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Context

The success of deep learning

Deep Neural Networks (DNNs) have made huge progress in numerous fields.
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Evolution of top-1 accuracy on ImageNet (paperwithcode)

Benchmark datasets
Real world applications

James Heilman, MD. Cardiomegaly. Licence: CC BY-SA 3.0. 

Illustration from freeCodeCamp.org



Context

Critical failures

But deep neural networks can fail critically when faced with unexpected data.
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The New York Times, ‘On YouTube Kids, Startling Videos Slip Past Filters’

Wired, ‘Children's YouTube is still churning out blood, suicide and cannibalism’

The Guardian, ‘Hiding in plain sight: activists don camouflage to beat Met surveillance’.

Photograph: Cocoa Laney/The Observer

Content filtering

Fischer et al., Certified Defense to Image Transformations via Randomized Smoothing, CoRR 2019

K. Eykholt, et al. Robust Physical-World Attacks on Deep Learning Visual Classification, IEEE 2018
Illustrations from Mark Müller

’

Surveillance

system



Background

Adversarial examples

Carefully crafted imperceptible perturbations applied to inputs to create

large changes in output.

→ Worst-case distributional shift Goodfellow, I. et al. (2014). Explaining and Harnessing Adversarial Examples 4



PGD

Projected gradient ascent in the input space.

Source Image: towardsdatascience.com 5

Background

Known Target

Attack

White-box attack

Requires perfect knowledge of the 

target model



Transferability

An adversarial example against a model is likely to be also

adversarial against another model.

Y. Liu, et al., Delving into Transferable Adversarial Examples and Black-box Attacks, ICLR 2017 6

Background

Decision boundaries around an ImageNet example. One color per predicted label. 

“pandas”

VGG-16 ResNet-101

“gibbon” “anemone fish”



Transferability

An adversarial example against a model is likely to be also

adversarial against another model.

Y. Liu, et al., Delving into Transferable Adversarial Examples and Black-box Attacks, ICLR 2017 7

Background

Decision boundaries around an ImageNet example. One color per predicted label. 

“pandas”

VGG-16 ResNet-101

“gibbon” “anemone fish”

Definition

An adversarial example transfers if another 

model also misclassifies it. 



But transfer may fail

Adversarial examples easily overfit the surrogate model

Y. Liu, et al., Delving into Transferable Adversarial Examples and Black-box Attacks, ICLR 2017 8

Background

VGG-16 ResNet-101

“gibbon” “pandas”

“pandas”

Decision boundaries around an ImageNet example. One color per predicted label. 



Transfer-based black-box attack

More realistic attacks require less knowledge on the target.

Does not require to query the model. 

“anemone fish”

TargetSurrogate

FeedAttack

9

Background

Metric success rate



Transferability, a prolific topic
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Background

Number of published (Scopus) 

and submitted (arXiv) articles on transferability

184 published articles in 2022

Annual growth rate: 33.9%



3. Lack of insights

The field tends to be a collection of scattered techniques 

with limited scientific value.

→ Lack of in-depth knowledge

4. Low success rate of small perturbations

Large perturbations are more transferable, but more visible 

and may even change the label.

1. Knowledge gap

In 2021, a single publication studied how to improve the 

training of surrogate models: Liu et al. (2017) show that 

ensembling architectures improves transferability.

→ No prior contribution about how to train 

each surrogate architecture for transferability

2. High training computational cost

Training the surrogate model is at least two orders of 

magnitude more costly than attacking it.

→ Training the surrogate is the most costly 

5. Over-specific transferability techniques

Many transferability techniques exploit specific 

components (skip connection, dropout).

→ Lack of exploitation of generic principles
11

Challenges

Example of large L∞ norm perturbations that change label (Addepalli et al., 2022)



Context

Neural Networks

12
Input

“Panda”

Weights

w1

w2

…

wp
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Weight space

The weight space (or the parameter space) is the Euclidian space 

formed by all the weights a neural network.

w1

w2

w16

w3

…

w17

w18

w24

…

Loss landscape

Hao Li, et al. (2018). Visualizing the Loss Landscape of Neural Nets. NeurIPS 2018.

loss

w19

Weight Space



TransferabilityWeight Space
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Scope & goal

How to train surrogate models for black-box 

evasion attacks

Scope

Goal



TransferabilityWeight Space

Multimodal 

Exploration

Local 

Exploration

Point Selection
15

Weight space exploration

Multiple modes

of the loss landscape. 

losslandscape.com
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1. Probabilistic approach to 

transferability
Controlling the uncertainty related to 

the unknown target model

2. LGV: Transferability from 

Large Geometric Vicinity
Augment the surrogate model with its 

vicinity in the weight space

3. RFN: Transferability from Flat 

Neighbourhoods
Explicitly maximizing flatness to find 

better single surrogate model

Table of contents

Multimodal 

Exploration

Contribution 1

Contribution 2 Contribution 3

Local 

Exploration

Transferability

Weight 

Space

Point 

Selection

Legend

Type of Weight 

Space Exploration



Probabilistic.

Transferability.

Transferability from 

Deep Ensemble &

Bayesian Neural Network

Accepted at UAI 2022 17
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Multimodal 

Exploration

Contribution 1

Contribution 2 Contribution 3

Local 

Exploration

Transferability

Weight 

Space

Point 

Selection

Legend

Type of Weight 

Space Exploration

Scope and goal



Focus

Train surrogate models from several 

vicinities of the weight space

Scope and goal

19

What matters?

Training noise through probabilistic 

distribution of the target

Question

Are representations from different modes 

different enough to hinder transferability?

Deep Ensemble

Multimodal 

Exploration

BNN (cSGLD)

Contribution 1

Transferability

Weight Space

Distribution of 

Target Model

Training 

Noise



Threat model

Probabilistic view on transferability

20Extension to unknown architecture in the thesis. 

Distribution of 

Target Model

Training 

Noise

Known on the target model

● its architecture,

● its training dataset,

● its (maximum likelihood) optimizer,

● its prior of its parameters (weight decay).

Unknown on the target model

● its weights.

Uncertainty of the target weights 

arises from stochasticity in training
(random batches & random initialization).

The weights of the target model 

admit a probability distribution.



Deep Ensemble

21

Intra-architecture transferability
From ResNet-50 to ResNet-50

Inter-architecture transferability
From ResNet-50 to other architectures

Sample from the distribution of the target model under our threat model → Deep ensemble surrogate

Same conclusion on six other target architectures

Deep Ensemble (Lakshminarayanan, 2017) ensemble of independently trained DNNs (same architecture).



Deep Ensemble
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Intra-architecture transferability
From ResNet-50 to ResNet-50

Inter-architecture transferability
From ResNet-50 to other architectures

Sample from the distribution of the target model under our threat model → Deep ensemble surrogate

Same conclusion on six other target architectures

Issue

Expensive to train

Deep Ensemble (Lakshminarayanan, 2017) ensemble of independently trained DNNs (same architecture).



Mingard et al. [2020] observes a strong

correlation between the probability to

obtain a function consistent with the

training set by SGD, and the Bayesian

posterior.

The target weights are approximately

distributed according to the posterior.

Bayesian Neural Networks

23



Bayesian Neural Networks

Efficient

At least 2.5 times less computational

cost to achieve the same success rate.

24

cSGLD (Zhang, 2020) Bayesian method that adds noise to the weights to sample from the posterior.



Transferability techniques

1.   Competitive

→ Exploring the weight space is of 

utmost importance

25



Transferability techniques

2.   Complementary

→ The weight space leverages other 

properties of transferability 

1.   Competitive

→ Exploring the weight space is of 

utmost importance

26



The surrogate

weight space

matters for transferability.

27



Weight space exploration

2.   Local Exploration1.   Multimodal exploration

cSGLD

Deep 

Ensemble

28

Single weight per vicinity

cSGLD

Deep 

Ensemble



Conclusion

Summary

The unknown weights of the target 

admit a probability distribution,

29

Deep Ensemble

Multimodal 

Exploration

BNN (cSGLD)

Contribution 1

Local 

Exploration

Transferability

Weight Space

Distribution of 

Target Model

Training 

Noise

Sampling (approximately) from this 

distribution in multiple vicinities 

improves transferability.

However, both techniques poorly 

explore locally the weight space. 

where the randomness comes from 

the training noise.



30

Deep Ensemble

Multimodal 

Exploration

BNN (cSGLD)

Contribution 1

Contribution 2 Contribution 3

Local 

Exploration

Transferability

Weight Space

Point Selection

Distribution of 

Target Model

Legend

Type of Weight 

Space Exploration

Main Technique 

Proposed / Evaluated

Limitation

(Chapter Transition)

What Matters:

Approach / Explanation

Training 

Noise

Conclusion

Can we increase transferability 

from the local exploration around a 

surrogate model?

Open challenge



LGV.

Transferability from 
Large Geometric Vicinity

Accepted at ECCV 22

31
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Deep Ensemble

Multimodal 

Exploration

BNN (cSGLD)

Contribution 1

Contribution 2 Contribution 3

Local 

Exploration

Transferability

Weight Space

Point Selection

Distribution of 

Target Model

Legend

Type of Weight 

Space Exploration

Main Technique 

Proposed / Evaluated

Limitation

(Chapter Transition)

What Matters:

Approach / Explanation

Training 

Noise

Scope and goal



Question

Are representations from a single 

vicinity too similar to help 

transferability?

Focus

Augment a surrogate model with 
the local exploration of the weight 
space

Scope and goal
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What matters?

Training noise & loss flatness

Loss 

Flatness

LGV

Contribution 2

Local 

Exploration

Transferability

Weight Space

Subspace 

Geometry

Training 

Noise



Random directions in the weight space increase transferability.

Random directions in the input space do not.

Motivation

Gaussian noise on weightsDNN weights

34
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The vicinity

in the weight space

matters for transferability.



Phase 1

Collect models during a few additional 

epochs with a high learning rate

LGV

Phase 2

Attack one random collected 

model per iteration

36



LGV alone beats all (combinations of) four state-of-the-art techniques.

Evaluation

37



RQ Why do weights from a vicinity help to attack a model 

from another vicinity?

How to explain the success of LGV?

38

Two keys:

1. LGV produces flatter adversarial examples.

2. The LGV subspace embeds geometric properties relevant for transferability.



Flatter adversarial examples may be more robust to misalignment between 

surrogate and target.

I - The surrogate-target misalignment hypothesis

39



LGV collects models in flatter regions of the weight space…

LGV → Flatness in the weight space

Among others
Optimal lengths of random and LGV 

deviations vectors

Random rays

Hessian-based sharpness metrics

Interpolation in the weight space

40



…as a result, LGV produces adversarial examples flatter in the input space. 

LGV → Flatness in the input space

Natural 
example LGV 

adversarial 
example

1 DNN 
adversarial 
example

41



LGV appears particularly well aligned with the target.

The surrogate-target (mis)alignment

Loss contours have similar shape which appear shifted

42



The subspace     :

1. is densely composed good surrogates, i.e., it strongly relates to transferability,

2. is composed of directions whose relative importance correlates with geometrical 

properties, i.e., its geometry is relevant for transferability,

3. can be shifted to other solutions, i.e., its geometry captures generic properties.

We consider at the weight subspace defined by deviations of LGV weights from 

their average:

43

II - LGV subspace properties



Conclusion

44

Loss 

Flatness

LGV

Contribution 2

Local 

Exploration

Transferability

Weight Space

Subspace 

Geometry

Training 

Noise

Overall, the improved transferability of 

LGV comes from the geometry of the 

subspace formed by LGV weights in a 

flatter region of the loss.

LGV is simple yet effective to enhance 

transferability from the local exploration of 

the weight space.
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Deep Ensemble

Multimodal 

Exploration

Loss 

Flatness

LGV

BNN (cSGLD)

Contribution 1

Contribution 2 Contribution 3

Local 

Exploration

Transferability

Weight Space

Point Selection

Subspace 

Geometry

Distribution of 

Target Model

Legend

Type of Weight 

Space Exploration

Main Technique 

Proposed / Evaluated

Limitation

(Chapter Transition)

What Matters:

Approach / Explanation

Training 

Noise

Open challenges

● How to train a better base 
surrogate model?

● Does explicitly maximizing 
flatness improve 
transferability?

Conclusion



RFN.

Transferability of
Representations from Flat Neighbourhood

Under Review

46



47

Deep Ensemble

Multimodal 

Exploration

Loss 

Flatness

LGV

BNN (cSGLD)

Contribution 1

Contribution 2 Contribution 3

Local 

Exploration

Transferability

Weight Space

Subspace 

Geometry

Distribution of 

Target Model

Legend

Type of Weight 

Space Exploration

Main Technique 

Proposed / Evaluated

Limitation

(Chapter Transition)

What Matters:

Approach / Explanation

Training 

Noise

Scope and goal

Point Selection



Focus

Transferable representation, i.e., 

single surrogate model

Scope and goal
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Loss 

Flatness Early 

Stopping

Contribution 3

Transferability

Weight Space

Point Selection

RFN
What matters?

Loss flatness 

Question

Are vicinities of the surrogate 

weight space better than others?



When the learning rate decays…

Transferability and training dynamics

49

1. Transferability peaks 2.    Sharpness drops

Worst and average case sharpness for all training 

epochs on CIFAR-10.

The peak of transferability when the learning rate 

decays is consistent across epochs.



Transferability and training dynamics

50

2. After the learning rate decays, training goes 

down the valley. Soon after, SGD achieves its 

best transferability (early stopping     ). 

Sharpness is reduced.

3. When learning continues, SGD falls 

progressively into deep, sharp holes in the 

weight space, where the representations are 

too specific, thus have poor transferability 

(fully trained SGD     ).

Relation between the training dynamics of the 

surrogate model, sharpness, and transferability. 

1. Before the learning rate decays, training is in 

a “crossing the valley” phase. Transferability 

plateaus.



RQ Does explicitly minimizing the sharpness of the surrogate 

model improve transferability?

Explicitly minimizing sharpness

51



Explicitly minimizing sharpness

52

Sharpness-Aware Minimization (SAM) is an SGD variant that minimizes both the loss value and the loss 
sharpness, by solving a min-max optimization problem. SAM seeks neighbourhoods of size ρ with 
uniformly low loss.

P. Foret, et al. (2021). Sharpness-Aware Minimization for Efficiently Improving Generalization. ICLR 2021.

Illustration of the SAM weight update

SGD



Explicitly minimizing sharpness

53

Sharpness-Aware Minimization (SAM) is an SGD variant that minimizes both the loss value and the loss 
sharpness, by solving a min-max optimization problem. SAM seeks neighbourhoods of size ρ with 
uniformly low loss.

P. Foret, et al. (2021). Sharpness-Aware Minimization for Efficiently Improving Generalization. ICLR 2021.

A sharp minimum obtained with SGD A flat minimum obtained with SAM
Illustration of the SAM weight update

First SAM step
Inner maximization

Second SAM step
Outer minimization

SGD SAM



Explicitly minimizing sharpness
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● Minimizing sharpness improves 

transferability

Transferability per epoch of SGD, SAM and RFN 

on CIFAR-10 (average over nine targets) 

● Same observations on ImageNet

● Large flat neighbourhoods are optimal 

for transferability

RFN ρ=0.4 > SAM ρ=0.05

● RFN benefits specifically to 

transferability, not natural accuracy



Explicitly minimizing sharpness
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RFN (    ) avoids deep sharp holes 

by minimizing the maximum loss 

around an unusually large 

neighbourhood (         ).



1. RFN is competitive to train a single 

surrogate model.

Evaluation

56

2. RFN is a better base model for 

complementary techniques.

Success rate of competitive techniques on ImageNet

Success rate of competitive techniques on CIFAR-10

Success rate of complementary techniques on ImageNet
RFN is best in 43 out of 57 cases. 



The flatness

of the neighbourhood

matters for transferability.

57



Explicitly maximizing flatness finds 

transferable representations

Conclusion

58

Loss 

Flatness Early 

Stopping

Contribution 3

Transferability

Weight Space

Point Selection

RFN

Early stopping has an implicit 

effect on flatness.



….…Conclusion.
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Deep Ensemble

Multimodal 

Exploration

Loss 

Flatness

LGV

BNN (cSGLD)

Contribution 1

Early 

Stopping

Contribution 2 Contribution 3

Local 

Exploration

Transferability

Weight Space

Point Selection

RFN

Subspace 

Geometry

Distribution of 

Target Model

Legend

Type of Weight 

Space Exploration

Main Technique 

Proposed / Evaluated

Limitation

(Chapter Transition)

What Matters:

Approach / Explanation

Training 

Noise



Summary

1. Deep ensemble & Bayesian NN 2. LGV

3. RFN Papers

1. Efficient and Transferable Adversarial Examples from 

Bayesian Neural Networks. UAI 2022

2. LGV: Boosting Adversarial Example Transferability 

from Large Geometric Vicinity. ECCV 2022

3. Going Further: Flatness at the Rescue of Early 

Stopping for Adversarial Example Transferability. 

Under Review, 2023

60



3. Lack of insights

4. Low success rate of small perturbations

1. Knowledge gap 2. High training computational cost

5. Over-specific transferability techniques

61

Challenges

TransferabilityWeight Space

Multimodal 

Exploration

Local 

Exploration

Point Selection

cSGLD 

(Zhang, 2020).

Deep 

Ensemble
LGVBNN 

(cSGLD)
RFN Loss Flatness

Training 

Noise

TransferabilityWeight Space

TransferabilityWeight Space



Takeaways

1. The surrogate 

weight space is 

relevant for 

transferability.

62

Multimodal 

Exploration

Loss 

Flatness

Contribution 1

Contribution 2 Contribution 3

Local 

Exploration

Transferability

Weight Space

Point Selection

Training 

Noise

2. Training noise 

induces significantly 

different 

representations, 

which hinders 

transferability if not 

controlled.

3. The transferability of flat neighbourhoods gives another 

look at the relation between flatness and generalization.



Limitations and perspectives

Transferability and uncertainty

How different threat models affect the type of 

uncertainty?

• Unknown training dataset → aleatoric uncertainty

• Distributional shift → epistemic / aleatoric 

uncertainty

Bayesian perspectives on LGV & RFN

• Mandt et al. (2017): SGD with a constant learning 

rate approximates the Bayesian posterior.

• Möllenhoff and Khan (2022): SAM is an optimal 

relaxation of the Bayes objective

Controversy about the loss flatness

Why some explicit 

or implicit 

regularizations

improve transferability,

while others do not?

Extensions of experimental settings

• Physical domain

• Broader applications, including NLP.
E.g., evading LLM text detectors

• Non-Lp attacks

63



Other contributions

Additional Papers

1. Adversarial Perturbation Intensity Achieving Chosen Intra-Technique Transferability Level for Logistic Regression. 2018

2. Search-Based Adversarial Testing and Improvement of Constrained Credit Scoring Systems. FSE 2020

3. Influence-Driven Data Poisoning in Graph-Based Semi- Supervised Classifiers. CAIN 2022

Tools

● Torchattacks library: refactor, merge and showcase LGV code, demo notebook, bug fix

● Open code source 

● ART library: bug fix

64



Thanks!
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Open science

1. BNN
github.com/Framartin/transferable-bnn-adv-ex

2. LGV
github.com/Framartin/lgv-geometric-transferability

3. RFN
github.com/Framartin/rfn-flatness-transferability

Additional materials available on gubri.eu

Deep Ensemble

Multimodal 

Exploration

Loss 

Flatness

LGV

BNN (cSGLD)

Contribution 1

Early 

Stopping

Contribution 2 Contribution 3

Local 

Exploration

Transferability

Weight Space

Point Selection

RFN

Subspace 

Geometry

Distribution of 

Target Model

Legend

Type of Weight 

Space Exploration

Main Technique 

Proposed / Evaluated

Limitation

(Chapter Transition)

What Matters:

Approach / Explanation

Training 

Noise

https://github.com/Framartin/transferable-bnn-adv-ex
https://github.com/Framartin/lgv-geometric-transferability
https://github.com/Framartin/rfn-flatness-transferability
https://gubri.eu/


LGV.

Additional slides

Accepted at ECCV 22
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Random directions in the weight space increase transferability.

Equivalent to adding input noise structured by local variations of input gradients in the weight space:

Motivation

67



Implemented in the torchattacks library.

Possible to combine with any other attack.

Demo notebook available.

Usage

68



LGV can be applied multiple times from each independently trained model

Complementarity with deep ensemble

69



Typology of high learning rates

1. The highest possible learning rate that 

does not make the model leave the 

current local minimum;

2. The highest possible learning rate that 

makes the model jump between different 

local minima but does not cause 

deterministic chaos

3. The highest possible learning rate that 

causes deterministic chaos but does not 

lead to numerical divergence

Types of high learning rate

70



Background about flatness and (natural) generalization

I - The surrogate-target misalignment hypothesis

L
o
s
s

Weights (parameters)

Keskar, N. S., et al. (2017). On large-batch training for deep learning: Generalization gap and sharp minima. ICLR 2017. 71



Despite the high dimensionality of the weight space, SGD updates are 

concentrated in a tiny subspace

72

Background - SGD Subspace



The LGV subspace is significantly better than a random subspace

→ Specific relation to transferability

II - A) A subspace useful for transferability

Random directions 
in full weight space 

vs. LGV

73



Sampling random directions in the subspace have results close to LGV

→ Densely related to transferability

II - A) A subspace useful for transferability

Random directions 
in LGV subspace 

vs. LGV

74



The subspace is composed of directions whose relative importance depends on 

the functional similarity between surrogate and target 

II - B) Relevance of Geometry

75



LGV deviations can be shifted in the weight space and significantly outperform 

random directions

II - C) Generic Geometry Properties

76



LGV is simple yet effective to enhance black-box attack.

1. LGV collect weights from flatter regions, which create flatter adversarial 

examples more robust to surrogate-target misalignment.

2. LGV weights span a dense weight subspace whose geometry is intrinsically 

connected to transferability.

Conclusion

77


