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We demonstrate that the Berry curvature of an isolated Bloch miniband in two-dimensional
superlattices can be probed by the dressed linear optical response when a uniform static field is
applied to the system. In particular, when the static field is sufficiently strong such that full Bloch
oscillations occur before the crystal momentum relaxes to equilibrium, the optical response of the
dressed system becomes resonant at the Bloch frequencies. The latter are in the THz regime when
the superlattice periodicity is of the order of 10 nm. Using a band-projected semiclassical theory,
we define a dressed optical conductivity and find that the height of the resonances in the dressed
Hall conductivity are proportional to the Fourier components of the Berry curvature. We illustrate
our results with a low-energy model on an effective honeycomb lattice.

Nonlinear optical responses are becoming an increas-
ingly important tool to investigate the spectral and
geometric properties of electron Bloch bands in low-
dimensional materials [1–3]. In particular, the nonlinear
Hall effect [4] which probes the multipoles of the Berry
curvature of the band at successive orders in the driving
field [5]. The distribution of the Berry curvature can be
studied by nonlinear response even in crystals with time-
reversal symmetry, which show no linear Hall effect, since
time-reversal symmetry only precludes odd powers of the
field in the Hall response. Recently, the advent of moiré
[6–8] and other two-dimensional (2D) superlattice mate-
rials [9–11] has opened up the prospect of studying re-
sponses at nonperturbative order in the driving field [12–
14]. These systems can host spectrally isolated and flat-
tened minibands, and nonlinear responses have already
been used to study their properties [15–22]. Moreover,
because the real-space periodicity of such superlattices
can be much larger than the underlying atomic scale,
with lattice constants ranging between 1–100 nm, the
momentum space superlattice Brillouin zone (BZ) is rel-
atively small. Under an applied electric field, it therefore
becomes possible that an electron traverses the entire
zone, i.e., performs a full Bloch oscillation [23, 24], before
relaxing back to equilibrium by scattering processes. To
quantify this, consider an applied uniform electric field
of the form

E(t) = E0 +E1(t), (1)

which has a static component E0 = E0 (cos θ0, sin θ0)
and an oscillating component E1(t). The latter acts as a
weak probe for the system that is dressed by the static
field. Here, the nonperturbative regime is defined by
the condition ωBτ ≫ 1 [12–14] where ωB = eE0L/ℏ is
the characteristic frequency of Bloch oscillations, which
we call the Bloch frequency, and τ is the momentum-
relaxation time with L the lattice constant. If we es-
timate τ = 1 ps we find that ωBτ ≈ 1.5E0

kV/cm
L

10 nm such
that ωBτ can become large in superlattice materials for
reasonable field strengths [12, 13].
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FIG. 1. (a) 2D superlattice (e.g., a moiré) subjected to a static
uniform in-plane electric field E0 and probed by monochro-
matic light of frequency ω. (b) Berry curvature Ωk in the
first-shell approximation for a system with D3 or C3v sym-
metry. (c) Imaginary part of the dressed optical Hall conduc-
tivity σH(ω,E0) for the Berry curvature shown in (b) as a
function of ω/ωB for θ0 = 15◦ and different values of ωBτ .
(d) ImσH in units e2Ω1f

0
1 /2ℏVc for ωBτ = 15 as a function

of the frequency and the field direction θ0. The resonant fre-
quencies for the first shell ω(1)

n = |eE0 ·Ln/ℏ| are indicated.

In this work, we study the dressed time-dependent re-
sponse of time-reversal-invariant 2D superlattices with
lattice constants L ∼ 10 nm, that are subjected to a uni-
form electric field of the form given in Eq. (1). This setup
is illustrated in Fig. 1(a). When the static field is in the
nonperturbative regime, we find an optical response, lin-
ear in the oscillating component, that is resonant at the
Bloch frequencies. For the studied systems, the latter are
on the order of 10 THz. Moreover, we show that the peak
heights of the resonances in the dressed optical Hall con-
ductivity are proportional to the Fourier components of
the Berry curvature. Hence our approach is in some sense
dual to probing the momentum-space distribution of the
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Berry curvature via its multipoles at successive harmon-
ics [25] and complementary to other methods that study
orbital moments with circular dichroism [26]. In contrast,
in our proposal, all information on the Berry curvature
is contained in the dressed linear optical response.

Semiclassical theory. Our starting point is the band-
projected semiclassical theory of electron dynamics for a
2D crystal in a uniform electric field E(t). The equations
of motion for the central position and crystal momentum
of a wave packet constructed from the Bloch states of an
energy band εnk are given by [27, 28]

ℏṙnk = ∇kεnk − ℏk̇ × Ωnkẑ, (2)

ℏk̇ = −eE(t), (3)

where −e is the electron charge and Ωnk =
−2 Im ⟨∂kxunk|∂kyunk⟩cell is the Berry curvature [29].
The band-projected theory holds as long as interband
transitions can be neglected. These can arise both from
optical transitions and electric breakdown (Zener tun-
neling) [30]. The former are absent for frequencies well
below the energy gap to the other energy bands εgap,
while the absence of the latter can be estimated by the
condition that ε2gap/εwidth ≫ eE0L where εwidth is the
bandwidth [13, 14].

In the following, we drop the band index n since we
consider a single band. The current is then given by

j(t) = −e

∫
k

ṙk(t)fk(t), (4)

with
∫
k
=
∫
BZ d2k/(2π)2 and where fk(t) is the nonequi-

librium occupation of the electrons in the band. The lat-
ter is obtained from the Boltzmann transport equation
in the relaxation-time approximation:

τ∂tfk − eτ

ℏ
E(t) · ∇kfk = f0

k − fk, (5)

where τ is the momentum-relaxation time and f0
k =

nF (εk−µ) with nF the Fermi function and µ the chemi-
cal potential. Because the system has translational sym-
metry, the occupation function is periodic in momentum
space: fk =

∑
R fReik·R where the sum runs over lat-

tice vectors R with fR = Vc

∫
k
fke

−ik·R. Plugging this
expansion in Eq. (S5) we obtain an ordinary differential
equation with the steady-state solution [31]

fR(t) = f0
R

∫ ∞

0

ds e−s exp

[
ie

ℏ

∫ t

t−sτ

dt′ E(t′) ·R
]
, (6)

as shown in the Supplemental Material (SM) [32]. The
occupation fk is thus given by a weighted sum of dis-
placed Fermi functions where the drift due to the electric
field is determined by the accumulated momentum be-
tween collisions at time t−sτ and time t. The exponential
weight e−s reflects the fact that scattering is modeled as
a Poisson process in the relaxation-time approximation.

The current in Eq. (4) can be decomposed into two
terms as j(t) = jBloch(t) + jgeom(t) where

jBloch(t) =
ie

ℏVc

∑
R

Rε−RfR(t), (7)

jgeom(t) = ẑ × e2

ℏVc

∑
R

Ω−RE(t)fR(t), (8)

where Vc is the unit cell area and we made use of the ex-
pansions of the band dispersion and the Berry curvature,
as well as Vc

∫
k
eik·R = δR,0. The Bloch current jBloch

originates from the band dispersion while the geometric
current jgeom originates from the anomalous velocity due
to the Berry curvature in Eq. (2).

Dressed optical conductivity. We now consider probing
the system by monochromatic light of frequency ω at
normal incidence. In the electric-dipole approximation,
the electric field of the light can be written as

E1(t) = E1e
iωt + E∗

1e
−iωt, (9)

where E1 ∈ C2 gives the polarization. To investi-
gate the response of the system at frequency ω, we
expand the lattice Fourier components of the distribu-
tion function in terms of their frequency components.
We have fR(t) =

∑∞
m=−∞ fR,meimωt where fR,m =

(ω/2π)
∫ 2π/ω

0
dt fR(t)e−imωt with fR,−m = f∗

−R,m. The
frequency components of the currents become

j
(m)
Bloch =

ie

ℏVc

∑
R

R ε−RfR,m, (10)

j(m)
geom = ẑ × e2

ℏVc

∑
R

Ω−R

· (E0fR,m + E1fR,m−1 + E∗
1fR,m+1) .

(11)

Since we are interested in the linear response dressed by
the static part of the field, we expand Eq. (6) in orders
of |eE1 · R/ℏω| while retaining all orders in E0. Up to
first order, the only nonzero terms are given by

fR,0 =
f0
R

1− iωRτ
, (12)

fR,1 =
f0
R

1− iωRτ

eE1 ·R/ℏ
ω − ωR − i

τ

= f∗
−R,−1, (13)

with ωR = eE0 ·R/ℏ. The response at frequency ω can
then be written as j

(1)
a = σabE1b where a, b = x, y and

summation over repeated indices is implied. This leads
us to the main result of this work: the dressed optical
conductivity

σab(ω,E0) =
ie2

ℏ2Vc

∑
R

RaRbε−Rf0
R

(1− iωRτ)
(
ω − ωR − i

τ

)
− e2

ℏVc

∑
R

Ω−Rf0
R

1− iωRτ

[
ϵab +

eϵacE0cRb/ℏ
ω − ωR − i

τ

]
,

(14)
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FIG. 2. Roses for the real (a) and imaginary (b) part of
the dressed optical Hall conductivity σH(ω,E0) for the Berry
curvature shown in Fig. 1(b) with ωBτ = 15. The angle
corresponds to the direction of the static electric field θ0 and
the color scale gives the frequency ω of the oscillating field.

where ϵab is the permutation symbol and σab(ω,E0)
∗ =

σab(−ω,E0) such that the real (imaginary) part is even
(odd) in ω. As a check, we undress the conductivity
by setting E0 = 0. In this case, the two terms in Eq.
(14) reduce to the Drude and anomalous Hall conduc-
tivity, respectively. Importantly, the dressed linear Hall
response does not vanish when time-reversal symmetry is
conserved, because it is effectively a compound nonlinear
response in the fields E0 and E1(t).

Let us now focus on the case where E0 is finite and
consider the dressed longitudinal σL = δabσab/2 and
Hall σH = ϵabσab/2 conductivities, which transform as
a scalar and pseudoscalar under coordinate transforma-
tions, respectively. We obtain

σL =
ie2

2ℏ2Vc

∑
R

R2ε−Rf0
R

(1− iωRτ)
(
ω − ωR − i

τ

) , (15)

σH = − e2

ℏVc

∑
R

Ω−Rf0
R

1− iωRτ

(
1 +

1

2

ωR

ω − ωR − i
τ

)
, (16)

which for ωBτ ≫ 1 simplify to

σL(ω,E0) = −e2

h

π

τVc

∑
R

R2ε−Rf0
R

ℏωR

(
ω − ωR − i

τ

) , (17)

σH(ω,E0) = −e2

h

π

τVc

∑
R

iΩ−Rf0
R

ω − ωR − i
τ

. (18)

For crystals with time-reversal symmetry, the band dis-
persion (Berry curvature) is an even (odd) function of
momentum, such that εR and f0

R are real, while ΩR is
imaginary. In this case, ImσL and ImσH are given by
a series of Lorentzians centered at the Bloch frequencies
ωR in the nonperturbative limit. The height of these
resonances is proportional to εR and ΩR, respectively,
and independent of the relaxation time τ . Conversely,
the real part of the dressed conductivity vanishes at res-
onance. Physically, we can interpret this as the transfer
of energy from the incident light into coherent Bloch mo-
tion of the electrons. And since we assume here that

ωBτ ≫ 1, the system is essentially collisionless on the
time scale set by the Bloch oscillations.

These results can thus potentially be used to map out
the distribution of the Berry curvature in systems with
time-reversal symmetry by measuring the resonances in
the dressed optical Hall conductivity in the nonpertur-
bative regime where ωBτ ≫ 1.

First-shell approximation. It is instructive to first eval-
uate the dressed optical conductivity by only taking into
account the leading-order terms in the sum over the lat-
tice vectors. For concreteness, we consider a system with
point group D3 or C3v which lacks inversion or C2z rota-
tion symmetry. In this case, the Berry curvature is gener-
ally nonzero even though the Chern number of the band
vanishes. In the first-shell approximation, we only take
into account the shortest nonzero lattice vectors such
that εk = ε1

∑3
n=1 cos(k · Ln) up to an overall constant

and Ωk = Ω1

∑3
n=1 sin(k · Ln) where ε1 and Ω1 are real

parameters that depend on the details of the system, and
L1 = L(1/2,

√
3/2), L2 = (−L, 0), and L3 = −(L1+L2)

are related by C3z rotation symmetry [13, 14].
The imaginary part of the dressed optical Hall conduc-

tivity is shown in Fig. 1(c) as a function of ω for θ0 = 15◦

and different values of ωBτ . There are three resonances
in this case because the first coordination shell supports
three Bloch frequencies ω

(1)
n = |eE0 ·Ln| which are non-

degenerate for a general field direction. The height of
these resonances is approximately equal due to C3z and
time-reversal symmetry and saturates to e2Ω1f

0
1 /2ℏVc in

the limit ωBτ ≫ 1, where f0
1 = f0

R=Ln
. Notice that the

resonances are only well-defined for ωBτ ≳ 10. The de-
pendence on the direction of the static field is shown in
Fig. 1(c). Here we show ImσH for ωBτ = 15 as a func-
tion of ω and θ0. As we rotate the static field, the reso-
nances move along the curves ω = ±ωB cos(θ0−θn) with
θn = {π/3, π,−π/3}. For the special case θ0 = mπ/3
(m ∈ Z) two Bloch frequencies coincide and the peaks
are doubled. On the contrary, for θ0 = (2m+ 1)π/6 the
response vanishes due to Mx (x 7→ −x) mirror symme-
try. These features can also be seen in the rose plots of
Fig. 2. Here we clearly see that the strongest resonance
occurs when two lattice vectors have the same projection
along the static field. Away from these directions, the
resonance splits into two peaks that shift to higher and
lower frequencies.

Low-energy model. Going beyond the first-shell ap-
proximation, we now consider a low-energy model de-
fined on an effective honeycomb lattice with one orbital
per site, and with nearest-neighbor hopping amplitude
t > 0 and a sublattice-staggering potential m. The Bloch
Hamiltonian is given by

H(k) = d(k) · σ, (19)
d(k) = (−tRe gk, −t Im gk, m) , (20)

where σ = (σx, σy, σz) are the Pauli matrices and gk =
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FIG. 3. Dressed optical conductivities σL(ω,E0) and
σH(ω,E0) for the valence band of the effective two-band
model with m/t = 0.5 where ωBτ = 15, θ0 = 0◦, and
kBT/t = 0.004. The color scale gives the filling ν [see in-
set of (b)]. (a, b) Real and imaginary part of the longitudi-
nal conductivity. (c, d) Real and imaginary part of the Hall
conductivity. Dashed vertical lines give the position of the
resonances ωR and the inset in (a) and (d) shows the relative
magnitude and phase of εR− and ΩR−, respectively.

e−ik·τ [1 + eik·L1 + eik·(L1+L2)
]
with τ = Lŷ/

√
3 the rel-

ative separation of the two sublattices. Note that we
work in periodic gauge for which the semiclassical equa-
tion given in Eq. (2) is valid [28, 33]. This model has
time-reversal symmetry with point group C3v generated
by C3z and Mx, and can be seen as a minimal low-
energy model for moirés such as hBN-aligned twisted bi-
layer graphene [34, 35] or twisted double bilayer graphene
[36, 37], as well as other superlattice systems belonging
to the same symmetry class such as periodically-buckled
graphene with a C3v height profile [14, 38–40].

The model gives two energy bands εk± = ±|d(k)| that
are separated by a gap |2m| at the zone corners. Because
C2z symmetry is broken by the sublattice potential, the
Berry curvature is nonzero and given by

Ωk± = ± mt2Vc

6|d(k)|3
3∑

n=1

sin (k ·Ln) , (21)

with Vc =
√
3L2/2. In the limit |m/t| ≫ 1, we

have |d(k)| ≃ |m| and the first shell dominates with
Ω1 = ± sgn(m)Vc t

2/6m2. However, in general many
shells contribute, as illustrated in Fig. 3 where we show
σL(ω,E0) in panels (a) and (b), and σH(ω,E0) in pan-
els (c) and (d) for m/t = 0.5 and different fillings ν of
the valence band. Here the static field lies along the x
direction and kBT/t ≪ 1. Note σL decays faster with fre-

quency than σH because the first shell of the dispersion
is dominant [see inset of Fig. 3(a)] as well as the addi-
tional factor of 1/ω in Eq. (17). Note that the filling ν
enters only through the Fourier components of the Fermi
function f0

R which modulate the height of the peaks in
the imaginary part of the conductivities and can change
sign as a function of ν, see Fig. 3(d).

In conclusion, we developed a band-projected semiclas-
sical theory for the optical response of a superlattice ma-
terial that is dressed by a uniform static field. When
the static field is sufficiently strong, which is achieved
for field strengths of the order of 10 kV/cm for a lattice
constant of order 10 nm, the dressed system becomes res-
onant at the frequencies of Bloch oscillations which are
in the 10 THz regime. We quantified this effect by defin-
ing a dressed optical conductivity whose imaginary part
displays peaks at the Bloch frequencies, while the real
part vanishes at resonance. In particular, the height of
the resonances in the optical Hall conductivity probes the
Berry curvature distribution of the electronic band. The
dressed optical conductivity can for example be obtained
from THz Faraday rotation and ellipticity spectroscopy
measurements [41, 42]. Our work thus provides a novel
route to probe the Berry curvature in superlattice mate-
rials with time-reversal symmetry.
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SEMICLASSICAL MODEL OF ELECTRON DYNAMICS

The semiclassical equations of motion for an electron in a two-dimensional (2D) crystal, occupying an energy band
with dispersion εnk subjected to a uniform electric field E(t) are given by [27, 28]

ℏṙnk = ∇kεnk − ℏk̇ ×Ωnk, (S1a)

ℏk̇ = −eE(t), (S1b)

where the dot stands for the time derivative d/dt. Here e > 0 is the elementary charge, n is the band index, and
Ωnk = Ωnkẑ is the Berry curvature. The latter is defined as

Ωnk = i

(〈
∂unk

∂kx

∣∣∣∣∂unk

∂ky

〉
cell

−
〈
∂unk

∂ky

∣∣∣∣∂unk

∂kx

〉
cell

)
, (S2)

where unk(r) are cell-periodic Bloch functions in periodic gauge, un,k+G(r) = e−iG·runk(r) with G a reciprocal
lattice vector, and ⟨unk|umk⟩cell = δnm.

In the following, we consider a single band and omit the band index n. The band dispersion and Berry curvature
can be expanded as

εk =
∑
R

εReik·R, Ωk =
∑
R

ΩReik·R, (S3)

where

εR = Vc

∫
k

εke
−ik·R, ΩR = Vc

∫
k

Ωke
−ik·R,

∫
k

=

∫
BZ

d2k

(2π)
2 . (S4)

BOLTZMANN TRANSPORT EQUATION

The Boltzmann equation for the distribution function f(k, r, t) in the relaxation-time approximation, is given by

∂f

∂t
+

dk

dt
· ∇kf +

dr

dt
· ∇rf =

f0 − f

τ
, (S5)

where f0(k) is the equilibrium distribution function, i.e., f0(k) = nF (εk − µ) with nF (z) = 1/(ez/kBT +1) the Fermi
function, with µ the chemical potential and T the temperature.

Let us consider a general uniform time-dependent electric field E(t). We are interested in the steady-state solutions
(not necessarily static) of

∂f

∂t
− e

ℏ
E(t) · ∇kf =

f0 − f

τ
. (S6)

In a translational-invariant system,

f(k, t) =
∑
R

fR(t) eik·R, (S7)

where R are lattice vectors, and similarly for f0(k). We then obtain an ordinary differential equation for each Fourier
component fR(t),

dfR
dt

+

(
1

τ
− ie

ℏ
E(t) ·R

)
fR(t) =

f0
R

τ
, (S8)

whose general solution is given by

fR(t) =
f0
R

τ

∫ t

t0

dt′ e−
t−t′
τ exp

[
ie

ℏ

∫ t

t′
duE(u) ·R

]
, (S9)
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with t0 an integration constant. In the static limit, i.e., for a time-independent electric field, we have

lim
E(t)→E

fR(t) =
f0
R

τ

∫ t

t0

dt′ e−(t−t′)( 1
τ −ieE·R/ℏ) = f0

R

1− e−
t−t0

τ (1−ieτE·R/ℏ)

1− ieτE ·R/ℏ
. (S10)

The steady-state solution is thus given by

fR(t) =
f0
R

τ

∫ t

−∞
dt′ e−

t−t′
τ exp

[
ie

ℏ

∫ t

t′
duE(u) ·R

]
(S11)

= f0
R

∫ ∞

0

ds e−s exp

[
ie

ℏ

∫ t

t−sτ

dt′ E(t′) ·R
]
, (S12)

where s = (t − t′)/τ . The exponential factor can be interpreted as the integrated momentum shift between two
scattering events at t− sτ and t. Going back to momentum space, we have [31]

f(k, t) =
∑
R

fR(t)eik·R =

∫ ∞

0

ds e−sf0

(
k +

e

ℏ

∫ t

t−sτ

dt′ E(t′) ·R
)
. (S13)

We now consider the following driving field:

E(t) = E0 +E1(t), E1(t) = E1e
iωt + E∗

1e
−iωt = 2Re

(
E1e

iωt
)
, (S14)

where E0 = |E0| is large compared to E1 = |E1|. In this case, the Fourier components of the distribution function
become

fR(t) = f0
R

∫ ∞

0

ds e−(1−
ieτ
ℏ E0·R)s exp

[
ie

ℏ

∫ t

t−sτ

dt′ E1(t
′) ·R

]
(S15)

= f0
R

∫ ∞

0

ds e−(1−
ieτ
ℏ E0·R)s exp

[
ie

ℏ

(
E1 ·R
iω

eiωt
(
1− e−iωsτ

)
+ c.c.

)]
. (S16)

Up to first order in E1, we can expand this as

fR(t) ≃ f0
R

1− ieτE0 ·R/ℏ
+

ief0
R

ℏ

∫ ∞

0

ds e−(1−
ieτ
ℏ E0·R)s

[
E1 ·R
iω

eiωt
(
1− e−iωsτ

)
+ c.c.

]
(S17)

=
f0
R

1− ieτE0 ·R/ℏ

[
1 +

eE1 ·R/ℏ
ω − eE0 ·R/ℏ− i

τ

eiωt − eE∗
1 ·R/ℏ

ω + eE0 ·R/ℏ+ i
τ

e−iωt

]
. (S18)

Defining the frequency-space Fourier components as

fR(t) =

∞∑
m=−∞

fR,m eimωt, fR,m(ω) =
ω

2π

∫ 2π/ω

0

dt fR(t) e−imωt, (S19)

with fR,−m = f∗
−R,m, we have, for example,

fR,0 =
f0
R

1− ieτE0 ·R/ℏ

[
1− 2|eE1 ·R/ℏ|2(

ω − eE0 ·R/ℏ− i
τ

) (
ω + eE0 ·R/ℏ+ i

τ

) +O(E4
1)

]
, (S20)

fR,1 =
f0
R

1− ieτE0 ·R/ℏ

[
eE1 ·R/ℏ

ω − eE0 ·R/ℏ− i
τ

+O(E3
1)

]
, (S21)

fR,2 =
f0
R

1− ieτE0 ·R/ℏ

[
eE1 ·R/ℏ

ω − eE0 ·R/ℏ− i
τ

eE1 ·R/ℏ
2ω − eE0 ·R/ℏ− i

τ

+O(E4
1)

]
. (S22)
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DRESSED OPTICAL CONDUCTIVITY

The steady-state current is given by j(t) = jBloch(t) + jgeom(t) with

jBloch(t) = −e

∫
k

fk(t)∇kεk =
ie

ℏVc

∑
R

R ε−RfR(t), (S23)

jgeom(t) = −e2

ℏ
[E(t)× ẑ]

∫
k

fk(t)Ωk =
e2

ℏVc
ẑ ×

∑
R

Ω−RE(t)fR(t), (S24)

with

Vc

∫
k

eik·R = δR,0,
∑
R

eik·R =
(2π)2

Vc
δ(k). (S25)

The frequency components of the currents are thus given by

j
(m)
Bloch(ω) =

ie

ℏVc

∑
R

R ε−RfR,m, (S26)

j(m)
geom(ω) =

e2

ℏVc
ẑ ×

∑
R

Ω−R (E0fR,m + E1fR,m−1 + E∗
1fR,m+1) , (S27)

with j(−m) =
(
j(m)

)∗
. For example, the DC component of the geometric current becomes

j(0)geom(ω) =
e2

ℏVc
ẑ ×

∑
R

Ω−Rf0
R

1− ieτE0 ·R/ℏ

{[
1− 2|eE1 ·R/ℏ|2(

ω − eE0 ·R/ℏ− i
τ

) (
ω + eE0 ·R/ℏ+ i

τ

)]E0 (S28)

+

[
(eE1 ·R/ℏ)E∗

1

ω − eE0 ·R/ℏ− i
τ

− (eE∗
1 ·R/ℏ)E1

ω + eE0 ·R/ℏ+ i
τ

]
+O(E4

1)

}
. (S29)

In lowest order of |eE1 ·R/ℏω|, the first harmonics are given by

j
(1)
Bloch(ω) =

ie

ℏVc

∑
R

Rε−Rf0
R

1− ieτE0 ·R/ℏ
eE1 ·R/ℏ

ω − eE0 ·R/ℏ− i
τ

, (S30)

j(1)geom(ω) =
e2

ℏVc
ẑ ×

∑
R

Ω−Rf0
R

1− ieτE0 ·R/ℏ

[
E1 +

(eE1 ·R/ℏ)E0

ω − eE0 ·R/ℏ− i
τ

]
. (S31)

We now define the dressed optical conductivity σij(ω,E0) through j
(1)
i = σijE1j . The current can thus be written as

ji(t) = j
(0)
i + 2Re

[
σij(ω,E0)E1jeiωt

]
+O(E2

1). (S32)

Making use of (a× b)i = ϵijka
jbk with ϵi3k = −ϵik the permutation symbol, we find

σij(ω,E0) =
ie2

ℏ2Vc

∑
R

RiRjε−Rf0
R

(1− ieτE0 ·R/ℏ)
(
ω − eE0 ·R/ℏ− i

τ

) (S33)

− ϵike
2

ℏVc

∑
R

Ω−Rf0
R

1− ieτE0 ·R/ℏ

[
δkj +

eE0kRj/ℏ
ω − eE0 ·R/ℏ− i

τ

]
, (S34)

with σij(ω,E0) = σij(−ω,E0)
∗. As a check, we undress the conductivity:

σij(ω,0) =
ie2

ℏ2Vc

∑
R

RiRjε−Rf0
R

ω − i
τ

− ϵij
e2

ℏ
1

Vc

∑
R

Ω−Rf0
R (S35)

=
e2

ℏ2

∫
k

f0
k

∂i∂jεk

iω + 1
τ

− ϵij
e2

ℏ

∫
k

f0
kΩk, (S36)
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with ∂i = ∂/∂ki. This is a well-known result for the conductivity: the first term is the Drude contribution and the
second term is the anomalous Hall conductivity.

Let us now consider the dressed longitudinal conductivity σL = (σxx + σyy) /2 which is a scalar and the dressed
Hall conductivity, σH = (σxy − σyx) /2 which is a pseudoscalar. We find

σL(ω,E0) =
ie2

2ℏ2Vc

∑
R

R2ε−Rf0
R

(1− ieτE0 ·R/ℏ)
(
ω − eE0 ·R/ℏ− i

τ

) , (S37)

σH(ω,E0) =
1

2
ϵijσij = −e2

ℏ
1

Vc

∑
R

Ω−Rf0
R

1− ieτE0 ·R/ℏ

(
1 +

1

2

eE0 ·R/ℏ
ω − eE0 ·R/ℏ− i

τ

)
, (S38)

where we used ϵijϵik = δjk. When the static field is strong, i.e, for ωBτ ≫ 1, where ωB = eE0L/ℏ is the Bloch
frequency with L the lattice constant, σL and σH simplify to

σL(ω,E0) = −e2

h

π

τℏVc

∑
R

R2ε−Rf0
R

ωR

(
ω − ωR − i

τ

) =
e2

h

π

Vc

∑
R

(
−R2ε−Rf0

R

ℏωR

)
(ω − ωR) τ + i

(ω − ωR)
2
τ2 + 1

, (S39)

σH(ω,E0) =
e2

h

π

iτVc

∑
R

Ω−Rf0
R

ω − ωR − i
τ

=
e2

h

π

Vc

∑
R

(
−iΩ−Rf0

R

) (ω − ωR) τ + i

(ω − ωR)
2
τ2 + 1

, (S40)

with ωR = eE0 ·R/ℏ.
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