2)
t |

∣∣η|tH×[0,s)

]r]1/r
≲ s−1/2 ∧ td/2 (E.187)

E
[
E
[
|D(2)

(x,s),(y,u) F
(d/2)
t |

∣∣η|tH×[0,s∨u)

]4]1/4
≲ (s ∨ u)−1/2 exp(−c(s ∨ u)|x− y|d), (E.188)

Var
(
F

(d/2)
t

)
≳ td log(t), (E.189)

where for the second line we used the Cauchy-Schwarz inequality to get

E
[
E
[
|D(2)

(x,s),(y,u) F
(d/2)
t |

∣∣η|tH×[0,s∨u)

]4]1/4
⩽ E

[
E
[
|D(2)

(x,s),(y,u) F
(d/2)
t |

∣∣η|tH×[0,s∨u)

]8]1/8 P(E
[
|D(2)

(x,s),(y,u) F
(d/2)
t |

∣∣η|tH×[0,s∨u)

]
̸= 0)1/2. (E.190)

We start by plugging the bounds (E.187), (E.188), (E.189) into β1 from Theorem 3.3. Then

β1 ≲
(
td log(t)

)−1

(∫
tH

dx

∫ 1

0

ds

(∫
tH

dy

∫ 1

0

du u−1/2(u ∨ s)−1/2 exp
(
−c(u ∨ s)|x− y|d

))2
)1/2

.

(E.191)
We now change variables as follows: 

x̃ = t−1x, dx = tddx̃

ỹ = t−1y, dy = tddỹ

s̃ = tds, ds = t−dds̃

ũ = tdu, du = t−ddũ

(E.192)

and deduce that β1 is bounded by

c log(t)−1

(∫
H

dx

∫ ∞

0

ds

(∫
H

dy

∫ ∞

0

du u−1/2(u ∨ s)−1/2 exp(−c(u ∨ s)|x− y|d)

)2
)1/2

. (E.193)

This is O(log(t)−1) since the integral is finite. Indeed, changing variables in y and integrating over x,
the integral is bounded by

|H|
∫ ∞

0

ds

(∫
Bd(0,2 diam(H))

dz

∫ ∞

0

du u−1/2(u ∨ s)−1/2 exp(−c(u ∨ s)|z|d)

)2

. (E.194)
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Integrating over z, this is equal to

c

∫ ∞

0

ds

(∫ ∞

0

du u−1/2(u ∨ s)−3/2(1 − exp(−c(u ∨ s)))

)2

. (E.195)

Now we use that 1 − exp(−c(u ∨ s)) ≲ 1 ∧ (u ∨ s) to bound (E.195) by

c

∫ ∞

0

ds

(∫ ∞

0

du u−1/2(u ∨ s)−3/2(1 ∧ (u ∨ s))

)2

. (E.196)

Splitting the integral over s and integrating over u, yields that (E.196) is equal to

c

∫ 1

0

ds (3 − log(s))2 + c

∫ ∞

1

ds s−2 < ∞. (E.197)

For β2, we have

β2 ≲ (td log(t))−1

(∫
tH

dx

∫ 1

0

ds

(∫
tH

dy

∫ 1

s

du u−1 exp(−cu|x− y|d)

)2
)1/2

. (E.198)

This term can be dealt with in the same way as with β1 and it is O(log(t)−1).
As for β3, we get

β3 ≲ (td log(t))−3/2

∫
tH

dy

∫ 1

0

du (u−1/2 ∧ td/2)3. (E.199)

Integrating over u and y gives that this is O(log(t)−3/2).
The last term is given by

β4 ≲ (td log(t))−3/2

∫
tH

dx

∫ 1

0

ds

∫
tH

dy

∫ s

0

du u−1/2s−1 exp(−cs|x− y|d). (E.200)

Proceeding in the same way we dealt with β1 yields that β4 = O(log(t)−3/2).
Combining our estimates above, we conclude that β1 + β2 + β3 + β4 = O(log(t)−1). ■

E.4.2 Wasserstein and Kolmogorov distance when α < d
2

We use Theorem 3.4 with p, q ∈ (1, 2] and ϵ > 0 such that 2p(α + ϵd) < d and (q + 1)(α + ϵd) < d. In
the following we will show that all terms γ1, ..., γ7 are O(td(1/p−1)). By Propositions E.16, E.12 and
Cauchy-Schwarz inequality, we have for all r ⩾ 1 the following bounds:

E[|D(x,s) F
(α)
t |r]1/r ≲ s−α/d−ϵ (E.201)

E[|D(2)
(x,s),(y,u) F

(α)
t |r]1/r ≲ (u ∨ s)−α/d−ϵ exp

(
−c(u ∨ s)|x− y|d

)
(E.202)

Var(F
(α)
t ) ≳ td. (E.203)

Introducing these bounds into γ1, we get

γ1 ≲ t−d

(∫
tH

dx

∫ 1

0

ds

(∫
tH

dy

∫ 1

0

du u−α/d−ϵ(u ∨ s)−α/d−ϵ exp
(
−c(u ∨ s)|x− y|d

))p
)1/p

.

(E.204)
Using a change of variables, we can bound the integral over y as follows:∫

tH

dy exp(−c(u ∨ s)|x− y|d) ⩽
∫
Rd

dz exp(−c(u ∨ s)|z|d) ≲ (u ∨ s)−1. (E.205)
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Introducing (E.205) into (E.204) and integrating over x gives us

γ1 ≲ td(1/p−1)

(∫ 1

0

ds

(∫ 1

0

du u−α/d−ϵ(u ∨ s)−α/d−ϵ−1

)p
)1/p

. (E.206)

Integrating over u, one sees that these integrals are bounded by

c

∫ 1

0

ds s−2p(α/d+ϵ) < ∞. (E.207)

Hence γ1 = O(td(1/p−1)). The term γ2 is bounded by

γ2 ≲ t−d

(∫
tH

dx

∫ 1

0

ds

(∫
tH

dy

∫ 1

0

du (u ∨ s)−2α/d−2ϵ exp
(
−c(u ∨ s)|x− y|d

))p
)1/p

. (E.208)

This can be treated analogously to the bound on γ1 and yields γ2 = O(td(1/p−1)).
As for γ3, it is bounded by

γ3 ≲ t−d(q+1)/2

∫
tH

dy

∫ 1

0

du u−(q+1)(α/d+ϵ). (E.209)

This is O(td(1−q)/2). Choose q = 3− 2
p , then (q + 1)(α+ ϵd) ⩽ 2p(α+ ϵd) < d and q ∈ (1, 2], hence the

conditions are satisfied. Moreover, 1−q
2 = −1 + 1

p , thus we find the same rate of convergence.
The term γ4 is bounded by

γ4 ≲ t−d

(∫
tH

dx

∫ 1

0

ds s−2p(α/d−ϵ)

)1/p

, (E.210)

which is clearly O(td(1/p−1)). For the term γ5, we deduce

γ5 ≲ t−d

(∫
tH

dx

∫ 1

0

ds

∫
tH

dy

∫ 1

0

du (u ∨ s)−2p(α/d+ϵ) exp(−c(u ∨ s)|x− y|d)

)1/p

. (E.211)

Integrating over x and y as before, we infer

γ5 ≲ td(1/p−1)

(∫ 1

0

ds

∫ 1

0

du (u ∨ s)−2p(α/d+ϵ)−1

)1/p

, (E.212)

which is O(td(1/p−1)). The terms γ6 and γ7 work similarly:

γ6 ≲ t−d

(∫
tH

dx

∫ 1

0

ds

∫
tH

dy

∫ 1

0

du (u ∨ s)−p(α/d+ϵ)s−p(α/d+ϵ) exp(−c(u ∨ s)|x− y|d)

)1/p

,

(E.213)
and

γ7 ≲ t−d

(∫
tH

dx

∫ 1

0

ds

∫
tH

dy

∫ 1

0

du (u ∨ s)−(α/d+ϵ)s−(α/d+ϵ)

u−2(α/d+ϵ)(p−1) exp(−c(u ∨ s)|x− y|d)

)1/p

(E.214)

which can be shown to be O(td(1/p−1)) by the same method. This concludes the proof of Theorem 5.3.
■
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F Gilbert Graph

Throughout this section, we work in the framework of Section 5.2 and Theorem 5.5. We start with a
technical lemma.

Lemma F.1. Let Z be a Poisson random variable with intensity λ > 0 and let r ⩾ 1. Then there is
a constant cr > 0 such that

E[Zr]1/r ⩽ cr(λ ∨ λ1/r). (F.1)

Proof. Let m ∈ N. As can be found in any standard reference (see e.g. [PT11, Proposition 3.3.2]),

EZm =

m∑
i=1

{
m

i

}
λi, (F.2)

where
{
m
i

}
are the Stirling numbers of second kind. This is bounded by (λ ∨ λm)Bm, where Bm =∑m

i=1

{
m
i

}
is the mth Bell number. Hence

E[Zm]1/m ⩽ B1/m
m (λ ∨ λ1/m). (F.3)

Now let r > 1, r /∈ N and define p0 := ⌊r⌋ and p1 := ⌈r⌉. Then take θ := p1

r
r−p0

p1−p0
∈ (0, 1) such that

we have 1
r = 1−θ

p0
+ θ

p1
. By log-convexity of Lp norms (see e.g. [Tao] or [Bre11, Remark 2. p.93]) and

the first part of the proof, we have

E[Zr]1/r ⩽ ∥Z∥1−θ
p0

∥Z∥θp1
⩽ B(1−θ)/p0

p0
Bθ/p1

p1
(λ ∨ λ1/r), (F.4)

which provides the desired bound with cr := B
(1−θ)/p0
p0 B

θ/p1
p1 . ■

As a next step, we prove bounds on the first and second order add-one costs of L
(α)
t .

Proposition F.2. Let α > −d
2 and r ⩾ 1 such that d + rα > 0. Then L

(α)
t ∈ dom D and there is a

constant c > 0 such that for all x, y ∈ W and t > 0

E
[(

Dx L
(α)
t

)r]1/r
⩽ cϵαt (tϵdt )1/r

(
1 ∨ tϵdt

)1−1/r
(F.5)

P(Dx L
(α)
t ̸= 0) ⩽ 1 ∧ κdtϵ

d
t (F.6)

D(2)
x,y L

(α)
t = 1{|x−y|<ϵt}|x− y|α. (F.7)

Proof. As explained in Section 2, to show that L
(α)
t ∈ dom D it suffices to argue that L

(α)
t ∈ L1(Pηt)

and that (2.3) holds. By [RST17, Theorem 3.1], it is true that L
(α)
t ∈ L1(Pηt) and the fact that

Dx L
(α)
t is square-integrable follows from (F.5) with r = 2 and from the fact that W is bounded.

Hence L
(α)
t ∈ dom D follows once we have shown (F.5).

Since Dx L
(α)
t = L

(α)
t (ηt + δx) − L

(α)
t (ηt), it is easy to see that

Dx L
(α)
t =

∑
y∈ηt

1{|x−y|<ϵt}|x− y|α. (F.8)

It now follows that

D(2)
x,y L

(α)
t = Dx L

(α)
t (ηt + δy) − Dx L

(α)
t (ηt) = 1{|x−y|<ϵt}|x− y|α, (F.9)

which gives (F.7). Since all terms in the sum (F.8) are non-negative, we have Dx L
(α)
t ̸= 0 if and only

if ηt(W ∩Bd(x, ϵt)) ̸= 0. Therefore

P(Dx L
(α)
t ̸= 0) = P(ηt(W ∩Bd(x, ϵt)) ̸= 0) = 1 − exp(−t|W ∩Bd(x, ϵt)|) (F.10)
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which is bounded by 1 ∧ t|W ∩Bd(x, ϵt)| ⩽ 1 ∧ κdtϵ
d
t . This gives (F.6).

To prove (F.5), note first that Dx L
(α)
t can be written

Dx L
(α)
t =

∫
W∩Bd(x,ϵt)

|x− y|αηt(dy). (F.11)

This is stochastically dominated by ∫
Bd(x,ϵt)

|x− y|αη̂t(dy), (F.12)

where η̂t is an (Rd, t dx)-Poisson measure. By translation invariance of the law of η̂t, this is equal in
law to ∫

Bd(0,ϵt)

|y|αη̂t(dy), (F.13)

which in turn is equal in law to
Mt∑
i=1

|Ui|α, (F.14)

where Mt is a Poisson random variable of intensity κdtϵ
d
t and U1, U2, ... are i.i.d. uniform random

variables in Bd(0, ϵt) independent of Mt.
By Jensen’s inequality,

E

(
Mt∑
i=1

|Ui|α
)r

⩽ EMr−1
t

Mt∑
i=1

|Ui|rα. (F.15)

By independence, this is equal to

E

[
Mr−1

t

Mt∑
i=1

E|Ui|rα
]

=
d

d + rα
ϵrαt EMr

t . (F.16)

Using Lemma F.1, we deduce

E [Mr
t ]

1/r ⩽ cr

(
κdtϵ

d
t ∨ (κdtϵ

d
t )1/r

)
. (F.17)

Combining the above bounds leads to

E
[(

Dx L
(α)
t

)r]1/r
⩽ cr(1 ∨ κd)

(
d

d + rα

)1/r

ϵαt

(
tϵdt ∨ (tϵdt )1/r

)
, (F.18)

which shows (F.5). ■

Theorem 3.3 in [RST17] gives us the following variance asymptotics: for α > −d
2 ,

Var
(
L
(α)
t

)
=
(
σ(1)
α t2ϵ2α+d

t + σ(2)
α t3ϵ2α+2d

t

)
|W |(1 + O(ϵt)), (F.19)

where σ
(1)
α = dκd

2(d+2α) and σ
(2)
α =

d2κ2
d

(α+d)2 . Hence for large enough t, there is a constant c > 0 such that

Var
(
L
(α)
t

)
⩾ ct2ϵ2α+d

t

(
1 ∨ tϵdt

)
. (F.20)

We are now in a position to prove Theorem 5.5.
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Proof of Theorem 5.5. We plug the bounds from Proposition F.2 and (F.20) into the terms γ1, ..., γ7
given in Theorem 3.4. Let p ∈ (1, 2] such that 2pα + d > 0.
For the choice of r = 2p in (F.5), the first term yields

γ1 ≲
(
t2ϵ2α+d

t

(
1 ∨ tϵdt

))−1
(∫

W

(∫
W

ϵαt (tϵdt )1/(2p)
(
1 ∨ tϵdt

)1−1/(2p)
1{|x−y|<ϵt}|x− y|αtdy

)p

tdx

)1/p

.

(F.21)
Note that ∫

W

1{|x−y|<ϵt}|x− y|αdy ⩽
∫
Bd(x,ϵt)

|x− y|αdy =
dκd

d + α
ϵd+α
t . (F.22)

Hence γ1 is (up to multiplication by a positive constant) bounded by

t1/p−1(tϵdt )1/(2p)(1 ∨ tϵdt )−1/(2p) = t1/p−1
(

1 ∧ (tϵdt )1/(2p)
)
. (F.23)

As for γ2, we have

γ2 ≲
(
t2ϵ2α+d

t

(
1 ∨ tϵdt

))−1
(∫

W

(∫
W

1{|x−y|<ϵt}|x− y|2αtdy
)p

tdx

)1/p

. (F.24)

By (F.22), we deduce

γ2 ≲ t1/p−1
(
1 ∨ tϵdt

)−1
. (F.25)

For γ3, take q = 3 − 2
p . Then q ∈ (1, 2] and (q + 1)α + d > 2pα + d > 0. Let r > q+1

2 such that
2rα + d > 0. Then, using

E
(

Dx L
(α)
t

)q+1

⩽ E
[(

Dx L
(α)
t

)2r] q+1
2r

P(Dx L
(α)
t ̸= 0)1−

q+1
2r (F.26)

we deduce

γ3 ≲
(
t2ϵ2α+d

t

(
1 ∨ tϵdt

))1/p−2
∫
W

(
ϵαt (tϵdt )1/(2r)

(
1 ∨ tϵdt

)1−1/(2r)
)4−2/p (

1 ∧ tϵdt
)1− 4−2/p

2r tdx. (F.27)

Simplifying, we infer
γ3 ≲ t1/p−1(1 ∨ (tϵdt )1/p−1). (F.28)

With the same method, one can establish the upper bounds

γ4 ≲ t1/p−1
(

1 ∨ (tϵdt )1/p−1
)

(F.29)

γ5 ≲ t1/p−1(tϵdt )1/p−1
(
1 ∨ tϵdt

)−1
(F.30)

γ6 ≲ t1/p−1(tϵdt )1/p−1
(

1 ∧ (tϵdt )1/(2p)
)

(F.31)

γ7 ≲ t1/p−1(tϵdt )2/p−1−1/(2p2)
(
1 ∨ (tϵdt )

)−2/p+1+1/(2p2)
(F.32)

All of these bounds are upper bounded by t1/p−1
(
1 ∨ (tϵdt )1/p−1

)
. If α > −d

4 , we can choose p = 2

and recover (5.13). To show (5.14), one chooses 1 < p < − d
2α , thus concluding the proof. ■

G k-Nearest Neighbour Graphs

In this section, we work in the setting of Theorem 5.7. We start with a technical lemma.
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Lemma G.1. Let ϕ : (0,∞) → (0,∞) be a non-increasing function satisfying (5.16) for some r > 2.
Then for any 0 ⩽ q ⩽ r, the following two integrals are finite:∫ 1

0

ϕ(s)qsd−1ds < ∞ (G.1)

and for any constant c > 0, ∫
Rd

ϕ(|x|)q exp(−c|x|d)dx < ∞. (G.2)

Moreover, for x ∈ Rd and µ ⊂ Rd a finite generic set with respect to x, define the following quantity:

e(x, µ) :=

{
0 if µ = ∅
min{|x− z| : z ∈ µ, z ̸= x} if µ ̸= ∅,

(G.3)

(that is, e(x, µ) is the length from x to the point of µ nearest to it, or zero if µ is empty). Extend the
definition of ϕ to [0,∞) by setting ϕ(0) = 0. Then for any 0 < q ⩽ r, there is a constant c > 0 such
that for all x ∈ tH, t ⩾ 1,

E
[
ϕ(e(x, η|tH))q

]1/q
< c. (G.4)

Proof. We start by noting that dsd−1
1{0<s<1} is a probability density. Hence, by Jensen’s inequality,

(
d

∫ 1

0

ϕ(s)qsd−1ds

)1/q

⩽

(
d

∫ 1

0

ϕ(s)rsd−1ds

)1/r

. (G.5)

This is finite by virtue of condition (5.16), thus yielding (G.1). Using polar coordinates, the integral
in (G.2) is equal to

dκd

∫ ∞

0

ϕ(s)q exp(−csd)sd−1ds. (G.6)

Now use that ϕ is non-increasing to infer that, if s ⩾ 1, then ϕ(s) ⩽ ϕ(1). Hence (G.6) is bounded by

dκd

(∫ 1

0

ϕ(s)qsd−1ds +

∫ ∞

1

ϕ(1)qsd−1 exp(−csd)ds

)
. (G.7)

The second integral is clearly finite and the first is finite by (G.1), thus implying (G.2). For the bound
(G.4), note that by Jensen’s inequality

E
[
ϕ(e(x, η|tH))q

]1/q
⩽ E

[
ϕ(e(x, η|tH))r

]1/r
, (G.8)

therefore it suffices to show the bound for q = r.
Take x ∈ tH and let us study the distribution of e(x, η|tH). For any a ⩾ 0, we have

G(a) := P(e(x, η|tH) ⩽ a) = P(e(x, η|tH) = 0) + P(0 < e(x, η|tH) ⩽ a). (G.9)

The event e(x, η|tH) = 0 happens if and only if η(tH) = 0, whereas 0 < e(x, η|tH) ⩽ a is equivalent to

the event that η(tH ∩Bd(x, a)) ̸= 0. Hence

G(a) = P(η(tH) = 0) + P(η(tH ∩Bd(x, a)) ̸= 0) = exp(−|tH|) + 1 − exp(−|tH ∩Bd(x, a)|). (G.10)

We can compute the derivative of 1 − exp(−|tH ∩Bd(x, a)|) as follows:

d

da
(1 − exp(−|tH ∩Bd(x, a)|)) = exp(−|tH ∩Bd(x, a)|) d

da
|tH ∩Bd(x, a)|. (G.11)
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Note that, by changing variables and moving to polar coordinates, we can rewrite the volume as

|tH ∩Bd(x, a)| =

∫
Rd

1{y∈tH}1{|y−x|<a}dy

=

∫
Rd

1{x+z∈tH}1{|z|<a}dz

=

∫ a

0

du

∫
Sd−1

dω ud−1
1{x+uω∈tH}, (G.12)

where Sd−1 is the unit sphere in Rd. Define thus

g(a) := exp(−|tH ∩Bd(x, a)|)
∫
Sd−1

ad−1
1{x+aω∈tH}dω, (G.13)

then

G(a) = P(e(x, η|tH) = 0) +

∫ a

0

g(u)du. (G.14)

Going back to the bound we want to prove, we now have

E
[
ϕ(e(x, η|tH))r

]1/r
=

(
ϕ(0)P(e(x, η|tH) = 0) +

∫ ∞

0

ϕ(u)rg(u)du

)1/r

=

(∫ ∞

0

ϕ(u)rg(u)du

)1/r

. (G.15)

We need to show that this integral is bounded by a constant independent of t. Since H has non-empty
interior, there is a ball Bd(x0, δ) ⊂ H, with x0 ∈ H and δ > 0. By Lemma E.3 and rescaling, there is
a constant cH > 0 depending on H and d such that |tH ∩ Bd(x, a)| ⩾ cHad. Thus, upper bounding
the indicator by 1, we find

g(a) ⩽ dκda
d−1 exp(−cHad). (G.16)

As a consequence(∫ ∞

0

ϕ(u)rg(u)du

)1/r

⩽

(
dκd

∫ ∞

0

ϕ(u)rud−1 exp
(
−cHud

)
du

)1/r

, (G.17)

and the RHS of this inequality is finite by (G.2). ■

Proposition G.2. Under the conditions of Theorem5.7, there are absolute constants C2, c2 > 0 such
that for any t ⩾ 1, any x, y ∈ tH, the following bound holds:

P
(

D(2)
x,y Ft ̸= 0

)
< C2 exp

(
−c2|x− y|d

)
. (G.18)

For any 1 ⩽ p ⩽ r
2 there is a constant c1 > 0 such that for any t ⩾ 1, any x, y ∈ tH, the following two

bounds hold:

E
[
|Dx Ft|2p

]1/(2p)
< c1 (G.19)

E
[
|D(2)

x,y Ft|2p
]1/(2p)

< c1 (ϕ(|x− y|) + 1) (G.20)

Moreover, Ft ∈ dom D.

The proof of (G.18) reuses arguments from [LPS16, Theorem 7.1].
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Proof. Step 1. We start by showing that for any x ∈ Rd and any finite set µ ∈ Rd generic with respect
to x, we have Dx F (µ) ⩾ 0.
First, note that

F (µ) =
∑

e∈k-NN(µ)

ϕ(|e|), (G.21)

where we take the sum over all edges e in the k-NN graph. Define a ‘direction’ on the graph in the
following way:

� If a point w is a nearest neighbour of the point z, direct the edge from z to w and write z → w;

� if z and w are reciprocal nearest neighbours, direct the edge both ways and write z ↔ w.

Upon addition of the point x, any of the following scenarios can happen:

1. An edge z → w is replaced by z → x (or z ↔ x), in which case |z − w| > |z − x|;

2. an edge z ↔ w is replaced by z → x (or z ↔ x) and w → x (or w ↔ x), in which case
|z − w| > |z − x| ∨ |w − x|;

3. an edge z ↔ w becomes w → z and the edge z → x (or z ↔ x) is added;

4. edges x → z are added.

Let Ea and Er be the sets of added and removed edges respectively. Every removed edge is replaced
by at least one added edge with shorter length. All other added edges increase Dx F (µ). Since ϕ is
decreasing, we have thus

Dx F (µ) =
∑
e∈Ea

ϕ(|e|) −
∑
e∈Er

ϕ(|e|) ⩾ 0. (G.22)

Step 2. We now prove (G.19). Fix x ∈ Rd and µ ⊂ Rd, a finite set generic with respect to x, and
consider the k-NN built on µ. Define e(x, µ) as in Lemma G.1.
Suppose that µ ̸= ∅ and consider Dx F (µ). There is a constant nd,k such that for any k-NN graph in
Rd, no vertex has degree more than nd,k. This fact was used in the proof of [LPS16, Lemma 7.2] and
we refer to the references given therein for more details. When adding x to the graph, all added edges
are incident to x, and hence we have |Ea| ⩽ nd,k. Every added edge between points x and y must
verify |x− y| ⩾ e(x, µ), since e(x, µ) is the minimally possible edge-length for any edge incident to x.
Since ϕ is decreasing, we conclude

|Dx F (µ)| = Dx F (µ) ⩽ |Ea|ϕ(e(x, µ)) ⩽ nd,kϕ(e(x, µ)). (G.23)

Note that this is well-defined since e(x, µ) > 0 if µ ̸= ∅.
If µ = ∅, then Dx F (µ) = 0. Extend the definition of ϕ to [0,∞) by setting ϕ(0) = 0. Then in all cases

|Dx F (µ)| ⩽ nd,kϕ(e(x, µ)). (G.24)

We have thus the following bound:

E
[
|Dx Ft|2p

]1/(2p)
⩽ nd,kE

[
ϕ(e(x, η|tH))2p

]1/(2p)
, (G.25)

which is bounded by a constant by Lemma G.1.
Step 3. We now show (G.20). By Step 2, we have

|D(2)
x,y Ft| ⩽ |Dx F (η|tH + δx)| + |Dx F (η|tH)|

⩽ nd,kϕ(e(x, η|tH)) + nd,kϕ(e(x, η|tH + δy)). (G.26)
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For ease of notation, define the event At := {η(tH) ̸= 0}. If η(tH) = 0, then e(x, η|tH + δy) = |x− y|,
else e(x, η|tH + δy) = e(x, η|tH) ∧ |x− y|. Hence if we split over both events, we get

ϕ(e(x, η|tH + δy)) = 1Ac
t
ϕ(|x− y|) + 1Atϕ(e(x, η|tH) ∧ |x− y|)

⩽ 1Ac
t
ϕ(|x− y|) + 1Atϕ(|x− y|) + 1Atϕ(e(x, η|tH))

= ϕ(|x− y|) + 1Atϕ(e(x, η|tH)). (G.27)

Hence we have
|D(2)

x,y Ft| ⩽ 2nd,kϕ(e(x, η|tH)) + nd,kϕ(|x− y|). (G.28)

Lemma G.1 now yields the result.
Step 4. The inequality (G.18) follows immediately from the argument used in the proof of [LPS16,
Theorem 7.1], which relies solely on the structure of the graph, and not on the function applied to the
edge-lengths.
Step 5. Lastly, we show that Ft ∈ dom D. As was explained in Section 2, it suffices to show that Ft is
integrable and Dx Ft square integrable. The second fact immediately follows from (5.16). By Mecke
equation we also have

EFt =

∫
tH

∫
tH

ϕ(|x− y|)P(x ∈ N(y, η|tH) or y ∈ N(x, η|tH))dxdy, (G.29)

where we recall that N(y, η|tH) is the set of the k nearest neighbours of y in η|tH . Upper bounding
the probability in the integrand by 1 and changing variables, this is upper bounded by

td|H|
∫
Bd(0,t diam(H))

ϕ(|z|)dz. (G.30)

Changing to polar coordinates, this is equal to

td|H|dκd

∫ t diam(H)

0

sd−1ϕ(s)ds, (G.31)

which is finite by Lemma G.1. ■

Proposition G.3. Under the conditions of Theorem 5.7, there are constants c1, c2 > 0 such that

c1t
d ⩽ Var(Ft) ⩽ c2t

d. (G.32)

Proof. The upper bound immediately follows from Poincaré inequality ((4.7) with p = 2) and (G.19)
with p = 1. For the lower bound, we use [LPS16, Theorem 5.2] and a reasoning similar to what was
done in the proof of [LPS16, Lemma 7.2].
Assume there are points w1, ..., wm ∈ Rd with 1

2 < |wi| < 1 for i ∈ {1, ...,m} such that for all y ∈ Rd

with |y| ⩾ 1
2 ,

|{i ∈ {1, ...,m} : |wi − y| < |y|}| ⩾ k + 1. (G.33)

This means that for any point y outside Bd
(
0, 1

2

)
, there are at least k+1 points among the {w1, ..., wm}

which are closer to y that the origin.
Now assume that there is τ > 0 and x ∈ tH such that Bd(x, τ) ∈ tH. Define w̃i := x + τwi. Consider
the collection of points

U := η|tH +

m∑
i=1

δw̃i
(G.34)

and let us evaluate Dx F (U).
First, note that by (G.33), all points outside Bd(x, τ/2) have at least k points closer than x among
the w̃1, ..., w̃m, including these points themselves. Therefore any points in U connecting to x must be
within Bd(x, τ/2).
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Assume η(Bd(x, τ)) = 0. Then the only edges added when adding x are those from x to its k nearest
neighbours among w̃1, ..., w̃m. Since |x− w̃i| ⩽ τ for any i, we have:

1{η(Bd(x,τ))=0} Dx F (U) ⩾ 1{η(Bd(x,τ))=0}kϕ(τ). (G.35)

As shown in Step 1 of the proof of Proposition G.2, we have Dx F (U) ⩾ 0 and

|EDx F (U)| ⩾ E
[
1{η(Bd(x,τ))=0}kϕ(τ)

]
= kϕ(τ) exp(−κdτ

d). (G.36)

We now find a set of (x, w̃1, ..., w̃m) for which this bound is true.
Let τ > 0 be such that there is a ball Bd(x0, 2τ) ⊂ H. For any x ∈ Bd(tx0, tτ) we have Bd(x, τ) ⊂ tH.
The closure of the set Bd(0, 1) \Bd

(
0, 1

2

)
is compact and can be covered by balls of radius 1

4 . Setting

k + 1 points into the interior of each intersection of one such ball with the annulus Bd(0, 1) \Bd
(
0, 1

2

)
gives a collection of points {z1, ..., zm}. We claim that this collection satisfies (G.33). Indeed, any
point inside Bd(0, 1) \ Bd

(
0, 1

2

)
will be in one ball of the covering and thus there are at least k + 1

points from {z1, ..., zm} at a distance of at most 1
2 . For any point y outside Bd(0, 1), there is a point

z ∈ ∂Bd(0, 1) such that |y− z| = |y| − 1 and this point has k + 1 points zi among {z1, ..., zm} that are
less than 1

2 away. For any such zi, one has |y − zi| ⩽ |y| − 1 + 1
2 .

Given a choice of z1, ..., zm, property (G.33) still holds if we slightly perturb the zi: there is an ϵ > 0
such that the collection of points {z1 + y1, ..., zm + ym} satisfies (G.33) for any y1, ..., ym ∈ Bd(0, ϵ).
The bound (G.36) is true for any (x, w̃1, ..., w̃m) ∈ U , where

U :=
{

(z, z + τ(z1 + y1), ..., z + τ(zm + ym)) : z ∈ Bd(tx0, tτ), y1, ..., ym ∈ Bd(0, ϵ)
}
. (G.37)

By [LPS16, Theorem 5.2] and a development analogous to the one in the proof of [LPS16, Theorem 5.3],
we find that for some constant c > 0,

Var(Ft) ⩾ c|U | = cκdτ
d(κdϵ

d)mtd, (G.38)

which yields the desired bound. ■

Proof of Theorem 5.7. For the rest of the proof, all constants will be referred to as c, to simplify
notation. Take p ∈ (1, 2] such that p < r

2 , where r is given by the condition (5.16).
Let us start with a bound on γ1. We use that

E
[
|D(2)

x,y Ft|2p
]1/(2p)

⩽ P
(

D(2)
x,y Ft ̸= 0

)1/(2p)−1/r

E
[
|D(2)

x,y Ft|r
]1/r

(G.39)

and the bounds in G.2 and G.3 to conclude that

γ1 ≲ t−d

(∫
tH

(∫
tH

exp(−c|x− y|d)(ϕ(|x− y|) + 1)dy

)p

dx

)1/p

. (G.40)

After changing variables and extending the domain of integration to Rd, the inner integral is upper
bounded by ∫

Rd

exp(−c|y|d)(ϕ(|y|) + 1)dy, (G.41)

which is finite by Lemma G.1. We deduce that

γ1 ≲ td(1/p−1). (G.42)

The terms γ2, γ4, γ5, γ6, γ7 can be shown to be O(td(1/p−1)) by applying the same strategy.

For γ3, take q = 3 − 2
p . Then q + 1 < 2p < r and E|Dy Ft|q+1 ⩽ E [|Dy Ft|r]

(q+1)/r
and we have

γ3 ≲ t−d(2−1/p)

∫
tH

E [|Dy Ft|r]
(q+1)/r

dx ≲ td(1/p−1). (G.43)
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To show that in particular this bound is true for the function ϕ(x) = x−α with 0 < α < d
2 , it suffices

to check condition (5.16). Indeed, let 2 < r < d
α . Then∫ 1

0

s−αrsd−1ds < ∞ (G.44)

and the bound on the speed of convergence holds for any p < r
2 < d

2α , with p ∈ (1, 2]. ■

H Radial Spanning Tree

In this section, we work in the setting of Theorem 5.8 and we call finite sets µ ⊂ Rd generic only if µ
is generic with respect to 0.

Proposition H.1. There are absolute constants c1, C1 > 0 (independent of ϕ) such that for any t ⩾ 1
and any x, y ∈ tH, the following bound holds:

P
(

D(2)
x,y Ft ̸= 0

)
⩽ C1 exp(−c1|x− y|d). (H.1)

Moreover, for any 1 ⩽ p ⩽ r
2 , there are constants c2, C2 > 0 such that for any t ⩾ 1 and any x, y ∈ tH,

the following bounds hold:

E
[
|Dx Ft|2p

]1/(2p)
⩽ C2

(
1 + ϕ(|x|) exp(−c2|x|d)

)
(H.2)

E
[
|D(2)

x,y Ft|2p
]1/(2p)

⩽ C2

(
ϕ(|x− y|) exp(−c2|x− y|d) + 1

)
(H.3)

We also have that Ft ∈ dom D.

The proof relies on and reuses some arguments from the proofs of Lemmas 4.1 and 4.2 in [ST17].

Proof. The bound (H.1) follows immediately from the proof of Lemma 4.2 in [ST17]. Indeed, the proof
given in [ST17] does not depend on the chosen functional, but only on the structure of the graph.
Next, we establish that for any x ∈ Rd and µ ⊂ Rd finite and generic with respect to x, we have
Dx F (µ) ⩾ 0. Indeed, it is true that

Dx F (µ) = ϕ(g(x, µ)) +
∑
y∈µ

(ϕ(g(y, µ + δx)) − ϕ(g(y, µ))) . (H.4)

Since 0 < g(y, µ + δx) ⩽ g(y, µ) and ϕ is non-increasing, the above expression is non-negative.
For the next part, define e(x, µ) as we did in Lemma G.1 and extend ϕ by setting ϕ(0) = 0. Then note
that the summand on the RHS of (H.4) is zero, unless y connects to x, in which case g(y, µ+δx) = |x−y|.
It follows that

0 ⩽ Dx F (µ) ⩽ ϕ(g(x, µ)) +
∑
y∈µ

1{y→x in µ+δx}ϕ(|x− y|). (H.5)

If µ is non-empty, then |x−y| ⩾ e(x, µ), hence the second term on the RHS of (H.4) is upper bounded
by

ϕ(e(x, µ))
∑
y∈µ

1{y→x in µ+δx}, (H.6)

a bound that continues to hold if µ = ∅.
As for the first term on the RHS of (H.4), if µ∩Bd(0, |x|)∩Bd(x, |x|) is empty, then the term is equal
to ϕ(|x|). If not, then g(x, µ) ⩾ e(x, µ) and it is upper bounded by ϕ(e(x, µ)). Hence we deduce the
bound

Dx F (µ) ⩽ ϕ(|x|)1{µ∩Bd(0,|x|)∩Bd(x,|x|)̸=∅} + ϕ(e(x, µ))

(
1 +

∑
y∈µ

1{y→x in µ+δx}

)
. (H.7)
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It follows by Hölder’s and Minkowski’s inequalities that

E
[
(Dx F (µ))

2p
]1/(2p)

⩽ ϕ(|x|)P(η(tH ∩Bd(0, |x|) ∩Bd(x, |x|)) = 0)1/(2p)

+ E
[
ϕ(e(x, η|tH))r

]1/r E[(1 +
∑
y∈µ

1{y→x in µ+δx}

)m]1/m
, (H.8)

where m = ⌈ 2pr
r−2p⌉.

We start with the first term on the RHS of (H.8). We know that

P(η(tH ∩Bd(0, |x|) ∩Bd(x, |x|)) = 0) = exp(−|tH ∩Bd(0, |x|) ∩Bd(x, |x|)|). (H.9)

Note that Bd(x
2 ,

|x|
2 ) ⊂ Bd(0, |x|) ∩Bd(x, |x|), therefore∣∣tH ∩Bd(0, |x|) ∩Bd(x, |x|)

∣∣ ⩾ ∣∣∣∣tH ∩Bd

(
x

2
,
|x|
2

)∣∣∣∣ . (H.10)

Since H is non-empty, there is a ball Bd(x0, δ) ⊂ H with x0 ∈ H and δ > 0. By scaling and use of
Lemma E.3, we conclude that there is a constant cH > 0 depending on H and d such that

|tH ∩Bd
(

x
2 ,

|x|
2

)
| ⩾ cH |x|d. (H.11)

Hence
ϕ(|x|)P

(
η(tH ∩Bd(0, |x|) ∩Bd(x, |x|)) = 0

)1/(2p)
⩽ ϕ(|x|) exp

(
− cH

2p |x|
d
)
. (H.12)

For the second term on the RHS of (H.8), we use that E
[
ϕ(e(x, η|tH))r

]1/r
is bounded by a constant

independent of t and x, by Lemma G.1. For the other part of the second term in (H.8), one can easily
adapt the argument in the proof of [ST17, Lemma 4.1] to show that for any m ∈ N,

E

[(
1 +

∑
y∈µ

1{y→x in µ+δx}

)m]1/m
(H.13)

is uniformly bounded by a constant. This concludes the proof of (H.2).
Now we prove (H.3). For x, y ∈ Rd and µ ⊂ Rd finite generic with respect to x, y, we have

D(2)
x,y F (µ) = ϕ(g(x, µ + δy)) +

∑
z∈µ

(ϕ(|x− z|) − ϕ(g(z, µ + δy)))1{z→x in µ+δy+δx}

+ (ϕ(|x− y|) − ϕ(g(y, µ)))1{y→x in µ+δy+δx}

− ϕ(g(x, µ)) −
∑
z∈µ

(ϕ(|x− z|) − ϕ(g(z, µ)))1{z→x in µ+δx}. (H.14)

This expression is in fact symmetric in x and y since the operator D(2)
x,y is symmetric. Assume without

loss of generality that |x| ⩽ |y|. Then x cannot connect to y and hence ϕ(g(x, µ + δy)) = ϕ(g(x, µ)).
The point y will connect to x if and only if |x− y| < |y| and µ ∩Bd(0, |y|) ∩Bd(y, |x− y|) = ∅, thus

(ϕ(|x− y|) − ϕ(g(y, µ)))1{y→x in µ+δy+δx}

= ϕ(|x− y|)1{|x−y|<|y|}1{µ∩Bd(0,|y|)∩Bd(y,|x−y|)=∅}. (H.15)

Moreover, a point z that connects to x in µ + δy + δx also connects to x in µ + δx and in this case
ϕ(|x− z|) ⩾ ϕ(g(z, µ + δy)). We deduce that∑

z∈µ

(ϕ(|x− z|) − ϕ(g(z, µ + δy)))1{z→x in µ+δy+δx} ⩽
∑
z∈µ

ϕ(|x− z|)1{z→x in µ+δx}. (H.16)
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Lastly, if z connects to x in µ + δx, then ϕ(|x− z|) ⩾ ϕ(g(z, µ)), thus∑
z∈µ

(ϕ(|x− z|) − ϕ(g(z, µ)))1{z→x in µ+δx} ⩽
∑
z∈µ

ϕ(|x− z|)1{z→x in µ+δx}. (H.17)

Combining (H.15), (H.16) and (H.17), we deduce from (H.14) that∣∣∣D(2)
x,y Ft

∣∣∣ ⩽ ϕ(|x−y|)1{|x−y|<|y|}1{η(tH∩Bd(0,|y|)∩Bd(y,|x−y|))=0}+2
∑

z∈η|tH

ϕ(|x−z|)1{z→x in η}. (H.18)

The proof of (H.2) shows that the 2pth moment of the second term is uniformly bounded. When

|x − y| < |y|, then Bd
(
y(1 − |x−y|

2|y| ), |x−y|
2

)
is included in the intersection Bd(0, |y|) ∩ Bd(y, |x − y|).

By Lemma E.3, and rescaling, we have thus for some constant cH > 0 that

P(η(tH ∩Bd(0, |y|) ∩Bd(y, |x− y|)) = 0)

= exp(−|tH ∩Bd(0, |y|) ∩Bd(y, |x− y|)|) ⩽ exp(−cH |x− y|d). (H.19)

The bound on the 2pth moment of the first term in (H.18) follows.
The fact that Dx Ft is square-integrable follows from the bound (H.2) and Lemma G.1. To show that
Ft ∈ dom D, it suffices to show that Ft ∈ L1(Pη), as was explained in Section 2. We apply Mecke
equation and the fact that g(x, η|tH + δx) = g(x, η|tH) to deduce that

EFt =

∫
tH

Eϕ(g(x, η|tH))dx. (H.20)

As shown in the discussion leading to (H.7), this is bounded by∫
tH

(
ϕ(|x|)P

(
η(tH ∩Bd(0, |x|) ∩Bd(x, |x|)) = 0

)
+ ϕ(e(x, µ))

)
dx. (H.21)

By (H.12) and Lemma G.1, this integral is finite. ■

Proposition H.2. Under the conditions above, there are constants c1, c2 > 0 such that for all t ⩾ 1
large enough

c1t
d ⩽ VarFt ⩽ c2t

d. (H.22)

Proof. The upper bound follows from (H.2) with p = 1 and similar integration arguments as in the
proof of Proposition H.1. For the lower bound, we use Theorems 5.2 and 5.3 in [LPS16] again.
Recall that Bd(0, ϵ) ⊂ H and let δ < ϵ

4 . Fix t ⩾ 1 and define the set

U := {(x, z) : x ∈ tH \Bd(0, 4δ), z ∈ Bd((1 − δ
|x| )x, δ)}. (H.23)

Note that Bd
((

1 − δ
|x|

)
x, δ
)

⊂ Bd(0, |x|) ∩ Bd(x, |x|), therefore any z ∈ Bd((1 − δ
|x| )x, δ) verifies

|x− z| < |x|. Moreover, |x− z| ⩽
∣∣∣x− z − δ

|x|x
∣∣∣+
∣∣∣ δ
|x|x

∣∣∣ ⩽ 2δ.

Now for (x, z) ∈ U , consider Dx F (η|tH + δz). As can be seen from (H.4), we have

Dx F (η|tH + δz) ⩾ ϕ(g(x, η|tH + δz)). (H.24)

By our choice of z, we have g(x, η|tH + δz) ⩽ |x − z| ⩽ 2δ. As ϕ is decreasing, it follows that
ϕ(g(x, η|tH + δz)) ⩾ ϕ(2δ). By [LPS16, Theorem 5.2],

Var(Ft) ⩾
ϕ(2δ)2

43 · 2
min

∅̸=J⊂{1,2}
inf
V⊂U

λ(V )⩾λ(U)/8

λ(|J|)(ΠJ(V )), (H.25)
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where λ is the Lebesgue measure.
By the reasoning in the proof of [LPS16, Theorem 5.3], this quantity is lower bounded by λ(U) up to
multiplication by a constant. We have

λ(U) = κdδ
d|tH \Bd(0, 4δ)| = κdδ

d(td|H| − κd(4δ)d), (H.26)

which is of order td for t large enough. ■

In the development below, most constants will be called c for convenience. These constants are by
no means the same and can (and will) change from line to line or indeed, within lines.

Proof of Theorem 5.8. We apply the bounds found in Propositions H.1 and H.2 to the terms γ1,...,γ7
in Theorem 3.4. Let p ∈ (1, 2] such that 2p < r and choose s > 0 such that 2p < s < r. Then by
Hölder’s inequality and (H.3) and (H.1),

E
[
|D(2)

x,y Ft|2p
]1/(2p)

≲ exp(−c|x− y|d)E
[
|D(2)

x,y Ft|s
]1/s

≲ exp(−c|x− y|d)(1 + ϕ(|x− y|)). (H.27)

With this bound, we find that γ1 is bounded by

γ1 ≲ t−d

(∫
tH

(∫
tH

(
1 + ϕ(|x|) exp(−c|x|d)

)
exp(−c|x− y|d) (1 + ϕ(|x− y|)) dy

)p

dx

)1/p

. (H.28)

Using Lemma G.1, we find γ1 = O(td(1/p−1)). The same way, we have γ2 = O(td(1/p−1)). For γ3, take

q = 3 − 2
p , then q + 1 < 2p < s and E|Dy Ft|q+1 ⩽ E [|Dy Ft|s](q+1)/s

. It follows that

γ3 ≲ t−d(2−1/p)

∫
tH

(1 + ϕ(|x|) exp(−c|x|d))q+1dx, (H.29)

which is of order O(td(1/p−1)). The terms γ4, γ5 and γ6 work much the same. For γ7 we use the
simplified version proposed in Remark 3.5 and get

γ7 ≲ t−d

(∫
tH

∫
tH

exp(−c|x− y|d)(ϕ(|x− y|) + 1)(1 + ϕ(|x|) exp(−c|x|d))2p−1dxdy

)1/p

. (H.30)

By the same methods as applied before, this is O(td(1/p−1)).
The claim that the bound (5.21) is true in particular for ϕ(s) = s−α with 0 < α < d

2 follows from the
discussion at the end of the proof of Theorem 5.7. ■
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[LRPY20] Raphaël Lachièze-Rey, Giovanni Peccati, and Xiaochuan Yang. Quantitative two-scale
stabilization on the Poisson space, 2020.
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