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ABSTRACT

Flying satellite communication systems often have to deal
with intended and unintended radio-frequency interference,
especially now with the advent of non-geostationary orbit
(NGSO) systems causing orbital crowding. In this work, we
investigate the use of machine learning (ML) for interference
detection and classification. In particular, we investigate the
effects of datasets representations on the performance of con-
volutional neural network (CNN) when deployed on-board
of a geostationary orbit (GSO) satellite, to detect interfer-
ence and classify the spectrum of interest. Focusing on the
frequency representation of the observed signal, we con-
sider different input datasets depending on the fast Fourier
Transform (FFT) size and their transformation. In partic-
ular, we considered complex and magnitude values of full
dimension and reduced dimension FFT. Our analysis shows
that the magnitude of the reduced dimension FFT, attains the
best results in terms of accuracy in detecting the presence of
the interference signal, and its location in the spectrum of
interest.

Index Terms— convolutional neural network, fast Fourier
transform, interference detection, satellite communication

1. INTRODUCTION

The development of non-geostationary (NGSO) satellite tech-
nology, has led or will soon lead to an increase in the number
of satellites in space [1,2]. Competing for the same spectrum,
interference becomes a crucial problem in satellite communi-
cation (SATCOM). According to [3], 93% of satellite oper-
ators suffer from interference at least once a year, and more
than half experience it monthly. An important step before
tackling interference is to detect it and understand which part
of the spectrum it is affecting.
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An energy-based on-board satellite interference detector
was proposed in [4, 5]. In particular, the authors considered
the energy detection (ED) technique, to decide whether an
interference is present or not. An alternative approach is pro-
posed in [6], where compressive sensing is used to estimate
the power spectrum of the signal. Other works focus on the
localization of interference by using time-difference of arrival
or frequency difference of arrival, e.g. [7].

Recently, machine learning (ML)-based solutions on SAT-
COM are gathering attention due to its real-time capability in
performing complex operations [8, 9], for example, to auto-
matically detect interference in the spectrum of the received
signal. Furthermore, the ML model can be trained on sample
data offline, and the resulting model to detect interference can
be deployed online. This shifts the complexity and process-
ing from online to offline, which reduces the decision time
online [10]. In addition, one ML model can detect different
interference signals. This reduces the number of units needed
to detect several interference signals.

The most relevant SATCOM ML-related work is [11],
where a long short-term memory (LSTM) tool is imple-
mented to predict the expected signal snapshot and compare
it with the actual one. More recently, [12] investigated the use
of deep learning (autoencoder) for on-ground terrestrial-to-
satellite terminal interference detection. In [13], the authors
studied the general problem of wireless signal identification,
which covers the problems of modulation recognition, as well
as interference identification, using ML algorithms.

In this paper, we address the problem of interference de-
tection and its location within the spectrum of interest by
casting it as a classification ML problem. Our main goal
is to study the impact of the input dataset format and fea-
ture space dimension on the performance of the ML model
for on-board interference detection and spectrum classifica-
tion. To this end, we consider a geosynchronous orbit (GSO)
and non-geosynchronous orbit (NGSO) satellite systems op-
erating over the same spectrum in the uplink of the return
link, where the total available spectrum is divided into a num-
ber of nonoverlapping subbands, and at any given time the
GSO and NGSO system (if transmitting) can use only one



subband. The GSO system employs a convolutional neural
network (CNN) that operates on the pre-processed analog-to-
digital (A/D) converter samples in the frequency domain, to
decide whether there is interference in the currently operated
subband by the GSO satellite or not, in order to eventually
decide whether or not to change the carrier frequency to a
subband that is interference-free. Since we are interested in
detecting interference and classifying the spectrum using the
same model, different fast Fourier transform (FFT) frequency
representations and sizes of the A/D samples are considered
and evaluated.

The rest of the paper is organized as follows: in Section
2, the system and signal models are presented. In Section 3,
the details of the data generation process of the different rep-
resentations are outlined. In Section 4, the CNN architecture
is provided. In Section 5, the CNN classification accuracy on
the different data representations are evaluated, and in Sec-
tion 6, a conclusion is discussed.

2. SYSTEM AND SIGNAL MODEL

In the uplink of a GSO system return link, a GSO source SD
and an NGSO source SI are transmitting the baseband signals
xd(t) and xi(t), henceforth called the desired and interference
signals, respectively. These signals are given by

xz(t) =

K−1∑
k=0

xz[k] g (t− kT ) , t ∈ [0,KT ] (1)

where {xz[k]}K−1
k=0 are modulated symbols drawn from a bi-

nary phase shift keying (BPSK) constellation for z ∈ {d, i},
each with unity power and duration T , g(t) is a rectangular
pulse shaping filter of duration T and unit energy. T is re-
lated to the baseband bandwidth of the signals W as T = 1

W ,
and K is the number of symbols in the transmitted block. We
assume that the spectrum range [fmin, fmax] is allocated to the
GSO satellite system, which is divided into V nonoverlapping
subbands, each of bandwidth 2W , i.e., fmax − fmin = 2VW ,
where V ∈ Z+. Each subband Dv has a center frequency Fv

for v = 1, 2, · · · , V . The carrier frequency of the desired
signal fd can assume any of these center frequencies and sub-
bands. At the beginning, it is assumed that fd = F1, i.e.,
xd(t) occupies the first subband, which can change when-
ever the first subband suffers from a significant interference
that disturbs the quality-of-service (QoS) of the desired sig-
nal transmission.

At the receiver R, which is the GSO satellite, the baseband
received signal can be expressed in the time-domain, after
down-converting the bandpass received signal by frequency
fd as

r(t) = xd(t)
√
SNRd+αxi(t)e

j2π(fi−fd)t
√
SNRi+n(t) (2)

where fd is the carrier frequency of the signal xd(t), fi∈F =
{F1, F2, F3, · · · ,FV } is the carrier frequency of the sig-

nal xi(t), and n(t) is complex-valued additive white Gaus-
sian noise (AWGN) process of zero-mean and unity power
over the bandwidth 2W . SNRd and SNRi are the signal-to-
noise ratio (SNR) of the signals xd(t) and xi(t), respectively,
over a bandwidth of 2W . The variable α ∈ {0, 1} indicates
the presence or absence of the interference signal xi(t). At
the analog-to-digital (A/D) converter at the GSO satellite, the
baseband received signal is sampled by a sampling frequency
fs = 1/Ts Hz, where Ts is the sample time.

2.1. Interference Detection and Spectrum Classification

To classify the subbands in the spectrum [fmin, fmax] as con-
taining interference or not, we need first to define a metric
that determines if a subband contains a significant interfer-
ence to disturb the QoS of the GSO system or not. We adopt
the maximum bit error rate (BER) metric denoted by ε and
the corresponding minimum SINR denoted by SINRmin that
must be satisfied to meet the QoS of the desired signal. Math-
ematically

ε = Q
(√

2 SINRmin
)

(3)

or, equivalently

SINRmin =

[
Q−1 (ε)

]2
2

=
SNRd

SNRi,max + 1
(4)

where Q(.) and Q−1(.) are the Q and inverse-Q functions,
respectively. The maximum allowed interference from SI at
R is denoted by SNRi,max and can be found from (4) as

SNRi,max = max

(
SNRd

SINRmin
− 1, 0

)
(5)

3. GENERATING THE DATA

In this section, we explain the process of generating the data.
We consider full-dimension and reduced-dimension FFT,
where for each case we considered the complex FFT, and
magnitude FFT, which results in a total of four datasets that
will be evaluated and compared. For all cases, we consider
the following fixed parameters: fd = 29.55 GHz, W = 50
MHz, fs = 5 GHz, K = 10, SNRd = 12 dB, SNRi = 6 dB,
ε = 10−5. The interference signal’s carrier frequency takes
on the values

Fi = {A|A = 29.55, 29.65, 29.75, 29.85, 29.95} GHz (6)

The input data are the complex/magnitude FFT of the re-
ceived signal, and the output data is 5-binary-valued vectors,
where each binary digit indicates the presence or absence of
the interference in the corresponding subband. As a result we
have 6 classes, which correspond to the cases for no interfer-
ence in any subband, or the presence of interference in one of
the subbands.



For each input data dimension size/representation, for ex-
ample, full-dimension/complex FFT representation, we gen-
erated 2500 data points per class, which are then divided into
80% training, and 20% validation data. For complex FFT, the
input data is pre-processed as explained in Section 5.1, while
for magnitude FFT, we take the magnitude of the FFT trans-
formation.

3.1. Full Dimension FFT

At the output of the A/D converter, the bandwidth of the FFT
of the signal spans the spectrum

(
− fs

2 , fs
2

]
, and the number

of frequency bins in the frequency domain equals to the num-
ber of samples in the time domain, which is S = 1000. In this
case the training datasets has dimensions of 12000×1000, and
the validation datasets has a dimension of 3000× 1000.

3.2. Reduced-Size FFT

Although the FFT signal bandwidth covers the spectrum(
− fs

2 ,
fs
2

]
in baseband, most of this spectrum falls out-

side the spectrum of interest, which spans the spectrum
[−W, 9W ]. Thus, before preparing the data, we extract
the part of FFT that corresponds to the spectrum of interest,
and this results in U = 100 frequency bins in the frequency
domain in this spectrum. In this case the training datasets has
dimensions of 12000× 100, and the validation datasets has a
dimension of 3000× 100.

4. CNN NETWORK ARCHITECTURE

The Keras-based Sequential CNN model is considered for in-
terference detection and spectrum classification. The CNN
employs the convolution method for the learning operation,
therefore it has fewer training parameters as compared to the
artificial neural network [14]. The employed CNN model
comprises a convolutional input layer with a rectified linear
unit (ReLU) as an activation function. The employed CNN
comprises of two convolutional layers with a ReLU activation
function followed by the max pool layer in the beginning. The
ReLU can be defined as [15]

f
(
xL

)
= max

{
0, xL

}
=

{
xL, xL ≥ 0

0, else
(7)

here xL is the element wise output for the Lth layer of the
CNN model. The dropout of the proposed CNN model is set
to 20%. The same pattern is followed post-dropout but with
higher feature maps. Towards the end, CNN comprises flatten
layer followed by the fully connected output layer.

The combination of two-dimensional convolutional layers
with gradually decreasing feature maps and max pool layer
of size 1×1 is continued until feature maps of the convolu-
tional layer reach 4. The intention of the max pooling layer

is to reduce the size of the spatial filters and network param-
eters [16]. This is followed by the flattened layer and fully
connected layer with 6 units. The fully connected output layer
has a softmax-based activation function as

x = [x1, · · · , xm]
T
= σ(h) (8)

here, xm is the predicted interference showing the mth value
in the M classes. The h = [h1, · · · , hM ]

T is the final output
from the fully connected layer. The softmax function σ(h) is
evaluated as

xm = [σ(h)]m =
ehm∑M
i=1 e

hi

(9)

4.1. CNN Architecture: Full Dimension FFT

The training data shape is (12000, 1, 1000, 1) and the valida-
tion data shape is (3000, 1, 1000, 1). The convolutional 2D
(Conv2D) layer has 100 filters with (1,1) as the kernel. The
input data shape to which convolutional filters are applied is
(1, 1000,1). Post extracting the features, the output shape has
the dimension (None, 1, 1000, 100), here 1000 is the num-
ber of rows in the output feature map, 100 is the number of
columns, and 1 is the number of filters. This layer has 200
trainable parameters.

4.2. CNN Architecture: Reduced Size FFT

The first Conv2D layer has 100 filters and a kernel size of
(1,1). This layer applies convolution operations on the input
data of shape (1, 100,1) to extract features. The output shape
of this layer is (1, 100, 100), where None indicates the num-
ber of samples in a batch, 100 is the number of rows in the
output feature map, 100 is the number of columns, and 1 is
the number of filters. The detailed description of the CNN
architecture is shown in Fig. 1.

Fig. 1: Convolutional Neural Network for interference detec-
tion and spectrum classification

5. PERFORMANCE EVALUATION

The Keras-based CNN model is evaluated based on its pre-
diction accuracy, and training losses. The prediction accuracy
is depicted via the confusion matrix. The confusion matrix



is a vital means of understanding neural networks’ progress.
It comprises true positive and false positive rate. The total
number of sub-bands is V = 5. Since it is considered that
the interference is present in only one sub-band at a time, we
have 6 possible classes, which are: [0 0 0 0 0], [1 0 0 0 0],
[0 1 0 0 0], [0 0 1 0 0], [0 0 0 1 0], and [0 0 0 0 1]. For
each class we generated 2000 data points for training, and
500 data points for validation. Class 0 is represented as
[0 0 0 0 0] indicating no interference, whereas class 1 which
is represented by [0 0 0 0 1] corresponds to the interference
in the 5th sub-band. Similarly, other classes are denoted
based on the interference in the respective sub-bands. For
example, [1 0 0 0 0] indicating the interference in the 1st

sub-band. The data set employed for the training is balanced
for each class. The model was trained for 15 epochs with a
batch size of 100. One of the constraint associated with using
CNN model is that the employed architecture is for classi-
fying 6 subbands. For a different number of subbands, the
CNN architecture will change based on the input size. The
training configuration used the Stochastic Gradient Descent
(SGD) optimizer with a learning rate of 0.01, momentum of
0.9 and Nesterov acceleration. The loss function used was
the categorical cross-entropy and the model’s accuracy was
used as the metric.

5.1. Performance evaluation for the full dimension FFT

The performance evaluation for each FFT category is carried
out for two different data-set types: complex FFT input and
magnitude FFT input. As CNN architecture can not directly
take the complex values for the training, the complex FFT
input is pre-processed for the training. The pre-processing is
done by splitting the complex data into its real and imaginary
before feeding it to the proceeding convolutional layers.

Fig. 2: Full dimension
complex FFT

Fig. 3: Full dimension ab-
solute FFT

The classification performance of the CNN architecture
is evaluated and depicted via confusion matrix for each data
type. The confusion matrix for the full dimension FFT is as
shown in Fig. 2 and Fig. 3. It can be inferred from the
results that the performance of the CNN model for the full-
dimension FFT is better for the magnitude data as compared
to the complex data. The difference in performance is because

the magnitude data has less correlation between the classes as
compared to the complex data.

5.2. Performance evaluation for the reduced size FFT

The CNN model has better performance for the reduced size
FFT as compared to the full dimension FFT due to its less cor-
related classification. In this regard, Fig. 4 and Fig. 5 shows
the normalized confusion matrix obtained for the interference
detection considering reduced dimension FFT.

Fig. 4: Reduced dimension
complex FFT

Fig. 5: Reduced dimension
absolute FFT

It is observed that for the reduced dimension complex FFT
we obtain a ratio higher than 96% in classes 1 to 4, and reach
a ratio of 100% for classes 1 to 4 in the case of magnitude
values of reduced dimension FFT. A ratio of 100% is the indi-
cation that the model is correctly identifying the classes. The
employed CNN model has high accuracy in classification for
the magnitude values of the full-sized and reduced FFT com-
pared to the complex values. Moreover, the inference from
the performance evaluation of the CNN model can be drawn
in favor of the reduced FFT for the corresponding representa-
tions.

6. CONCLUSION AND FUTURE WORK

In this paper we evaluated the accuracy of a CNN model de-
ployed on-board of a GSO satellite, in the context of interfer-
ence identification and spectrum classification, using differ-
ent feature space dimensions and data representations of the
FFT of the samples at the output of the A/D converter. The
results showed that the magnitude value of the FFT reduced
to the bandwidth of interest has the best performance, while
reduced size FFT gives better performance than full size FFT
for the corresponding data representations, by eliminating the
features that are not relevant to the spectrum of interest.

As a future work, we will consider the effect of using dif-
ferent modulation schemes, and SINR values that reflect dif-
ferent NGSO satellite altitudes. We will also study the scala-
bility of the system for any number of subbands and interfer-
ers.



7. REFERENCES

[1] R. Li, P. Gu, and C. Hua, “Optimal beam power con-
trol for co-existing multibeam geo and leo satellite sys-
tem,” in 2019 11th International Conference on Wireless
Communications and Signal Processing (WCSP), 2019,
pp. 1–6.

[2] O. Kodheli, E. Lagunas, N. Maturo, S. K. Sharma,
B. Shankar, J. F. M. Montoya, J. C. M. Duncan,
D. Spano, S. Chatzinotas, S. Kisseleff, J. Querol, L. Lei,
T. X. Vu, and G. Goussetis, “Satellite communications
in the new space era: A survey and future challenges,”
IEEE Communications Surveys Tutorials, vol. 23, no. 1,
pp. 70–109, 2021.

[3] “How to Locate and Mitigate Common
Satellite Interference Issues, Feb. 2021,”
https://anritsu.typepad.com/interferencehunting/2021/02/locate-
mitigate-common-satellite-interference-issues.html,
accessed: 2023-03.

[4] C. Politis, S. Maleki, S. Chatzinotas, and B. Ottersten,
“Harmful Interference Threshold and Energy Detector
for On-Board Interference Detection,” in Ka and Broad-
band Communications Conference, Cleveland, Ohio,
USA, Oct. 2016.

[5] C. Politis, S. Maleki, C. Tsinos, S. Chatzinotas, and
B. Ottersten, “On-board the satellite interference detec-
tion with imperfect signal cancellation,” in 2016 IEEE
17th International Workshop on Signal Processing Ad-
vances in Wireless Communications (SPAWC), 2016, pp.
1–5.

[6] C. Prakash, D. Bhimani, and V. K. Chakka, “Interfer-
ence detection & filtering in satellite transponder,” In-
ternational Conference on Communication and Signal
Processing, ICCSP 2014 - Proceedings, pp. 1394–1399,
11 2014.

[7] A. Kalantari, S. Maleki, S. Chatzinotas, and B. Ot-
tersten, “Frequency of arrival-based interference local-
ization using a single satellite,” in 2016 8th Advanced
Satellite Multimedia Systems Conference and the 14th
Signal Processing for Space Communications Workshop
(ASMS/SPSC), 2016, pp. 1–6.

[8] F. Ortiz, V. Monzon Baeza, L. M. Garces-Socarras,
J. A. Vásquez-Peralvo, J. L. Gonzalez, G. Fontanesi,

E. Lagunas, J. Querol, and S. Chatzinotas, “Onboard
processing in satellite communications using ai accel-
erators,” Aerospace, vol. 10, no. 2, 2023. [Online].
Available: https://www.mdpi.com/2226-4310/10/2/101

[9] M. Vázquez, P. Henarejos, I. Pappalardo, E. Grechi,
J. Fort, J. C. Gil, and R. M. Lancellotti, “Machine
learning for satellite communications operations,” IEEE
Communications Magazine, vol. 59, no. 2, pp. 22–27,
2021.

[10] W. Qin and F. Dovis, “Situational awareness of chirp
jamming threats to gnss based on supervised machine
learning,” IEEE Trans. Aerosp. Electron. Syst., vol. 58,
no. 3, pp. 1707–1720, 2022.

[11] L. Pellaco, N. Singh, and J. Jalden, “Spectrum predic-
tion and interference detection for satellite communi-
cations,” in Advances in Communications Satellite Sys-
tems. Proceedings of the 37th International Commu-
nications Satellite Systems Conference (ICSSC-2019),
2019, pp. 1–18.

[12] P. Henarejos, M. Vázquez, and A. I. Pérez-Neira, “Deep
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