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Abstract 

Evaluating the quality of primary studies is a key step in meta-analytic reviews to reduce the risk 

of bias and establish the validity of the meta-analytic inferences. However, the extant body of 

research offers little guidance on how to represent and incorporate primary study quality (PSQ) 

in meta-analyses, and some common procedures, such as creating sum scores from a set of 

quality indicators, often lack the backing from measurement models. Addressing these issues, we 

present a tutorial that guides meta-analysts in their analytic decisions and approaches to represent 

and incorporate PSQ. Specifically, we describe, review, and illustrate approaches to (a) select or 

create quality indicators or scores a priori or as part of the meta-analytic model; (b) examine the 

possible moderator effects of PSQ; and (c) test the sensitivity of moderator effects to PSQ. We 

illustrate these approaches with three examples and present a step-by-step tutorial with analytic 

code for researchers’ guidance. Overall, we argue for representing PSQ model-based if multiple 

quality indicators are available, the testing of moderator effects of PSQ on the effect sizes and 

their heterogeneity, and performing moderator sensitivity analyses. 

Keywords: Primary study quality (PSQ), quality assessment, risk of bias, measurement 

models, sensitivity analysis 
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Utilizing Primary Study Quality in Meta-Analyses: A Step-by-Step Tutorial 

Evaluating and critically appraising the quality of primary studies has become a key step 

in meta-analytic reviews.1-3 While primary study quality (PSQ) is defined differently across 

scientific disciplines and research contexts, the concept entails the extent to which a study’s 

design, implementation, and purposes match.4 Hence, evaluating PSQ in a meta-analysis 

contributes to crafting a validity argument for the reported effect sizes and provides evidence for 

or against the potential risk of bias.5 Moreover, meta-analysts who critically appraise PSQ will 

obtain evidence on the credibility of the primary study and the meta-analytic effects and be able 

to contextualize seemingly suspicious findings in light of the PSQ.6 

The extant body of research on PSQ in meta-analyses abounds in a plethora of quality 

definitions, assessments, scales, and checklists. This diversity has created several challenges: 

First, the ways in which meta-analysts have represented PSQ vary considerably and include but 

are not limited to single categorical indicators or scores, aggregates scores, and multiple yet 

separate indicators or scores.7 For instance, using the same set of quality indicators, two meta-

analysts may represent PSQ differently—while one meta-analyst aggregates these indicators to a 

total sum score, another one keeps them separate to represent the different dimensions of PSQ. 

This example illustrates the lack of methodological guidance that clarifies the key 

methodological decisions associated with the representation of PSQ in meta-analyses.7 

Second, aggregating multiple quality indicators into PSQ scores often lacks the backing 

from the underlying statistical assumptions and models. For instance, creating a total sum score 

out of several quality indicators in a checklist relies on the assumptions that the set of indicators 

is unidimensional, and each indicator contributes to the overall score to the same extent.8 

However, these assumptions are often not met9, as PSQ checklists often contain indicators of 
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several aspects of PSQ and are thus likely multidimensional.10 Hence, there is a clear need for 

crafting a validity argument for the use of aggregated PSQ scores in meta-analyses.11 

Third, the strategies with which meta-analysts examine the impact of PSQ on the meta-

analytic results are, by and large, limited to standard moderator analyses, yet without exploiting 

the full potential of these analyses.11,12 For instance, most meta-analyses in psychology report on 

PSQ descriptively and present the linear moderator effects on the effect sizes.4 While this 

approach allows meta-analysts to explore directly the relation between PSQ and the effect sizes, 

it has several caveats: This relation is assumed to be linear, although it may naturally be non-

linear.1 Moreover, moderator effects of PSQ often describe only the relation to the effect sizes. 

However, relations with PSQ may also exist with the heterogeneity between studies13,14 or the 

effects of other moderators.12 Extending the range of possible moderator effects, meta-analysts 

could gain more information about the sensitivity of the meta-analytic results to PSQ.12 

In this paper, we address these challenges by presenting a methodological tutorial that 

guides researchers in their analytic decisions associated with representing and incorporating 

PSQ. These decisions include but are not limited to the a priori vs. meta-analytic selection or 

creation of quality indicators or scores, single vs. multiple quality indicators, aggregation of 

multiple quality indicators vs. keeping them separate, model-based vs. model-free quality score 

creation, moderator vs. moderator sensitivity analyses. We describe, review, and illustrate 

approaches to (a) select or create quality indicators and scores a priori or as part of the meta-

analytic model; (b) examine the possible impact of PSQ on meta-analytic effect sizes and their 

heterogeneity; and (c) test the sensitivity of other moderator effects to PSQ. To support meta-

analysts with hands-on guidance, we illustrate these approaches with three meta-analytic 

examples and present a step-by-step tutorial with open analytic code. 
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Representing Primary Study Quality in Meta-Analyses 

Conceptualization of PSQ 

Primary study quality means different things in different contexts. Although several 

definitions of the concept exist, these definitions, by and large, consider PSQ to be a 

characteristic of the extent to which a primary study’s goals, design, and implementation match.5 

In this sense, PSQ addresses the validity of the inferences drawn from the study’s results.11 

Moher emphasized that high-quality studies provide reproducible information and minimize the 

potential sources of bias in the study design, implementation, and the data analysis.15,16 This 

emphasis links PSQ to the broader concept of “risk of bias”.4,17 Given that the potential sources 

of bias may include several study characteristics related to, for instance, the sampling (e.g., 

randomized vs. convenience sample), the outcome measures (e.g., reliability, evidence 

supporting a validity argument), the study design (e.g., randomized controlled trial vs. other 

designs), or the reporting of the results (e.g., reproducible reporting of statistical tests with 

analytic code, availability of the data), PSQ is a multidimensional concept and should be 

represented as such.3 Several authors have criticized the mismatch between multidimensional 

definitions of PSQ and its representation as a single, unidimensional score.5,12,18 Given the 

diversity of quality definitions, a plethora of assessment tools, scales, and checklists exist in the 

extant literature. These assessments have been adapted to several study designs (e.g., randomized 

controlled trials, cross-sectional studies) and research domains (e.g., healthcare, ecology, 

medicine),2,19-23 and testify to the context-specificity of PSQ.5 

Key Decisions in Selecting or Creating PSQ Indicators and Scores 

A common means of representing PSQ in a meta-analysis is to select or create quality 

indicators or scores based on several decision to best capture the meta-analyst’s definition and 
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operationalization of the concept. In this context, we draw from the psychometric terminology of 

measurement models24 and refer “quality indicators” to the observed (manifest) variables 

describing PSQ at the levels of effect sizes, samples, studies, countries, time points etc.25 These 

indicators are typically generated during the coding of the meta-analytic data. Furthermore, we 

refer “quality scores” to PSQ scores that have been aggregated from multiple quality indicators, 

for instance, as sum scores, average scores, or model-based factor scores.  

As noted earlier, the ways in which meta-analysts have represented PSQ are manifold. In 

their systematic review of 225 meta-analyses that were published in the Psychological Bulletin, 

Wedderhoff and Bosnjak7 identified three approaches meta-analysts have mainly taken to 

represent PSQ: (a) Selecting or creating a categorical indicator of PSQ based on one or more 

characteristics of the study design, methodology, or reporting; (b) Creating aggregated PSQ 

scores (e.g., model-based scale scores, a priori sum scores, composite scores) from multiple 

quality indicators; and (c) Using multiple quality indicators separately. To create such 

representations of PSQ in a meta-analysis, researchers have to make several analytic decisions. 

In our view, these key decisions include the (a) a priori vs. meta-analytic selection or creation of 

PSQ indicators or scores; (b) use of single vs. multiple quality indicators; (c) aggregation of 

multiple indicators into PSQ scores vs. keeping them separate; and (d) model-based vs. model-

free PSQ score creation. We summarize these decisions in Figure 1 and explain them in greater 

detail in the following sections. 

A Priori vs. Meta-Analytic Selection of Creation of PSQ Indicators or Scores 

Meta-analysts need to decide whether they select or create PSQ indicators or scores prior 

to or as part of the meta-analytic modeling. In the a priori methods, meta-analysts apply some 

conceptual and/or statistical criteria or procedures to select or create PSQ indicators or scores 
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without any information about their possible relations to the effect sizes.4 For instance, given the 

context of the meta-analysis, a meta-analyst may select study design characteristics, such as the 

design as a randomized-controlled trial or the random sampling of study participants, as quality 

indicators. Another meta-analysts may aggregate several PSQ indicators from a checklist into an 

aggregated score. These a priori methods are especially useful if meta-analysts wish to explore 

the nature of the relation between PSQ and the effect sizes.26 However, these methods have at 

least two caveats: (a) They are based on the assumption that the a priori PSQ indicators or scores 

represent PSQ—an assumption that remains largely untested and that calls for crafting a validity 

argument;11 and (b) a priori selected or created PSQ indicators or scores may not be predictive of 

the effect sizes19—in fact, they may not capture relevant PSQ aspects that are related to the 

effects5. In contrast, the meta-analytic methods identify the relations between PSQ and the effect 

sizes first and use this information in the selection or creation of PSQ indicators or scores. For 

instance, a meta-analyst may estimate the moderator effects of several study characteristics and 

select the indicators or scores that are actually related to the effect sizes as PSQ indicators. This 

method is especially useful if meta-analysts wish to create parsimonious meta-analytic models 

that incorporate PSQ and to maximize the heterogeneity explained by PSQ. Nevertheless, this 

meta-analytic method may result in different PSQ representations for different meta-analyses, 

thus challenging the comparability of the concept. Moreover, this method requires a sufficiently 

large, meta-analytic sample to estimate multiple moderator effects, for instance, via meta-

regression models.27 

Single vs. Multiple Quality Indicators 

Another key decision refers to the number of PSQ indicators. As noted earlier, some 

meta-analysts prefer to represent PSQ by a single indicator that describes, for instance, the study 
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design (e.g., randomized-controlled trial vs. other designs). On the one hand, single PSQ 

indicators will result in parsimonious meta-analytic models, especially when meta-analysts wish 

to control for PSQ while studying other moderator effects, with straightforward interpretations of 

the PSQ moderator effects. Moreover, in the case of a single categorical PSQ indicators, meta-

analysts can directly study the moderator effects on heterogeneity beyond the effect sizes.14 On 

the other hand, single PSQ indicators may be too simplistic and little informative, given that they 

focus on one single aspect of the concept. In contrast, utilizing multiple PSQ indicators, however 

selected and coded, may represent several, relevant aspects of PSQ and may thus be more 

informative.1,5,12 Besides, meta-analysts can also select among multiple PSQ indicators, applying 

conceptual and/or statistical criteria. However, as noted earlier, the more PSQ indicators are 

incorporated in meta-analytic models, the larger the meta-analytic sample must be. 

Keeping Indicators Separate vs. Score Aggregation 

If meta-analysts decide for multiple PSQ indicators, another key decision to make is 

whether these indicators are kept separate or should be aggregated into a PSQ score. Keeping 

quality indicators separate has the advantage that meta-analysts can isolate which specific 

aspects of PSQ are significantly related to the effect sizes and explain heterogeneity. At the same 

time, utilizing multiple, separate PSQ indicators as possible moderators in meta-analytic models 

requires a sufficiently large meta-analytic sample27 and a small degree of multicollinearity 

among the indicators.28 In contrast, score aggregation methods reduce multiple PSQ indicators 

into one or more PSQ score(s) and thus require smaller meta-analytic samples for studying the 

relation between PSQ and the effect sizes. Although the resultant scores simplify the 

representation of PSQ, creating them has not been without criticism. For instance, Valentine 

argued that score aggregation can result in too simplistic representations of PSQ, through which 
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distinct aspects of the concept are merged.5 For instance, indicators of validity, reliability, and 

study design would be merged and equally weighted to create a PSQ score.7 This merging may 

neglect the conceptual and empirical dimensionality of PSQ assessments, as it often results in a 

single PSQ sum score.4,18 Moreover, the statistical assumptions underlying such sum score 

aggregation are rarely tested—thus, PSQ sum scores may or may not be valid.9,10 In our view, 

PSQ score aggregation is especially useful to reduce the dimensionality of a set of PSQ 

indicators, given that the conceptual and empirical dimensionality have been examined and the 

resultant scores are interpretable. 

Model-Based vs. Model-Free Score Aggregation 

If meta-analysts decide for aggregating multiple PSQ indicators into PSQ scores, they 

also have to decide which scores are created and how. Specifically, PSQ scores can be created 

using the information and parameters from statistical models (i.e., model-based) or without such 

information (i.e., model-free). In case of the latter, the validity of the resultant PSQ scores may 

be questionable, especially if there is no evidence backing the aggregation of multiple PSQ 

indicators. For instance, meta-analysts may create PSQ scores by counting the number of 

fulfilled quality criteria (i.e., PSQ indicators) in a checklist.7 Although this count score has a 

straightforward interpretation as the number of fulfilled criteria, it may still not be meaningful, 

especially if the quality criteria represent different aspects of PSQ or some might be negatively 

correlated. Hence, aggregating multiple PSQ indicators into scores requires, at the minimum, an 

inspection of the conceptual and empirical associations among the indicators, irrespective of the 

decision for model-free or model-based aggregation methods. Specifically, inspecting the 

correlation matrix of the PSQ indicators is a key step towards selecting indicators for score 

aggregation and establishing the meaning of the resultant scores.24 
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The model-based score aggregation requires selecting a measurement model that 

represents the above-mentioned conceptual and empirical associations among the indicators. For 

instance, if all quality indicators are positively and at least moderately correlated, a reflective 

measurement model may be specified to extract one or more latent quality variables that are 

hypothesized to cause (co-)variation in the quality indicators.24 Typical examples of this type of 

measurement models are common factor-analytic models (e.g., EFA and CFA) and models of 

item response theory (e.g., 1PL, 2PL, GPCM). Utilizing these models, meta-analysis can 

establish the meaning of the reflective latent variable (e.g., what is common among the PSQ 

indicators) and examine the evidence for construct validity. Unlike causal-formative and 

composite models, reflective models are easier to identify, for instance, by fixing the factor 

loadings or factor variances rather than incorporating additional outcome variables.29 Hence, 

these types or measurement models are useful for creating a priori quality scores.10  

Causal-formative or composite measurement models30 are useful if the set of quality 

indicators contains both positive and negative correlations among the indicators.24,31 In these 

models, the quality indicators are the hypothesized causes of the latent or composite quality 

variables24,31,32. However, these resultant variables do not have a meaning per se—the meta-

analyst needs to ascribe a meaning to them.33,34 Notably, causal-formative or composite 

measurement models are not identified, unless constraints on the factor loadings or weights are 

imposed or outcome variables are introduced that are explained by PSQ.35 Hence, these models 

are useful when creating quality scores as part of the meta-analytic modeling. 

Incorporating Primary Study Quality in Meta-Analytic Models 

Once meta-analysts have assessed, coded, and potentially calculated the quality of the 

eligible primary studies, they may now wish to utilize this information in their meta-analysis. 
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The extant literature describes several strategies through which information about PSQ can be 

incorporated in a meta-analysis. These strategies include “a priori” methods, in which PSQ 

informs the selection or inclusion of primary studies prior to the meta-analytic modeling and 

“post-hoc” methods, through which the impact of PSQ on the meta-analytic results are 

examined, for instance, via moderator or sensitivity analyses.4 Beyond describing PSQ, a priori 

methods typically include but are not limited to4,7,36: (a) Using PSQ as an inclusion criterion for 

primary studies and thus restricting the meta-analytic evidence base to studies of a certain 

quality—this approach is not recommended due its limiting effects on the generalizability of the 

meta-analytic findings26 and it should only be considered if PSQ is likely to be “important in the 

context of the research question”5(p138); and (b) Weighting primary studies by their quality37—

this approach is also not recommended due to the bias quality weights introduce into meta-

analytic models38. Both of these a-priori methods have the potential to not only introduce biases 

but also lend hand to questionable research practices. For instance, the introduction of PSQ as 

inclusion and exclusion criteria can help to purposefully exclude primary studies that do not fit 

the expectations meta-analysts have stipulated.39 Thus, the use of a priori methods should be 

cautioned.5 

Post-hoc methods include but are not limited to:4,7,36,40 (a) Analyzing publication bias in 

relation to PSQ—this way, meta-analysts can examine the extent to which primary studies of 

different quality may be more or less prone to publication bias;36 (b) Conducting sensitivity 

analyses—this approach sheds light on the possible changes in meta-analytic findings when 

primary studies of a certain quality are excluded; and (c) Performing moderator analyses to 

describe the direct relation between PSQ and the effect sizes—this way, meta-analyses can 
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compare the effects between studies with high vs. low quality via subgroup analyses6 or estimate 

the moderator effects of PSQ via mixed-effects meta-regression models.5,16  

Johnson and Valentine argued that post-hoc moderator analyses are preferable over the 

other methods, because they allow meta-analysts to explore the direct associations between PSQ 

and the effect sizes.5,12 However, the current reports of these analyses in meta-analyses have 

several limitations: First, they are, by and large, limited to the linear moderator effects of 

continuous PSQ scores, although non-linear effects are conceptually plausible.1 The lack of 

significant moderator effects of PSQ may be partly due to their non-linearity1,5, and meta-

analysts may actually expect non-linear relations (e.g., inverse quadratic relations with an 

“optimal” level of study quality for the largest effects and smaller effects for low- and high-

quality studies). Second, moderator analyses have primarily focused on the direct moderator 

effects of PSQ on the effect sizes. However, recent extensions of random-effects models allow 

meta-analysts to explore these effects on heterogeneity estimates (e.g., mixed-effects models 

with heteroskedasticity for categorical PSQ scores, location-scale models for continuous PSQ 

scores).13,14 Utilizing these model extensions provides information about the dependency of 

heterogeneity on PSQ. Third, the PSQ moderator effects are often reported independent of any 

other moderator. Nevertheless, using PSQ along with other moderators in, for instance, meta-

regression models sheds light on the extent to which a moderator is related to the effect sizes 

after controlling for PSQ—that is, moderator compensation effects. Moreover, Johnson and 

colleagues40 argued that meta-analysts should take an interactive approach to exploring the PSQ-

effect size relation and estimate interactions between PSQ and other study characteristics—in 

this way, the sensitivity of moderator effects to PSQ can be explored.12 Overall, the extensions of 
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standard meta-analytic models allow meta-analysts to examine the possible impact of PSQ on 

meta-analytic findings in greater detail. 

Step-by-Step Tutorial 

To facilitate representing PSQ and examining its moderator effects in meta-analyses, we 

propose taking five steps. Table 1 details these steps and outlines the analytic decisions within.  

Step 1: Study Quality Definition 

First, we suggest defining PSQ in the context of the specific meta-analysis, given its 

research focus, selection criteria, and the characteristics of the meta-analytic data. Specifically, 

this step clarifies the aspects or dimensions of PSQ, such as the quality of the study design, 

sampling, measurement, and reporting,4,41,42 and anchors PSQ in the frameworks of risk of bias 

and validity.3,11 Another key element in the definition of PSQ is the specification of the 

conceptual level(s) at which the aspects or dimensions operate. For instance, meta-analysts may 

define PSQ at the levels of samples (e.g., representativeness of the sample), measurements (e.g., 

reliability coefficients), studies (e.g., study design features), or even countries (e.g., sampling 

quality and frame). Specifying these levels aids the interpretation of possible PSQ effects in 

subsequent meta-analytic models with multiple levels of analysis.28 

Step 2: Study Quality Operationalization 

Second, we suggest operationalizing the definition of PSQ in a meta-analysis, that is, 

selecting observed quality indicators. This selection should not only be guided by the theoretical 

considerations behind the PSQ definition but also by empirical evidence. Specifically, we 

recommend inspecting the correlation matrix of quality indicators to identify whether they may 

indicate shared or unique quality constructs.5 This information can then be used to specify, 
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estimate, and evaluate a suitable measurement model of PSQ (i.e., reflective, causal-formative, 

or composite measurement model) to create quality scores. 

Step 3: Study Quality Score Creation 

Third, given the quality definition and operationalization, we recommend creating one or 

multiple quality scores as representatives of PSQ, either a priori or as part of the meta-analytic 

modeling. These scores can be single or multiple, categorical or continuous, aggregated or 

separate variables. As noted in the previous step, if meta-analysts decide to create a model-based 

quality score from multiple indicators a priori, then the measurement model they have decided 

on is now specified, estimated, and evaluated. For instance, meta-analysts may describe PSQ 

using a Rasch (one-parameter logistic) model or some categorical CFA model with a set of 

binary indicators from a well-established quality checklist. Typical a priori modeling approaches 

include but are not limited to models of item response theory, factor analysis, or principal 

component analysis. If this measurement model holds and represents the data well, then a sum or 

factor score can be extracted from it as a study quality score9,43. In essence, the third step we 

propose is to create the actual quality scores which can later be submitted to moderator or 

moderator sensitivity analyses.  

Step 4: Moderator Analyses 

Fourth, we recommend conducting moderator analyses to examine the extent to which 

study quality directly relates to the effect sizes5,12. These analyses yield information not only 

about the direct moderator effects of PSQ scores but also the extent to which heterogeneity can 

be explained at the respective level(s) of analysis identified in step 128. Given the recent 

extensions of meta-analytic models to location-scale models or mixed-effects meta-regression 

models with subgroup-specific (residual) heterogeneities, meta-analysts can also explore possible 
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moderator effects on the heterogeneity13,14. Moreover, moderator effects can be linear or 

curvilinear (e.g., quadratic with an inverse U-shape indicating smaller effects for low- and high-

quality studies and a larger effect for some moderate quality score), and meta-analysts may 

explore the nature of the relations of PSQ with the effect sizes and their heterogeneity. 

Step 5: Moderator Sensitivity Analyses 

Fifth, we recommend conducting moderator sensitivity analyses to examine the extent to 

which PSQ compensates or interacts directly with the effects of other moderators. Utilizing 

mixed-effects meta-regression models, meta-analysts can obtain information about the sensitivity 

of moderator effects to study quality.12,44 For instance, the effect of a moderator may decrease or 

disappear after controlling for PSQ, and PSQ explains heterogeneity above and beyond the 

moderator. The effect of PSQ may be referred to as a “compensatory effect”45. Moreover, PSQ 

may directly interact with a moderator and, thus, the size of the moderator effect depends on the 

quality score46. Depending on the nature of the PSQ score and the moderator, centering may be 

required to circumvent multicollinearity issues in models containing PSQ, the moderator, and 

their interaction.44 

Illustrative Examples 

To illustrate these steps and the analytic decisions within, we present three examples that 

showcase typical situations in which primary study quality is represented by (1) a priori selected, 

binary quality indicators; (2) a priori created, model-based quality scores; and (3) meta-

analytically derived, model-based quality scores. We further highlight key analytic issues, such 

as meta-analytic model selection with binary moderators, criteria for selecting quality indicators 

that make up quality scores, factor structures of quality assessments, non-linear effects of study 

quality, creating composite quality scores from categorical and continuous indicators, and 
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handling missing data in quality indicators. The illustrative examples are supplemented by open-

access data, R code, and a detailed description of the results. Please find the respective material 

in the Open Science Framework at https://doi.org/10.17605/OSF.IO/NGVCZ. 

Illustrative Example 1: A Priori Selection of a Single Binary Quality Indicator 

Purpose and Context of the Example 

The purpose of the first example is to illustrate how meta-analysts can use a binary 

quality indicator which is derived a priori, for instance, from categorizing a continuous quality 

score (e.g., low vs. high quality), summarizing multiple study characteristics (e.g., random 

assignment of participants to intervention groups in a pretest-posttest design vs. non-random 

assignment in a posttest-only design), or a single quality characteristic (e.g., random vs. 

convenience sampling). Specifically, going beyond standard mixed-effects models, we show a 

range of meta-analytic models that describe possible differences between low- and high-quality 

studies in the weighted average effect size and the respective heterogeneity47.  

The meta-analytic data set we use in this example was published by Scherer et al. 

(2019)48 and contains 539 effect sizes from 105 primary studies and 31549 participants. The 

main goal of this meta-analysis was to examine the transfer effects of computer programming on 

cognitive skills. The authors selected (quasi-)experimental studies with a posttest-only or pretest-

posttest experimental-control group design and included performance-based measures of 

cognitive skills. 

Steps 1-3: Study Quality Definition, Operationalization, and Score Creation 

Given the focus of the meta-analysis on the possible transfer effects of computer 

programming interventions, characteristics of the study design seem a natural choice for 

representing study quality—hence, the level of primary studies is the conceptual level at which 
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quality operates. In this illustrative example, we selected two variables—that is, the status of 

randomization (random vs. non-random) and the pretest-posttest experimental-control group 

(PPC) vs. posttest-only design—and combined them into a binary study quality score (labelled 

binary.quality). This score was coded as 1 for primary studies with a PPC design and a 

random assignment of participants to the intervention groups or 0 otherwise. In this sense, high-

quality studies can be randomized-controlled trials or studies approximating them49,50. 

Step 4: Moderator Analyses 

Examining possible moderator effects of the binary quality score needs to be based on a 

baseline model that represents the structure of the meta-analytic data. To find such a baseline 

model, we estimated a standard random-effects model and a three-level random-effects model 

that account for multiple effect sizes per study. We specified these models in the R package 

“metafor”51 via the rma.mv() function. For the three-level model, we defined the random 

effects under the assumption of hierarchical effects (i.e., 

random=list(~1|StudyID/ESID); see Table 2, Model 1)28. Comparing these two models 

suggested that the latter model was a better representation of the data than the former, as the 

likelihood-ratio test (χ![1] = 138.7, p < .001) and the within- and between-study heterogeneity 

suggested (𝜎"!  = 0.204, 𝜎#! = 0.281). Adding information about a possible constant sampling 

correlation52 between effect sizes within studies did not improve the model fit further. We 

therefore chose the three-level random-effects model with hierarchical effects as a baseline. 

Next, we examined the direct moderator effects of study quality by extending the baseline 

model to a mixed-effects meta-regression model (see Model 2 in Table 2). In this extended 

model, the binary quality score did not show moderation effects and there was no evidence that 

high- and low-quality studies differed significantly in their weighted average effect sizes (high 
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quality: 𝑔̅ = 0.58 vs. low quality: 𝑔̅ = 0.46; F[1, 537] = 1.65, p = .20). Comparing the baseline 

model to this model showed that PSQ explained only about 1.2% of between-study variation. 

Notably, Model 2 assumed that high- and low-quality studies have the same amount of 

heterogeneity within and between studies after controlling for the differences in effect sizes (i.e., 

“residual heterogeneity”). However, this assumption may not be realistic, because either high- or 

low-quality studies may be more or less heterogeneous. Consequently, we further tested mixed-

effects meta-regression models that allowed for different amounts of residual heterogeneity (see 

Models 3-5 in Table 2). Whilst several combinations of quality-specific parameters in the meta-

analytic models are possible (i.e., same or quality-specific effect sizes, within-study variances, 

between-study variances; in total, 2×2×2 = 8 combinations), we focus on a selection of models 

in this tutorial (see Table 2). We argue that meta-analysts should decide for specific models on 

the basis of (a) theoretical considerations of where to reasonably expect differences in model 

parameters between high- and low-quality studies; and (b) comparisons of models with different 

assumptions on their parameters (e.g., via likelihood-ratio tests or an inspection of the 

information criteria)53. 

Ultimately, the model assuming quality-specific effect sizes and amounts of residual 

heterogeneity within and between studies (Model 5) outperformed the model assuming the same 

amounts of residual heterogeneity (Model 2), as the information criteria and the likelihood-ratio 

test suggested, χ!(2) = 15.8, p < .001. Further model comparisons (i.e., Model 5 vs. Models 3 

and 4) indicated that Model 5 was also preferred over the other models (see Supplementary 

Material S1). Hence, although the effect sizes between high- and low-quality studies did not 

differ, the amounts of residual heterogeneity did. Overall, this example illustrates that PSQ may 

not only affect the overall effect sizes but also the heterogeneity. 
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Step 5: Moderator Sensitivity Analyses 

As another step, we conducted moderator compensation analyses to examine if PSQ 

compensated possible other moderator effects. We extended the mixed-effects meta-regression 

model assuming different amounts of residual heterogeneity within and between studies by the 

type of control group (i.e., TreatedC; coded as 1 = Control group was treated with another 

intervention targeted at improving the outcome, 0 = Control group was untreated)48 as a 

moderator with or without controlling for study quality. The direct effect of the type of control 

group without controlling for study quality was B = -0.48 (SE = 0.07, p < .001). After controlling 

for study quality (via mods=~factor(TreatedC)+factor(binary.quality)), this 

effect remained, B = -0.48 (SE = 0.07, p < .001). The correlation between the study quality and 

the other moderator was small (r = .03, p = .56), so that multicollinearity was not an issue (VIF = 

1.0). While only the moderator TreatedC explained about 24.6% of the within-study variation 

for low-quality studies and, respectively, 6.6% of the within-study variation of high-quality 

studies, accounted for differences in the weighted average effect sizes across study quality added 

only 0.2% and, respectively, 0.3% to this variance explanation. Hence, there was no evidence for 

a compensation effect of PSQ. 

Finally, we tested whether study quality moderated the moderator effect of the type of 

control group by adding an interaction term between the two predictors (via 

mods=~factor(TreatedC)*factor(binary.quality)). There was no evidence for a 

statistically significant interaction (B = 0.14, SE = 0.18, p < .001), and comparing the models 

with and without the interaction term showed that adding the interaction did not improve the 

model fit (χ![1] = 2.2, p = .14). Hence, high- and low-quality studies did not differ in the 

moderator effect of the type of control group—the moderator effect was not sensitive to PSQ. 
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Illustrative Example 2: A Priori Model-Based Creation of a Study Quality Score 

Purpose and Context of the Example 

The purpose of the second example is to illustrate how meta-analysts can create a study 

quality score a priori from a set of indicators. As noted earlier, quality assessments and checklists 

may provide such indicators, and researchers typically code a set of quality criteria as categorical 

or binary variables (e.g., the specific criterion is fulfilled or not).12 On the basis of these 

variables, an overall quality score is created—oftentimes as the average rating across criteria, a 

sum or count score.7 In this example, we show how meta-analysts can derive model-based 

quality scores from a set of positively correlated, binary indicators. The procedure we propose 

includes the checking of the indicator correlation matrix, the testing of reflective measurement 

models to create an overall quality score, and the checking for possible non-linear relations 

between primary study quality and the effect sizes. 

The meta-analytic data set in this example was published by Siddiq and Scherer54 and 

contains 53 effect sizes from 21 primary studies. These effect sizes represent the gender 

differences in students’ digital skills which were measured by performance-based assessments 

and extracted from cross-sectional studies of 137,895 secondary-school students in 30 countries. 

Notably, this meta-analysis included aggregated summary data and individual-participant data.55 

Steps 1-3: Study Quality Definition, Operationalization, and Score Creation 

In this illustrative example, we defined PSQ as a multidimensional concept describing the 

quality of the sampling, data, and measurement. Hence, primary study quality mainly operated at 

the levels of studies (e.g., sampling design) and effect sizes (e.g., measurement properties). The 

following a priori coded quality indicators were available in the meta-analytic data set (with their 

respective variable names and coding): 
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§ Task interactivity (Interactivity; 1 = Interactive tasks, 0 = Static tasks); 

§ Assessment of applied skills (AppliedSkills; 1 = Tasks demanded applied skills, 0 = 

Tasks demanded the recall of knowledge); 

§ Random sampling (RandomSample; 1 = Random sampling, 0 = Convenience 

sampling); 

§ Test fairness evaluation (TestFair; 1 = Test fairness across gender groups assessed, 0 

= Not assessed); 

§ Reliability reporting (RelReport; 1 = Scale reliability reported, 0 = Not reported); 

§ Availability of individual-participant data (IPD; 1 = IPD available, 0 = Not 

available). 

The tetrachoric correlations among these quality indicators were positive and ranged between r = 

0.13 and r = 0.89 (see Figure 2a). All indicators pointed into the same direction and shared some 

variation. Given the range of correlations, the set of indicators was likely multidimensional 

rather than unidimensional, and we examined the underlying factor structure via factor analysis. 

Depending on a priori hypotheses on the factor structure, meta-analysts may choose either 

exploratory or confirmatory factor analysis. 

Using the tetrachoric correlation matrix, we found evidence for multidimensionality in 

the set of quality indicators. For instance, the Kaiser-Guttman criterion resulted in two 

eigenvalues above 1, the parallel analysis supported a two-factor solution, and the very simple 

structure analyses showed that an optimal fit to a simple structure was achieved already by two 

factors (see Supplementary Material S2). We therefore conducted an EFA with maximum-

likelihood estimation as factor extraction and oblimin rotation as an oblique rotation, assuming 

two correlated factors. Using the fa() function in the R package “psych”56 to estimate the EFA, 
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we obtained a two-factor solution with one factor representing study design quality (indicated by 

TestFair, RandomSample, IPD, and Interactivity) and one factor representing measurement 

quality (indicated by RelReport and AppliedSkills). A subsequent CFA with WLSMV estimation 

and two correlated latent variables fitted the data well, χ!(8) = 3.9, p = .86. In sum, the factor 

analyses suggested that the set of quality indicators represents two study-quality scales, one 

indicating study design quality and one indicating measurement quality (see Figure 3). 

As a next step, we explored the psychometric properties of the two study-quality scales 

using item response theory (IRT) models. IRT models are probabilistic models describing the 

non-linear (logistic) link between the probability of choosing a specific response category (e.g., 

correct vs. incorrect, Likert scales) and an underlying construct, the latent trait. This link can 

further be described by additional item parameters, such as item difficulties or discriminations.43 

We used IRT to describe PSQ due its efficient modeling of latent traits based on categorical 

indicators, the low demands on sample size, and the invariance of item parameters and latent 

traits.57,58 For a detailed description of these models and their underlying assumptions, we refer 

readers to de Ayala.43 Notably, we assumed that all quality indicators share common variance 

which can be captured by a reflective latent variable. We estimated the IRT models using the 

tamaan() function in the R package “TAM”59 and the mirt() function in the R package 

“mirt”.60 

Drawing from the evidence on two correlated quality scales (see Figure 3), we estimated 

both unidimensional and two-dimensional IRT models with one or two item parameters (1PL 

and 2PL; see Supplementary Material S2). While the former assumed equal item discriminations 

(factor loadings) across quality indicators, the latter estimated them freely. Table 3 shows the 

information criteria and goodness-of-fit indices of the respective models. For both the 1PL and 
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the 2PL models, the multidimensional models were preferred over the unidimensional models. 

Moreover, among the four IRT models, the two-dimensional 2PL model was preferred—hence, 

we chose this model to represent the two study-quality scales. The two latent variables were 

moderately correlated (𝜌 = .71) and, given the few quality indicators, exhibited substantial 

marginal reliabilities (study design quality: 𝑟̂$$ = .70, measurement quality: 𝑟̂$$ = .55). The 

corresponding test information curve is shown in Figure 2b and indicated that the quality 

assessment provided the most information and best precision when the values of both factors 

were between -2.0 and 0.0. Supplementary Material S2 contains further details of this model, 

such as the parameter estimates of difficulty and discrimination, local independence indices, item 

and person fit information, and the item characteristic curves of the quality indicators. Finally, 

we extracted the expected-a-posteriori (EAP) factor scores from the two-dimensional 2PL model 

via the IRT.factor.scores() function and used them as study quality scores. 

Step 4: Moderator Analyses 

Similar to the first illustrative example, we selected a meta-analytic baseline model on the 

basis of model comparisons and estimated variance components (see Supplementary Material 

S2). We accepted a three-level random-effects model with samples nested in primary studies as 

the baseline model for further moderator analyses. Examining the possible linear moderator 

effects of the two study-quality scores separately via mixed-effects meta-regression models, we 

did not find evidence for significant moderation by study design quality (B = 0.06, SE = 0.05, p 

= .19; see Figure 4) or measurement quality (B = 0.06, SE = 0.04, p = .12) in these models. 

However, when using robust standard errors generated with the R package “clubSandwich”61, the 

linear moderator effect of measurement quality was significant (B = 0.06, SE = 0.02, p = .03) 

and suggested that primary studies with high measurement quality tended to show larger effect 
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sizes. The joint moderator effects of the two quality scores and their interaction were 

insignificant (see Supplementary Material S2). 

As a next step, we explored possible non-linear effects by including up to cubic 

polynomial moderator effects of the quality scores (e.g., mods=~poly(zEAP2PLFS1, 

degree=3) with zEAP2PLFS1 representing the z-standardized EAP factor score from the 2PL 

model representing measurement quality). While there was no evidence for such effects of 

measurement quality, there was a tendency toward a cubic relation between the effect sizes and 

study design quality (see Figure 4). Please refer to the Supplementary Material S2 for the 

detailed estimates. Overall, about 30.4% of the between-study variation could be explained by 

the non-linear effects of study design quality. 

Step 5: Moderator Sensitivity Analyses 

We illustrate the moderator compensation and interaction effects using the Power 

Distance Index (PDI) in the data set as an example moderator. PDI showed a negative moderator 

effect (B = -0.04, SE = 0.02, p = .05; F[1, 51] = 4.00, p = .05), explained about 9.6% of the 

within-study variation (0% of the between-study variation), and indicated that samples in 

countries with larger power distance tended to show smaller effect sizes. After controlling for 

study design quality, this effect remained (B = -0.04, SE = 0.02, p = .03; F[2, 50] = 3.26, p = 

.05). Similarly, the effect of PDI remained after controlling for measurement quality (B = -0.04, 

SE = 0.02, p = .03; F[2, 50] = 3.65, p = .03). PDI and study design quality explained about 

22.3% of the between-study variation and about 4.9% of the within-study variation—similarly, 

PDI and measurement quality explained about 19.6% and 5.3%, respectively. Controlling for 

study design and measurement quality jointly also did not affect the moderation effect by PDI (B 
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= -0.04, SE = 0.02, p = .03; F[3, 49] = 2.43, p = .08). Overall, above and beyond PDI, the study 

quality scores explained variation in the effect sizes—hence, PSQ showed a compensation effect. 

Finally, we examined the interaction between study quality and the moderator PDI (e.g., 

mods=~zEAP2PLFS1*scale(PDI)). While there was no interaction effect with study design 

quality (B = 0.04, SE = 0.04, p = .23), there was a significant interaction with measurement 

quality (B = 0.10, SE = 0.05, p = .06). In this sense, the moderator effect of PDI was sensitive to 

measurement quality and tended to increase with higher quality scores. 

Illustrative Example 3: Meta-Analytic Model-Based Creation of a Study Quality Score 

Purpose and Context of the Example 

The purpose of the third example is to illustrate how meta-analysts can represent primary 

study quality by a composite score that is derived from a set of mixed-format indicators, either 

negatively or positively correlated (e.g., reliability coefficients, status of openly available data, 

study design characteristics). Moreover, this composite score is informed by a mixed-effects 

meta-regression model that contains the quality indicators as simultaneous moderators. Given 

that quality indicators were missing for some studies, we conducted sensitivity analyses, 

comparing the results of the incomplete and multiply imputed data. We used the same meta-

analytic data set as in the first illustrative example. 

Steps 1-3: Study Quality Definition, Operationalization, and Score Creation 

Given that the meta-analysis was concerned with the effectiveness of interventions, we 

defined primary study quality as a concept that is comprised of information about the study 

design and sampling, the publication status, and the measurement quality of the outcome 

variable. Study quality contains this information at the level of effect sizes and primary studies. 

To operationalize study quality, we chose the following quality indicators: 
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§ Publication status (PubStatus; 1 = Published study, 0 = Grey literature); 

§ Intervention design (PPCDesign; 1 = Pretest-posttest experimental-control group 

design, 0 = Posttest-only experimental-control group design); 

§ Group assignment (Random; 1 = Randomization of the group assignment, 0 = Non-

random assignment); 

§ Treatment of the control group(s) (TreatedC; 1 = Treated control group, 0 = 

Untreated control group); 

§ Matching of the groups (Matched; 1 = Matching of the groups was performed, 0 = 

No matching was performed); 

§ Standardized performance assessment of the outcome (PerfSTA; 1 = Performance-

based, standardized assessments, 0 = Performance-based, self-developed, or non-

standardized assessments); and 

§ Reported reliability coefficient of the assessment (Reliability). 

Some of the primary studies did not provide any reports on the matching of groups (43.2% 

missing) or the reliability of the outcome (3.0% missing). To handle these missing data, we 

performed multiple imputation and generated 20 complete data sets. Specifically, we used the 

multiple imputation with chained equations procedure implemented in the R package “mice”62 

and imputed the binary variable “Matched” via logistic regression (logreg) and the continuous 

variable “Reliability” via predictive mean matching (pmm). We performed all subsequent 

analyses for each of the 20 imputed data sets and combined the resultant parameters following 

Rubin’s combination rules.63 For more details on multiple imputation in meta-analysis, please 

refer to Viechtbauer64 and Lee and Beretvas65. To show the possible effects this missing data 

treatment may have, we present both the incomplete and imputed data analyses in the 
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Supplementary Material S3. In the following sections, we only present the results obtained from 

the multiply imputed data. 

To examine the correlations among the binary and continuous variables in the meta-

analytic data set, we estimated the correlations using the mixedCor() function in the R 

package “psych”.56 The resultant correlation matrix is shown in Figure 5a. Notably, the quality 

indicators exhibited positive, negative, and close-to-zero correlations and ranged between r = -

.30 and r = .43, despite that they were coded with the same direction (i.e., consistently across all 

indicators, high indicator scores suggested better study quality). Moreover, the correlations 

between the effect sizes and the quality indicators were similarly diverse, with a range between r 

= -.18 and r = .24. In a situation with mixed correlations, meta-analysts who wish to utilize all 

quality indicators have at least two analytic options: (a) using all quality indicators but keeping 

them separate in further analyses; or (b) creating a composite score. While we focus on the latter 

in this illustrative example, we also showcase the former to allow meta-analysts to compare the 

meta-analytic results. Hence, our approach to representing PSQ is to create a composite quality 

score. 

Given that composite measurement models are not identified without one or more 

additional outcome variables,24,30 we created the composite score in two steps (see Figure 6): 

First, we estimated a mixed-effects meta-regression model with all quality indicators as 

moderators of the effect sizes, yet without an intercept. This step generated a set of weights 𝑤%, 

one for each quality indicator 𝑋%&. Second, we created the composite quality score 𝐶& for each 

study 𝑗 as the weighted sum of all quality indicators, 𝐶& = ∑ 𝑤%𝑋%&'
%() . 

As noted in illustrative example 1, a three-level random-effects model formed the meta-

analytic baseline model. To generate the weights, we extended this model by adding the quality 



PRIMARY STUDY QUALITY IN META-ANALYSES 28 

indicators as moderators (mods=~0+PubStatus+…), extracted the resultant regression 

coefficients, and created the composite quality score (see Supplementary Material S3). Unlike in 

the factor scores representing study quality illustrative example 2, this score cannot be 

interpreted as a typical sum score with high values indicating better quality. Instead, the 

composite quality score captures the possible moderator effects of quality indicators, into 

whichever direction they may point, and aggregates them in one score. 

Step 4: Moderator Analyses 

Separate quality indicators. For both the incomplete and the multiply imputed data sets, 

we found that the treatment of control groups and the type of performance-based assessment 

were significantly related to the treatment effects after controlling for all other quality indicators 

(see Supplementary Material S3). Table 4 shows the respective regression parameters for the 

multiply imputed data. Specifically, primary studies with treated control groups had smaller 

intervention effects, and primary studies with standardized performance assessments had smaller 

effects than studies with self-developed and non-standardized assessments. The variance 

inflation factors and the correlations among the quality indicators did not point to a possible 

multicollinearity issue in the meta-regression models (VIFs < 2.0; see Figure 5a and 

Supplementary Material S3). Overall, about 16.1% of the between-study variation could be 

explained by the set of quality indicators. 

Composite quality score. The composite quality score exhibited a linear relation to the 

effect size, with some deviations (see Figure 5b). The respective regression coefficient was 

positive, and, similar to the variance explained by the model keeping the quality indicators 

separate, the quality score explained about 18.9% of the between-study variation (see Table 4). 
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Step 5: Moderator Sensitivity Analyses 

Separate quality indicators. Studies that focused on creativity as an outcome variable 

(“Creativity”; coded as 1 = Creativity assessment, 0 = Assessment of other cognitive skills) 

tended to show larger intervention effects than those focusing on other cognitive skills (B = 0.38, 

SE = 0.12, p < .01). This moderator effect remained after controlling for the quality indicators (B 

= 0.41, SE = 0.13, p < .01; see Supplementary Material S3). Adding study quality to the mixed-

effects meta-regression model explained about 18.8 % of the within-study variation, while the 

moderator Creativity explained about 3.5% without the quality indicators and the quality 

indicators without Creativity explained about 16.1%. In this sense, controlling for study quality 

compensated the moderator effect of Creativity only marginally. Moreover, none of the 

interaction terms between Creativity and the quality indicators were statistically significantly 

different from zero, so that the moderator effect was not sensitive to the single quality indicators 

(see Supplementary Material S3). 

Composite quality score. Similar to keeping the quality indicators separate, the 

moderator effect of Creativity remained after controlling for the composite quality score (B = 

0.35, SE = 0.12, p < .01). Creativity and study quality explained about 22.1% of the within-study 

variation, while study quality alone explained 18.9%. Hence, the Creativity effect was not 

affected by controlling for study quality. At the same time, the moderator effect of Creativity 

tended to be larger for studies with larger quality scores (interaction effect: B = 0.21, SE = 0.12, 

p = .07; see Supplementary Material S3). In other words, the Creativity effect was sensitive to 

study quality. 
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General Discussion 

Implications for Meta-Analytic Practice 

Utilizing information about the quality of primary studies in meta-analyses supports 

meta-analysts in their crafting of a validity argument. Quality information further provides 

contextual information through which weighted average effect sizes and heterogeneity could be 

interpreted and explored. Best-practice guidelines consequently consider the coding, selection, 

and creation of PSQ indicators and scores to be key steps in any meta-analysis.66,67 Our tutorial 

and the illustrative examples were aimed at supporting best meta-analytic practices by providing 

hands-on guidance in these steps. 

First, selecting or creating quality indicators and scores a priori or as part of the meta-

analytic modeling is a key decision meta-analysts have to make. In our view, this decision 

largely depends on the purpose of quantifying PSQ in a meta-analysis. If meta-analysts wish to 

map the quality of primary studies in their meta-analysis onto existing research, an a priori 

generation of quality scores using well-established checklists and assessments could ensure 

comparability to other meta-analyses.4,19,68,69 Moreover, an a priori generation of quality scores 

allows meta-analysts to explore the relations between PSQ and the effect sizes irrespective of 

prior information about the direction, strength, and statistical significance of this relation. In 

contrast, quality scores that are generated or selected as part of the meta-analytic modeling 

contain information about these relations and are thus useful when meta-analysts wish to 

maximize the amount of heterogeneity explained by PSQ. 

Second, using a single or multiple quality indicators or scores is another key decision 

meta-analysts have to make when representing PSQ. Selecting or creating these indicators 

operationalizes PSQ and should thus be based on substantive theories and the context in which 
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the meta-analysis is conducted.70 For instance, quality indicators of randomized-controlled trials 

may differ from those describing cross-sectional surveys, and accounting for this context-

dependency is key to measuring PSQ.4 Despite the analytic advantages (e.g., straightforward 

interpretation and modeling of moderator effects), meta-analysts should be aware of the 

limitations of selecting or creating a single quality indicator, such as a limited representation of 

PSQ and a possible loss of quality information due to the aggregation of multiple indicators in a 

single indicator or score.7 Following Johnson’s recommendations,12 we argue for a 

multidimensional representation of PSQ, with multiple indicators capturing multiple quality 

aspects and dimensions. In this way, nuanced information about which quality aspects may or 

may not explain heterogeneity is obtained. 

Third, if meta-analysts wish to aggregate multiple quality indicators into a single quality 

score or few quality scores, they need to decide on the approach through which this aggregation 

is achieved—model-based or model-free. For instance, it has been a standard practice to use 

established quality checklists and create sum scores to represent PSQ.4,7 While hardly any 

statistical modeling is involved in this practice, creating a sum score is based on assumptions 

about a statistical model underlying the checklist.9 Despite the availability of quality checklists 

and assessments, we still consider it important to check these underlying assumptions and to 

obtain reliability and validity evidence. This includes the checking of psychometric properties of 

the quality indicators, along with the selection and testing of appropriate measurement 

models.10,24 Using the resultant information, meta-analysts could disclose the properties of the 

quality assessment in their meta-analysis and, ultimately, craft a validity argument for the 

generated quality scores. 
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Fourth, in our view, examining possible moderator effects of study quality should go 

beyond testing linear relations between PSQ scores and the effect sizes that might explain 

heterogeneity. We suggest considering possible non-linear moderator effects of PSQ, moderator 

effects on effect sizes and their heterogeneity, and the sensitivity of other moderator effects to 

PSQ.12 In this way, meta-analysts can shed further light on the impact of study quality on the 

meta-analytic findings beyond linear moderation. 

Limitations and Future Research Directions 

The methodological approaches we have presented have some limitations. First, the 

direct integration between reflective measurement models describing PSQ at the levels of effect 

sizes and studies and meta-analytic models is still to be implemented. Currently, the a priori 

model-based creation of PSQ scores based on multiple quality indicators and the use of these 

scores in moderator (sensitivity) analyses are disconnected and require two analytic steps. The 

existing approaches of meta-analytic and multilevel structural equation modeling53,55 may 

provide frameworks for developing a one-step approach. Second, the model-based approaches to 

creating PSQ scores are based on substantive and statistical assumptions, limitations, and 

interpretations meta-analysts need to be aware of. For instance, composite quality scores that are 

based on negatively, positively, and zero correlated indicators do not have a clear-cut 

interpretation, such as “the higher the score, the better the quality”. This requires that meta-

analysts clearly and transparently communicate their decisions and the reasoning behind them. 

We therefore encourage the development of open science practices and standards for evaluating 

PSQ in meta-analyses.4 Third, although our step-by-step guidance was designed for meta-

analyses, the proposed steps 1-3 apply to systematic reviews without a quantitative synthesis of 

effect sizes. Moreover, the approaches to create or select PSQ indicators or scores a priori, 
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conceptually or model-based, are accessible as well. Researchers can then utilize this information 

to critically appraise the primary study quality.21 Fourth, the model-based approaches require 

extra time in the long meta-analytic process and some methodological expertise beyond standard 

meta-analysis. In our view, spending this time and acquiring this expertise is key to representing 

and utilizing PSQ in meta-analysis by indicators from existing quality checklists and 

assessments. 

Conclusions 

Our review, discussion, and illustration of representing and utilizing PSQ in meta-

analyses showed that a variety of approaches to select and create quality indicators and scores 

exist. These approaches vary in the level of information they provide, the assumptions they 

make, and the usefulness in meta-analytic models. While a key strength of binary quality scores 

lies in their ease of interpretation and the possible range of differences between low- and high-

quality studies in the meta-analytic model parameters that can be explored, categorizing study 

quality is often associated with a loss of information about the variation in quality. Model-based 

approaches can address this issue and combine several quality indicators into a continuous 

quality score—however, the interpretation of such a score largely depends on the correlational 

structure of the underlying indicators and the measurement model it was generated from. 

First and foremost, we conclude that meta-analysts must decide whether the quality 

indicators or scores are selected or created a priori or as part of the meta-analytic model. This 

decision is primarily driven by the purpose of including primary study quality in a meta-analysis, 

the substantive meaning of study quality, and the available quality indicators. Second, we 

conclude that PSQ should be clearly defined, including the level at which the concept operates. 

Third, we argue that simply averaging or summing up scores from a quality assessment or 
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checklist without testing the prerequisites for such practices threatens the validity of the resultant 

quality scores. We encourage meta-analysts to consider the model-based creation of quality 

scores when multiple indicators are to be combined. Finally, we conclude that the analysis of 

moderation by study quality should go beyond direct moderator effects and include both 

moderator compensation and sensitivity analyses. 
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Highlights 

What is already known 

• Assessing and mapping primary study quality is a key step in meta-analyses to indicate 

the possible risk of bias. 

• Primary study quality is often represented by single quality scores which are either based 

on categorical ratings of some quality criterion or the sum of multiple criteria. 

• To examine the extent to which primary study quality influences the meta-analytic 

results, meta-analysts can explore the moderator effects of the respective quality scores. 

What is new 

• Primary study quality scores can be selected or created either a priori or as part of the 

meta-analytic modeling. 

• Creating a priori quality scores from multiple quality indicators (e.g., checklists and 

assessments with multiple criteria) requires selecting and evaluating suitable 

measurement models. 

• Model-based meta-analytic quality scores allow meta-analysts to combine in a single 

composite score the information about the relations between multiple quality criteria and 

their moderator effects. 

• Examining the impact of study quality includes estimating its moderator effects, the 

effects of other moderators after controlling for study quality, and the interactions 

between study quality and other moderators. 
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Potential impact for Research Synthesis Methods readers 

• This tutorial guides researchers in representing and incorporating primary study quality 

in their meta-analysis by describing, reviewing, and illustrating the respective analytic 

decisions and approaches. 

• We provide step-by-step guidance, illustrative examples of openly available data sets, and 

hands-on R code. 
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Tables 

Table 1 

Step-by-Step Guide to Representing and Incorporating Primary Study Quality in Meta-Analyses 

Step Description 

Step 1: Study Quality 
Definition 

§ Definition of the aspects or dimensions of PSQ (e.g., 
quality of the study design, sampling, measurement, or 
reporting) 

§ Definition of the conceptual level(s) at which the quality 
aspects or dimensions operate (e.g., level of the measures, 
samples, studies, or countries) 

Step 2: Study Quality 
Operationalization 

§ Conceptual and empirical selection of quality indicators, 
that is, coded variables in the meta-analytic data set that 
represent the quality aspects or dimensions 

§ In case of multiple quality indicators, their empirical 
selection can be informed by the respective correlation 
matrix and the properties of a measurement model. 

§ If multiple indicators are aggregated into quality scores, 
meta-analysts may choose among several types of 
measurement models (e.g., reflective, causal-formative, 
or composite factor models).  

Step 3: Study Quality 
Score Creation 

§ Creation of one or multiple scores representing primary 
study quality 

§ Quality scores can be created a priori or as part of the 
meta-analytic modeling. 

§ Quality scores can be single or multiple, categorical or 
continuous, aggregated or separate variables. 

§ Quality scores can be extracted from measurement models 
of multiple quality indicators (e.g., factor scores). 

Step 4: Moderator 
Analyses 

§ Estimation of the moderator effects of the PSQ score(s) 
via meta-analytic modeling (e.g., subgroup analyses, 
mixed-effects meta-regression) 

§ Moderator effects may be linear or non-linear. 

Step 5: Moderator 
Sensitivity Analyses 

§ Estimation of the effects of other moderators after 
controlling for PSQ (i.e., possible compensatory 
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moderator effects) via meta-analytic modeling (e.g., 
subgroup analyses, mixed-effects meta-regression) 

§ Estimation of the interaction effects between moderators 
and PSQ via meta-analytic modeling (e.g., subgroup 
analyses, mixed-effects meta-regression) 

Note. PSQ = Primary study quality.  
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Table 2 

Specification of Selected Meta-Analytic Models to Compare Pooled Effect Sizes and Residual Heterogeneity between High- and Low-
Quality Studies 

Model Example specification in the R package “metafor” log ℒ AIC* Within-
study 
variation 

Between-
study 
variation 

Model 1 (Baseline): Same 
effect size, same between-
study heterogeneity, same 
within-study 
heterogeneity 

rma.mv(g, vg, 
random=list(~1|StudyID/ESID), 
data=transferct, method=”REML”, 
tdist=T, test=”t”) 

-563.9 1133.8 0.204 0.281 

Model 2: Group-specific 
effect sizes, same 
between-study residual 
heterogeneity, same 
within-study residual 
heterogeneity 

rma.mv(g, vg, 
random=list(~1|StudyID/ESID), 
data=transferct, method=”REML”, 
tdist=T, test=”t”, 
mods=~factor(binary.quality)) 

-562.1 1132.2 0.204 0.278 

Model 3: Group-specific 
effect sizes, group-
specific between-study 
residual heterogeneity, 
same within-study 
residual heterogeneity 

rma.mv(g, vg, random=list(~1|ESID, 
~factor(binary.quality)|StudyID), 
data=transferct, method=”REML”, 
tdist=T, test=”t”, 
mods=~factor(binary.quality), 
struc=”DIAG”) 

-556.8 1123.8 0.213 Low: 
0.116 
High: 
0.586 

Model 4: Group-specific 
effect sizes, same 
between-study residual 
heterogeneity, group-
specific within-study 
residual heterogeneity 

rma.mv(g, vg, 
random=list(~factor(binary.quality)|E
SID, ~1|StudyID), data=transferct, 
method=”REML”, tdist=T, test=”t”, 
mods=~factor(binary.quality), 
struc=”DIAG”) 

-558.5 1127.1 Low: 
0.165 
High: 
0.302 

0.274 
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Model 5: Group-specific 
effect sizes, group-
specific between-study 
residual heterogeneity, 
group-specific within-
study residual 
heterogeneity 

rma.mv(g, vg, 
random=list(~factor(binary.quality)
|ESID, 
~factor(binary.quality)|StudyID), 
data=transferct, method=”REML”, 
tdist=T, test=”t”, 
mods=~factor(binary.quality), 
struc=”DIAG”) 

-554.2 1120.5 Low: 
0.175 
High: 
0.296 

Low: 
0.130 
High: 
0.590 

Note. The variable binary.quality is coded as 1 (high-quality study) and 0 (low-quality study). “Low” and “High” refer to the two 
categories of study quality. “Group-specific” means that the parameters are estimated for each of the two study-quality groups. The 
analytic code is based on the R package “metafor”51. log ℒ	= Value of the log-likelihood function, AIC* = Corrected Akaike’s 
Information Criterion.  
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Table 3 

Fit of the Uni- and Multidimensional IRT Models 

Model log ℒ 𝑛+ AIC BIC CAIC SRMR SRMSR 
Unidimensional 1PL -112.98 7 239.96 253.75 260.75 0.138 0.175 
Two-dimensional 1PL -112.61 9 243.23 260.96 269.96 0.138 0.167 
Unidimensional 2PL -103.02 12 230.05 253.69 265.69 0.098 0.118 
Two-dimensional 2PL -100.68 13 227.36 252.97 265.97 0.054 0.076 

Note. 1PL = One-parameter logistic (Rasch) model, 2PL = Two-parameter logistic model,	log ℒ	= Value of the log-likelihood 
function, 𝑛+ = Number of parameters, AIC = Akaike’s Information Criterion, BIC = Bayesian Information Criterion, CAIC = 
Consistent AIC, SRMR = Standardized Root Mean Squared Residual, SRMSR = Standardized Root Mean Square Root of Squared 
Residuals71. 
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Table 4 

Mixed-Effects Meta-Regression Model Parameters in the Illustrative Example 3 

Variable Separate quality indicators Composite quality score 
 B SE p-value B SE p-value 
Intercept 0.96 0.37 0.01 0.51 0.07 < .001 
PubStatus 0.20 0.13 0.12    
PPCDesign 0.07 0.10 0.52    
Random 0.15 0.13 0.28    
TreatedC -0.50 0.08 < .001    
Matched -0.16 0.14 0.28    
PerfSTA -0.18 0.09 0.06    
Reliability -0.49 0.43 0.26    
Composite quality score    0.28 0.05 < .001 

𝑅"!  0.161 0.189 
𝑅#! 0.000 0.000 

Note. The regression coefficients were pooled across the 20 imputed data sets. TreatedC = Treated control group(s), PubStatus = 
Publication Status, Random = Randomization, PPCDesign = Pretest-posttest experimental-control groups design, PerfSTA = 
Performance-based and standardized assessment, Matched = Matching of the groups, 𝑅"!  = Proportion of the explained variance 
within studies (i.e., proportional reduction of the within-study variation), 𝑅#! = Proportion of the explained variance between studies 
(i.e., proportional reduction of the between-study variation)72.
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Figures 

Figure 1 

Flowchart of the Decisions on how to Represent Primary Study Quality 

 

Note. RCT = Randomized controlled trial.

Primary Study Quality

A-priori selection 
or creation

Meta-analytic 
selection or creation

Single
quality indicator

Multiple 
quality indicators

Single
quality indicator

Multiple 
quality indicators

Create a study 
quality score

Keep indicators 
separate

Conceptual 
creation

Model-based
creation

Create a study 
quality score

Keep indicators 
separate

Example: Single 
binary or continuous 
variable representing 
study quality (e.g., 
RCT vs. non-RCT, 
reliability)

Example: Single 
binary or continuous 
variable representing 
study quality and 
moderating the effect 
size (e.g., RCT vs. non-
RCT, reliability)

Example: Count of 
fulfilled quality 
criteria in a quality 
checklist without 
statistical modelling

Example: Factor or 
sum score that is 
based on binary 
variables of a quality 
assessment rating 
scale, with modelling

Example: Composite 
score weighted by the 
moderator effects of 
the categorical and/or 
continuous variables 
representing study 
quality 

Example: Multiple 
categorical and/or 
continuous variables 
representing study 
quality and 
moderating the effect 
size (e.g., RCT vs. non-
RCT, reliability)

Example: Multiple 
categorical and/or 
continuous variables 
representing the 
study design and/or 
measurement quality 
(e.g., RCT vs. non-RCT, 
reliability)
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Figure 2 

Plots of (a) the Tetrachoric Correlation Matrix of the Quality Indicators and (b) the Quality Test Information Curve Based on the 

Two-Dimensional 2PL Model 

(a) Correlation Matrix (b) Test Information Curve 

  

Note. All indicators were coded binary (0 = No, the criterion does not apply; 1 = Yes, the criterion applies). Panel (a): AppliedSkills = 
Assessment of applied skills, Interactivity = Task interactivity, IPD = Individual participant data, RandomSample = Random 
sampling, RelReport = Reliability reporting, TestFair = Test fairness evaluation. Panel (b): The test information plot displays the 
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information function 𝐼(𝜃) along the two latent quality variables 𝜃) and 𝜃!. Higher values on 𝐼(𝜃) indicate a more information and 
better precision on the two latent quality variables 𝜃) and 𝜃!. 
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Figure 3 

Reflective Measurement Model of Primary Study Quality in the Illustrative Example 2 

 

 

 

Note. IPD = Individual participant data, MEQ = Measurement quality, SDQ = Study design 
quality. The mean structure is omitted in this path diagram.
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Figure 4 

Plots of the Linear and Non-Linear Relations between Study Design Quality (Factor 1) and the Effect Sizes in Example 2 
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Figure 5 

Plots of (a) the Mixed-Format Correlation Matrix of the Quality Indicators and (b) the Relation between the Primary Study Quality 

Composite Score and the Effect Size 

(a) Correlation Matrix (b) Relation between Study Quality and the Effect Size 𝑔 

  
 
Note. The correlation matrix was pooled across the 20 imputed data sets. TreatedC = Treated control group, ES = Effect size, 
PubStatus = Publication Status, Random = Randomization, PPCDesign = Pretest-posttest experimental-control group design, PerfSTA 
= Performance-based and standardized assessment, Matched = Matching of the groups.
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Figure 6 

Two-Step Procedure of Creating a Composite Study Quality Score in the Illustrative Example 3 

 

 

 

Note. CG = Control group, PPC = Pretest-posttest experimental-control groups, PSQ = Primary 
study quality. Covariances among the moderators (in grey) inform the model estimation, yet are 
often not explicit model parameters. The mean structure is omitted in this path diagram. 
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