Is it Worth Attending Classes in-person? A Post-COVID Study in ICT University Courses

by Alfredo Capozucca and Luis Leiva

Department of Computer Science University of Luxembourg

Once, upon a time ...

Aberystwyth University students attending a lecture. Photograph: Alamy. Source: The Guardian

Today

Photo by Changbok Koon Unsplash

Isolate situation?

Population: 339 responses given by *academics*, the majority of whom were based in the UK

Source: Class attendance plummets post-Covid, survey conducted by Times Higher Education (THE), June 2022. Link

Why does it happen? Based on THE survey

Factors

- not wanting to come to campus
- undertaking paid work
- experiencing mental health issues
- failing to do enough preparation

Why does it happen? Our thoughts

Assuming:

- No mandatory attendance
- Full time availability (i.e. not part-time work or similar)
- No health issues

Factors:

- 1. the grading criteria: it determines what the student has to reach to pass the course
- 2. the assessment method: it determines how the student will be tested
- 3. the teaching methodology: it determines how students learn and get trained

Is it a problem?

For universities:

- Costs
 - Course administration (Secretaries, Teachers and Director)
 - Student support (TAs)
 - Classrooms/Labs
 - Equipment

For students

• Academic performance?

Research question

• RQ (v1) Does class in-person attendance have an impact on the student's performance?

... or putting the question in a measurable form:

• RQ (v2) Is there any correlation between attendance rates and the achieved grades for a **given course**?

Pilot study (1/3)

Academic performance

Code assignment week 2 Grade: [0..10] Passing grade >= 5

Group 1: 29 students Group 2: 31 students

Distribution of grades

N=60 students

Pilot study (2/3)

Question:

is there a statistically significant difference between **grades** attained by:

- students who attended in-person week 3, and by
- students who **did not attend** in-person week 3?

Answer:

Statistical analysis via one-tailed two-sample t-test

t(58) = 4.4313, p < 0.0001, d = 1.313

The effect size (Cohen's d) suggests a **large importance** of the results.

Pilot study (3/3)

Question:

Is there a correlation between grades (assignment week 2) and attendance (week 3)?

Answer:

Pearson's product-moment correlation.

 ϱ = 0.5, p < 0.0001

In behavioural sciences (Pagano, 2010), ρ > 0.5 is considered to be a strong correlation.

(Pagano, 2010) Pagano, R.: Understanding Statistics in the Behavioral Sciences. Wadsworth, Cengage Learning (2010)

Planned Study (1/)

Participants

- Students in Bachelor in Computer Science (BiCS), winter semester 2022-2023
 - Year 1: student \approx 75, courses = 6
 - Year 2: student \approx 35, courses = 5
 - Year 3: student \approx 35, courses = 5

Variables

- (Independent) Course attendance rate: the number of physical attendance of a student to each scheduled session of a given course. Number between 0-100.
- (Dependent) Academic performance: final grade a student gets after course completion. Number between 0-20 (Passing grade 10 or higher)

Planned Study (2/)

Hypothesis

Assuming \mathcal{A} and \mathcal{G} are random variables, we define:

- Null hypothesis $H_0: \rho(\tau_l^a \leq a_j^i \leq \tau_u^a, \tau_l^g \leq g_j^i \leq \tau_u^g) \approx 0.$ - Alternative hypothesis $H_a: \rho(\tau_l^a \leq a_j^i \leq \tau_u^a, \tau_l^g \leq g_j^i \leq \tau_u^g) \neq 0.$

with

$$\rho(\mathcal{A},\mathcal{G}) = \frac{\mathbb{E}\left[(\mathcal{A} - \mu_{\mathcal{A}})(\mathcal{G} - \mu_{\mathcal{A}})\right]}{\sigma_{\mathcal{A}}\sigma_{\mathcal{G}}}$$
(1)

where

 $\sigma_{\mathcal{A}}$ is the standard deviation of the attendance rates, $\sigma_{\mathcal{G}}$ is the standard deviation of the grades, and $\mathbb{E}[\cdot]$ is the expected value of a random variable with finitely many outcomes.

Expected conclusions

	H0 (there is not correlation)	Ha (there is a correlation either + or -)
Student	 Likely to repeat the same behaviour in the next term for "similar" courses. 	 (- corr) ↓attendance / ↑performance Likely to repeat the same behaviour in the next term for "similar" courses. (- corr) ↑attendance / ↓ Performance Likely to give negative feedback to the course. (+ corr) May explain your grade.
Instructor	 Likely to repeat the same behaviour in the next term. Good to let student know at the first session. 	 (- corr) ↓attendance / ↑performance Double-check if ILOs are acquired. Hybrid? Online? MOOC? (- corr) ↑attendance / ↓ Performance Dig student's feedback. Perform a deep reflection. Interview students.
Course director/QA officer		 (+ corr) Good to let student know at the first session.
		14

Construct validity

- Academic performance
 - Precision? Guaranteed as we have access to the final grades of every single student
- Course attendance rate
 - Precision? More complicated. Strategy is to combine data from multiple sources
 - LMS
 - Survey students
 - Survey instructors
 - Keep only courses for which consistent attendance rates were found among different sources.

That's all. Thank you for your attention.

Questions?