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Context

The success of deep learning

Deep Neural Networks (DNNs) have made huge progress in numerous fields.

Benchmark datasets
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Context

Critical failures
But deep neural networks can fail critically when faced with unexpected data.

Trained
Neural Network

Rotated
Surveillance
Partially system
occluded
. . . . . The New York Times, ‘On YouTube Kids, Startling Videos Slip Past Filters
Fischer et al., Certified Defense to Image Transformations via Randomized Smoothing, CoRR 2019 Wired, ‘Children's YouTube is still churning out blood, suicide and cannibalism’ 3
K. Eykholt, et al. Robust Physical-World Attacks on Deep Learning Visual Classification, IEEE 2018 The Guardian, ‘Hiding in plain sight: activists don camouflage to beat Met surveillance’

lllustrations from Mark Miiller Photograph: Cocoa Laney/The Observer



Background

Adversarial examples
Carefully crafted imperceptible perturbations applied to inputs to create
large changes in output.

€ Slgn(va(O, x, y)) esign(VwJ(B, T, y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

—> WorSt-Case dlstrlbutlonal Shlft Goodfellow, I. et al. (2014). Explaining and Harnessing Adversarial Examples 4



Background

PGD

Projected gradient ascent in the input space.

High
loss

White-box attack
Requires perfect knowledge of the
target model

Known Target

AttaCk esign(VgJ (6, z,v))




Background

Transferability
An adversarial example against a model is likely to be also
adversarial against another model.

VGG-16 ResNet-101

“anemone fish”

“gibbon”




Background

Transferability
An adversarial example against a model is likely to be also
adversarial against another model.

| ' | VGG-16

ResNet-101

Definition

“anemone fish”

An adversarial example transfers if another

model also misclassifies it.

Decision boundaries around an ImageNet example. One color per predicted label.

©




Background

But transfer may fail
Adversarial examples easily overfit the surrogate model

VGG-16 ResNet-101




Background

Transfer-based black-box attack
More realistic attacks require less knowledge on the target.
Does not require to query the model.

Surrogate Target

¥

Feed
\\
xr m+ '
esign(VJ (0, x,y)) .
Metric success rate

N A
Attack

» | “anemone fish”

J/




Transferability, a prolific topic

- Seopus aXv
184 published articles in 2022 — — — -
150 1
®
g
& 100 - Database
S - [ Scopus
2 I arXiv
£
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=

2016 2018 2020 2022 2016 2018 2020 2022
Submission Date

Annual growth rate: 33.9% > I IIII

Number of published (Scopus)
and submitted (arXiv) articles on transferability



Challenges

G

N\ )
1. Knowledge gap 2. High training computational cost
In 2021, a single publication studied how to improve the Training the surrogate model is at least two orders of
training of surrogate models: Liu et al. (2017) show that magnitude more costly than attacking it.
ensembling architectures improves transferability.
_ o _ —> Training the surrogate is the most costly
-> No prior contribution about how to train \ J
each surrogate architecture for transferability J( o )
3. Lack of insights
4. Low success rate of small perturbations The f!el_d tendg to _b_e a collection of scattered techniques
with limited scientific value.
Large perturbations are more transferable, but more visible
and may even change the label. > Lack of in-depth knowledge
. J
HOE =
( N
- - . . H 5. Over-specific transferability techniques
Clean e 8/255 16/255 24/255 32/255 Many transferaplllty techmques exploit specific
components (skip connection, dropout).
Qxample of large L~ norm perturbations that change label (Addepalli et al., 2022) \9 Lack of exploitation of generic principles ) "



Context

Neural Networks

Input

Weights

=

“Panda”

12



Weight space

The weight space (or the parameter space) is the Euclidian space
formed by all the weights a neural network.

loss 4 Loss landscape

4

Weight Space

Hao Li, et al. (2018). Visualizing the Loss Landscape of Neural Nets. NeurlPS 2018.
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Scope & goal

Goal Weight Space H:> Transferability

fScope

How to train surrogate models for black-box
evasion attacks

14



Weight space exploration

Multimodal
Exploration

Local
Exploration

Weight Space

-/

Transferability

Point Selection

O YAYA

15



1. Probabilistic approach to

transferability

Controlling the uncertainty related to
the unknown target model

Legend
Type of Weight
Space Exploration

Transferability l

Multimodal
Exploration

2. LGV: Transferability from
Large Geometric Vicinity

Augment the surrogate model with its
vicinity in the weight space

Local_ Point
3. RFN: Transferability from Flat Exploration Selection

Neighbourhoods

Explicitly maximizing flatness to find
better single surrogate model



Probabillistic

Transferability

Transferability from
Deep Ensemble &
Bayesian Neural Network

Efficient and Transferable Adversarial Examples
from Bayesian Neural Networks

Martin Gubri' Maxime Cordy’ Mike Papadakis’ Yves Le Traon' Koushik Sen*

'Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg, LU
University of California, Berkeley, CA, USA

Abstract
An blished way to img the ferabil
¢ of black-box evasion attacks is to craft the ad-
versarial les onan ble-ba

to increase diversity. We argue that lrdnsn,mblhly
is fundamentally related to uncertainty. B.L\cd ona

e | At

state-of-the-art Bayesian Deep Learning tech
we propose a new method to efficiently hunld a
gate by ling approximately from the
posterior dnlnhuuun uf neural network weights,
which represents the belief about the value of each
parameter. Our extensive experiments on ImageNet
and CIFAR-10 show that our approach improves
the transfer rates of four state-of-the-art attacks sig-
nificantly (up to 62.1 percentage points), in both
intra-archi and inter-archi cases. On
ImageNet, our approach can reach 94‘} of trans-
fer rate while reducing lr’umng i) from

PEp—

Figure 1: Nlustration of the proposed approach.

cls is that they are vulnerable to adversarial examples, i.e.,

11.6 10 2.4 exafi d to an ble of

ied ples that result from slightly altering a

independently lramed D\V‘ Our vanilla surrogate
achieves 87.5% of the time higher transferability
than 3 test-time techniques designed for this pur-
pose, Our work demonstrates that the way to train a
surrogate has been overlooked, although itis an im-
portant element of transfer-based attacks. We are,
therefore, the first to review the effectiveness of
several training methods in increasing sferabil-
ity. We provide new directions to better understand
the transferability phenomenon and offer a simple
but strong baseline for future work.

Il-classified ple at test time [Biggio et al,, 2013,
Szegedy et al,, 2013). This constitutes a critical security
threat, as a malicious third party may exploit this property
10 enforce some desired outcome.

Such adversarial attacks have been primarily designed in
white-box settings, where the attzcker is assumed to have
complete knowledge of the target DNN (incl. its weights).
While studying such worst-case scenarios is essential for
proper security assessment, in practice the attacker should
have limited knowledge of the target model. In such a case,
the adversarial attack is applied to a surrogate model, with
the hope that the crafted adversarial examples transfer 1o
(i.e., are also misclassified by) the target DNN.

Accepted at UAI 2022
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Scope and goal

ontribution 1 Legend

Type of Weight
Space Exploration

Multimodal
Exploration

~ Transferability ‘

Local
Exploration

Point
Selection

8
0

18



Scope and goal

Focus

Train surrogate models from several
vicinities of the weight space

Deep Ensemble BNN (cSGLD)

Question

Multimodal
Exploration

Distribution of

Target Model
Training Weight Space
Noise 9 P

Training noise through probabilistic Transfeability

distribution of the target 19

Are representations from different modes
different enough to hinder transferability?

What matters?




Probabilistic view on transferability

/ Threat model

Known on the target model
® its architecture,

its training dataset,

Unknown on the target model

{ its weights.

®
® |tS (maximum likelihood) Optimizer,
®

its prior of its parameters (weight decay).

~

/

—

Uncertainty of the target weights

arises from stochasticity in training
(random batches & random initialization).

The weights of the target model
admit a probability distribution.

Tralnlng Distribution of
Noise Target Model

Extension to unknown architecture in the thesis.

20



Deep Ensemble

[ Deep Ensemble (Lakshminarayanan, 2017) ensemble of independently trained DNNS (same architecture). ]

Sample from the distribution of the target model under our threat model - Deep ensemble surrogate

[ Intra-architecture transferability Inter-architecture transferability
From ResNet-50 to ResNet-50 From ResNet-50 to other architectures
ResNet-50 VGG19 Inception v3
80%
50%
90%
o D 60% - 40%
E 80%1 Norm 4 Norm
A @ 30%
@ - Leo ] & Loo
@ 70% . SR L2
o L2 o 40%
3 3 20%
0 60% 4
50% - 20% 1 10%1
5 10 15 5 10 15 5 10 15
Number of Surrogate DNNs (Deep Ensemble Size) Number of DNNs (Deep Ensemble Size)
\ / \ Same conclusion on six other target architectures y




Deep Ensemble

[ Deep Ensemble (Lakshminarayanan, 2017)

Sample from the distribution of the target model under our threat model - Deep ensemble surrogate

( Intra-architecture transferability
From ResNet-50 to ResNet-50

ResNet-50

©
o
2

80%

Success Rate
~
o
&

60%

50%

5 10 15
Number of Surrogate DNNs (Deep Ensemble Size)

G

. . N\
Inter-architecture transferability
From ResNet-50 to other architectures
Inception v3
Issue
- g Norm
Expensive to train .
- L2
=y
5 10 15 5 10 15
Number of DNNs (Deep Ensemble Size)
Same conclusion on six other target architectures y

ensemble of independently trained DNNS (same architecture). ]
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Bayesian Neural Networks

Mingard et al. [2020] observes a strong
correlation between the probability to
obtain a function consistent with the
training set by SGD, and the Bayesian
posterior.

Single Surrogate Transfer-based Black-box Attack

The target weights are approximately
distributed according to the posterior.

\ |
riginal |
\ 4

Surrogate model

ﬁ(yh? + 67 95)

“—known

Lower success rate

ﬁ(ylm =+ 51 Gi)

Target model

nknown

Probabilistic Transfer-based Black-box Attack

orlglnal example /

Prior knowledge
of target

p(f)

Bayesian surrogate
Epaim) Alylz +4.0)

Target model

p(ylx +6.6;)

nknown

Attack

= Hrrhlg Eyo1p) Blylz +4,6)

23



Bayesian Neural Networks

[ cSGLD (zhang, 2020) Bayesian method that adds noise to the weights to sample from the posterior. ]

Efficient

At least 2.5 times less computational
cost to achieve the same success rate.

Dataset  Attack Norm ‘ T-DEE Flops Ratio
L2 4.91 zon 2.84 so06
I-FGSM Loo 4.34 <013 2.51 <o0s
L2 4.69 o018 2.71 <00
I Net MI-FGSM Loo 4.38 0.3 2.53 o002
e T oap | 12 5.00 2011 2.89 zom
Loo 4.42 1016 2.56 +0.09
L2 5.81 +o.3s 3.35 zoa9
FGSM Loo 5.98 +o.03 3.46 <002
L2 >15 4nan >15 tnan
[-FGSM Loo 3.76 +o.0s 3.76 <o.0s
MI—FGSM L2 5-56 +0.80 5456 +0.80
Loo 2.88 +0.03 2.87 +o00a

CIFARI10
PGD L2 >15 tnan >15 +nan
Loo 3.74 012 3.74 +012
L2 >15 4nan >15 +nan
FGSM Loo 8.72 x0m 8.72 zom
L2 >15 4nan >15 tnan
FFGSM 0 | 342 sanr 3.42 o
MLFGSM L2 >15 tnan >15 +nan
Loo 2.79 +o07 2.79 o007

MNIST

PGD L2 >15 tnan >15 +nan
Loo 3.26 +o2s 3.26 0.8
L2 >15 #nan >15 tnan
FGSM Loo >15 #nan >15 #nan

24



Transferability techniques

1. Competitive

- Exploring the weight space is of
utmost importance

Target Architecture

Norm Surrogate RN50 RNX50 DN121 MNASN EffNet B0
f 1 DNN 56.60 +om 41.09 o061 29.73 10a0  28.13 soar 16.64 +o0.a
+ DI 83.15 o010 7317 om0 61.24 4oss 58.16 206 *42.10 2036

+ SGM 65.64 o8 52.75 0.z 38.58 x0ss 43.40 som 29.11 <030

+ GN 78.84 2046 62,46 058 45.76 x002 4144 s0ss 2577 zom

+ MI 152,53 os0  137.15 2076 126.33 20as 12521 2042 T14.74 z0m

+ DI 80.81 o072 69.55 s0ss 5673 x0s0 5416 z00s  37.07 2008

+ SGM  65.65 w005 53.25 soas 38.79 woer  44.33 s0ss 29.45 so2s

L2 + GN T1.50 +0.2 53.45 2065 37.39 woar 3453 sose 20.29 soss
\ CSGLD 8483 +0.55 7473 +0.82 7145 +0.56 6014 +0.44 3971 =+0.20
+ DI 93.87 010 89.12 4024 B8.52 roae B2.T8 2028 66.13 ouss

+ SGM 18317 soss 7279 2100 §66.19 200 7171 2041 52.66 som

+ GN 92.99 s0.a 85.69 s020  82.81 zouz 72.88 z030  50.30 102

+ MI 182,44 2019 17093 s100 166.19 2056 T55.51 2050 T34.49 200

+ DI 9:;4.8 +0.23 8787 +0.15 8681 +0.33 8[)37 £0.20 6(]26 +0.02

+ SGM  182.35 o0 {7154 w05 $64.50 +0us  70.47 2022 50.80 2023

+ GN 90.11 +0.18 80.35 +0.61 75.10 +0.67 64.08 +0.12 39.85 +0.52

/~ 1DNN 47.81 100 32,29 s060  23.43 xos2 22,52 o045 12,77 so02
+ DI 76.55 101 62.57 056 D017 2033 49.31 z0as  *32.64 2000

+ SGM 66.36 050 51.60 s056  39.05 w020 45.60 072 30.69 w008

+ GN 67.02 2007 46.74 2063 3257 woar 3112 somr 17.68 1005

+ MI 55.12 102 38.47 2052 2819 2000 2755 s06r 16.34 soar

+ DI *82.47 <o *69.69 +o.s1 BT.79 wosr %5599 soar *38.63 w020

+ SGM  68.39 w053 54.57 s0e0  41.48 woar AT.97 200 *33.16 s0s7

Loo + GN T1.27 xos4 51.46 sosa  36.91 zous 34.54 2032 20.51 1030
\_ ¢SGLD T8.71 £110 65.11 2145 61.49 2o 51.81 145 31.11 some
+ DI 9[)(]3 +0.10 8213 +0.45 8119 40.34 7"148 £0.39 5351 +0.39

+ SGM 81.37 o072 69.88 +1a1 65.20 zams 71.68 053 52.15 o032

+ GN 87.33 +0.73 ?6.00 +1.33 71.67 +0.97 61.45 +0.25 3?.19 +0.68

+ h'l:[ 82.89 +0.70 70.42 +1.26 66.39 +0.74 56.68 +0.97 36.00 +1.156

+ DI 93.97 2026 B7.69 20414 86.78 1016 81.08 1004 60.87 sous

+ SGM  84.19 o 73.14 090 67.35 2026 74.36 2007 55.30 x0.s

+ GN 8953 +0.05 7869 +0.19 7333 +0.58 6356 =0.35 3979 +0.52

25



Transferability techniques

1. Competitive

- Exploring the weight space is of
utmost importance

2. Complementary

- The weight space leverages other
properties of transferability

Target Architecture

Norm Surrogate RN50 RNX50 DN121 MNASN EffNet B0
1 DNN 56.60 +om 41.09 o061 29.73 10a0  28.13 soar 16.64 +o0.a

+ DI 83.15 030 7317 om0 61.24 4oss 58.16 206 *42.10 2036

+ SGI\[ 6564 +0.88 52?5 +0.42 3858 +0.55 ‘1340 =0.61 291] +0.30

+ GN 7884 +0.46 6246 +0.38 4576 +0.02 4144 =0.58 2577 +0.11

+ MI 152,53 os0  137.15 2076 126.33 20as 12521 2042 T14.74 z0m

+ DI 80.81 o072 69.55 s0ss 5673 x0s0 5416 z00s  37.07 2008

+ SGhI 65.65 +0.95 53.25 +0.18 38.79 +0.62 44.33 +0.63 29.45 +0.28

L2 + GN T1.50 w012 53.45 w065 37.39 20ar 3453 s0m0 20.29 soss
CSGLD 8483 +0.55 7473 +0.82 7145 +0.56 6014 +0.44 3971 =+0.20

+ DI 93.87 w010 89.12 1024 B88.52 i0as B82.78 1028 66.13 woas

+ SGM 18317 w0 §72.79 2106 166.19 20se 7171 20 52.66 2om

+ GN 92.99 s0.a 85.69 s020  82.81 zouz 72.88 z030  50.30 102

+ MI 182,44 2019 17093 s100 166.19 2056 T55.51 2050 T34.49 200

+ DI 9348 +0.23 8787 +0.15 8681 +0.33 8[)\37 £0.20 6(]26 +0.02

+ SGM  182.35 o0 {7154 w05 $64.50 +0us  70.47 2022 50.80 2023

+ GN 90.11 +0.18 80.35 +0.61 75.10 +0.67 64.08 +0.12 39.85 +0.52

~ 1DNN 47.81 100 32.29 1064 2343 2032 22.52 2045 12,77 so02
+ DI 76.55 £1.01 62.57 056 D017 2055 4931 20us  *32.64 s0.00

+ SGM 66.36 050 51.60 2086 39.05 2020 45.60 w0m2 30.69 4002

+ GN 67.02 soar 46.74 2068 32.57 20ar 3112 o 17.68 w005

+ MI 55.12 102 38.47 2052 2819 w0 2755 wowr 16.34 <07

+ DI *82.47 <o *69.69 w01 BT.79 wosr %5599 soar *38.63 w020

+ SGM  68.39 w058 54.57 s0e0 4148 s0ar 4797 w0 *33.16 sosr

Loo + GN T1.27 xos4 51.46 sosa  36.91 zous 34.54 2032 20.51 1030
¢SGLD T8.71 £110 65.11 2145 61.49 w0 5181 2145 31.11 20w

+ DI 9[)(]3 +0.10 8213 +0.45 8119 40.34 7"148 £0.39 5351 +0.39

+ SGM 81.37 o072 69.88 131 65.20 w0 TL.68 zos3 D215 w032

+ GN 87.33 +0.73 ?6.00 +1.33 71.67 +0.97 61.45 +0.25 3?.19 +0.68

+ h'l:[ 82.89 +0.70 ?0.42 +1.26 66.39 +0.74 56.68 +0.97 36.00 +1.156

+ DI 93.97 2026 B7.69 20414 86.78 1016 81.08 1004 60.87 sous

+ SGM  84.19 o 73.14 090 67.35 2026 74.36 2007 55.30 x0.s

+ GN 8953 +0.05 ?869 +0.19 7333 +0.58 6356 =0.35 3979 +0.52
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The surrogate
welght space
matters for transferability.



Weight space exploration

1. Multimodal exploration @

cSGLD

95.0

,t-..,.,_—l.._'.—_._-.._._--__.._-.-..

Deep
Ensemble

A
935

w
r=1

.0

-]
=l

.5

2]
Lo
o

Transfer success rate (%)

o
)

80% 4

g

Norm

e |2

Success Rate‘

&

H 10 15
Number of DNNs (Deep Ensemble Size)

* Lo

2. Local Exploration ®

cSGLD

©
@
=}
-

Deep
Ensemble

»
»
~

Q0

D 5 { \ ;

©

T

o
-

Transfer success rate (%)
-
~—

©
3

91.0

1 2 3 4 5 6 7
Number of samples per cycle

Attack Norm
L2
=== Linf

Single weight per vicinity
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Conclusion

Summary

The unknown weights of the target
. - . . Deep Ensemble BNN (cSGLD)
admit a probability distribution,

where the randomness comes from
the training noise.

Distribution of Multimodal
) _ ) Target Model Exploration
Sampling (approximately) from this _

distribution in multiple vicinities

improves transferability. .
raining _
Noise Exploration Weight Space

However, both techniques poorly
explore locally the weight space.

Transferability

29




Conclusion

/ Legend \
D Main Technique
Proposed / Evaluated

What Matters:
Approach / Explanation

D Type of Weight
Space Exploration

Limitation
cod>

k' (Chapter Transition) j

Deep Ensemble

Distribution of
Target Model

Training
Noise

Contribution 2

BNN (cSGLD)

Multimodal
Exploration

Open challenge

», Transferability ‘

Point Selection

Contribution 3

Can we increase transferability
from the local exploration around a
surrogate model?

Local
Exploration

Weight Space

30



LGV: Boosting Adversarial Example
Transferability from Large Geometric Vicinity

Martin Gubri!, Maxime Cordy!, Mike Papadakis!, Yves Le Traon!, and
Koushik Sen?

! Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of
Luxembourg, Luxembourg, LU firstname.lastnameQuni.lu
2 University of California, Berkeley, CA, USA

Abstract. We propose transferability from Large Geometric Vicinity
(LGV), a new technique to increase the transferability of black-box ad-
versarial attacks. LGV starts from a pretrained surrogate model and col-
lects multiple weight sets from a few additional training epochs with a
constant and high learning rate. LGV exploits two geometric properties
that we relate to transferability. First, models that belong to a wider
weight optimum are better surrogates. Second, we identify a subspace
able to generate an effective surrogate ensemble among this wider opti-
mum. Through extensive experiments, we show that LGV alone outper-
forms all (combinations of) four established test-time transformations by

ih 1.8 to 59.9 percentage points. Our findings shed new light on the impor-
Tran Sfe rab I I Ity fro m tance of the geometry of the weight space to explain the transferability
. TAINT of adversarial examples.
Large Geometric Vicinity verarial ex

Keywords: Adversarial Examples, Transferability, Loss Geometry, Ma-
chine Learning Security, Deep Learning

Accepted at ECCV 22



K Legend \

Main Technique
Proposed / Evaluated

What Matters:
Approach / Explanation

O Type of Weight
Space Exploration

... Limitation

K > (Chapter Transition) j

Deep Ensemble BNN (cSGLD)
Distribution of Multimodal
Target Model Exploration
» Local — ;

Transferability

N Point Selection

Training
Noise

32



Focus

Augment a surrogate model with
the local exploration of the weight
space

Question

Are representations from a single
vicinity too similar to help
transferability?

What matters?

Training noise & loss flatness

Transferability

Weight Space

Training
Noise

Local
Exploration
Subspace
r—

Flatness

LGV

33



Motivation

Random directions in the weight space increase transferability.

V. L(x); y,wo + ex) with ex ~ N (0, o21,)

Target
Surrogate RN50 RN152 RNX50 WRN50 DN201 VGG19 IncV1 IncV3

1 DNN (baseline) 45.3+2.4 29.6+0.9 28.8+0.2 31.5+1.6 17.5+0.6 16.6+0.9 10.4+05 5.3+1.0
+ RD Weights 60.6+1.5 40.5+3.0 39.9402 44.4432 22.9+058 22.7+05 13.9+0.2 6.6+0.7

C,D Inputs 46.4118 29.012.2 28.T+1.2 32.7T+1.5 17.5+06 17.5+06 10.3+0.7 5.6+0.7
Random directions in the input space do not.

Vo L(Z); y,wo) + e, with e} ~ N (0, 6"%1)

34



The vicinity
In the weight space
matters for transferability.



Phase 1 Phase 2

Collect models during a few additional
epochs with a high learning rate

Attack one random collected
model per iteration

0100 ——— ,
Weights Algorithm 2 LFGSM Attack on LGV
0.075 4 Training Collection
’ < > Input: (x,y) natural example, (wi,...,wk)
0.050 4 LGV — LGV weights, nii.er number of iterations,
Surrogate p-norm perturbation, « step-size
© 0.025 tial Output: x.q. adversarial example
E S;\;; 1: Shuffle (w1,...,wk) > Shuffle weights
o 0.000 I 2: :L‘adV.<— T
£ 0 30 60 ' 120 130 14 3: for i <= 1 to niter do
§ 4: Tadv € Tadv T avmﬁ(ma.dvy Y, Wi mod K)
| > Compute the input gradient of the loss of
0.100 1 Weights a randomly pic_ked LGV model _
0.075 - Collection o 5. Zadv < project(Tadv, B:[z]) > Project

A

in the p-norm ball centred on z of £ radius
6: Tadv ¢ clip(Zadv,0,1) > Clip to pixel
range values
7: end for

Epoch



Evaluation

LGV alone beats all (combinations of) four state-of-the-art techniques.

Surrogate

Target

RN50 RN152 RNX50 WRN50 DN201 VGG19 IncV1l IncV3

Baselines (1 DNN)

1 DNN

MI

GN

GN+MI

DI

DI+MI

SGM
SGM+MI
SGM+DI
SGM+DI4+MI

Our techniques
RD

LGV (ours)

45.3+2.4 29.610.9 28.8+0.2
53.0+2.2 36.3+1.5 34.7T+0.4
63.9+2.4 43.842.4 43.3+1.3
68.4+2.3 49.3+2.5 47.9+1.2
75.0+0.2 56.4+1.9 59.6+1.5
81.2+0.3 63.8+1.9 67.6+0.9
64.4+0.8 49.1+3.1 48.910.6
66.0+0.6 51.3+3.5 50.9+0.9
76.8+0.5 62.3+2.7 63.6+1.7
80.9+0.7 66.9+2.5 68.7+1.2

60.6+1.5 40.5+3.0 39.9+40.2
95.4+0.1 85.5+2.3 83.7T+1.2

31.54+1.6 17.54+0.6 16.6+0.9 10.4+0.5 5.3+1.0
38.1+2.0 22.0+0.1 21.1+0.3 13.940.4 7.3+0s
474400 24.8+0.3 24.1+1.0 14.6+03 6.8+1.2
52.1+1.7 28.4+0.8 28.0+0.7 17.54+0.5 8.7+0.5
61.6+2.4 41.6+1.1 39.7+0.9 27.7+1.0 15.2+1.0
68.9+1.5 49.3+0.7 46.7+0.4 33.0+1.0 19.4+0.9
51.7+2.8 30.7+0.9 33.6+1.3 22.5+1.5 10.7x0.9
54.342.3 32.5+1.3 35.8+0.7 24.1+1.0 12.1+1.2
65.3+1.4 45.5+0.9 49.9+0.8 36.0+0.7 19.2+1.7
70.0+1.7 50.9+0.6 56.0+1.4 42.1+1.4 23.6+1.6

44,4432 22.940.8 22.7+0.5 13.9+02 6.6+0.7
82.1+2.4 69.3+1.0 67.8+1.2 58.1+0.8 25.3+1.0
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RQ Why do weights from a vicinity help to attack a model
from another vicinity?

Two keys:

1. LGV produces flatter adversarial examples.
2. The LGV subspace embeds geometric properties relevant for transferability.

38



Flatter adversarial examples may be more robust to misalignment between
surrogate and target.

Flat Maximum (- Sharp Maximum |

Loss

/' Target Surrogate
/' Loss Function Loss Function

Inputs
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LGV collects models in flatter regions of the weight space...

Hessian-based sharpness metrics

Hessian

Model Max EV  Trace

1 DNN 558 457 16258 +725
LGV indiV. 168 +127 4295 +517

24

Random rays

Natural Loss on ResNet-50 Surrogate

Surrogate

Adversarial Loss on ResNet-50 Target

1 DNN
LGV indiv.

LGV-SWA

0 25 50 75
Distance along Random Directions

100

Interpolation in the weight space

0 ' 1
LGV-SWA Initial DNN
Interpolation Coefficient

Norm
— Le
— L2

Target
= ResNet-50
== Inception v3

Among others
Optimal lengths of random and LGV
deviations vectors
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LGV — Flatness in the input space

...as a result, LGV produces adversarial examples flatter in the input space.

Surrogate LGV Surrogate Initial DNN

NN

N
N
BN

Loss (log)

10
1.0
0.1

Natural

example LGV 1 DNN

adversarial adversarial
example example




The surrogate-target (mis)alignment

LGV appears particularly well aligned with the target.

Surrogate LGV

Surrogate Initial DNN

Target ResNet-50

Target Inception v3

.

\
\/

Loss contours have similar shape which appear shifted

Loss (log)

10

1.0
0.1
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We consider at the weight subspace defined by deviations of LGV weights from

their average;:
J S ={w|w=wswa + Pz},

where wswa is called the shift vector, P = (w1 — wswa, - - ., W — wswa )T is the
projection matrix of LGV weights deviations from their mean, and z € R¥.

The subspace S :

1. is densely composed good surrogates, i.e., it strongly relates to transferability,

2. is composed of directions whose relative importance correlates with geometrical
properties, i.e., its. geometry is relevant for transferability,

3. can be shifted to other solutions, i.e., its geometry captures generic properties.
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LGV is simple yet effective to enhance
transferability from the local exploration of
the weight space.

Overall, the improved transferability of

LGV comes from the geometry. of the

subspace formed by LGV weights in a
flatter region of the loss.

Transferability

Weight Space

Training Local
Noise Exploration
Subspace
Geometry

Loss
Flatness
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Open challenges

e How to train a better base
surrogate model?

e Does explicitly maximizing
flatness improve
transferability?

Deep Ensemble BNN (cSGLD)
Distribution of Multimodal
Exploration

Target Model /

Training -
Noise

Subspace
Geometry

Local
Exploration

Loss
Flatness

K Legend \

Main Technique
Proposed / Evaluated

What Matters:
Approach / Explanation

O Type of Weight
Space Exploration

=—=>1 \Weight Space

Limitation

K > (Chapter Transition) j

Transferability l

Point Selection
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Transferability of
Representations from Flat Neighbourhood

Going Further: Flatness at the Rescue of Early Stopping for Adversarial
Example Transferability

Martin GUBRI, Maxime CORDY & Yves LE TRAON
University of Luxembourg

firstname.name@uni.lu

Abstract

Transferability is the property of adversarial examples
to be misclassified by other models than the surrogate
model for which they were crafted. Previous research has
shown that transferability is substantially increased when
the training of the surrogate model has been early stopped.
A common hypothesis 1o explain this is that the later train-
ing epochs are when models learn the non-robust features
that adversarial attacks exploit. Hence, an early stopped
model is more robust (hence, a better surrogate) than fully
trained models.

We demonstrate that the reasons why early stopping im-
proves transferability lie in the side effects it has on the
learning dynamics of the model. We first show that early
stopping benefits transferability even on models learning
Sfrom data with bust fe We then establish links
b sferability and the expl of the loss land-
scape in the parameter space, on which early stopping has
an inherent effect. More precisely, we observe that trans-
Jerability peaks when the learning rate decays, which is
also the time at which the sharpness of the loss significantly
drops.

This leads us to propose RFN, a new approach for trans-
Jerability that minimizes loss sharpness during training in
order to maximize transferability. We show that by search-
ing for large flat neighborhoods, RFN always improves over
early stopping (by up to 47 points of transferability rate)
and is competitive to (if not better than) strong state-of-the-
art baselines.

LR decay

N

Early
Stopped
SGD
Medium
transferability

Training Loss #

Fully trained Fully trained
Low transferability High transferability

-
>

Parameters 6

Figure 1. Illustration of the relation between the training dynamics
of the surrogate model, sharpness, and transferability. Before the
learning rate decays, training is in a “crossing the valley” phase for
both SGD and RFN (gray) with plateauing transferability. A few
iterations after the decay of the learning rate, early stopped SGD
achieves its best transferability. In the following epochs, SGD
falls progressively into deep, sharp holes in the parameter space
with poor transferability (red). RFN (blue) avoids these holes by
minimizing the maximum loss around an unusually large neigh-
bourhood (thick blue arrow).

This observation leads to the discovery of the rransfer-
ability of adversarial examples, i.e., an adversarial exam-

T T ST T R S ST TS RN S

Under Review
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K Legend \

Main Technique
Proposed / Evaluated

What Matters:
Approach / Explanation

O Type of Weight
Space Exploration

... Limitation

K > (Chapter Transition) j

Deep Ensemble BNN (cSGLD)
Distribution of Multimodal
Target Model / Exploration
w Local — ;

Subspace
Loss
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Transferability

Training
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Focus

Transferable representation, i.e.,
single surrogate model

Question

Are vicinities of the surrogate
weight space better than others?

What matters?

Loss flatness

Weight Space

Loss
Flatness

’ Transferability

Point Selection

Early
Stopping
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When the learning rate decays...

1. Transferability peaks

60%

Success Rate
&
*

20%

0%

LR decay at
__ epochs 50 &
100 (standard)

— epoch 25

— epoch 50

— epoch 75

— epoch 100

~— epoch 125

H\ i‘w M‘ Mf/‘

)‘M ,W {4' I "

__ none
(baseline)

50 100 150
Epoch

The peak of transferability when the learning rate

decays is consistent across epochs.

2.

Sharpness

n
=3
=3

Sharpness drops

400

300

100

1
1 1
1 1
1 1
0 50 100 150

Epoch

Sharpness

Metric
__ Hessian Top 1
" Eigenvalue

__ Hessian Trace
(/10 for scale)

Worst and average case sharpness for all training

epochs on CIFAR-10.
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Relation between the training dynamics of the
surrogate model, sharpness, and transferability.

Training Loss &%

Early
Stopped

SGD )

Medium
transferability )

SGDQ

Fully trained
Low transferability

B —

Parameters 6

1.

Before the learning rate decays, training is in
a ‘crossing-the.valley’ phase. Transferability
plateaus.

After the learning rate decays, training goes
down the valley. Soon after, SGD achieves its
best transferability (early.stopping ).
Sharpness is reduced.

When learning continues, SGD falls
progressively into deep, sharp holes in the
weight space, where the representations are
too.specific, thus have poor transferability

(fully trained SGD ).
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RQ Does explicitly minimizing the sharpness of the surrogate
model improve transferability?
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Sharpness-Aware Minimization (SAM) is an SGD variant that minimizes both the loss value and the loss
sharpness, by solving a min-max optimization problem. SAM seeks neighbourhoods of size p with
uniformly low loss.

- -
[IVL(we)[]2
Wadv

Wt +

VL(wy)

Wi
T — I — pn
// /HV)(W/\

SAM
Wi

lllustration of the SAM weight update

P. Foret, et al. (2021). Sharpness-Aware Minimization for Efficiently Improving Generalization. ICLR 2021.



Sharpness-Aware Minimization (SAM) is an SGD variant that minimizes both the loss value and the loss
sharpness, by solving a min-max optimization problem. SAM seeks neighbourhoods of size p with
uniformly low loss.

SGD SAM

A sharp minimum obtained with SGD A flat minimum obtained with SAM

lllustration of the SAM weight update

P. Foret, et al. (2021). Sharpness-Aware Minimization for Efficiently Improving Generalization. ICLR 2021.



Success Rate

75% 1

50% 1

25% 1

0% 1

Training

Tralgg]g

__ ®@beline)

— Aakkline)

— BAN
(ours)

0 50 100 150
Epoch

Transferability per epoch of SGD, SAM and RFN
on CIFAR-10 (average over nine targets)

Minimizing sharpness improves
transferability

Large flat neighbourhoods are optimal
for transferability
RFN p=0.4 > SAM p=0.05

RFN benefits specifically to
transferability, not natural accuracy

Same observations on ImageNet
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Training Loss &

Large LR

/
Early
Stopped

SGD )

Medium
transferability )

i &
SGD RFN

Fully trained ) Fully trained. _
Low transferability High transferability

I —

Parameters 6

RFN () avoids deep sharp holes
by minimizing the maximum loss
around an unusually large

neighbourhood (<4 ).
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1. RFN is competitive to train a single
surrogate model.

RFN is best in 43 out of 57 cases.

Success rate of competitive techniques on CIFAR-10

2. RFN is a better base model for
complementary techniques.

Success rate of complementary techniques on ImageNet

Target
Surrogate RN18 RNS0 RN101 DNI61 DN201 VGGI3 VGGI9 IncV3 WRN28
Fully Trained SGD  57.9  81.2 70.6 70.8 66.1 27.8 263 494 66.5
Early Stopped SGD  73.3  87.8 82.1 81.4 78.3 45.5 43 668 79.5
SAT [17] 66.3 762 73.6 66.9 66.1 49.8 485 579 67.8
REN (ours) 807 973 95.5 957 94.0 63.6 606 873 93.0
Success rate of competitive techniques on ImageNet
Target
Surrogate RN50 RNI152 RNX50 WRN50 VGG19 DN201 IncVl IncV3 VIiTB SwinS
Fully Trained SGD 445 252 24.8 27.1 16.2 164 9.8 8.0 1.8 3.3
Early Stopped SGD 515 27.4 27.7 28.0 18.4 187 108 104 22 2.7
LGV-SWA [£] 825 568 58.5 54.0 409 424 283 151 3.1 5.7
SAT [17] 763 625 66.8 63.4 48.1 590 479 408 174 1638
RFN (ours) 857 703 733 732 582 556 379 205 4.0 82

Target
Attack RN50 RNI152 RNX50 WRN50 VGGI9 DN201 IncVl IncV3 VITB SwinS
Model Augmentation Techniques
GN[12] 68.0 43.1 41.3 44.1 24.8 272 143 9.9 19 3.8
GN+RFN 89.6 76.6 79.4 799 65.7 60.3 422 224 38 7.8
SGM [21] 62.8 40.6 41.5 43.5 319 28.0 19.3 13.2 4.1 7.9
SGM+RFN 832 68.7 71.5 73.0 67.0 56.2 48.9 26.6 6.2 13.6
LGV [8] 93.3 78.1 75.3 731 64.4 61.6 49.3 28.8 5.0 6.5
LGV+REN 88.7 74.3 75.7 7517 70.3 61.9 56.8 315 4.5 713
Data Augmentation Techniques
DI [22] 83.1 60.5 68.1 67.3 454 579 41.4 30.7 57 9.9
DI+RFN 95.0 89.7 90.7 91.6 853 87.8 875 64.2 14.2 19.0
SI[13] 60.0 37.9 373 40.0 239 30.0 19.6 13.5 2.6 3.8
SI+RFN 89.2 76.6 80.1 79.1 65.2 69.8 58.0 35.8 5.0 8.5
VT [20] 58.6 35.0 352 385 239 24.7 14.9 11.0 23 4.9
VT+REN 92.0 81.2 82.4 82.9 72.3 72.3 56.7 33.6 7.0 13.5
Attack Optimizers
MI [3] 56.8 374 375 389 27.0 293 18.4 14.6 31S 4.8
MI+REN 894 79.3 80.4 80.8 71.5 71.1 60.1 393 85 15.2
NI[13] 53.7 33.1 329 35.1 20.5 20.8 122 94 1.8 3.9
NI+RFN 839 67.3 69.8 714 56.1 52.5 35.6 17.6 3.8 7.0
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The flatness
of the neighbourhood
matters for transferability.



Explicitly maximizing flatness finds
transferable representations

Early stopping has an implicit
effect on flatness.

Transferability

Point Selection

Early
Stopping

Weight Space

Loss
Flatness
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[ Legend \
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Approach / Explanation
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Summary

-

1. Deep ensemble & Bayesian NN

| Probabilistic Transfer-based Black-box Attack | Higher success rate

At : Feed
tacy Bayesian surrogate
sl et ) 99%¢ |~ |  Target model
Eyoip) Hlyle +4,60)
e plylz +4.6:)
~ p(6]D) i nknown
Prior knowledge
of target
p(6)
Attack 1= ”nTm E, 010y plylx + 4,0)
¥
w
]
] Early
o Stopped
= SGD
.E Medium
(] transferability
=
SGD RFN
Fully trained ~ Fully trained
Low transferability High transferability

Parameters 6

2.LGV

Flat Maximum

Sharp Maximum

@
0.100 ]
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€ 0 30 60 70 130 1
@ Features
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0100 Weights
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.
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Papers
1. Efficient and Transferable Adversarial Examples from
Bayesian Neural Networks. UAI 2022
2. LGV: Boosting Adversarial Example Transferability
from Large Geometric Vicinity. ECCV 2022
3.

Going Further: Flatness at the Rescue of Early

Stopping for Adversarial Example Transferability.
Under Review, 2023

60



Challenges

1. Knowledge gap
Multimodal
Exploration
Weight Space w Transferability ‘
Point Selection
\_ L)

4. Low . success rate of small perturbatlons

BNN
(cSGLD)

J

Deep
Ensemble

16/255 24/255

32/255 )

\.

e

2. High training computational cost

cSGLD
(zZhang, 2020).

Loss Flatness

r
3. Lack of insights @

Training
Noise
Weight Space Transferability

J \L

7

5. Over-specific transferability techniques

@ ‘ Weight Space w Transferability ‘
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2. Training noise

induces significantly

which hinders

transferability if not

controlled.

1. The surrogate
weight space is
relevant for
transferability.

Multimodal
Exploration
Training .

Local
Exploration
Loss
Flatness

Transferability

‘ Point Selection

-

3. The transferability of flat neighbourhoods gives another
look at the relation between flatness and generalization.
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Limitations and perspectives

Transferability and uncertainty

How different threat models affect the type of
uncertainty?

» Unknown training dataset - aleatoric uncertainty
+ Distributional shift > epistemic / aleatoric
uncertainty

Controversy about the loss flatness

Flat Maximum Sharp Maximum

Why some explicit
or implicit
regularizations
improve transferability,
while others do not?

Loss

" Target Surrogate
/' Loss Function Loss Function

Bayesian perspectives on LGV & RFN

« Mandt et al. (2017): SGD with a constant learning
rate approximates the Bayesian posterior.

* Mollenhoff and Khan (2022): SAM is an optimal
relaxation of the Bayes objective

Extensions of experimental settings

* Physical domain

« Broader applications, including NLP.
E.g., evading LLM text detectors

. Non-Lp attacks

63



Other contributions

Additional Papers

1. Adversarial Perturbation Intensity Achieving Chosen Intra-Technique Transferability Level for Logistic Regression. 2018
2. Search-Based Adversarial Testing and Improvement of Constrained Credit Scoring Systems. FSE 2020

3. Influence-Driven Data Poisoning in Graph-Based Semi- Supervised Classifiers. CAIN 2022

Tools

e Torchattacks library: refactor, merge and showcase LGV code, demo notebook, bug fix

from torchattacks import LGV, BIM

atk = LGV(base_model, trainloader, 1r=0.05, epochs=10, nb_models_epoch=4,
wd=1e-4, attack_class=BIM, eps=4/255, alpha=4/255/10, steps=50)

e Open code source
e ART library: bug fix
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Open science

1. BNN
github.com/Framartin/transferable-bnn-adv-ex

2. LGV
github.com/Framartin/lgv-geometric-transferability

3. RFN

github.com/Framartin/rfn-flathess-transferability

Additional materials available on gubri.eu
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https://github.com/Framartin/transferable-bnn-adv-ex
https://github.com/Framartin/lgv-geometric-transferability
https://github.com/Framartin/rfn-flatness-transferability
https://gubri.eu/

LGV: Boosting Adversarial Example
Transferability from Large Geometric Vicinity

Martin Gubri!, Maxime Cordy!, Mike Papadakis!, Yves Le Traon!, and
Koushik Sen?

! Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of
Luxembourg, Luxembourg, LU firstname.lastnameQuni.lu
2 University of California, Berkeley, CA, USA

Abstract. We propose transferability from Large Geometric Vicinity
(LGV), a new technique to increase the transferability of black-box ad-
versarial attacks. LGV starts from a pretrained surrogate model and col-
lects multiple weight sets from a few additional training epochs with a
constant and high learning rate. LGV exploits two geometric properties
that we relate to transferability. First, models that belong to a wider
weight optimum are better surrogates. Second, we identify a subspace
able to generate an effective surrogate ensemble among this wider opti-
mum. Through extensive experiments, we show that LGV alone outper-
forms all (combinations of) four established test-time transformations by
1.8 to 59.9 percentage points. Our findings shed new light on the impor-

1F1 H tance of the geometry of the weight space to explain the transferability
A d d I t I O n al Sl Id eS of adversarial examples.

Keywords: Adversarial Examples, Transferability, Loss Geometry, Ma-
chine Learning Security, Deep Learning

Accepted at ECCV 22



Random directions in the weight space increase transferability.

V. L(x); y, wo + ex) with ex ~ N(0, o%1,)

Equivalent to adding input noise structured by local variations of input gradients in the weight space:

N (Vmﬁ(fﬂﬁc; Y, wo), 0 Jvmz(x;;y,-)(wo)Jvmc(m;;y,-)(wo)T)
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Usage

Implemented in the torchattacks library.

[ 1 from torchattacks import LGV, BIM

atk = LGV(base_model, trainloader, 1lr=0.05, epochs=10, nb_models_epoch=4,
wd=1e-4, attack_class=BIM, eps=4/255, alpha=4/255/10, steps=50)
# atk.load_models(list_models) # uncomment to load our publicly available pretrained models
atk.collect_models() # or collect models yourself
atk.save_models('models/1lgv"')

report_success_rate(atk)

Phase 2: craft adversarial examples with BIM
Success rate of LGV-BIM: 97.6%

Possible to combine with any other attack.
Demo notebook available.

68



LGV can be applied multiple times from each independently trained model

Success Rate

ResNet-152

ResNext-50
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Typology of high learning rates

F 100%

1. The highest possible learning rate that

does not make the model leave the 5% e B
current local minimum; g o BT
% 50% - -50%%
( . . . 8 o Aftack
2. The highest possible learning rate that 3 Z B
. . c B
makes the model jump between different 2% 2% 8 ’
local minima but does not cause
deterministic chaos I | ! . i
0 0.001 0.01 01 1 10
k ) Learning Rate (log)
3. The h|gheSt pOSSible Iearning rate that Figure 5.5: Transfer success rate against the ResNet-50 target (red, blue) and

causes deterministic chaos but does not natural test accuracy (orenge) of the LGV surrogate trained with a wide range

of constant learning rate, in pseudo-log scale. The null learning rate refers to the

lead to numerical divergence initial DNN.
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Background about flatness and (natural) generalization

Training Function

Testing Function

.
|
|
I
I
I
I
!
!
!
I
!
I

I
1

!

Loss

Sharp Minimum

Flat Minimum
Weights (parameters)
Figure 1: A Conceptual Sketch of Flat and Sharp Minima. The Y-axis indicates value of the loss

function and the X-axis the variables (parameters)
Keskar, N. S., et al. (2017). On large-batch training for deep learning: Generalization gap and sharp minima. ICLR 2017.
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Despite the high dimensionality of the weight space, SGD updates are
concentrated in a tiny subspace

GRADIENT DESCENT HAPPENS IN A TINY SUBSPACE

Guy Gur-Ari* Daniel A. Roberts” Ethan Dyer

School of Natural Sciences Facebook Al Research Johns Hopkins University
Institute for Advanced Study New York, NY 10003, USA Baltimore, MD 21218, USA
Princeton, NJ 08540, USA danr@fb.com edyer4@ihu.edu

guyg@ias.edu

ABSTRACT

‘We show that in a variety of large-scale deep learning scenarios the gradient dy-
namically converges to a very small subspace after a short period of training. The
subspace is spanned by a few top eigenvectors of the Hessian (equal to the number
of classes in the dataset), and is mostly preserved over long periods of training.
A simple argument then suggests that gradient descent may happen mostly in this
subspace. We give an example of this effect in a solvable model of classification,
and we comment on possible implications for optimization and learning.
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The LGV subspace is significantly better than a random subspace

— Specific relation to transferability

Table 9: Transfer success rate of random directions sampled in LGV deviations

subspace.

Target

Norm Surrogate RN50 RN152 RNX50 WRN50 DN201 VGG19 IncV1l IncV3

Loo
/ Loo

Loo
Random directions ~— >
in full weight space =
vs. LGV
L2

LGV 95.5+0.1 85.542.1 83.6+1.1 82.2+2.4 69.6+1.0 67.8+0.9 58.4+0.6 25.6+1.7
LGV-SWA 96.0+0.2 85.6+2.5 83.6+0.6 82.1+2.8 68.6+1.1 65.7+1.5 54.5+0.0 23.5+0.4
+ RDin S

LGV-SWA 90.4+0.3 71.943.4 70.0+1.2 69.243.4 50.0+1.0 47.441.0 34.940.4 13.440.7
+ RD

LGV 96.3+0.1 90.1+1.0 88.8+0.4 87.5+1.6 79.8+1.1 78.1+1.6 71.9+0.6 43.1+0.6
LGV-SWA 96.6+0.3 90.1+1.4 88.7+0.5 87.3+2.0 77.6+1.0 75.6+1.5 67.4+1.0 37.4+0.4
+ RDin S

LGV-SWA 91.940.6 78.2+2.0 76.2+1.3 75.442.5 58.1+0.3 55.8+1.6 42.7+0.6 20.0+0.6
+ RD
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Sampling random directions in the subspace have results close to LGV

— Densely related to transferability

_—

Random directions
in LGV subspace
vs. LGV

Table 9: Transfer success rate of random directions sampled in LGV deviations

subspace.

Target

Norm Surrogate RN50 RN152 RNX50 WRN50 DN201 VGG19 IncV1l IncV3

Loo
Loo

Loo

L2
L2

L2

LGV 95.5+0.1 85.542.1 83.6+1.1 82.2+2.4 69.6+1.0 67.8+0.9 58.4+0.6 25.6+1.7
LGV-SWA 96.0+0.2 85.6+2.5 83.6+0.6 82.1+2.8 68.6+1.1 65.7+1.5 54.5+0.0 23.5+0.4
+ RDin S

LGV-SWA 90.4+0.3 71.943.4 70.0+1.2 69.243.4 50.0+1.0 47.441.0 34.940.4 13.440.7
+ RD

LGV 96.3+0.1 90.1+1.0 88.8+0.4 87.5+1.6 79.8+1.1 78.1+1.6 71.9+0.6 43.1+0.6
LGV-SWA 96.6+0.3 90.1+1.4 88.7+0.5 87.3+2.0 77.6+1.0 75.6+1.5 67.4+1.0 37.4+0.4
+ RDin S

LGV-SWA 91.940.6 78.2+2.0 76.2+1.3 75.442.5 58.1+0.3 55.8+1.6 42.7+0.6 20.0+0.6
+ RD
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The subspace is composed of directions whose relative importance depends on
the functional similarity between surrogate and target
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Fig.5: Success rate of the LGV surrogate projected on an increasing number
of dimensions with the corresponding ratio of explained variance in the weight
space. Hypothetical average cases of proportionality to variance (solid) and equal
contributions of all subspace dimensions (dashed). Scales not shared.
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LGV deviations can be shifted in the weight space and significantly outperform
random directions

Table 10: Transfer success rate of LGV deviations shifted to other independent
solutions, for target architectures in the ResNet family.

Target
Norm Surrogate RN50 RN152 RNX50 WRN50
Loo LGV-SWA + (LGV’ - LGV-SWA’) 94.310.5 81.512.3 79.1141.4 78.142.4
Loo LGV-SWA + RD 90.4+0.3 71.943.4 70.0+1.2 69.2+3.4
Loo LGV (ours) 95.440.1 85.3+2.1 83.7+1.1 82.1+25
Loo 1DNN + v (LGV’ - LGV-SWA’) 73.3+2.0 52.842.9 52.6+1.6 56.612.8
Loo 1 DNN + RD 60.8+1.6 40.8+2.7 40.24+0.3 44.8+2.7
L2 LGV-SWA + (LGV’ - LGV-SWA’) 95.2+0.5 86.14+1.90 84.241.0 82.7+1.6
L2 LGV-SWA + RD 92.0+0.5 77.943.0 76.2+1.4 75.2428
L2 LGV (ours) 96.3+0.1 90.2+1.1 83.6+0.6 87.6+1.7
L2 1DNN + v (LGV’ - LGV-SWA’) 84.210.5 68.7+2.6 70.0+1.3 72.4415
1.2 1 DNN + RD 74.6+0.5 55.843.1 56.1+0.6 59.943.2
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LGV is simple yet effective to enhance black-box attack.

1. LGV collect weights from flatter regions, which create flatter adversarial
examples more robust to surrogate-target misalignment.

2. LGV weights span a dense weight subspace whose geometry is intrinsically
connected to transferability.
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