All rights reserved. No reuse allowed without permission.

Accurate long-read sequencing identified GBA variants as a major genetic 1

2 risk factor in the Luxembourg Parkinson's study

- 3 Sinthuja Pachchek Peiris, MSc1; Zied Landoulsi, PhD1; Lukas Pavelka, MD2,5; Claudia Schulte, MSc3; Elena Buena-Atienza,
- 4 PhD⁴; Caspar Gross, MSc⁴; Ann-Kathrin Hauser³; Dheeraj Reddy Bobbili, PhD¹; Nicolas Casadei, PhD⁴; Patrick May, PhD^{1,*};
- 5 and Rejko Krüger, PhD1,2,5,* on behalf of the NCER-PD Consortium
- ¹LCSB, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Sur-Alzette, Luxembourg.
- ² Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg.
- 6 7 9 10 11 12 13 ³Department of Neurodegeneration, Center of Neurology, Hertie Institute for Clinical Brain Research, German Center for Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany.
- ⁴Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany.
- ⁵Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg.
- *corresponding authors

ORCiD identifier:

- Sinthuja Pachchek Peiris : 0000-0002-9182-4966
- Zied Landoulsi : 0000-0002-2327-3904
- Lukas Pavelka : 0000-0002-7721-3317
- Claudia Schulte : 0000-0003-4006-1265
- Elena Buena-Atienza 0000-0002-9890-1960
- Caspar Gross: 0000-0002-9009-5458
- Ann-Kathrin Hauser: 0009-0003-7848-5722
- Dheeraj Reddy Bobbili : 0000-0002-1368-9623 Nicolas Casadei : 0000-0003-2209-0580
- Patrick May : 0000-0001-8698-3770
- $\begin{array}{c} 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ \end{array}$ Rejko Krueger: 0000-0002-3753-5733

Corresponding authors:

- $\overline{28}$ Prof. Dr. Rejko Krüger
- 29 Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg
- 30 6, avenue du Swing, L-4367 Belvaux, Luxembourg
- 31 rejko.krueger@uni.lu
- 32 Dr. Patrick May
- 33 Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg
- 34 6, avenue du Swing, L-4367 Belvaux, Luxembourg
- 35 patrick.may@uni.lu
- 36 Abstract: 187
- 37 main text: 2321
- 38 Methods: 1354
- 39 Total: 3675
- 40 figures/tables : 9
- 41 references : 55
- 42
- 43 Word count: 3675 (excluding table and references)
- 44 Running title: GBA variants in the Luxembourg Parkinson's Study
- 45 **Keywords:** glucocerebrosidase, Parkinson's disease, Genetics, long-read sequencing,
- 46 Luxembourg

All rights reserved. No reuse allowed without permission.

47

Abstract

48 Heterozygous variants in the glucocerebrosidase *GBA* gene are an increasingly recognized risk 49 factor for Parkinson's disease (PD). Due to the pseudogene GBAP1 that shares 96% sequence homology with the GBA coding region, accurate variant calling by array-based or short-read 50 51 sequencing methods remains a major challenge in understanding the genetic landscape of GBA-52 related PD. We established a novel long-read sequencing technology for assessing the full 53 length of the GBA gene. We used subsequent regression models for genotype-phenotype 54 analyses. We sequenced 752 patients with parkinsonism and 806 healthy controls of the 55 Luxembourg Parkinson's study. All GBA variants identified showed a 100% true positive rate 56 by Sanger validation. We found 12% of unrelated PD patients carrying GBA variants. Three novel variants of unknown significance (VUS) were identified. Using a structure-based 57 58 approach, we defined a potential risk prediction method for VUS. This study describes the full 59 landscape of GBA-related parkinsonism in Luxembourg, showing a high prevalence of GBA 60 variants as the major genetic risk for PD. Our approach provides an important advancement for highly accurate GBA variant calling, which is essential for providing access to emerging 61 62 causative therapies for GBA carriers.

All rights reserved. No reuse allowed without permission.

63 1. Introduction

Heterozygous variants in the glucocerebrosidase (*GBA*) gene, which encodes the enzyme β -64 65 glucocerebrosidase (GCase), are increasingly recognized as the most common genetic risk 66 factor for the development of Parkinson's disease (PD). Homozygous mutations in GBA are 67 causative for the most frequent autosomal-recessive lysosomal storage disorder, Gaucher 68 disease (GD).¹ GD is characterized by a deficiency of the enzyme GCase which is necessary 69 to hydrolyse the β-glucosyl linkage of glucosylceramide lipide (GlcCer) in lysosomes, to yield 70 glucose and ceramide.²

71 The accurate variant calling in the *GBA* gene is challenging due to the presence of the highly homogeneous untranslated pseudogene called *GBAP1*, which is located 16 kilobases (kbp) 72 73 downstream,³ and shares 96% sequence homology within the coding region.⁴ Furthermore, recombination and structural chromosomal variations within and around the GBA locus make 74 75 the analysis more challenging.⁵ Complex alleles, which include several point mutations, are 76 derived from a recombination between functional *GBA* and pseudogene *GBAP1*.⁶ RecNciI is 77 the most prevalent recombinant allele, including the amino acid changes p.L483P and p.A495P, and the synonymous variant p.V499V.⁶ 78

79 Our study aimed at accurately assessing all coding variants in the GBA gene among all participants of the Luxembourg Parkinson's study,⁷ a case and control cohort including people 80 81 with PD and atypical parkinsonism. To assess the accuracy of the novel targeted GBA 82 sequencing method using Pacific Biosciences (PacBio)⁸ technology, we compared this method to genotyping with the NeuroChip array⁹ and short-read whole genome sequencing (WGS) data 83 84 using Sanger sequencing as the gold standard for validation. We identified several types of pathogenic GBA variants (severe, mild, and risk) and further characterized genotype-phenotype 85 86 associations to better understand the influence of each variant type and their effect on disease 87 severity.

3

88 2. Results

89 2.1. Demographic and clinical characteristics

90 A total of 752 patients (652 PD patients and 100 patients with other forms of parkinsonism) 91 and 806 HC were included (Figure 1). All participants were genotyped using NeuroChip and 92 screened for GBA variants using targeted PacBio method, while a subset of 72 patients was 93 screened with WGS. Among the patients, 66.4% (n = 499) were male with a mean age at disease 94 onset of 63.1 ± 16 years. The control group consisted of 52.9% (n = 426) males with a mean 95 age at assessment of 59.3 ± 12.2 years (Supplementary Table 1).

96 2.2. Targeted PacBio sequencing showed the highest specificity to detect GBA variants

97 To measure the reliability of *GBA* variant detection, we proceeded with two types of 98 comparison. We compared PacBio, WGS and NeuroChip methods for a subset of samples 99 (n=72). Then, we compared the PacBio and NeuroChip methods since they both covered most 100 of the samples (n=1558). We considered as true positives only variants validated via Sanger 101 sequencing (Supplementary Table 2).

102 First, we evaluated 72 samples screened by all three methods (Figure 2). Using the GBA-103 targeted PacBio method, we detected six individuals carrying *GBA* variants (p.E365K (n = 3), 104 p.T408M (n = 1), p.N409S (n = 1), RecNciI, n = 1)). All the detected variants were confirmed by Sanger sequencing (true positive rate (TPR) of 100%). With the WGS method, we did not 105 106 identify any false positive variant call, however, the WGS method failed to detect the RecNciI 107 recombinant allele in one individual (TPR of 83.3% (5/6). Using Neurochip, we detected three 108 potential *GBA* variants carriers (p.T408M (n = 1), p.N431S (n = 1), p.A215D (n=1), however, 109 only one variant (p.T408M) was subsequently confirmed by Sanger sequencing (TPR of 16.6% 110 (1/6) translating into a false detection rate (FDR) of 66.6% (2/3)). Next, we compared the 111 results from 1558 samples screened with both, the GBA targeted PacBio method and the 112 NeuroChip array (Figure 3). Using the GBA-targeted PacBio method, we detected 133 GBA 113 variants carriers, of which 100% were validated by Sanger sequencing. Through the NeuroChip 114 array, we detected 47 potential GBA variant carriers, among which only 36 were validated by 115 Sanger sequencing (TPR of 27% (36/133), resulting in an FDR of 23.4% (11/47)).

116

2.3. Classification of GBA variants

From the 1558 individuals sequenced with the GBA-targeted PacBio method, we identified 117 118 124 carriers with at least one GBA variant (Supplementary Table 3). GBA variants were mostly 119 heterozygous missense, one patient carried a heterozygous variant stop-gain

- 120 p.R398*(rs121908309), two PD patients carried a homozygous missense variant
- 121 p.E365K/p.E365K(rs2230288). We also detected nine different synonymous variants in exonic
- regions (Supplementary Table 4). The variant p.T408T(rs138498426) is a splice site variant
- 123 (located within 2bp of the exon boundary) and classified as VUS.¹⁰ The remaining synonymous
- 124 variants were not further analysed. Additionally, we identified 69 variants in intronic and UTRs
- 125 regions (Supplementary Table 5) with unclear pathogenic relevance, of which 35 were rare.
- 126 Based on Neurochip and WGS data, none of the *GBA* carriers carried pathogenic mutations in
- 127 other PD associated genes as defined by MDSGene.¹¹
- 128 We classified four combinations of multiple variants per individual as severe (p.N409S-
- 129 p.L483P; the recombinant allele RecNciI; p.K13R-p.L483P; p.F252I-p.T408M) and one
- 130 combination of variants as risk (Y61H-T408M) based on the classification of the respective
- 131 associated pathogenic variants (Table 1).
- 132 Overall, we detected 12% (77/644) GBA variant carriers among 644 unrelated PD patients and
- 133 5% (34/678) in healthy control individuals. We found a frequency of 10.4% (67/644) known
- 134 pathogenic mutations in PD patients and 4.3% (29/678) in the control group (Table 2). Carriers
- 135 of severe *GBA* mutations (n=21; OR=11.4; 95% CI=[2.6, 48.8]; p=0.0010) and risk *GBA*
- variants (n=39; OR=1.6; 95% CI=[1, 2.8]; p=0.0470) had a different risk of developing PD as
- 137 defined by the indicated OR.
- 138 The most common *GBA* variants in PD patients were the risk variants p.E365K (n=23;3.5%)
- 139 and p.T408M (n=17;2.6%).

140 **2.4.** Genotype-phenotype associations in GBA-PD patients

- We characterized the clinical phenotype of severe, mild and risk *GBA* carriers and non-carriers only in unrelated PD patients excluding carriers with only one synonymous or VUS variants. The AAO was similar between *GBA* carriers (61.6 ± 11.5) and non-carriers (62.5 ± 11). Severe PD_{GBA} mutations carriers showed a trend towards younger AAO compared to mild and risk (severe: 58.6 ± 13.1 vs mild: 65.4 ± 17 vs risk: 62.5 ± 0.3 years; *p*=0.29) (Table 3), with a significant risk to develop early onset PD (OR=3.76;*p*=0.0135).
- 147 We compared clinical features between PD patients carrying pathogenic *GBA* variants and PD 148 patients without *GBA* variants. We found that the sense of smell was strongly impaired in 149 carriers (uncorrected p=0.0198) (Supplementary Table 6). Next, we compared patients carrying 150 variants from each category (severe, mild or risk) separately with PD patients without *GBA* 151 variants (Table 4). Carriers of severe *GBA* mutation showed more severe non-motor symptoms
- 152 when compared to non-GBA carriers, such as MDS-UPDRS Part I (uncorrected *p*=0.0088) and

All rights reserved. No reuse allowed without permission.

hallucinations (uncorrected p=0.015), and also an impaired sense of smell as assessed by 153 154 Sniffin' Stick test (uncorrected p=0.0403). To show the deleterious impact of the severe 155 variants, we compared carriers of severe variants with patients carrying either mild or risk GBA 156 variants (Table 5). We observed here that severe variants carriers have more severe gait 157 disorder and depression and worse MDS-UPDRS Part I and PDQ-39. For all clinical features, 158 there were no significant associations after the correction for multiple comparisons using FDR 159 adjustment.

160 2.5. VUS and the Glucosylceramidase structure

161 We detected nine already reported VUS (p.K13R, p.Y61H, p.R78C, p.L213P, p.E427K, 162 p.A495P, p.H529R, p.R534C, p.T408T) and three new VUS (p.A97G, p.A215 and p.R434C). 163 According to our strategy developed for VUS GBA variants classification, where we assign the 164 pathogenicity based on the REVEL, the CADD, the dbscSNV scores, as well as whether the 165 patients carrying the variants. We suggest to sub-classify the variants p.Y61H, p.L213P, 166 p.A215D, and p.R434C as severe variants. The variant p.L213P changes the Leucine amino 167 acid into proline, which is known to be the 'helix breaker' amino acid that can induce a bend 168 into the protein structure¹²(Supplementary Figure 1). The p.L213P and p.A215D variants are 169 in the catalytic site of the enzyme in the triose-phosphate isomerase (TIM) barrel structure. The 170 p.Y61H variant (Figure 4.A) is next in sequence and in structure to the known severe PD variant 171 p.C62W and the patient carrying this variant had an AAO of 38 years, indicating an early-onset likely severe form of PD. The p. R434C variant is close to a known severe (p.V433L) and mild 172 173 (p.W432R, p.N435T) PD variants in the 3D structure. We propose to sub-classify the variants p.H529R and p.R534C as mild, as they are both found only in PD patients. The variants 174 175 p.K13R, p.R78C, p.E427K, and p.A495P are sub-classified as risk variants. The variant 176 p.K13R is located in the signal peptide region. The variant p.R78C was annotated as "PD susceptibility" in HGMD with deleterious impact in CADD. The variant p.E427K was 177 178 annotated as linked to "parkinsonism" in ClinVar and "reduced activity" in HGMD. We 179 suggest to classify the variant p.A97G as probably benign because it is localized in a coil-bend 180 structure and is not close to any known pathogenic variants.

181 The synonymous variant p.T408T was found in two cases and one healthy control individual. 182 Two established splice-site prediction scores (dbscSNV: ada score 0.9797 and rf score 0.85) 183 agreed in their prediction that the variant is likely to affect splicing. HGMD classified the 184 variant as disease mutation (DM) (Supplementary Table 4). Therefore, we propose to classify 185 the variant as a risk variant.

All rights reserved. No reuse allowed without permission.

In total, we propose to classify four VUS variants as severe (p.Y61H, p.L213P, p.A215D, and
p.R434C), two as mild (p.H529R and p.R534C), five as risk (p.K13R, p.R78C, p.E427K,

188 p.A495P and p.T408T) and one as benign (p.A97G) (Figure 4.B).

189 **3. Discussion**

190 Our study showed, for the first time, the utility of targeted PacBio sequencing as a highly 191 sensitive and specific method to identify known and novel GBA variants. The PacBio method 192 demonstrated a very high efficiency by targeting the entire length of the GBA gene with 100% 193 reliability and solves the problems arising from the presence of the *GBAP1* pseudogene. The 194 effectiveness of the target PacBio method to investigate relevant genes with homologous pseudogenes has also been proven in several other studies.^{12–15} The comparative study that we 195 196 conducted with the different screening methods for GBA mutations will help researchers to be 197 more accurate and comprehensive implying a more critical appraisal of the results obtained by 198 NeuroChip and WGS with more false positive and false negative results.

199 GBA mutations were identified as the most common genetic risk factor for the development of 200 PD. A heterozygous GBA variant was typically observed in 4%-12% of PD patients in different 201 populations worldwide, with the highest prevalence of 20% described in Ashkenazi Jewish 202 PD patients. ^{16,17} Important variation is due to ethnicity, the investigated mutations and the 203 sequencing method used. Our study describes the landscape of GBA carriers in the studied 204 Luxembourgish population showing the high prevalence of *GBA* mutations that could be the 205 major genetic risk factor of PD in Luxembourg. The frequency of GBA mutation in PD in our 206 study was 12% and we observed a significantly higher proportion of pathogenic (severe, mild 207 risk) *GBA* variants in PD patients compared to HC (10.4%) and VS 208 4.3%;OR=2.6;CI=[1.6,4.1],p=0.0001). Compared to previous studies, our study highlights that 209 using the new PacBio sequencing method, the Luxembourg Parkinson's study cohort showed 210 a comparable frequency of PD_{GBA} carriers reported so far in similarly sized Italian¹⁸ and 211 Spanish¹⁹ cohorts (Supplementary Table 7). When comparing previous reports of GBA variants 212 in different populations, we want to highlight the fact that only cohorts that used full Sanger 213 sequencing were able to detect the RecNciI recombinant allele so far. This once more 214 emphasizes the accuracy of the PacBio sequencing methods for detecting rare and complex 215 *GBA* variants. Additionally, we confirmed that severe variants showed a higher OR than risk variants, which supports the concept of graded risk for different GBA variants in PDGBA 216 217 carriers.²⁰

218 The most prevalent GBA variant in the Luxembourg Parkinson's study cohort was p. E365K, and the frequency of this variant was similar to what was described in the Irish²⁰, Spanish¹⁹ and 219 220 New Zealand⁵ populations. It is interesting to note that homozygous carriers of the p.E326K variant do not develop GD.²¹ The variant is associated with PD, and multiple studies have 221 found enrichments varying from 1.60 to 3.34.²²⁻²⁴Furthermore, carriers of the risk variants 222 223 p.E365K and p.T408M were associated with atypical parkinsonism, as these variants were the 224 only ones also present in patients with DLB and PSP in our cohort. Whether this is simply 225 related to the higher frequency of these risk variants in the general population or does have a 226 specific impact on the phenotype needs to be determined in larger studies focusing on GBA 227 variants in atypical parkinsonism²⁵.

228 We present a concept for classifying VUS in the GBA gene according to the localisation in 229 relation to known variants in sequence and 3D structure, which may help to provide access to 230 future targeted therapies for these patients. Here additional in vitro and ex vivo studies are 231 needed to functionally validate the impact of these VUS on GCase function in neurons derived

232 from stem cells or in enzyme-activity assays in CSF of affected carriers of these VUS.

233 Additionally, we observed that the average AAO in PD was about four years younger in severe

234 GBA carriers compared to non-GBA carriers. This was also observed in previous studies, which showed that PD_{GBA} patients generally have an earlier AAO compared to non-carriers with a 235

median onset in the early fifties.^{26,27} 236

237 Recent studies have shown that PD_{GBA} carriers have a higher prevalence of cognitive impairment^{18,28,29} and non-motor symptoms including neuropsychiatric disturbances^{18,19}, 238 autonomic dysfunction²⁸, and sleep disturbances such as RBD³⁰. Although not significant after 239 240 *p*-value adjustment, we found a similar trend and noticed that motor symptoms such as gait 241 disorder, non-motor such as depression and hallucinations symptoms were associated with a 242 more aggressive clinical phenotype in severe *GBA* carriers, supporting the effect of differential GBA variant severity.^{19,31} 243

244 In conclusion, this study showed the utility of targeted PacBio sequencing to identify known 245 and novel GBA variants with high accuracy. These findings offer important access to variantspecific counselling. Furthermore, our study describes the full landscape of *GBA* related PD in 246 247 the current Luxembourgish population showing the high prevalence of *GBA* variants as the major genetic risk in PD. 248

249 4. Methods

250 4.1. Clinical Cohort

All rights reserved. No reuse allowed without permission.

At the time of analysis, the Luxembourg Parkinson's study comprised 1558 participants (752 patients of parkinsonism and 806 healthy controls (HC) in the frame of the National Centre for Excellence in Research on Parkinson's disease program (NCER-PD).

254 All patients complied with the diagnostic criteria of typical PD or atypical parkinsonism as 255 assessed by neurological examination following the United Kingdom Parkinson's Disease Society Brain Bank (UKPDSBB) diagnostic criteria³²: 652 fulfilled the criteria for PD, 60 for 256 257 progressive supranuclear palsy (PSP) including corticobasal syndrome as a subtype of PSP 258 (PSP-CBS), 25 for Dementia with Lewy Body (DLB), 14 for Multiple System Atrophy (MSA), and one for Fronto-temporal dementia with parkinsonism (FTDP). All patients and HC 259 260 underwent a comprehensive clinical assessment of motor and non-motor symptoms, 261 neuropsychological profile and medical history along with comorbidities. The clinical 262 symptoms assessed, and scales applied are defined in the Supplemental Information³³. All individuals provided written informed consent. The patients were reassessed at regular follow-263 264 up visits. We considered early-onset PD patients those with age at onset (AAO) equal to or younger than 45 years³⁴. The genotype-phenotype analysis was based on the assessment of the 265 266 first visit. The study has been approved by the National Research Ethics Committee (CNER 267 Ref: 201407/13).

- 268 **4.2. Genetic analysis**
- 269

4.2.1. NeuroChip array

270 Genotyping was carried out on the InfiniumR NeuroChip Consortium Array⁹ (v.1.0 and v1.1; 271 Illumina, San Diego, CA USA). For rare variants analysis, standard quality control (QC) 272 procedures were conducted, using PLINK v1.9³⁵, to remove variants if they had a low 273 genotyping rate (<95%) and Hardy-Weinberg equilibrium *p*-value < $1x10^{-6}$. As an additional 274 quality filter, we applied a study-wide allele frequency threshold of <1% in our cohort for rare 275 variants.

276

4.2.2. GBA-targeted PacBio long-read amplicon sequencing

277 The targeted *GBA* gene screening was performed by single-molecule real-time (SMRT) long read sequencing⁸ using Sequel II instrument (PacBio). The targeted *GBA* gene coordinates were 278 279 chr1:155,232,501-155,241,415 (USCS GRCh38/hg38). Long-distance PCR was performed 280 **GBA-specific** 5'using primer sequences (Forward: GCTCCTAAAGTTGTCACCCATACATG-3' 281 Reverse: 5'and CCAACCTTTCTTCTTCTTCTCAA-3')³⁶ and the 2x KAPA HiFi Hot Start ReadyMix 282

283 (Roche). For sample multiplexing, dual asymmetric barcoding was used based on a different 284 16-bp long index sequence upstream of each of the reverse and forward primers to allow the 285 generation of uniquely barcoded amplicons in one-step PCR amplification. QC was performed 286 prior to pooling. Pools of amplicons were purified with AMPure PacBio beads. A total of 1700 287 ng of purified amplicon pool was used as input for the SMRTbell library using the SMRTbell 288 Express Template Prep Kit 2.0 (PacBio). Binding of the polymerase and diffusion loading on 289 SMRTCell 8M was prepared according to SMRTLink instructions with CCS reads as 290 sequencing mode (version SMRT Link: 9.0.0.92188). We generated high-quality consensus 291 reads using the PacBio Sequel II sequencer on Circular Consensus Sequencing mode using the pbccs (v6.0.0) tool. The methods replicates both strands of the target DNA.³⁷ We demultiplexed 292 293 and mapped reads from each sample to the human reference genome GRCh38 using 294 minimap 2^{38} from the pbmm2 package (v1.4.0)295 (https://github.com/PacificBiosciences/pbmm2). For variant calling, used we the DeepVariant³⁹ (1.0) with models optimized for CCS reads. Finally, we selected variants with 296 297 quality above 30 (QUAL>30).

298

4.2.3. Whole genome sequencing

299 The TruSeq Nano DNA Library Prep Kit (Illumina, San Diego, CA, USA) and MGIEasy FS 300 DNA Prep kit (BGI, China) were used according to the manufacturer's instructions to construct 301 the WGS library. Paired-end sequencing was performed with the Illumina NovaSeq 6000⁴⁰ and 302 on the MGI G400 sequencers. A QC of the raw data was performed using FastQC (version 0.11.9).41 To call the variants, we used the Bio-IT Illumina Dynamic Read Analysis for 303 GENomics (DRAGEN) DNA pipeline⁴² v3.8⁴³ with standard parameters. To select the high-304 quality variants, we annotated and selected variants using VariantAnnotator and SelectVariants 305 306 modules of the Genome Analysis Toolkit (GATK 4)⁴⁴ pipeline and applied the following additional filtering steps: VariantFiltration module for SNVs (QD<2, FS>60, MQ<40, 307 308 MQRankSum<-12, ReadPosRankSum<-8, DP<10.0, QUAL<30, VQSLOD<0, ABHet>0.75 309 or <0.25, SOR>3 and LOD<0), and insertions-deletions (QD<2, FS>200, QUAL<30, 310 ReadPosRankSum<-20, DP<10 and GQ MEAN<20).

311

4.3. Variant annotation and validation

Variant annotation was done with ANNOVAR,⁴⁵ using the Genome Aggregation Database 312 (gnomAD r2.1)⁴⁶, the Human Gene Mutation Database (HGMD)⁴⁷ and ClinVar⁴⁸, and the 313 Combined Annotation Dependent Depletion (CADD)⁴⁹ and REVEL⁵⁰ to score the 314

All rights reserved. No reuse allowed without permission.

pathogenicity of missense variants.⁵¹ For variants in splice sites, we used the ada score and 315

- rf score from dbscSNV (version 1.1)⁵². Ada score ≥ 0.6 or rf score ≥ 0.6 indicate that the 316
- 317 variant is likely to affect splicing.
- 318 Rare variants were selected according to minor allele frequency < 1% in gnomAD for the Non-
- 319 Finnish European (NFE) population in the 'non-neuro' gnomAD subset. Then, exonic and
- 320 splicing variants (+/- 2bp from the exon boundary) were selected for autosomal dominant
- 321 (LRRK2, SNCA, VPS35, GBA) and autosomal recessive (PRKN, PINK1, PARK7, ATP13A2)
- 322 PD genes. Rare variants within these genes were then confirmed by Sanger sequencing.⁵³

323 4.4. GBA variant nomenclature

All variants in GBA were annotated based on GRCh37 and were numbered according to the 324 325 current variant nomenclature guidelines (http://varnomen.hgvs.org), based on the primary translation product (NM 001005742), which includes the 39-residue signal peptide. 326

327

4.5. GBA variant classification

328 GBA variants classification was done according to the PD literature based on the work of 329 Höglinger and colleagues in 2022.¹⁰ Exonic or splice-site variants that are not mentioned in 330 the paper were subclassified as 'severe' GBA variants if there were annotated as pathogenic 331 in ClinVar, otherwise they were subclassified as variant with unknown significance (VUS). 55 332

333 4.6 Statistical analysis

334 To assess the frequency of different *GBA* variant types and analyse the genotype-phenotype 335 associations in the Luxembourg Parkinson's Study, we considered only unrelated individuals 336 and retained only one proband per family. For cases, we kept the patient with the earliest AAO. 337 We excluded HC with first-degree PD relatives (parents, sibs, and offspring) and age at 338 assessment (AAA) less than 60 years, to account for age-dependent penetrance. Therewith, 339 reduce the gap of age between cases and HC. Thus, 1420 unrelated individuals (742 patients 340 and 678 HC) were selected for the statistical analysis.

We used regression models to assess the effect of PD_{GBA} carrier status on the clinical variables. 341 We excluded individuals carrying only VUS or synonymous variants. To this aim, we 342 343 performed three types of association tests: (1) all PD_{GBA} pathogenic variant carriers (severe, 344 mild and risk) vs PD_{GBA-non-carriers}, (2) for each sub-group of PD_{GBA} pathogenic variant carriers 345 vs PD_{GBA-non-carriers}, (3) severe PD_{GBA} pathogenic variant carriers vs combined mild and risk PD_{GBA} pathogenic variant carriers. The effect of each factor was expressed as the Beta (β) 346

All rights reserved. No reuse allowed without permission.

347 regression coefficient. The odds ratio (OR) along with a 95% confidence interval (CI) was used 348 to assess whether a particular exposure is a risk factor for a particular outcome. Regression 349 models were adjusted for AAA, sex, and disease duration. FDR adjusted p-value < 0.05 was 350 considered as statistically significant.

351

4.7 Structure-based evaluation of VUS

352 To evaluate VUS variants, we implemented a method to assign the pathogenicity based on the 353 REVEL and CADD scores for missense variants and the dbscSNV scores (ada score and 354 rf score) for splice variants according to dbNFSP definition⁵⁴, as well as whether the patients 355 carrying the variants. We reclassified a VUS (1) as 'severe' if the variant was present only in 356 patients and with deleterious effect in all scores or present only in patients with early onset PD, 357 (2) as 'mild' if the variant was present only in patients and with tolerated effect in all scores, 358 (3) as 'risk' if present in patients and HCs or with tolerated and deleterious effect in either 359 score or annotated as 'PD susceptibility' in HGMD, and (4) as 'benign' if present only in HC. 360 We mapped the known pathogenic missense variants and newly identified VUS identified in 361 our cohort together with all reported population variants from gnomAD onto the GBA protein 362 sequence and the 3D structure. We used an X-ray structure of GCase at 2.0 Å resolution (PDB 363 structure accession code logs; https://www.rcsb.org/) (Supplementary Figure 2). The analysis 364 of the 3D structure was carried out by PyMOL (http://www.pymol.org). VUS were evaluated 365 as risk variant if they were 2bp positions away in sequence or had a C-alpha distance of less 366 than 5 ångström in 3D from another known pathogenic variant similar to the approach used in 367 Johannesen et al.55

368 5. Data availability

369 The dataset for this manuscript is not publicly available as it is linked to the Luxembourg

370 Parkinson's Study and its internal regulations. Any requests for accessing the dataset can be

371 directed to request.ncer-pd@uni.lu.

372 6. References

 Arturo-Terranova D, Giraldo LJM, Satizábal JM. Frequency of gba gene variants in complex disease patients in Southwestern Colombia. <i>Genetics and</i> <i>Molecular Research</i>. 2021;20(2). doi:10.4238/gmr18818 Horowitz M, Wilder S, Horowitz Z, Reiner O, Gelbart T, Beutler E. The human glucocerebrosidase gene and pseudogene: structure and evolution. <i>Genomics</i>. 1989;4(1):87-96. doi:10.1016/0888-7543(89)00319-4 Do J, McKinney C, Sharma P, Sidransky E. Glucocerebrosidase and its relevance to Parkinson disease. <i>Mol Neurodegener</i>. 2019;14(1). doi:10.1186/s13024-019-0336-2 Graham OEF, Pitcher TL, Liau Y, et al. Nanopore sequencing of the glucocerebrosidase (GBA) gene in a New Zealand Parkinson's disease cohort. <i>Parkinsonism Relat Disord</i>. 2002;07:03-64-1. doi:10.1016/j.parkreldis.2019.11.022 Zimran A, Horowitz M. <i>RecTL: A Complex Allele of the Glucocerebrosidase Gene Associated With a Mild Clinical Course of Gaucher Disease</i>; 1994. Hipp G, Vaillant M, Diederich NJ, et al. The Luxembourg Parkinson's Study: A Comprehensive Approach for Stratification and Early Diagnosis. <i>Front Aging Neurosci</i>. 2018;10. doi:10.3389/FNAGI.2018.00326 Korlach J, Bjornson KP, Chaudhuri BP, et al. Real-time DNA sequencing from single polymerase molecules. <i>Methods Enzymol</i>. 2010;472:431-455. doi:10.1016/S0076-6879(10)72001-2 Blauwendraat C, Faghri F, Pihlstron L, et al. NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. <i>Neurobiol Aging</i>. 2017;57:247.e9-247.e13. doi:10.1016/J.NEUROBIOLAGING.2017.05.009 Höglinger G, Schulte C, Jost WH, et al. (BA-associated PD): chances and obstacles for targeted treatment strategies. <i>J Neural Transm</i>. Published online May 31, 2022. doi:10.1007/s00702-022-02511-7 Lill CM, Mashychev A, Hartmann C, et al. Launching the movement disorders society genetic mutation database (MDSGene). <i>Mov Disor</i>	373 374 375	1.	Hruska KS, LaMarca ME, Scott CR, Sidransky E. Gaucher disease: mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA). <i>Hum</i> <i>Mutat</i> 2008:29(5):567-583 doi:10.1002/HUMU.20676
 variants in complex disease patients in Southwestern Colombia. Genetics and Molecular Research. 2021;20(2). doi:10.4238/gmr18818 Horowitz M, Wilder S, Horowitz Z, Reiner O, Gelbart T, Beutler E. The human glucocerebrosidase gene and pseudogene: structure and evolution. Genomics. 1989;4(1):87-96. doi:10.1016/0888-7543(89)90319-4 Do J, McKinney C, Sharma P, Sidransky E. Glucocerebrosidase and its relevance to Parkinson disease. Mol Neurodegener. 2019;14(1). doi:10.1186/s13024-019-0336-2 Graham OEE, Pitcher TL, Liau Y, et al. Nanopore sequencing of the glucocerebrosidase (GBA) gene in a New Zealand Parkinson's disease cohort. Parkinsonism Relat Disord. 2020;70:36-41. doi:10.1016/j.parkreldis.2019.11.022 Zimran A, Horowitz M. RecTL: A Complex Allele of the Glucocerebrosidase Gene Associated With a Mild Clinical Course of Gaucher Disease; 1994. Hipp G, Vaillant M, Diederich NI, et al. The Luxembourg Parkinson's Study: A Comprehensive Approach for Stratification and Early Diagnosis. Front Aging Neurosci. 2018;10. doi:10.3389/FNAGI.2018.00326 Korlach J, Bjornson KP, Chaudhuri BP, et al. Real-time DNA sequencing from single polymerase molecules. Methods Enzymol. 2010;472:431-455. doi:10.1016/S0076-6879(10)72001-2 Blauwendraat C, Faghri F, Pihlstrom L, et al. NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. Neurobiol Aging. 2017;57:247.e9-247.e13. doi:10.1016/JNEUROBIOLAGING.2017.05.009 Höglinger G, Schulte C, Jost WH, et al. GBA-associated DD: chances and obstacles for targeted treatment strategies. J Neural Transm. Published online May 31, 2022. doi:10.1007/N0702-022-02511-7 Lill CM, Mashychev A, Hartmann C, et al. Launching the movement disorders society genetic mutation database (MDSGene). Mov Disord. 2016;31(5):607- 609. doi:10.1002/MDS.26651 Giao W, Yang Y, Schra R, et al. Long-Read Single	376	2.	Arturo-Terranova D. Giraldo LJM. Satizábal JM. Frequency of gba gene
 Molecular Research. 2021;20(2). doi:10.4238/gmr18818 Horowitz M, Wilder S, Horowitz Z, Reiner O, Gelbart T, Beutler E. The human glucocerebrosidase gene and pseudogene: structure and evolution. Genomics. 1989;4(1):87-96. doi:10.1016/0888-7543(89)90319-4 Do J, McKinney C, Sharma P, Sidransky E. Glucocerebrosidase and its relevance to Parkinson disease. Mol Neurodegener. 2019;14(1). doi:10.1186/s13024-019-0336-2 Graham OEE, Pitcher TL, Liau Y, et al. Nanopore sequencing of the glucocerebrosidase (GBA) gene in a New Zealand Parkinson's disease cohort. Parkinsonism Relat Disord. 2020;70:36-41. doi:10.1016/j.parkreldis.2019.11.022 Zimran A, Horowitz M. RecTL: A Complex Allele of the Glucocerebrosidase Gene Associated With a Mild Clinical Course of Gaucher Disease; 1994. Hipp G, Vaillant M, Diederich NJ, et al. The Luxembourg Parkinson's Study: A Comprehensive Approach for Stratification and Early Diagnosis. Front Aging Neurosci. 2018;10. doi:10.3389/FNAGL2018.00326 Korlach J, Bjornson KP, Chaudhuri BP, et al. Real-time DNA sequencing from single polymerase molecules. Methods Enzymol. 2010;472:431-455. doi:10.1016/S0076-6879(10)72001-2 Blauwendraat C, Faghri F, Pihlstrom L, et al. NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. Neurobiol Aging. 2017;57:247,e9-247,e13. doi:10.1016/J.NEUROBIOLAGING.2017.05.009 Höglinger G, Schulte C, Jost WH, et al. GBA-associated PD: chances and obstacles for targeted treatment strategies. J Neural Transm. Published online May 31, 2022. doi:10.1007/N0070-202-20511-7 Lill CM, Mashychev A, Hartmann C, et al. Launching the movement disorders society genetic mutation database (MDSGene). Mov Disord. 2016;31(5):607- 609. doi:10.1002/MDN2.26651 Qiao W, Yang Y, Sebra R, et al. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6. Hum Mutat.	377		variants in complex disease patients in Southwestern Colombia. <i>Genetics and</i>
 Horowitz M, Wilder S, Horowitz Z, Reiner O, Gelbart T, Beutler E. The human glucocerebrosidase gene and pseudogene: structure and evolution. <i>Genomics</i>. 1989;4(1):87-96. doi:10.1016/0888-7543(8)900319-4 Do J, McKinney C, Sharma P, Sidransky E. Glucocerebrosidase and its relevance to Parkinson disease. <i>Mol Neurodegener</i>. 2019;14(1). doi:10.1186/s13024-019-0336-2 Graham OEE, Pitcher TL, Liau Y, et al. Nanopore sequencing of the glucocerebrosidase (GBA) gene in a New Zealand Parkinson's disease cohort. <i>Parkinsonism Relat Disord</i>. 2020;70:36-41. doi:10.1016/j.parkreldis.2019.11.022 Zimran A, Horowitz M. <i>RecTL: A Complex Allele of the Glucocerebrosidase</i> <i>Gene Associated With a Mild Clinical Course of Gaucher Disease</i>.; 1994. Hipp G, Vaillant M, Diederich NJ, et al. The Luxembourg Parkinson's Study: A Comprehensive Approach for Stratification and Early Diagnosis. <i>Front Aging</i> <i>Neurosci</i>. 2018;10. doi:10.3389/FNAGL2018.00326 Korlach J, Bjornson KP, Chaudhuri BP, et al. Real-time DNA sequencing from single polymerase molecules. <i>Methods Enzymol</i>. 2010;472:431-455. doi:10.1016/S0076-6879(10)72001-2 Blauwendraat C, Faghri F, Pihlstrom L, et al. NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. <i>Neurobiol Aging</i>. 2017;57:247.e9-247.e13. doi:10.1016/JNEUROBIOLAGING.2017.05.009 Höglinger G, Schulte C, Jost WH, et al. GBA-associated PD: chances and obstacles for targeted treatment strategies. <i>J Neural Transm</i>. Published online May 31, 2022. doi:10.1007/S00702-022-02511-7 Lill CM, Mashychev A, Hartmann C, et al. Launching the movement disorders society genetic mutation database (MDSGene). <i>Mov Disord</i>. 2016;31(5):607- 609. doi:10.1002/MDS.26651 Qiao W, Yang Y, Sebra R, et al. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6. <i>Hum Mutat</i>. 2016;37(3):315-323. doi:10.1002/UMDL22936<	378		Molecular Research. 2021;20(2). doi:10.4238/gmr18818
 glucocerebrosidase gene and pseudogene: structure and evolution. Genomics. 1989;4(1):87-96. doi:10.1016/0888-7543(89)90319-4 Do J, McKinney C, Sharma P, Sidransky E. Glucocerebrosidase and its relevance to Parkinson disease. Mol Neurodegener. 2019;14(1). doi:10.1186/s13024-019-0336-2 Graham OEE, Pitcher TL, Liau Y, et al. Nanopore sequencing of the glucocerebrosidase (GBA) gene in a New Zealand Parkinson's disease cohort. Parkinsonism Relat Disord. 2020;70:36-41. doi:10.1016/j.parkreldis.2019.11.022 Zimran A, Horowitz M. RecTL: A Complex Allele of the Glucocerebrosidase Gene Associated With a Mild Clinical Course of Gaucher Disease.; 1994. Hipp G, Vaillant M, Diederich NJ, et al. The Luxembourg Parkinson's Study: A Comprehensive Approach for Stratification and Early Diagnosis. Front Aging Neurosci. 2018;10. doi:10.389/FNAGI.2018.00326 Korlach J, Bjornson KP, Chaudhuri BP, et al. Real-time DNA sequencing from single polymerase molecules. Methods Enzymol. 2010;472:431-455. doi:10.1016/S0076-6879(10)72001-2 Blauwendraat C, Faghri F, Pihlstrom L, et al. NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. Neurobiol Aging. 2017;57:247.e9-247.e13. doi:10.1016/J.NEUROBIOLAGING.2017.05.009 Höglinger G, Schulte C, Jost WH, et al. GBA-associated PD: chances and obstacles for targeted treatment strategies. J Neural Transm. Published online May 31, 2022. doi:10.1007/s00702-022-02511-7 Lill CM, Mashychev A, Hartmann C, et al. Launching the movement disorders society genetic mutation database (MDSGene). Mov Disord. 2016;31(5):607-609. doi:10.1002/MDS.26651 Qiao W, Yang Y, Sebra R, et al. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6. Hum Mutat. 2016;37(3):315-323. doi:10.1002/HUMU.2326 Buermans HPJ, Vossen RHAM, Anvar SY, et al. Flexible and Scalable Full-Length CYP2D6 Lo	379	3.	Horowitz M, Wilder S, Horowitz Z, Reiner O, Gelbart T, Beutler E. The human
 1989;4(1):87-96. doi:10.1016/0888-7543(89)90319-4 Do J, McKinney C, Sharma P, Sidransky E. Glucocerebrosidase and its relevance to Parkinson disease. Mol Neurodegener. 2019;14(1). doi:10.1186/s13024-019-0336-2 Graham OEE, Pitcher TL, Liau Y, et al. Nanopore sequencing of the glucocerebrosidase (GBA) gene in a New Zealand Parkinson's disease cohort. Parkinsonism Relat Disord. 2020;70:36-41. doi:10.1016/j.parkreldis.2019.11.022 Zimran A, Horowitz M. RecTL: A Complex Allele of the Glucocerebrosidase Gene Associated With a Mild Clinical Course of Gaucher Disease.; 1994. Hipp G, Vaillant M, Dicderich NJ, et al. The Luxembourg Parkinson's Study: A Comprehensive Approach for Stratification and Early Diagnosis. Front Aging Neurosci. 2018;10. doi:10.3389/FNAGI.2018.00326 Korlach J, Bjornson KP, Chaudhuri BP, et al. Real-time DNA sequencing from single polymerase molecules. Methods Enzymol. 2010;472:431-455. doi:10.1016/S0076-6879(10)72001-2 Blauwendraat C, Faghri F, Pihlstrom L, et al. NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. Neurobiol Aging. 2017;57:247.e9-247.e13. doi:10.1016/J.NEUROBIOLAGING.2017.05.009 Höglinger G, Schulte C, Jost WH, et al. GBA-associated PD: chances and obstacles for targeted treatment strategies. J Neural Transm. Published online May 31, 2022. doi:10.1007/s0070-202-02511-7 Lill CM, Mashychev A, Hartmann C, et al. Launching the movement disorders society genetic mutation database (MDSGene). Mov Disord. 2016;31(5):607- 609. doi:10.1002/MDS.26651 Qiao W, Yang Y, Sebra R, et al. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6. Hum Mutat. 2016;37(3):315-323. doi:10.1002/HUMU.22936 Buermans HPJ, Vossen RHAM, Anvar SY, et al. Flexible and Scalable Full- Length CYP2D6 Long Amplicon PacBio Sequencing. Hum Mutat. 2017;38(3):310-316. doi:10.1002/HUMU.23223 Frans G, Meert W, van	380		glucocerebrosidase gene and pseudogene: structure and evolution. Genomics.
 Do J, McKinney C, Sharma P, Sidransky E. Glucoccrebrosidase and its relevance to Parkinson disease. Mol Neurodegener. 2019;14(1). doi:10.1186/s13024-019-0336-2 Graham OEE, Pitcher TL, Liau Y, et al. Nanopore sequencing of the glucoccrebrosidase (GBA) gene in a New Zealand Parkinson's disease cohort. Parkinsonism Relat Disord. 2020;70:36-41. doi:10.1016/j.parkreldis.2019.11.022 Zimran A, Horowitz M. RecTL: A Complex Allele of the Glucoccrebrosidase Gene Associated With a Mild Clinical Course of Gaucher Disease.; 1994. Hipp G, Vaillant M, Diederich NJ, et al. The Luxembourg Parkinson's Study: A Comprehensive Approach for Stratification and Early Diagnosis. Front Aging Neurosci. 2018;10. doi:10.3389/FNAGL2018.00326 Korlach J, Bjornson KP, Chaudhuri BP, et al. Real-time DNA sequencing from single polymerase molecules. Methods Enzymol. 2010;472:431-455. doi:10.1016/S0076-6879(10)72001-2 Blauwendraat C, Faghri F, Pihlstrom L, et al. NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. Neurobiol Aging. 2017;57:247.e9-247.e13. doi:10.1016/J.NEUROBIOLAGING.2017.05.009 Höglinger G, Schulte C, Jost WH, et al. GBA-associated PD: chances and obstacles for targeted treatment strategies. J Neural Transm. Published online May 31, 2022. doi:10.1007/s0070e-02-02511-7 Lill CM, Mashychev A, Hartmann C, et al. Launching the movement disorders society genetic mutation database (MDSGene). Mov Disord. 2016;31(5):607- 609. doi:10.1002/MDS.26651 Qiao W, Yang Y, Sebra R, et al. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6. Hum Mutat. 2016;37(3):315-323. doi:10.1002/HUMU.22936 Buermans HPJ, Vossen RHAM, Anvar SY, et al. Flexible and Scalable Full- Length CYP2D6 Long Amplicon PacBio Sequencing. Hum Mutat. 2017;38(3):310-316. doi:10.1002/HUMU.23223 Frans G, Meert W, van der Werff Ten Bo	381		1989;4(1):87-96. doi:10.1016/0888-7543(89)90319-4
 relevance to Parkinson disease. <i>Mol Neurodegener</i>. 2019;14(1). doi:10.1186/s13024-019-0336-2 Graham OEE, Pitcher TL, Liau Y, et al. Nanopore sequencing of the glucocerebrosidase (GBA) gene in a New Zealand Parkinson's disease cohort. <i>Parkinsonism Relat Disord</i>. 2020;70:36-41. doi:10.1016/j.parkreldis.2019.11.022 Zimran A, Horowitz M. <i>RecTL: A Complex Allele of the Glucocerebrosidase Gene Associated With a Mild Clinical Course of Gaucher Disease.</i>; 1994. Hipp G, Vaillant M, Diederich NJ, et al. The Luxembourg Parkinson's Study: A Comprehensive Approach for Stratification and Early Diagnosis. <i>Front Aging Neurosci</i>. 2018;10. doi:10.3389/FNAGL2018.00326 Korlach J, Bjornson KP, Chaudhuri BP, et al. Real-time DNA sequencing from single polymerase molecules. <i>Methods Enzymol</i>. 2010;472:431-455. doi:10.1016/S0076-6879(10)72001-2 Blauwendraat C, Faghri F, Pihlstrom L, et al. NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. <i>Neurobiol Aging</i>. 2017;57:247.e9-247.e13. doi:10.1016/J.NEUROBIOLAGING.2017.05.009 Höglinger G, Schulte C, Jost WH, et al. GBA-associated PD: chances and obstacles for targeted treatment strategies. <i>J Neural Transm</i>. Published online May 31, 2022. doi:10.1007/s00702-022-02511-7 Lill CM, Mashychev A, Hartmann C, et al. Launching the movement disorders society genetic mutation database (MDSGene). <i>Mov Disord</i>. 2016;31(5):607-609. doi:10.1002/MDX.26651 Buermans HPJ, Vossen RHAM, Anvar SY, et al. Flexible and Scalable Full-Length CYP2D6 Long Amplicon PacBio Sequencing. <i>Hum Mutat</i>. 2017;38(3):310-316. doi:10.1002/HUMU.23223 Horrisa KJM, Vossen RHAM, Liem M, et al. Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing. <i>Hum Mutat</i>. 2017;38(7):316-37.87.9. doi:10.1002/HUMU.23223 Frans G, Meert W, van der Werff Ten Bosch J, et al. Conventional and	382	4.	Do J, McKinney C, Sharma P, Sidransky E. Glucocerebrosidase and its
 doi:10.1186/s13024-019-0336-2 Graham OEE, Pitcher TL, Liau Y, et al. Nanopore sequencing of the glucocerebrosidase (GBA) gene in a New Zealand Parkinson's disease cohort. <i>Parkinsonism Relat Disord</i>. 2020;70:36-41. doi:10.1016/j.parkreldis.2019.11.022 Zimran A, Horowitz M. <i>RecTL: A Complex Allele of the Glucocerebrosidase</i> <i>Gene Associated With a Mild Clinical Course of Gaucher Disease</i>.; 1994. Hipp G, Vaillant M, Diederich NJ, et al. The Luxembourg Parkinson's Study: A Comprehensive Approach for Stratification and Early Diagnosis. <i>Front Aging</i> <i>Neurosci</i>. 2018;10. doi:10.3389/FNAGL2018.00326 Korlach J, Bjornson KP, Chaudhuri BP, et al. Real-time DNA sequencing from single polymerase molecules. <i>Methods Enzymol</i>. 2010;472:431-455. doi:10.1016/S0076-6879(10)72001-2 Blauwendraat C, Faghri F, Pihlstrom L, et al. NeuroChip, an updated version of the Neurox genotyping platform to rapidly screen for variants associated with neurological diseases. <i>Neurobiol Aging</i>. 2017;57:247.e9-247.e13. doi:10.1016/J.NEUROBIOLAGING.2017.05.009 Höglinger G, Schulte C, Jost WH, et al. GBA-associated PD: chances and obstacles for targeted treatment strategies. <i>J Neural Transm</i>. Published online May 31, 2022. doi:10.1007/s00702-022-02511-7 Lill CM, Mashychev A, Hartmann C, et al. Launching the movement disorders society genetic mutation database (MDSGene). <i>Mov Disord</i>. 2016;31(5):607- 609. doi:10.1002/MDX.26651 Qiao W, Yang Y, Sebra R, et al. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6. <i>Hum Mutat</i>. 2016;37(3):315-323. doi:10.1002/HUMU.22936 Buermans HPJ, Vossen RHAM, Liem M, et al. Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing. <i>Hum Mutat</i>. 2017;38(7):870-879. doi:10.1002/HUMU.23223 Frans G, Meert W, van der Werff Ten Bosch J, et al. Conventional and Single- Molecule Targeted Sequencing	383		relevance to Parkinson disease. Mol Neurodegener. 2019;14(1).
 Graham OEE, Pitcher TL, Liau Y, et al. Nanopore sequencing of the glucocerebrosidase (GBA) gene in a New Zealand Parkinson's disease cohort. <i>Parkinsonism Relat Disord</i>. 2020;70:36-41. doi:10.1016/j.parkreldis.2019.11.022 Zimran A, Horowitz M. <i>RecTL: A Complex Allele of the Glucocerebrosidase Gene Associated With a Mild Clinical Course of Gaucher Disease</i>.; 1994. Hipp G, Vaillant M, Diederich NJ, et al. The Luxembourg Parkinson's Study: A Comprehensive Approach for Stratification and Early Diagnosis. <i>Front Aging Neurosci.</i> 2018;110. doi:10.3389/FNAGL2018.00326 Korlach J, Bjornson KP, Chaudhuri BP, et al. Real-time DNA sequencing from single polymerase molecules. <i>Methods Enzymol.</i> 2010;472:431-455. doi:10.1016/S0076-6879(10)72001-2 Blauwendraat C, Faghri F, Pihlstrom L, et al. NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. <i>Neurobiol Aging.</i> 2017;57:247.e9-247.e13. doi:10.1016/J.NEUROBIOLAGING.2017.05.009 Höglinger G, Schulte C, Jost WH, et al. GBA-associated PD: chances and obstacles for targeted treatment strategies. <i>J Neural Transm.</i> Published online May 31, 2022. doi:10.1007/s00702-022-02511-7 Lill CM, Mashychev A, Hartmann C, et al. Launching the movement disorders society genetic mutation database (MDSGene). <i>Mov Disord.</i> 2016;31(5):607- 609. doi:10.1002/MDS.26651 Qiao W, Yang Y, Sebra R, et al. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6. <i>Hum Mutat.</i> 2016;37(3):315-323. doi:10.1002/HUMU.22936 Buermans HPJ, Vossen RHAM, Anvar SY, et al. Flexible and Scalable Full- Length CYP2D6 Long Amplicon PacBio Sequencing. <i>Hum Mutat.</i> 2017;38(3):310-316. doi:10.1002/HUMU.23166 Horrias DM, Vossen RHAM, Liem M, et al. Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing. <i>Hum Mutat.</i> 2017;38(7):870-879. do	384		doi:10.1186/s13024-019-0336-2
 glucocerebrosidase (GBA) gene in a New Zealand Parkinson's disease cohort. <i>Parkinsonism Relat Disord</i>. 2020;70:36-41. doi:10.1016/j.parkreldis.2019.11.022 Zimran A, Horowitz M. <i>RecTL: A Complex Allele of the Glucocerebrosidase</i> <i>Gene Associated With a Mild Clinical Course of Gaucher Disease.</i>; 1994. Hipp G, Vaillant M, Diederich NJ, et al. The Luxembourg Parkinson's Study: A Comprehensive Approach for Stratification and Early Diagnosis. <i>Front Aging</i> <i>Neurosci.</i> 2018;10. doi:10.3389/FNAGI.2018.00326 Korlach J, Bjornson KP, Chaudhuri BP, et al. Real-time DNA sequencing from single polymerase molecules. <i>Methods Enzymol.</i> 2010;472:431-455. doi:10.1016/S0076-6879(10)72001-2 Blauwendraat C, Faghri F, Pihlstrom L, et al. NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. <i>Neurobiol Aging.</i> 2017;57:247.e9-247.e13. doi:10.1016/J.NEUROBIOLAGING.2017.05.009 Höglinger G, Schulte C, Jost WH, et al. GBA-associated PD: chances and obstacles for targeted treatment strategies. <i>J Neural Transm.</i> Published online May 31, 2022. doi:10.1007/s00702-022-02511-7 Lill CM, Mashychev A, Hartmann C, et al. Launching the movement disorders society genetic mutation database (MDSGene). <i>Mov Disord.</i> 2016;31(5):607- 609. doi:10.1002/MDS.26651 Qiao W, Yang Y, Sebra R, et al. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6. <i>Hum Mutat.</i> 2016;37(3):315-323. doi:10.1002/HUMU.22936 Buermans HPJ, Vossen RHAM, Anvar SY, et al. Flexible and Scalable Full- Length CYP2D6 Long Amplicon PacBio Sequencing. <i>Hum Mutat.</i> 2017;38(3):310-316. doi:10.1002/HUMU.23166 Horràs DM, Vossen RHAM, Liem M, et al. Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing. <i>Hum Mutat.</i> 2017;38(7):870-879. doi:10.1002/HUMU.23223 Frans G, Meert W, van der Wer	385	5.	Graham OEE, Pitcher TL, Liau Y, et al. Nanopore sequencing of the
 Parkinsonism Relat Disord. 2020;70:36-41. doi:10.1016/j.parkreldis.2019.11.022 Zimran A, Horowitz M. RecTL: A Complex Allele of the Glucocerebrosidase Gene Associated With a Mild Clinical Course of Gaucher Disease.; 1994. Hipp G, Vaillant M, Diederich NJ, et al. The Luxembourg Parkinson's Study: A Comprehensive Approach for Stratification and Early Diagnosis. Front Aging Neurosci. 2018;10. doi:10.3389/FNAGL2018.00326 Korlach J, Bjornson KP, Chaudhuri BP, et al. Real-time DNA sequencing from single polymerase molecules. Methods Enzymol. 2010;472:431-455. doi:10.1016/S0076-6879(10)72001-2 Blauwendraat C, Faghri F, Pihlstrom L, et al. NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. Neurobiol Aging. 2017;57:247.e9-247.e13. doi:10.1016/J.NEUROBIOLAGING.2017.05.009 Höglinger G, Schulte C, Jost WH, et al. GBA-associated PD: chances and obstacles for targeted treatment strategies. J Neural Transm. Published online May 31, 2022. doi:10.1007/s00702-022-02511-7 Lill CM, Mashychev A, Hartmann C, et al. Launching the movement disorders society genetic mutation database (MDSGene). Mov Disord. 2016;31(5):607- 609. doi:10.1002/MDS.26651 Qiao W, Yang Y, Sebra R, et al. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6. Hum Mutat. 2016;37(3):315-323. doi:10.1002/HDMU.22936 Buermans HPJ, Vossen RHAM, Anvar SY, et al. Flexible and Scalable Full- Length CYP2D6 Long Amplicon PacBio Sequencing. Hum Mutat. 2017;38(3):310-316. doi:10.1002/HUMU.23166 Buermans HPJ, Vossen RHAM, Liem M, et al. Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing. Hum Mutat. 2017;38(7):870-879. doi:10.1002/HUMU.23223 Frans G, Meert W, van der Werff Ten Bosch J, et al. Conventional and Single- Molecule Targeted Sequencing Method for Specific	386		glucocerebrosidase (GBA) gene in a New Zealand Parkinson's disease cohort.
 doi:10.1016/j.parkreldis.2019.11.022 Zimran A, Horowitz M. RecTL: A Complex Allele of the Glucocerebrosidase Gene Associated With a Mild Clinical Course of Gaucher Disease.; 1994. Hipp G, Vaillant M, Diederich NJ, et al. The Luxembourg Parkinson's Study: A Comprehensive Approach for Stratification and Early Diagnosis. Front Aging Neurosci. 2018;10. doi:10.3389/FNAGL2018.00326 Korlach J, Bjornson KP, Chaudhuri BP, et al. Real-time DNA sequencing from single polymerase molecules. Methods Enzymol. 2010;472:431-455. doi:10.1016/S0076-6879(10)72001-2 Blauwendraat C, Faghri F, Pihlstrom L, et al. NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. Neurobiol Aging. 2017;57:247.e9-247.e13. doi:10.1016/J.NEUROBIOLAGING.2017.05.009 Höglinger G, Schulte C, Jost WH, et al. GBA-associated PD: chances and obstacles for targeted treatment strategies. J Neural Transm. Published online May 31, 2022. doi:10.1007/s00702-022-02511-7 Lill CM, Mashychev A, Hartmann C, et al. Launching the movement disorders society genetic mutation database (MDSGene). Mov Disord. 2016;31(5):607- 609. doi:10.1002/MDS.26651 Qiao W, Yang Y, Sebra R, et al. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6. Hum Mutat. 2016;37(3):315-323. doi:10.1002/HUMU.22936 Buermans HPJ, Vossen RHAM, Anvar SY, et al. Flexible and Scalable Full- Length CYP2D6 Long Amplicon PacBio Sequencing. Hum Mutat. 2017;38(3):310-316. doi:10.1002/HUMU.23166 Borràs DM, Vossen RHAM, Liem M, et al. Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing. Hum Mutat. 2017;38(7):870-879. doi:10.1002/HUMU.23223 Frans G, Mcert W, van der Werff Ten Bosch J, et al. Conventional and Single- Molecule Targeted Sequencing Method for Specific Variant Detection in IKBKG while Bypassing the IKBKGP1 Pseudogene. J Mol Diagn. 2018;20(2):195-202. do	387		Parkinsonism Relat Disord. 2020;70:36-41.
 Zimran A, Horowitz M. RecTL: A Complex Allele of the Glucocerebrosidase Gene Associated With a Mild Clinical Course of Gaucher Disease; 1994. Hipp G, Vaillant M, Diederich NJ, et al. The Luxembourg Parkinson's Study: A Comprehensive Approach for Stratification and Early Diagnosis. Front Aging Neurosci. 2018;10. doi:10.3389/FNAGI.2018.00326 Korlach J, Bjornson KP, Chaudhuri BP, et al. Real-time DNA sequencing from single polymerase molecules. Methods Enzymol. 2010;472:431-455. doi:10.1016/S0076-6879(10)72001-2 Blauwendraat C, Faghri F, Pihlstrom L, et al. NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. Neurobiol Aging. 2017;57:247.e9-247.e13. doi:10.1016/J.NEUROBIOLAGING.2017.05.009 Höglinger G, Schulte C, Jost WH, et al. GBA-associated PD: chances and obstacles for targeted treatment strategies. J Neural Transm. Published online May 31, 2022. doi:10.1007/s00702-022-02511-7 Lill CM, Mashychev A, Hartmann C, et al. Launching the movement disorders society genetic mutation database (MDSGene). Mov Disord. 2016;31(5):607- 609. doi:10.1002/MDS.26651 Qiao W, Yang Y, Sebra R, et al. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6. Hum Mutat. 2016;37(3):315-323. doi:10.1002/HUMU.22936 Buermans HPJ, Vossen RHAM, Anvar SY, et al. Flexible and Scalable Full- Length CYP2D6 Long Amplicon PacBio Sequencing. Hum Mutat. 2017;38(3):310-316. doi:10.1002/HUMU.23166 Borràs DM, Vossen RHAM, Liem M, et al. Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing. Hum Mutat. 2017;38(7):870-879. doi:10.1002/HUMU.23223 Frans G, Meert W, van der Werff Ten Bosch J, et al. Conventional and Single- Molecule Targeted Sequencing Method for Specific Variant Detection in KBKG while Bypassing the IKBKGPI Pseudogene. J Mol Diagn. 2018;20(2):195-202. doi:10.10	388		doi:10.1016/j.parkreldis.2019.11.022
 <i>Gene Associated With a Mild Clinical Course of Gaucher Disease.</i>; 1994. Hipp G, Vaillant M, Diederich NJ, et al. The Luxembourg Parkinson's Study: A Comprehensive Approach for Stratification and Early Diagnosis. <i>Front Aging</i> <i>Neurosci.</i> 2018;10. doi:10.3389/FNAGI.2018.00326 Korlach J, Bjornson KP, Chaudhuri BP, et al. Real-time DNA sequencing from single polymerase molecules. <i>Methods Enzymol.</i> 2010;472:431-455. doi:10.1016/S0076-6879(10)72001-2 Blauwendraat C, Faghri F, Pihlstrom L, et al. NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. <i>Neurobiol Aging.</i> 2017;57:247.e9-247.e13. doi:10.1016/J.NEUROBIOLAGING.2017.05.009 Höglinger G, Schult C, Jost WH, et al. GBA-associated PD: chances and obstacles for targeted treatment strategies. <i>J Neural Transm.</i> Published online May 31, 2022. doi:10.1007/s00702-022-02511-7 Lill CM, Mashychev A, Hartmann C, et al. Launching the movement disorders society genetic mutation database (MDSGene). <i>Mov Disord.</i> 2016;31(5):607- 609. doi:10.1002/MDS.26651 Qiao W, Yang Y, Sebra R, et al. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6. <i>Hum Mutat.</i> 2016;37(3):315-323. doi:10.1002/HUMU.22936 Buermans HPJ, Vossen RHAM, Anvar SY, et al. Flexible and Scalable Full- Length CYP2D6 Long Amplicon PaeBio Sequencing. <i>Hum Mutat.</i> 2017;38(3):310-316. doi:10.1002/HUMU.23166 Borràs DM, Vossen RHAM, Liem M, et al. Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing. <i>Hum Mutat.</i> 2017;38(7):870-879. doi:10.1002/HUMU.23223 Frans G, Meert W, van der Werff Ten Bosch J, et al. Conventional and Single- Molecule Targeted Sequencing Method for Specific Variant Detection in IKBKG while Bypassing the IKBKGP1 Pseudogene. <i>J Mol Diagn.</i> 2018;20(2):195-202. doi:10.1016/J.JMOLDX.2017.10.005 	389	6.	Zimran A, Horowitz M. RecTL: A Complex Allele of the Glucocerebrosidase
 Hipp G, Vaillant M, Diederich NJ, et al. The Luxembourg Parkinson's Study: A Comprehensive Approach for Stratification and Early Diagnosis. <i>Front Aging</i> <i>Neurosci.</i> 2018;10. doi:10.3389/FNAGL2018.00326 Korlach J, Bjornson KP, Chaudhuri BP, et al. Real-time DNA sequencing from single polymerase molecules. <i>Methods Enzymol.</i> 2010;472:431-455. doi:10.1016/S0076-6879(10)72001-2 Blauwendraat C, Faghri F, Pihlstrom L, et al. NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. <i>Neurobiol Aging.</i> 2017;57:247.e9-247.e13. doi:10.1016/J.NEUROBIOLAGING.2017.05.009 Höglinger G, Schulte C, Jost WH, et al. GBA-associated PD: chances and obstacles for targeted treatment strategies. <i>J Neural Transm.</i> Published online May 31, 2022. doi:10.1007/s00702-022-02511-7 Lill CM, Mashychev A, Hartmann C, et al. Launching the movement disorders society genetic mutation database (MDSGene). <i>Mov Disord.</i> 2016;31(5):607- 609. doi:10.1002/MDS.26651 Qiao W, Yang Y, Sebra R, et al. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6. <i>Hum Mutat.</i> 2016;37(3):315-323. doi:10.1002/HUMU.22936 Buermans HPJ, Vossen RHAM, Anvar SY, et al. Flexible and Scalable Full- Length CYP2D6 Long Amplicon PacBio Sequencing. <i>Hum Mutat.</i> 2017;38(3):310-316. doi:10.1002/HUMU.23166 Borràs DM, Vossen RHAM, Liem M, et al. Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing. <i>Hum Mutat.</i> 2017;38(7):870-879. doi:10.1002/HUMU.23223 Frans G, Meert W, van der Werff Ten Bosch J, et al. Conventional and Single- Molecule Targeted Sequencing Method for Specific Variant Detection in IKBKG while Bypassing the IKBKGP1 Pseudogene. <i>J Mol Diagn.</i> 2018;20(2):195-202. doi:10.1016/J.JMOLDX.2017.10.005 	390		Gene Associated With a Mild Clinical Course of Gaucher Disease.; 1994.
 Comprehensive Approach for Stratification and Early Diagnosis. Front Aging Neurosci. 2018;10. doi:10.3389/FNAGI.2018.00326 Korlach J, Bjornson KP, Chaudhuri BP, et al. Real-time DNA sequencing from single polymerase molecules. Methods Enzymol. 2010;472:431-455. doi:10.1016/S0076-6879(10)72001-2 Blauwendraat C, Faghri F, Pihlstrom L, et al. NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. Neurobiol Aging. 2017;57:247.e9-247.e13. doi:10.1016/J.NEUROBIOLAGING.2017.05.009 Höglinger G, Schulte C, Jost WH, et al. GBA-associated PD: chances and obstacles for targeted treatment strategies. J Neural Transm. Published online May 31, 2022. doi:10.1007/s00702-022-02511-7 Lill CM, Mashychev A, Hartmann C, et al. Launching the movement disorders society genetic mutation database (MDSGene). Mov Disord. 2016;31(5):607- 609. doi:10.1002/MDS.26651 Qiao W, Yang Y, Sebra R, et al. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6. Hum Mutat. 2016;37(3):315-323. doi:10.1002/HUMU.22936 Buermans HPJ, Vossen RHAM, Anvar SY, et al. Flexible and Scalable Full- Length CYP2D6 Long Amplicon PacBio Sequencing. Hum Mutat. 2017;38(3):310-316. doi:10.1002/HUMU.23166 Borràs DM, Vossen RHAM, Liem M, et al. Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing. Hum Mutat. 2017;38(7):870-879. doi:10.1002/HUMU.23223 Frans G, Meert W, van der Werff Ten Bosch J, et al. Conventional and Single- Molecule Targeted Sequencing Method for Specific Variant Detection in IKBKG while Bypassing the IKBKGP1 Pseudogene. J Mol Diagn. 2018;20(2):195-202. doi:10.1016/J.JMOLDX.2017.10.005 	391	7.	Hipp G, Vaillant M, Diederich NJ, et al. The Luxembourg Parkinson's Study: A
 Neurosci. 2018;10. doi:10.3389/FNAGI.2018.00326 Korlach J, Bjornson KP, Chaudhuri BP, et al. Real-time DNA sequencing from single polymerase molecules. Methods Enzymol. 2010;472:431-455. doi:10.1016/S0076-6879(10)72001-2 Blauwendraat C, Faghri F, Pihlstrom L, et al. NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. Neurobiol Aging. 2017;57:247.e9-247.e13. doi:10.1016/J.NEUROBIOLAGING.2017.05.009 Höglinger G, Schulte C, Jost WH, et al. GBA-associated PD: chances and obstacles for targeted treatment strategies. J Neural Transm. Published online May 31, 2022. doi:10.1007/s00702-022-02511-7 Lill CM, Mashychev A, Hartmann C, et al. Launching the movement disorders society genetic mutation database (MDSGene). Mov Disord. 2016;31(5):607- 609. doi:10.1002/MDS.26651 Qiao W, Yang Y, Sebra R, et al. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6. Hum Mutat. 2016;37(3):315-323. doi:10.1002/HUMU.22936 Buermans HPJ, Vossen RHAM, Anvar SY, et al. Flexible and Scalable Full- Length CYP2D6 Long Amplicon PacBio Sequencing. Hum Mutat. 2017;38(3):310-316. doi:10.1002/HUMU.23166 Borràs DM, Vossen RHAM, Liem M, et al. Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing. Hum Mutat. 2017;38(7):870-879. doi:10.1002/HUMU.2323 Frans G, Meert W, van der Werff Ten Bosch J, et al. Conventional and Single- Molecule Targeted Sequencing Method for Specific Variant Detection in IKBKG while Bypassing the IKBKGP1 Pseudogene. J Mol Diagn. 2018;20(2):195-202. doi:10.1016/J.JMOLDX.2017.10.005 	392		Comprehensive Approach for Stratification and Early Diagnosis. Front Aging
 Korlach J, Bjornson KP, Chaudhuri BP, et al. Real-time DNA sequencing from single polymerase molecules. <i>Methods Enzymol</i>. 2010;472:431-455. doi:10.1016/S0076-6879(10)72001-2 Blauwendraat C, Faghri F, Pihlstrom L, et al. NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. <i>Neurobiol Aging</i>. 2017;57:247.e9-247.e13. doi:10.1016/J.NEUROBIOLAGING.2017.05.009 Höglinger G, Schulte C, Jost WH, et al. GBA-associated PD: chances and obstacles for targeted treatment strategies. <i>J Neural Transm</i>. Published online May 31, 2022. doi:10.1007/s00702-022-02511-7 Lill CM, Mashychev A, Hartmann C, et al. Launching the movement disorders society genetic mutation database (MDSGene). <i>Mov Disord</i>. 2016;31(5):607- 609. doi:10.1002/MDS.26651 Qiao W, Yang Y, Sebra R, et al. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6. <i>Hum Mutat</i>. 2016;37(3):315-323. doi:10.1002/HUMU.22936 Buermans HPJ, Vossen RHAM, Anvar SY, et al. Flexible and Scalable Full- Length CYP2D6 Long Amplicon PacBio Sequencing. <i>Hum Mutat</i>. 2017;38(3):310-316. doi:10.1002/HUMU.23166 Borràs DM, Vossen RHAM, Liem M, et al. Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing. <i>Hum Mutat</i>. 2017;38(7):870-879. doi:10.1002/HUMU.2323 Frans G, Meert W, van der Werff Ten Bosch J, et al. Conventional and Single- Molecule Targeted Sequencing Method for Specific Variant Detection in IKBKG while Bypassing the IKBKGP1 Pseudogene. <i>J Mol Diagn</i>. 2018;20(2):195-202. doi:10.1016/J.JMOLDX.2017.10.005 	393		Neurosci. 2018;10. doi:10.3389/FNAGI.2018.00326
 single polymerase molecules. <i>Methods Enzymol.</i> 2010;47/2:431-455. doi:10.1016/S0076-6879(10)72001-2 Blauwendraat C, Faghri F, Pihlstrom L, et al. NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. <i>Neurobiol Aging.</i> 2017;57:247.e9-247.e13. doi:10.1016/J.NEUROBIOLAGING.2017.05.009 Höglinger G, Schulte C, Jost WH, et al. GBA-associated PD: chances and obstacles for targeted treatment strategies. <i>J Neural Transm.</i> Published online May 31, 2022. doi:10.1007/s00702-022-02511-7 Lill CM, Mashychev A, Hartmann C, et al. Launching the movement disorders society genetic mutation database (MDSGene). <i>Mov Disord.</i> 2016;31(5):607- 609. doi:10.1002/MDS.26651 Qiao W, Yang Y, Sebra R, et al. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6. <i>Hum Mutat.</i> 2016;37(3):315-323. doi:10.1002/HUMU.22936 Buermans HPJ, Vossen RHAM, Anvar SY, et al. Flexible and Scalable Full- Length CYP2D6 Long Amplicon PacBio Sequencing. <i>Hum Mutat.</i> 2017;38(3):310-316. doi:10.1002/HUMU.23166 Borràs DM, Vossen RHAM, Liem M, et al. Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing. <i>Hum Mutat.</i> 2017;38(7):870-879. doi:10.1002/HUMU.2323 Frans G, Meert W, van der Werff Ten Bosch J, et al. Conventional and Single- Molecule Targeted Sequencing Method for Specific Variant Detection in IKBKG while Bypassing the IKBKGP1 Pseudogene. <i>J Mol Diagn.</i> 2018;20(2):195-202. doi:10.1016/J.JMOLDX.2017.10.005 	394	8.	Korlach J, Bjornson KP, Chaudhuri BP, et al. Real-time DNA sequencing from
 doi:10.1016/S0076-6879(10)72001-2 Blauwendraat C, Faghri F, Pihlstrom L, et al. NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. <i>Neurobiol Aging</i>. 2017;57:247.e9-247.e13. doi:10.1016/J.NEUROBIOLAGING.2017.05.009 Höglinger G, Schulte C, Jost WH, et al. GBA-associated PD: chances and obstacles for targeted treatment strategies. <i>J Neural Transm</i>. Published online May 31, 2022. doi:10.1007/s00702-022-02511-7 Lill CM, Mashychev A, Hartmann C, et al. Launching the movement disorders society genetic mutation database (MDSGene). <i>Mov Disord</i>. 2016;31(5):607- 609. doi:10.1002/MDS.26651 Qiao W, Yang Y, Sebra R, et al. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6. <i>Hum Mutat</i>. 2016;37(3):315-323. doi:10.1002/HUMU.22936 Buermans HPJ, Vossen RHAM, Anvar SY, et al. Flexible and Scalable Full- Length CYP2D6 Long Amplicon PacBio Sequencing. <i>Hum Mutat</i>. 2017;38(3):310-316. doi:10.1002/HUMU.23166 Borràs DM, Vossen RHAM, Liem M, et al. Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing. <i>Hum Mutat</i>. 2017;38(7):870-879. doi:10.1002/HUMU.23223 Frans G, Meert W, van der Werff Ten Bosch J, et al. Conventional and Single- Molecule Targeted Sequencing Method for Specific Variant Detection in IKBKG while Bypassing the IKBKGP1 Pseudogene. <i>J Mol Diagn</i>. 2018;20(2):195-202. doi:10.1016/J.JMOLDX.2017.10.005 	395		single polymerase molecules. <i>Methods Enzymol</i> . 2010;472:431-455.
 Blauwendraat C, Faghri F, Pihlstrom L, et al. NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. <i>Neurobiol Aging</i>. 2017;57:247.e9-247.e13. doi:10.1016/J.NEUROBIOLAGING.2017.05.009 Höglinger G, Schulte C, Jost WH, et al. GBA-associated PD: chances and obstacles for targeted treatment strategies. <i>J Neural Transm</i>. Published online May 31, 2022. doi:10.1007/s00702-022-02511-7 Lill CM, Mashychev A, Hartmann C, et al. Launching the movement disorders society genetic mutation database (MDSGene). <i>Mov Disord</i>. 2016;31(5):607- 609. doi:10.1002/MDS.26651 Qiao W, Yang Y, Sebra R, et al. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6. <i>Hum Mutat</i>. 2016;37(3):315-323. doi:10.1002/HUMU.22936 Buermans HPJ, Vossen RHAM, Anvar SY, et al. Flexible and Scalable Full- Length CYP2D6 Long Amplicon PacBio Sequencing. <i>Hum Mutat</i>. 2017;38(3):310-316. doi:10.1002/HUMU.23166 Borràs DM, Vossen RHAM, Liem M, et al. Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing. <i>Hum Mutat</i>. 2017;38(7):870-879. doi:10.1002/HUMU.23223 Frans G, Meert W, van der Werff Ten Bosch J, et al. Conventional and Single- Molecule Targeted Sequencing Method for Specific Variant Detection in IKBKG while Bypassing the IKBKGP1 Pseudogene. <i>J Mol Diagn</i>. 2018;20(2):195-202. doi:10.1016/J.JMOLDX.2017.10.005 	396	0	doi:10.1016/S0076-6879(10)72001-2
 the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. <i>Neurobiol Aging</i>. 2017;57:247.e9-247.e13. doi:10.1016/J.NEUROBIOLAGING.2017.05.009 10. Höglinger G, Schulte C, Jost WH, et al. GBA-associated PD: chances and obstacles for targeted treatment strategies. <i>J Neural Transm</i>. Published online May 31, 2022. doi:10.1007/s00702-022-02511-7 11. Lill CM, Mashychev A, Hartmann C, et al. Launching the movement disorders society genetic mutation database (MDSGene). <i>Mov Disord</i>. 2016;31(5):607- 609. doi:10.1002/MDS.26651 20. Qiao W, Yang Y, Sebra R, et al. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6. <i>Hum Mutat</i>. 2016;37(3):315-323. doi:10.1002/HUMU.22936 31. Buermans HPJ, Vossen RHAM, Anvar SY, et al. Flexible and Scalable Full- Length CYP2D6 Long Amplicon PacBio Sequencing. <i>Hum Mutat</i>. 2017;38(3):310-316. doi:10.1002/HUMU.23166 413 414. Borràs DM, Vossen RHAM, Liem M, et al. Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing. <i>Hum Mutat</i>. 2017;38(7):870-879. doi:10.1002/HUMU.23223 416 15. Frans G, Meert W, van der Werff Ten Bosch J, et al. Conventional and Single- Molecule Targeted Sequencing Method for Specific Variant Detection in 1KBKG while Bypassing the IKBKGP1 Pseudogene. <i>J Mol Diagn</i>. 2018;20(2):195-202. doi:10.1016/J.JMOLDX.2017.10.005 	397	9.	Blauwendraat C, Faghri F, Pihlstrom L, et al. NeuroChip, an updated version of
 neurological diseases. <i>Neurobiol Aging</i>. 2017;57:247.e9-247.e13. doi:10.1016/J.NEUROBIOLAGING.2017.05.009 10. Höglinger G, Schulte C, Jost WH, et al. GBA-associated PD: chances and obstacles for targeted treatment strategies. <i>J Neural Transm</i>. Published online May 31, 2022. doi:10.1007/s00702-022-02511-7 11. Lill CM, Mashychev A, Hartmann C, et al. Launching the movement disorders society genetic mutation database (MDSGene). <i>Mov Disord</i>. 2016;31(5):607-609. doi:10.1002/MDS.26651 22. Qiao W, Yang Y, Sebra R, et al. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6. <i>Hum Mutat</i>. 2016;37(3):315-323. doi:10.1002/HUMU.22936 33. Buermans HPJ, Vossen RHAM, Anvar SY, et al. Flexible and Scalable Full-Length CYP2D6 Long Amplicon PacBio Sequencing. <i>Hum Mutat</i>. 2017;38(3):310-316. doi:10.1002/HUMU.23166 413 414. Borràs DM, Vossen RHAM, Liem M, et al. Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing. <i>Hum Mutat</i>. 2017;38(7):870-879. doi:10.1002/HUMU.23223 416 415. Frans G, Meert W, van der Werff Ten Bosch J, et al. Conventional and Single-Molecule Targeted Sequencing Method for Specific Variant Detection in IKBKG while Bypassing the IKBKGP1 Pseudogene. <i>J Mol Diagn</i>. 2018;20(2):195-202. doi:10.1016/J.JMOLDX.2017.10.005 	398		the NeuroX genotyping platform to rapidly screen for variants associated with
 doi:10.1016/J.NEUROBIOLAGING.2017.05.009 10. Höglinger G, Schulte C, Jost WH, et al. GBA-associated PD: chances and obstacles for targeted treatment strategies. <i>J Neural Transm.</i> Published online May 31, 2022. doi:10.1007/s00702-022-02511-7 11. Lill CM, Mashychev A, Hartmann C, et al. Launching the movement disorders society genetic mutation database (MDSGene). <i>Mov Disord.</i> 2016;31(5):607- 609. doi:10.1002/MDS.26651 12. Qiao W, Yang Y, Sebra R, et al. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6. <i>Hum Mutat.</i> 2016;37(3):315-323. doi:10.1002/HUMU.22936 13. Buermans HPJ, Vossen RHAM, Anvar SY, et al. Flexible and Scalable Full- Length CYP2D6 Long Amplicon PacBio Sequencing. <i>Hum Mutat.</i> 2017;38(3):310-316. doi:10.1002/HUMU.23166 14. Borràs DM, Vossen RHAM, Liem M, et al. Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing. <i>Hum Mutat.</i> 2017;38(7):870-879. doi:10.1002/HUMU.23223 15. Frans G, Meert W, van der Werff Ten Bosch J, et al. Conventional and Single- Molecule Targeted Sequencing Method for Specific Variant Detection in IKBKG while Bypassing the IKBKGP1 Pseudogene. <i>J Mol Diagn.</i> 2018;20(2):195-202. doi:10.1016/J.JMOLDX.2017.10.005 	399		neurological diseases. Neuroolol Aging. 2017;57:247.e9-247.e13.
 Hogninger G, Schulte C, Jost WH, et al. OBA-associated FD. chances and obstacles for targeted treatment strategies. <i>J Neural Transm.</i> Published online May 31, 2022. doi:10.1007/s00702-022-02511-7 Lill CM, Mashychev A, Hartmann C, et al. Launching the movement disorders society genetic mutation database (MDSGene). <i>Mov Disord.</i> 2016;31(5):607- 609. doi:10.1002/MDS.26651 Qiao W, Yang Y, Sebra R, et al. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6. <i>Hum Mutat.</i> 2016;37(3):315-323. doi:10.1002/HUMU.22936 Buermans HPJ, Vossen RHAM, Anvar SY, et al. Flexible and Scalable Full- Length CYP2D6 Long Amplicon PacBio Sequencing. <i>Hum Mutat.</i> 2017;38(3):310-316. doi:10.1002/HUMU.23166 Borràs DM, Vossen RHAM, Liem M, et al. Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing. <i>Hum Mutat.</i> 2017;38(7):870-879. doi:10.1002/HUMU.23223 Frans G, Meert W, van der Werff Ten Bosch J, et al. Conventional and Single- Molecule Targeted Sequencing Method for Specific Variant Detection in IKBKG while Bypassing the IKBKGP1 Pseudogene. <i>J Mol Diagn.</i> 2018;20(2):195-202. doi:10.1016/J.JMOLDX.2017.10.005 	400	10	United and the contract with at all CPA associated DD: changes and
402May 31, 2022. doi:10.1007/s00702-022-02511-740411.Lill CM, Mashychev A, Hartmann C, et al. Launching the movement disorders405society genetic mutation database (MDSGene). Mov Disord. 2016;31(5):607-406609. doi:10.1002/MDS.2665140712.408Gene Sequencing of Cytochrome P450-2D6. Hum Mutat. 2016;37(3):315-323.409doi:10.1002/HUMU.2293641013.411Buermans HPJ, Vossen RHAM, Anvar SY, et al. Flexible and Scalable Full-4122017;38(3):310-316. doi:10.1002/HUMU.2316641314.414polycystic kidney disease patients by single-molecule long-read sequencing.415Hum Mutat. 2017;38(7):870-879. doi:10.1002/HUMU.2322341615.417KBKG while Bypassing the IKBKGP1 Pseudogene. J Mol Diagn.4192018;20(2):195-202. doi:10.1016/J.JMOLDX.2017.10.005	401	10.	hoginiger G, Schule C, Jost WH, et al. GDA-associated FD. chances and
 11. Lill CM, Mashychev A, Hartmann C, et al. Launching the movement disorders society genetic mutation database (MDSGene). <i>Mov Disord</i>. 2016;31(5):607-609. doi:10.1002/MDS.26651 12. Qiao W, Yang Y, Sebra R, et al. Long-Read Single Molecule Real-Time Full Gene Sequencing of Cytochrome P450-2D6. <i>Hum Mutat</i>. 2016;37(3):315-323. doi:10.1002/HUMU.22936 13. Buermans HPJ, Vossen RHAM, Anvar SY, et al. Flexible and Scalable Full-Length CYP2D6 Long Amplicon PacBio Sequencing. <i>Hum Mutat</i>. 2017;38(3):310-316. doi:10.1002/HUMU.23166 14. Borràs DM, Vossen RHAM, Liem M, et al. Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing. <i>Hum Mutat</i>. 2017;38(7):870-879. doi:10.1002/HUMU.23223 15. Frans G, Meert W, van der Werff Ten Bosch J, et al. Conventional and Single-Molecule Targeted Sequencing Method for Specific Variant Detection in IKBKG while Bypassing the IKBKGP1 Pseudogene. <i>J Mol Diagn</i>. 2018;20(2):195-202. doi:10.1016/J.JMOLDX.2017.10.005 	402		May 31 2022 doi:10.1007/ $c00702.022.02511.7$
 405 society genetic mutation database (MDSGene). <i>Mov Disord</i>. 2016;31(5):607-609. doi:10.1002/MDS.26651 406 407 12. Qiao W, Yang Y, Sebra R, et al. Long-Read Single Molecule Real-Time Full 408 Gene Sequencing of Cytochrome P450-2D6. <i>Hum Mutat</i>. 2016;37(3):315-323. 409 410 13. Buermans HPJ, Vossen RHAM, Anvar SY, et al. Flexible and Scalable Full- 411 Length CYP2D6 Long Amplicon PacBio Sequencing. <i>Hum Mutat</i>. 412 2017;38(3):310-316. doi:10.1002/HUMU.23166 413 14. Borràs DM, Vossen RHAM, Liem M, et al. Detecting PKD1 variants in 414 polycystic kidney disease patients by single-molecule long-read sequencing. 415 <i>Hum Mutat</i>. 2017;38(7):870-879. doi:10.1002/HUMU.23223 416 15. Frans G, Meert W, van der Werff Ten Bosch J, et al. Conventional and Single- 417 Molecule Targeted Sequencing Method for Specific Variant Detection in 418 IKBKG while Bypassing the IKBKGP1 Pseudogene. <i>J Mol Diagn</i>. 419 2018;20(2):195-202. doi:10.1016/J.JMOLDX.2017.10.005 	403	11	Lill CM Mashychev A Hartmann C et al Launching the movement disorders
 406 407 407 408 408 409 409 4007 408 409 4007 409 4007 408 409 4007 409 4007 409 4007 409 4007 400 4008 409 4009 4000 4000	405	11.	society genetic mutation database (MDSGene) Mov Disord 2016:31(5):607-
10012.Qiao W, Yang Y, Sebra R, et al. Long-Read Single Molecule Real-Time Full408Gene Sequencing of Cytochrome P450-2D6. Hum Mutat. 2016;37(3):315-323.409doi:10.1002/HUMU.2293641013.411Buermans HPJ, Vossen RHAM, Anvar SY, et al. Flexible and Scalable Full-4122017;38(3):310-316. doi:10.1002/HUMU.2316641314.414Borràs DM, Vossen RHAM, Liem M, et al. Detecting PKD1 variants in415Hum Mutat. 2017;38(7):870-879. doi:10.1002/HUMU.2322341615.417Frans G, Meert W, van der Werff Ten Bosch J, et al. Conventional and Single-418IKBKG while Bypassing the IKBKGP1 Pseudogene. J Mol Diagn.4192018;20(2):195-202. doi:10.1016/J.JMOLDX.2017.10.005	406		609 doi:10 1002/MDS 26651
408Gene Sequencing of Cytochrome P450-2D6. Hum Mutat. 2016;37(3):315-323.40940141013.41013.411Length CYP2D6 Long Amplicon PacBio Sequencing. Hum Mutat.4122017;38(3):310-316. doi:10.1002/HUMU.2316641314.414Borràs DM, Vossen RHAM, Liem M, et al. Detecting PKD1 variants in415Hum Mutat. 2017;38(7):870-879. doi:10.1002/HUMU.2322341615.417Frans G, Meert W, van der Werff Ten Bosch J, et al. Conventional and Single-418IKBKG while Bypassing the IKBKGP1 Pseudogene. J Mol Diagn.4192018;20(2):195-202. doi:10.1016/J.JMOLDX.2017.10.005	407	12.	Oiao W. Yang Y. Sebra R. et al. Long-Read Single Molecule Real-Time Full
409doi:10.1002/HUMU.2293641013.411Buermans HPJ, Vossen RHAM, Anvar SY, et al. Flexible and Scalable Full-411Length CYP2D6 Long Amplicon PacBio Sequencing. Hum Mutat.4122017;38(3):310-316. doi:10.1002/HUMU.2316641314.414Borràs DM, Vossen RHAM, Liem M, et al. Detecting PKD1 variants in415Hum Mutat. 2017;38(7):870-879. doi:10.1002/HUMU.2322341615.417Frans G, Meert W, van der Werff Ten Bosch J, et al. Conventional and Single-417Molecule Targeted Sequencing Method for Specific Variant Detection in418IKBKG while Bypassing the IKBKGP1 Pseudogene. J Mol Diagn.4192018;20(2):195-202. doi:10.1016/J.JMOLDX.2017.10.005	408	12.	Gene Sequencing of Cytochrome P450-2D6. <i>Hum Mutat.</i> 2016:37(3):315-323.
 Buermans HPJ, Vossen RHAM, Anvar SY, et al. Flexible and Scalable Full- Length CYP2D6 Long Amplicon PacBio Sequencing. <i>Hum Mutat</i>. 2017;38(3):310-316. doi:10.1002/HUMU.23166 I4. Borràs DM, Vossen RHAM, Liem M, et al. Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing. <i>Hum Mutat</i>. 2017;38(7):870-879. doi:10.1002/HUMU.23223 Frans G, Meert W, van der Werff Ten Bosch J, et al. Conventional and Single- Molecule Targeted Sequencing Method for Specific Variant Detection in IKBKG while Bypassing the IKBKGP1 Pseudogene. <i>J Mol Diagn</i>. 2018;20(2):195-202. doi:10.1016/J.JMOLDX.2017.10.005 	409		doi:10.1002/HUMU.22936
 Length CYP2D6 Long Amplicon PacBio Sequencing. <i>Hum Mutat.</i> 2017;38(3):310-316. doi:10.1002/HUMU.23166 Handright Matter Matt	410	13.	Buermans HPJ, Vossen RHAM, Anvar SY, et al. Flexible and Scalable Full-
 2017;38(3):310-316. doi:10.1002/HUMU.23166 14. Borràs DM, Vossen RHAM, Liem M, et al. Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing. <i>Hum Mutat</i>. 2017;38(7):870-879. doi:10.1002/HUMU.23223 15. Frans G, Meert W, van der Werff Ten Bosch J, et al. Conventional and Single- Molecule Targeted Sequencing Method for Specific Variant Detection in IKBKG while Bypassing the IKBKGP1 Pseudogene. <i>J Mol Diagn</i>. 2018;20(2):195-202. doi:10.1016/J.JMOLDX.2017.10.005 	411		Length CYP2D6 Long Amplicon PacBio Sequencing. <i>Hum Mutat</i> .
 413 14. Borràs DM, Vossen RHAM, Liem M, et al. Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing. <i>Hum Mutat</i>. 2017;38(7):870-879. doi:10.1002/HUMU.23223 416 15. Frans G, Meert W, van der Werff Ten Bosch J, et al. Conventional and Single- Molecule Targeted Sequencing Method for Specific Variant Detection in IKBKG while Bypassing the IKBKGP1 Pseudogene. <i>J Mol Diagn</i>. 2018;20(2):195-202. doi:10.1016/J.JMOLDX.2017.10.005 	412		2017;38(3):310-316. doi:10.1002/HUMU.23166
414polycystic kidney disease patients by single-molecule long-read sequencing.415Hum Mutat. 2017;38(7):870-879. doi:10.1002/HUMU.2322341615.417Frans G, Meert W, van der Werff Ten Bosch J, et al. Conventional and Single-417Molecule Targeted Sequencing Method for Specific Variant Detection in418IKBKG while Bypassing the IKBKGP1 Pseudogene. J Mol Diagn.4192018;20(2):195-202. doi:10.1016/J.JMOLDX.2017.10.005	413	14.	Borràs DM, Vossen RHAM, Liem M, et al. Detecting PKD1 variants in
 <i>Hum Mutat.</i> 2017;38(7):870-879. doi:10.1002/HUMU.23223 15. Frans G, Meert W, van der Werff Ten Bosch J, et al. Conventional and Single- Molecule Targeted Sequencing Method for Specific Variant Detection in IKBKG while Bypassing the IKBKGP1 Pseudogene. <i>J Mol Diagn.</i> 2018;20(2):195-202. doi:10.1016/J.JMOLDX.2017.10.005 	414		polycystic kidney disease patients by single-molecule long-read sequencing.
 416 417 418 418 419 418 419 418 419 419 419 410 410	415		Hum Mutat. 2017;38(7):870-879. doi:10.1002/HUMU.23223
 417 Molecule Targeted Sequencing Method for Specific Variant Detection in 418 IKBKG while Bypassing the IKBKGP1 Pseudogene. <i>J Mol Diagn</i>. 419 2018;20(2):195-202. doi:10.1016/J.JMOLDX.2017.10.005 	416	15.	Frans G, Meert W, van der Werff Ten Bosch J, et al. Conventional and Single-
418IKBKG while Bypassing the IKBKGP1 Pseudogene. J Mol Diagn.4192018;20(2):195-202. doi:10.1016/J.JMOLDX.2017.10.005	417		Molecule Targeted Sequencing Method for Specific Variant Detection in
419 2018;20(2):195-202. doi:10.1016/J.JMOLDX.2017.10.005	418		IKBKG while Bypassing the IKBKGP1 Pseudogene. J Mol Diagn.
	419		2018;20(2):195-202. doi:10.1016/J.JMOLDX.2017.10.005

420	16.	Ruskey JA, Greenbaum L, Roncière L, et al. Increased yield of full GBA
421		sequencing in Ashkenazi Jews with Parkinson's disease. Eur J Med Genet.
422		2019;62(1). doi:10.1016/j.ejmg.2018.05.005
423	17.	Gan-Or Z, Amshalom I, Kilarski LL, et al. Differential Effects of Severe vs Mild
424		GBA Mutations on Parkinson Disease.; 2015.
425	18.	Petrucci S, Ginevrino M, Trezzi I, et al. GBA-Related Parkinson's Disease:
426		Dissection of Genotype–Phenotype Correlates in a Large Italian Cohort.
427		Movement Disorders, 2020:35(11). doi:10.1002/mds.28195
428	19.	Jesús S. Huertas I. Bernal-Bernal I. et al. GBA variants influence motor and
429	- 2 -	non-motor features of Parkinson's disease. <i>PLoS One</i> , 2016;11(12).
430		doi:10.1371/journal.pone.0167749
431	20.	Olszewska DA, McCarthy A, Soto-Beasley AI, et al. Association Between
432	-	Glucocerebrosidase Mutations and Parkinson's Disease in Ireland. Front
433		<i>Neurol.</i> 2020:11. doi:10.3389/fneur.2020.00527
434	21.	Duran R. Mencacci NE. Angeli A V., et al. The glucocerobrosidase E326K
435		variant predisposes to Parkinson's disease, but does not cause Gaucher's
436		disease. <i>Movement Disorders</i> . 2013:28(2):232-236. doi:10.1002/mds.25248
437	22.	Ran C. Brodin L. Forsgren L. et al. Strong association between
438		glucocerebrosidase mutations and Parkinson's disease in Sweden. <i>Neurobiol</i>
439		Aging, 2016:45, doi:10.1016/i.neurobiolaging.2016.04.022
440	23.	Davis MY. Johnson CO. Leverenz JB. et al. Association of GBA mutations and
441		the E326K polymorphism with motor and cognitive progression in parkinson
442		disease. JAMA Neurol. 2016:73(10):1217-1224.
443		doi:10.1001/iamaneurol.2016.2245
444	24.	Berge-Seidl V. Pihlstrøm L. Maple-Grødem J. et al. The GBA variant E326K is
445		associated with Parkinson's disease and explains a genome-wide association
446		signal. Neurosci Lett. 2017:658. doi:10.1016/i.neulet.2017.08.040
447	25.	Picillo M, Petrucci S, Valente EM, et al. Progressive Supranuclear Palsy–Like
448		Phenotype in a GBA E326K Mutation Carrier. Mov Disord Clin Pract.
449		2017;4(3):444-446. doi:10.1002/mdc3.12406
450	26.	Blauwendraat C, Heilbron K, Vallerga CL, et al. Parkinson's disease age at
451		onset genome-wide association study: Defining heritability, genetic loci, and α -
452		synuclein mechanisms. Mov Disord. 2019;34(6):866-875.
453		doi:10.1002/MDS.27659
454	27.	Sidransky E, Nalls MA, Aasly JO, et al. Multicenter analysis of
455		glucocerebrosidase mutations in Parkinson's disease. N Engl J Med.
456		2009;361(17):1651-1661. doi:10.1056/NEJMOA0901281
457	28.	Brockmann K, Srulijes K, Hauser AK, et al. GBA-Associated PD Presents with
458		Nonmotor Characteristics.; 2011.
459	29.	Setó-Salvia N, Pagonabarraga J, Houlden H, et al. Glucocerebrosidase
460		mutations confer a greater risk of dementia during Parkinson's disease course.
461		Movement Disorders. 2012;27(3). doi:10.1002/mds.24045
462	30.	Krohn L, Ruskey JA, Rudakou U, et al. GBA variants in REM sleep behavior
463		disorder: a multicenter study. doi:10.1101/19010991
464	31.	Brockmann K, Quadalti C, Lerche S, et al. Association between CSF alpha-
465		synuclein seeding activity and genetic status in Parkinson's disease and
466		dementia with Lewy bodies. Acta Neuropathol Commun. 2021;9(1).
467		doi:10.1186/S40478-021-01276-6

468	32.	Litvan I, Bhatia KP, Burn DJ, et al. SIC task force appraisal of clinical
469		diagnostic criteria for parkinsonian disorders. Movement Disorders. 2003;18(5).
470		doi:10.1002/mds.10459
471	33.	Pavelka L, Rauschenberger A, Landoulsi Z, et al. ARTICLE Age at onset as
472		stratifier in idiopathic Parkinson's disease-effect of ageing and polygenic risk
473		score on clinical phenotypes. doi:10.1038/s41531-022-00342-7
474	34.	Gustavsson EK, Trinh J, Mckenzie M, et al. Genetic Identification in Early
475		Onset Parkinsonism among Norwegian Patients. Published online 2017.
476		doi:10.1002/mdc3.12501
477	35.	Purcell S, Neale B, Todd-Brown K, et al. PLINK: A tool set for whole-genome
478		association and population-based linkage analyses. Am J Hum Genet.
479		2007;81(3):559-575. doi:10.1086/519795
480	36.	Leija-Salazar M, Sedlazeck FJ, Toffoli M, et al. Evaluation of the detection of
481		GBA missense mutations and other variants using the Oxford Nanopore
482		MinION. Mol Genet Genomic Med. 2019;7(3). doi:10.1002/mgg3.564
483	37.	Rhoads A, Au KF. PacBio Sequencing and Its Applications. Genomics
484		Proteomics Bioinformatics. 2015;13(5). doi:10.1016/j.gpb.2015.08.002
485	38.	Li H. Minimap2: Pairwise alignment for nucleotide sequences. <i>Bioinformatics</i> .
486		2018;34(18):3094-3100. doi:10.1093/bioinformatics/bty191
487	39.	Poplin R, Chang PC, Alexander D, et al. A universal snp and small-indel variant
488		caller using deep neural networks. Nat Biotechnol. 2018;36(10):983.
489		doi:10.1038/nbt.4235
490	40.	Illumina. NovaSeq 6000 Sequencing System. 770-2016-025-H.
491		2016;4(February).
492	41.	Andrews S. FastQC. Babraham Bioinformatics. Published online 2010.
493	42.	Miller NA, Farrow EG, Gibson M, et al. A 26-hour system of highly sensitive
494		whole genome sequencing for emergency management of genetic diseases.
495		Genome Med. 2015;7(1). doi:10.1186/s13073-015-0221-8
496	43.	Illumina. Illumina DRAGEN Bio-IT Platorm. User Guide. 2019;(February).
497	44.	Mark AD, Eric B, Ryan P, et al. A framework for variation discovery and
498		genotyping using next-generation DNA sequencing data. Published online 2011.
499		doi:10.1038/ng.806
500	45.	Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic
501		variants from high-throughput sequencing data. <i>Nucleic Acids Res.</i> 2010;38(16).
502		doi:10.1093/NAR/GKQ603
503	46.	Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum
504		quantified from variation in 141,456 humans, Genome Aggregation Database
505		Consortium. 434 Nature . 2020;581:19. doi:10.1038/s41586-020-2308-7
506	47.	Stenson PD, Ball E v, Mort M, et al. Human Gene Mutation Database (HGMD s
507	40): 2003 Update. <i>Hum Mutat</i> . 2003;21:577-581. doi:10.1002/humu.10212
508	48.	Landrum MJ, Lee JM, Riley GR, et al. Clin Var: public archive of relationships
509	40	among sequence variation and human phenotype. doi:10.1093/naf/gkt1113
510	49.	Rentzsch P, witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting
511 512		ne deleteriousness of variants throughout the numan genome. <i>Nucleic Acids</i>
J1∠ 512	50	Res. 2019;4/. doi:10.1095/naf/gKy1010 Tion V. Deseren T. Chemberlin A. et al. DEVEL and Desere Delevertranformed
515 514	50.	in all a resaran 1, Unamberlin A, et al. KEVEL and BayesDel outperform other
514 515		In since meta-predictors for clinical variant classification. Sci kep. 2019;9(1).
515		UU1.1V.1VJ0/541J70-V17-47224-0

516	51.	Ioannidis NM, Rothstein JH, Pejaver V, et al. REVEL: An Ensemble Method
517		for Predicting the Pathogenicity of Rare Missense Variants. Am J Hum Genet.
518		2016;99(4):877-885. doi:10.1016/J.AJHG.2016.08.016
519	52.	Jian X, Boerwinkle E, Liu X. In silico prediction of splice-altering single
520		nucleotide variants in the human genome. Nucleic Acids Res.
521		2014;42(22):13534-13544. doi:10.1093/nar/gku1206
522	53.	Sanger F, Nicklen S, Coulson AR. DNA Sequencing with Chain-Terminating
523		Inhibitors (DNA Polymerase/Nucleotide Sequences/Bacteriophage 4X174). Vol
524		74.; 1977. https://www.pnas.org
525	54.	Liu X, Li C, Mou C, Dong Y, Tu Y. dbNSFP v4: a comprehensive database of
526		transcript-specific functional predictions and annotations for human
527		nonsynonymous and splice-site SNVs. Genome Med. 2020;12(1):1-8.
528		doi:10.1186/S13073-020-00803-9/FIGURES/4
529	55.	Johannesen KM, Liu Y, Koko M, et al. Genotype-phenotype correlations in
530		SCN8A-related disorders reveal prognostic and therapeutic implications. Brain.
531		2022;145(9):2991-3009. doi:10.1093/BRAIN/AWAB321
532		
533		

7. Acknowledgments 534

535 We would like to thank all participants of the Luxembourg Parkinson's Study for their important support of our research. Furthermore, we acknowledge the joint effort of the National 536 537 Centre of Excellence in Research on Parkinson's Disease (NCER-PD) Consortium members 538 from the partner institutions Luxembourg Centre for Systems Biomedicine, Luxembourg 539 Institute of Health, Centre Hospitalier de Luxembourg, and Laboratoire National de Santé 540 generally contributing to the Luxembourg Parkinson's Study as listed below. The work funded 541 presented here was by the Luxembourg National Research 542 (FNR/NCER13/BM/11264123), the PEARL program (FNR/P13/6682797 to RK), MotaSYN 543 (12719684 to RK), MAMaSyn (to RK), MiRisk-PD (C17/BM/11676395 to RK, PM), the FNR/DFG Core INTER (ProtectMove, FNR11250962 to PM), and the PARK-QC DTU 544 545 (PRIDE17/12244779/PARK-QC to RK, SP).

546 **ON BEHALF OF THE NCER-PD CONSORTIUM**

Geeta ACHARYA², Gloria AGUAYO², Myriam ALEXANDRE², Muhammad ALI¹, Wim 547 AMMERLANN², Giuseppe ARENA¹, Rudi BALLING¹, Michele BASSIS¹, Katy BEAUMONT², Regina BECKER¹, Camille BELLORA², Guy BERCHEM³, Daniela BERG¹¹, Alexandre BISDORFF 548 549 550 5, Ibrahim BOUSSAAD¹, Kathrin BROCKMANN¹¹, Jessica CALMES², Lorieza CASTILLO², Gessica CONTESOTTO², Nico DIEDERICH³, Rene DONDELINGER⁵, Daniela ESTEVES², Guy FAGHERAZZI², Jean-Yves FERRAND², Manon GANTENBEIN², Thomas GASSER¹¹, Piotr 551 552 GAWRON¹, Soumyabrata GHOSH¹, Marijus GIRAITIS^{2,3}, Enrico GLAAB¹, Elisa GÓMEZ DE 553 LOPE¹, Jérôme GRAAS², Mariella GRAZIANO¹⁷, Valentin GROUES¹, Anne GRÜNEWALD¹, 554 Wei GU¹, Gaël HAMMOT², Anne-Marie HANFF², Linda HANSEN¹,3, Maxime HANSEN^{1,3}, 555 Michael HENEKA¹, Estelle HENRY², Sylvia HERBRINK⁶, Sascha HERZINGER¹, Michael 556 HEYMANN², Michele HU⁸, Alexander HUNDT², Nadine JACOBY¹⁸, Jacek JAROSLAW 557 LEBIODA¹, Yohan JAROZ¹, Quentin KLOPFENSTEIN¹, Jochen KLUCKEN¹,²,3, Rejko KRÜGER ^{1,2,3}, Pauline LAMBERT², Zied LANDOULSI¹, Roseline LENTZ⁷, Inga LIEPELT¹¹, Robert LISZKA ¹⁴, Laura LONGHINO³, Victoria LORENTZ², Paula Cristina LUPU², Clare MACKAY¹⁰, Walter 558 559 560 MAETZLER¹⁵, Katrin MARCUS¹³, Guilherme MARQUES², Tainá M MARQUES¹, Patricia 561 MARTINS CONDE¹, Patrick MAY¹, Deborah MCINTYRE², Chouaib MEDIOUNI², Francoise MEISCH¹, Myriam MENSTER², Maura MINELLI², Michel MITTELBRONN^{1,4}, Brit 562 563 MOLLENHAUER¹², Friedrich MÜHLSCHLEGEL⁴, Romain NATI³, Ulf NEHRBASS², Sarah 564 NICKELS¹, Beatrice NICOLAI³, Jean-Paul NICOLAY¹⁹, Marek OSTASZEWSKI¹, Clarissa P. da C. GOMES¹, Sinthuja PACHCHEK¹, Claire PAULY^{1,3}, Laure PAULY¹, Lukas PAVELKA^{1,3}, Magali PERQUIN², Rosalina RAMOS LIMA², Armin RAUSCHENBERGER¹, Rajesh RAWAL¹, 565 566 567 Dheeraj REDDY BOBBILI¹, Kirsten ROOMP¹, Eduardo ROSALES², Isabel ROSETY¹, Estelle 568 569 SANDT², Stefano SAPIENZA¹, Venkata SATAGOPAM¹, Margaux SCHMITT², Sabine SCHMITZ ¹, Reinhard SCHNEIDER ¹, Jens SCHWAMBORN ¹, Jean-Edouard SCHWEITZER ¹, Amir SHARIFY ², Ekaterina SOBOLEVA ¹, Kate SOKOLOWSKA ², Olivier TERWINDT ¹,3, Hermann THIEN ², 570 571 Elodie THIRY³, Rebecca TING JIIN LOO¹, Joana TORRE², Christophe TREFOIS¹, Johanna 572 TROUET², Olena TSURKALENKO², Michel VAILLANT², Mesele VALENTI², Carlos VEGA¹, 573 574 Liliana VILAS BOAS³, Maharshi VYAS¹, Richard WADE-MARTINS¹, Paul WILMES¹, Evi 575 WOLLSCHEID-LENGELING¹, Gelani ZELIMKHANOV³

3 Centre Hospitalier de Luxembourg, Strassen, Luxembourg

⁵⁷⁶ 577 578 579 ¹Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg

²Luxembourg Institute of Health, Strassen, Luxembourg

⁴ Laboratoire National de Santé, Dudelange, Luxembourg

All rights reserved. No reuse allowed without permission.

- 5 Centre Hospitalier Emile Mayrisch, Esch-sur-Alzette, Luxembourg
- 6 Centre Hospitalier du Nord, Ettelbrück, Luxembourg
- 7 Parkinson Luxembourg Association, Leudelange, Luxembourg
- 8 Oxford Parkinson's Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- 9 Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK

580 581 582 583 584 585 586 587 588 589 590 591 592 10 Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK

- 11 Center of Neurology and Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases,
- University Hospital Tübingen, Tübingen, Germany
- 12 Paracelsus-Elena-Klinik, Kassel, Germany
- 13 Ruhr-University of Bochum, Bochum, Germany 14 Westpfalz-Klinikum GmbH, Kaiserslautern, Germany
- 15 Department of Neurology, University Medical Center Schleswig-Holstein, Kiel, Germany
- 593 594 16 Department of Neurology Philipps, University Marburg, Marburg, Germany
- 17 Association of Physiotherapists in Parkinson's Disease Europe, Esch-sur-Alzette, Luxembourg
- 595 596 18 Private practice, Ettelbruck, Luxembourg
- 19 Private practice, Luxembourg, Luxembourg

597 8. Author contribution

- 598 1. Research project: A. Conception, B. Organization, C. Execution;
- 599 2. Statistical Analysis: A. Design, B. Execution, C. Review and Critique;
- 600 3. Manuscript Preparation: A. Writing of the first draft, B. Review and Critique;
- 4. Genetic data: A. Sequencing Execution, B. Analysis; 601
- 5. Data collection: A. Participation, B. Exportation, C. Curation 602
- 603 SP: 1A, 1B, 1C, 2A, 2B, 2C, 3A, 3B, 4B, 5B, 5C
- 604 ZL: 1C, 2A, 2B, 2C, 3A, 3B, 5C
- LP: 1C, 2C, 3B, 5A, 5B, 5C 605
- CS: 2C, 3B, 4A 606
- 607 EBA: 2C, 3B, 4A
- 608 CG: 2C, 3B, 4A
- 609 AKH: 2C, 3B, 4A
- 610 DRB: 2C, 3B
- 611 NC: 3B, 4A
- PM: 1A, 1B, 1C, 2A, 2C, 3B, 4B, 5C 612
- 613 RK: 1A, 1B, 1C, 2A, 2C, 3B, 5A, 5C

614 9. Financial Disclosures and Conflict of Interest

615 The authors declare that there are no conflicts of interest relevant to this work.

616 **10. Funding Sources**

- 617 The National Centre of Excellence in Research on Parkinson's Disease (NCER-PD) is funded
- 618 by the Luxembourg National Research Fund (FNR/NCER13/BM/11264123), the PEARL
- program (FNR/P13/6682797 to RK), MotaSYN (12719684 to RK), MAMaSyn (to RK), 619
- 620 MiRisk-PD (C17/BM/11676395 to RK, PM), the FNR/DFG Core INTER (ProtectMove,
- FNR11250962 to PM), and the PARK-QC DTU (PRIDE17/12244779/PARK-QC to RK, SP). 621

622 11. Tables

623 Table 1. Distribution of GBA variants in the Luxembourg Parkinson's study.

Subclassificatio n	nucleotide - protein changes	Subject s	PD n=652	Parkinsonism Patients n=100	Healthy controls n=806
	c.115+1G>A	2	1		1
	p.G234W	1	1		
	p.G241R	2	2		
	p.H294Q	1			1
	p.R398*	1	1		
	p.G416S	1	1		
Severe	p.L483P	6	5		1
	p.R502H	1	1		
	p.N409S; p.L483P	1	1		
	p.L483P; p.A495P; p.V499V (<i>RecNcil</i>)	5	4		1
	n K13R n L483P	1	1		
	p.F252I: p.T408M	1	1		
Mild	p.N409S	10	7		3
	p.E365K	42	21+2ª	1 DLB + 2 PSP	16
Risk	p.T408M	28	15	1 DLB	12
	p.Y61H; p.T408M	1	1		
	p.K13R	4	2		2
	p.Y61H	1	1		
	p.R78C	2			2
	p.A97G (new VUS)	1			1
	p.P161S	2	2		
	p.L213P	1	1		
VUS	p.A215D (new VUS)	1	1		
	p.E427K	2	1		1
	p.R434C (new VUS)	1	1		
	p.H529R	1	1		
	p.R534C	1	1		
	p.A495P; p.V499V	3	1		2
	p.T408T	3	2		1

624 All variants were identified in the heterozygous state except in two individuals for p.E365K (a

625 Homozygous state). Abbreviations: GBA, glucocerebrosidase gene; PD, Parkinson's Disease and

626 Parkinson's Disease with Dementia; PSP, Progressive Supranuclear Palsy; DLB, Dementia with Lewy 627 Body; VUS, Variants of unknown significance.

628 Table 2. Frequency of GBA mutations in the Luxembourg Parkinson's study.

Diagnosis	sub-classification of <i>GBA</i> mutations	Subjects	All GBA-Carrier (n)	Pathogenic GBA- Carrier	OR (95%CI)	<i>p</i> -values
PD		644	77 (12%)	67 (10.4%)	2.6 (1.6 to 4.1)	0.0001^{*}
	severe			21 (3.2%)	11.4 (2.6 to 48.8)	0.0010*
	mild			7 (1.1%)	3.5 (0.7 to 17.2)	0.1137
	risk			39 (6%)	1.6 (1 to 2.8)	0.0470^{*}
PSP	risk	59		2 (3.4%)	0.9 (0.2 to 3.9)	0.8941
DLB	risk	24		2 (8.3%)	2.2 (0.5 to 10)	0.2908
Healthy controls		678	34 (5%)	29 (4.3%)	-	-
	severe			2	-	-
	mild			2	-	-
	risk			25	-	-

629 After excluding the first-degree family members interrelated in the cohort and the healthy controls with

630 young age of assessment (< 60 AAA) with first degree PD relatives. GBA, glucocerebrosidase gene;

631 PD, Parkinson's Disease and Parkinson's Disease with Dementia; PSP, Progressive Supranuclear Palsy;

632 DLB, Dementia with Lewy Body. ORs are given with the 95% CI; Statistically significant results

633 highlighted in bold and red with * (*p*-value < 0.05).

634 Table 3. Demographic data for the PD patients in the Luxembourgish cohort separated by GBA 635 mutation status.

Faatumee	All pathogenic variants	Severe	Mild	Risk	Noncarriers	
reatures	(n = 67)	(n = 21)	(n = 7)	(n = 39)	(n = 561)	
AAA mean (SD)	66.5 (±10.2)	65.1 (±10.2)	67.1 (±15.6)	67.1 (±9.2)	67.5 (+10.0)	
AAA, mean (SD)	[OR=0.37; p=0.4713]	[OR=0.1; p=0.3315]	[OR=0.68; p=0.9275]	[OR=0.67; p=0.8231]	07.3 (±10.9)	
Say Mala % (n)	40 (59.7%)	13 (61.9%)	5 (71.4%)	22 (56.4%)	280 (67 7%)	
Sex, Mare 70 (II)	[OR=0.71; p=0.1882]	[OR=0.77; p=0.5762]	[OR=1.19; p=0.8356]	[OR=0.62; p=0.149]	580 (07.776)	
AAO mean (SD)	61.6 (±11.5)	58.6 (±13.1)	65.4 (±17.0)	62.5 (±9.3)	62 5 (+11 8)	
AAO, mean (SD)	[OR=0.42; p=0.5668]	[OR=0.02; p=0.1383]	[OR=19.33; p=0.511]	[OR=1.07; p=0.9704]	02.5 (±11.6)	
110 < 45	8 (11.9%)	5 (23.8%)	2 (28.6%)	1 (2.6%)	42 (7 70/)	
AAU \$ 45	[OR=1.63; p=0.2301]	[OR=3.76; p=0.0135*]	[OR=4.82; p=0.0648]	[OR=0.32; p=0.2626]	45 (7.776)	
Disease Duration mean (SD)	4.7 (±4.8)	6.4 (±4.7)	1.7 (±1.4)	4.4 (±4.9)	5 (+5 2)	
Disease Duration, mean (SD)	[OR=0.7; p=0.7074]	[OR=0.7; p=0.7074] [OR=3.99; p=0.2338] [OR=0.04; p=0.0979] [OR=0.56; p=0.2338]		[OR=0.56; p=0.4966]	5 (±5.2)	
Eamily History N (9/)	25 (37.3%)	8 (38.1%)	2 (28.6%)	15 (38.5%)	157 (28%)	
Family History, N (%)	[OR=1.5; p=0.1137]	[OR=1.58; p=0.3167]	[OR=1.03; p=0.9726]	[OR=1.61; p=0.1651]	137 (2070)	

636 After excluding the first-degree family members interrelated in the cohort, the healthy controls with

637 young age of assessment (< 60 AAA) with first degree PD relatives and synonymous and VUS

638 variants carriers. Data are given as mean (SD) or N (%). Significance level for comparison is p < 0.05.

639 AAA, age at assessment in years ; AAO, Age at onset in years.

640

641 Table 4. Clinical characteristics of PD classified by GBA mutation status.

									PD GBA carrier								PD GBA non-carrier	
		SEVERE							MILD				CD. I IVA-CATIN					
Type of data	Clinical characteristics and scales	PD _{GBA} (n=21)	missing values (%)	β (95%)	<i>p</i> -value	adj <i>p</i> - value	PD _{GBA} (n=7)	missing values (%)	β (95%)	<i>p</i> -value	adj <i>p-</i> value	PD _{GBA} (n=39)	missing values (%)	β (95%)	<i>p</i> -value	adj <i>p-</i> value	N=570	
	H&Y, mean (SD)	2.4 (±0.8)	3 (0.5%)	0.18 (-0.11 to 0.48)	0.2254	0.5635	2.0 (±0.6)	3 (0.5%)	-0.0 (-0.51 to 0.51)	0.9963	0.9992	2.2 (±0.8)	3 (0.5%)	0.07 (-0.16 to 0.29)	0.5503	0.9914	2.2 (±0.8)	
	MDS-UPDRS II, mean (SD)	12.6 (±4.4)	13 (2.2%)	0.44 (-2.79 to 3.67)	0.7892	0.9441	10.1 (±6.4)	13 (2.3%)	0.86 (-4.72 to 6.44)	0.7629	0.9992	11.1 (±8.6)	13 (2.2%)	0.12 (-2.31 to 2.55)	0.9223	0.9914	11.4 (±8.3)	
ales	MDS-UPDRS III, mean (SD)	34.8 (±15.7)	14 (2.4%)	-0.25 (-7.18 to 6.69)	0.9441	0.9441	26.2 (±9.7)	13 (2.3%)	-4.81 (-16.98 to 7.36)	0.4387	0.9992	33.3 (±17.7)	12 (2.0%)	-0.49 (-5.42 to 4.45)	0.8469	0.9914	34.6 (±16.2)	
s/sc:	MDS-UPDRS IV, mean (SD)	3.0 (±4.5)	7 (1.2%)	0.85 (-0.49 to 2.18)	0.214	0.5635	0.1 (±0.4)	7 (1.2%)	-0.64 (-2.88 to 1.6)	0.5737	0.9992	1.2 (±2.3)	7 (1.2%)	-0.43 (-1.4 to 0.53)	0.3779	0.8221	1.7 (±3.4)	
tom	Dyskinesias, n (%)	5 (23.8%)	0	0.62 (-0.54 to 1.78)	0.2937	0.6425	0	-	-	-	-	4 (10.3%)	0	-0.01 (-1.15 to 1.13)	0.9878	0.9914	67 (11.9%)	
i my	Falls, n (%)	5 (23.8%)	0	0.37 (-0.7 to 1.45)	0.4932	0.7193	0	-	-	-	-	7 (17.9%)	0	0.12 (-0.78 to 1.02)	0.7938	0.9914	98 (17.5%)	
tors	Gait Disorder, n (%)	16 (76.2%)	0	0.9 (-0.13 to 1.93)	0.0873	0.5441	3 (42.9%)	0	-0.26 (-1.78 to 1.26)	0.7364	0.9992	18 (46.2%)	0	-0.32 (-1.0 to 0.35)	0.3503	0.8221	314 (56.0%)	
Mo	FOG, n (%)	8 (38.1%)	0	0.65 (-0.34 to 1.65)	0.1966	0.5635	0	-	-	-	-	7 (17.9%)	0	-0.2 (-1.14 to 0.73)	0.673	0.9914	126 (22.5%)	
	Restless leg syndrome, n (%)	2 (9.5%)	0	0.06 (-1.44 to 1.56)	0.9413	0.9441	2 (28.6%)	0	1.62 (-0.07 to 3.31)	0.0605	0.8843	6 (15.4%)	0	0.71 (-0.22 to 1.64)	0.1324	0.8221	46 (8.2%)	
	Motor fluctuation, n (%)	5 (23.8%)	0	0.12 (-1.03 to 1.27)	0.8427	0.9441	0	-	-	-	-	5 (12.8%)	0	-0.22 (-1.25 to 0.82)	0.6795	0.9914	95 (16.9%)	
	BDI, mean (SD)	12.4 (±5.7)	28 (4.8%)	2.02 (-0.99 to 5.03)	0.1879	0.5635	8.0 (±3.5)	29 (5.1%)	-1.16 (-6.73 to 4.41)	0.6826	0.9992	8.0 (±5.7)	29 (4.8%)	-1.9 (-4.16 to 0.36)	0.0994	0.8221	9.9 (±7.1)	
	MDS-UPDRS Part I, mean (SD)	15.0 (±6.5)	15 (2.6%)	3.92 (0.99 to 6.86)	0.0088*	0.2625	8.6 (±2.4)	15 (2.6%)	-0.81 (-5.81 to 4.19)	0.7506	0.9992	9.5 (±6.8)	15 (2.5%)	-0.94 (-3.12 to 1.23)	0.3946	0.8221	10.6 (±7.0)	
	PDSS, mean (SD)	98.3 (±20.9)	44 (7.6%)	-4.42 (-15.25 to 6.41)	0.424	0.6745	110.9 (±13.4)	43 (7.6%)	2.6 (-15.45 to 20.65)	0.778	0.9992	104.0 (±24.9)	45 (7.5%)	-1.3 (-9.38 to 6.78)	0.7527	0.9914	104.7 (±24.9)	
	SCOPA-AUT, mean (SD)	17.1 (±8.0)	33 (5.7%)	1.67 (-1.76 to 5.1)	0.3393	0.6598	13.1 (±7.1)	32 (5.6%)	-0.26 (-5.98 to 5.46)	0.9284	0.9992	14.1 (±7.8)	33 (5.5%)	-0.67 (-3.2 to 1.86)	0.6038	0.9914	15.0 (±8.1)	
	Sniffin's stick test, mean (SD)	6.4 (±3.6)	7 (1.2%)	-1.56 (-3.05 to -0.07)	0.0403*	0.4702	6.6 (±2.1)	7 (1.2%)	-1.58 (-4.12 to 0.95)	0.2212	0.9992	7.4 (±4.0)	8 (1.3%)	-0.66 (-1.79 to 0.48)	0.2558	0.8221	7.8 (±3.6)	
es	SAS, mean (SD)	15.8 (±5.2)	34 (5.8%)	2.0 (-0.5 to 4.5)	0.1173	0.5441	12.6 (±3.8)	33 (5.8%)	-1.48 (-5.66 to 2.71)	0.4892	0.9992	13.1 (±6.3)	35 (5.8%)	-0.77 (-2.66 to 1.11)	0.4228	0.8221	14.0 (±5.7)	
/sca	MoCA, mean (SD)	24.0 (±4.7)	12 (2.1%)	-0.75 (-2.55 to 1.05)	0.4134	0.6745	25.6 (±3.7)	12 (2.1%)	0.89 (-2.15 to 3.92)	0.5664	0.9992	24.9 (±4.0)	14 (2.3%)	0.16 (-1.2 to 1.52)	0.8165	0.9914	24.4 (±4.5)	
oms	Constipation, n (%)	10 (47.6%)	0	0.04 (-0.85 to 0.92)	0.9338	0.9441	5 (71.4%)	0	1.38 (-0.28 to 3.03)	0.1029	0.9004	14 (35.9%)	0	-0.33 (-1.02 to 0.36)	0.3518	0.8221	251 (44.7%)	
1dii	Dysphagia, n (%)	4 (19.0%)	0	-0.46 (-1.57 to 0.65)	0.4182	0.6745	1 (14.3%)	0	-0.53 (-2.66 to 1.6)	0.6273	0.9992	10 (25.6%)	0	0.0 (-0.75 to 0.76)	0.9914	0.9914	146 (26.0%)	
or sy	Insomnia, n (%)	6 (28.6%)	0	-0.06 (-1.04 to 0.92)	0.9072	0.9441	4 (57.1%)	0	1.42 (-0.11 to 2.95)	0.068	0.8843	7 (17.9%)	0	-0.56 (-1.41 to 0.28)	0.1898	0.8221	154 (27.5%)	
mot	Orthostatism, n (%)	5 (23.8%)	0	-0.36 (-1.39 to 0.67)	0.4915	0.7193	4 (57.1%)	0	1.37 (-0.14 to 2.89)	0.0758	0.8843	15 (38.5%)	0	0.43 (-0.25 to 1.11)	0.2136	0.8221	166 (29.6%)	
-to y	Urinary incontinence, n (%)	6 (28.6%)	0	-0.1 (-1.08 to 0.88)	0.8443	0.9441	2 (28.6%)	0	0.14 (-1.54 to 1.82)	0.8729	0.9992	17 (43.6%)	0	0.63 (-0.04 to 1.31)	0.0666	0.8221	171 (30.5%)	
~	Hallucinations, n (%)	8 (38.1%)	0	1.16 (0.23 to 2.09)	0.015*	0.2625	2 (28.6%)	0	1.18 (-0.49 to 2.85)	0.1664	0.9707	6 (15.4%)	0	0.05 (-0.87 to 0.97)	0.9088	0.9914	87 (15.5%)	
	Excessive daytime sleepiness, n (%)	9 (42.9%)	0	0.45 (-0.45 to 1.35)	0.3302	0.6598	0	-	-	-	-	14 (35.9%)	0	0.3 (-0.4 to 0.99)	0.4041	0.8221	176 (31.4%)	
	ICD, n (%)	2 (9.5%)	0	-0.26 (-1.79 to 1.27)	0.7402	0.9441	0	-	-	-	-	4 (10.3%)	0	0.21 (-0.89 to 1.31)	0.7051	0.9914	55 (9.8%)	
	Syncope, n (%)	2 (9.5%)	0	0.84 (-0.7 to 2.38)	0.2842	0.6425	1 (14.3%)	0	1.68 (-0.54 to 3.91)	0.1377	0.9639	3 (7.7%)	0	0.55 (-0.71 to 1.82)	0.3891	0.8221	27 (4.8%)	
	RBDSQ, mean (SD)	10 (47.6%)	42 (7.2%)	0.61 (-0.33 to 1.55)	0.2021	0.5635	1 (14.3%)	42 (7.4%)	-0.53 (-2.7 to 1.64)	0.6317	0.9992	14 (35.9%)	43 (7.2%)	0.38 (-0.35 to 1.12)	0.3052	0.8221	171 (30.5%)	
nical	LEDD (mg/day), mean (SD)	690.5 (±457.9)	19 (3.3%)	118.74 (-34.03 to 271.52)	0.1277	0.5441	324.7 (±224.7)	20 (3.5%)	-68.27 (-348.63 to 212.09)	0.6332	0.9992	496.6 (±443.2)	20 (3.3%)	8.54 (-106.24 to 123.32)	0.884	0.9914	514.7 (±404.7)	
er cli	PDQ-39, mean (SD)	52.0 (±26.3)	49 (8.4%)	9.17 (-1.69 to 20.04)	0.098	0.5441	26.1 (±17.7)	49 (8.6%)	-7.06 (-25.57 to 11.44)	0.4545	0.9992	34.9 (±27.2)	51 (8.5%)	-4.58 (-12.85 to 3.69)	0.278	0.8221	39.6 (±26.8)	
Othe	DBS, n (%)	3 (14.3%)	0	1.44 (-0.13 to 3.01)	0.0729	0.5441	0	0	-17.62 (-34180.02 to 34144.78)	0.9992	0.9992	1 (2.6%)	0	-0.06 (-2.23 to 2.12)	0.9588	0.9914	24 (4.3%)	
s	Diabetes, n (%)	2 (9.5%)	0	0.19 (-1.33 to 1.71)	0.8093	0.9441	1 (14.3%)	0	0.14 (-2.07 to 2.36)	0.8992	0.9992	5 (12.8%)	0	0.47 (-0.54 to 1.47)	0.3607	0.8221	55 (9.8%)	
ditie	Hypercholesterolemia, n (%)	6 (28.6%)	0	-0.43 (-1.41 to 0.55)	0.386	0.6745	2 (28.6%)	0	-0.66 (-2.35 to 1.04)	0.4466	0.9992	17 (43.6%)	0	0.15 (-0.52 to 0.81)	0.6631	0.9914	228 (40.6%)	
orbi	Cardiovascular disease, n (%)	1 (4.8%)	0	-1.55 (-3.6 to 0.51)	0.1399	0.5441	1 (14.3%)	0	-0.63 (-2.86 to 1.59)	0.577	0.9992	8 (20.5%)	0	0.12 (-0.72 to 0.95)	0.7863	0.9914	118 (21.0%)	
om	Arterial hypertension, n (%)	9 (42.9%)	0	0.11 (-0.81 to 1.03)	0.8192	0.9441	2 (28.6%)	0	-0.89 (-2.62 to 0.84)	0.314	0.9992	12 (30.8%)	0	-0.57 (-1.28 to 0.15)	0.1206	0.8221	250 (44.6%)	
J	Traumatic Brain Injury, n (%)	5 (23.8%)	0	0.15 (-0.88 to 1.18)	0.7798	0.9441	0	-	-	-	-	6 (15.4%)	0	-0.44 (-1.34 to 0.45)	0.3343	0.8221	124 (22.1%)	

642 Comparison of each type (severe, mild, risk) of *GBA* mutations and its association with clinical characterization. We used regression models (linear and

643 logistic). Data are given as mean and standard deviation (SD) for continuous clinical outcomes and as percentage for binary clinical outcomes. Models

- 644 adjusted for sex, age at assessment, and disease duration. Beta (β) regression coefficient are given with the 95% CI. Statistically significant results highlighted
- 645 in bold with (*) sign and red (p-value < 0.05). Abbreviation : p-value, unadjusted p-value; adj p-value, corrected for multiple comparisons using FDR
- 646 adjustment; AAO, age at onset; H&Y, Hoehn & Yahr; MDS-UPDRS, Movement Disorders Society Unified Parkinson's Disease Rating Scale; FOG,
- 647 freezing of gait; BDI, Beck Depression Inventory; PDSS, Panic Disorder Severity Scale; SCOPA-AUT, Scales for Outcomes in Parkinson's Disease-
- 648 Autonomic questionnaire; SAS, Starkstein apathy scale; MoCA, Montreal Cognitive Assessment; ICD, impulse control disorder; RBDSQ, REM Sleep
- 649 Behavior Disorder Screening Questionnaire; LEDD, L-dopa equivalent daily dose (mg/day); PDQ-39, Parkinson's Disease quality of life Questionnaire;
- 650 DBS, Presence of treatment by Deep Brain Stimulation

All rights reserved. No reuse allowed without permission.

Table 5. The deleterious impact of severe GBA-PD carriers in comparison with mild and risk and their clinical characteristics.

Type of data	Clinical characteristics and scales	PDG	_{BA} carrier	missing values (%)	β (95%)	<i>p</i> -value	adj <i>p-</i> value
		severe (n=21)	mild + risk (N=46)	_			
8	H&Y, mean (SD)	2.4 (±0.8)	$2.2 (\pm 0.8)$	0	0.14 (-0.24 to 0.52)	0.4719	0.7549
ale	MDS-UPDRS II, mean (SD)	12.6 (±4.4)	10.9 (±8.2)	0	0.24 (-3.18 to 3.65)	0.8922	0.9706
s/sc	MDS-UPDRS III, mean (SD)	34.8 (±15.7)	32.4 (±16.9)	3 (4.5%)	0.65 (-7.69 to 8.98)	0.8793	0.9706
ms	MDS-UPDRS IV, mean (SD)	3.0 (±4.5)	$1.0(\pm 2.2)$	0	1.33 (-0.17 to 2.82)	0.082	0.574
pto	Dyskinesias, n (%)	5 (23.8%)	4 (8.7%)	0	0.65 (-1.09 to 2.39)	0.4621	0.7549
Ē	Falls, n (%)	5 (23.8%)	7 (15.2%)	0	0.24 (-1.29 to 1.77)	0.7594	0.9601
ÂS.	Gait Disorder, n (%)	16 (76.2%)	21 (45.7%)	0	1.49 (0.25 to 2.73)	0.0188*	0.2193
to	FOG, n (%)	8 (38.1%)	7 (15.2%)	0	0.79 (-0.73 to 2.32)	0.3091	0.7549
40	Restless leg syndrome, n (%)	2 (9.5%)	8 (17.4%)	0	-0.98 (-2.81 to 0.85)	0.2952	0.7549
F -	Motor fluctuation, n (%)	5 (23.8%)	5 (10.9%)	0	0.28 (-1.36 to 1.92)	0.7348	0.9601
	BDI, mean (SD)	12.4 (±5.7)	8.0 (±5.4)	2 (3.0%)	4.03 (1.08 to 6.98)	0.0074*	0.1295
	MDS-UPDRS Part I, mean (SD)	15.0 (±6.5)	9.3 (±6.3)	0	4.91 (1.8 to 8.02)	0.0019*	0.0665
	PDSS, mean (SD)	98.3 (±20.9)	105.1 (±23.5)	3 (4.5%)	-2.79 (-14.9 to 9.33)	0.6521	0.9129
8	SCOPA-AUT, mean (SD)	17.1 (±8.0)	13.9 (±7.6)	2 (3.0%)	2.61 (-1.62 to 6.85)	0.2269	0.7542
cal	Sniffin's stick test, mean (SD)	6.4 (±3.6)	7.3 (±3.7)	1 (1.5%)	-0.86 (-2.75 to 1.02)	0.3695	0.7549
s/s	SAS, mean (SD)	15.8 (±5.2)	13.0 (±6.0)	3 (4.5%)	2.02 (-0.94 to 4.97)	0.1817	0.7542
E	MoCA, mean (SD)	24.0 (±4.7)	25.0 (±3.9)	2 (3.0%)	-0.24 (-2.4 to 1.92)	0.8292	0.9706
ptc	Constipation, n (%)	10 (47.6%)	19 (41.3%)	0	0.12 (-1.02 to 1.26)	0.8394	0.9706
E A	Dysphagia, n (%)	4 (19.0%)	11 (23.9%)	0	-0.44 (-1.83 to 0.95)	0.5348	0.8138
5	Insomnia, n (%)	6 (28.6%)	11 (23.9%)	0	-0.02 (-1.27 to 1.23)	0.9767	0.9836
Ę.	Orthostatism, n (%)	5 (23.8%)	19 (41.3%)	0	-0.61 (-1.83 to 0.61)	0.327	0.7549
ĕ	Urinary incontinence, n (%)	6 (28.6%)	19 (41.3%)	0	-0.76 (-1.97 to 0.44)	0.2156	0.7542
É	Hallucinations, n (%)	8 (38.1%)	8 (17.4%)	0	1.03 (-0.24 to 2.3)	0.1127	0.6485
ž	Excessive daytime sleepiness, n (%)	9 (42.9%)	14 (30.4%)	0	0.41 (-0.71 to 1.52)	0.4745	0.7549
	ICD, n (%)	2 (9.5%)	4 (8.7%)	0	-0.02 (-1.89 to 1.85)	0.9836	0.9836
	Syncope, n (%)	2 (9.5%)	4 (8.7%)	0	0.1 (-1.72 to 1.92)	0.9151	0.9706
	RBDSQ, mean (SD)	10 (47.6%)	15 (32.6%)	4 (6.0%)	0.48 (-0.68 to 1.64)	0.4197	0.7549
her ical nmes	LEDD (mg/day), mean (SD)	690.5 (±457.9)	473.1 (±422.4)	2 (3.0%)	66.4 (-107.09 to 239.89)	0.4531	0.7549
lin Otl	PDQ-39, mean (SD)	52.0 (±26.3)	33.5 (±25.9)	2 (3.0%)	12.77 (0.45 to 25.09)	0.0422*	0.3692
• ³ E	DBS, n (%)	3 (14.3%)	1 (2.2%)	0	0.76 (-2.17 to 3.69)	0.6122	0.8928
tie	Diabetes, n (%)	2 (9.5%)	6 (13.0%)	0	-0.26 (-2.0 to 1.48)	0.7681	0.9601
idi	Hypercholesterolemia, n (%)	6 (28.6%)	19 (41.3%)	0	-0.47 (-1.63 to 0.69)	0.4269	0.7549
s s	Cardiovascular disease, n (%)	1 (4.8%)	9 (19.6%)	0	-1.71 (-3.92 to 0.5)	0.1297	0.6485
ă	Arterial hypertension, n (%)	9 (42.9%)	14 (30.4%)	0	0.66 (-0.49 to 1.81)	0.2586	0.7542
S	Traumatic Brain Injury, n (%)	5 (23.8%)	6 (13.0%)	0	0.82 (-0.55 to 2.2)	0.2385	0.7542

653 We used regression models (linear and logistic). Data are given as mean and standard deviation 654 (SD) for continuous clinical outcomes and as percentage for binary clinical outcomes. Models adjusted for sex, age at assessment, and disease duration. Beta (β) regression coefficient are 655 656 given with the 95% CI. Statistically significant results highlighted in bold with (*) sign and red 657 (p-value < 0.05). Abbreviation : p-value, unadjusted p-value; adj p-value, corrected for multiple 658 comparisons using FDR adjustment; AAO, age at onset; H&Y, Hoehn & Yahr; MDS-UPDRS, 659 Movement Disorders Society - Unified Parkinson's Disease Rating Scale; FOG, freezing of 660 gait; BDI, Beck Depression Inventory; PDSS, Panic Disorder Severity Scale; SCOPA-AUT, 661 Scales for Outcomes in Parkinson's Disease-Autonomic questionnaire; SAS, Starkstein apathy 662 scale; MoCA, Montreal Cognitive Assessment; ICD, impulse control disorder; RBDSQ, REM 663 Sleep Behavior Disorder Screening Ouestionnaire; LEDD, L-dopa equivalent daily dose 664 (mg/day); PDQ-39, Parkinson's Disease quality of life Questionnaire; DBS, Presence of 665 treatment by Deep Brain Stimulation.

666 12. Figures

667

Figure 1: Description of the study dataset and methodology. 668

All rights reserved. No reuse allowed without permission.

Figure 2. Comparison of variant calls from PacBio, WGS and NeuroChip genotyping data using 72 matched samples for the *GBA* gene and validated by Sanger sequencing.

A)**Rec*Ncil (*p.L483P*; *p.A495P*; *p.V499V*); Sanger sequencing results : TP, true positive ; FP, false positive.
Sample count gives total number of samples carrying the variant found by each method.

B) Comparative study of *GBA* variants detection by the GBA-targeted PacBio and NeuroChip array

675 methods in the Luxembourg Parkinson's study. Due to overrepresented variants with the NeuroChip

array, we applied for the detected variants a study-wide threshold of 1% in our cohort.

669

678 Figure 3: Comparative study of GBA variants detection by the GBA-targeted PacBio and

679 NeuroChip array methods in the Luxembourg Parkinson's study. Due to overrepresented

680 variants with the NeuroChip array, we applied for the detected variants a study-wide threshold

681 of 1% in our cohort.

All rights reserved. No reuse allowed without permission.

	Prediction		Subjects PD (AA0) HC (AAA)		Subjects		protein	nucleotide	dbSNP	Höglinger et al	ClinVar	ClinVar	HGMD	HGMD	DEVEI	CADD	GnomAD	20	domain
Frediction		" F			change	change	UDSNF	Hoginiger et al.	Significance	Cilitvai	HGMD	interpretation		CADD	NFE	30	uoman		
risk	c (2 (50/66)	3 (37/38/66)	K13R	c.A38G	rs150466109	VUS	Benign	GD	DM	GD	Т	Т	ultra-rare	/	/		
sev	/ere		1 (38)		Y61H	c.T181C	rs1266341749	-	-	-	-	-	т	Т	ultra-rare	coil-loop	1		
risk	c i			2 (56/58)	R78C	c.C232T	rs146774384	-	-	-	DM	PD susceptibility	Т	D	ultra-rare	β-sheet	11		
ber	nign			1 (60)	A97G	c.C290G	-	-	-	-	-	-	Т	Т	-	coil-bend			
sev	/ere		1 (56)		L213P	c.T638C	-	VUS	-	-	DM	PD	D	D	-	β-sheet	III		
sev	/ere		1 (68)		A215D	c.C644A	-	-	-	-	DM	GD	D	D	-	β-sheet			
risk	c I		1 (65)	1 (70)	E427K	c.G1279A	rs149171124	VUS	Uncertain significance	Parkinsonism	DM	Reduced activity	Т	Т	ultra-rare	coil-turn	I		
sev	/ere		1 (62)		R434C	c.C1300T	rs747284798	-	-	-	DM	GD 1	D	D	-	coil-loop	1		
risk	c l		1 (60)	2 (38/61)	A495P	c.G1483C	rs368060	-	Benign	GD	DM	-	т	Т	ultra-rare	β-sheet	11		
mil	d		1 (77)		H529R	c.A1586G	-	VUS	-	-	DM	PD	Т	Т	-	β-sheet	II		
mil	d		1 (78)		R534C	c.C1600T	rs146519305	-	-	-	-	-	Т	Т	ultra-rare	coil-loop	11		
risk	c		2 (61/64)	1 (61)	T408T	c.G1224A	rs138498426	VUS	Uncertain significance	GD	DM	PD	-	-	ultra-rare	buried residue			

682 Figure 4. Sub-classification of VUS found in the Luxembourg Parkinson's study.

A) *GBA* missense and stop gain variants mapped onto the three-dimensional structure of GCase.
Domain 1 is shown in dark yellow, domain 2 in blue, and domain 3 in pink. Variants classified as severe
are coloured red, mild are coloured orange, risk in yellow and VUS are coloured purple. B) GBA,
glucocerebrosidase gene; GD, Gaucher's disease; PD, Parkinson's disease. HGMD, The Human Gene
Mutation Database; REVEL, Rare Exome Variant Ensemble Learner; CADD, Combined Annotation
Dependent Depletion; gnomAD, The Genome Aggregation Database. DM, Disease causing mutation;
D, Deleterious; T, Tolerate. Variants classified as severe are coloured red, mild are coloured orange,

690 risk in yellow and VUS are coloured purple.