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night. People lost their lives, and the ones who remained are "mov-
ing on". I am always fascinated by how people can keep their sanity
and adapt after such tragedies. After all, the same things can happen
again. The reason is simply, we have to. This is not a drill. We have to
make the most out of this life.
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lives become more meaningful if we build on the knowledge of pre-
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for all their camaraderie through my time in LIST.
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A B S T R A C T

Agriculture is essential to meeting billions of people’s food needs. As
the human population grows, agricultural activities will inevitably
continue to expand. Unfortunately, these activities contribute to cli-
mate change by emitting greenhouse gases (GHGs) either directly
(via methane, field operations, land-use change etc.) or indirectly
(across the entire supply chain). Aside from air pollutants, agricul-
tural processes that utilize pesticides, fertilizers, and other farm chem-
icals can contaminate fresh water, marine ecosystems and the soil.
They can also remain in the environment for generations. All these
environmental impacts point to one conclusion: agricultural policies
must prioritize sustainability.

Policymakers have demonstrated efforts to mitigate the adverse
effects of agriculture on the environment. Since the 1980s, environ-
mental goals have become an increasingly important component of
the EU’s Common Agricultural Policy (CAP). The European Com-
mission’s Green Deal proposes policies to make production decisions
more environmentally responsible. However, given the complex na-
ture of agriculture, assessing the potential outcomes of these policies
is difficult. Agriculture is regarded as a complex system because it in-
cludes a high level of human–environment symbiosis. Furthermore,
the economic and political consequences of such policies must be care-
fully evaluated before they are implemented.

In the SIMBA project, we aimed to address the sustainable farm
management problem. We propose a hybrid model combining agent-
based modeling (ABM) and life cycle assessment (LCA) where farmer
agents maximize their profits and minimize environmental impacts
via mathematical optimization. ABMs are particularly appealing for
modeling complex systems, investigating and simulating possible sce-
narios to address today’s environmental problems. The agents follow
a set of rules within a context in which learning and adaptation can
cause changes in other agents or the environment. These changes
may be attributed to agents’ behavioral properties which influence
the production decisions.

Sustainability assessment from an environmental point-of-view
must be applied to understand and reflect on the emissions caused
by agricultural production activities. The LCA methodology can as-
sist strategic actors in quantifying the impacts of those activities. LCA
can be used to assess the impacts of farm-level activities and those
that occur throughout the entire production chain.

A coupled ABM-LCA model is already a useful stepping stone in
understanding and quantifying the environmental impacts of pro-
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duction decisions in a complex system. However, policymakers need
to incentivize (most often with targeted subsidies) agricultural busi-
nesses to pursue sustainable practices. This is important because,
although prioritizing profit-making over emission reduction is not
a sustainable model for the planet, agricultural businesses need
nonetheless to be financially sustainable. It is necessary to have mod-
els that consider both sides of the coin, i.e., trade-offs between profit
maximization and emission mitigation. Therefore, we integrated
mathematical optimization into our model, which enables agents to
optimize their farms from economic or environmental standpoints.
Our case study focuses on agricultural activities in Luxembourg;
consequently, the recommendations were established after in-depth
consultation with the various project partners in the region. Nonethe-
less, our model can be adapted to be used in various other countries
and regions.

To summarize, the first novel contribution made by this thesis is
the hybrid ABM-LCA model. This model simulates the possible farm
management scenarios for more sustainable dairy farming activities.
In our model, the primary production units are an animal and a field,
and the status of each production unit is updated at each time step
in accordance with the livestock management, crop production and
rotation requirements. The resolution of the simulations is one month,
at which point the farmer agents can make decisions according to
the rules that have been pre-set. The farmer agents interact with one
another and, as a result of these exchanges, modify their behavior to
reflect their awareness of environmental impacts. The multi-objective
optimization of farming activities within the constraints of economic
and environmental factors constitutes the second novel contribution
of this thesis. Land-use change and animal population density are
two of the decision variables that are considered. The optimization
model can be used to see the trade-off between various scenarios
involving maximizing profits and reducing possible environmental
impacts.

This study incorporates a number of case studies gleaned from a
hybrid ABM-LCA model’s progression through its phases. The two
novel contributions outlined above made it possible to conduct a num-
ber of case studies and based on the findings of those case studies, the
following conclusions can be drawn: (1) The connection between the
farmers and the sharing of information helps to lessen the overall neg-
ative impacts on the environment. (2) It is possible to lower stocking
rates without jeopardizing the economy’s long-term viability. (3) Al-
tering animals’ diets or increasing soybean output on a local level are
both viable options for lowering soybean production. (4) An increase
in biogas production in Luxembourg is conceivable with the addi-
tion of additional amounts of animal manure and food waste to the
existing biogas feedstock. (5) An obvious trade-off between environ-

vi



mental and economic goals arises from optimizing farming activities.
This trade-off can be evaluated by policymakers to decide on future
regulations and subsidies for the sector of agriculture.
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1
I N T R O D U C T I O N

This chapter provides an introduction to the thesis’s contents and
the larger context in which it is situated. The objective is to illus-
trate the need for new and reliable modeling tools to quantify the
environmental impacts of farming systems by tying agricultural
production demand to some of the most challenging environmen-
tal concerns of our time. The thesis is being conducted under the
SIMulating economic and environmental impacts of dairy cattle
management using Agent BAsed Models (SIMBA) project funded by
the National Research Fund of Luxembourg (FNR) under the grant
INTER-FNRS/18/12987586. The SIMBA project seeks to optimize agri-
cultural production by combining Agent-Based Modelling (ABM) with
Life-Cycle Assessment (LCA), and the goal of this thesis is to present
a model of the farming system in Luxembourg and simulate several
scenarios that aim to reduce the environmental impact of farming
activities under economic and environmental constraints. In the sec-
tions that follow, section 1.1 will describe the broader context, section
1.2 will discuss the background of the SIMBA project, and section 1.2.1
will elaborate on the objectives and structure of the thesis.

1.1 agriculture , sustainability and human behaviour

1.1.1 Agriculture and environmental impacts

Agriculture has a crucial role in meeting basic human requirements.
It provides the means for millions of individuals worldwide. In turn,
the cultivation and consumption of food are associated with a wide
variety of human needs, including sustenance, socialization, and cul-
tural expression. Producing crops, raising cattle and harvesting trees
are all included in the agricultural industry. Resources including land,
water, energy, and human labor are necessary for these actions. Using
these inputs effectively and adopting best practices and technologies
is crucial to the efficiency and sustainability of agricultural produc-
tion.

On the other hand, agriculture has significant environmental impli-
cations. Soil and water contamination can come from agrochemicals
like fertilizers and pesticides, and biodiversity loss and carbon emis-
sions can result from land use change and deforestation. Droughts,
floods, and other extreme weather occurrences are ways climate
change threatens the agriculture industry. Sustainable agriculture
practices are being promoted and used on a global scale as a so-
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2 chapter 1

lution to these problems. The long-term health of the agricultural
sector is prioritized, and these methods are used to lessen its envi-
ronmental footprint. Crop rotation, conservation tillage, agroforestry,
and the utilization of renewable energy sources are all examples of
sustainable agricultural techniques.

According to (Nabuurs et al., 2022), agriculture accounts for around
21% of Greenhouse Gas (GHG) emissions, including emissions from
livestock, deforestation, and using fertilizers and other agrochemicals.
(Pendrill et al., 2022) reports that agriculture drives more than 90% of
tropical deforestation. Using synthetic fertilizers and other agrochem-
icals can lead to soil and water pollution, harming human health and
wildlife. (Alexandratos and Bruinsma, 2012) has estimated that global
food production will need to increase by around 60% by 2050 to meet
the needs of a growing global population. This will place further pres-
sure on natural resources and the environment. According to (Ceder-
berg and Sonesson, 2011) one-third of global food production is lost
or wasted each year, representing a significant waste of resources and
contributing to GHG emissions. Livestock use for food production is
essential to environmental impacts, including GHGs, land use change,
and water pollution. (Gerber et al., 2013) estimates that livestock pro-
duction accounts for around 14.5% of global GHG emissions.

1.1.2 LCA and human behavior

A product or process’s environmental and health impacts can be esti-
mated using LCA, which involves measuring the inputs and outputs
of the product or process in question. However, in systems involv-
ing personal decisions and human interactions, like agriculture and
farming systems, complicated and unpredictable aspects of human
behavior come into play. These aspects are generally disregarded by
mere LCA models. The accuracy of LCA predictions can be compro-
mised by ignoring human behavior, as acknowledged by other au-
thors (Gutowski, 2018).

To circumvent this shortcoming, LCA studies sometimes make as-
sumptions about the intended usage behavior of humans or rely on
stylized scenarios. Unfortunately, the understanding of human behav-
ior that may be gained by using these techniques is oversimplified.
Hence, it has been suggested that ABM be used to incorporate a more
nuanced description of human behavior into LCA investigations.

ABM, started as Individual Based Modeling in Ecology and then
was developed in Computer Science, with many applications to solve
problems of the Social Sciences domain. A more accurate depiction of
human behavior in complex systems can be attained through the use
of ABM, which simulates individual agents and their interactions. ABM
has been applied to agriculture for the purpose of modeling farmer
decision-making and the spread of innovative farming techniques.
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One of the phenomena in which environmental factors and so-
cial factors are strongly intertwined is the rebound effect, in which
greener lifestyle choices lead to more consumption and cancel out
any early positive impact on the environment is essential. Individu-
als’ reactions to shifts in environmental policy or market conditions
are determined mainly by human behavior, which is vital to the re-
bound effect (Font Vivanco et al., 2022; Murray, 2013). Because of this
strong tie with social phenomena, environmental policy and the re-
bound effect have been modeled using ABM.

In terms of Life-Cycle Impact Assessment (LCIA), agricultural emis-
sions contribute to climate change, which can have significant impacts
on ecosystems, human health, and the economy. Moreover, agricul-
ture can change land use, affect habitat destruction, and enhance soil
erosion. This can result in biodiversity loss, reduced soil fertility, and
increased vulnerability to natural disasters. Agriculture is a major
user of freshwater resources, particularly for irrigation. Excessive wa-
ter use can lead to water scarcity, impacting ecosystems and human
populations. Using fertilizers and other agrochemicals in agriculture
can lead to eutrophication, which is the excessive growth of algae
and other aquatic plants due to increased nutrients (nitrogen and
phosphorus concentration). This can result in oxygen depletion and
harm aquatic ecosystems.

1.1.3 Agricultural emission reduction policies in EU and Luxembourg

The European Union (EU) has set a number of policies and targets
aimed at reducing agricultural emissions and promoting sustainable
agriculture practices. The Common Agricultural Policy (CAP) is the
EU’s main policy for supporting agriculture and rural development.
The latest CAP reform, which came into effect in 2021, includes a new
"green architecture" that aims to incentivize farmers to adopt more
sustainable practices, such as agroforestry, organic farming, and the
use of precision farming techniques. The new CAP also includes an
"eco-scheme" that provides additional funding for farmers who un-
dertake specific actions to reduce emissions and improve the environ-
ment.

The Effort Sharing Regulation (ESR) is an EU-wide policy that sets
binding emissions reduction targets for sectors not covered by the
EU Emissions Trading System (ETS), including agriculture (Yougova,
2021). Under the latest ESR targets for 2021-2030, the agriculture sec-
tor is expected to reduce emissions by 10% compared to 2005 levels.
There is also The Renewable Energy Directive (RED) which sets tar-
gets for using renewable energy in the EU, including biofuels and
other forms of renewable energy produced from agricultural crops
and waste (Dusser, 2019). The latest RED target for 2021-2030 includes
a 14% share of renewable energy in the transport sector, which is ex-
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pected to drive demand for biofuels and other sustainable transport
fuels.

The EU Farm to Fork Strategy is a new strategy launched in 2020
that sets targets for reducing GHGs, improving the sustainability of
food production, and promoting healthier diets (European Commis-
sion, 2020). The Farm to Fork Strategy includes a number of actions
aimed at reducing emissions from agriculture, including promoting
organic farming, reducing the use of fertilizers and pesticides, and
improving soil health. Overall, the EU has set ambitious targets for
reducing emissions from agriculture and promoting sustainable agri-
culture practices. It remains to be seen how effective these policies
will be in practice, but they represent an important step towards a
more sustainable and low-carbon food system.

Since all the case studies discussed in this thesis are set in Luxem-
bourg, it is very much relevant to learn and adapt the model to the
policies of the Luxembourgish government (MECDD, 2021a,b). A na-
tional plan for sustainable agriculture launched in 2020 outlines the
government’s vision for a more sustainable and resilient agriculture
sector in Luxembourg. The plan includes numerous actions to reduce
emissions from agriculture, such as promoting organic farming, im-
proving nutrient management practices, and supporting agroforestry.
The water management plan also sets out measures to protect and
improve water quality in Luxembourg, including measures aimed at
reducing pollution from agriculture. For example, the plan includes
measures to promote sustainable agriculture practices that reduce nu-
trient runoff and improve soil health.

1.2 the project simba

The SIMBA project tries to bridge agronomy, computational modeling,
sustainability science and complex systems. Phenotypical aspects of
animals are used to model emissions and production. The simula-
tions can be run on the model to assess the agricultural policies of
the Luxembourgish government. The innovative aspects of the SIMBA
project include the development of an ABM to simulate the popula-
tion’s agricultural practices and the hard–coupling (Marvuglia et al.,
2017) of that ABM to LCA1. To assess the environmental impacts of
individual farming practices, the ABM’s outputs are transformed into
a demand for farm products and services.

1 The three different types of coupling between ABM and LCA as described in (Micol-
ier et al., 2019):

• Soft–coupling: At the end of the simulation, the ABM outputs are compiled
and used as inputs for the LCA.

• Tight–coupling: At each time step, ABM outputs are used as the LCA’s inputs.

• Hard–coupling: At each time step, LCA results are used as inputs to the ABM.
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The LCA part of the model allows assessing the environmental im-
pacts from a life cycle perspective of this demand for farm products
and services, where the system-specific processes are modeled using
regional data and projections. There is a general agreement in the
LCA community that two main types of LCA (attributional and con-
sequential) modeling exist (Finnveden et al., 2022) for what concerns
the system studied and research questions that one wants to answer.

"The attributional approach attempts to provide information on what por-
tion of global burdens can be associated with a product (and its life cycle)"
(Schaubroeck et al., 2021; UNEP, 2011). The recent advancements in
this area have concentrated on enhancing the modeling of emissions
and resource consumption, Life-Cycle Inventory (LCI) data accuracy
and comprehensiveness. The second most common LCA modeling
is the consequential approach, which "attempts to provide information
on the environmental burdens that occur, directly or indirectly, as a conse-
quence of a decision (usually represented by changes in demand for a prod-
uct)" (Schaubroeck et al., 2021; UNEP, 2011). It considers the rami-
fications of indirect effects and potential changes in supply and de-
mand. Recent advancements have aimed to incorporate consequential
approaches into policy frameworks and decision–making processes,
allowing for the evaluation of various scenarios and policy interven-
tions.

Temporal aspects in LCA can be addressed in different levels
(Beloin-Saint-Pierre et al., 2020). Intersecting temporal aspects with
the maturity of the studied technology, different denominations have
been coined for the resulting LCA type (Arvidsson et al., 2023). One of
them, which is recently gaining considerable momentum, is Prospec-
tive LCA, which focuses on assessing the potential effects of novel
technologies, improved efficiency and incorporation of predictive
models and scenario analysis (Arvidsson et al., 2018). (Sacchi et al.,
2022) addresses the need of an inventory database in prospective
LCA to track expected changes in technologies and the environment
over time, following specific socio-techno-economic pathways as en-
ergy systems and industries rapidly shift toward cleaner production.
The study introduces the tool premise, a Python library that allows
propsective LCA in the LCA calculation framework Brightway2 (Mu-
tel, 2017) and the Activity Browser (Steubing et al., 2020). premise
simplifies prospective inventory database generation by integrating
Integrated Assessment Model (IAM) scenarios. In a socio-economic
narrative, the climate change mitigation target affects nearly all ac-
tivities in the database. The sector-based transformation and climate
change mitigation target affect direct air capture of CO2, lithium-ion
batteries, electricity, clinker, and road freight transport. From the
temporal perspective, we can distinguish between fully–fledged dy-
namic LCA (Levasseur et al., 2010) and temporally differentiated LCA
(sometimes also referred to as time–resolved LCA). In the former, the
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life-cycle impact of each emission is a function of time instead of a
static number. This happens because of dynamic background2 and
foreground3 inventories in addition to dynamic characterization fac-
tors (e.g., for Global Warming Potential (GWP)) (Pigné et al., 2020). In
the latter, normally only the foreground activities are differentiated
(Beloin-Saint-Pierre et al., 2020).

Among these approaches, SIMBA follows the attributional approach
where the policy interventions are incorporated through scenarios in
ABM and through hard-coupling (Baustert et al., 2019) the resulting
environmental impacts are quantified using LCA.

To describe the functional unit used in this study, we first need to
explain the territorial LCA approach territorial LCA approach (Loiseau
et al., 2018). The first issue is brought up by the requirement to define
territory within the context of LCA. Geographers define a territory as
the collection of interactions between society and the environment
(Loiseau et al., 2018). It is a geographical area where human soci-
eties can expand their operations through territorial functions (like
waste management), which offer goods and services based on the
characteristics of the land and how its resources are used (from tan-
gible ones like the provision of food or housing to intangible ones,
like landscape quality or cultural heritage). Therefore, the territory is
not an administrative region but rather the collection of connections
between various spatial territorial units (settlements, districts, and re-
gions) that interact and exchange flows of various kinds (goods, peo-
ple, and services, for example), supporting various territorial func-
tions.

The definition and quantification of territorial functions pertinent
for the territory at issue after the concept of territory has been es-
tablished allows for the subsequent description of the supporting
activities and, as a result, the evaluation of the associated environ-
mental burdens. To accomplish two goals: 1) to distribute the costs
of various activities to the territorial units that directly or indirectly
support them (partially or entirely), and 2) to enable the calculation
of an eco-efficiency index (Seppäläa et al., 2005) of the studied ter-
ritory, it is crucial to characterize the territory through its territorial
functions. According to (Seppäläa et al., 2005), eco-efficiency is the
proportion between the services a territory offers and the resulting
environmental impacts. As stated in (Seppäläa et al., 2005), the chal-
lenge of obtaining data of sufficient accuracy prevents the inclusion
in its calculation of upstream inventory flows that go beyond the in-
dustry sectors (namely the activities related to the households). As a

2 "The background system consists of processes on which no or, at best, indirect influence may
be exercised by the decision–maker for which an LCA is earned out. Such processes are called
background processes" (Frischknecht, 1998).

3 "The foreground system consists of processes which are under the control of the de-
cision–maker for which an LCA is earned out. They are called foreground processes"
(Frischknecht, 1998).
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result, this strategy still needs to be researched and enhanced in or-
der to expand its application (Loiseau et al., 2018). Also, (Loiseau et
al., 2018) differentiate between two territorial LCA applications. The
first one, type A, "contextualizes the LCA of an activity (i.e., produc-
tion or consumption activities) that is anchored in a specific territory
and dependent on the geographical context". The second one, type B,
"assesses the environmental impacts of all production and consump-
tion activities located in a given territory". In SIMBA we follow type A
but only consider agriculture and farming production activities (addi-
tionally biogas production in several scenarios, which is a production
activity that is tightly linked to agricultural production). Therefore,
we can define the functional unit in this study as the land within the ge-
ographical boundaries of Luxembourg, which is studied only concerning
the agriculture and farming production activities (additionally bio-
gas where applied), excluding pastures, vineyards and orchards. The
scope is cradle-to-farmgate, i.e., the LCA does not consider activities
occurring after farmgate such as transportation to the market.

Figure 1: Foreground, background and system boundaries of LCA in
SIMBA.

1.2.1 Objectives of the PhD Project

As mentioned above, agriculture is a complex system with numerous
actors and activities. Although policymakers set goals to reduce emis-
sions through agricultural activities, there is a lack of understand-
ing of achieving these goals. To model and run possible scenarios on
Luxembourgish agriculture, this work focuses on a hybrid ABM-LCA
model that optimizes farm outputs based on environmental and/or
economic objectives. The goal is to provide policy support for the
stakeholders in Luxembourgish agriculture and evaluate possible sce-
narios for emission reduction.
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Figure 2 shows how the thesis and publications are structured from
the start. The structure of this thesis follows the order in which the
publications appeared, showing the gradual improvement brought by
each publication.

Figure 2: Organization of the thesis in building blocks.

Following Figure 2, the research questions that were addressed in
this thesis and corresponding chapters are as follows:

• What are the consequences of farmer behaviors concerning en-
vironmental consciousness and their interactions by utilizing a
modeling methodology that integrates ABM and LCA? (Chapter
2)

• What are the financial and environmental outcomes of livestock
farming using the coupled ABM-LCA model? (Chapter 3)

• How can the biogas production system be modeled and how
can biogas production be increased from different feedstock
compositions? (Chapter 4)

• Would mathematical optimization be useful to find a balance
between economic and environmental sustainability? (Chapter
5)

Afterward, a dashboard was built in order to visualize the findings
of corresponding research outcomes (described in chapter 6). Using
the dashboard, the results can be presented to the project partners
and the agriculture stakeholders. Finally, chapter 7 concludes the PhD
thesis and provides a discussion of the findings.
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2
A G E N T- B A S E D M O D E L L I N G T O S I M U L AT E
FA R M E R S ’ S U S TA I N A B L E D E C I S I O N S : FA R M E R S ’
I N T E R A C T I O N A N D R E S U LT I N G G R E E N
C O N S C I O U S N E S S E V O L U T I O N

2.1 abstract

ABMs have been adopted to simulate different kinds of complex sys-
tems, from biological systems to Complex Coupled Human-Natural
Systems (CHANS). In particular, when used to simulate man-managed
systems, they allow considering human behavioural aspects within
the modelling framework. On the other hand, environmental LCA
has become an acknowledged tool in research, industry and policy
to assess systems’ environmental sustainability. More recently, LCA is
being applied to assess the potential environmental impacts of large
scale policy actions (e.g., actions to combat climate change). This pa-
per describes the application of a coupled ABM-LCA model to simu-
late cropping activities in the Grand Duchy of Luxembourg. The ABM
considers farmers’ proneness to risk, which was assessed via a naïve
Bayesian model trained with the results of a survey distributed to the
farmers of the study region. The goal of the study is to assess the
effects of the agents’ interactions, that can take place in a farmers’
social network, on the agricultural activities. Geographic Information
System (GIS) information, national statistics and naïve Bayesian model
are used to parameterize agents’ behaviour and interaction rules. We
believe such assessment is necessary for the successful design of pub-
lic adaptation strategies and subsidy schemes since governmental
adaptation actions are needed to reduce emissions due to agricultural
activities. Two scenarios (with different levels of farmers’ environ-
mental awareness) were simulated. The results show that the mean
and variance of the distribution of farmers’ environmental awareness
change due to the effect of the interactions and, as a consequence,
farmers’ long-term decisions concerning agricultural activities are af-
fected. This is reflected in the environmental impacts generated by
such activities.

2.2 introduction

Beyond the different possible definitions of sustainability science, the
application of advanced analytical–descriptive quantitative tools are
recognized as an essential element to guide decision-making towards
the goal of meeting human needs, while remaining within a "safe op-

15
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erating space" (planetary boundaries) (Wiek et al., 2012). Hence the
concept of quantitative sustainability assessment (Marvuglia et al.,
2015), whose final aim is supporting decision-making in a broad con-
text encompassing three dimensions: economic, environmental and
social (Guinee et al., 2011; Heijungs, 2010; Sala et al., 2015). One of
the most peculiar elements of this extensive assessment is the consid-
eration of the effects of human behaviour as cause, and at the same
time effect, of collective actions that are the result of the interaction of
social actors. These collective actions are the drivers of the so-called
"emerging features" of a system, which rise with no central planning
and would not be possible to observe by limiting the analysis to the
consideration of single actors or representative actors (Mitchell, 2009).

The above-mentioned components call for important implications
of computational social sciences and for a trans-disciplinary approach
as essential elements of modern sustainability research (Popa et al.,
2015) and inevitably connect to the concept of complex systems when
dealing with the human–environment interaction.

In the domain of complex simulations, ABM is a well-suited tech-
nique to study CHANS (Hare and Deadman, 2004; Rounsevell et al.,
2012). ABMs are used to assess system-level patterns that emerge from
the actions and interactions of autonomous entities (Gilbert, 2019;
North and Macal, 2007). They have been applied in recent years, span-
ning a very wide landscape of application domains, including eco-
nomics, techno-social systems, and environment (Gaud et al., 2008;
Gilbert, 2019; Grimm and Railsback, 2005; Heath et al., 2009; Heck-
bert et al., 2010; Micolier et al., 2019a; Teglio et al., 2011; Wu et al.,
2017).

Agents can be defined as social autonomous entities that interact
with other agents and/or with their environment to achieve their
goals when necessary. They can represent a physical or a virtual en-
tity (Ferber and Weiss, 1999). Agents are embedded in a dynamic
environment, and are capable of learning and adapting in response
to changes in other agents and the environment (An, 2012).

While the agricultural sector has been increasingly threatened by
Climate Change (CC), it is also one of the major sources of GHG emis-
sions. In Europe, the agricultural sector accounted for almost 10% of
the total greenhouse gas emissions in 2015 (Hart et al., 2017) and as
we explained above, it fits the description of complex systems due to
high level of human–environment symbiosis. As a complex system,
the use of solely LCA to quantify the environmental impacts risks to
underestimate many of the complex characteristics of the domain. In
this paper, we will especially focus on a particular field of quantita-
tive sustainability assessment. By using a modelling approach that
integrates ABM and LCA (as will be described later in Section 2.4), this
paper evaluates the implications of different farmers’ behaviours con-
cerning environmental awareness and their mutual interactions. The
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modelling framework developed in this work has the potential to sim-
ulate the interactions among different actors in the agriculture sector
and can be used to incorporate temporal dynamics into sustainability
assessment.

The remainder of the paper is organized as follows: Section 2.3
provides a brief background on ABM-LCA coupling and how social
network analysis is combined with ABM. Section 2.4 explains the con-
ceptual background behind our simulation model and introduces the
naïve Bayesian classifier that has been used to estimate farmers’ risk
aversion attribute. Finally, we discuss the crop rotation strategies that
can be attributed to a farmer. A case study that concerns the agri-
cultural land of Luxembourg is introduced in Section 2.5, where the
simulation rules are explained and the flowchart of the adopted simu-
lation methodology is presented. The results for two different scenar-
ios for ten years of simulation are presented and discussed in Section
2.6. Section 2.7 discusses the limitations, conceptual barriers and fu-
ture development of our study and Section 2.8 draws some relevant
conclusions.

2.3 literature review

2.3.1 Coupling ABM with LCA

In its classical implementation, in the so-called Attributional Life-
Cycle Assessment (ALCA) setting, LCA represents the world via static
connections between technologies and with linear relationships be-
tween production and supply (constant efficiency of production pro-
cesses and unconstrained market). However, its limitations are be-
ing addressed by many researchers since a number of years and the
Consequential Life-Cycle Assessment (CLCA) model has been con-
ceived to deal with specific contexts where the underlying hypotheses
of ALCA cannot be applied (Marvuglia et al., 2013; Rege et al., 2015a;
Weidema et al., 2018). In particular, ALCA reaches its limitations when
evaluating complex systems (Davis et al., 2009). In this context ABMs
have been advanced to circumvent some of these limitations (Davis
et al., 2009). Using ABMs in a CLCA (Marvuglia et al., 2013) context can
be a valuable option whenever the impacts that one wants to model
are ultimately the effect of the interaction of a multitude of actors
whose behaviour in the system is difficult to schematize in a rational
manner using deterministic equations. In these cases, ABM appears to
be a very valuable tool to derive consistent foreground data for the
Life-Cycle Inventory (LCI) (Davis et al., 2009). According to (Davis et
al., 2009) ABM complements LCA because it provides a means to create
nonlinear dynamic systems, which allow the consideration of social
and economic aspects, while ALCA is a tool for linear modelling of
static systems. The promises of ABM-LCA coupled models include the
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consideration of human behaviour and local variability in the studied
system, as well as scenario modelling for emerging systems (Baustert
and Benetto, 2017).

However, the examples of ABM-LCA coupling are not numerous in
the literature because, on one side the ABM paradigm probably still
lacks full acceptance in the LCA community, and on the other side, it
suffers from the difficulties linked to its implementation. Table 1 re-
sumes the main characteristics of the papers screened in our analysis
of the state of the art concerning the coupling between ABM and LCA.

2.3.2 Agent based modelling on social network dynamics

Social Network Analysis (SNA) and ABM are both valuable tools to
analyse human interactions in a given environmental and societal
context. (Manson et al., 2016) combined SNA and ABM to model
farmer transition to rotational grazing production in the United
States (US). In their approach each tie between agents represents
a certain type of relationship according to a predefined definition.
There are also primary and secondary types of ties, where the former
is a strong one (that links the agent with family and friends) and the
latter can be a tie with an extension agency or other farmers in the
grazing network.

In market research, the integration between these two modelling
components was also addressed in multiple studies. Several studies
have showed how the choice of a new product may be influenced by
the agents’ peers (Amini et al., 2012; Bohlmann et al., 2010; Golden-
berg et al., 2007). Also an activity such as transition to sustainable
mobility was analysed in the same way by (Huétink et al., 2010) and
(Noori and Tatari, 2016). The social influence over attitude dissemina-
tion has been studied by (Moglia et al., 2018) regarding sustainable
energy use, and by (Kaufmann et al., 2009) to analyse the dissemina-
tion of organic farming practices in the EU.

Using ABM, one can model each agent (in our case a farmer) with
its own peculiar characteristics. Each agent can be modelled such that
there is no central governance in the model. They can process and ex-
change information with other agents while making autonomous de-
cisions. This autonomy creates heterogeneity in the model and thus
more aggregate phenomena can be developed. Agents can still take
decisions based on a pre-specified objective (i.e. they are proactive)
or they can learn during the simulations by the experiences or ob-
servations and take decisions accordingly. This heterogeneity allows
capturing the diverse personality traits, such as emotion or risk aver-
sion and complex psychology.
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Table 1: Summary of the approaches found in literature coupling ABM and LCA.

authors topic , scope , or case study approach used main assets and limitations

(Davis et al.,
2009)

Simulation of the evolution of
a bioelectricity infrastructure sys-
tem in The Netherlands.

Energy conversion facilities mod-
elled as a set of agents.

Assets: Use of a dynamic set of agents, which
can enter or exit the simulation. Limitations: LCA
not fully dynamic since the agents do not use
dynamic production or delivery functions in the
background system (Tiruta-Barna et al., 2016).
High uncertainty in the economic data.

(Davis et al.,
2010)

Support stakeholders involved in
the development of bio-electricity
infrastructure.

Agents taking a certain feedstock
and generating electricity. The
ABM is underpinned by an Ontol-
ogy built ad hoc. The exchanges
among agents take place in the
form of contracts arrangement,
bidding and negotiation.

Assets: Flows between the agents visualized
graphically. Good transparency achieved through
visualization. Limitations: Integration between
LCA and ABM simulator achieved via the use of
pre-calculated LCA results for several goods. No
hard coupling.

(Miller et al.,
2013)

Lifecycle impact assessment of
planting switchgrass by farmers
responding to policies.

Stochastic model integrated with
LCA module to analyse the effect
of decision-making patterns over
time. Farmer agents update their
degree of switching propensity
from cotton to switchgrass and
their actions influence the LCA im-
pacts generated.

Assets: Farmers switching propensity estimated
using Bayesian probabilities and the results used
to inform the LCI. Spatial information is included
in the model. Limitations: Sensitivity analysis
and validation not performed. Data availability
and uncertainty limit the framework. The model
can be used only to understand general trends,
but not as a predictive tool.
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Table 1: Summary of the approaches found in literature coupling ABM and LCA. (continued)

authors topic , scope , or case study approach used main assets and limitations

(Querini and
Benetto, 2014)

Assess mobility policies, in par-
ticular the deployment of electric
vehicles in Luxembourg and the
neighbouring French region Lor-
raine under different scenarios.

Coupling an ABM model built in
NetLogo, with an LCA model un-
derpinned by ecoinvent 2.2 data
modified to take into account the
evolution of technology in the car
market as well as in the energy
mixes.

Assets: The model allows to consider several as-
pects related to customers’ behaviour. Consistent
example of an effective model for the assessment
of new technologies and their penetration into
the market. Limitations: Model not generalizable
to other geographical regions without significant
adaptations. Only cars used for private purpose
included in the model. LCA model affected by
high uncertainties regarding the battery technolo-
gies and electricity consumption of Electric Vehi-
cles (EVs) in 2020. The model cannot be used to
assess the impacts of EVs deployment when this
reaches a mass dimension at national scale.

(Bichraoui-
Draper et al.,
2015)

Identify the main social and
economic factors that contribute
to the life cycle environmental
performance of switchgrass-based
bioenergy, by modelling the adop-
tion of switchgrass as a new crop.

ABM underpinned by a decision
tree based on variables such as fa-
miliarity with the new crop, risk
aversion, economic profit, and
neighbours’ imitation to imple-
ment agents’ decisions to plant
switchgrass.

Assets: Structure of farmers’ decision process
well explained, and plausibility the model’s re-
sults suggested by the similarity with the evolu-
tion of genetically engineered soybean adoption.
Limitations: Model not calibrated for a specific
location. Validation missing. GIS extension with
real-world spatial information missing.
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Table 1: Summary of the approaches found in literature coupling ABM and LCA. (continued)

authors topic , scope , or case study approach used main assets and limitations

(Wu et al., 2017) LCA of planting switchgrass by
farmers responding to policies

Comparison of two scenarios: a
static (predefined) policy scenario
model and an ABM. Model devel-
oped using C programming lan-
guage with post-processing and
analysis of the outputs in R. Three
types of agents: the government,
the public, and the developers.

Assets: Good level of originality in proposing
and applying a general concept to integrate ABM
in building LCA standards via the example of a
hypothetical city. The model includes a spatial vi-
sualization of the results (even though on a ficti-
tious space, using virtual cells). Limitations: The
results apply only to a hypothetical example us-
ing virtual land cells. The model does not spec-
ify the types of buildings or stakeholders. Zoning
restrictions (about building permits) not consid-
ered in the simulations. Validation and sensitivity
analysis missing.

(Walzberg et al.,
2019)

Account for the role of human be-
haviour on the environmental im-
pacts of technologies. Case study
on the use of electricity use in
smart homes.

An ABM underpinned by a de-
tailed tree of decision rules for
household agents following en-
ergy feedback. Each household
agent generates a stochastic elec-
tricity load profile based on a pre-
viously existing method (Paatero
and Lund, 2006). The model is run
for 100 cities.

Assets: Inclusion of dynamic aspects in LCA, al-
lowing to assess the environmental benefit of
demand-side management strategies. Modelling
of the behavioural aspects, especially the so-
called nudge effects. Limitations: Use of data
from various contexts which may not always
represent closely the reality. LCA limited to the
use phase and accounting only for electricity use
(other sources of energy were neglected). Poten-
tial rebound effects not considered.
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Table 1: Summary of the approaches found in literature coupling ABM and LCA. (continued)

authors topic , scope , or case study approach used main assets and limitations

(Micolier et al.,
2019a)

Investigate the contribution of
ABM to behaviour-driven mod-
elling in LCA.

A review of 18 case studies of ap-
plication of hybrid ABM-LCA mod-
els.

Assets: A detailed guidance diagram for possible
options of ABM and LCA coupling at different LCA
phases is presented. Limitations: The paper deals
only with articles using ABM to enhance LCA, but
not with studies where LCA is used to enhance
ABM.

(Micolier et al.,
2019b)

Simulate the occupant-building
interaction in one residential
building

An ABM block implemented in
GAMA used to simulate, via a
high-resolution cognitive model,
the occupants’ interaction with
a mono-family building. Physical
model block used to simulate ther-
mal balances, energy demand and
indoor comfort levels in the build-
ing. Every building component,
described by using Building Infor-
mation Modelling (BIM), is agen-
tified and all the components are
linked to each other via spatial re-
lationships.

Assets: The model makes it possible to detect
the effect of any design parameter modification
on the occupants’ comfort and quantify the im-
pact of the occupant’s behaviour on building per-
formances. Limitations: The model was not val-
idated for different types of buildings. Difficulty
to catch reality and produce precise forecasting.
High dependency from data about the occupants
(behaviour profiling).
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Table 1: Summary of the approaches found in literature coupling ABM and LCA. (continued)

authors topic , scope , or case study approach used main assets and limitations

(Lan et al., 2019) Simulate dynamic farming activ-
ities and investigate the impacts
of farmers’ environmental aware-
ness on large-scale agricultural
system. Case study based on a
large-scale agriculture system con-
sisting of 1000 farms in North Car-
olina, U.S.A.

A dynamic system modelling
framework that integrates LCA,
ABM, and Techno-Economic Anal-
ysis (TEA). ABM-LCA model coded
in MATLAB 2017a. LCA and TEA
coupled with dynamic simula-
tion models of crop yields, costs,
and prices. A probabilistic ap-
proach used to determine the crop
choices, considering crop prof-
itability, familiarity of the farmers
with the crop and their environ-
mental awareness.

Assets: Model well documented with a clear
workflow diagram. The hard coupling allows dy-
namic modelling in the foreground system. Lim-
itations: Uncertainty in the coupled ABM-LCA
based on the stochastic approach used to con-
sider the probability in decision making, not dis-
cussed in detail. Validation not discussed.

(Walzberg et al.,
2020)

Evaluating the potential indi-
rect rebound effects arising from
smart homes.

The same model presented in
(Walzberg et al., 2019).

Assets: The paper advances the concept of a
wide functional unit which evolves dynamically
through time. Limitations: Impacts other than
climate change not considered. Direct environ-
mental pressures from households’ consumption
were assumed constant in all the simulated sce-
narios. Study is limited to the use phase and
accounted only for electricity use. Further work
needed to validate the results.
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Table 1: Summary of the approaches found in literature coupling ABM and LCA. (continued)

authors topic , scope , or case study approach used main assets and limitations

(Kerdlap et al.,
2020)

Evaluating different scenarios of
plastic sorting and recycling sys-
tems.

An ABM programmed in the
AnyLogic software to simulate
waste generation, collection, sort-
ing, and recycling processes, as
well as the interaction between en-
tities (the collection points, sort-
ing and recycling facilities, trucks
and incinerators). The coupling
with LCA not clear (likely a soft
coupling scheme of coupling).

Assets: The study takes the standpoint of LCA
and clearly defines a real (not hypothetical) func-
tional unit. Limitations: Interaction rules among
the agents are succinctly described. Data limita-
tions and hypotheses affect the results.

(Zupko, 2021) Evaluating biorefinery placement
also assessing the impact that
a new technology (in this case
hydropyrolysis and hydroconver-
sion) can have on a region. The
case study is an integrated biore-
finery in Ontonagon, Michigan,
USA.

An ABM with two primary types
of agents: forest owners and log-
gers. Soft coupling realized be-
tween the ABM and the LCA model.
Data from the ABM and inven-
tory items manually entered into
the LCA software SimaPro 8.5. The
functional unit is 1 MJ of gaso-
line or diesel produced through
the IH2 process.

Assets: The model includes geographic data
loaded in a GIS, thus considering spatial het-
erogeneity. It is well documented, including a
complete Overview, Design concepts and De-
tails (ODD) protocol. Aesthetic impacts of forests
are considered. The economic implications on
labour market are calculated. The functional unit
is clearly defined. Limitations: Simulation based
still on a virtual forested landscape. Validation
neither carried out, nor discussed.
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One of the mechanisms that is most likely to influence the cre-
ation of a network, and therefore the occurrence of interactions be-
tween agents, is their geographical proximity. Farmers whose farms
are close in space are likely to know each other, interact, exchange
materials (such as manure) and take advice from each other. Using
GIS information in the definition of the agents in ABMs through cou-
pling and embedding is a growing trend in the literature on ABM (Liu
et al., 2020; Zakrajšek and Vodeb, 2020).

Farmers’ interaction has been often studied using network science
tools (Barbuto et al., 2019; Wood et al., 2014). However, our analy-
sis of farmers’ networks of practice differs markedly from previous
research because the social network layer is interlinked with the envi-
ronmental layer, expressed in terms of the impacts created by farmers’
activities, studied from an LCA perspective.

These are important ingredients for those human-behavioural
mechanisms (such as conformity to peers) that influence especially
the diffusion of green products and green practices (Byrka et al., 2016;
Young, 2011).

2.4 materials and methods

In this paper we simulated cropping activities in the Grand Duchy of
Luxembourg using a modelling framework based on ABM-LCA cou-
pling. In comparison to the model described in (Marvuglia et al.,
2017), three main improvements have been introduced: (1) a social
network of farmers was implemented, in order to model the dynamic
interactions between the agents and interpret the changes in their
environmental awareness (expressed using the green consciousness
attribute already presented in (Marvuglia et al., 2017)) that may arise
from these interactions. The social network is based on the member-
ship of the agents to clusters of different types, that will be explained
in Section 2.4.3; (2) a Naïve Bayesian classifier (used to attribute a
level of risk aversion to each farmer), that determines one of the types
of clusters mentioned in the previous point; (3) a mechanism for the
attribution of elementary agricultural areas to each farm from the
available GIS data for Luxembourg. This allowed the construction of
realistic farms both in terms of size and location on the territory of
the Grand Duchy of Luxembourg.

As elicited from the literature review, one of the main priorities
one has to bear in mind when embarking on the implementation of
an ABM of an agricultural system is the collection of farm-specific
data. This issue holds at two levels: at the level of the property and
technical activities and at the level of farmers’ personal thinking and
behaviour tendencies, since a simulation of the evolution in both
physical and social dimensions is required to shape large scale socio-
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technical systems (�-systems) and steer them towards sustainability
(Nikolic et al., 2009).

At the first level the modeller needs data on the crops (yields,
agricultural processes and market prices), meat and milk production,
land rental costs, time elapsed since the beginning of the rental lease
contract, etc. At the level of farmers’ behaviour, the modeller needs
data on social interaction level, risk aversion, familiarity with a cer-
tain technology or trend.

In the model presented in this paper, farmers’ social network is
built based on farmers’ geographical locations, the belonging to pre-
viously determined risk aversion classes, and a set of farm-specific at-
tributes. The risk aversion classes are determined via a naïve Bayesian
model. The ABM is tightly coupled with the LCA calculator, which
is based on the fast LCA calculation framework Brightway2 (Mutel,
2017), thus allowing an automatic calculation at each run of the ABM
simulator (tight-coupling). From a computational point of view, the
ABM outputs become inputs to the LCA final demand vector, as de-
scribed in (Baustert and Benetto, 2017). The following sections will
describe the model in more detail.

2.4.1 Farm creation

To achieve better simulation results, defining the components of the
farming business and initializing the model accordingly are of utmost
importance. As it is the case in most of the applications, data availabil-
ity and data protection issues represent some important constraint for
the modellers. In our case GIS data are available for the entire country.
They contain information about the crop planted each year (from 2010
to 2019) in each elementary agricultural area registered in the national
cadastre. For the sake of simplicity, we call these latter “utilized agri-
cultural areas” UAA. They could be as small as 50 m2 or as large as 58
ha, are represented in the GIS files as individual polygons and are the
smallest land parcels in which information about the planted crops
is known. In the GIS file for a given year, the attribute table contains
for each UAA the sequence of crops planted in that area in that given
year. However, the information regarding the exact farm to which that
UAA (i.e. that polygon) belongs is unknown. A known piece of infor-
mation is instead the distribution in the size-classes (showed in Table
2) of the 1872 farms registered in Luxembourg in 2019. This piece of
information is available in the Institut national de la statistique et des
études économiques du Grand-Duché de Luxembourg (STATEC)1 and
on Eurostat2.

From the model implementation standpoint, our goal was first to
assign geographical information (i.e. a position on a map represent-

1 STATEC – https://statistiques.public.lu/.
2 Eurostat – https://ec.europa.eu/eurostat/data/database.

https://statistiques.public.lu/
https://ec.europa.eu/eurostat/data/database
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fclass farea(min.) farea(max.) Number of farms

A — 2 ha 164
B 2 ha 5 ha 119
C 5 ha 10 ha 152
D 10 ha 20 ha 156
E 20 ha 30 ha 114
F 30 ha 50 ha 174
G 50 ha 100 ha 483
H 100 ha — 510

Table 2: Number of farms in Luxembourg categorized by the size of
their utilized agricultural areas (UAA) (2019).

ing the territory) as an attribute to each agent. This geographical in-
formation was then used to build a network among farmers based on
geographical proximity. Moreover, in future phases of the model de-
velopment, geographical information may allow to use weather fore-
cast or soil properties concurrently with the other farm attributes, like
farm type (organic vs. conventional or dairy).

To this aim, in order to circumvent the limitation given by the lack
of information about the actual locations of the farms on the territory,
we applied a constrained polygon allocation based on a particular im-
age segmentation technique, called "seeded region growing" (Adams
and Bischof, 1994). Using the GIS data and the farms’ distribution ac-
cording to farm sizes showed in Table 2, we created realistic farms,
i.e. farms with designated boundaries and reasonable crop patterns
in terms of farm types. The pseudo code of the algorithm is given
in Algorithm 1. In summary the algorithm consists of the following
steps:

(1) Designate the neighbourhood relations amongst polygons
based on a given distance threshold.

(2) Start from the largest farm class to allocate polygons to farms.
Choose a random UAA (a polygon), then build the farm around
it by adding other polygons until the area constraint is satis-
fied (i.e. until the area of the farm reaches the value randomly
assigned to it, within its size-class). Iterate through the farm
classes until the total number of farms in the Grand Duchy of
Luxembourg is reached.

(3) Merge the polygons belonging to each farm and create farm
boundaries. If there are non-allocated polygons, then assign
them to the closest farm.

Fig. 3 shows the resulting distributions of UAA samples that belong
to different classes of farm size. For the sake of providing an exam-
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Algorithm 1 : Constrained polygon allocation

Mij is the binary neighbor matrix;
⌘ is neighborhood distance threshold;
LUAA is list of UAAs;
Fclass is list of farm classes and attributes;
Function Neighbor(LUAA, ⌘):

for i = 0; i < LUAA.size(); i = i+ 1 do
if Distance(LiUAA,LjUAA) 6 ⌘ then

Mij = 1;
else

Mij = 0;
Function Allocate(LUAA, Mij, Farmclass):

sort Farmclass by descending farm size;
for fc in Farmclass do

nFarms fc.numberOfFarms();
for i = 0; i < nFarms; i = i+ 1 do

areabound  PERT(fcmin, fcmax, fcmean);
UAAm  LUAA.random();
farmarea

i  UAAarea
m ;

while farmarea
i < areabound do

NUAA  LUAA.all(xn : Mmn = 1);
for UAAn in NUAA do

if farmarea
i < areabound then

farmarea
i += UAAarea

n ;
else

break;

ple, Fig. 4 shows an excerpt of the map obtained after running the
Algorithm 1.

2.4.2 Naïve Bayesian model for risk aversion attribution

Modelling farmers’ risk attitude in farm decision-making is a quite
complex task. In farm business optimization models, farmers’ risk
aversion has been modelled using mathematical programming based
on observed farmers’ actions or surveys (Norton and Hazell, 1986).
The topic of embedding risk orientation in behavioural models of
farming systems is briefly discussed by (Jones et al., 2017). (Van Win-
sen, 2014) uses a qualitative and information-intensive methodology
from the social sciences (the grounded theory) together with cogni-
tive mapping to elicit a quantitative estimation of farmers’ risk per-
ception. (Van Winsen et al., 2016) uses structural equation modelling
to understand farmers’ intention to implement different risk manage-
ment strategies at their farms.

Few applications of Bayesian models exist, for the assessment of
financial risks (Ardia et al., 2008; Krichene, 2017). In (Ng et al., 2011)
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Figure 3: Histograms of UAAs for each farm class.

a Bayesian model has been used to update the farmers’ expectations
of prices, costs, yields, and weather conditions.

As mentioned above, in this paper we implement the risk aversion
component of the agents using a naïve Bayesian model, which uses
Bayes rule with an assumption that attributes are conditionally inde-
pendent. This model has been trained with the results of a survey
distributed to a sample of farmers in 2015 (Marvuglia et al., 2017)
in the framework of the past project MUlti agent Simulation for con-
sequential Life Cycle Assessment of Agrosystems (MUSA) funded by
National Research Fund of Luxembourg (FNR). The entire text of the
questionnaire is provided as a supporting information file to the pa-
per. We used the level of risk aversion to cluster the agents which are
then used to build the network of agents.

In particular, to infer the risk aversion scores we used the answers
to the following question (question 66 of the survey):

Among the situations described below, which one seems closer to the level
of financial risk that you are willing to take when you usually make in-
vestments?

(a) Taking substantial financial risks hoping to gain a lot.

(b) Taking above average financial risks hoping to obtain earnings above
the average.

(c) Taking average financial risks hoping to have average earnings.

(d) Not taking any financial risk

In our modelling approach, we used the survey data to assign a risk
aversion attribute to each farmer. Although there are other questions
in the survey that may be related to family values and environmen-
tal awareness, we had a low response rate for those questions. If a
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Figure 4: Detail on a part of the map obtained after running Algo-
rithm 1. Different colours refer to different farms. The con-
tours of the UAAs are visible on the map.

higher rate of responses had been available for those specific ques-
tions, other personal characteristics of the agents could have been
integrated into our Bayesian model. However, the current answers
to the survey suggest that farm size and farmer’s age are the best
indicators for a farmer’s risk aversion level.

We adopted the simplified abstraction that the risk aversion of
farmer agents is described using a discrete variable with two levels
(1: low risk aversion, 2: high risk aversion). The four possible answers
to question 66 were therefore aggregated in two risk classes. We then
estimated the conditional a-posteriori probabilities of a categorical
variable (the risk aversion) using the Bayesian theorem under the as-
sumption of independence between predictors. The a-posteriori prob-
abilities can be computed by applying Eq. 1

p(Ck|pred1, ...,predn) =
p(Ck)

Qn
i=1 p(predi|Ck)

p(pred)
(1)

where predi are the independent predictors, pred is the evidence,
p(pred) is the product of the probabilities of the predictors and Ck is
the dependent variable.
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In our simple model, the dependent variable corresponds to the cat-
egorical risk aversion with the two levels described above and farm-
ers’ age and farm size are chosen as predictors. The level of risk aver-
sion thus calculated for each agent determines the cluster to which
that agent belongs in the social network.

Out of the approximately 2500 farms existing at the time when the
survey was deployed, we obtained 168 responses, which were used
to derive the a-priori probabilities p(Ck) and conditional probabil-
ities p(predi|Ck). When an agent is substituting the crops currently
planted, its attributes (age and farm size) are used to estimate the pos-
terior probabilities of its risk aversion, from which the risk aversion is
sampled. The two predictors (farmer’s age and farm size) are catego-
rized: four age classes (< 35, 35- 45, 45- 55,> 55) and five farm size
classes (< 50, 50- 100, 100- 150, 150- 200,> 200) are used. For each
predictor, the categorized data is then converted into a frequency ta-
ble (Table 3). Using the frequencies one can estimate the likelihoods
in Table 4 and finally posterior probabilities (Table 5).

2.4.3 Network of agents

The network is created using mainly two types of relationship be-
tween any two farmers: (1) geospatial information with respect to the
adjoining farms, and (2) risk aversion group to which a given farmer
belongs. Although the first tie is immutable (because we do not con-
sider processes of farms selling or acquisitions), the latter is assigned
from a normal distribution among the ones from the same risk aver-
sion cluster. In the network, farmers are the nodes, and ties represent
relationships between them.

At the beginning of the simulation, each farmer is assigned with a
risk aversion level using the posterior probabilities given in Table 5.

Then, the farmers are grouped into two risk aversion levels that are
represented in Fig. 6. As the farmers get older during the course of
the simulation, their risk aversion levels can also change, therefore at
some point they may switch to a different risk aversion cluster. We
update the risk aversion level if age class is changed. Each tie has
also a weight according to its type. If it is based on the geospatial
relationship, then it is a strong tie and we assign a weight wij = 0.2
to it; if it is only based on risk aversion clusters, then we consider it
a weak tie and we assign a weight wij = 0.1 to it. The timestep of
our simulations is one month, which means the decisions are taken
monthly. However, ties are updated yearly only because the risk aver-
sion clusters change as farmers become older. At every timestep (ti),
the decision is taken whether to keep or remove the tie based on its
duration and strength. Only the weak ties (the ones based on risk
aversion classes) are removed if farmers have switched to a different
risk aversion cluster
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Table 3: Frequency table of age and farm size

Age Farm size (ha)
Risk aversion level <35 35-45 45-55 >55 <50 50-100 100-150 150-200 >200
1 3 3 6 2 1 7 2 0 4
2 27 37 34 16 16 49 32 10 7

Table 4: Likelihood table. The values in italics express the p(pred|Ck)

.

Age Farm size (ha)
Risk aversion level <35 35-45 45-55 >55 p(Ck) <50 50-

100
100-
150

150-
200

>200 p(Ck)

1 0.214 0.214 0.429 0.143 0.109 0.071 0.500 0.143 0.000 0.286 0.109
2 0.237 0.325 0.298 0.140 0.891 0.140 0.430 0.281 0.088 0.061 0.891
p(pred) 0.234 0.313 0.313 0.141 0.133 0.438 0.266 0.078 0.086

Table 5: Posterior probabilities for 20 combinations of predictors for each risk aversion level

.

Risk aversion level (1) Risk aversion level (2)
Farm size (ha) Age

<35 35-45 45-55 >55 <35 35-45 45-55 >55
<50 0.054 0.040 0.082 0.060 0.946 0.960 0.918 0.940
50-100 0.114 0.086 0.170 0.127 0.886 0.914 0.830 0.873
100-150 0.054 0.040 0.082 0.060 0.946 0.960 0.918 0.940
150-200 0.001 0.001 0.002 0.001 0.999 0.999 0.998 0.999
>200 0.341 0.274 0.451 0.368 0.659 0.726 0.549 0.632
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Figure 5: Schematic representation of the edge addition and removal
mechanism during the simulation. The ties between nodes
F1 and F2, and between nodes F1 and F3, are strong ties and
cannot be removed. Since node F4 changes Risk Aversion
(RA) cluster (from RA2 to RA1), the tie F1–F4 is removed
after three years. Had node F1 moved to cluster RA1 as well,
then the tie F1–F4 would have been kept. As a result of the
RA cluster switch, F4 may now form a tie with F2 since they
now belong to the same cluster.

more than three years before the current timestep. An example of tie
removal can be seen in Fig. 5.

During the simulation, also the farmer’s Green Consciousness (GC)
is updated (Marvuglia et al., 2017). The GC is an attribute assigned
to farmers to include heterogeneity in their behaviour in terms of the
importance that each farmer decides to assign to the environmental
sustainability of the farming strategy undertaken. This attribute in-
fluences the decisions taken by each farmer. It is assigned to each
farmer from a pre-defined statistical distribution at the beginning of
the simulation. The update rule of the GC is described in Eq. 2:

GCt+1
j =

GCt
i

2
+

Pn
j=1wijGCt

j

2
Pn

j=1wij
(2)

where GCt
i is the green consciousness of ith agent at time step t; n

is the number of neighbours an agent has in the network; wij is the
weight of the link between the i-th and the j-th agent.

2.4.4 Crop rotation modelling

In the simulation we used different crop rotation schemes which were
pre-assigned according to the initial crop pattern of a farm. These ro-
tation schemes were extracted from the GIS files mentioned above.
Firstly, the crops present in the GIS files were assigned to a fam-
ily as shown in Table 6. The crop plantation times have been sug-
gested by the experts on farming in Luxembourg. The crop rotation
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Figure 6: Network of farmers clustered at the beginning of the sim-
ulation according to the risk aversion levels. The edges be-
tween the nodes from different risk aversion level clusters
are based on neighbourhood relations. The size of each node
is proportional to the GC of the farmer. As can be inferred
from Table 3c there is a large difference between the num-
ber of agents in the clusters. Initially there are 352 farmers
in group 1, whereas in group 2 there are 1520 farmers.

schemes were determined by extraction of common recurring n-gram
substrings for a given list of UAA plantation history. In Table 7, one
can see the common 3-4-5-grams which are used as crop rotation
schemes in the model. The sequence of the letters in each n-gram
corresponds to the time sequence of crop family on a given UAA. We
first found the sequence of crops as shown in the step 1 of Table 7.
Although most UAAs have not been changed throughout the years (ac-
cording to the records of the local agricultural cadastre), few of them
have been merged or split into different UAAs in the course of time.
This happened only for a small amount of UAAs, and we discarded
them when searching for the common rotation schemes. There are
also multicropping (or intercropping) cases, i.e. cases in which there
is more than one crops planted in the same UAA in one year. We
also excluded those from our dataset since our model does not yet
account for such cases. After we found the common n-grams, these
were then discussed and validated by the project partners with farm-
ing expertise in the Luxembourgish context, who separated the ones
used for organic and the ones used for conventional farming. In Ta-
ble 7, the ones in bold show the organic rotation schemes, bold and
italic is used for both conventional and organic and the rest is only
for conventional farming.
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Crop name Crop family Start month End month
Fertilizer
requirement
(kg-N/ha)

Barley Spring C 3 8 134.5
Barley Winter C 9 7 134.5
Beans G 1 12 22.4
Maize M 4 11 134.5
Meadows X 1 12 88.2
Mixed Grain C 1 12 103.1
Oats C 3 8 103.1
Other Forage F 4 10 88.2
Others X 1 12 –
Pastures O 1 12 88.2
Potatoes L 4 10 12.5
Rapeseed O 8 7 67.2
Rye C 1 12 103.1
Spelt C 10 8 147.9
Triticale C 1 12 103.1
Vineyards X 1 12 22.4
Wheat Spring C 2 8 147.9
Wheat Winter C 10 8 147.9

Table 6: Crop definitions, families and calendar. The family can be
one of cereal (C), leaf (L), fodder (F), maize (M), grain (G), oil
(O), permanent (X). Crops are harvested at their respective
end months and they can only be planted if there are at least
four months between current month and end month.

Obviously, at the moment when the decision takes place, in order
to be eligible for being planted, a crop has to fit in the list of suit-
able crops determined by the crop rotation constraints and the crop
calendars (i.e. the typical planting seasons).

2.5 case study : an agent-based agricultural model in
luxembourg

The focus of this paper is mainly on the enforcement of some agents’
social interaction mechanisms and the observation of their influence
on the life-cycle environmental impacts they generate, due to their
influence on farmers actions. In order to do this, we observe the evo-
lution of the network of agents under two scenarios that differ in
terms of the initial values assigned to the GC parameter (Marvuglia
et al., 2017; Navarrete Gutiérrez et al., 2017). More details on the struc-
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Crop history extraction (Step 1)

UAA1 (CCFFCCFFCC)
UAA2 (FFMOCFFMOC)
UAA3 (FFGFMOCMOC)

...
UAAn (FLCFMMFLCF)
Identifying common rotation schemes (Step 2)

3-gram 4-gram 5-gram
MGF
FCC LLCC
MOC FFMM FFMOC
LFF FFCC
LLC

Table 7: The crop rotations used in the simulations. The bold ones
are assigned to organic farms whereas the italic one can be
used in both conventional and organic farming. The rest is
generally used in conventional farming.

ture of the model, not concerning the agents’ interaction mechanism,
are given in (Navarrete Gutiérrez et al., 2017) and (Marvuglia et al.,
2017). Fig. 7 shows the initial GC distribution functions used in this
study.

Figure 7: GC initialization scenarios.

In our model, an agent looks at the midpoint climate change im-
pacts of each crop per ha of cultivation (in addition to its selling price
on the market) before deciding which crop to plant at the end of a
rotation cycle. The climate change impacts are calculated using the
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ReCiPe 2016 (Huijbregts et al., 2017) LCIA method based on life cy-
cle inventories LCI that have been refined for Luxembourg via con-
sultation with local experts, as explained in (Rege et al., 2015a) and
(Vázquez-Rowe et al., 2014) and (Marvuglia et al., 2017).

Simulation. As in (Marvuglia et al., 2017), from the LCA perspec-
tive, the functional unit is represented by the entire cropland area of
the country, with the exclusion of pastures, vineyards and orchards,
whose area remains constant over the years and is not affected by
crop rotation choices. We simulate each scenario for a time span of
ten years with a simulation timestep of one month. This procedure is
repeated 50 times for each scenario and the results are averaged. In
each scenario run, a different initial random seed is specified, while
the same seeds are applied across scenarios to assure that differences
between scenarios for a model run are not due to different seeds being
used. This initial random seed is used to produce other random seeds
used by the components of the simulator that require random number
generation. Random number generation is involved in the following
processes inside the simulator: the initialization of the crops assigned
to each agent, as well as the rotation scheme; the initial assignment
of risk aversion level and GC value. The results of each simulation are
the areas cultivated under each crop and parameters that are affected
by the evolution of the network, such as GC values, risk aversion clus-
ters and tie strength. A flowchart showing the logical sequence of the
simulation steps is showed in Fig. 8.

At the end of each timestep, each farmer has to take a decision for
the next timestep. The farmer has to decide which crop to plant, if in
the previous timestep the crop had been harvested. This decision is
primarily based on crop rotation and crop calendar constraints, but
the agent also chooses according to its current GC level. If it is below
a pre-specified level ⌘, then the most profitable crop is chosen for the
next timestep. Otherwise the agent looks at the ReCiPe 2016 midpoint
CC impacts of possible crops (i.e. crops which are eligible because they
respect the crop rotation schemes constraints and the crop calendars)
and chooses the one with the lowest impact. The crop’s selling price
on the market is decided based on the Holt-Winters time series pre-
diction model, as described in (Rege et al., 2015b). Although the value
of ⌘ affects the LCI results, the objective of this study is to explore the
interactions and their effects on agents’ behaviour. Therefore, in this
study ⌘ is fixed and it is equal to 0.5 in every simulation.

2.6 results and discussion

Fig. 9a and 9b show the time evolution of the crop areas (i.e. the sum
of all the UAA cultivated with the same crop in the entire territory of
the Grand Duchy of Luxembourg) for each of the two GC initialization
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Figure 8: Simulation flowchart
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scenarios and each crop. For each scenario and crop, the plotted areas
are the average calculated over the 50 model runs. It can be easily
observed that in both cases the total UAA for triticale, rye fodder, other
forage, beans and barley spring fodder and barley spring brewing
increase significantly, because they replace other crops (like maize
and wheat spring) from the start until the end of the simulation. Some
of these crops, like beans and oats, represent only a small portion of
the total UAAs (see Table 8), therefore they do not have a significant
contribution on impacts’ reduction. In fact, since the CC midpoint is
the main contributor to HH impacts (51% for the first year), values of
the GC variable higher than the fixed 0.5 threshold also contribute to
the decrease of HH impacts. For example, the choice of barley, oats,
beans and triticale crops reduces both CC and HH impacts compared
to wheat, maize and spelt (Fig. 10).

It is worth noting also that the crop areas are subject to fluctuations,
due to the implementation of the crop rotation, which causes an alter-
nation of the crops and prevents the permanence of the same crop on
the same UAA on two consecutive crop rotation periods. For this rea-
son, one should not observe only a single year crop pattern, but needs
to observe the evolution of the crop areas of each crop over time and
consider their average trend. The same consideration holds also for
the evaluation of the environmental impacts related to each scenario.
Fig. 9c and 9d show the LCIA results for three different endpoint val-
ues obtained with the ReCiPe 2016 method, for 10 consecutive years,
respectively for the scenarios GClow and GChigh. In Table 8, aver-
age UAAs for 50 simulation runs are given for the baseline year and
the last year of the simulation (as well as the percentage differences
between the two) for the same two scenarios GChigh and GClow.

As Table 8 shows, throughout the simulation, in the UAAs that
hosted wheat and maize, these two crops are replaced especially with
rye, triticale, beans and barley. These latter crops are therefore the
main responsible for the decrease of HH impacts that one can observe
in Figs. 9c and 9d.

In Table 6 the nitrogen requirement of each crop is given. Although
in this version of the model agents do not take livestock-related deci-
sions, we initialize each farm with a certain number of cattle heads in
order to be able to calculate the quantity of organic manure produced
by the cattle that is used as soil fertilizer. According to (FAO, 2018),
one cattle unit in Luxembourg produces 60.92 kg N per year on av-
erage, of which 48% stays on the ground, while the rest is stored for
spreading. The nitrogen loss is estimated to be 42% when it is stored.
For instance, in the first year of our simulation the organic manure
stored and readily available for spreading (3516 tons of N content)
corresponds to only half of the nitrogen amount (6952 tons of N con-
tent) required by crops. The remaining amount that is required by
each farm is compensated with mineral fertilizers, since breeding
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Figure 9(a): UAA change per crop GClow (↵ = 2 and
� = 5)

Figure 9(b): UAA change per crop GClow (↵ = 5 and
� = 2)

Figure 9(c): LCIA for three different endpoints (GClow) Figure 9(d): LCIA for three different endpoints
(GChigh)

Figure 9(e): Evolution of GC distribution (GClow) Figure 9(f): Evolution of GC distribution (GChigh)

Figure 9: UAA change per crop, expressed as the ratio between crop areas at every timestep and
area under the same crop at year 1 9a and 9b. LCIA results over the years 9c and 9d
where Res. denotes the Resources impacts, HH denotes human health related impacts and
finally EQ denotes ecosystem quality. Evolution of GC distribution due to network and GC
update rules 9e and 9f for scenario (GClow) and scenario (GChigh), respectively. In Figs.
9e and 9f, the mean value of each GC distribution is indicated in the legends next to the
corresponding year of the simulation.
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Table 8: UAA of each crop in the baseline year and in the last year of simulation, and respective percentage area changes in both simulation scenarios.

Crop Initial UAA

(ha)
Last UAA

(ha) (%) (GClow)
Change
(ha) (GClow)

Last UAA

(ha) (%) (GChigh)
Change
(ha) (GChigh)

Barley spring brewing 729 2664 (265%) 1935 1685 (131%) 956
Barley spring fodder 2671 4660 (74%) 1988 3526 (32%) 855
Barley winter brewing 627 1152 (83%) 524 1267 (101%) 639
Barley winter fodder 5881 565 (-90%) -5315 4050 (-31%) -1830
Beans 711 3172 (345%) 2460 2531 (255%) 1819
Maize 13929 8844 (-37%) -5085 6677 (-52%) -7252
Mixed grain 336 414 (23%) 78 343 (2%) 7
Oats 1553 2466 (58%) 912 2295 (47%) 742
Other forage 4882 5635 (15%) 752 10772 (120%) 5889
Potatoes 816 942 (15%) 126 231 (-71%) -585
Rapeseed 4781 4927 (3%) 145 4560 (-4%) -220
Rye breadmaking 121 431 (256%) 310 203 (68%) 82
Rye fodder 1297 4377 (237%) 3079 7276 (4600/0) 5978
Spelt 576 506 (-12%) -69 170 (-70%) -405
Triticale 4456 6284 (41%) 1827 7981 (79%) 3525
Wheat spring 7054 5333 (-24%) -1720 568 (-91%) -6485
Wheat winter breadmaking 3418 2289 (-33%) -1129 2330 (-31%) -1088
Wheat winter fodder 3611 2788 (-22%) -822 982 (-72%) -2629
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Figure 10: Comparison of CC and endpoint impact of crops per
hectare. The impact score are normalized to the one of
spelt, which has the highest impact on CC.

other types of animals (and therefore relying on other types of or-
ganic manure) is not very common in Luxembourg.

Tables 9 and 10, report the main descriptive statistics for the LCIA
results of the last year of the simulation, respectively for the cases
of GClow and GChigh. They are calculated over 50 simulation runs.
The HH impact score is the one affected by the highest variability. As
Figs. 9c and 9d show, in both scenarios the general trend is towards a
global decrease of the HH impact. This decrease is more pronounced
in the scenario GChigh. In both scenarios the impacts on resources do
not change significantly over the years, however there is also a slight
decrease in the ecosystem quality impact category in both cases. The
fact that HH is consistently decreasing is not surprising, as in the cur-
rent version of the model environmentally conscious agents (i.e. those
with GC > 0.5) only look at crops’ ReCiPe 2016 CC impacts (which are
the main contributors to the HH endpoint category). This obviously
creates a trade-off with the other impacts. In fact, the crops that have
a worse impact than others both in terms of CC and the other impact
categories, like maize and wheat, are those for which a decrease in
the area results also in a decrease of the total impacts on impact cate-
gories different from CC. However, there could be cases when a crop
being replaced because of its high CC impacts, has nonetheless lower
impacts in other categories than the crops from which it is replaced.
This is the case for maize, since it has lower impact on freshwater
eutrophication compared to triticale or other forage. Thus, the sim-
ulations show a slight increase in total freshwater eutrophication in
both scenarios (2% for GChigh and 0.3% for GClow). In terrestrial eco-
toxicity, the decrease is even more pronounced since the contribution
of maize is much higher than for other crops.

However, these results suggest that starting from a left skewed GC
distribution (↵ = 5 and � = 2) produces slightly better results (at least
in terms of the variable that is directly targeted by the agents’ actions,
i.e., in this case the CC impact of the crops and its consequent effect
on the HH impact category) than starting from a right skewed GC dis-
tribution (↵ = 2 and � = 5) (with a mean value of 0.38; see Fig. 9e),
even though in both cases we observe that, as an effect of agents’ in-
teraction, the Beta distributions representing the probability density
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function (pdf) of their GC values tend to become symmetric (converg-
ing towards a distribution centred in GC = 0.5) and undergo only a
small variation of their skewness approximately after five years. The
result does not suggest a very clear advantage of one starting GC ini-
tial distribution over the other and suggests that there is probably
still much to learn about the diffusion of ethical behaviours through
social networks in general, and the diffusion of farming practices
through the agricultural sector in particular. Survey practices from so-
cial sciences are needed to measure predictors for “green” or ethical
behaviour, building the basis for behavioural models that take into
account these predictors along other factors (such as risk aversion)
to predict choices relating to farming practices. These predictors and
practical constrains need to be considered in order to understand the
behaviour of a system at a more aggregated scale.

Resources
(106)

Human
Health
(106)

Ecosystem
Quality
(106)

Minimum 3.08 5.28 28.7
Mean 3.17 5.45 28.9
Standard deviation 0.05 0.11 0.1
Maximum 3.24 5.60 29.1
Coefficient of Variation
(CV)

1.79% 2.09% 0.43%

Table 9: Main descriptive statistics of the LCIA results in 50 simulation
runs for the last simulated year (GClow).

Resources
(106)

Human
Health
(106)

Ecosystem
Quality
(106)

Minimum 3.05 5.18 28.85
Mean 3.14 5.39 29.00
Standard deviation 0.06 0.13 0.09
Maximum 3.24 5.60 29.14
CV 2.07% 2.59% 0.33%

Table 10: Main descriptive statistics of the LCIA results in 50 simula-
tion runs for the last simulated year (GChigh).

Each individual agent updates the GC value at every timestep.
Therefore the initial distributions showed in Fig. 7 change at every
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timestep. The evolution of GC distributions can be seen in Figs. 9e
and 9f. As one can observe, for both scenarios the network and
update rule given in Eq. 2 help the agents to reach a quasi steady
distribution of the GC values, which is approximately a symmetric
Beta distribution (↵ = �). It is worthy noting that this convergence
effect that brings to a stable distribution after approximately the same
number of timesteps in both scenarios is a consequence of the fact
that in Eq. 2 one part of the updated GC value of each agent depends
on a weighted average of the GC values of its neighbours, therefore
a sort of equalization effects takes place. This would be different if
some other update rule was put in place, whereby the agent could
also have a certain probability to have a GC value higher (or even
significantly higher) than its neighbours at the next timestep.

Model validation In this context, validating the ABM that is cou-
pled with an LCA model, does not mean validating the LCA model the
ABM is meant to feed. The ABM results are used only as inputs to the
LCA module. As in any LCA study, the assumptions behind the LCA
model, as well as the quality of the LCI data, will obviously influence
the final results of the environmental assessment. In addition to that,
one has to remember that, while the LCI data, at least the so-called
foreground data, can be partially validated (with measurements, ex-
perts’ opinions, etc.), validation of LCIA results is impractical. How-
ever, their consistency with previous literature can be checked. They
are expressed in terms of "potential" environmental impacts (on hu-
mans and on ecosystems), but they cannot be directly measured and
they cannot be compared against "actual" impacts, because of the life
cycle scope and of the relative approach considered in LCA. Empirical
validation of LCA results per se, is therefore not possible in practice.
The validity of the LCA results rests upon the validity (based on sci-
entific consensus) of characterization models applied in LCIA, which
are very difficult to validate (Hauschild and Huijbregts, 2015).

Uncertainty A similar line of reasoning holds about the uncertainty
by which the results of the coupled ABM-LCA model are affected. They
obviously carry the uncertainty of the ABM data and assumptions
(e.g., on risk aversion, crop prices, level of social interaction, network
rules, etc.), but also the uncertainty of the LCI data. Like for the ABM
model, also for the LCA model sensitivity analysis can be used to
study the robustness of results and their sensitivity to uncertainty
factors. Dealing with uncertainty and sensitivity analysis in our ABM-
LCA model is outside the scope of this paper. A very informative
description on sensitivity analysis in LCA can be found in (Wei et
al., 2015), while the topic of uncertainty analysis in LCA models is
extensively described in (Igos et al., 2019) and in the context of ABM-
LCA coupled models is addressed in detail in (Baustert and Benetto,
2017).
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In our model the locations of uncertainty could be in the inputs
(data uncertainty) or in the model itself (structural uncertainty). For
instance, each process in the LCI includes its own uncertainty, and the
forecasted crop prices bear their uncertainty as well. Furthermore, the
model includes random assignment of certain parameters like GC or
RA, which are locations of structural uncertainty (Baustert, 2021). To
address the uncertainty due to random variables and the way agri-
cultural areas are assigned to farms, we ran a set of simulations and
calculated the CVs of the corresponding LCIA endpoint categories. Ta-
bles 11-12, summarize the outcomes of the uncertainty analysis. The
first set of results presented in this paper, referred to as the base
case (U1), use the same farm locations in all of our 50 simulations,
but different random seeds are used for the sampling of the GC and
RA. In the second case (U2), we sample GC and RA values using the
same random seeds in each of 50 simulations, but field allocations
are different for each simulation. Therefore, the connections of each
agent can be different since the geographical locations of farms were
changed. For the third (U3) and fourth cases (U4) we assign the same
elementary agricultural areas to a farm and keep the random seed for
RA and GC the same. The CVs do not vary significantly compared to
the base case in both scenarios. The endpoint category which is most
affected by the variation in parameters is HH, and the least affected
is Ecosystem Quality (EQ). Model inputs, such as the product prices,
are another possible location of uncertainty. In our simulations we
use the same set of prices for every year; they are reported in Table
S5 of the supporting information file. The agricultural product prices
in Luxembourg follow the world prices, and thus they are considered
exogenous. Further investigation could be made in future versions of
the model by assessing the effects of price changes due to external
market conditions or climatic changes.

Treemap representation of impacts Fig. 11 shows the treemap rep-
resentation of the cantons (based on (Ghoniem et al., 2015)) of the
Grand Duchy of Luxembourg. The colours represent the HH LCIA re-
sults normalized by area of each canton in the country and averaged
over the simulation duration of 10 years and the number of simula-
tions per year (n = 50). The emissions are normalized by the total
UAA in each canton. This representation differs from regular treemap
representations as it also respects the real geographical boundaries
of locations, still remaining a privacy-preserving representation. As
one can see from the figure, the canton that includes Luxembourg
city has the lowest total agriculture-related CO2-eq emissions, due
to the fact that it is the most densely built area, therefore with the
lowest extension of agricultural area of the entire country. The same
information has been calculated at the level of granularity of the sin-
gle farm; however, the representation in a figure would result in very
low readability, therefore it is not showed here.
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Figure 11: Treemap representation of the CC impacts normalized to
the total agricultural area (kg CO2-eq/ha) of each canton
in the Grand Duchy of Luxembourg averaged over simula-
tion duration and number of simulations. The numbers in
brackets represent the number of farms falling within the
territory of each canton.

2.7 limitations of the model

The analysis accomplished in this paper certainly does not provide
the entire picture about the interaction between farmers in the Grand
Duchy of Luxembourg and their behaviour towards certain agricul-
tural activities, since a few elements are currently missing. The first
element is the absence of meat and milk production, which is quite
important in Luxembourg, given the fact that practically all the farms
in the country are of a mixed type (they produce at the same time
crops, meat and milk). Another potentially important missing ele-
ment is the simulation of the land rental market. For example, as
observed by (Appel et al., 2016), the farms which tend to invest on
biogas are in general very competitive on the land market and are
willing to pay higher rents for land and the most efficient (biogas)
farms are the drivers of rental prices. If one models a real market,
then the duration of the lease contract has an influence on the model
because it determines the moment in time when the market can expe-
rience variations on the distributions of land among the farmers. This
is particularly relevant in the Grand Duchy of Luxembourg where the
cost of the land is very high and there are a few land owners, while
the majority of the farmers simply rent the land. The duration of the
lease periods can vary depending on the land law. For example, in
the Grand Duchy of Luxembourg the minimum duration of a lease
contract for a piece of agricultural land is 15 years, and then it is au-
tomatically prolonged for 15 more years, unless the lease is resolved
by one of the parties 5 years before the expiration date (l’Agriculture,
2019). The rate of missing answers we got to the question of the sur-
vey that was related to the size of the rented area, the total duration of
the lease contract and the number of years already elapsed since the
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Case Description Resources
Human
Health

Ecosystem
Quality

U1 CV (Base) 1.79% 2.09% 0.43%
U2 CV (Farm Locations) 1.72% 2.04% 0.32%
U3 CV (GC) 1.77% 1.92% 0.30%
U4 CV (RA) 1.85% 1.88% 0.33%

Table 11: The CV for a chosen parameter (GClow).

Case Description Resources
Human
Health

Ecosystem
Quality

U1 CV (Base) 2.07% 2.59% 0.33%
U2 CV (Farm Locations) 1.82% 2.03% 0.30%
U3 CV (GC) 2.00% 2.15% 0.35%
U4 CV (RA) 2.01% 2.45% 0.31%

Table 12: The CV for a chosen parameter (GChigh).

beginning of the contract, and the price of the yearly rent paid, was
close to 70% of the 168 respondents. This low rate prevents a reliable
modelling of the land rental market in our ABM.

Finally, a thorough implementation of practical agronomic con-
straints (e.g., yield as a function of soil type) which act on farmers’
activities was not achieved, besides the implementation of the crop
rotation schemes. Although this is to be considered as a limitation in
the large sense, as highlighted in (Malawska and Topping, 2016), very
often in models which address behavioural elements in the farmer
decision making, these latter are the pivotal point of the model,
while the practical agronomic constraints in farming decisions are
neglected. In order to overcome this limitation, the ABM developed
in (Malawska and Topping, 2016) builds upon an existing economic
farm optimization model. Based on a (linear programming) optimiza-
tion model of farmers’ decision-making is also the work by (Huang
et al., 2016). In (Ng et al., 2011) interaction between only 50 agents is
simulated, taking into account deterministic and stochastic elements
of farmers’ decision making and using parallel programming so
that multiple executions of the individual-farmer model can be run
simultaneously.

It is legitimate to think that farmers’ risk attitude could change
for the effect not only of social interactions, but also farmers’ history,
regulations, subsidies, development of technical knowledge, etc. In
fact, as observed in (Faller and Schulz, 2017) for the specific case of
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biogas production in Luxembourg (which can be considered as one
of the possible farming-related investments), political frameworks
and world market developments became the most influential factors
in determining farmers decisions in the biogas context, overcoming
even other traditionally important factors, like the belonging to a
Community of Practice (CoP), which in the case of farmers can be
identified in farmers’ cooperatives. All these factors, which ultimately
then influence farmers’ risk orientation, are very hard to model and
would require a knowledge of the sector and the availability of a
quantity of information which goes beyond what was possible to
achieve in the framework of the application presented in this paper.
The estimation of farmers’ risk orientation that we achieved in this
paper is therefore probably the best possible compromise between
model complexity and availability of information.

The crop prices are set at the beginning of the simulation based on
the Holt-Winters forecasting model described in (Rege et al., 2015b).
More sophisticated price prediction models that also considers the
market dynamics could be implemented. However, since they do not
change over the course of a simulation and from one scenario to the
other, we do not address the issues that may arise from different price
predictions. Certainly, the feedstock exchanges between the farmers,
as well as subsidies for certain crops and practices, could be included
in the model. We are planning to incorporate subsidy and trade mech-
anisms in our model as soon as the related data will become available.

Concerning the threshold value of the GC used to trigger farmers’
environmentally conscious behaviour (in this case the choice of the
crops with the lowest CC related emissions among the list of available
crops), we set this value to 0.5 in our simulations, since the goal of
this study is to observe the effect of the network. We could have cho-
sen a different threshold value, but running different experiments we
noticed that this does not have as much influence on the final results
as the fact to look only at the CC impact of crops3, rather than using
some other criterion that looks at a wider spectrum of impacts, such
as a composite indicator like the single score indicator (Kalbar et al.,
2017). This would, however, bring in more uncertainty.

To complete the picture, we mention also the initial lack of real
geospatial differentiation in our model. This is related to the lack
of knowledge of the exact geospatial location of each farm. We ad-
dressed this issue in Section 2.4.1 and applied the above mentioned
"seeded region growing" and treemap algorithms to create realistic
farms with an assigned position in the treemap, which allowed the
creation of geographical neighbourhood relationships among each
the farmers. However, these relationships could also be enforced also
based on other attributes of a farm, such as the type of a farm (organ-

3 Moreover, we compare the CC impacts of the crops per ha and not per kg.
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ic/conventional) or its livestock density. We will address these points
in future research.

2.8 conclusions

The paper presented an ABM-LCA model of agricultural production in
the Grand Duchy of Luxembourg, exploring in particular the effects
(in terms of agricultural patterns and the consequent environmental
impacts) of the interaction among farmers and the spreading of envi-
ronmental awareness.

This paper was especially focused on placing the ABM approach
in the context of its support to LCA. In this respect, processes of par-
ticipatory modelling can certainly boost the acceptance of ABMs in
the LCA community in the first place and among stakeholders and
decision-makers in the second place, but practical user friendly tools
allowing scenarios simulations also to non-expert users are clearly
still lacking.

The implementation of certain features of the ABM, namely the dis-
tribution of the risk aversion attribute to the agents, was based on
the results of a survey deployed to a sample of farmers. In this re-
spect, we stress the importance of survey data as one of the effective
strategies to parameterize behavioural responses of humans empiri-
cally (Smajgl et al., 2011). However, conducting surveys can be a very
time and resources intensive process and the questions included in
the surveys have to be carefully designed in order to prevent at least
two risks: (1) the risk of asking redundant information or informa-
tion which does not allow a proper estimation of the interviewee’s
"personal" feature one wishes to estimate; (2) the risk of obtaining a
biased information due to the fact that the interviewee answers the
questions in an inaccurate way, which does not reflect his/her real
attitude.

Despite the limitations highlighted above, the model presented in
this paper is an operational example of a hard-coupling between
an ABM simulator and the LCA software Brightway2, which is quite
unique in ABM-LCA models and is based on a very flexible software
infrastructure relying on Java for the simulator code, .xml for sce-
narios definition and a series of python and bash scripts to work as
the virtual laboratory. The virtual laboratory is in charge of running
the different series of experiments, for each configuration and gather
the results in form of .csv files. This framework is conceived to help
field actors (e.g. farmers’ cooperatives providing basic consultancy to
farmers) to make some preliminary planning considerations.

The results of our simulations show that, at least in a simulation
environment, social interaction influences the evolution of green con-
sciousness among farmers and this causes an overall decrease of the
cumulative environmental impacts targeted by the selected decision
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rules, over the simulated time span (10 years in our application). In
particular, we noticed that farmers’ green consciousness levels vary
across the simulations, but when starting from high green conscious-
ness values, the effect of interaction leads to a bigger reduction of the
targeted cumulated impacts (HH effects of greenhouse gases emis-
sions in this case) with respect to the scenario starting from lower
average values of the green consciousness.
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3
S U S TA I N A B L E FA R M I N G S T R AT E G I E S F O R M I X E D
C R O P - L I V E S T O C K FA R M S I N L U X E M B O U R G
S I M U L AT E D W I T H A H Y B R I D A G E N T- B A S E D A N D
L I F E - C Y C L E A S S E S S M E N T M O D E L

3.1 abstract

ABMs are particularly suitable to simulate human–natural systems
since they allow modelers to consider the behavioral aspects of in-
dividuals. Life-Cycle Assessment (LCA) has also been widely used in
research, industry, and policy to assess systems’ environmental sus-
tainability. In this paper, we introduce a coupled ABM-LCA model to
simulate mixed crop-livestock farming activities in the Grand Duchy
of Luxembourg. The simulator considers a wide range of aspects re-
lated to typical farming business activities and allows the calculation
of the environmental and economic impacts of the decisions taken by
agents as well. The paper simulates different scenarios. Scenario A
is the baseline scenario. Scenario B considers reducing the stocking
rate from 1.6 to 1.3 livestock units per ha (Livestock Unit (LSU)/ha).
Scenario C aims to reduce the soybean ratio in animals’ feed rations
to the minimum possible level that is feasible for each farm. Scenario
D simulates an increase in soybean autonomy: the farmer chooses to
adopt local soybean (instead of imported one) into the crop rotation
if its green consciousness exceeds a pre-fixed threshold. As expected,
in scenario B, all impact categories show improvement with respect
to the baseline scenario, the highest ones being an almost 25% re-
duction in freshwater eutrophication, 21% in climate change–human
health, and 19% in freshwater ecotoxicity. For natural land transfor-
mation, the most significant improvements are obtained in scenarios
C (11% reduction) and D (13% reduction). On the other hand, in sce-
nario C, the change in feed composition, combined with an expected
decrease in stocking rates, also has a positive effect (about 16% reduc-
tion compared to the baseline) on agricultural land occupation, due
to the utilization of pasture and locally produced crops. An analysis
of the systemic uncertainty calculated at the endpoint indicators level
showed low Coefficient of Variation (CV) for all the scenarios, with
scenario A always having the lowest values of CV in every impact cat-
egory, scenario C having the highest CV in the ecosystem quality and
the human health categories and scenario B having the highest CV in
the resources category. The consideration of subsidy schemes in the
Grand Duchy of Luxembourg allows the modelers to better interpret
the resulting revenue and cost structures of different scenarios. The
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results show that the farm profitability stays on the same level when
the stocking rate is reduced, and the subsidy granted for reducing ni-
trogen emissions is in place at the same time. Moreover, the soybean
autarky in Luxembourg can be increased to 17% if the farmers are
willing to incorporate soybean into their rotation scheme, thus reduc-
ing the impacts due to the transportation and production of soybean
in South American countries.

3.2 introduction and state of the art

Acknowledging that anthropic activities have caused rapid and
widespread changes in the earth’s climate, the Intergovernmental
Panel on Climate Change (IPCC) recognizes that combating Climate
Change (CC) requires reaching “at least net–zero CO2 emissions,
along with strong reductions in other Greenhouse Gas (GHG) emis-
sions” (Masson-Delmotte et al., 2021). Agriculture is one of the
sectors that has been and will be, severely affected by the rising tem-
peratures, with loss of productivity caused by thermal stress, extreme
weather events and droughts. To cite just one example, wheat yields
are expected to reduce significantly (4–6%) for each degree Celsius
of an increase in global temperature (Liu et al., 2016). On the other
hand, some crops could become cultivable at latitudes different from
those traditionally grown. Moreover, it has been observed that since
the 1960s, plant pathogens and pests have shifted latitudinally as
the global temperature increases (Bebber et al., 2013). Temperature
change also influences the spatial-temporal distribution of disease
vectors. Animals may be exposed to diseases that have never been
seen before in their regions. Additionally, the disease transmission
rate is generally higher among the hosts in warmer temperatures
(Thornton et al., 2009).

According to (Hempel et al., 2019), dairy farms in Europe are pro-
jected to experience a 2.8% of milk yield decrease and a 5.4% monthly
financial loss in the summer months due to heat stress towards the
end of the century. As suggested by (Rust, 2019) heat stress may be
less relevant in intensive systems since intensive farming is usually
practiced in more controlled spaces. However, it still affects the feed
production for animal consumption. The total area of extensive sys-
tems, on the other hand, may see a slight decrease. Still, they will shift
towards more conservative stocking rates (i.e., the number of live-
stock units – LSU per hectare) and pasture conservation (Rust, 2019).
Furthermore, due to changing temperatures, the length of the grow-
ing season and the periods of available forage also change, which
could reduce the quality of the forage, thus resulting in an increase
in methane emissions due to ruminants’ enteric fermentation per unit
of gross energy (Benchaar et al., 2011).
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While the agriculture sector is affected by the impacts of CC, it
is also responsible for 16.5% of GHG emissions worldwide (Twine,
2021). The contribution has been both direct (i.e., through methane
emissions and land-use changes) and indirect (i.e., across the entire
supply chain) (Shukla et al., 2019). The world population is increasing
at an unprecedented pace and this causes growth in demand for food,
but also for the affluent food consumption patterns (Hadjikakou and
Wiedmann, 2017). Unless this demand is fulfilled sustainably (Muller
et al., 2017), the impact of agricultural production systems and their
subsystems on the environment, combined with those of transport
and industrial systems, may cause irreversible outcomes (Crippa et
al., 2021; Gregory et al., 2005). All these facts call for an increase
of attention to designing more suitable agriculture policies and thus
adopting more sustainable agricultural practices.

In addition to agriculture, livestock production systems are respon-
sible for relevant impacts on CV (Steinfeld et al., 2006). According
to (Gerber et al., 2013), livestock systems account for 44% of all an-
thropogenic CH4 emissions and 53% of N2O emissions. Using the
Global Livestock Environmental Assessment Model (GLEAM) (Ger-
ber et al., 2013), which considers global supply chains, estimated the
14.5% of the total contribution of the livestock sector to the global
anthropogenic GHG emissions. The direct contribution of the live-
stock sector to GHG emissions includes enteric fermentation, excre-
tions, and respiration. Primarily enteric fermentation has significantly
contributed to methane emissions and accounts for 39% of total GHG
emissions (Beauchemin et al., 2009). After enteric fermentation, the
second source of GHG emissions is manure management and its field
application, which account for 26% of the sectoral emissions (IPCC,
2014). Livestock manure releases CH4 and N2O, which both have
high GWP. The amount of methane released depends on the air and
storage facility conditions, as well as the animal diet. Liquid manure
tends to emit more methane than solid manure (Steinfeld et al., 2006).
The emission of N2O in agricultural land after manure application
is the largest source of global N2O emissions (Steinfeld et al., 2006).
Like CH4, N2O emissions depend on the storage systems and the
storage duration.

Sustainably managing agricultural and farming systems and track-
ing the impacts caused by them is a complex task, and even more
so in a changing climate. As already highlighted by several studies
on sustainable agriculture and farming (Jones et al., 2017; Marvuglia
et al., 2022), agricultural systems are complex systems as they are
the result of the interaction of many interconnected parts, where not
only technical and engineering components play a role, but also hu-
man behavioral aspects. For this reason, agent-based modeling (ABM)
has been gaining interest in socio-economic systems modeling since
it allows the modelers to consider heterogeneous agents and their in-
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teractions (Kremmydas et al., 2018). This is particularly relevant in
agricultural systems since the farms are run by actors (often family
businesses) which may have different strategies that can be affected
by bounded rationality and not necessarily driven only by profit max-
imization (Howley, 2015). The need to represent farmers’ individual
cognitive processes and social interactions has brought agricultural
systems modelers to the conclusion that ABM could help capture these
since the ABM community has gained maturity over the last decade
(Reidsma et al., 2018).

(Kremmydas et al., 2018) makes a systematic literature review of
ABM applied to agricultural policy evaluation and examines the status
of the literature regarding model transparency, the modeling of the
agents’ decision processes, and the creation of the initial population.
(Burg et al., 2021) focuses on manure-based biogas and applies ABM to
elicit the necessary additional incentives that would be able to boost
its production in Switzerland. (Yang et al., 2019) tackles the problem
of cattle production and specifically its transportation from an ABM
perspective. They use a model built into the AnyLogic software to
generate cattle and truck movement data among premises based on
regular business operating principles and assumed conditions. (Free-
man et al., 2013) focuses only on a particular aspect of farming, which
is dairy and manure land use. They use agent-based simulation to
compare the performance of alternative policies. (Fernandez-Mena et
al., 2020) developed an ABM to simulate material flows among actors
in agro-food networks. They include in their model farming activities
and emissions into the environment at the farm scale, interactions be-
tween farms and their partners through material exchanges, as well
as waste and by-product recycling.

To the best of our knowledge, Agroscope’s SWISSland is the only
national-scale hybrid ABM-LCA simulator for the agriculture sector
(Huber et al., 2018; Zimmermann et al., 2015). (Mack and Huber,
2017) uses SWISSland for projecting supply and demand while con-
sidering the external trade on global markets (Möhring et al., 2016).
The model has three main objectives: policy evaluation, consideration
of behavioral attributes of each farm, and modeling the structural
changes in farms. The agents interact with one another to exchange
of resources, but their behavioral attributes do not change because
of this interaction. (Manson et al., 2016) tries to model the interac-
tions between neighbors or among communities that may result in in-
formation exchange and, thus, behavior change in individual agents.
Another modeling choice of SWISSland is that the calculations for
animal intakes and production are not based on individual require-
ments but rather on the aggregation of all livestock. Animals of dif-
ferent types and age groups have different requirements to achieve
growth and production goals.
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The objective of this paper is the implementation of a hybrid ABM–
LCA model and its application to the case of the Grand Duchy of
Luxembourg via the simulation of multiple scenarios that go in the
direction of reducing the emissions of the agriculture and farming
sector, in line with the ambitious decarbonization objectives of the
country (MECDD, 2021). The paper aims at providing a comprehen-
sive coupled ABM-LCA model where all the aspects related to the de-
tailed description of the farm business model, as well as the detailed
modelling of individual animals’ methane emissions, are integrated
in a single model, which is also able to consider the effects of ex-
ogenous variables, like subsidies. This covers a gap in the literature,
where several models covering different aspects exist, but an inte-
grated model is missing. The organization of the paper is as follows.
Section 3.3 gives the model description, objectives, data sources, and
sub-models. Then a complete description of the coupling between
ABM and LCA is given. Section 3.4 presents the case study and simu-
lated scenarios. The results of the simulations and their uncertainty
analysis are shown and discussed in Section 3.5. The limitations and
possible future enhancements to the model are presented in Section
3.6. Finally, the conclusions and future goals are given in Section 3.7
and Section 3.8, respectively.

3.3 materials and methods

The main objective of our model is to elicit possible scenarios (and the
parameters characterizing them) under which the national agrosys-
tem evolves towards a more sustainable state. In (Marvuglia et al.,
2022) we simulated the information diffusion (GC attitude) in the net-
work of farmer agents. However, only the cropping activities were
considered, without full inclusion of animal farming into the model,
even though most Luxembourgish farms are of a mixed type (produc-
ing crops, meat and milk in the same holding). The model developed
by Marvuglia et al., 2022 has now been enhanced to include a full
integration of dairy farming activities which are especially important
for Luxembourgish agriculture.

3.3.1 A short description of the model

The model has different components which have been conceptual-
ized based on stakeholders’ consultation. The agents perform actions
based on the economic value of the resulting outcome, as well as
their impact on the environment. These actions can be reactions to
the surrounding environment (i.e., the agricultural area each farmer
manages) or they can be due to the preset behavioral attributes of an
agent. The model is built on top of the simulator which was described
in (Marvuglia et al., 2017) and (Marvuglia et al., 2022).
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The main entities in the model are the following:
Farmer: The agent entity in our simulation model is a farmer, who

takes decisions based on predefined constraints and behavioral at-
tributes. A farmer owns a farm, which is the environment (s)he man-
ages. The basic attributes of a farmer agent are age, GC, and risk aver-
sion (Marvuglia et al., 2022). These attributes, combined with farm
properties, impact farmers’ decisions.

Farm: Each farm is governed by a farmer and has attributes that
affect cropland and livestock management. For instance, the size of a
farm may influence how many animals must be kept or how many
neighbors there are. Crop rotation is another attribute that can be
determined according to the farm’s needs. A farmer may choose to
arrange feed rations considering the cropland available and change
the rotation accordingly. Based on the attributes mentioned above, the
farm’s total cropland is initialized using the Geographic Information
System (GIS) data. The surface of each farm in the Grand Duchy of
Luxembourg is divided in several field parcels, which are the smallest
parcels of land registered at the land cadaster. We call them Utilized
Agricultural Area (UAA). The GIS data that has information on UAAs
in Luxembourg was provided by Service d’Economie Rurale (SER). 1

Each of these UAAs is represented as a polygon with the associated
information on which a crop is being cultivated for a given year, the
commune it belongs to, the surface area and its perimeter. The data
is available from 2010 until 2020. Since the farm to which each UAA
belongs is not known, we create farms using the algorithm recalled
in (Marvuglia et al., 2022) and assign each one of them to an agent in
the initialization phase.

Table 13 shows the distribution of farms in Luxembourg by size
classes in 2020, which is the year used to initialize the model. After
the farm boundaries are created, a certain number of cattle heads are
also assigned to the farms according to the repartition shown in Table
14. The initial assignment considers the nitrogen excretion allowed
per hectare in Luxembourg. Different limits of nitrogen that can be
applied and excretion rates from manure per cattle class were taken
from (FAO, 2018).

Crop: The cropland of each farm is initialized according to GIS data
with details on crops planted in each UAA in 2020. The possible crops
for each UAA are given in Table 15. In our simulations, the available
crop types are cereal (C), legume (L), maize (M) and other (O). The
crop rotations were specified after discussion with different actors
in the sector and assigned to a farm according to its specifications
(Marvuglia et al., 2022). A crop can be planted in a time interval of ±1
month from its usual seeding month and can be harvested ±1 month
from its usual harvest month (the seeding can be anticipated if the
previous crop has already been harvested).

1 SER: https://ma.gouvernement.lu/fr/administrations/ser.html

https://ma.gouvernement.lu/fr/administrations/ser.html
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farm
class

min area
(ha)

max area
(ha)

number
farms

total uaa
(ha)

A 0 2 164 95
B 2 5 119 442
C 5 10 152 1090
D 10 20 156 2126
E 20 30 114 2844
F 30 50 174 6906
G 50 100 483 36,515
H 100 200 510 81,573

Table 13: Farm classes and size-related data (STATEC, 2022)

Livestock: The farms in Luxembourg are mostly specialized in
grazing livestock farming. For this reason, it is important to model
the livestock production system along with cropland management to
grasp the full business model of a farmer. This system mostly consists
of dairy and suckler farms, therefore our focus is especially on those.
According to the data from (Eurostat, 2022), the farms are initialized
with livestock from different classes. Each livestock class differs from
the other ones with attributes such as age, gender, and production
purpose (i.e., suckler or dairy). According to its class, certain biolog-
ical events and production mechanisms are applied to each animal
in every step of the simulation (Figs 12 and 13). These events and
mechanisms include key variables and parameters such as Dry Mat-
ter Intake (DMI), weight gain, Gross Energy Intake (GEI), lactation, and
insemination, which are explained in more detail in Section 3.3.2.

Lactation: Each dairy animal is assigned a lactation period of a
duration comprised between 305 and 320 days after the first insemi-
nation trial. Each insemination has a probability of success of 0.4 and
it happens once in every time step. Once the cow is pregnant, until
the dry-off phase, Milk production (MP) from each cow is calculated
according to the Dijkstra equation given in (Nasri et al., 2008). After
the calving, the newborn is added to the herd. The farmer waits for
a certain period before the next insemination trial. The stages of each
lactation are depicted in Fig. 12.

Price: The prices for all products are calculated by taking a moving
average of previous n years, where n is the window size for the mov-
ing average and can be different for each farmer. The yearly prices
for crops are taken from (STATEC, 2022) and monthly meat and milk
prices are taken from (Eurostat, 2022). The prices are then updated
according to their input time resolutions, i.e., monthly or yearly. The
Value-Added Tax (VAT) is excluded from the prices that are being
used in the model, therefore the crop prices in Table 15 do not in-
clude VAT.
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livestock
class
id

livestock
class

age a b c d e f g h sum

1 Male (Lage<12) 120 20 90 200 0 2140 17,180 34,470 54,220
2 Female (Lage <12) 70 0 10 40 110 460 4200 7590 12,480
3 Male (12 <Lage <24) 100 10 80 130 390 1360 10,020 19,400 31,490
4 Heifer (12 <Lage <24) 50 10 30 30 80 240 1110 1540 3090
5 Heifer (Lage >24) 70 20 20 90 350 960 6620 12,020 20,150
6 Dairy (Lage >24) 0 0 0 0 130 1170 16420 33,300 51,020
7 Suckler (Lage >24) 140 20 80 300 630 2000 8990 16,350 28,510

Table 14: Number of livestock in each farm class and livestock class in 2016. (Eurostat, 2022). Lage: The age
of livestock in months.

crop type
yield
(tdm / ha)

price
( e/100kg)

total
production
(tdm )

standard
seeding
month

standard
harvest
month

Barley (spring) C 5,96 14,21 10,951 3 8
Barley (winter) C 5,51 14,21 21,500 10 8
Dried pulses
(peas, beans, others)

L 3,41 18,00 1292 3 8

Grain maize M 6,75 15,00 810 4 10
Green maize M 13,74 – 222,219 4 10
Oats C 4,99 13,5 7939 4 8
Potatoes O 26,25 23,33 16,368 4 9
Rapeseed O 3,30 35,65 8791 3 8
Rye C 4,53 13,54 4670 10 8
Spelt C 4,74 20,34 4217 10 8
Triticale C 5,60 14,59 25,270 10 8
Wheat (spring) C 6,13 17,05 2271 3 7
Wheat (winter) C 6,06 17,05 63,910 10 8

Table 15: Some statistics for major crop types that are cultivated in Luxembourg in 2020. Yields are ex-
pressed in tons of dry matter (tDM). Sources: (Marvuglia et al., 2022; STATEC, 2022).
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Time: The time step of one month is chosen for the simulations.
There are two main reasons behind this choice. The first one is the
seasonal cultivation times for crops. As explained above, the seeding
and harvesting months are respected throughout the simulation. If
the current crop is harvested, the farmer chooses the next crop based
on his or her farm’s attributes. The second reason is the fact that
decisions in livestock production are usually taken monthly. To im-
plement lactation stages, a finer resolution than one year is needed.
In fact, decisions like selling the animals or choosing grazing times
are taken within the year, rather than at the end of the year. Each time
step consists of three sequential phases. In the pre-market phase, the
prices for the current timestep are updated, as well as seasonal deci-
sions like feed rations or grazing times are chosen. Subsequently, in
the market phase, the crop and animal outputs of the current year
are collected. The farm revenue and costs are also calculated based
on these outputs in the same phase. The updates to the farmer’s be-
havioral attributes or farm structure (e.g., selection of animals to be
culled) are all part of the post-market phase.

Environment: Each farm has been assigned cropland that comes
from the real GIS data. The network of farmers is created based on
geospatial neighborhoods, with a procedure that is explained in detail
in (Marvuglia et al., 2022).

ABM-LCA coupling: The LCA model and the ABM are “tightly” cou-
pled, in the acceptation discussed in (Baustert and Benetto, 2017).

Software implementation: The simulator has multiple software
components communicating with each other. The initialization is
achieved using the PostgreSQL (PostGIS) database, which includes
the GIS data, country-specific statistics from STATEC and Eurostat
and financial data such as cost items and product prices (Fig. 13).
The ABM is built in Java (Arnold et al., 2005) to allow model builders
enough flexibility and it is the main component that runs the sim-
ulation phase (Fig. 13). Finally, the environmental impacts of the
crops and animal patterns obtained in each simulation are calcu-
lated using the classical LCIA indicators using the ReCiPe (Huijbregts
et al., 2017) LCIA method. In the results monitoring phase (Fig. 13),
the LCIA calculations are done automatically in Python using the
Brightway2 life cycle assessment (LCA) framework (Mutel, 2017) and
relying on Ecoinvent 3.7.1 as Life-Cycle Inventory (LCI) database for
the background system (Wernet et al., 2016).

3.3.2 The modeling of livestock production system

The animal management part of the simulator is modeled such that
one animal is the main physical component of a livestock production
system. It has some phenotypical properties like gender, weight, and
production type (female animals can be dairy or suckler), which are
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combined with its farm properties, like available grassland for ani-
mal consumption. The prevalent breed in Luxembourg is Holstein–
Friesian, therefore every cattle in our simulations is assumed to be
from this breed. Together with these properties, the choices made by
the farmer determine the resulting production as well as the animal’s
lifetime. In Fig. 13 the life stages of one animal are depicted. After
each calving, the calf is assigned to the farm with a certain gender,
body weight, and birthdate. Until the heifers have the first calving,
there is no milk or meat production, however, their DMI, gross energy
intake, nitrogen excretion and methane emission are calculated. The
heifers are kept until they reach 15 months of age when they are dis-
tinguished between suckler and dairy cows according to their genetic
traits. After that, they start experiencing the lactation cycle depicted
in Fig. 12 and go through it until they are sold, once they become 60
months old. Fig. 14 shows how the current stage of animal develop-
ment affects the decision-making of a farmer in each time step. After
the relevant updates are applied and the decision of keeping or sell-
ing is made, the production and resulting revenue are calculated at
every time step (see Fig. 15).

3.3.2.1 Milk production

One of the two main purposes of livestock systems is to produce milk.
There are different approaches in the literature to estimate daily MP
and one of them is fitting standard growth functions to milk record-
ings. We chose to use the following one, which is known as the Dijk-
stra equation (Dijkstra et al., 1997):

MP

✓
kg

day

◆
= ae

b(1-ect)
c -dt (3)

where the parameters that define the lactation curve’s shape and scale
(a = 23, b = 0.069, c = 0.066 and d = 0.0035) are taken from (Nasri et al.,
2008).

3.3.2.2 Meat production

After the dairy sector, the suckler production system is also important
for Luxembourgish farmers. Although the feeding regimes in the cur-
rent version of the simulator are adapted to dairy farms, in our sim-
ulations we calculate the meat produced via suckler cows and male
cattle. The culling decision of a farmer agent is based on multiple
factors such as age, gender, and efficiency of a cow (defined in Eq. 4).
In Fig. 13, the cases where age and gender are decision factors are
depicted.

However, the efficiency of a cow is another factor to consider, es-
pecially when the farmer wants to reduce the stocking rate. The effi-
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ciency of a cow is defined by Eq. 4 as the ratio between last month’s
MP and DMI:

Eff =
tX

t-1

MP

DMI
(4)

The farmer chooses to get rid of (sell or slaughter) the animal with
the lowest efficiency to reach the objective stocking rate set by other
constraints and mechanisms of the simulations. After the selection,
the carcass weight of the animal is calculated. The assumption made
by Ecoinvent is that the live weight of an animal should be halved to
find the carcass weight. Therefore, we determine the meat produced
by halving the live weight of the animal when the decision to cull is
taken.

3.3.2.3 Nitrogen excretion

The manure and resulting nitrogen excretions to the soil due to live-
stock activities are calculated using the estimations in (Netherlands,
2012). The fixed parameters for one year of excretions are given in
Table 16. The calculation of nitrogen input to the soil is particularly
important to calculate subsidies and the animal capacity of the farm.
The national limit of 170 kg-Norg/year/ha (where Norg is the organic
nitrogen) is very strict and corresponds to 1.6 LSU in Luxembourg.

livestock
class id

1 2 3 4 5 6 7

Manure
(kg/year)

5000 5000 11,500 11,500 11,500 13,000 15,000

Nitrogen
(kg/year)

39,5 74,8 74,8 74,8 74,8 134,5 84,9

Table 16: Manure and Nitrogen excretions according to livestock type
(Netherlands, 2012)

3.3.2.4 Body weight and weight gain

Normally, genetic traits and feed intake are major determinants in es-
timating the body weight of an animal. In the simulator, at the begin-
ning of the simulation, the newborns are assigned an initial weight
from a continuous uniform distribution in the range of 35–45 kgs.
Then the body weight until 24 months of age is updated at every
time step using the daily weight gain in (Handcock et al., 2019).
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Figure 12: One lactation cycle as implemented in the ABM simulator.The parameters are chosen after con-
sultation with project partners. If ranges are specified, it means that a random number is chosen
from a uniform distribution within that range.

Figure 13: Overview of the modeling scheme. The main stages are initialization, simulation and monitor-
ing.
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3.3.2.5 Gross Energy Intake (GEI)

The GEI is calculated using Eq. 5 according to (Dong et al., 2006),
where the calculations of different energy requirements can also be
found.

GEI

✓
MJ

day

◆
=

2

4

⇣
NEm+NEa+NEl+NEwork+NEp

REM

⌘
+
⇣

NEg

REG

⌘

DE%
100

3

5 (5)

where NEm is the net energy for maintenance, which is the amount of
energy required to keep the animal’s body energy in balance; NEa is
the net energy for activity, i.e., the energy required to get feed, water
and shelter; NEl is the lactation energy, which is a function of milk
produced and its fat content; NEwork is the energy required for draft
power, which is assumed to be zero in our simulations; NEp is the
energy required for pregnancy and NEg is the energy required for
weight gain. The ratio of net energy available in the diet for main-
tenance to digestible energy consumed (REM), the ratio of net en-
ergy available in the diet for growth to digestible energy consumed
(REG) and digestible energy expressed as a percentage of gross en-
ergy (DE%) are fixed parameters that can be found in (Dong et al.,
2006).

3.3.2.6 Dry Matter Intake (DMI)

The DMI for each animal is calculated according to its energy require-
ments for the given period. The energy content of each type of ration
is precalculated and given in. The GEI of each animal is calculated
according to (Eq. 5). Then the DMI is calculated proportionally to the
average GEI of grown Holstein cows in the herd because the feed ra-
tions in are adjusted according to those ones.

3.3.2.7 Methane (CH4) emissions

CH4 emissions per cow is then calculated using the equation devel-
oped by IPCC (Dong et al., 2006):

EF

✓
kg-CH4

head⇥ year

◆
=

GEI
⇣

MJ
head⇥day

⌘
⇥ Ym

100 ⇥ 365

55.65
(6)

where GEI is calculated according to (Dong et al., 2006), EF is the
emission factor and Ym is the methane conversion for different types
of animals. This is a considerably more detailed approach than the
lumped approach usually used in LCA, where animal–driven emis-
sions often lack precision (e.g., averaged values for cow live weight,
dry matter intake, diet composition, herd MP, average methane pro-
duction and animal density).
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Figure 14: The simulation flowchart of dairy farming system.
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Figure 15: The lifecycle of an animal in the simulator.
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3.3.3 The subsidy schemes

Since the 1980s, environmental objectives have gradually become a
part of the EU’s CAP. EU’s CC policy requires a change in agricul-
tural practices to contribute to reducing GHG emissions, improving
energy efficiency and protection of soil. In our simulations, these pol-
icy objectives were addressed through direct payments that support
environmental measures (Pillar 1) and multi-year rural development
regulations that have CV as one of the guiding considerations (Pillar
2).

In the simulator, these subsidies are implemented in a simplified
form, i.e., they have been considered only when the other components
in our ABM allowed their integration. More specifically, for example,
since the ecologically valuable areas are not part of the simulator, the
subsidies that must consider those areas have been neglected in our
simulations. Only the ones shown in Table 17 have been implemented.
They account for most of the payments received by the farmers in
Luxembourg. It is important to note that all farms must first meet the
cross-compliance requirements in order to get these subsidies (SER,
2015), which is the case for almost all the farms in Luxembourg in
recent years.

3.3.4 The feed rations

Most farms in Luxembourg operate as dairy or suckler farming,
which influences the farmers’ decisions on how to increase the ef-
ficiency of their animals. The animal diet is a major determinant
when it comes to maximizing its production. In Table 18 the rations
calculated by (Zimmer et al., 2021) are given for an adult Holstein
cow. Farms are initialized with mixtures of these rations initially in
our simulations. Each animal’s energy intake for the given month of
the simulation is calculated using the IPCC equation for GEI (Dong
et al., 2006), and then the total daily DMI of an animal is calculated
with respect to an adult Holstein cow. According to their strategy (or-
ganic, conventional, GMO, non-GMO, etc.), farmers choose different
mixtures of feed rations to achieve their animals’ capacity, keep the
animals healthy and optimize their profits (Table 19).

3.4 case study

The strategies implemented in our simulations are described as sce-
narios after careful consultations with the local stakeholders. In these
scenarios, we mainly focus on livestock production systems and their
generated impact on the environment. The crop selection is done in a
similar fashion as in (Marvuglia et al., 2022), where the farmer takes



3.4 case study 79

name description and implementation payment

Greening It is based on area. Greening is about environmen-
tally friendly management methods, which go be-
yond cross-compliance, and applies to crop diversi-
fication, preservation of existing grassland and des-
ignation of ecologically valuable areas. Greening is
not a voluntary regulation, but mandatory for every-
one who wants to benefit from the basic premium.
Organic farms are exempt from the greening require-
ments. Permanent crops (vineyards, orchards, . . . )
are also not affected by greening. Almost all the farm-
ers in Luxembourg get this subsidy, like a basic pre-
mium, if they comply with the cross compliance stan-
dards. The subsidy requirements differ based on the
total UAA. The following farms are entitled to get the
subsidy in the simulator:

– Farms with less than 10 ha of UAA;

– Farms with a total UAA between 10 ha and 30
ha must have at least two crops and the main
crop must not cover more than 75% of UAA;

– Farms with more than 30 ha of UAA must have
at least three crops and the main crop must not
cover more than 75% of the area; moreover, the
main two crops must not cover more than 95%
of the area.

90 e/ha

Basic-Premium It is based on area. Almost all the farmers in Luxem-
bourg get this subsidy as long as they comply with
the cross compliance standards.

185 e/ha

Compensatory al-
lowance

In the simulator, there is no distinction between pro-
fessional farmers and part-time farmers. Therefore,
the subsidy is implemented considering all farmers
are professionals. Farms with more than 3 ha of land
are entitled to get the subsidy. A farmer can get the
subsidy for at most 120 ha of land.

For the first 60 ha, 150
e/ha. For every addi-
tional area up to 120
ha it is 75 e/ha.

Extensification of
permanent grass-
land

The amount is calculated based on the amount of ni-
trogen input to the soil. It has to be less than 170 kg-
Norg/year/ha for all the farms throughout the simu-
lations to comply with current regulations. This cor-
responds to nearly 1.6 LSU/ha.

When input is below:

• 130 kg-
Norg/year/ha:

150 e/ha.

• 85 kg-
Norg/year/ha:

200 e/ha.

Table 17: The subsidy schemes implemented in the ABM simulator.
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the decision based on crop rotation constraints, crop price and the
crop’s CV impact.

ration r1 r2 r3 r4 r5 p

Grass Silage (%) 70 40 70 40 100 0
Maize Silage (%) 30 60 30 60 0 0
Soya (kg/day) 0,7 1,1 1 1,5 0 0
Maize Silage (kg/day) 16 28 16 28,8 0 0
Grass Silage (kg/day) 29,7 17 29,7 17,1 34 0
Barley (kg/day) 1 0,8 0 0,5 1 0
Triticale (kg/day) 1 0,8 0 0,5 0,6 0
Maize (kg/day) 1,2 1 2,5 0,5 0,15 0
Rapeseed (kg/day) 0,7 1,1 1 1,5 0,3 0
SoyaMax (kg/day) 1 1,5 0,33 0,5 0 0
SoyaMin (kg/day) 0,7 1,1 0,23 0,36 0 0

Table 18: The mixture of feed rations in different seasons for each type
of farm (Zimmer et al., 2021). SoyaMax corresponds to the
current level of soybean extraction in feed rations of Luxem-
bourgish dairy, whereas SoyaMin is the reduced extraction
level that is feasible for farms and is the target of our scenar-
ios.

farm type winter summer

Conventional 50% R1, 50% R2 33% R1, 33% R2, 33% P
Conventional-GMO 50% R3, 50% R4 33% R3, 33% R4, 33% P
Organic 33% R1, 67% R5 100% P

Table 19: The feed rations of different types of farms as they are im-
plemented in the simulator (Zimmer et al., 2021).

3.4.1 Scenario A: Baseline scenario

The current average stocking rate in Luxembourg is 1.6 LSU/ha.This
is used as a baseline in our model and farms must stay under this
threshold in every scenario. The objective in the baseline scenario
is to preserve the herd structure, which implies that the number of
livestock heads only changes according to established rules. Farmer
agents do not adjust livestock production, and they make decisions
based on pre-defined constraints and not on their behavioral at-
tributes. On crop production, however, the choice is based on the
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farmer’s GC, crop prices and crop rotation constraints as described in
(Marvuglia et al., 2022).

3.4.2 Scenario B: Reducing stocking rates

One way to reduce the carbon footprint of farming systems is by
changing the herd structure. This can be achieved by improved repro-
duction systems as well as by gradually changing the stocking rates
on the farm. Keeping fewer animals means not only generating fewer
emissions to the air but also less nitrogen input to the soil. Within
this context, certain subsidies are set for different levels of nitrogen
input reduction in Luxembourg (Table 17).

As in every scenario of our simulations, the culling decision based
on gender and age is made first. Then, at year n, the farmer agent
checks the nitrogen input of the herd left at year n-1. If it exceeds
the objective set previously based on the livestock unit per hectare,
then there is a secondary culling decision that is based on the effi-
ciency of an animal defined in Eq. (3). The selection of the target
stocking rate in terms of LSU/ha is done according to the subsidy
criteria and the simulations were run according to those selections.
The selected target for this scenario is 1.3 LSU/ha. This scenario is
applied in conjunction with the subsidy scheme “extensification of
grassland”. The decision process for this scenario B is described by
the flowchart presented in Fig. 16. The farmers choose the animals
to be sent away from the herd (i.e. slaughtered or sold alive) in the
post-market phase, and subsequently, the collection of all products
and corresponding revenue generation are calculated.

Figure 16: Flowchart of the decision process for scenario B.

3.4.3 Scenario C: Reducing soybean ratio in feed rations

This scenario aims to reduce the soybean ratio in animals’ feed rations
to the minimum possible level. Soybean imports in Europe currently
hold more than 95% of the total consumption (AGRI, 2022). Soymeal
accounts for most of this consumption and it causes ecological and
socio-economic impacts in North and South American countries, like
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deforestation, soil erosion and rural displacement (Song et al., 2021;
Zalles et al., 2021). (Zimmer et al., 2021) assessed the potential of
reduction in soybean rate in feed rations in Luxembourg. They dis-
cussed the possibility of using less soybean in different rations which
would lead up to a 42% reduction of soybean imports in Luxembourg
according to their analysis. We built a scenario considering this as a
realistic objective to achieve in ten years and at every time step the
soybean consumption in every farm gradually decreased. The current
level of soybean extraction (SoyaMax) is reduced to the minimum pos-
sible level that is feasible for farms (SoyaMin). We, therefore, consider
a SoyaMin quantity in each ration, and we monitor the consequent
change in soybean import (which is currently the only source of soy-
bean in Luxembourg) and the corresponding change in environmen-
tal impacts. The decision process for this scenario is described in the
flowchart presented in Fig. 17.

Figure 17: Flowchart of the decision process for scenario C.

3.4.4 Scenario D: Producing soybean locally

Another possibility for reducing the impact of soybean import is
to produce soybeans locally as suggested by (Zimmer et al., 2021).
According to a survey conducted by Institut fir Biologësch Land-
wirtschaft an Agrarkultur Luxemburg (IBLA), the institute for organic
agriculture in Luxembourg, most farmers are willing to adopt soy-
bean into the crop rotation in Luxembourg (Zimmer et al., 2015). Con-
sidering that the production of soybeans is feasible only in the south
of the country, this may account for 3200 ha of land every year. In our
simulations this decision is taken based on the farmer’s GC, i.e., the
farmer chooses to adopt local soybean into the crop rotation if GC >
0.5 and in this case a soybean import is not needed to feed the herd.
This means that we avoid the impacts due to overseas transportation.
The decision process for this scenario is described by the flowchart
shown in Fig. 18.
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Figure 18: Flowchart of the decision process for scenario D.

3.5 results and discussion

3.5.1 Simulations

From the LCA point of view, the Functional Unit (FU) is represented
by the total agricultural and pastureland of the country (i.e., the sum
of all the UAAs) and by its entire production of milk and meat. The
simulations are run for 10 years and an average of 50 repeats are
reported in this paper. The random seed assignment for each run
is explained in (Marvuglia et al., 2022). The same set of fields is as-
signed to the farms in every run, which were previously saved in
the database after the farm creation algorithm is applied to the GIS
data (Marvuglia et al., 2022). The network of farmers is created based
on the neighborhood and risk aversion classes which affect the GC up-
date at the beginning of every time step. As explained in Section 3.3.2,
the livestock production system holds the largest part of the required
computational time of the simulations. Since every livestock-related
decision is taken by the farmer at the animal (and not the herd) level,
the calculations for production and emissions are done based on sin-
gle animals. The objective of a scenario can be changing the stocking
rate of a farm, adapting a different feed ration, or encouraging local
feed production.

Fig. 19a-19d show the LCIA results for three different endpoint val-
ues obtained with the (Reidsma et al., 2018) method, for 10 consec-
utive years, respectively for scenarios A-D. As Fig. 19a shows, the
Human Health (HH) and Ecosystem Quality (EQ) impacts are already
decreasing in the baseline scenario. This is due to already decreasing
stocking rates, which is the case in Luxembourg in recent years. An-
other reason is that in every scenario the agents are choosing crops
based on climate-change impacts if their GC is higher than 0.5. The
decrease in HH and EQ become more apparent in scenario B, where
we progressively reduce the stocking rate until reaching the value of
1.3 LSU/ha at the end of ten years. The resources endpoint scores do
not vary between the scenarios.
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Fig. 20 gives some important midpoint scores, that are affected sig-
nificantly as a result of scenario B. As expected, when we reduce the
stocking rates all impact categories show improvement (with respect
to the baseline scenario, almost 25% reduction in freshwater eutroph-
ication, 21% in climate change-human health, 19% in freshwater eco-
toxicity). In fact, as there are fewer and fewer animals in the system,
freshwater ecotoxicity and eutrophication categories show significant
improvements since less manure is produced and thus there is less ni-
trogen leakage to the soil. As the total feed consumption by animals
also decreases, the feed imports have lower impacts on the agricul-
tural land occupation category (4% less than in the baseline scenario).
The same happens also for natural land transformation, with about
6% reduction. This category shows more significant improvements in
scenario C (11% reduction) and D (13% reduction), because the land
usage for soybean production is reduced due to feeding changes in
scenario C, or because other crops were replaced with soybean in sce-
nario D. Apart from LCIA results, the methane emissions from each
individual animal in the system is calculated as explained in Section
3.3.2.7. The result is a significant reduction (19% compared to the
baseline) throughout the simulation for scenario B (Fig. 21a). This
was expected, due to decreasing number of LSU/ha (from 1.6 to 1.3),
which is given in Fig. 21b. On the other hand, in scenario C, the
change in feed composition, combined with an expected decrease in
stocking rates (like the baseline scenario), also has a positive effect
on agricultural land occupation (up to 16% compared to the base-
line, based on Fig. 20) due to the utilization of pasture and locally
produced crops.

The mitigation of certain emissions comes with an economical cost
for the farmers, especially in the short term. The animal and crop pro-
ductions, and thus the related revenues, are affected by each aspect
of our scenarios. In reality, these can be compensated via incentives,
such as subsidies. As explained in Section 3.3.3, the subsidy schemes
that are already in place for Luxembourgish farmland help farmers
to compensate for their losses while diversifying their crop structure
or protecting the soil from nitrogen stress. Fig. 21 shows the resulting
cost and revenue structure of Luxembourgish farms under scenario
A (baseline scenario). In the baseline scenario, the animal and crop
output does not change significantly, as well as the subsidies earned
by the farmers. For scenario B, the subsidy contribution is 16% higher
than the baseline scenario (Fig. 22). In this case, the animal produc-
tion decreases, but the subsidies compensate to a large extent the
consequent economic loss for the farmer. The cropland is also used
more for human consumption since the need for animal consumption
is reduced significantly.
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Figure 19(a): Baseline scenario Figure 19(b): Stocking rate reduction scenario

Figure 19(c): Reducing soybean ratio in feed rations Figure 19(d): Producing soybean locally

Figure 19: Endpoint LCIA scores over the 10 years of the simulation for the four different scenarios.

Figure 20: Comparison of different midpoint impact scores in each scenario.
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Figure 21(a): Methane emissions due to agricultural activities. Figure 21(b): The reduction of LSU/ha until the specified 1.3
threshold.

Figure 21: Total costs and revenues for the baseline scenario.

Figure 22: The progression of premiums throughout the simulation steps and across scenarios.
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In scenario C, the change in animal diet brings a 13% reduction in
animal feed costs. In scenario D, the local soybean production brings
additional costs, such as seeds and fertilizer, but the animal feed pur-
chases decrease as the simulation progresses. There is a slight de-
crease in crop output because the farmer agents dedicate some of the
lands to soybean production, which ends up as animal consumption2
rather than being sold on the market.

3.5.2 Uncertainty

The results shown in this paper are affected by the uncertainty re-
lated to its multiple assumptions, such as model parameters, price
forecasts, agent interaction rules, as well as LCI data uncertainty. The
parameters that are related to the livestock production system (e.g.,
culling rate, duration of each phase of a lactation period) have been
chosen carefully after stakeholder consultation, but they normally
change from one farmer to another. This justifies the choice of an
individual-based simulation to model the sector but brings uncer-
tainty where there is lack of information.The different locations of
uncertainty in coupled ABM-LCA models are addressed in detail by
(Baustert and Benetto, 2017) where a distinction is made between
uncertainty due to measurement errors or data quality (parameter
uncertainty), and uncertainty due to inherent variance of the under-
lying system (systemic uncertainty). Model parameters can take true
values, or they can be assigned values using random variables. The ran-
dom variables are described by given probability density functions,
which are also described by equations containing parameters, thus
contributing to an increase of the parameter uncertainty. Systemic un-
certainty is the result of stochastic events (e.g., farmer agents’ choices
and interactions in the case of the model described in this paper) and
is responsible for variations from one model run to another. Since pa-
rameters were carefully chosen after discussing them with stakehold-
ers, or they are exogenous to our model (such as prices, subsidies,
etc.), in this paper we will focus only on the systemic uncertainty.
The parameter (or structural) uncertainty due to product prices, LCI,
and livestock life-stage attributes is not discussed in this paper but
will be the object of future investigation.

Uncertainty Nomenclature. For the uncertainty analysis we fol-
low the structure proposed in (Baustert, 2021). Let us consider a LCA
source-system (i.e. a network of interconnected processes that define
the studied LCA model). The generic i-th agent-based sub-system Mi

of a source-system with n calibrated parameters PM and m random
variables VM is executed over a time period T using a simulator S.
For a concrete instance Mi the set ⌦Mi contains the defined param-
eter values. The instance Mi can be used to simulate a set of results
rMi using an instance Si of the simulator, containing different output
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variables of interest. The value of each of these output variables can
vary for different concrete instances of the sub-model (M1,M2, . . .)
and for different simulations of the same concrete instance Mi, due
to the systemic variability of M caused by the random variables VM

within the sub-model.

Figure 23: Uncertainty propagation scheme for systemic variability
(adapted from ((Baustert, 2021), p. 88)).

Figure 24: Violin plots of the results of three endpoint categories ob-
tained over 50 simulations for four scenarios.

The nomenclature of an LCA can be defined analogously: the LCA
sub-model L has a set of parameters PL which contains the elements
of the technosphere, biosphere and characterization matrices. For a
concrete instance Lj the set ⌦Lj contains the defined parameter values.
Lj is a concrete instance of the LCA model L producing a set of results
rMiLj . As L is not a computational model, the results of one concrete
instance do not fluctuate for different simulations, or in other words,
L will always give the same results for one ⌦Lj . Note that parameters
of L can be part of the different phases of an LCA (inventory or impact
assessment). To address the systemic variability in an ABM-LCA cou-
pled model, the following scheme is proposed. Firstly, ⌦M and ⌦L
are defined such that each parameter takes its nominal value. Then,
n simulations are performed, where m random variables are sampled
in M. This results in n vectors of the rMi type, namely the outputs
of ABM and inputs to the LCA model. Then, for each vector, final LCA
results rML can be computed.The uncertainty in the model output can
be characterized, e.g., by assessing the coefficient of variation of the n
model outputs for each midpoint or endpoint indicator. Fig. 23 illus-
trates the uncertainty propagation scheme, where M and L represent
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the concrete instances respectively of the ABM and the LCA models,
in which the parameters take their nominal values. The subscripts of
M(i = 1, . . . ,n) correspond to the simulation identifiers.

To propagate the uncertainty according to the scheme described in
Fig. 23, we ran a set of simulations (n = 50) and calculated the coeffi-
cient of variations of the corresponding LCIA endpoint categories. As
explained above, the parameters are set to their nominal values, and
the systemic variability due to the underlying model (i.e., random
variables) are calculated. Fig. 24 uses violin plots to show the density
distribution of the values obtained over 50 simulations for the three
endpoint impact categories. The white dot in the middle of each plot
represents the median value, the tick gray bar in the center represents
the interquartile range and the thin gray line represents the rest of the
distribution (excluding eventual outliers).

Table 20 shows the values of the main descriptive statistics for the
LCIA results of the last year of the 50 simulation runs, for each of the
four scenarios (see Table 21).

One can see that ecosystem quality has the lowest CV in all the
endpoints with less than 0.5% in all scenarios, followed by human
health and resources.From the ABM point of view, a larger variability
is produced by the parts of the model where more random variables
are present. Therefore, the fact that there are fewer random variables
in the part of the model that describes the crop production, generates
less variability in the impact assessment results for the ecosystem
quality category, which is mostly affected by the flows coming from
field operations (especially fertilizers and pesticides). Table 20 shows
the list of random variables and the nominal values set in the systemic
uncertainty analysis.

3.6 limitations of the model

Although a relatively comprehensive modeling of the farm business
is achieved in this work, there are a few aspects that could still be
improved (or further complexified) in the model.

Firstly, the farmers’ behaviors and interactions could be modeled in
a way that the land rentals or acquisitions are considered. The rental
durations also affect the way subsidies are being paid, since long-term
commitments are required for some of the premiums offered by the
Government. By no means the subsidy schemes we implemented are
complete and describe the whole structure, which can be improved
with the addition of other components to the model, such as the des-
ignation of ecologically valuable areas. Another way to make the sce-
narios more appealing to stakeholders is to show the total cost of envi-
ronmentally friendly actions considering environmental externalities.
This can bring the possibility of optimizing the farmer’s decisions us-
ing a single objective function that accounts for the monetary value
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of environmental impacts and economic value they can generate with
a certain crop and animal pattern.

The addition of livestock production systems opens other possibili-
ties to complexify the model. Biogas production in Luxembourg (and
in the Greater Region) is being promoted by the stakeholders as an-
other source of renewable energy (PNEC, 2020). The estimation of
manure excretion can be done for biogas production, combined with
the already available data sources for energy crop cultivation in Lux-
embourg, the farmers who decide to produce biogas are organized in
cooperatives, just as they do for selling the produced milk. These co-
operatives allow the modelers to include additional connections and
information exchange between the farmers that belong to the same
cooperative. The cooperative can also be modeled as an agent that
disseminates information through the network; therefore, biogas co-
operatives are in the end an important stakeholder in the sector.

Concerning crop prices, the forecasts are based on the Holt-Winters
time series prediction model, as described in (Navarrete Gutiérrez et
al., 2015). In this respect, the choice of window size for seasonal time
series can have a drastic impact on predictions, especially on the milk
prices since the input data is monthly.

Finally, the crop choices are made under crop rotation constraints
and based on the comparison of CV impact or forecasted price of
individual crops for agents with high GC and low GC, respectively.
Rather than using CV impact, a combination of multiple indicators
could be used (Kalbar et al., 2017), although this can bring further
subjectivity and uncertainty in the model.

3.7 conclusion

A hybrid ABM-LCA model that simulates mixed crop-livestock activi-
ties is presented in this paper. The focus is on the addition of dairy
and suckler farming activities and on the exploration of possible sce-
narios that would reduce the environmental impact of those activities.
The ABM allows the modeler to simulate the farmer agents’ activi-
ties based on economic and behavioral constraints and apply the LCA
methodology to the resulting crop and herd structure to calculate the
environmental impacts of the simulated activities.

The paper shows the results of multiple scenarios. The first one
(scenario B) simulates the decisions of the farmers to reduce their
stocking rates by changing the herd structure (from 1.6 to 1.3 live-
stock units per hectare). This causes an improvement in terms of life-
cycle impacts with respect to the baseline scenario, the highest ones
being an almost 25% reduction in freshwater eutrophication, 21% in
climate change–human health, and 19% in freshwater ecotoxicity. The
farmers are not necessarily eager to apply such a change (because this
would imply a reduction of their revenue) but considering the pos-
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variable description
probability density function
(nominal parameters)

range of values

Farmer’s environmental
awareness

Beta distribution (↵ = 1;� = 1) 0 6 FGC 6 1

Farmer’s risk aversion Naïve Bayesian Classifier (Mar-
vuglia et al., 2022)

0 6 FRA 6 1

Farmer’s age
Discrete Uniform Distribution
(a = 25; b = 65)

25 6 Fa 6 65

Insemination success
Discrete Uniform Distribution
(a = 0; b = 1)

0: Unsuccessful
1: Successful

Livestock gender
Discrete Uniform Distribution
(a = 0; b = 1)

0: Male
1: Female

Days between waiting period
and next pregnancy

Discrete Uniform Distribution
(a = 7; b = 21)

7 6 D 6 21

Farm size Pert Distribution (Marvuglia et
al., 2022)

0 < FArea 6 200 (ha)

Table 20: List of random variables and nominal values set in the systemic uncertainty analysis.

Ecosystem Quality (x105) Human Health (x106) Resources (x106)

A B C D A B C D A B C D
Minimum 34,63 31,02 27,29 34,55 6,92 5,58 5,63 6,18 4,27 4,15 4,22 4,41
Mean 34,90 31,23 27,46 34,61 6,98 5,65 5,74 6,24 4,30 4,28 4,33 4,44
Maximum 35,04 31,31 27,60 34,71 7,03 5,75 5,83 6,30 4,35 4,37 4,41 4,52
Standard
deviation

0,13 0,12 0,13 0,08 0,04 0,06 0,06 0,05 0,03 0,08 0,06 0,04

CV 0,37% 0,38% 0,47% 0,23% 0,57% 1,06% 1,04% 0,80% 0,70% 1,86% 1,38% 0,90%

Table 21: Values of the main descriptive statistics for the last year’s LCIA results of the 50 simulation runs,
for each of the four scenarios.
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sible advantages of this practice (e.g., soil quality, animal health, re-
duced veterinary and labor costs) shown by the simulations, one can
evaluate the possibility to compensate the farmers with additional
subsidies to compensate their loss of revenue. The other two simu-
lated scenarios (scenario C and scenario D) deal with establishing a
soybean autarky in Luxembourg. The plantation of soybean in some
regions of Luxembourg is possible, especially in the south. Otherwise,
the current amount of soybean in feed rations is more than enough
to ensure the required protein intake for animal growth, therefore,
having less soybean in the animal diet is also possible, which would
lead to a higher national soybean autarky. These two scenarios are
the ones showing the most significant improvements for natural land
transformation impacts are (11% reduction in scenario C and 13% re-
duction in scenario D). On the other hand, in scenario C, the change
in feed composition, combined with an expected decrease in stock-
ing rates, also has a positive effect (about 16% reduction compared to
the baseline) on agricultural land occupation, due to the utilization
of pasture and locally produced crops.

In conclusion, the results of different scenarios show that a certain
mitigation of life-cycle impacts is possible, and the simulations also
show the financial implications of their implementation for the farm-
ers.

3.8 future work

Although the model has been significantly improved compared to
the last version described in (Marvuglia et al., 2022), there are still
parts that can be developed further. Our next goal is to add the fully-
fledged biogas module that explains the financials and environmental
impacts of producing biogas. The agents can choose to contribute
to biogas production depending on their risk awareness and green
consciousness levels in the future versions of our model. The user
can simulate the outcomes of changing biogas feedstock in terms of
impact on the environment and total biogas production.

We believe that the optimization of farming should be modeled by
taking both the environmental and economic concerns of the farmers
into account. In the next phases, we would like to use mixed-integer
linear programming methods to optimize individual farms. This can
be done in a multi-objective way, a model that optimizes different
emission categories and farm profit at the same time. However, it is
also possible to use the monetization of life-cycle impacts (Pizzol et
al., 2015), which then allows modelers to model optimization based
on a single-objective.
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I N S I G H T S F R O M A N A G E N T- B A S E D M O D E L

4.1 abstract

Biowaste and manure are resources readily available as feedstock for
biogas production. Possible scenarios with increased use of biowaste
and manure for biogas production in the Grand Duchy of Luxem-
bourg are investigated in this study using an Agent-Based Modelling
(ABM) coupled with Life-Cycle Assessment (LCA). ABMs are particu-
larly suitable to simulate human-natural systems, since they allow
modelers to consider behavioral aspects of individuals. On the other
hand, when it comes to the assessment of a system’s environmen-
tal sustainability, LCA is largely recognized as a sound methodology
and widely used in research, industry, and policy making. The paper
simulates three different scenarios that reproduce 10 years and can
help policymakers building emission mitigation strategies. The aim
is to increase the number of biogas plants or change the feedstock
composition for anaerobic digestion in Luxembourg whilst observing
the expected environmental impacts generated by these changes. The
first scenario (Scenario A) is the baseline scenario, which simulates
the current situation, with 24 operating biogas plants. The results of
Scenario A show that, on average, 63.02 GWh of electricity produc-
tion per year is possible from biogas. The second scenario (Scenario
B) foresees an increase in the manure share (which is initially 63%) in
the biogas feedstock composition along with an increase in the num-
ber of biogas production plants. The third scenario (Scenario C) only
concerns increasing the amount of manure in the feedstock composi-
tion without the introduction of new plants. The results of Scenario
C show that an 11% increase in electricity production is possible if
more farms contribute to the production by bringing their excess ma-
nure to the biogas plant. This value is even higher (14%) in Scenario
D where more biowaste is made available. The aggregated Life-Cycle
Impact Assessment (LCIA) single scores, calculated with the ReCiPe
method, show that Scenario C has the lowest impacts (although by
only around 7% compared to the worst performing scenario, i.e., Sce-
nario D), while Scenario D allows the highest electricity production
(71.87 GWh in the last year of the simulation). As a result, the inclu-
sion of more livestock farms into already established biogas coopera-
tives (as in Scenario C) can pave the way for an increase in electricity
production from renewables and can bring a reduction in environ-
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mental impacts (more than 35% for the Terrestrial Ecotoxicity impact
category and more than 27% in categories such as Agricultural Land
Occupation, Marine Eutrophication and Water Depletion), thanks to
the exploitation of manure for biogas production.

4.2 introduction

With the launch of the European Green Deal, a European Climate
Law was adopted in June 2021 by the European Union (EU) aim-
ing to achieve net-zero GHG emissions by 2050, with an intermediate
objective of reducing GHG emissions by at least 55% by 2030 com-
pared to 1990 levels (European Commission, 2019). This ambitious
goal requires fundamental changes in many strategic sectors, espe-
cially in energy, transportation, and agriculture. In particular, along
with the European Green Deal, there are several strategies adopted
by the EU that aim to promote biogas production across Europe. As
one of them, the EU methane strategy (European Commission, 2020)
aims to reduce the methane emissions mainly in energy, agriculture,
and wastewater sectors. So far, the strategy has focused on routine
venting and flaring and its success in mitigating methane in the en-
ergy sector provides an indirect incentive to achieve the same in agri-
culture. Furthermore, the renewable energy directive sets a target of
producing 40% of the energy consumption from renewables by 2030
(European Commission, 2021). The directive specifies targets for re-
newable energy usage in transport, heating, buildings, and industry.
It also reinforces the sustainability criteria to produce bioenergy by
limiting the production of feedstock with a high risk of indirect land
use change, which can arise when agricultural land is occupied by
energy crops or animal feed crops, thus displacing certain cultures
in different areas of the planet. This expansion can even reach to the
areas with high-carbon stock, such as forests and wetlands, which is
the outcome the renewable energy directive tries to avoid (European
Commission, 2021).

In 2018, Luxembourg announced a new integrated energy and cli-
mate action plan (Government, 2019), which contains measures to
promote biogas production and reduce GHG emissions. The ban on
biogas slurry containers and promoting organic manure usage pri-
marily for biogas production demonstrate efforts to reduce methane
emissions. According to the plan, only 10% of available slurry was
being used for biogas production in 2018. The plan suggests that
tackling environmental issues like water protection and not just cli-
mate change requires attention to manure storage and its spreading
practices.

The objective of this paper is to simulate possible scenarios for
the promotion of manure- and biowaste-based anaerobic digestion
in Luxembourg. Including the baseline, four scenarios are simulated
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in this paper. The first scenario (Scenario A hereafter) is the baseline
scenario, which simulates the current situation in terms of biogas pro-
duction in Luxembourg. The second scenario (Scenario B hereafter) is
based on increasing the contribution of each farmer to the biogas pro-
duction by encouraging them to provide excess manure to the nearest
biogas production plant, as well as focusing on increasing the num-
ber of biogas plants to meet the manure capacity. The farmers that
contribute to biogas production can subsequently use the digestate,
which is a by-product of the biogas production process, as a soil fer-
tilizer. The third scenario (Scenario C hereafter) concerns increasing
the amount of manure in the feedstock composition. According to
the information collected on the field, the simulations are run un-
der the plausible assumption that 63% of the feedstock used for bio-
gas in Luxembourg is currently made using manure, 21% using en-
ergy crops, and 16% using other organic matter (wastewater biosolids,
food waste, etc.). The objective of Scenario C is to increase the share
of manure in biogas feedstock to 90%, as targeted in a recent plan
set out by the Luxembourgish government, resulting from the joint
efforts of the Ministries for Energy, Environment, and Agriculture
(Today, 2022). The fourth scenario (Scenario D hereafter) simulates an
increase in the amount of biowaste used in the biogas feedstock un-
til it reaches the full amount of biowaste that is produced today in
Luxembourg from the five main supermarket chains operating in the
country.

4.3 state of the art

Considering the complex nature of human decision processes, as well
as the complexity of human–environment interactions they entail,
agricultural systems can be considered as complex systems (Mar-
vuglia et al., 2017; Vannier et al., 2022). This is one of the reasons
why approaches based on ABMs have been gaining increasing atten-
tion in this field. From a high-level perspective, the main components
that can be identified and modelled with various levels of precision
using the ABM applied to agricultural systems are: (1) the agent’s com-
ponent, which includes the way agents are identified, described and
made to interact with each other; particularly relevant in the interac-
tion is the way information exchange and mutual influence between
various (types of) agents is described and coded in the model; (2)
the geographical component, which includes the description of the
land use, or more importantly the crop patterns, their evolution in
the geographical area under investigation, and their representation
using Geographic Information System (GIS); this component may or
may not also include an accurate modelling of the weather (or even
of the future climate projection) and its influence on crop yields; (3)
the economic component, which includes the description and math-
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ematical formalization of the farmer’s business and their finances,
which may also incorporate a mathematical optimization model; this
may include crop management for farms which only have this type
of tecno-economic orientation, or only animal farming activities for
meat and dairy farms, or both, for mixed-type farms; (4) other compo-
nents that describe additional activities that may be part of the farms
business (in which case they must also be described in the economic
component of the model), such as biogas production or large-scale
electricity production using solar photovoltaic panels with injection
of electricity into the national grid; (5) the environment component,
meant as the natural environment and the interaction that the agents
have with it in terms of the environmental impacts generated by their
activities.

Addressing in a comprehensive way all these components in a sin-
gle model would be a gigantic task, and therefore the several studies
that have applied an ABM approach to the simulation of agricultural
systems normally address only some of the above listed components,
and with various levels of detail. Moreover, not all the studies include
a complete description of the model using the Overview, Design con-
cepts and Details (ODD) protocol (Grimm et al., 2020), a detailed pre-
sentation of the equations used at every step of the model, a complete
characterization of the uncertainty, and results validation.

(Marvuglia et al., 2018) provides a review of the ABM applied to
agriculture and land use, focusing on the main “modelling bricks”
that this kind of model owns, including aspects related to the valida-
tion of ABMs. (Kremmydas et al., 2018) presents the various aspects
of an agent’s decision making process, providing a comprehensive re-
view focused on ABM models for agricultural policy evaluation, distin-
guishing between individual-farm ABMs and not-individual or non-
farm ABMs, and between data-driven and theory-driven approaches.

Probably one of the most advanced ABM models for agriculture is
SWISSland (Möhring et al., 2016). It serves as a tool that improves the
forecasting accuracy of policy change modelling in Swiss agriculture.
It considers the terrain attributes and climate by utilizing GIS maps.
The model deals mainly with animal sector activities and decisions
are represented using a mixed-integer linear programming problem
which maximizes the farm’s income. The labor market and land ex-
changes are also parts of the model. SWISSland is linked to a life
cycle assessment (LCA) tool, so that an environmental impact assess-
ment can be achieved for each simulation.

Another powerful agent-based agricultural model is AgriPoliS
(Happe et al., 2004). The model enables ex-post and ex-ante analyses
of structural changes in agriculture, in particular with regards to the
impact of alternative policies and assumptions, allowing the simula-
tion of counterfactual scenarios. It has a high explanatory power in
the modelling of a farm’s evolution in competitive markets.
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Various applications of ABM to agriculture and land use modelling
have been presented in the literature, but since the focus of this paper
is the estimation of biogas production potential, they will not be dealt
with in detail in this section.

(Sorda et al., 2013) investigate electricity production from biogas
plants in Germany using an ABM and relying on detailed GIS data
that reach the district and community/municipality level of spatial
granularity. The model optimizes a system-wide problem instead of
looking for a solution that is based on a single farmer’s profitability.
The decision making agents choose to invest in a biogas facility when-
ever resources are available, and the investment yields a positive net
present value. The paper does not tackle environmental sustainabil-
ity assessment. (Troost et al., 2015) employed a farm-level ABM to ana-
lyze the reaction of a heterogeneous farming population in Southwest
Germany to the incentives set by two subsidy schemes: the German
Renewable Energy Act, and the agri-environmental policy measures
of the second pillar of the EU Common Agricultural Policy (CAP). The
economic component of the model is very well developed. The model
optimizes, at the farm-level, the expected farm income as a function
of revenues from crop production, animal husbandry, biogas produc-
tion and received subsidies, subtracting variable and fixed costs, and
the balance of interest paid and received. The optimization is imple-
mented as a Mixed-Integer Programming (MIP) problem. (Appel et
al., 2016) apply the spatially explicit and dynamic model AgriPoliS
(Happe et al., 2004) to analyze the effects of the German Renewable
Energy Act on the biogas investments in Germany. A detailed de-
scription of the applied model (including an ODD) is provided. A
MIP model is used to maximize profits or the household income of
the biogas producing farms. The economic business of the farms is
modelled in detail, including any production and investment alter-
natives that farmers could pursue to maximize their profit. (Mertens
et al., 2016) conducted semi-structured interviews with stakeholders
(experts, dairy farmers and biogas plant managers) to develop an
ABM that simulates the trade behavior of dairy farmers and biogas
plant managers. The farmer’s interaction is based on silage maize
trading. Each farmer attaches a score to the farmers that have a maize
surplus, based on a Cobb-Douglas function which makes a trade-off
between buying silage maize at the best price and staying loyal to
previous trading partners. The model is well documented with an
ODD. No consideration of environmental impacts is present in the
study. (Verhoog et al., 2016) apply an ABM framework to describe the
biogas infrastructure in the Netherlands. Their model encompasses
social interaction (contract negotiations), institutions, external mar-
kets, biogas production assets, networks, and resulting CO2 emis-
sions. What is particularly relevant is the way in which the social
entities are described, using different forms of social interaction, in-
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cluding contracts and negotiations. In (Imran et al., 2017), the ABM
approach is used to identify the suitable and economical distribu-
tion of biogas power plants over time in a certain area. The article
makes use of the commercial software ArcGIS to produce detailed
maps of the area, displaying some of the results of the simulation
and showing optimal areas to locate biogas plants, but the descrip-
tion of the ABM and the economic component of it is not detailed.
The ABM is implemented using the Agent Analyst toolkit developed
by the Argonne National Laboratory in collaboration with ESRI (Wu
et al., 2011). (Yazan et al., 2018) adopt an approach based on the ABM
approach to investigate the interactions between manure suppliers,
i.e., animal farmers, and biogas producers in an industrial symbio-
sis case example consisting of 19 municipalities. The interaction part
of the model is well described in the paper, and so is the economic
part (including investment costs, operational costs, etc.). The busi-
ness profitability for animal farmers and biogas producers based on
manure processing is explored with the model, but the environmen-
tal impacts generated by these activities are disregarded. (Rouleau
and Zupko, 2019) carry out a bioenergy-potential assessment (from
woody biomass) in regions with large numbers of private family for-
est owners or smallholders who own a significant share of available
biomass. The ABM is well documented, and the full ODD is presented.
The geographical component relies on a complete description of the
territory using a GIS. The agents are the smallholders, and they have
been defined according to two types: Economic Optimizers, whose
harvest decisions are driven by the goal of maximizing financial gain,
and (2) Multi-Objective Owners, who manage forests with different
goals, not always including harvesting and not necessarily achieving
financial optimization (e.g., to obtain habitat preservation, privacy,
conservation, firewood provisioning, etc.). To conduct the sustainabil-
ity assessment, several key indicators are tracked, based on criteria
from all three sustainability pillars (economic, environmental, and
social) identified by local bioenergy stakeholders in a series of inter-
views and focus-group workshops. (Abdel-Aal et al., 2020) quantify
the impacts of the spatial and temporal diffusion of anaerobic diges-
tion on the water-energy-food nexus and the associated environmen-
tal, social, and economic benefits. Three scenarios, following differ-
ent technology and society narratives (arising from ad-hoc workshop
discussions) are implemented. They apply an ABM built in the Any-
logic (https://www.anylogic.com/, accessed on 1 October 2022) sim-
ulation software. The organization of the various interactive agents
is more articulated than in the other papers that apply an ABM to
agriculture. Ten different types of agents are set in the model (see Ta-
ble 22). The model is well documented, with a proper ODD. In (Burg
et al., 2021), the behaviour of Swiss farmers towards anaerobic diges-
tion and the potential impact of changing incentives are investigated.

https://www.anylogic.com/
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An ABM approach is followed to simulate the development of biogas
facilities under different conditions, considering the agent’s utility.
The agents are the farmers, and their attributes are assigned based
on the data collected on field interviews. The biogas facility objects
are modelled as pure bookkeeping entities characterized by techni-
cal attributes (ownership type, capacity, information about founders,
co-owners, and deliverers). The economic side of the model is well
developed, but the environmental component is missing. (Nugroho
et al., 2022) developed an ABM using Anylogic to assess the environ-
mental and economic viability of the methanol supply chain. This is
the only paper in which the LCA is explicitly mentioned and used as
part of the analysis. The LCA is coupled with a techno-economic as-
sessment, and the ABM paradigm is used to simulate and optimize the
Internal Rate of Return (IRR) and lower the carbon emissions. Table
22 summarizes the characteristics of the above-mentioned studies.

Some other studies apply approaches that are rooted in mathemat-
ical optimization and do not have the traditional structure of an ABM,
at least from the point of view of a proper implementation of the
interaction component that is a distinctive feature of the ABM. (Shu
et al., 2020) developed a dynamic model of the agricultural land use
and applied it to the Lubelski voivodeship, in Eastern Poland, to sim-
ulate the effects on land use change with the introduction of sweet
sorghum usage for biogas plants. They mimic farmers’ decisions by
means of mathematical programming; the model generates supply
response curves using parametric optimization. (Chen and Li, 2016)
apply a mathematical programming model to estimate the supply
of cellulosic biomass in Illinois (USA). The study is used firstly to
derive the economically viable supply of agricultural biomass under
various biomass prices and to forecast what mix of cellulosic feed-
stocks is expected to be produced in a short-term time horizon. Sec-
ondly, to assess the impacts of biomass production on farmers’ re-
enrollment/exit decisions on a governmental conservation program.
(Bartoli et al., 2016) apply a partial-equilibrium framework simulating
the agricultural sector and the biogas industry in Lombardy (Italy) to
evaluate the influence of biogas rapid spread on maize prices and
land demand for energy crops at a regional level.

The aim of this paper is to provide an estimation of the biomethane
(and the electricity thereof) that could be produced under some hypo-
thetical scenarios in Luxembourg. The novelty of the paper, compared
to the existing models shown in the literature, lies in the considera-
tion and seamless integration in a single model of all the five compo-
nents mentioned above, except for the economic component, which
is only partly developed. In fact, this latter component is considered
only as what concerns the farmer’s operations that relate to the sell-
ing of crops, meat, and milk; no economic modelling is performed
for the part that relates to the biogas infrastructure’s construction
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and operation (including feasibility study and cash flows), as well as
for the selling of electricity to the grid. This would have required a
deeper analysis that would require more data on the biogas plant’s
business models as well as on government subsidies attribution for
biogas production, among other things. The subsidies schemes for
biogas production in Luxembourg are currently being revised by the
government in and therefore we have decided not to take this aspect
into account.

On the other hand, this study is to be considered only exploratory
and not as a feasibility study for the actual implementation of a bio-
gas policy. For this reason, in this instantiation of the model, only
farmers have been coded as agents, whereas biogas plants have not;
therefore, their economic accounting (the cash flows) and their eco-
nomic viability have not been considered as part of the model.

The environmental component of the model is instead very ad-
vanced, not only because the LCA is coupled with the ABM, but also
because, within the LCA module, the assessment of GHG emissions
generated by the animal farming is achieved at a very high level of de-
tail (as described in (Bayram et al., 2023)). In particular, the methane
emitted by each cow due to enteric fermentation is calculated using
the equations described in (Eggleston et al., 2006). This approach is
much more detailed than the lumped approach usually used in LCA
studies, where animal-driven emissions are based only on average
values for cow live weight, Dry Matter Intake (DMI), diet composi-
tion, herd milk production, average methane production, and animal
density. This is the most distinguishing feature of the model, com-
pared to the above cited studies, of which only one (Nugroho et al.,
2022) has tackled the environmental component using a LCA perspec-
tive, let alone using such a level of detail in the modelling of carbon
emissions generated by animal breeding.

4.4 materials and methods

4.4.1 ABM Methodology

The main objective of the model is to elicit possible scenarios (and
the parameters characterizing them) under which the national biogas
strategy of Luxembourg can help the agro-system to evolve towards
a more sustainable state. In (Marvuglia et al., 2022), the information
diffusion in a network of farmers is simulated (through a parame-
ter called green consciousness—GC—) via an ABM. However, only the
cropping activities were considered in that model, without a full in-
clusion of animal farming, even though most Luxembourgish farms
are of a mixed type (producing crops, meat, and milk in the same
holding). The model developed in (Marvuglia et al., 2022) has now
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Table 22: Summary of the approaches found in the literature using ABM approaches to study biogas and bioenergy potential.

reference title country/region methodology and aim agents

(Sorda et al., 2013) An agent-based spatial simu-
lation to evaluate the promo-
tion of electricity from agri-
cultural biogas plants in Ger-
many

North Rhine-
Westphalia and
Bavaria, Germany

Agent-based simulation
model for investment
decision-making is cou-
pled with GIS data to assess
the advantages of promoting
electricity production from
biogas.

– Information agents (Plant
manufacturer, Bank, Elec-
tricity Utility and Federal
Government).

– Decision agents (Heat Con-
sumer, Decision-Maker, Dis-
trict and Substrate Supplier).

(Troost et al., 2015) Climate, energy and environ-
mental policies in agriculture:
Simulating likely farmer re-
sponses in Southwest Ger-
many

Central Swabian Jura
region (Southwest Ger-
many)

Farm-level ABM to simulate
the investment and produc-
tion decisions of every full-
time farm of the area. The op-
timization is implemented as
a MIP problem.

– Farms

(Appel et al., 2016) Effects of the German Renew-
able Energy Act on structural
change in Agriculture—The
case of biogas

Two German regions:
(1) Altmark, Saxony-
Anhalt; (2) Ostallgäu
(East Allgäu), Bavaria

AgriPoliS model applied
to biogas producing farms
to model the effects of a
German agricultural policy.
Farm’s profit maximization
is implemented using a
mixed-integer programming
model.

– Biogas producing farms



112
ch

a
pter

4

Table 22: Summary of the approaches found in the literature using ABM approaches to study biogas and bioenergy potential. (continued)

reference title country/region methodology and aim agents

(Mertens et al., 2016) Context Matters—Using an
Agent-Based Model to Inves-
tigate the Influence of Market
Context on the Supply of Lo-
cal Biomass for Anaerobic Di-
gestion

Flanders region, Bel-
gium

ABM simulating the trades be-
tween agents for silage maize
market and their interactions
with a biogas plant manager

– Dairy farmers.

– A biogas plant manager

(Verhoog et al.,
2016)

Modelling socio-ecological
systems with MAIA: A bio-
gas infrastructure simulation

The Netherlands Integrated sustainability as-
sessment is used. Institu-
tional analysis and multi-
agent paradigm simulate the
stakeholder behavior.

– Wastewater treatment facility
agents.

– Agricultural firm agents
(which may also take up the
role of biogas producers).

– Household agents.

– Small and medium-sized en-
terprise (SME) agents.

– Large consumer agents.

(Imran et al., 2017) Agent-based simulation for
biogas power plant potential
in Schwarzwald-Baar-Kreis,
Germany: a step towards
better economy

Schwarzwald-
Baar-Kreis, Baden-
Württemberg, Ger-
many

The ABM approach is used to
identify the suitable and eco-
nomical distribution of bio-
gas power plants over time in
the area of interest.

– Biogas power plants
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Table 22: Summary of the approaches found in the literature using ABM approaches to study biogas and bioenergy potential. (continued)

reference title country/region methodology and aim agents

(Yazan et al., 2018) Cooperation in manure-
based biogas production
networks: An agent-based
modeling approach

The Netherlands The ABM approach is used
to investigate the interactions
between animal farmers and
biogas producers in an in-
dustrial symbiosis in eastern
Netherlands.

– Animal farmers (manure pro-
ducers).

– Biogas producers (manure
users).

(Rouleau and
Zupko, 2019)

Agent-Based Modeling for
bioenergy sustainability as-
sessment

Western Upper Penin-
sula of Michigan,
United States

An ABM is used to conduct
a bioenergy sustainability as-
sessment to identify possible
gains and trade-offs neces-
sary to develop bioenergy in
regions with large numbers
of private family forest own-
ers or smallholders who own
a significant share of avail-
able biomass.

– Individual local smallholders
with two ownership types:
(1) Economic Optimizers; (2)
Multi-Objective Owners.

– Global harvester agent.
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Table 22: Summary of the approaches found in the literature using ABM approaches to study biogas and bioenergy potential. (continued)

reference title country/region methodology and aim agents

(Abdel-Aal et al.,
2020)

Modelling the diffusion and
operation of anaerobic diges-
tions in Great Britain under
future scenarios within the
scope of water-energy-food
nexus

Great Britain An ABM programmed in Any-
logic is used to quantify the
impacts the diffusion of fu-
ture possible anaerobic diges-
tion technology on the envi-
ronment, society, and econ-
omy.

– Main: Manages the input pa-
rameters and triggers events.

– DummyCollector: Evaluates
feasibility for new food waste
collectors and assigns rele-
vant sources.

– DummyPlant: Determines
the location of a new Plant.

– Collector: Food waste collec-
tor.

– GridCell: Study area (50 km
resolution)

– Plant: Anaerobic digestion
plants.

– Scenario: Holds model input
parameters for each scenario.

– Source: Households, restau-
rants, and supermarkets.

– SourceArea: Food waste col-
lection areas.

– SubGridCell: Sub-mapping
grid of the study area (5 km
resolution).
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Table 22: Summary of the approaches found in the literature using ABM approaches to study biogas and bioenergy potential. (continued)

reference title country/region methodology and aim agents

(Burg et al., 2021) Farmer’s willingness to
adopt private and collective
biogas facilities: An agent-
based modeling approach

Switzerland An ABM is designed and used
to simulate the development
of biogas plants under dif-
ferent conditions. The agent’s
properties are derived from
the farmer’s survey.

– Farmers

(Nugroho et al.,
2022)

Building an agent-based
techno-economic assessment
coupled with life cycle assess-
ment of biomass to methanol
supply chains

Indonesia Agent-based simula-
tion–optimization model pro-
grammed in Anylogic, cou-
pled with techno-economic
assessment and LCA to
evaluate methanol synthesis
pathways.

– Biomass suppliers.

– Biogas producers.

– Syngas producer.

– Methanol producers.

– Methanol distributors/retail-
ers.

– Farmers.

– Transportation agents.
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been enhanced to include a full integration of dairy farming activi-
ties, which are especially important for Luxembourgish agriculture
(Bayram et al., 2023). In particular, livestock manure constitutes the
majority of the feedstock for biogas production. The manure gener-
ated in dairy farms, along with the energy crops produced in Luxem-
bourg for biogas production, are considered in this model.

In the model, the agents perform their activities based on the eco-
nomic value of their actions, as well as on the environmental bur-
den those actions generate. The actions taken by the agents are con-
strained by the limits defined in each of the implemented scenarios.
The scenarios were defined by the authors via an iterative process
with some local stakeholders, partners of the project SIMBA and ex-
perts on the Luxembourgish agricultural system.

4.4.2 Description of the ABM Simulator

The simulator has multiple software components. To store the data,
PostgreSQL database is preferred (PostgreSQL, 2022) , since the GIS
extension (PostGIS) can be used easily to store farm locations (Post-
GIS, 2022). Stand-alone PostgreSQL is also used to store country-
specific statistics from STATEC (the Luxembourgish national statistics
office) and Eurostat (the European statistics office) and financial data
such as cost items and product prices. The ABM simulator is built in
Java (Arnold et al., 2005) to allow model builders enough flexibility.
Finally, the LCIA calculations to quantify the environmental impacts
generated by the crops and animal patterns in each simulation are
expressed using the LCIA indicators from the ReCiPe (Huijbregts et
al., 2017) LCIA method. The LCIA calculations are performed in Ac-
tivity Browser (Steubing et al., 2020), the graphical interface of the
Brightway2 LCA calculation framework, relying on ecoinvent 3.8 cut-
off version as a database for the background system (Wernet et al.,
2016).

Like in every ABM, there are several entities that can help model-
ers to explain the model objective. The following ones are the main
entities of the simulator.

Farmer: The agents in our simulator are farmers. Based on pre-
defined attributes and constraints, they react to the external stimuli
coming from their surrounding environment, which is their operation
space. They may also have behavioral attributes which could change
over time based on interactions with other agents or entities. Every
farmer owns only one farm and the decisions the farmer takes only
concern that single farm. Each farmer has attributes like age, green
consciousness (a continuous random variable between 0 and 1), risk
aversion (a binary value). These attributes, along with farm proper-
ties, impact farmers’ decisions. The way they are calculated and as-
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signed is described in (Marvuglia et al., 2017) and (Marvuglia et al.,
2022).

Farm: Each farm is managed by a farmer and has attributes that
affect cropland and livestock management. For instance, the size of a
farm may influence how many animals must be kept or how many
neighboring farms that farm has. Each farm’s location is initialized
using GIS data. According to that data, the surface of each farm is
divided into parcels named Utilized Agricultural Area (UAA), which
are the smallest land parcels registered at the land cadaster. The GIS
data along with the information on the land parcels was provided
by Service d’Economie Rurale (SER) (SER: https://ma.gouvernement.
lu/fr/administrations/ser.html, accessed on 15 May 2022). Each
of these parcels is represented as a polygon with the associated in-
formation on which crop was cultivated for a given year, the com-
mune it belongs to, the surface area, and the perimeter. The farms are
created by merging the fields that are assigned according to the algo-
rithm described in (Marvuglia et al., 2022). The information regarding
the ownership status of each field is confidential, thus this algorithm
helps to assign each agent to a realistic farm and assign a geographi-
cal location and cropland information to it, without disclosing infor-
mation on real farms. In addition to the cropland information, each
farm is assigned a certain number of cattle heads of the different types
(see Table 23). The initialization of the farms with the number of ani-
mals of each type is conducted based on the allowed organic manure
levels per hectare in Luxembourg. The national limit of nitrogen that
can be applied in Luxembourg is set to 170 kg-Norg/year/ha (where
Norg is the organic nitrogen) (Gouvernement du Luxembourg, 2000,
2001). The excretion rates from manure per cattle class were taken
from (FAO, 2018; Netherlands, 2012).

Plant: A biogas plant is an entity that collects the feedstock from
nearby farms and produces biogas. The location of each plant is pro-
vided by SER. Figure 25 shows the location of the plants within the
territory of the concerned communes in 2020. According to the infor-
mation provided by SER, there are in total 113 farms that contribute to
biogas production. During the initialization phase of the simulation,
farms that contribute to biogas production are specified according to
their distance from the closest biogas production plant. The distance
between farm and biogas plant is highly influential on the transport
cost and therefore it affects the economics of both the farm and the
biogas plant. In our model, only the farms that are within a radius
of 30 km (This value comes from a personal communication with
Mrs. Porcel and Mr. Maka from Naturgas Kielen) from a plant can be
marked as biogas producers until that plant reaches its capacity. In
Scenario B, new plants are introduced into the system. Each com

https://ma.gouvernement.lu/fr/administrations/ser.html
https://ma.gouvernement.lu/fr/administrations/ser.html
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livestock
class
id

livestock
class

age a b c d e f g h sum

1 Male (Lage<12) 120 20 90 200 0 2140 17,180 34,470 54,220
2 Female (Lage <12) 70 0 10 40 110 460 4200 7590 12,480
3 Male (12 <Lage <24) 100 10 80 130 390 1360 10,020 19,400 31,490
4 Heifer (12 <Lage <24) 50 10 30 30 80 240 1110 1540 3090
5 Heifer (Lage >24) 70 20 20 90 350 960 6620 12,020 20,150
6 Dairy (Lage >24) 0 0 0 0 130 1170 16420 33,300 51,020
7 Suckler (Lage >24) 140 20 80 300 630 2000 8990 16,350 28,510

Table 23: Number of livestock in each farm class and livestock class in 2016 (Eurostat, 2022). The
letters from A to H describes the farm classes as explained in (Marvuglia et al., 2022).

crop type yield
(tdm / ha)

price
( e/100kg)

total
production
(tdm )

standard
seeding
month

standard
harvest
month

Barley (spring) C 5,96 14,21 10,951 3 8
Barley (winter) C 5,51 14,21 21,500 10 8
Dried pulses
(peas, beans, others)

L 3,41 18,00 1292 3 8

Grain maize M 6,75 15,00 810 4 10
Green maize M 13,74 - 222,219 4 10
Oats C 4,99 13,5 7939 4 8
Potatoes O 26,25 23,33 16,368 4 9
Rapeseed O 3,30 35,65 8791 3 8
Rye C 4,53 13,54 4670 10 8
Spelt C 4,74 20,34 4217 10 8
Triticale C 5,60 14,59 25,270 10 8
Wheat (spring) C 6,13 17,05 2271 3 7
Wheat (winter) C 6,06 17,05 63,910 10 8

Table 24: Some statistics for major crop types that are cultivated in Luxembourg in 2020. Yields are
expressed in tons of dry matter (tDry Matter (DM)). Sources: (Marvuglia et al., 2022; STATEC,
2022). (C = cereal; L = leaf; M = maize; O = other.)
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Commune that does not have a biogas plant in its territory is a candi-
date site in this scenario. According to the available biogas feedstock,
site selection is made for the new plant.

Figure 25: The locations of biogas plants in Luxembourg.

Crop: GIS data that has the details of each UAA includes the infor-
mation on what type of crop is planted in every UAA for a given year.
The initial crop of every UAA is assigned from the data for year 2020
(see Table 24). These are used to assign the crop rotations, which
were specified after discussions with different actors in the sector.
Maize cultivation is more significant than other types of cultures in
this study because it constitutes 20% of the feedstock used for bio-
gas production in Luxembourg. In the simulations, each crop can be
planted in a time interval of ±1 month from its usual seeding month
(to consider the randomness introduced by weather conditions) and
can be harvested ±1 month from its usual harvest month (the seeding
can be anticipated if the previous crop has already been harvested).

Livestock: Most farms in Luxembourg are specialized in mixed
crop–livestock farming. The biogas generation in Luxembourg also
depends heavily on animal manure. The simulator has the capability
to run scenarios of the dairy farming activities in Luxembourg, there-
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fore making it possible to assess the amount of organic manure that
is produced by the animals in each farm, which can be used as an
input to the biogas production process. Each animal in a farm goes
through biological events and production mechanisms which may dif-
fer depending on their livestock class (Figure 26).

Figure 26: The lifecycle of an animal in the simulator.

Lactation: Every cow is assigned a lactation period that has a dura-
tion comprised between 305 and 320 days after the first insemination.
An insemination trial has a success probability of 40% and it happens
once in every simulation time step. Once the insemination trial is suc-
cessful, the cow’s status changes to “pregnant” and until the dry-off
phase Milk production (MP) from each cow is calculated according to
Dijkstra equation given in (Nasri et al., 2008). The newborn is added
to the herd after calving.

Time: The simulation time step is chosen as one month due to
two main reasons. The first one is the seasonal cultivation times for
crops. If the farmer chooses to harvest the current crop on a given
field, the next crop on that field is assigned based on the farmer’s
and the farm’s attributes. The second reason is the fact that decisions
are usually taken for shorter durations than a year, or phases such
as lactation stages require resolution of less than one year. In fact,
decisions such as selling the animals or choosing grazing times are
taken within the year.

ABM-LCA coupling: The LCA model and the ABM are “tightly” cou-
pled in the acceptation discussed in (Baustert and Benetto, 2017).

ABM validation: As discussed in (Marvuglia et al., 2018), ABM val-
idation is not an easy task. Because of the limitations mentioned in
Section 4.8 (especially lack of data and necessity to rely on many
assumptions) an external validation (replication of real-world data),
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a.k.a. empirical validation, was not possible in our case. The agricul-
tural policies and farmers’ behaviors towards certain environmental
and financial conditions change over time. The former factor requires
a different model, which would be obsolete in today’s circumstances
(for example some biogas plants may have ceased to operate, and
some new ones may have been built). The latter factor cannot be
modelled without available survey data of the past. Borrowing the
terminology used in (Marvuglia et al., 2018), we can state that only
the internal validation (or ex ante validation) of the model described
in this paper has been performed, thanks to the participation of local
stakeholders that were partners of the project which validated most
of the assumptions and agreed on the general conceptual validity of
the model.

4.4.3 LCA Methodology

4.4.3.1 Goal and Scope

Goal definition: This study analyses the environmental impacts of
biomethane production in Luxembourg from the co-digestion of ani-
mal slurry (pig and cattle, in a ratio between the two equal to 12:88),
mixed silage and food waste in 24 biogas cooperatives in Luxem-
bourg (Figure 25).

Scope definition: The geographical scope includes Luxembourg
and stops at the point where the biogas is generated and ready to be
injected into the national grid. From the LCA perspective, the study is
of the attributional type (Schaubroeck et al., 2021).

The system boundaries include Manure management (P1), Silage
production (P2–P4), Biogas production (P5), Biomethane production
(P6), On-site heat production (P7), and Unpackaging food waste (P8).

Functional Unit (FU): The studied FU is the production of 1m3 of
biomethane that originates from the co-digestion of animal slurry,
mixed silage, and food waste. As per the information obtained from
the Naturgas Kielen plant, the mixed silage has the following com-
position: 39% grass silage, 17% WCSS, 44% maize silage. The WCSS
is composed using a mix of wheat, triticale, and rye silage that is as-
sumed in the same proportions. The simulator allows the calculation
of the total amount of biomass produced by all the farms under the
different scenarios described above. The results of the impact assess-
ment are then scaled down to 1m3 of biogas.

Alternative and larger systems could have been analyzed, such as
injection into the national grid of biomethane that originates from the
co-digestion of food waste with additional types of energy crops or
types of manure currently being used in biogas production plants in
Luxembourgish cooperatives. However, collecting data from all the
biogas production plants in Luxembourg would have required a sig-
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nificant amount of time and resources and the establishment of con-
tacts with several actors, which was out of reach for our study. There-
fore, the analysis was limited to the data collected only from one site
(the biogas plant Naturgas Kielen; plant n. 14 in Figure 25), assum-
ing that each site can be treated similarly and uses the same type of
feedstock. This strong assumption will clearly limit the results and
conclusions obtained from the study, but the results can be used to
show a trend and a plausible estimation of the biogas production
potential in the country.

4.4.3.2 Inventory Analysis

The system boundaries exclude the animal husbandry activities that
generate slurry. The slurry is assumed as a burden-free by-product.
The packaging waste outflow in P8 is not part of the system as it does
not undergo treatment. Digestate application is part of the system
boundaries.

Waste packaging outflow from P8 has been omitted from the sys-
tem because information on upgrading waste packaging to green fu-
els in Luxembourg was missing. Therefore, the environmental flows
connected to this process are omitted from the Life-Cycle Inventory
(LCI).

The data for the foreground processes were provided by the Natur-
gas Kielen biomethane production plant, located in the South of Lux-
embourg. The data on the remaining processes are secondary data
collected from LCA studies, ecoinvent database 3.8, and partially cal-
culated from literature-based assumptions.

The studied system is depicted in Figure 27. For the sake of read-
ability, the input activities to the silage production processes are not
shown in the figure.

The main foreground processes are described in the following.
Manure management (P1): As mentioned in Section 4.4.2, the

slurry is transported from the farms to the biogas plant over a maxi-
mum distance of 30 km to be stored in an open facility. The CH4 and
N2O emissions from the open storage of cattle slurry are calculated
following IPCC guidelines for National Greenhouse Gas Inventories
from Livestock and Manure Management (Eggleston et al., 2006).
NOx emissions are calculated following the ecoinvent guidelines on
Life Cycle Inventories of Agricultural Production Systems (Nemecek
and Kägi, 2007). The CH4 emissions from pig slurry storage were
calculated based on the values provided by (De Vries et al., 2012),
considering the values referring to storage in winter since the yearly
average temperature in Luxembourg is around 10�C (Weather, 2022).
This process also accounts for the indirect emissions caused by liquid
manure storage and processing facility construction. Table 25 reports
data values and sources for manure.
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Figure 27: The biogas production system from LCA perspective.
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variable value and source notes

Distance travelled
(km)

30 [biogas plant] –

Number of cat-
tle heads on the
slurry-based sys-
tem in 2021

54,570 (Eurostat, 2022) CH4 emissions from cat-
tle slurry were calculated
using the IPCC guidelines
for National Greenhouse
Gas Inventories from
Livestock and Manure
Management ((Eggleston
et al., 2006), Eqs. 10-22.)

Volume of cattle
excreta per live-
stock type per
week (m3)

0.45 (Grains Research
and Development Corpo-
ration (GRDC), 2005)

Calculation of the
N2O emissions
(kg);

40 (Eggleston et al., 2006) Indirect N2O emissions
were calculated using
the IPCC guidelines for
National Greenhouse
Gas Inventories from
Livestock and Manure
Management ((Eggleston
et al., 2006), Eq. 10.27.)

N volatilization ra-
tio (%)
Emission factor
for N2O emissions
from atmospheric
deposition of ni-
trogen on soils
and water surfaces
(kg N2O-N (kg
NH3-N + NOx-N
volatilized)-1)

0.01 (Eggleston et al.,
2006)

NOx emissions 0.21 ⇥ N2O emissions
(Burg et al., 2021)

–

CH4 emissions
from storing slurry
(45 days in winter)
(g CH4/m3)

28.7 (Petersen et al., 2013) The amount of CH4 emis-
sions was calculated as-
suming only one day of
storage.

Table 25: Data values and sources for manure.

Silage production (P2–P4): The ecoinvent 3.8 cut-off process “maize
silage production, Swiss integrated production, intensive [CH]” was
used as a proxy for maize silage (P2). Based on the lab tests provided
by the biogas plant, the inorganic and organic flows of fertilizers in
this process were replaced by the digestate produced from the anaer-
obic digestion. The inventory for grass silage (P3) was taken from
ecoinvent 3.8 using the process “grass silage, Swiss integrated produc-
tion, intensive [CH]” as a proxy. The Whole Crop Cereal Silage (WCCS)
(P4) was assumed to be composed in equal proportions using wheat
silage (P4.1), triticale silage (P4.2), and rye silage (P4.3). The inven-
tory for wheat silage was adapted respectively from the ecoinvent 3.8
processes “wheat production, Swiss integrated production, intensive
[CH]”, considering the reduced time on field with respect to the main
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crop (wheat) and adding relevant processes such as chopping and
fodder loading. The inventory for triticale silage was adapted in the
same way, but from the triticale process that was built in (Vázquez-
Rowe et al., 2014). The inventory for rye silage was adapted from
(Huysveld, 2016).

The land occupation for each silage crop was calculated consider-
ing the respective yield and the number of days they stay on the field
before being harvested. For maize silage 134 days were considered,
for rye silage 264 days, and for the other crops used in WCCS it was
assumed that the harvesting takes place between the stages 75 and
85 of Zadok’s scale (Grains Research and Development Corporation
(GRDC), 2005; Tottman, 1987).

Biogas production (P5): According to the data provided by the bio-
gas plant, it produced on average 4.5 million m3 biogas/year, with a
theoretical yield of 485 m3 biogas per ton of organic dry matter (tODM)
and a Dry Matter (DM) ratio in the feedstock of 23%, as indicated in
Table 26. According to the information collected at the biogas plant,
88% of the manure biomass can be considered as cattle slurry and
12% pig slurry.

The values of water and electricity used were calculated by deduct-
ing the amounts that go into biomethane production from the over-
all yearly values provided by the biogas plant. Heat requirements
were calculated based on the amount of biomethane (produced on-
site) and natural gas that is burned on-site. The produced biogas has
a 55:45 content ratio of CH4 and CO2 that was used to calculate the
respective amounts by considering a CH4 and CO2 density of 0.72
kg/m3 and 1.96 kg/m3 (Tampio et al., 2016). The NOx emissions were
calculated as 0.42 g/m3 of biogas produced (Rouleau and Zupko,
2019). According to the information gathered at the biogas plant, CH4
losses (leaking) are less than 1% of the produced CH4. Transportation
was calculated based on the distance provided by the plant for slurry
and maize silage, while for food waste coming from supermarkets, an
average distance of 20 km (This value comes from a personal commu-
nication with Mrs. Porcel and Mr. Maka from Naturgas Kielen) was
assumed. The mass of produced digestate was calculated by subtract-
ing the biogas mass from the total feedstock, as explained in (Tampio
et al., 2016). The rest of the environmental flows were taken from the
“anaerobic digestion of manure, CH” ecoinvent 3.8 process as a proxy.
Table 26 reports the data and sources used for biogas production.

Biomethane production (P6): The data for this process were col-
lected from the “biogas purification to biomethane by amino washing,
[CH]” ecoinvent process. The only change was using the available
Luxembourgish electricity mix in ecoinvent 3.8, instead of the one in
Switzerland.

On-site heat production (P7): In this case, a part of the heat needed
for biogas production is provided on-site by burning biomethane,
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variable data source

Composition of substrate*
Silage 21%

Naturgas Kielen

Biowaste 16%
Manure 63%

Manure composition Pig slurry 12%
Cattle slurry 88%

Yearly production of bio-
gas (m3)

4,500,000

Biogas content in NK 55% CH4 and 40% CO2

Biogas yield* (m3/tODM)

Silage: 625
Biowaste: 450
Manure: 450
Actual feedstock: 485

DM ratio in feedstock* 0.23
Moisture content in feed-
stock*

0.77

CH4 losses (%) < 1

CH4 and CO2 density
(kg/m3)

0.72 (Tampio et al., 2016)

CO2 density (kg/m3) 1.96 (Tampio et al., 2016)

Distance travelled
30 km (slurry and silage) Naturgas Kielen
20 km (food waste)

NOx emissions 0.42 (Rouleau and Zupko,
2019)(g/m3 of biogas pro-

duced)

Table 26: Data values and sources for biogas production. (*At the first
year of simulation; the values change in every step as a result of
the different composition of the feedstock.)

which is also produced on-site. The data for this process were col-
lected from the “biomethane, low pressure burned in micro gas tur-
bine 100 kWe, [CH]” ecoinvent 3.8 process. The biomethane input
entering this process is the biomethane produced by the producer
itself.

Unpackaging food waste (P8): Before anaerobic digestion occurs,
the food waste that is received goes through an unpackaging process
where food waste is separated from its packaging. The unpackaging
of 1 kg of food waste requires 0.005 kWh electricity, calculated based
on the data provided by the biogas plant. According to the biogas
producer Naturgas Kielen, up to 25% of the incoming food waste is
packaged. It was assumed that 5% of food waste mass is constituted
by packaging, which is later sent for green fuel upgrade in another
Luxembourgish plant. Since there is no data available regarding the
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packaging treatment, nor a similar process in ecoinvent 3.8, this spe-
cific outflow has been cut off.

4.4.3.3 Multifunctionality

The definition of good (G) and waste (W) flows in both alternatives
was made based on the price criteria. All the flows with an economic
value higher than zero were considered goods, while those with an
economic value lower than zero were considered waste flows. The
functional flows were identified by keeping in mind that a functional
flow can either be an outflow of a process in the case of goods, or
an inflow of a process that treats waste, in the case of a waste flow
(Guinée et al., 2002).

A process is considered a Multifunctional Process (MF) when it has
one of the following characteristics (Guinée et al., 2002, 2004):

• Two or more good outflows (co-production)

• Two or more waste inflows (combined waste processing)

• One or more waste inflows and one or more good outflows
(recycling).

The multifunctionality issue was solved by applying partitioning
because it allows for the creation of “virtual mono-functional” pro-
cesses, enabling the division of the nonfunctional flows over these
virtual mono-functional processes (Guinée et al., 2004). The economic
allocation principles were used for P5. Digestate was considered de-
void of economic value; all the burdens where thus allocated to the
biogas flow. The physical allocation principles were used for P1 and
P6, while for P4 no allocation was deemed necessary since it repre-
sents a closed-loop recycling process.

4.5 case study

Different scenarios were simulated using the ABM approach that was
described in Section 4.4. The focus of these scenarios is to use as
much organic manure as possible for biogas production, by intro-
ducing new plants into the system or changing the composition of
feedstock for biogas production. The crop selection is achieved as
explained in (Marvuglia et al., 2022) and livestock management as
implemented in the simulator explained in Section 4.4. Therefore, the
farmers respect crop rotation constraints and nitrogen requirements
as required by regulations.

4.5.1 Scenario A: Baseline Scenario

This is the scenario that simulates the current situation in terms of
biogas production in Luxembourg. Our aim is to assess the life cycle
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impacts of the current situation, which would then be used to com-
pare with other scenarios.

4.5.2 Scenario B: Addition of New Plants to the System

As shown in Figure 25, there are 24 biogas cooperatives in Luxem-
bourg. In the simulations, this number can be increased with addi-
tional small-scale plants that can be installed in communes that do
not have any plants. The communes suitable for the theoretical instal-
lation of new plants were chosen based on the amount of manure
that farms can provide. This is an analysis that only considers the
supply of feedstock (i.e., the biomass supply potential for the new
plants) and does not consider any other aspect (economic, social).
However, in the current practice, the decision of building a biogas
plant is a more complex process that requires the attention of local
and country-level actors and imposes participatory planning.

In each one-year interval of simulation, a new plant is assigned to
the commune with the most excess manure production in the previ-
ous year. The capacity of the plant is decided according to the possi-
ble contributors of manure around the plant and the contributors are
assigned as the plant is initialized. If a farm is identified as a biogas
contributor, then it remains as such throughout the simulation. The
objective of this scenario is to show how Luxembourg could hypo-
thetically increase its biogas potential using the available manure in
regions that do not have biogas plants nearby.

4.5.3 Scenario C: Biogas Feedstock Composition Change

In the current composition of biogas feedstock shown in Table 26 and
used in the simulations as a hypothetical composition for the biogas
plants in Luxembourg in the absence of more detailed data, there is
an average content of 63% of manure. The government’s policy is to
increase the rate of manure use to 90% (Today, 2022). To achieve this
objective, in Scenario C more farms contribute to biogas production
by collecting and sending excess manure to the closest biogas produc-
tion plant instead of storing it for future use as organic fertilizer. In
every time step, more and more farmers are expected to join the bio-
gas production. The plants that have not reached their full capacity
accept new contributors in every time step. Firstly, possible contribu-
tors for a given plant are selected among the farms that have excess
manure. Then the farm with the largest amount of excess manure is
assigned to that plant. This process is repeated in every time step.
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4.5.4 Scenario D: Increasing Biowaste in Biogas Feedstock

The current percentage of food and organic waste (biowaste) in bio-
gas feedstock is around 16% (see Table 26). The quantity of biowaste
that can be collected only from the five major supermarket chains in
Luxembourg (Delhaize, Cactus, CORA, Auchan, Match) can be esti-
mated at around 12,000 tons/year (This value comes from a personal
communication with Mrs. M. Porcel and Mr. X. Maka from Naturgas
Kielen). Scenario D simulates a progressive increase in the quantity of
food waste in the feedstock, until a full utilization of these 12,000 tons
is reached in the last year of the simulation. Therefore, this scenario
aims at exploring the possibility of valorizing biowaste for gas and
electricity production, a potential that is nowadays still untapped in
Luxembourg.

4.6 results and discussion

The simulations are run for 10 years with monthly timesteps. The re-
sults reported in this paper are the average values of 50 repeats. The
initial cropland of each farm is assigned using the GIS data from 2020,
which contain information about the UAA of Luxembourg. A detailed
description of the farm assignment algorithm applied can be found
in (Marvuglia et al., 2022). The decisions related to the livestock pro-
duction system are taken by each farmer at the animal level. For this
reason, a high computational time is necessary to complete a set of
simulations. Figure 28 shows the change in composition of feedstock
for biogas production in every scenario.

Figure 28: The feedstock composition of biogas production us-
ing each scenario.

The figure clearly shows that the manure percentage in each sce-
nario increases with time. In the baseline scenario (Scenario A), the
farmers choose to cultivate crops for human consumption rather than
silage crops for bioenergy production, therefore the percentage of
silage in the overall feedstock decreases and the percentage of ma-
nure increases. One reason for this is to slightly decrease livestock
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numbers, which fits to the current trajectory of the cattle production
system in Luxembourg. In Scenario B, the introduction of new plants
increases the use of excess manure as biogas feedstock, which ulti-
mately increases the percentage of manure in the composition of the
feedstock in every consecutive year. Every farm located at around a 30
km radius from the new plant is a candidate to become a contributor
to biogas production. In Scenario C, more and more farms send ex-
cess manure to the established plants. There is no boundary in terms
of the number of farms that can contribute to the production of bio-
gas, and this leads to an increase in the manure percentage in the
feedstock (up to 92%) at the end of the 10-year horizon of the simula-
tion. Scenario D only aims at increasing the biowaste usage, although
the total amount of crop silage and manure in biogas feedstock drops
over the years due to a smaller number of animals and the reduced
cultivation of energy crops for biogas production. At the end of the
simulation, the biowaste percentage in feedstock composition is very
close to the manure percentage.

Figure 29 shows the normalized LCIA results of each midpoint cate-
gory obtained with the ReCiPe 2016 method and aggregated over 10
years of simulation.

Figure 29: The 10-year aggregated LCIA scores using midpoint cate-
gories. Each impact category is normalized on the baseline
scenario (Scenario A).

The midpoint scores are affected by the change in composition of
feedstock, for example the impact on terrestrial ecotoxicity is 35%
lower in Scenarios C and D compared to the baseline scenario. The
creation of new plants does not only change the composition of the
feedstock, but obviously also increases the overall biogas generation.
Looking at the same midpoint impact scores from a biogas produc-
tion efficiency perspective also, all the scenarios show improvements
compared to the baseline (Figure 30). The midpoint category of Terres-
trial Ecotoxicity this time shows more than a 35% improvement if Sce-
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nario C is enforced, and other categories such as Agricultural Land
Occupation, Marine Eutrophication and Water Depletion show im-
provements higher than 27%. As Figure 6 shows, the Climate Change
impact score (normalized by the amount of biogas produced) can be
reduced by 14%, 17%, and 10% in Scenarios B, C, and D respectively,
compared to the baseline scenario (Scenario A). Assuming the biogas
production is promoted as described in Luxembourg’s energy strat-
egy for the current decade (Government, 2019), the electricity gener-
ation from biogas can reach almost 75% of its theoretical potential of
94 GWh (estimated in (Scarlat et al., 2018)) in the 10-year time hori-
zon of the simulations, while at the same time the emissions can be
reduced. In Figure 31, the projected electricity generated from biogas
is shown, under the assumption that the methane content in biogas
generated from silage is 52%, from food waste 60%, and from manure
55% (KTBL-Taschenbuch Landwirtschaft 2016). This assumption results
in an energy production of about 2 kWhel per m3 of biogas (consid-
ering a value of 23 Mj/m3 as the lower calorific value of the biogas
and assuming an efficiency of the conversion of thermal energy in
electricity of 32%). As Figure 31 shows, under Scenario B the poten-
tial production of electricity can increase by more than 7% at year 10,
compared to the baseline scenario (Scenario A). Under Scenario D,
the increase is about 15%. This brings additional emissions that affect
some midpoint categories, for example Climate Change and Human
Toxicity. Nonetheless, the cropland has a high contribution to some
midpoint categories, such as agricultural land occupation or terres-
trial ecotoxicity. As one can observe from Figure 29, as the farmers
cultivate less and less maize for biogas production, the impacts re-
lated to these categories reduce up to 30% for Terrestrial Ecotoxicity
and up to 25% for Agricultural Land Occupation.

Figure 30: Midpoint impacts in Figure 29 with additional normaliza-
tion using total biogas production in each scenario.
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Figure 31: Projected electricity generation of each scenario over 10
years of simulation.

The normalized ReCiPe endpoint impact values for the four scenar-
ios. Although Scenario D allows for the highest production of elec-
tricity (Figures 31 and 33), it scores the worst in all three endpoint
categories (Human Health, Ecosystem Quality, and Resources), com-
pared to the baseline scenario. This can be explained by looking at
Table 27, which shows for each of the different feedstocks (silage, ma-
nure, and biowaste) the endpoint impacts referred both to the cubic
meter of biogas produced and to the ton of Organic Dry Matter (ODM).
The impacts are calculated after normalization and weighting, and ex-
pressed in Points (Pt), where 1 Point is equivalent to the impacts of
1 person (globally) over one year. According to this table, silage has
a significantly larger impacts per tODM compared to the other two
types of feedstocks. Therefore, one can say that Scenario A has the
worst performance due to the high share of silage in the feedstock
(ranging from 15% to 20% in Figure 28). Although the agricultural
area is utilized more and more for human consumption, there is no
additional manure foreseen in Scenario A. Therefore, the impacts per
m3 of biogas produced remain higher in that scenario. Since manure
has a lower impact per tODM than the other two feedstocks, the sce-
narios aimed at increasing manure usage in biogas feedstock show
improvements in all the impact categories.

Figure 32: Normalized endpoint results over 10 years of simulation.

Although the biogas yield of biowaste is considered the same as the
manure’s one, the impact of biowaste per m3 of biogas produced is
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Figure 33: Total ReCiPe Endpoint (H, A) single scores (in MPts)
and electricity productions (in GWh) for every scenario
throughout 10 years of simulation.

Endpoint Impacts per m3 of Biogas Produced (Pt/m3)
Endpoint category Silage Manure Biowaste

Ecosystem Quality 0.0344 0.0011 0.0026
Human Health 0.0118 0.0018 0.0064
Resources 0.0069 0.0014 0.0037

Endpoint impacts per ton of ODM (Pt/tODM)
Endpoint category Silage Manure Biowaste

Ecosystem Quality 21.48 0.5 1.17
Human Health 7.35 0.82 2.9
Resources 4.3 0.62 1.68

Table 27: Endpoint impacts of different feedstocks per m3 of biogas
produced (using the biogas yields reported in Table 26) and
per tODM.

higher than manure in every category. This explains higher endpoint
impacts in Scenario D compared to Scenario B and C. The impact
of silage does not affect the comparison, because the ratio of silage
decreases in every scenario. Scenarios B and C have very similar im-
pacts on Resources depletion and Ecosystem Quality, with Scenario
B being slightly worse than Scenario C in the Human Health end-
point impact category. In Figure 33, the results of the LCIA are shown
as single score values. The single scores calculation implies a step of
normalization, followed by the weighting of the different impact cat-
egories, to provide a single impact value for each scenario, expressed
in Points (Pt). This renders the comparison of the scenarios easier for
the final users of the results, although it introduces a certain level of
additional uncertainty (Itsubo, 2015). The hierarchist (H) version of
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ReCiPe with average weighting (A) has been chosen to calculate the
single scores (Huijbregts et al., 2017).

Along with the single scores, in Figure 33 the total electricity pro-
duction for each scenario is also shown for the same simulation hori-
zon. From the figure, it is possible to see that, although the foresee-
able Scenario D allows for the highest electricity production in the 10
years, it has the highest aggregated impacts (more than 5.2 million
Pt). Interestingly, based on the single score values, one can now see
that Scenario C would be the preferred scenario (4.82 million Pt).

Concerning the validation of our results, as explained in Section 4.4,
only an internal validation was possible in our case. Nonetheless, at
least for what concerns the ranking of the different biogas feedstocks,
our results are in line with those found by other recent studies (Fusi
et al., 2016; Møller et al., 2022). (Møller et al., 2022) compare five
different scenarios of biogas feedstock. Each scenario includes slurry
ranging from 50% to 80%, but the amount of biowaste, energy crops,
and crop residues differ. The total carbon emissions per ton are lower
for biowaste than for crop residues and energy crops. In (Fusi et al.,
2016) five plants with cow and pig slurry as wells as silage and crop
residues are compared. The scenario where only cow slurry was used
achieves better results in almost every impact category. The Climate
Change impact score of that scenario shows a negative value, due to
the avoidance of emissions of the traditional slurry management.

Moreover, according to (EurObserv’er, 2021), in the year of 2020
Luxembourg produced 62.7 GWh of electricity from biogas, which
is comparable to the average value of 10 years of simulation (63.02
GWh/year) obtained in our business-as-usual case (scenario A). This
validates our average results in this scenario.

4.7 conclusions

The paper simulates four scenarios to assess the environmental im-
pacts arising from a gradual change in the composition of the biomass
feedstock used for biogas production in Luxembourg. Two main pos-
sibilities are explored: (1) exploiting more consistently the manure
produced by farms and increasing its percentage in the composition
of the biomass used in the digestors, and (2) including biowaste into
the biogas feedstock, which is assumed to be always readily available.
The following conclusions can be reached according to the scenarios’
results.

According to Scenario C, the objective to increase the percentage of
manure delivered to biogas production plants up to 90% of the excess
manure available at farms (i.e., not useable for fields fertilization) is
achievable. This can be obtained by adding new plants to the system,
as well as integrating more farms to the production. The goal in both
cases is to promote the usage of excess manure as biomass substrate
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for biogas production, which would in turn help achieve the objective
of reducing GHG emissions set by the EU Green Deal.

The outcome one can derive from Figure 30 is that manure usage
should be encouraged if one wants to reduce the environmental im-
pacts per unit of biogas produced. If biowaste can be incorporated
into the feedstock, this also generates less impact per unit of biogas
produced than the business-as-usual case. The endpoint scores shown
in Figure 32 and the single scores shown in Figure 33 also confirm
that scenarios aiming to incorporate more manure into the feedstock
(Scenarios B and C) have lower impacts than Scenario A (baseline sce-
nario) and Scenario D, however the amount of biogas production and
the electricity produced therein are higher with the addition of more
biowaste to the feedstock (Scenario D).

In conclusion, one can see from Figure 33 that Scenario C is the
best option to reduce the overall impacts and that Scenario D is the
best option for producing more electricity. This shows a clear trade-
off. However, if further efforts are put in place to increase the amount
of manure usage in biogas feedstock, the total electricity production
could become higher in Scenario C than Scenario D. For instance,
instead of accepting only one more farm as a contributor per each
time step of the simulation (as is the case in this paper), plants could
welcome more farms in every step. Therefore, the total amount of
manure in biogas feedstock can be increased.

4.8 limitations and future directions

Although the model factors in many of the decision variables that in-
tervene in the real farm’s business management, it certainly suffers
from several limitations. Firstly, assuming that the biowaste would
always be available, this does not fully reproduce reality, because
there might be periods when, for various reasons, its delivery to the
biomass plant is scarcer or potentially discontinued. On the other end,
biowaste not used for biogas production is incinerated. This causes
additional GHG emissions, which are not accounted for in the model.

Concerning the impact of organic manure, or silage cultivation for
biogas production, it is calculated as the result of the agent’s activi-
ties; however, the biowaste is not an output of farmer agents’ activ-
ities, therefore we consider it as a burden-free input to the system
(except for the impacts of biowaste un-packaging for the packaged
biowaste that comes for example from supermarkets, which repre-
sents between 25% and 30% of all the biowaste received from su-
permarkets). Moreover, the model only deals with dairy and suckler
farms, while pig slurry production is not modelled and is assumed
to be available for biogas production. Finally, from the LCI point of
view, certain processes have been adapted from existing ecoinvent
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processes available for other geographical contexts (namely Switzer-
land) and based on assumptions.

The results shown in the paper must be read with the important
caveat that they do not come from a global optimization of the bio-
gas production system in the entire country, including its integration
into the national grid. This would require a much bigger effort (in-
cluding the consideration of the feed-in tariffs granted to producers
of electricity from biogas) and much larger data collection processes
from all the biogas plants in the country, which would go beyond
the scope of the paper. The model applied in this paper is only an
attempt to provide an estimate of the potential of biogas production
and the impacts related to field and plant operations, under the pos-
sible scenarios and the many assumptions that were considered and
that are documented in this paper. The analysis of financial aspects
related to biogas plants, as well as the cost of feedstock transportation
from farms or supermarkets to the cooperatives were not considered
in this paper. Therefore, this paper does not represent a feasibility
study to assess the economic viability of building a new biogas plant
or converting already built plants to adapt them to the digestion of
a feedstock with a different composition, because this would require
a more accurate, case-by-case, analysis. This paper merely intends to
provide an estimation, with a life cycle perspective, of the potential
environmental impacts that one could expect under the hypothetical
scenarios that we have described and that could potentially be ap-
plied in Luxembourg.

It is once again worthy to point out that the biogas production
segment is modeled using some of the information available at the
Naturgas Kielen plant, and it does not mirror the full picture of Lux-
embourgish biogas production infrastructure (size, technology, etc.).
Some variables such as the feedstock composition or the production
technology are just assumed as constant from one plant to another. A
larger data collection effort that encompasses more plants would be
required for better estimation of the full biogas potential in Luxem-
bourg.

Apart from the improvement in the limitations mentioned above,
modelers will make new additions that can help better explain the
current status of the biogas sector in Luxembourg. For instance, the
government subsidies for the biogas sector are currently being stud-
ied and are subjected to future changes. In this respect, the considera-
tion of the feed-in tariffs granted to producers of electricity from bio-
gas will be an important addition to the current model. A government
financial support exists in Luxembourg to improve storage facilities
(Government, 2019); however, it has not been factored in the model
because clear information about its amount was missing. There can
be other types of subsidies which would entice the farmers into par-
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ticipating biogas cooperatives and, ideally, they should be considered
in future versions of the model.

In the current study, the impact results are considered at the higher
end because avoided emissions are not considered. Avoided emis-
sions would include for example the avoided methane release in the
atmosphere from open-air manure storage, since manure used for
biogas is stored for a shorter time. Other avoided emissions that are
not considered in this study are those eventually deriving from maize
(as bioenergy crop, not as animal feed) substitution with other crops
(since bioenergy maize is replaced by manure) and those deriving
from a reduced consumption of natural gas from the grid, which is
substituted using biomethane. This may very well change the total im-
pact, however, assumptions on storage facilities and manure spread-
ing times are not modelled within the current scope of the paper.

In our model, the farmers are connected to each other via a network
and their green consciousness evolves according to the interaction
with their neighbors. However, the farmers that belong to the same
biogas cooperative may exchange information more frequently than
the rest, therefore this requires more attention in terms of changes in
behavior due to cooperative interactions. The cooperative itself can
be modelled as an agent that disseminates information among its
members. However, this element of interaction is not currently imple-
mented in the model, and it may be introduced in future versions of
it.

Although the scenarios introduced here were implemented sepa-
rately, they can very well be applied concurrently. The objective of
this study is to assess the feasibility of changing biogas feedstocks
and their corresponding environmental impacts. Our model and sim-
ulator allow users to implement scenarios that can possibly be ap-
plied by policymakers. The advantage is that the ABM is combined
with the LCA module, thus allowing the assessment of the environ-
mental impacts arising from each simulated scenario.

4.9 managerial insights

There are some messages that might be conveyed to decision-makers
in the agricultural sector in the light of the discussion and analysis
made in this paper. First, the feedstock for biogas production affects
the level of environmental impact. Therefore, it is possible to change
from a silage-intense feedstock to a manure- or biowaste- intense one,
while increasing the biogas production, but a close look always must
be taken in regard to the full set of environmental impacts that each
choice produces in all the impact categories and the trade-offs thereof.
Second, the public stakeholders in the sector can look for ways to
achieve an easier biowaste collection or promotion of manure usage
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in biogas feedstock. More farmers could be invited (or even incen-
tivized) to contribute to biogas production in their proximities.

Another suggestion could be addressed to farmers who also benefit
from digestate, a by-product from biogas production that can be used
as soil amendment. The ones who contribute to the biogas production
would have less inorganic fertilizer need, as they can get the diges-
tate from biogas plants. However, digestate has a high-water content
(80–90%), which makes the cost of transport higher than the fertilizer
value they contain. Therefore, to be used in an economically viable
way, it could be transported only to locations nearby the biogas plant,
or some digestate liquid treatment systems should be considered as
nitrogen and potassium concentration methods to concentrate a high
share of the feedstock nitrogen into transportable fertilizer products
with low mass (Tampio et al., 2016). In addition, the proportion be-
tween the different nutrients contained in the digestate does not ex-
actly coincide in general with the nutritional needs of the crops. To
ameliorate this problem and further decarbonise the agricultural sec-
tor, other possibilities exist, such as isolating Soluble Bio-based Sub-
stances (SBS) from the anaerobic digestate. These SBS can be used as
environmental-friendly plant biostimulants and biofertilizers as alter-
natives to the (more expensive) commercial products based on fossil
sources (Montoneri et al., 2022).

The second benefit for the farmers in the future could be the sub-
sidies. Although the definition of a new subsidy scheme for biogas
production is an ongoing work in Luxembourg, the farmers in the
end would get a premium once the scheme is put in place. Most
farms comply with the manure storage regulations in Luxembourg;
however, the farmers would also avoid storing the manure (both liq-
uid and solid) if they transport it to biogas production facilities more
frequently, which would avoid emissions in the soil that come from
open-air storage.
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5
M AT H E M AT I C A L P R O G R A M M I N G T O O P T I M I Z E
C R O P A N D D A I RY P R O D U C T I O N I N
L U X E M B O U R G I S H FA R M S

5.1 abstract

As the human population grows rapidly, meeting people’s food se-
curity while respecting the planet’s boundaries requires strenuous
efforts. It is known that agriculture’s role in contributing to environ-
mental impact categories such as climate change, land use, ecotoxicity,
and water pollution is significant. In this paper, a hybrid model that
couples an ABM and life cycle assessment LCA is proposed, which also
includes multi–objective optimization to optimize farming activities
from an economic and environmental perspective. The model uses in-
dicators that hinge upon LCA methodology and encompass the entire
production chain. Like any classical ABM, social interactions among
agents are also considered. The proposed model is the only simu-
lation model in the literature that uses a hard-coupled ABM LCA
along with an optimization module at the individual farm operation
level. The model also encompasses both livestock and crop farming
activities. The farmer network is built using neighborhood relations,
which influence the update of the farmers’ GC parameter at every
time step. At the end of every time step, the optimization module is
instantiated and decision variables (the number of livestock and land
allocation) are determined based on profitability and selected envi-
ronmental impact categories. The impacts are quantified using the EF
LCIA method. If only profit optimization is considered, model results
show a 9% reduction in EF single score impacts and a 5.5% increase
in overall profitability. At the farm level, simulations show a clear
trade-off between environmental and economic sustainability, with a
25% reduction in overall emissions being possible if farming activities
take place by considering the EF single impact score in the objective
function, although this results in an 8% reduction in profitability over
ten years.

5.2 introduction

As the human population grows rapidly (Crist et al., 2017; Gerland et
al., 2014), meeting people’s food security while respecting the planet’s
boundaries becomes increasingly essential. To that end, the agricul-
tural sector’s role must be properly defined due to its significant
contributions to various environmental impact categories, such as cli-

149



150 chapter 5

mate change, land use, ecotoxicity, and water pollution (Clark et al.,
2020). In recent years, analytical descriptive tools have been widely
used to address these issues in sustainability assessment (Gava et al.,
2019). Quantitative sustainability assessment(Marvuglia et al., 2015)
is meant to assist decision makers in the three pillars of sustainabil-
ity: economic, environmental, and social (Guinée et al., 2004; Hei-
jungs, 2010; Sala et al., 2015). In this work, we deal with the optimiza-
tion of the farm business from the standpoint of profit maximization,
considering not only the economic dimension but also the environ-
mental one, tackled from a life cycle based perspective. To this end,
we use indicators that hinge upon the Life Cycle Assessment (LCA)
methodology, encompassing the entire production chain and not just
the field operation or animal husbandry phase. The advantage of this
approach is that it prevents the shifting of environmental burdens
from the field operation phase to the upstream or downstream phases
(Repar et al., 2017).

The decision-makers have been trying to foster international mon-
itoring and cooperation by defining goals for the upcoming decades
(Assembly, 2015). The Green Deal that was set out by the European
Commission proposes the ’Farm to Fork Strategy’ (European Com-
mission, 2020) which aims to make production decisions more en-
vironmentally accountable. The assessment of possible outcomes of
these proposals is not obvious and requires the consideration of hu-
man behavior as an important factor to reach a successful integration
of green strategies and, concurrently, the effect of collective actions in
consequence of social interactions among different actors.

In 2015, the agriculture sector accounted for 11.3% (514.1MtCO2-eq)
of total GHG emissions and 10% of total non-CO2 emissions (nitrous
oxide and methane) in Europe (Hart et al., 2017). This figure rises
to 16.5% globally (Twine, 2021). Moreover, the sector accounts for ap-
proximately 54% of total methane emissions in the EU and nearly 79%
of total N2O emissions (Eurostat, 2022). Agriculture and its subsys-
tems can have irreversible consequences on the environment (Crippa
et al., 2021). Therefore, sustainability needs to be prioritized in agri-
cultural policy. Beyond simple on-farm assessment, LCA methodology
can help actors understand and reflect on the emissions caused by
agricultural production activities. Using LCA, one can assess the im-
pacts of activities not only at the farm level, but throughout the entire
production chain. Nonetheless, the complexity of agricultural pro-
duction systems necessitates modeling efforts capable of capturing
emerging features resulting from the interactions among the differ-
ent actors involved. As a result, LCA alone will inevitably fall short of
quantifying and monitoring every aspect of the sector. In (Marvuglia
et al., 2022), a hybrid model coupling Agent-Based Modelling (ABM)
and LCA was therefore proposed with the goal of encompassing farm
management on a larger scale. The main novelty of that work lays in
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the inclusion of several aspects of dairy farm management, as well as
economic and environmental optimization on a farm level.

Among computer-aided modelling methods, ABM is particularly
appealing for investigating and simulating relevant scenarios that aim
to tackle the environmental problems we face today. ABM allows the
consideration of different actors and the exploration of their recip-
rocal interactions at the micro-level (farmer’s level) or macro-level
(regional or national) (Schreinemachers and Berger, 2011). The agents
are autonomous entities that may be physical or virtual (Ferber and
Weiss, 1999). They follow a wide set of rules within an environment,
where learning and adaptation are also possible to generate changes
in other agents or the environment (An, 2012). The applications of
ABMs go beyond agri-food systems and cover most Complex Cou-
pled Human-Natural Systems (CHANS) (Hare and Deadman, 2004)
including socio-economic, techno-social and environmental systems
(Baustert et al., 2019; Gaud et al., 2008; Gilbert, 2019; Grimm and
Railsback, 2013; Heath et al., 2009; Heckbert et al., 2010; Micolier et
al., 2019; Teglio et al., 2011; Wu et al., 2017).

Mathematical programming models and solves complex decision-
making problems using statistics, optimization techniques, and other
analytical approaches (Carravilla and Oliveira, 2013). In the field of
agriculture and farming, when combined with LCA, techniques from
this field may help realize efficiency gains and impact reductions
in crop-livestock production systems. Optimization using linear pro-
gramming techniques and evolutionary algorithms are two possible
avenues. In this work we further enhance the model presented in
(Bayram et al., 2023) by adding a farm level optimization that aims
at optimizing the farm’s business from economic and environmental
perspectives based on the constraints set from real life conditions. To
the best of our knowledge, this model is the only simulation model
in the literature that uses a LCA approach to optimize the individ-
ual farms’ operation over a given time interval. It also encompasses
both livestock and crop farming activities, with the option of adding
biogas production activities, leveraging on the work presented in
(Bayram et al., 2023).

5.3 literature review

5.3.1 Mathematical optimization methods

Three essential approaches of Mathematical Programming (MAP) are
known as linear programming, non-linear programming, and mixed-
integer programming, respectively. Linear Programming (LP), Non-
Linear Programming (NLP), and Mixed-Integer Programming (MIP).
In certain circles, these methods are also referred to as mathemati-
cal optimization approaches. These three techniques, when applied
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along with LCA, may optimize objective function(s) with reference to
a set of particular constraints, and as a result, present a set of optimal
solutions for improving the environmental performance of a product
system. During both the Life-Cycle Inventory (LCI) and Life-Cycle
Impact Assessment (LCIA) stages of the LCA process, management
practices can be utilized in combination with LCA. Depending on the
goals of the investigation, objective functions may be evaluated using
either an aggregated single environmental effect or multi-objective
mathematical programming. The term "constraints" refers to any ac-
tivities that take place between the extraction of raw materials and
the end-of-life stage (Caldeira et al., 2019).

The integration of LP and LCA models introduces a significant
amount of uncertainty (due to uncertain data points like farm rev-
enue and crop yields), yet LP is still the most popular choice among
MP models because of its ease of use and flexibility in dealing with
a wide range of decision factors. In order to maximize crop pro-
ductivity while minimizing environmental impacts, LP models have
been applied to a wide range of agricultural issues, including crop
rotation, farm system design, economic decisions, optimization of
cropping patterns and resource use management between crop and
livestock farms, resource allocation, and more (Galán-Martín et al.,
2017).

One has the option of using deterministic, stochastic, or resilient
modeling methodologies when it comes to the uncertainty of the pa-
rameter values (Jornada and Leon, 2016). Using traditional optimiza-
tion techniques that are, for the most part, founded on linear alge-
bra is what is meant by the phrase "deterministic modeling." LP and
MIP models are frequently used in situations in which the parameters
of the model can be determined with certainty (Kong et al., 2019).
When the parameters are deemed to be stochastic, the use of stochas-
tic programming techniques is recommended according (Huang et al.,
2012).

Mathematical optimization methods have mostly been used to crop
production in the agricultural sector. Cereal crops including corn,
wheat, and rice may be to blame for this. Historically, mathematical
optimization has been applied to problems on a regional scale, when
the objectives are limited to a certain group of farms.

Most of the papers we looked at optimized for at least two goals,
but we didn’t find any instances when this was done simultaneously.
The overarching goal was to improve the farm’s financial situation
while reducing its negative effects on the environment. Most environ-
mental impact objective functions were emission-based, with a focus
on GHG emission mitigation (Gebrezgabher et al., 2014). Economic
objective functions frequently aim to maximize the surplus over ex-
penses that farms generate. The objective functions can be defined
by a number of different choice variables, which vary from product
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to product. Land allocation, sowing time, crop protection agents and
fertilizers, irrigation, and other such management and resource vari-
ables (i.e. seed, water, fertilizer, crop protection, and energy input
amounts, yield, etc.). Farming is a highly strategic endeavor that re-
quires careful consideration of many moving parts, including when
and how much water to use, how many people to hire, when to har-
vest, and what to do thereafter (Chandrasekaran and Ranganathan,
2017; He et al., 2018). Tactic models’ objective functions are typically
paired with an economic purpose, such as cutting down on input
costs or increasing farm profitability. Short-term (daily) issues and
farm-scale planning fall under operational decisions, which have re-
ceived less attention than tactical decisions. This includes matters like
crop management scheduling, farm input mix and amount, harvest
schedule (Xie et al., 2018), and storage planning. From a modeling
perspective, some studies address both strategic and tactical issues,
such as a 2020 study that compares the effectiveness of various farm-
ing methods (Yuanyuan, 2020).

The use of mathematical programming models is sometimes crit-
icized for being too narrow in scope when it comes to establishing
objective functions like land use, irrigation, or farm technology, and
for only allowing a select few stakeholders to participate in the mod-
eling process (Udias et al., 2018). Multi-objective optimization models
based on LP, MIP, and NLP models take into account a wide variety of
farm management concerns; this is how they make up for the limita-
tions of single-objective LP models.

5.3.2 Genetic Algorithms (GAs)

Evolutionary Algorithms (EAs) show promise as powerful resources
for optimizing a wide variety of factors simultaneously. The ap-
proaches that GAs take to solving problems can be categorized as
either elitist or non-elitist. To solve multi-objective issues without
favoring any one solution over the others, one can use elitist solu-
tion finding approaches like NSGA-II. On the other hand, non-elitist
approaches make it possible for competing alternatives to emerge
victorious (Yusoff et al., 2011). GAs are attractive for use in various
fields of study because they can be modeled specifically for the task
at hand. GAs are a form of search algorithm based on the ideas of
natural selection and evolutionary processes. These algorithms are
classified as stochastic search algorithms because they use probabilis-
tic methods to decide which parameters to use.

Multi-objective GAs have been used to maximize a wide range of
goals in crop-livestock research, from increasing farm revenues to
enhancing livestock and crop productivity to lessening the negative
effects on the environment (Maiyar and Thakkar, 2019; Pishgar-
Komleh et al., 2020). On the other hand, most of the sources relied
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on employed exclusive approaches. The majority of GA-based re-
search only considers economic limitations, although some research
has also considered environmental constraints (Chandrasekaran and
Ranganathan, 2017; Pastori et al., 2017).

The first step in combining GAs and LCA is often obtaining the
study’s results. Environmental consequences are often assumed as
outputs from joint GA-LCA models, while the farm inputs (such as
crop and livestock traits) are inputted as choice factors. Together, GAs
and LCA models aim to reduce environmental consequences at both
the local and global scales. GAs are then used to generate the best pos-
sible options (López-Andrés et al., 2018; Maiyar and Thakkar, 2019).
The benefits of GAs include their conceptual clarity, adaptability,
multi-objective optimization, and use of stochastic optimization. The
lack of a standardized integration mechanism is the primary draw-
back of joint GAs-LCA. The stopping point (i.e., the point at which
the global optimum is reached) in GAs is not always obvious (Sarker
and Ray, 2009). The NSGA-III evolutionary algorithm is one of the
most popular approaches to resolving multi-objective optimization
problems, and it has found use in fields as diverse as engineering,
finance, and bioinformatics. In order to optimize for multiple goals
at once, the NSGA-III uses EA principles (Deb and Jain, 2014).

Table 5.3.3 summarizes the information obtained from the literature
on the use of mathematical programming and genetic algorithms in
crop-livestock system environmental assessments.

5.3.3 Paper contributions and organization

The following are the key original contributions of the article:

• A novel multi-stage optimization model for optimal farm man-
agement that takes both crop and livestock farming activities
into account.

• Incorporation of linear LCA-based environmental constraints
based on ReCiPe midpoint impact categories into the model
investigation of various environmental constraints

• A farming management system that optimizes the decisions
based on subsidies with the goal of minimizing environmental
impacts.

The rest of the paper is structured as follows. The proposed multi-
objective farm optimization scheme is introduced in Section 5.4. Sec-
tion 5.6 presents extensive results for the proposed approach while
discussing the key outcomes. Section 5.7 concludes and gives insights
for future work.
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Table 28: An overview of approaches explored in the literature that use mathematical optimization methods to improve farm outputs from an
economic, environmental, and technical standpoint.

reference country/region methodology and aim

(Behera et al., 2014) Northern India Profit maximization, capital and labor minimization under economic constraints using lin-
ear programming.

(Chandrasekaran and Ran-
ganathan, 2017)

India Supply maximization, cost reduction and CO2 minimization under economic and environ-
mental constraints using genetic algorithms

(Capitanescu et al., 2017) Luxembourg Only profit maximization under economic and environmental constraints using
mixed-integer programming.

(Cobuloglu and Büyüktah-
takın, 2015)

Kansas, USA Maximization of the total economic value obtained from switchgrass production under
production, environmental and economic constraints using mixed-integer linear program-
ming.

(Cortignani and Severini,
2012)

Central Italy The objective function considers land allocation, water price, and cost under economic
constraints.

(Ding et al., 2021) Wallonia, Belgium Six objectives are specified, namely climate change, freshwater eutrophication, electricity,
heat, biogas, bioethanol. Territorial constraints are defined and problem is solved using
fuzzy linear programming.

(Dowson et al., 2019) New Zealand Maximize the profit of milk and minimize the cost of feed, harvesting and irrigation under
economic and technical constraints.

(Gital Durmaz and Bilgen,
2020)

Izmir, Turkey Maximize the profit and minimize the distance between biogas plants and poultry farms
under economic and technical constraints using multi-objective mixed integer linear pro-
gramming

(Fasakhodi et al., 2010) Isfahan, Iran Maximize net return per water consumption and labor per water consumption under eco-
nomic constraints using nonlinear programming.

(Galán-Martín et al., 2017) Spain Three objectives are (1) maximizing production, minimizing damage to (2) ecosystem qual-
ity and (3) resources under demand satisfaction, capacity limitations and water demand
constraints.
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Table 28: An overview of approaches explored in the literature that use mathematical optimization methods to improve farm outputs from an
economic, environmental, and technical standpoint. (continued)

reference country/region methodology and aim

(Gebrezgabher et al., 2014) Salland, Overijssel,
the Netherlands

Gross margin, GHG emissions, NH3 emissions and land use change are optimized under
manure availability, demand requirement and land availability. The chosen methodology is
compromise programming (CP).

(Hassani et al., 2019) Khorasan Razavi,
Iran

Resilience is defined using multiple economic, technical and environmental indicators,
which then being normalized and optimized under eight different sets of constraints which
can be economical, nutritional, technical and environmental. Both GAs and Particle swarm
optimization (PSO) are used in this study to solve the optimization problem.

(Huang et al., 2012) Tarim River Basin,
China

The objective is to develop a two-stage interval quadratic programming (TIQP) which is
then used to obtain an optimal water-allocation scheme by maximizing the economic and
environmental benefits.

(Jabarzadeh et al., 2020) Iran The objective function is formed by minimizing total costs and CO2 emissions, along with
maximizing responsiveness to customer demand. Constraints are defined considering the
supply and demand for a particular product; within a region or for a time of the year.

(Liang et al., 2018) New York, US Maximization of farm profit, water productivity and soil organic matter accumulation are
objectives under economic, nutritional, and soil-related constraints. The solution method is
mixed-integer quadratic constrained programming (MIQCP) (Zhong and You, 2014).

(López-Andrés et al., 2018) Mexico The objectives are maximizing the profit and minimizing the four endpoint categories of
IMPACT 2002+ under production and mass balance constraints. GAs are used to solve the
optimization problem.

(Ma et al., 2018) Northeast China Minimizes cost of transportation and quality degradation of goods. Technical and envi-
ronmental constraints are defined according to the capacity and regulations of containers.
Mixed-integer programming is used as the solution method.

(Maiyar and Thakkar, 2019) Andhra Pradesh
and Tamil Nadu,
India

Total supply network costs, along with transportation emissions and wastages are mini-
mized. Environmental, economic and production constraints are considered; MOPSODE
(Su and Chi, 2017) and NSGA-II (Deb et al., 2002) are solution methods.
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Table 28: An overview of approaches explored in the literature that use mathematical optimization methods to improve farm outputs from an
economic, environmental, and technical standpoint. (continued)

reference country/region methodology and aim

(Manos et al., 2013) Larisa and Trikala,
Greece

Gross margin maximization, labor and fertilizer minimization are the objectives. Agro-
nomic and regulatory constraints, as well as environmental ones, are considered and
Weighted Goal Programming (Sumpsi et al., 1997) is used to solve the optimization prob-
lem.

(Mansoori et al., 2009) Mashhad, Iran Various economic and environmental objectives are defined and optimized in different
scenarios under economic constraints. Goal programming was used to solve the problem.

(Pishgar-Komleh et al., 2020) Iran Tomato production is optimized based on carbon footprint, benefit-cost ratio and energy
use efficiency. The constraints are the lower and upper bounds of production parameters.
First ANNs were applied to model relationships between the objectives, then GAs and PSO
were used to optimize the objectives.

(Ow et al., 2020) Switzerland Minimization of aggregated environmental impacts is considered under environmental and
nutritional constraints. Linear programming was used as the solution methodology.

(Rohmer et al., 2019) Netherlands Cost and environmental indicators are minimized (either together or separately). Con-
straints are defined according to nutritional requirements and consumer demands. Com-
promise programming and ✏-constraint methods were used for multi-objective optimiza-
tion.

(Xavier et al., 2018) Nine agrarian
regions of Portugal

Twelve agricultural sustainability indicators were optimized under technical constraints
and Extended Goal Programming was used to solve the multi-objective optimization prob-
lem (Diaz-Balteiro and Romero, 2004).

(Yuan et al., 2018) Taiwan Impact reduction maximization is the only objective of this study. Technical, nutritional
and environmental constraints were used and the problem was solved using linear pro-
gramming.
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5.4 materials and methods

5.4.1 Hybrid ABM LCA model and simulations

ABM. Several scenarios were already simulated in our previous work,
which concerns animal stocking rate reduction and animal dietary
change (Bayram et al., 2023), farmers’ GC evolution (Marvuglia et
al., 2022) and change of biogas feedstock composition (Bayram et al.,
2022). The model that was developed to include dairy farming activi-
ties and cropping activities in Luxembourg has now been extended to
run optimizations of each farm at every time step based on economic
and environmental objectives and constraints. Within the framework
of the model, the agents carry out their activities while giving due
consideration to both the monetary worth of their businesses and the
possible environmental implications of their actions. The limits that
are defined in each of the implemented scenarios act as a constraint
on the actions that the agents can take.

LCA. The environmental impact assessment of farmers’ decisions is
carried out using the EF method (Saouter et al., 2019). In our model,
the objective function that each agent looks at when optimizing its
operations includes EF impact scores on one or multiple impact cat-
egories, which are normalized and weighted according to Table 29,
taken from (European Commission, 2018).

Simulations. The time step used in our simulations is one month,
and the simulation lasts ten years. For various reasons, a month was
chosen as the unit of time for the simulation. Because crop rotation
changes occur at different times of the year, harvesting and plant-
ing decisions can be made more precisely. Furthermore, choices that
affect the structure of the herd (for example, culling decisions) are
made monthly rather than annually. Crop, milk, and meat prices all
have seasonal tendencies, which might influence specific decisions
made by farmers. The fertilizer requirement for crops can be fulfilled
in several ways. The first option is to employ farm–produced animal
manure, which can be either solid or liquid. The second alternative is
to buy inorganic fertilizers at a fixed price throughout the simulation.
Dairy farms, which constitute most farms in Luxembourg, employ
animal manure first and subsequently purchase inorganic fertilizer
if the crop plantation requires it. As a third option, farmers may
use the digestate from the biogas facility if they are part of a coop-
erative for biogas production, as described in (Bayram et al., 2022).
However, the model described in this paper does not include biogas
production activities because of a lack of detailed farm-specific data
on biogas activities (composition of the feedstock, association with
biogas cooperatives, etc.). The costs considered in the model fall into
two different categories: fixed and variable costs. The fixed costs are
the ones that depend mainly on the size of the farm, such as mate-



5.4 materials and methods 159

Category Unit (µi) Normalization

Factor (⌘i)

Weighting

Factor (wi)

Climate change kg CO2 eq. 8.10⇥ 103 2.11⇥ 10-1

Ozone depletion kg CFC-11 eq. 5.36⇥ 10-2 6.35⇥ 10-2

Ionising radiation kBq U-235 4.22⇥ 103 5.01⇥ 10-2

Photochemical ozone formation kg NMVOC 4.06⇥ 101 4.78⇥ 10-2

Particulate matter disease incidences 5.95⇥ 10-4 8.96⇥ 10-2

Human toxicity, non-cancer CTUh 2.30⇥ 10-4 1.84⇥ 10-2

Human toxicity, cancer CTUh 1.69⇥ 10-5 2.13⇥ 10-2

Acidification mol H+ eq. 5.56⇥ 101 6.20⇥ 10-2

Eutrophication, freshwater kg P eq. 1.61 2.80⇥ 10-2

Eutrophication, marine kg N eq. 1.95⇥ 101 2.96⇥ 10-2

Eutrophication, terrestrial mol N eq. 1.77⇥ 102 3.71⇥ 10-2

Ecotoxicity, freshwater CTUe 4.27⇥ 104 1.92⇥ 10-2

Land use pt 8.19⇥ 105 7.94⇥ 10-2

Water use m3 of deprived water 1.15⇥ 104 8.51⇥ 10-2

Resource use, fossils Mj 6.50⇥ 104 8.32⇥ 10-2

Resource use, minerals and metals kg Sb eq. 6.36⇥ 10-2 7.55⇥ 10-2

Table 29: EF normalization factors and weights for each impact cate-
gory that were used to calculate single score impact (Euro-
pean Commission, 2018).

rial costs, fixed capital consumption, labor and energy costs, which
are not considered in the optimization problem due to a lack of reli-
able information on those cost items. On the other hand, the variable
costs are the ones that depend on the number of animals and the area
that is cultivated, namely fertilizers, animal feed, plant seeds and vet-
erinary costs. As explained in (Bayram et al., 2023), the livestock is
modeled individually such that their phenotypical attributes (body
weight, gender, age, etc.) are assigned individually. The estimation
of body weight is necessary to calculate the energy requirements of
an animal. Therefore, we operated in two steps. First, we applied the
body weight mid-infrared-based equation for dairy cows developed
by (Tedde et al., 2021) on the Walloon milk spectral database man-
aged by the Walloon Breeding Association (Elévéo, Ciney, Belgium).
This database contained 713,428 records (45,488 cows and 222 herds)
collected from 2006 to 2020. Then, the predicted body weight was
modeled using 7 in which the independent variables (weeks of lacta-
tion and parity) were divided into 5 classes (first to fifth+ parity, i.e.,
we set to 5 every parity greater than 5). This equation represents the
theoretical averaged estimation of predicted body weight (BW) based
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on parity and week of lactation. The coefficients of the equation used
to perform the BW simulation of this study are shown in Table 30.

BW(kg) = yintercept +w1nparity +w2WOL+w3WOL2 (7)

+w4WOL3 +w5WOL4 +w6WOL5

where nparity is the number of parities (the number of pregnancies a
cow has completed) of the animal and WOL is the week of lactation.

Mean Standard Deviation

yintercept 5.39⇥ 102 3.22⇥ 10-1

w1 3.72⇥ 101 2.76⇥ 10-2

w2 8.20 1.31⇥ 10-1

w3 9.82⇥ 10-1 1.72⇥ 10-2

w4 4.71⇥ 10-2 9.53⇥ 10-4

w5 1.03⇥ 10-3 2.32⇥ 10-5

w6 8.31⇥ 10-6 2.05⇥ 10-7

Table 30: The coefficients for Eq. 7 that is used to calculate the body
weight of dairy animals.

5.4.2 MOO problem formulation

In the Supplementary Information, the definition of mathematical op-
timization, a generic explanation of linear programming, weighted
sum method and details of how NSGA-III works can be found. In this
section we will introduce the problem formulation, i.e., the objectives
and constraints of the Multi-Objective Optimization (MOO) problem.

In the present study, the MOO was implemented using the NSGA-III
algorithm. As explained in (Bayram et al., 2023), the simulator is built
in Java (Arnold et al., 2005). Therefore, we used the Multi-Objective
Evolutionary Algorithms (MOEA) Framework (Hadka, 2012), an open-
source Java library that supports several evolutionary algorithms, in-
cluding NSGA-III. The crossover (Deb et al., 1995) and mutation (Kita
et al., 1999) probabilities were set at 0.9 and 0.1, respectively. The pop-
ulation size (N) is critical for the algorithm’s convergence. The size
of the population can influence the efficiency of evolution, or the iter-
ation may stop at the local optima. A population size of 100 can be
reached in a feasible amount of computational time and increasing
the size has not changed the solutions vastly.
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Indices and Sets Unit
t index for the planning time step —
c index for crop products —
a index for animals —
i index for environmental impact categories —
C set of crops —

NC size of current crop plantation —
NLnewborn number of newborns —

NLcull number of livestock to be culled —
Decision Variables

UAAc,t UAA with crop plantation c for a given time t. ha
NL number of livestock —

Parameters
T simulation time horizon. years
hc harvesting month of crop c. —
sc seeding month of crop c. —
Af total acreage available in farm f. ha
µi unit of the EF impact category i —
wi weight of the EF impact category i —
⌘i normalization factor of the EF impact category i µi / person

impc,i environmental impact of crop c in impact category i —
impmilk,i environmental impact of milk c in impact category i —
impmeat,i environmental impact of meat c in impact category i —

Continuous Variables
fc,t profit from crop production at time t. e
fa,t profit from animal production at time t. e
fs,t revenue from subsidies at time t. e
fp,t total profit of a farm at time t. e
fi,t impact of farming activities for impact category i at time t. —
fEF,t EF single score impact of farming activities at time t. —
pc,t price of crop c sold at time t. e / ha
vcc,t variable cost of production of crop c sold at time t. e / ha
Ac,t area of crop c at time t. ha

Apasture,t area occupied by pastureland at time t. ha
pmilk,t price of milk sold at time t. e / kg
ymilk,t total yield of milk at time t. kg
pmeat,t price of meat sold at time t. e / kg
ymeat,t total yield of meat at time t. kg
vcfeed,t variable cost of feeding at time t. e

vcveterinary,t variable cost of veterinary at time t. e
Pmilk,t total milk production in the farm at time t. kg
Pmilk,a,t total milk production of animal a at time t. kg
Pmeat,t total meat production in the farm at time t. kg
Pmeat,a,t total meat production from animal a at time t. kg

m the current month of the simulation —
mp the number of months to be considered for rolling sum profit —

fp,roll mp month rolling sum of profit e
NEroll 12-month rolling sum of nitrogen excretion kg-Norg

NEt nitrogen excretion at the current time t kg-Norg

subt total subsidies received by the farmer at time t e
Mt transition matrix for fields at time t —

Table 31: The nomenclature of variables used in the optimization problem
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A MOO problem is designed to maximize the economic values of
crop and animal production while minimizing environmental im-
pacts. The ideal values for various decisions, such as the number of
animals to keep or cropland allocation, are established by solving
the objective functions. The optimization module is run in the post-
market phase (Bayram et al., 2023) of our simulations and the deci-
sion variables are selected as the average value over the population.
The following sections fully explain the proposed model’s objective
functions and restrictions.

5.4.3 Objective functions

The model aims to minimize environmental impact while making
the most profit out of animal and crop production at the level of each
farm. The profit for crop production is calculated by subtracting the
variable costs of cropping operations from the revenue:

fc,t =
X

c,t
pc,tAc,t -

X

c,t
vcc,tAc,t (8)

To calculate the total milk and meat production, individual produc-
tions of animals are first calculated and then aggregated over the
farm.

Pmilk,t =
X

a

Pmilk,a,t (9)

Pmeat,t =
X

a

Pmeat,a,t (10)

The profit for animal production is calculated similarly to crops by
subtracting the variable costs of veterinary and feeding spending
from the revenue:

fa,t =
X

t

pmilk,tPmilk,t +
X

t

pmeat,tPmeat,t (11)

-
X

a,t
vcvet, a,t -

X

a,t
vcfeed, a,t

The subsidy schemes explained in (Bayram et al., 2023) are still in
place. Therefore, they are parts of a farm revenue stream. However,
the amount of subsidy for compensatory allowance has been changed.
Farmers get 165 e/ha up to 90 ha and 90 e/ha above 90 ha.

fs,t =
X

t

subt (12)

Then we define the first objective function as:

fp,t = fa,t + fc,t + fs,t (13)
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The environmental impacts are calculated using the impact scores of
crop and animal production activities. As explained in Section 5.4.1,
the EF LCIA method was used to formulate the optimization problem.
The objective function to minimize the environmental impact may
include more than one impact category. The objective function for
one category can be expressed as follows:

fi,t =
X

t,i

ymilk,timpmilk,i+
X

t,i

ymeat,timpmeat,i+
X

t,i

Ac,timpc,i

(14)

The EF single score of a farm can be calculated using the weights in
Table 29:

fEF,t =
X

t,i

fi,twini (15)

5.4.4 Production constraints

Each farm is assigned a certain number of fields, as explained in (Mar-
vuglia et al., 2022). The external boundaries of a farm or the shape of
fields are not changed (fields cannot be sold or split) during the sim-
ulations. Therefore, the size of a farm is always equal to or greater
than the size of the cultivated area:

X

c

Ac,t 6 Af8t (16)

It should be noted that the pastureland always remains constant and
cannot be converted into cropland:

Apasture,t = Apasture, t-1 8 t (17)

There are multiple constraints on the harvesting and seeding of crops.
The transition from one crop plantation to another can only be done
within the validity period of corresponding crops’ harvesting and
seeding seasons. Moreover, the crop rotation scheme of a farm should
be respected, which is considered a field-wise practice. The farmers
can choose crops with lower impacts if their GC value (Marvuglia
et al., 2022) is above the pre-specified threshold (which is 0.5 in all
experiments in this paper). If not, they choose the most profitable
one, respecting the plantation calendar and crop rotation scheme con-
straints. If the transition matrix M has the probabilities of changing
state, then the transition from crop x to crop y can take place as:

UAACy,t+1 = Mx,y
t UAACx,t (18)

Where each element of Mt (i.e., Mx,y
t ) is determined according to

crop rotation and the GC value of the farmer. 18 is also subject to:

hx - 1 6 m 6 hx + 1 (19)
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sy - 1 6 m 6 sy + 1 (20)

Therefore, the harvesting and seeding seasons for current and fol-
lowing crop plantations are considered respectively in transitioning.
Dairy farms must decide which and how many animals to cull. In
our model, two main problems may occur if the culling decisions are
not restricted. First, although there are always animals that need to
be culled due to age limits (as explained in (Bayram et al., 2023)),
farmers may want to cull more animals to get more subsidies or to
minimize environmental impacts. The other problem is the opposite
of excessive culling. The farmers may want to expand the herd size to
increase milk production and therefore maximize the profit objective.
Therefore, the number of culled animals is constrained by the number
of newborns and the farm class (Table 32).

Farm
Class

Culling condition Culling decision

A, B, C, D
NLnewborn - 1 6 NLcull 6 NLnewborn + 1 (21) NLcull

NLcull 6 NLnewborn - 1 (22) NLnewborn - 1

NLcull > NLnewborn + 1 (23) NLnewborn + 1

E, F, G, H
NLnewborn - 2 6 NLcull 6 NLnewborn + 2 (24) NLcull

NLcull 6 NLnewborn - 2 (25) NLnewborn - 2

NLcull > NLnewborn + 2 (26) NLnewborn + 2

Table 32: The constraints on culling decisions.

5.4.5 Environmental constraints

As mentioned in Section 5.4.1, the farmers consider the entire set of
environmental impacts of each crop (calculated using the EF method)
while choosing the crop plantation for the fields. Moreover, there is a
hard limit for nitrogen emissions to soil for the entire year (Gouverne-
ment du Luxembourg, 2000), which can be expressed as:

NEroll =
t - 11X

t

NEt 6
t - 11X

t

170
kg-Norg/ha

year
Apasture,t (27)

where kg-Norg are the kilograms of organic nitrogen fertilizer
spread on the field.
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5.4.6 Economic constraints

Environmental goals have increasingly formed an element of the EU’s
CAP since the 1980s. To contribute to decreasing GHG emissions, boost-
ing energy efficiency, and protecting soil, the EU’s climate change
policy mandates a change in farming methods. These policy objec-
tives were met in our simulations in a simplified form (Bayram et al.,
2023) by direct subsidies to support environmental measures (Pillar
1) and multi-year rural development laws with climate change as one
of the guiding considerations (Pillar 2). However, it is crucial to em-
phasize that, to receive these subsidies, all farms must first achieve
the cross-compliance standards (SER, 2015), which has been the case
for all farms in Luxembourg in recent years. To get the subsidies, the
farmers must meet some constraints concerning land allocation or
nitrogen emissions due to livestock farming. The farms with more
than three hectares of area (Af > 3 ha) can get the compensatory
allowance as long as they meet the cross-compliance standards (SER,
2015). On the other hand, the greening subsidy can be acquired only
if the farm meets the criteria given in Table 33:

Farm Area Crop Diversity Number of Crops
on the Plantation

0 6 Af 6 10 ha — —

10 ha 6 Af 6 30 ha 0 6 Ac = C1,t 6 0.75Af (28)
NC > 2 (29)

Ac = C1,t > Ac = Cx,t (30)

Af > 30 ha

0 6 Ac1,t 6 0.75Af (31)

NC > 3 (32)
0 6 Ac1,t +Ac2,t 6 0.95Af (33)

Ac = C1,t > Ac = C2,t > Ac = Cx,t (34)

C1 6= C2 (35)

Table 33: Criteria for greening subsidy.

The rules set for the subsidy scheme “Extensification of permanent
grassland” may help regulators and farmers avoid excessive nitrogen
leakage into the soil. Using NEroll that was set in 27, we may express
the constraints in this scheme as in 34.

It is desirable to avoid as many emissions as possible, but the farm-
ing business should also be sustainable from a financial perspective.
Therefore, adding a constraint that avoids non-profitable businesses
throughout the simulation is reasonable. For this reason, the rolling
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Stocking
rate
(LSU/ha)

NEroll (kg-Norg) Subsidy

(e / ha)

1.2 0 6 NEroll 6
t - 11X

t

130
kg-Norg/ha

year
Apasture,t (36) 150

0.8 0 6 NEroll 6
t - 11X

t

85
kg-Norg/ha

year
Apasture,t (37) 200

Table 34: The criteria to get extensification of permanent grassland
subsidy scheme.

sum of profits over mp months is calculated for each farm 38, and if
that is lower than zero, the farmer optimizes the farm by using only
the first objective function 13.

fp,roll =

t - mpX

t

fp,t (38)

5.5 case study definitions

Three cases were simulated, as discussed in the rest of this section.
The difference between the three cases lies in formulating the objec-
tive function and constraints.

5.5.1 Case 1: Maximize Profit

This case corresponds to purely greedy farm management. None
of the environmental objectives or constraints are considered. This
case is used as a baseline scenario and the impact scores and farm
revenues from other cases are compared to this case in Section 5.6.
The problem can be represented in compact form as a MOO problem,
which is as follows:

max fp s.t. Eq. 16 - Eq. 38

5.5.2 Case 2: Maximize Profit, minimize EF Climate Change

EF method uses the GWP100 (Global Warming Potential over 100 years)
indicator to calculate the impact of GHG emissions on global warm-
ing. In this case, the problem formulation can be expressed as the
following:

max fp,min fi = EFclimate change
s.t. Eq. 16 - Eq. 38



5.6 results and discussion 167

5.5.3 Maximize profit, minimize EF Single Score

EF has a set of weighting and normalization factors for quantifying
the environmental impacts of a product or service over its entire life
cycle. Weighting factors show the relative importance of each impact
category in a product’s or process’s overall environmental impact. A
stakeholder engagement process is used to determine the weighting
criteria, in which experts and interested parties provide opinions on
the relative relevance of various environmental issues. The weighting
elements are often stated as percentages that add up to 100%. Nor-
malization factors are used to compare the environmental impacts
of a product or process to a reference value. The reference value is
usually the environmental impact of producing one unit of a partic-
ular product or service. Data from a representative sample of items
or processes in each impact category is used to compute the normal-
ization factors. They are often expressed in terms of the product or
service being evaluated. The values in Table 29 are used to find the
single score result, which is then used in the optimization problem.
The problem, in this case, can be written as follows:

max fp,min fi = EFsingle score
s.t. Eq. 16 - Eq. 38

5.6 results and discussion

The FU of our study is the country’s total agricultural and pastureland
area (i.e., the sum of all UAAs1), together with total milk and meat
production. The simulations run for ten years, with fifty repetitions
applied yearly. Each run’s random seed assignment is explained in
(Marvuglia et al., 2022). Every run assigns the same set of fields to
the farms previously saved in the database after the farm creation
algorithm is applied to the spatial data (Marvuglia et al., 2022). The
farmer network is built using the neighborhood and risk aversion
classes, which influence the updated GC value of each farmer at every
time step. At the end of every time step, the optimization module is
instantiated and decision variables (the number of livestock and land
allocation) are determined as explained in the previous sections.

In this paper, we simulated several cases to observe the effects of op-
timizing farming activities based on different environmental indica-
tors. Although each case takes the first objective function into account,
the second objective is either absent (baseline scenario) or considers
the impacts due to one (Case 2) or multiple (Case 3) environmen-
tal impact categories. As explained above, the impacts are quantified
using the EF LCIA method (Saouter et al., 2019). To see how the opti-
mization affected our results in terms of environmental impacts and

1 UAA is defined as the smallest georeferenced land object registered in the agriculture
cadastre.
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farm finances, we first needed to establish that optimization module
performs as intended, i.e., model where agents optimize their farms
based on a given objective achieve that goal consistently. In order
to compare the optimization-based model with the (non-optimized)
baseline scenario from (Bayram et al., 2023), where the LCIA was done
using ReCiPe 2016 (Huijbregts et al., 2017), we ran the latter again
using EF (which is the method used in the current paper) as LCIA
method. The resulting impacts in terms of the aggregated single score
for that scenario and Case 1 can be seen in Figure 34.

5.6.1 Country-level results

As Figure 34 shows, the single score impacts already reduce thanks
to the subsidies in place and livestock management rules that gov-
ern the simulations. Although the EF single score impacts reduced in
both optimized and non-optimized cases (9% and 13% respectively, as
shown in Figure 34), the stocking rate in the model with optimization
does not reduce as much as in the non-optimized decisions, mainly
because the number of livestock is a decision variable that largely in-
fluences farm profitability (Figure 35). The choice of crops is based
only on profitability and this reflects an increase in the overall prof-
itability of 5.5% in the optimized decisions compared to almost no
change in the non-optimized case (Figure 34).

Figure 34: The comparison of the model with and without farm opti-
mization.

Figure 36 compares the EF single scores based on each optimiza-
tion case. The country-level aggregated impacts and profits show a
clear tradeoff between environmental and economic sustainability. Al-
though a 25% of reduction in overall emissions is possible if environ-
mental considerations influence the farming activities, this brings an
8% decline in profitability over ten years. As seen from Figure 35, the
average stocking density reduces only to a level of 1.6 LSU/ha. In con-
trast, the subsidy “Extensification of permanent grassland” requires a
much lower stocking rate. Most farms fail to achieve this goal because
the amount of subsidies received is insufficient to let farmers make
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Figure 35: LSU / ha change for different cases.

more culling decisions. Nevertheless, as shown in Figure 34, around
9% of EF single score reduction can still be achieved while making
5.5% more profit.

Figure 36: Comparison of EF single scores based on each optimization
case.

5.6.2 Farm-level results

Since the farming operations, agent decisions and optimization hap-
pen on a farm-level, it is logical to focus on-farm level results for the
simulated cases. We, therefore, initialized some farms using ground
truth data. For example, we selected one of those farms whose proper-
ties such as location, size, and the number of animals are known, and
in this section, we will show the results of simulated cases for this spe-
cific farm. The behavior of the other farms is very similar. The farm
properties are given in Table 35. Some properties, such as GC and
the number of livestock, change across the simulation. Initial, mini-
mum, mean, and maximum values are reported for those attributes.
GC, degree centrality and rotation scheme are assigned from a ran-
dom distribution since they are not available in the data provided for
this study.

In (Marvuglia et al., 2022), we introduced the treemap represen-
tation as a way of preserving the privacy of a farm’s external geo-
graphical boundaries while respecting the interior boundaries (i.e.,
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Attribute Value
Farm class G

Degree centrality 2

Green Consciousness

Initial: 0.44
Min: 0.44
Mean: 0.47
Max: 0.51

Number of fields 36

Number of arable fields 10

Size of pastureland (ha) 22.00

Size of arable land (ha) 69.50

Total size of UAA (ha) 91.51

Number of Livestock

Initial: 122
Min: 105
Mean: 114
Max: 125

Organic No

Rotation Scheme MLC

Table 35: The selected farm’s properties. The farm is located around
the center of Luxembourg and practices dairy farming ac-
tivities. For the interpretation of the farm class and rotation
scheme codes, see (Bayram et al., 2023)

field boundaries) and relative sizes. The treemap representation of
the UAAs of the selected farm is given in Figure 37.

This representation is also used in Figures 38a, 39a and 40a. These
figures show the crops that stayed over the field for most of the time
each year. It must be noted that the transitions can happen at any
time step, as long as the crop rotation, the seeding and harvesting
months, and optimization objectives and constraints allow them.

The crop rotation constraints force farmers to choose only a hand-
ful of crops. Therefore, the impact and profitability due to crop se-
lections do not differ from one case to the other. However, in the
first case, potatoes are selected more often instead of other L crops,
which stems from the high market value of potatoes compared to
other crops. Maize, on the other hand, is a crop that almost every
farm cultivates and incorporates in its crop rotation scheme due to
its value as animal feed.

The real impact comes from the other decision variable in the opti-
mization problem, which is the number of livestock to be kept on the
farm (NL). Figures 38c, 39c and 40c show the change in the number
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Figure 37: The treemap visualization of farm UAAs. The sizes of the
fields used in the simulator are given.

of livestock in each time step when corresponding optimization objec-
tives are considered. Since Case 1 only maximizes the profit, farmers
tend to cull fewer animals, ending up with 7% mitigation in EF sin-
gle score, as shown in Figure 38c. However, the profits almost do
not change over the ten years. In Case 2, the reduction of EF climate
change is considered in the optimization problem and 19% mitigation
can be achieved, as shown in Figure 39c. Notice that the NL decreased
by 15% since the environmental objective is added to the objective
function in this case. Compared to Case 2, Case 3 shows a 12% re-
duction in NL (see Figure 40c), which can be explained by the fact
that the contribution of livestock farming activities to the EF climate
change score is relatively higher than the EF single score. Therefore,
the culling decisions can be taken more easily in Case 2 than in Case
3.

5.6.3 Uncertainty

The results are impacted by the uncertainty associated with the multi-
ple assumptions made in the study. These assumptions include model
parameters, price forecasts, agent interaction rules, and LCI data un-
certainty. The parameters associated with the livestock production
system (such as the culling rate and the duration of each phase of a
lactation period) were thoughtfully selected following consultation
with stakeholders. However, in general, they vary from farmer to
farmer. This justifies using an agent-based simulation to model the
agricultural sector; however, it introduces uncertainty in areas lack-
ing information. In (Baustert and Benetto, 2017), the various sources
of uncertainty in coupled ABM LCA models are addressed, making
a distinction between the uncertainty caused by measurement errors
or poor data quality (known as parameter uncertainty) and the un-
certainty caused by the inherent variance of the underlying system
(systemic uncertainty).



172
ch

a
pter

5

Figure 38(a): Crop rotations for a pilot farm with the scheme MLC. The treemap visualization shows the locations of the fields and crop plantations to preserve
the geolocation of fields. From the top left (step 1) to the bottom right (step 10), the treemaps show the evolution of crop plantations for ten years of
simulation. (Case 1) (Crop Family: M: L: C: )

Figure 38(b): The change of impacts for Case 1. Figure 38(c): Change of number of livestock (in red), profit
and environmental impact in Case 1 for the
selected farm. As the impact reduces, the
farm profit remains almost the same. The ar-
rows show the direction of simulation and
each point on the graph represents one year.
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Figure 39(a): Crop rotations for a pilot farm with the scheme MLC. The treemap visualization shows the locations of the fields and crop plantations to preserve
the geolocation of fields. From the top left (step 1) to the bottom right (step 10), the treemaps show the evolution of crop plantations for ten years of
simulation. (Case 2) (Crop Family: M: L: C: )

Figure 39(b): The change of impacts for case 2. Figure 39(c): Change of number of livestock, EF Climate
Change score, and environmental impact in
greedy scenario for the pilot farm. The im-
pact reduction comes with profit reduction
as more culling decisions are made compared
to baseline scenario. The arrows show the di-
rection of simulation and each point on the
graph represents one year. (Notice that the x
axis is reversed.)
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Figure 40(a): Crop rotations for a pilot farm with the scheme MLC. The treemap visualization shows the locations of the fields and crop plantations to preserve
the geolocation of fields. From the top left (step 1) to the bottom right (step 10), the treemaps show the evolution of crop plantations for ten years of
simulation. (Case 3) (Crop Family: M: L: C: )

Figure 40(b): The change of impacts for Case 3. Figure 40(c): Change of number of livestock, EF single
score, and profit in greedy scenario for the
chosen pilot farm. The profit reduces even
more compared to Case 2 in the case of EF
single score minimization (Case 3). The ar-
rows show the direction of simulation and
each point represents one year. (Notice that
the x axis is reversed.)
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Model parameters can either take values representative of reality or
be treated as random variables whose values are assigned via random
distributions. In this paper, we employ uncertainty analysis to evalu-
ate systemic uncertainty caused by stochastic events (such as the de-
cisions and interactions of farmer agents). The parameter uncertainty
is further compounded by the fact that the random variables are char-
acterized by probability density functions, which are characterized by
equations containing parameters. We follow the same structure pro-
posed by (Baustert, 2021), which was also applied in (Bayram et al.,
2023).

We executed a set of simulations (n = 50) and determined the coef-
ficient of variations of the respective LCIA impact categories to prop-
agate the uncertainty outlined in (Bayram et al., 2023). As previously
explained, the parameters are set to their nominal values, and the
systemic variability caused by the underlying model (i.e., random
variables) is determined.

Figures 41a and 41b use violin plots to show the density distribu-
tion of the values obtained over 50 simulations for the two impact
categories. From Figures 41a and 41b one can also observe that the
objective being optimized results in the least coefficient of variation
in terms of uncertainty. Furthermore, it can also be seen that opti-
mizing by EF single score indicator always brings the system to the
lowest levels of emissions. In fact, as also shown in Table 36, even the
maximum values reached in Case 3 (36.22 kg CO2-eq for EF climate
change, and 36.89 for EF single score) are lower than the minimum
values obtained by the other cases (37.76 and 37.18 kg CO2-eq for
EF climate change for Case 1 and Case 2, respectively and 38.71 and
37.97 for EF single score for Case 1 and Case 2, respectively).

Table 36 shows the values of the main descriptive statistics for the
LCIA results of the average of ten years of the 50 simulation runs,
for each of the three simulated cases. The CVs are mostly similar in
all cases and impact categories. In general, the parts of the ABM that
contain more random variables produce more variability. As a result
of having fewer random variables in the component of the model
that reflects crop production, there is less variability on average in
the impact assessment results for the EF single score, which is mostly
affected by flows from field operations (especially fertilizers and pes-
ticides). On the other hand, the EF climate change score is affected
more by the livestock activities which is the part of the model with
more random variables.

5.7 conclusion

This study presents a hybrid ABM–LCA model for crop–livestock activ-
ities that include multi–objective optimization under economic and
environmental constraints. The model presented in (Bayram et al.,
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Figure 41(a): EF Climate Change Figure 41(b): EF single score

Figure 41: Violin plots of the results of two impact categories obtained
over 50 simulations for the three simulated cases.

EF Climate Change
(x107) (kg CO2 eq.)

EF Single Score
(x103) (pt.)

Case 1 2 3 1 2 3

Minimum 37,76 37,18 35,53 38,71 37,97 36,25
Mean 37,95 37,53 35,78 39,01 38,39 36,43
Maximum 38,65 37,82 36,22 39,47 38,54 36,89
Standard Deviation 0,29 0,25 0,27 0,26 0,26 0,23
CV 0.76% 0.67% 0.75% 0.67% 0.68% 0.63%

Table 36: Main descriptive statistics for the average of ten years over
50 simulation runs for each of the three simulated cases.

2023) is now enhanced and includes farm optimization using eco-
nomic and environmental objectives (according to the case simulated).
In this paper, we investigated potential cases that evaluate the poten-
tial of optimizing farms based on different impact categories.

The followings are the key original contributions of the article:

• A novel multi-stage optimization model for optimal farm man-
agement that considers crop and livestock farming activities.

• A farming management system that optimizes the decisions
based on subsidies with the goal of minimizing environmental
impacts.

To assess the impact of the inclusion of optimization in our model, we
first compared the non-optimized version of the baseline scenario to
the optimized version. The baseline scenario only includes decisions
dealing with monetary actions in optimized and non-optimized ver-
sions. We saw that the optimized version performs better in profit
generation with a 5.5% increase in profit, whereas the previous ver-
sion of our model virtually shows a change in profit over ten years.
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After establishing that the optimization model achieves better re-
sults regarding considered objectives, we focused on several cases
that optimize decisions based on economic or environmental objec-
tives or both. In Case 1, the optimization model considers only farm
profitability without any environmental objective being targeted.
Case 2 and Case 3 differ in terms of the EF impact score that is
minimized as an environmental objective. In the former, EF climate
change scores are minimized, whereas in the latter EF single score is
targeted using all 16 categories given in Table 29.

Case 2 and Case 3 show a more significant reduction in stocking
rates (3.5% and 2.3%, respectively) than Case 1, which can be ex-
plained by the impact of livestock production activities on the en-
vironment. These two cases consider the environmental objective and
farmers who are “green-conscious” enough to make decisions to re-
duce the impact of their activities. The example farm described in
Section 5.6.2 shows a trend of reducing stocking rate, as seen in Fig-
ures 39c and 40c. The number of livestock reduced is reduced by 15%
and 12% in Case 2 and Case 3, respectively.

The cases we evaluated are by no means exhaustive, but the over-
all usefulness and effectiveness of farm optimization are shown in
this work. Furthermore, the trade-off between environmental and
economic objectives is clear, which can be addressed by better reg-
ulations, subsidies, and farm management strategies.
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Linear programming is one of the main Operations Research tech-
niques (Hillier and Lieberman, 2015). The model contains sets of
linear equations and inequalities. There should be a linear objective
function that is maximized or minimized. There are constraints that
a linear equation is subject to and the formulation of a MOO problem
(MOOP) is written like the following:

max z1 = p 0x, min z2 = i 0x s.t Ax 6 b; x 6 0 (39)

where, in farming activities, z1 can be the objective function for profit,
p is the profit vector of different types of production and z2 can be
the objective function for environmental impacts due to production.
x is the vector that represents the amount of each production, A is
the coefficient matrix and b is the vector that includes the resources
available in a farm.

The weighted sum method can be used in LP to achieve MOO. In
this method, each objective is assigned a weight before being com-
bined into a single scalar objective function. For example, in a farm
optimization problem, the multi-objective function could be profit
maximization while minimizing environmental impact. These goals
usually conflict because maximizing profit may result in increased
environmental impact. The weighted sum method has the following
general form for a multi-objective linear programming problem:

maxw1z1 +w2z2 + . . .+wnzn s.t Ax 6 b; x 6 0 (40)

where w1, w2, . . . , wn are the weights assigned to each objective.
It is important to note that the weighting method does not always
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find the best compromise solution because it assumes that the objec-
tives can be ranked and traded against one another. Furthermore, this
method may be limited because the decision maker may not know
which weight to assign to each objective a priori. Instead of assigning
weights using EAs, we may have a set of solutions.

GAs move from one set of solutions to the other using crossover, se-
lection and mutation operators. Through the crossover process, two
chromosomes, referred to as parents, are chosen and combined to
create a new population, which is referred to as offspring. The search
process does not reach a local optimal solution thanks to mutation op-
erators. Several changes are made at the gene level by the mutation
operator, which also generates new chromosomes. The new chromo-
somes will be very similar to those already present. In this way, a new
population is produced through a selection procedure in the follow-
ing step. GAs searches the solution space for optimal values (based on
objective functions and constraints) and will keep searching for the
optimal solution until one of the termination conditions is met. The
GAs is terminated when one of the following criteria is attained:

1. The value of the objective function has reached a certain satis-
factory level.

2. The maximum number of generations has been exceeded.

3. The time limit has been exceeded.

4. The results have not improved after a fixed number of iterations.

In our case, we represent a farm as a set of individuals, each rep-
resenting a possible farm configuration. The fitness function assesses
each individual’s performance based on financial profitability, crop
selection, livestock density and environmental factors such as GHG
emissions, land use, and water usage. Crossover and mutation are
two genetic operators that can create new individuals from existing
ones, allowing the GA to experiment with different farm configura-
tions. Feed optimization, livestock density adjustment and manure
management are examples of how GAs can optimize farms. Crop ro-
tation optimization is one example of GA application in farm opti-
mization. Crop rotation is the practice of planting various crops in a
specific order on the same field in consecutive years. This practice can
improve soil health, reduce pest and disease pressure, and boost crop
yields. A GA can be used to determine the best crop rotation schedule
for maximizing crop yield while minimizing costs and minimizing
environmental impacts. Another variable that can be optimized in a
farm is livestock density, which is represented by several variables,
including the number of animals per unit area, the types of animals,
and the feeding schedule. In the case studies discussed in this paper,
we apply the NSGA–III algorithm (Deb and Jain, 2014).
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The information readily available to manage farming operations
is directly related to the degree to which those operations can be
optimized. For example, we have data on farm properties, crop and
livestock structures, cost and price information regarding those two
categories, and lastly, information on subsidies. At the conclusion of
each time step, the optimization module is activated to assist farmers
in making decisions based on several criteria.

Crop production and animal husbandry are the two primary forms
of farm production activities in our model. Multiple crop types can
be cultivated on a farm. After the harvest, they are either sold in
the market or used as animal feed on the farm. The production of
milk and meat are examples of animal products sold on the market;
however, manure can also be considered an essential product for crop
production due to the value it possesses as a fertilizer. Farmers buy
inorganic fertilizers if they need to fulfill the fertilizer requirements.
Because farmers typically trade their excess manure for digestate, a
byproduct of biogas production, manure is considered part of the
biogas feedstock. This feedstock has an economic value for biogas
producers, but this value is not passed on to the farmers. In addition,
the nitrogen content of digestate is exceptionally high, and unlike
manure, it is much simpler to store.

The characteristics that define a crop are its yield, requirements
for fertilizer, price, production costs, and effect on the environment.
On the other hand, animals are sorted into different groups based
on their age, gender, and the kind of offspring they produce (dairy
or suckler). Each livestock category is described in terms of its milk
or meat production capability, prices for milk and meat, costs to
maintain the livestock and the impact on the environment, meaning
the level of nitrogen excretion into the soil. Crop production is con-
strained due to several different factors. The model considers the typ-
ical crop rotation schemes in the region and the seeding and harvest-
ing seasons of each crop during the land allocation phase of the simu-
lations. The model aims to determine the quantity of each production
activity in vector x in Eq. 39 that will result in the most efficient op-
eration of the farm system. In our model, each farm’s performance is
optimized individually, and farms do not collaborate by exchanging
products or pooling resources. There are two optimization criteria in
our model, where the first one is economic optimization, where we
maximize the gross margin of animal and crop production. The sec-
ond is environmental optimization, where we minimize the selected
environmental indicator.

The way in which NSGA-III deals with multiple objectives is the pri-
mary factor that sets it apart from other GAs. NSGA-III makes use of
a non-dominated sorting mechanism in order to sort the solutions in
accordance with the values of the objective function. This enables the
algorithm to find a set of non-dominated solutions, where the defini-
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tion of a non-dominated solution is that it is the only solution that
satisfies all the objectives better than any other solution. Environmen-
tal selection is a novel operator that has been added to NSGA-III. This
operator is used to determine who will be a part of the generation
after this one. This operator seeks to maintain the diversity of the
solutions available and is based on the crowding distance metric.

NSGA-III for farm optimization can be utilized through the follow-
ing steps. In addition, a summary of these steps can be found in Fig.
42.

Figure 42: NSGA-III optimization scheme

1. Problem representation: Represent the farm as a collection
of individuals, where each individual represents a distinct ar-
rangement of the farm that could be used. This may involve
considerations such as the schedule for crop rotation.

2. Objective functions: Define the objective functions that will
be used to evaluate the performance of each individual. These
objective functions will be used to evaluate their performance.
These could include the production of crops and livestock, as
well as the environmental and financial impacts of these activi-
ties.

3. Non–dominated sorting: Using the non–dominated sorting
mechanism, sort the individuals into groups according to the
values of the objective functions they possess. This will result in
a set of solutions that are not dominated by any other solutions.

4. Genetic operators: It is possible to generate new individuals
from existing ones by making use of genetic operators such as
crossover and mutation. This will enable the algorithm to ex-
plore various configurations of the farm.

5. Stopping criterion: Determine when the algorithm should stop
running by deciding on a stopping criterion, such as a fixed
number of generations or a threshold value of the fitness func-
tion. Stopping criteria can be anything from a fixed number of
generations to a threshold value.
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6. Initial population: The first step is to produce an initial popula-
tion of individuals, which is typically done in a random fashion.
The effectiveness of the algorithm is directly related to the de-
gree of diversity present in the initial population.

7. Running the algorithm: Start the algorithm and repeat steps
4 through 5 until the termination criteria are satisfied. The fi-
nal group of non–dominated solutions will represent a set of
trade-off solutions that can be utilized in the process of making
decisions pertaining to the farm.
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6
A W E B - B A S E D D A S H B O A R D F O R E S T I M AT I N G T H E
E C O N O M I C A N D E C O L O G I C A L I M PA C T S O F L A N D
U S E C L A S S C H A N G E S F O R K E Y L A N D PAT C H E S

6.1 abstract

The increasing pressure on land coming from the raising needs of a
fast-growing population puts public and private landowners and de-
cision makers in front of difficult choices concerning the best use of
limited land resources. On one hand, agricultural land and grassland
need to be used to support human food requirements. On the other
hand, these land uses create trade-offs with other ecosystem func-
tions, assets and services, such as ecological connectivity, biodiver-
sity and natural habitat maintenance. In this paper a prototype web-
based dashboard is presented, that aims at allowing a fully-fledged
calculation of the economic and environmental trade-offs between dif-
ferent land uses of any land patch (excluding urban areas and infras-
tructures) and in the Grand Duchy of Luxembourg. An Agent-Based
Modelling (ABM) coupled with Life-Cycle Assessment (LCA) runs on
the background of the dashboard. The coupled model allows the sim-
ulation of the farm business and the calculation of the revenues made
by farmers in every land patch under different farm management sce-
narios. Crossing the information coming from the model with other
tools would also allow to integrate local environmental trade-offs,
such as degradation of local habitats or ecological connectivity, and
not only global ones defined in a non-spatialized way. The dashboard
has a potentially high value to inform policy, strategies, or specific
actions (e.g., environmental stewardship programs that integrate eco-
nomic convenience as a condition) and has the necessary flexibility
to integrate new aspects related to territorial analyses as they become
available.

6.2 introduction

Land is a limited resource and as such its use generates trade-off
choices for landowners and public authorities who have the responsi-
bility to incentivize and support certain land use choices over others.
In this framework, simulation and visualization tools can help stake-
holders to understand the possible outcomes of different strategies
and select suitable alternatives.

Although intense research has been carried out and major devel-
opments have been achieved in the assessment of the impact of pro-
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duction systems on the environment, the complexity of the models
calls for a growing need for software with user-friendly interfaces
and visualization capabilities to present the results of the simulations
(Cardinot et al., 2019). The final impact of a project relies heavily on
the easiness of communication and the accessibility and usability of
its results by the target audience and relevant stakeholders.

In the case of complex systems, evaluation of different scenarios is
naturally a difficult task due to existence of large amount of simula-
tion outputs. A pre-defined set of performance metrics and a dash-
board that summarizes and visualizes them can help users to draw
meaningful conclusions and comparisons between scenarios. How-
ever, as it is the case for most complex systems, the analysis and
visualization of simulation outcomes require a combination of data
analysis methods. From the experience of the authors, building a sin-
gle tool to analyze large amounts of data that includes geospatial
information, network analysis, sustainability assessment indicators
and financial performance, is a non negligible effort, but can signif-
icantly help the recipients of a final research product, whether they
are researchers or not. With such a tool can be possible to achieve the
important task of clarifying the model goals and parameters for peo-
ple who are not involved in the modeling process task. Furthermore,
comparison of different scenarios and effect of changing parameters
can aid users in the decision-making process.

As suggested in modern sustainability research, when dealing with
human environment interaction a trans-disciplinary approach is re-
quired (Popa et al., 2015). To study coupled human-natural systems,
agent-based modelling has been gradually accepted as a useful mod-
elling technique (Rounsevell et al., 2012). Agents are defined as au-
tonomous entities that react to the stimuli coming from the envi-
ronment and interact with one another under certain rules that are
imposed by the modeler and normally defined after consultation
with domain experts and stakeholders. Each of them has an objective
that can be defined as optimizing the societal or individual benefit.
They are capable of learning, adapting, and changing their behaviors,
which end up steering their actions.

In this paper we present the first prototype of a web-based dash-
board that estimates the revenue and environmental impacts that
a farmer can expect applying a certain management scenario on
his/her farm. The environmental impacts are calculated making
use of LCA and represent lifecycle-based (not just local) global im-
pacts generated by the farm. Both can then be apportioned to each
land patch using a given weighting procedure. Once the revenues
and non-local environmental impacts are estimated and mapped,
they can be overlaid onto other maps representing outputs of local
analysis (e.g., habitat value, ecological connectivity, risk of soil ero-
sion). These latter inform on the local environmental value of the
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land, complementing the lifecycle-based environmental assessment.
The dashboard, together with local environmental analysis, would
support a better-informed management of any land plot, based on
the positive and negative environmental and economic outcomes of
different land uses.

The calculation of the revenues and the environmental impacts is
carried out using an ABM of the farming system (which includes
mixed farms, dealing with crops, meat and milk at the same time)
coupled with an LCA calculation run on the background of the dash-
board which is then used to display pre-calculated results. Future
developments incorporating local environmental analysis (e.g., eco-
logical connectivity analysis) will inform about local environmental
values of the land patches using indicators and tools such as land-
scape metrics, connectivity indices, circuit-theory models. The maps
thus generated can be easily loaded into the dashboard as it can han-
dle georeferenced files.

In the paper, visualization techniques and technologies behind the
prototype are first discussed. The prototype that shows the results
from our selected case study is then presented and planned future
development are outlined.

6.3 the dashboard

The dashboard is created using Django web-framework and its struc-
ture is depicted in Fig. 43. It allows to run computations in the back-
end using other Python libraries that are already integrated into our
simulation pipeline. Based on the feedback from project partners and
reviewed literature, the dashboard was designed using the compo-
nents depicted in Fig. 43. The data is stored using PostGIS which has
the ability to manage Geographic Information System (GIS) and nu-
merical data in one database. The PostGIS application is available in
a docker container to make it compatible for different operating sys-
tems. Thanks to Django, we access the database and manipulate the
tables with Python’s powerful libraries. In the front-end, JavaScript
allows to use interactive visualization tools to better investigate the
simulation results, as well as the static properties of the farms. The
dashboard can currently be used on the most common web browsers
(Chrome, Firefox, Safari etc.). All the code is stored in Git and can be
accessed by other contributors within the project team which allows
further collaboration. The dashboard aims to provide user-friendly in-
sights for farmers, advisors, agencies, and public administrations in
terms of agricultural and financial sustainability. Although the devel-
opment has been made mainly on a web-based portal, a mobile-based
application would be necessary for farmers to make the interaction
effortless. It may also be possible to allow other researchers to access
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the dashboard via Application Programming Interfaces (APIs) when
they want to conduct their own research.

Figure 43: The back-end/front-end structure of the dashboard.

The Two-Way Communication Between Farmers and Organiza-
tions. In our platform the farmer is the main entity and the agencies
will be able to access the farmer’s data as long as it is allowed by the
farmer. Depending on the nature of their relationship, the agency for
example can give recommendations (in case of a consultant) or send
reminders (in case of a public agency). The agency will have another
version of the dashboard that is suitable for its purposes. Figure 44
shows the different levels of possible users of the dashboard and their
motivations to use it.

The Input from Farmers. Although we mostly use static data,
which is the data available in national inventories, one of the major
steppingstones for future-work for our research can be the collection
of data on a farm level. The classification of crop plantations from
Sentinel imagery is possible thanks to computer vision algorithms
(Immitzer et al., 2016), however the farmers still need to report the
crop plantations to the agencies in Luxembourg. They are also re-
quired to fill out additional forms, such as grazing calendars, which
would allow them to get subsidies. Our tool may allow seamless
data-entry for the farmers. Apart from already required and usual
data requests from agencies, farmers can choose to enter the real
cost and production data to visualize and assess the business from
the financial point-of-view. This can even be achieved utilizing the
machinery or sensors around the farm, such as milking or feeding
robots, wherever and whenever available. All these elements would
result in a simplification of farmers’ tasks and a fast reusability of
up-to-date data.

The Fertilizer Usage and Nitrate Vulnerability. Most farmers are
already aware of the nitrogen limits within and along the surround-
ings of their farms, however with the dashboard it is possible to show
the nitrogen constraints on a map based on water body proximity.
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Figure 44: The possible users of the dashboard and their possible mo-
tivations to use it.

This information can help them stay below the imposed limits, thus
qualifying to get subsidies. There are several subsidy programs in
Luxembourg that are based on nitrogen constraints and the imposed
thresholds change according to the proximity to ecological protection
zones. Based on the provided algorithm for nitrogen excretion from
livestock and fertilizer usage for crops, the farmers can see the al-
ready released and projected fertilizer input to the soil for a given
period. It will also be possible to recommend optimum organic and
inorganic fertilizer levels for each type of crop once the soil properties
map is incorporated into the model.

The Weather and Climate Forecasts. This information is important
for extensive farms, where the farmers let their animals graze outside,
depending on the weather conditions. These forecasts can be com-
bined with several other pieces of information such as current levels
of soil moisture, grass height, barn temperature and air-quality. Some
of these can be made available on the dashboard for the farms where
required sensors are available. Figure 45 (left) shows the visualization
of the weather forecast in the dashboard for a random commune.

Since the calculation of the revenues and the environmental im-
pacts is based on an ABM, the mutual interactions of the agents are
taken into account, as explained in (Marvuglia et al., 2022). Figure 45
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Figure 45: (Left) The weather information for the farm’s location.
(Right) The connections of Farmer A(FA).

(right) shows the visualization of the connection of a given farmer to
the other agents in the network.

The Overview of Simulation Environment. The farmer agents act
on the same fields throughout the simulations. This means that the
farm and field boundaries do not change. The geospatial data that in-
cludes those boundaries is stored in a PostGIS database. It is read by
GeoAlchemy2, Python Object Relational Mapping (ORM) library for
spatial databases, and then visualized with Folium, another Python
library to create interactive maps. The users can interact with the map
to see the crops planted and harvested in a given field throughout the
simulation. Figure 46 shows a screenshot of the dashboard window
where a selected farm and the Life-Cycle Impact Assessment (LCIA)
scores related to it can be visualized. Currently we are using the
ReCiPe LCIA method (Huijbregts et al., 2017) to calculate the impact
scores, but any other existing method can be easily used in future up-
dates of the tool. On the left-hand side of the figure one can see that
each single field belonging to the farm (i.e., each polygon for which
information is known at the cadaster level) is visualized.

Holdings’ Financial Balances. The 2D charts that show the
monthly and yearly finances of each farm holding allow users to
see the seasonal trends in every cost and revenue category. Every
time a scenario is simulated with the ABM, this has implications on
different categories. Lower production does not necessarily mean less
profit for the farmers, due to reduced costs and, in some scenarios,
the increase of certain subsidies from the government. After each
simulation run, the value of each cost and revenue item is stored in
CSV files. Then they are curated using the Python data frame library
Pandas and visualized using Charts.js. In a future version of the
dashboard, we plan to visualize the results of sensitivity analysis on
input variables, such as the amount of subsidy given for a particular
activity.
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Figure 46: (Left) The fields that belong to one farm. The user can in-
teract with the map to visualize the field attributes. (Right)
Life-cycle impact scores for a given farm in the span of 10
years (chosen as time horizon of the simulation to obtain
pre-calculated results).

LCIA of Each Holding. The agricultural activities generate impacts
that have short- and long-term effects on the environment that must
be monitored carefully by every stakeholder in the sector if an emis-
sion reduction strategy is put in place. LCIA allows to quantify these
impacts and take necessary actions to mitigate the emissions that
are the reasons behind them. In our model, the Brightway21 LCA li-
brary is used. It was created to enable modelling functionalities that
can go beyond traditional LCA software. In particular, using Bright-
way2 it is possible to seamlessly connect LCA calculations with other
simulation engines (in this case the ABM). With Brigthway2 the so-
called Life-Cycle Inventory (LCI) background data that reside in a LCI
database can be recalled automatically and used (together with the
foreground data that contains the crop and animal outputs) to calcu-
late the LCIA scores during the simulations. Brightway2 is integrated
in the dashboard, in a way that the users can select the impact as-
sessment method they want to adopt for impacts calculations and the
impact categories they want to monitor.

The Network of Agents. One of the crucial mechanisms in agent-
based modelling is the interaction and information exchange between
the agents. In our model, classes of agents were first created accord-
ing to their risk aversion orientation and their geographical position,
as described in (Marvuglia et al., 2022). The farmer agents that be-
long to the same risk aversion class or the ones who are geographical
neighbors of one another are considered as connected in a network
analysis sense. Each farmer and its connections are shown in a way
that their attributes evolve over time (for instance age) and due to
information exchange (e.g., environmental awareness).

Assessment of Finances and LCIs at Country-Level. Since each
farmer agent acts upon the land belonging to its single farmland, this
latter is the reference spatial unit we can assess in terms of economic

1 https://brightway.dev/.
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value and environmental impact generated. However, the policymak-
ers have the interest to make assessments at regional level. Therefore,
the dashboard allows to show the aggregated result scores as a drill-
down weighted treemap with three levels, i.e., farm, commune and
canton. The users can choose to visualize the farm outputs, revenues,
costs or impact scores. Figure 47 shows a screenshot of the window
used to visualize the net revenue of the farm over ten years as result-
ing from a pre-simulated scenario.

Figure 47: The graph showing the trend of the net revenue of the farm
over ten simulated years.

6.4 case study : farmland revenue generation and im-
pact assessment

The dashboard prototype was used to visualize the results of a sce-
nario which has the objective of reducing stocking rates (i.e., the den-
sity of animals per ha) throughout Luxembourgish farms. The sce-
nario was simulated for a time span of 10 years with time steps of
one month. The simulations are repeated 50 times and the results
are averaged to consider the intrinsic variability induced by the ran-
dom choice of certain parameters (such as behavioral attributes of
a farmer, the allocation of fields of a farm, seeding and harvesting
months of crops, etc.). The objective in this case study was to ob-
serve the change in the herd structure of the farms over time, and
its simultaneous impact not just on the farm finances, but also on
the environment. Reducing the stocking rates can help the agricul-
tural sector to mitigate its greenhouse gas emissions. A reduction on
stocking rate would be certainly pushed by a reduction of meat and
dairy products’ consumption coming from consumers due to change
of their dietary habits. Less animals would mean less direct costs (like
feed imports), as well as an improved soil quality. Within this context,
certain subsidies are set for different levels of nitrogen input reduc-
tion in Luxembourg. At every year n of a simulation, an agent checks
the nitrogen emissions into the soil caused by the herd at year n-1.
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If the objective level that was set based on the livestock unit area is
exceed, then the agent chooses to get rid of the less efficient animals
from the herd. Once this decision has been taken, the production of
current year n is calculated and the corresponding revenue genera-
tion, as well as the emissions, are recorded. Afterwards, the selected
animals are sent away from the herd (sold or slaughtered).

The emissions tab on the sidebar allows to see the evolution of the
emissions throughout the simulation. If a farmer is logged in, the
historical and simulated emissions are shown on the emissions tab;
when the user is connected using administrative credentials, the coun-
try or regional level emissions are made available. In addition to mon-
itoring the levels for whole country, we also use weighted treemaps
(Ghoniem et al., 2015), along with real maps of subregions, to see the
impacts in more detail. In Fig. 48 (Right), impacts on human health
(expressed in the unit Disability Adjusted Life Years (DALY), which
stands for disability adjusted life years (Kobayashi et al., 2015)) gener-
ated by emissions due to crop and cattle farming are given per each
canton of the country. The same representation is provided also as
a treemap (Fig. 48 (Left). The weighted treemap algorithm allows to
represent the original polygons as rectangles, while respecting their
boundary and topological relationships. As expected, the agricultural
practices cause more emissions in northern Luxembourg than in the
southern part of the country, since most farms are located in that
region. The dashboard also includes the drill-down version of the
weighted treemap, where the users can look at the treemap that is
built based on a selected variable (i.e., size, production, number of
livestock, impact score, revenue) in cantons’ view at the highest level.
By clicking on any canton, one can visualize the communes in that
canton in a similar fashion. Finally, the farms in a selected commune
can be visualized in the lowest level of the drill-down treemap. Fig-
ure 49 shows an example of drill-down treemap, that is built using
the size of each region (canton, commune or farm). In this example,
the user clicks on the canton of Esch-sur-Alzette canton and then on
the commune of Pétange, to display the farms present in that area.

6.5 discussion and conclusion

The paper presents the first prototype of a web-based dashboard that
can be used to assess the economic and ecological impacts of land
transformation. The direct economic value of the land patches used
as cropland or pasture (i.e., the net revenue for the farmer, without
considering the cost of environmental externalities) is pre-calculated
using a hybrid ABM-LCA model that mimics the evolution of the Lux-
embourgish farming system under management scenarios that can
be designed upstream. The hybrid model is also used to calculate the
environmental impacts of each management scenario (which are then
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Figure 48: Left: the weighted treemap that shows the average human
health impact over 10 years of simulation and 50 different
iterations. Right: the same information visualized as a tra-
ditional geographical map.

Figure 49: The drill-down treemap implementation of geographical
boundaries of Luxembourg.

allocated to the single patches) using LCIA indicators (Huijbregts et
al., 2017).

Looking also at future further developments of our dashboard, one
important observation we can already make is that land is not only
a source of food and material resources for humans (the so-called
provisioning ecosystem services); it is also a source of regulating
and cultural ecosystem services (CICES, 2018). Among the regulat-
ing services, natural, semi-natural and agricultural land support the
maintenance of nursery populations and habitats on which plants
and animal species depend. Anthropic land transformation (land use
conversions) could harm ecosystem functions (e.g., ecological connec-
tivity) that influence habitat maintenance. For example, the transfor-
mation of certain patches of land that are in strategic positions for
species movement or the creation of human artifacts (e.g., agricultural
fences, roads), beyond direct habitat loss, could result in a loss of eco-
logical connectivity which also ends up influencing species survival
negatively (Edelsparre et al., 2018). To assess the impacts in terms
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of habitat loss and ecological connectivity, indicators and tools such
as landscape metrics, connectivity indices and ecological connectivity
models have been developed. They are based on different approaches,
spanning from least-cost path analysis (Douglas, 1994), to circuit the-
ory (McRae et al., 2008), matrix theory (Caswell, 2000), agent-based
or individual-based modelling (Allen et al., 2016), network analysis
(Pereira et al., 2017) and other techniques. A wider overview on eco-
logical connectivity approaches and models can be found in (Kool et
al., 2013).

Given the importance of these ecological functions of land, the next
step we plan for the dashboard is the addition of a further geospatial
layer that represents the value of each land patch in terms of their
contribution to habitat maintenance. For example, as proposed in (Al-
menar et al., 2019), using as input data species distribution models of
Luxembourg developed in (Titeux et al., 2013), ecological connectiv-
ity analysis can be easily developed, informing on referred routes of
movement of certain species (e.g., endangered or protected ones). In
this way the relevance of specific land patches to enhance ecological
connectivity of species populations can be evaluated. As another al-
ternative, a combined use of connectivity indices such as the Integral
Index of Connectivity (IIC), the Betweenness Centrality (BC) and the
Probability of Connectivity (PC), could be considered to estimate the
patches with the highest value for ecological connectivity (also ap-
plied in (Almenar et al., 2019)). If these key patches are close to pro-
tected areas and are currently used as cropland, the dashboard could
be used to calculate the net revenue that the farmers can associate
to those patches and therefore determine a value of a fair compensa-
tion that they should be granted if they are requested to hand over
the ownership of those patches to the public administration that can
then convert them into protected areas. We will therefore integrate the
calculation of the value of each land patch from the habitat connec-
tivity point of view, using landscape metrics and connectivity indices
(for examples using tools such as Conefor (Saura and Torné, 2009)
or Fragstats (McGarigal, 1995)). This will allow the identification of
the most important patches that can then be selected as priority (key
patches) to inform ecological planning or the definition of biodiver-
sity action plans. When these key patches fall within existing farms
(where they are used either as cropland or as pasture) the dashboard
will then allow also to determine the expected monetary compensa-
tion that the farmers who own these patches should receive for the
production capacity loss they would incur to reduce the pressure on
the land (i.e., have a less intensive cultivation), if these patches be-
come part of an environmental stewardship program to protect bio-
diversity and are therefore converted into protected areas.

Apart from technical perspectives and objectives of this tool, it is
worth noting that the development procedure should be integrated
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with users’ feedback along all the stages. That means working with
agencies and farmers who understand the necessities of digitaliza-
tion in agriculture and provide valuable feedback. Understanding the
needs of farmers from different ages and whose farms differ in size
helps building a helpful tool that reflects the characteristics of the
farm system of the given territory. Moreover, the agencies that would
be using this tool may decide on what to emphasize or communicate
strongly to the farmers via this tool during the development phase
which would possibly increase their motivation.
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7
C O N C L U S I O N

7.1 introduction

According to (Crippa et al., 2021), food systems are responsible for
34% of global anthropogenic GHG emissions. It is expected that this
number will increase as the human population, and therefore, de-
mand for agricultural products increases. In addition, the agricul-
ture sector is a significant contributor to eutrophication through its
emissions of nutrients (N and P). Emissions of pesticides are the root
cause of the adverse effects on human health. Furthermore, land is a
limited resource, especially in a small country like Luxembourg. The
competition between food crops and energy crops (to produce biogas,
bioenergy, and biofuels) is a delicate matter that is difficult to solve.
Because agricultural systems involve human decision-making, which
is not always fully rational but can be affected by bounded rationality
(due to farmers’ choices that can be dictated by family values and
other human behavioral factors), the complexity of the issues that
were outlined above is rendered even more challenging to manage,
this is because agricultural systems involve humans.

We decided to use ABM to model the complex agricultural system
because it allows us to simulate the seasonal activities of each farmer.
This method has been shown to handle human behavioral compo-
nents and show the results of human interaction and information
diffusion in networks, both known to give rise to so-called "emerg-
ing behaviors". On the other hand, the sustainability assessment was
made possible through LCA which allows the assessment of the envi-
ronmental impacts of a wide range of agricultural processes from a
life-cycle perspective. Using LCA, the demand can be translated into
related impacts such as impacts on the environment, impacts on hu-
man health or impacts on resource depletion.

SIMBA is a hybrid ABM and LCA model where the agents of ABM are
the farmers and production units of a farm are an UAA and an ani-
mal. The model integrates in detail several aspects of dairy farming
in a detailed manner. Nonetheless, it suffers from some limitations.
In particular, the model lacks price forecasting for crops and animal
products and does not integrate the land-rental market, which covers
a significant part of agricultural land in Luxembourg. These specifica-
tions were not in the scope of this thesis. Still, it would be helpful to
integrate them into the subsequent versions of the model since they
may influence the behavioral patterns of farmers.

209
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7.2 methodological contributions

Chapter 2 of the present thesis mainly explores the effects (in terms
of agricultural activities and the consequent environmental impacts)
of the interactions among farmers and the spreading of green con-
sciousness. The network of farmers was established using the neigh-
borhood connections between farmers. Those connections were used
to spread green consciousness behavior amongst farmers. Farms are
given real geographic locations, and the boundaries of those locations
are determined by an algorithm called the field assignment algorithm.
It groups a certain number of fields and assigns them to a farm
such that the statistics on farm classes in national registration can
be reached.

After the network of farmers was established, we focused on cre-
ating the most crucial part of the model and the thesis. In chapter
3, a hybrid ABM-LCA model that simulates mixed crop-livestock ac-
tivities was presented. The focus was on the addition of dairy and
suckler farming activities. The ABM allows the modeler to simulate
the farmer agents’ activities based on economic and behavioral con-
straints and apply the LCA methodology to the resulting crop and
herd structure to calculate the environmental impacts of the simu-
lated activities.

After establishing the network of farmers, we focused on develop-
ing the most crucial aspect of the model and the present thesis. A
hybrid ABM-LCA model that simulates mixed crop and livestock ac-
tivities was presented in chapter 3. The addition of dairy farming ac-
tivities was the primary focus of this chapter. Dairy farming activities
were modeled after careful discussions with the project stakehold-
ers. Collaborative modeling allows ABMs to simulate the activities as
realistically as possible. It allows us to see the incorporation of farm-
level activities and national regulations in the same model. The ABM
also gives the modeler the flexibility to simulate the activities of the
farmer agents based on economic and behavioral constraints and then
apply the LCA methodology to the resulting crop and herd structure
to calculate the environmental impacts of the simulated activities. In
this chapter, we also explored a scenario entailing the reduction of
soybean importation from South America. In principle, this might re-
sult in indirect land use changes that ought to be investigated from
the CLCA standpoint. However, the quantities required by the Luxem-
bourgish farming system are too small to generate significant changes
worldwide, as proven already by previous research (Vázquez-Rowe
et al., 2013). Also, possible impacts of land use changes on soil car-
bon storage could be explored, but this was beyond the scope of the
project. However, some approaches have been applied by other re-
searchers (Deng et al., 2016; Yu and Song, 2023), that could be incor-
porated in future versions of our model.
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Chapter 4 merely attempts to demonstrate biogas production activ-
ities in Luxembourg. Thanks to the data provided by a local biogas
plant, we could incorporate the biogas production capabilities into
our model, which holds an important place in the government’s fu-
ture energy policies. The farmers may also use these plans, by trans-
ferring the excess manure to the biogas cooperatives, where it is up-
scaled and injected into the natural gas grid.

The model was then enhanced by adding a multi-objective opti-
mization model that uses environmental and economic objectives. In
chapter 5 we introduce the model that uses genetic algorithms and op-
timizes farms based on profit and selected environmental impact cate-
gories. The consideration of subsidies is an essential part of the model
because they enable farmer agents to quantify agricultural emissions
in terms of monetary units. Adding optimization under various objec-
tives and constraints makes the hybrid ABM-LCA model much more
potent than other simulators that evaluate the sustainability of agri-
cultural activities.

Finally, chapter 6 introduces the dashboard to show the results of
our model. Although there are many commercially available mobile
and desktop tools for agriculture, they usually focus on a single farm.
In our dashboard, our focus is both the country- and farm- level out-
comes. Although this tool is still under development, users can see
the results of the simulation farm by farm or at the country level.

7.3 key results and implications

In chapter 2, we were able to simulate the interactions between agents
and the outcomes of those interactions regarding changes in environ-
mentally conscious behavior from one year to the next as a result
of adding the network of farmers to our model. The findings indi-
cate that green consciousness behavior can be diffused through the
interactions among farmers. Over the course of the simulated period,
this results in a reduction of cumulative environmental impacts tar-
geted by the chosen decision rules. When starting from high green
consciousness values, the effect of interaction leads to a more con-
siderable reduction of the targeted cumulated impacts (in this case,
the HH effects of greenhouse gas emissions) in comparison to the sce-
nario starting from lower average values of the green consciousness
which leads to a smaller reduction of the targeted cumulated impacts.
In particular, we noticed that farmers’ levels of green consciousness
vary across the simulations. In this regard, we found that the simula-
tions could accurately predict farmers’ green consciousness levels.

In chapter 3, after incorporating the dairy farming aspects into our
model, we run a few simulations to test various outcomes. One of
the possible outcomes that we modeled was what would happen if
the stocking rate was decreased from 1.6 LSU/ha to 1.3 LSU/ha. This
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results in an improvement in terms of lifecycle impacts compared to
the scenario that served as the baseline, with the highest improve-
ments being a reduction of almost 25% in freshwater eutrophication,
21% in climate change’s effects on human health, and 19% in freshwa-
ter ecotoxicity. Even though farmers are unwilling to implement such
practices on their farms, it is possible to evaluate the possibility of
compensating farmers for their loss of revenue with additional subsi-
dies by considering the potential benefits of this practice, which were
demonstrated by the simulations. These benefits include improved
soil quality, animal health, and reduced veterinary care and labor
costs.

In addition to lowering stocking rates, we also considered two other
courses of action that could lessen the adverse effects on the environ-
ment by altering the animals’ diet. They anticipate Luxembourg will
become self-sufficient in soy products (Zimmer et al., 2021). Culti-
vating soybeans in certain parts of Luxembourg, particularly in the
southern part of the country, is possible. On the other hand, the cur-
rent amount of soybean in feed rations is more than sufficient to en-
sure the required protein intake for animal growth. As a result, hav-
ing less soybean in the animal diet is also possible, leading to a higher
level of national soybean autarky. The scenarios where soybean au-
tarky was targeted either by decreasing the amount of soymeal in an-
imal diet (scenario C) or cultivating soybean locally in Luxembourg
(scenario D) show the most significant improvements for natural land
transformation impacts (11% reduction in scenario C and 13% reduc-
tion in scenario D, respectively). On the other hand, in scenario C, the
modification of feed composition, in conjunction with the anticipated
reduction in stocking rates, also has a positive effect (approximately
a 16% reduction in comparison to the baseline) on the amount of agri-
cultural land that is occupied, due to the utilization of pasture and
crops that are grown locally.

The addition of dairy farming activities also allowed us to incorpo-
rate a biogas production system in Luxembourg introduced in chap-
ter 4. In that chapter four scenarios were simulated to see the environ-
mental impacts caused by changes in biogas feedstock. The objectives
were mainly, to exploit the manure produced by farms more consis-
tently and increase its percentage in the composition of the biomass
used in the digestors, and include biowaste into the biogas feedstock,
which is assumed to be always readily available. According to our re-
sults, the objective to increase the percentage of manure delivered to
biogas production plants up to 90% of the excess manure available at
farms is achievable. This can be obtained by adding new plants to the
system and integrating more farms into production. In another sce-
nario, we saw that if biowaste can be incorporated into the feedstock,
this also generates less impact per unit of biogas produced than in
the business-as-usual case. The overall reduction of impacts is pos-
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sible via a change of manure in the biogas feedstock composition,
whereas the electricity production from biogas can be maximized if
biowaste is utilized more in the biogas feedstock.

In chapter 5, we see that agents can take decisions based on defined
objectives, therefore, incorporating MOO into the ABM-LCA model
can help influence the overall system towards more environmentally
friendly decisions. When we compared the model without the opti-
mization model with the model that considers profit generation as
an objective, we clearly see an improvement toward profit generation
in the latter one. After establishing the optimized model works as
intended, we tested a couple of case studies that also consider envi-
ronmental objectives. We simulated two case studies: in the first one
EF climate change score is minimized and in the latter EF single score
is targeted using all sixteen EF impact categories.

We see a clear reduction in stocking rates in both cases. This is due
to the amount of impacts that livestock production activities cause on
the environment taken into account by the optimization model. These
two cases consider the environmental objective and farmers who are
“green-conscious” enough to make decisions to reduce the impact of
their activities.

It is important to emphasize that, from the LCA perspective, each
scenario results in different products, and therefore, the functional
unit follows the territorial LCA approach (Loiseau et al., 2018). Our
functional unit is the land of Luxembourg, with what concerns agri-
cultural and farming production excluding pastures, vineyards and
orchards. The scenarios we simulated throughout these chapters are
not exhaustive and can be simulated using different parameters and
target values. We intended to build as many components as possible
to encompass the agriculture sector of Luxembourg. In the end, our
approach was to build a framework that includes dairy farming and
the rest of the components were added according to the scenario re-
quirements. These components can be extended as part of the further
needs addressed in the next section as limitations and future recom-
mendations.

7.4 limitations and recommendations for future work

The current state of the model includes only the farmer agents. This
can be enhanced by adding other types of agents including, but not
limited to, cooperatives, government agencies and consultants within
the sector, which would allow modelers to incorporate information
exchange between actors more accurately. For instance, the farmers
that belong to the same biogas or dairy cooperative may exchange in-
formation more frequently than the rest, therefore this requires more
attention in terms of changes in behavior due to the interactions fa-
vored by the cooperative. The cooperative can be modeled as an agent
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disseminating information among its members. However, this interac-
tion element is not currently implemented in the model.

Although the model covers various aspects of agricultural produc-
tion, there are still missing pieces that would enhance the model.
These limitations usually stem from unavailable or non-reliable data
sources. For instance, land rentals are common in practice but we do
not have the data on which fields are rented in a given year. When
one models a real market, the length of the lease contract affects the
model because it determines the moment in time when the market
can experience variations on the distribution of land among the farm-
ers. Because of this, the length of the lease contract influences the
model. This is particularly important in the Grand Duchy of Luxem-
bourg because there are only a small number of landowners in the
country, the price of land is extremely high, and the vast majority of
farmers rent their land. The land law may impose different limitations
on the length of the available lease periods. In the questionnaire that
was deployed in the project of which SIMBA is the follow-up (Mar-
vuglia et al., 2022), the rate of missing answers we got to the question
of the survey that was related to the size of the rented area, the to-
tal duration of the lease contract and the number of years already
elapsed since the beginning of the contract, and the price of the an-
nual rent paid was close to 70% of the 168 respondents. Due to the
low rate, accurate modeling of the land rental market is impossible
in our ABM. In our work, the main data providers were Administra-
tion des Services Techniques de l’Agriculture (ASTA) for GIS data and
Service d’Economie Rurale (SER) for farm accountancy data, both of
which provided first–hand data. When obtaining farm detailed data
is not possible, some researchers have proposed the use of aggregated
data sources such as Farm Accountancy Data Network (FADN) (Ding
and Achten, 2022).

The Holt-Winters forecasting model that is described in (Rege et
al., 2018) is used to determine the crop prices at the beginning of the
simulation so that the simulation can begin. More complex price pre-
diction models that consider how the market moves could be used.
However, we do not address the issues that may arise from different
price predictions because they do not change over the course of a
simulation or from one scenario to the next. This is because they are
constants. Without a doubt, the feedstock exchanges that take place
between the farmers as well as the subsidies that are offered for partic-
ular types of crops and management methods could be incorporated
into the model.

In terms of biogas production, the model still suffers from several
limitations. The module that concerns biogas production is built
mainly using data and information from one plant. The assump-
tions should be elaborated by different resources, including other
biogas plants, farms and national actors. For instance, assuming that
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biowaste would always be available may not fully reproduce reality,
because there might be periods when, for various reasons, its deliv-
ery to the biomass plant is scarcer or potentially discontinued. On
the other end, biowaste not used for biogas production is incinerated.
This causes additional GHG emissions, which are not accounted for
in the model. The subsidies for investments and maintenance of
biogas plants also change frequently, which may make long-term
simulations obsolete. The government subsidies for the biogas sector
are subject to future changes. In this respect, considering the feed-in
tariffs granted to producers of electricity from biogas will be an im-
portant addition to the current model. Government financial support
exists in Luxembourg to improve storage facilities but it has not been
factored in the model because clear information about its amount
was missing. There can be other types of subsidies that would entice
the farmers into participating in biogas cooperatives and, ideally,
they should be considered in future versions of the model.

Apart from the simulator itself, the presentation of results is also
essential for disseminating the outcomes of this research. Therefore,
the dashboard introduced in chapter 6 should be developed further
by working with agencies and farmers who understand the neces-
sities of digitalization in agriculture and provide valuable feedback.
By understanding the requirements of farmers of varying ages and
whose farms are of varying sizes, it is possible to construct a useful
tool that accurately reflects the features of the agricultural system in
the given territory. In addition, the organizations that would be using
this tool have the ability to decide what aspects to highlight or com-
municate strongly to the farmers through the use of this tool during
the development phase, which could potentially increase the farmers’
level of motivation. Besides providing insight into their businesses,
farmers can also share real-time data through farming robots and sen-
sors that have already become widespread thanks to developments in
precision agriculture. If farmers can be made aware that sharing data
could help improve their businesses and necessary precautions can
be taken against data privacy, then their collaboration via such tools
would be reached. Integration of digital platforms with real-time cli-
mate, water and soil data is also possible if public authorities share
the related information on these tools.
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