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The overarching theme of this PhD thesis is human mobility and its external-

ities, particularly in the context of labour and health economics. Through rigorous

modelling and analysis, the three chapters of the thesis demonstrate the potential

benefits of policies that regulate human mobility.

In the first chapter of my PhD, I examine how language training can improve the

functioning of the labour market, with a particular focus on immigrants with high skills

who face language barriers. I argue that fully funding the cost of language acquisition

for migrants can bring significant benefits to the economy and migrants, but may

marginally worsen the labour market performance of low-skilled natives. Using a search

and matching framework with two-dimensional skill heterogeneity, I model the effects

of a language acquisition subsidy on migrants’ labour market integration and its impact

on natives’ labour market performance. My study finds that subsidizing language

acquisition costs may increase the GDP of the German economy by approximately ten

billion dollars by decreasing the aggregate unemployment rate and skill mismatch rate

and increasing the share of job vacancies requiring high generic skills.

The second chapter of my PhD explores the challenges involved in devising

social contact limitation policies as a means of controlling infectious disease transmis-

sion. Using an economic-epidemiological model of COVID-19 transmission, I evaluate
ii



the effectiveness of different intervention strategies and their consequences on public

health, social welfare and economic outcomes. The findings emphasize the importance

of responsiveness in implementing social contact limitations, rather than solely focus-

ing on their stringency, and suggest that early interventions lead to the lowest losses in

economy and mental well-being for a given number of life losses. The study has broader

implications for managing the societal impact of infectious diseases and highlights the

need to continue refining our understanding of these trade-offs and developing adapt-

able models and policy tools to safeguard public health while minimizing social and

economic consequences. Overall, the study offers a robust and versatile framework

for understanding and navigating the challenges posed by public health crises and

pandemics.

The third chapter of my PhD builds on the economic-epidemiological model

developed in Chapter 2 to analyze the multifaceted effects of vaccine hesitancy in

controlling the spread of infectious diseases, with a particular focus on the COVID-19

pandemic in Belgium. The study utilizes actual vaccination rates by age group until

June 2021 and simulates the following months by incorporating realistic properties

such as temporary immunity, age-specific vaccination hesitancy rates, daily vaccination

capacity, and vaccine efficacy rate. The baseline scenario with an overall 27.1% vaccine

hesitancy rate indicates that current vaccination rates in Belgium are sufficient to

control the spread of COVID-19 without imposing social contact limitations. However,

hypothetical scenarios with higher disease transmission rates demonstrate the high

costs of vaccine hesitancy, resulting in significant losses in labour supply, mental well-

being, and life losses.

Throughout this thesis, I have described the costs and benefits induced by

mobility, and shown that mobility policies make winners and losers. In Chapter 1,

subsidizing the cost of language acquisition for migrants can bring significant benefits

to the economy and migrants, but may marginally worsen the labour market perfor-

mance of low-skilled natives. In Chapter 2, stringent policies alleviate health losses,

but they impact economic activity and mental health. In Chapter 3, the health exter-

nalities generated by human interactions impose a potential tradeoff between values,

namely the freedom to move and the freedom to choose to get vaccinated. In each of
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these chapters, I quantify these tradeoffs.

Another important insight from this thesis is the need to incorporate be-

havioural aspects into macro models evaluating the consequences of policies related

to human mobility. In the thesis, these aspects include individual investments in lan-

guage training, decision-making on infection avoidance, social contacts, labour supply,

and vaccination decisions. can lead to more effective policies that balance the interests

of various stakeholders.

Overall, this thesis contributes to the literature on human mobility by high-

lighting the potential benefits and challenges associated with it, and the need for

nuanced and responsive policymaking that takes into account behavioural aspects and

externalities. The insights gained from this thesis can be relevant for future research

in economics on topics related to human mobility, public health, and labour market

integration.
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1 Migration, Language Proficiency and Train-

ing: An Equilibrium Matching Approach

Abstract

In this chapter, I quantify the effects of subsidizing immigrants’ language acqui-

sition costs on the labour market performance of both immigrant and native workers.

To this end, I extend the canonical Diamond-Mortensen-Pissarides Framework into a

search and matching model with bi-dimensional skills: a generic and a language skill,

which can also be interpreted as a country-specific skill. This language skill acts as

an eligibility constraint to be hired at some jobs. I calibrate my model using data on

Polish and Turkish immigrants in Germany. My simulations suggest that language

acquisition subsidies improve the labour market performance of immigrant workers

and high-skilled native workers, while they are slightly detrimental for low-skilled na-

tive workers. High-skilled immigrants are the biggest gainers with an expected income

increase of 22% and an unemployment rate decrease from 4.63% to 2.69%. Low-skilled

natives are on average only marginally suffering from this subsidy policy, with an ex-

pected income loss of 0.07% and an unemployment rate increase from 3.49% to 3.59%.

On the aggregate level, fully subsidizing the financial costs of language acquisition may

decrease the unemployment rate from 3.50% to 3.36% and increase productivity by

0.25%.

1.1 Introduction

The increase in the inflow of immigrants over the past years is occupying a

significant part of the public debate in developing countries. One of the most pressing

issues pertains to immigrants’ economic impact, both in terms of their integration and

their impact on natives’ employment and wages. At the heart of these potentially

conflicting concerns, language barriers appear to play a crucial role. On one hand,

they harm immigrants’ employment rate, job quality and earnings. On the other
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hand, language barriers reduce the competition that natives must face. While policies

aiming at fostering the language acquisition process of immigrants can be used as

efficient tools to improve the economic integration of immigrants, such programs are

generally limited in the level of language proficiency that they allow immigrants to

achieve. In this paper, I assess the net impacts of alleviating such barriers on firms

and on natives and immigrants of various skill levels.

Evidence shows that immigrants from the upper tail of the skill distribution

benefit highly from acquiring proficiency in their host country’s language, while the

role of language proficiency appears to be either absent or very low in improving the

labour market performance of low-skilled immigrants. Further evidence suggests that

when the degree of competition between low-skilled immigrants and low-skilled natives

is high, immigration may be harmful to the latter. Hence, policies aimed at fostering

integration may generate externalities on natives that need to be accounted for.

While the literature about the impact of language on labour market outcomes

is overwhelmingly empirical, it lacks a general equilibrium perspective on allocative ef-

ficiency, job creation and wages. To fill in this gap, I build a model that deals with the

assignment problem of workers to job qualities in an environment where workers pos-

sess and firms require two-dimensional skills: (i) a generic skill level (i.e. education),

(ii) a country-specific skill level (i.e. language proficiency), and a costly skill upgrade

possibility. The framework I propose provides answers to the following research ques-

tions: First, how much can an economy benefit from subsidizing immigrants’ language

acquisition costs? Second, what can be the underlying dynamics that lead to the

economic benefits of incentivizing immigrants’ language acquisition? Third, which

worker groups (e.g. natives vs immigrants, high-skilled vs low-skilled) can benefit or

lose in terms of employment rate, expected income, and job quality from incentivizing

immigrants’ language acquisition?

In my baseline scenario, fully subsidizing immigrants’ financial language acqui-

sition costs results in 67% of the high-skilled immigrants and 39% of the low-skilled

immigrants learning the host-country language. As a result of this subsidy, my model

predicts a 0.25% increase in productivity, which translates into ten billion euros an-

nually for an economy the size of the German economy. The main driving factor
2



behind this productivity gain is an increase in the job creation rate requiring high

skills. Assuming a fixed stock of immigrants, I estimate that the productivity gain of

this language acquisition subsidy pays off its cost in around eleven years. I predict an

increase from 27.5% to 29.2% in the share of job vacancies requiring high skills among

all vacancy creations.

I find that the aggregate unemployment rate would decrease from 3.50% to

3.36% in the scenario of fully subsidizing immigrants’ financial language acquisition

costs. As the effect of the language barrier is milder and immigrants have access

to more job vacancies, the skill mismatch rate falls from an initial 6.52% to 4.60%.

The unemployment rate among high-skilled immigrants falls drastically from 4.63% to

2.69%. Low-skilled immigrants enjoy an unemployment rate decrease from 6.21% to

5.65%. High-skilled natives see almost no effect with an unemployment rate change

from 1.51% to 1.50%. Low-skilled natives face a higher unemployment rate with an

increase from 3.49% to 3.59%.

In terms of expected income, high-skilled immigrants are the main gainers of

the language acquisition cost subsidy policy. My model predicts a 22.6% increase in

their expected income, as a result of both a lower unemployment rate and a higher job

quality. This policy creates a minor spillover on the rest of the population. All other

worker groups face an expected income change of less than 1%, being negative only

the low-skilled natives. Finally, incentivizing immigrants’ language acquisition process

yields a negative effect on income equality. Indeed, income inequality increases by

1.75%. This result is driven by the fact that only high-skilled immigrants benefit

significantly more from this policy than other groups, whose income only increases

by less than 1%. As the main gainers are high-skilled immigrants, income inequality

between high- and low-skilled worker groups increases. For a given generic skill level,

within-group inequality decreases for the high-skilled while there is almost no change

for the low-skilled.

The rest of the chapter is organized as follows: Section 2 presents a literature

review on motivation and the proposed methodology. Section 3 explains the theoretical

framework. Section 4 characterizes the equilibrium. Section 5 explains data sources

and parameter choices. Section 6 presents and discusses the simulation results. Finally,
3



Section 7 concludes.

1.2 Literature Review

Borjas (1994) points out that the political discussion on the impact of immi-

gration on the host economy is focused on the following three questions: “How do

immigrants perform in the host country’s economy? What impact do immigrants have

on the employment opportunities of natives? Which immigration policy most benefits

the host country?” These three questions are at the heart of this paper. This section

provides a literature review of the studies related to these questions with a specific

focus on the role of host country language proficiency.

1.2.1 Migrant economic integration and language acquisition

Chiswick (1978) and Carliner (1980) are among the first studies in the literature

on immigrants’ performance in host countries. They reach the conclusion that immi-

grants in the US start working with an earning gap, over a period of 10-15 years catch

up with the natives and eventually perform better than them in the labour market in

terms of earnings. The argument used to explain this finding is that immigrants were

self-selected from the upper tail of the skill distribution, whilst they lack US-specific

human capital (such as language proficiency) when they arrive, they accumulate US-

specific skills over time and become more productive than natives. However, Borjas

(1985) shows that these results are highly overestimated for some immigrant groups.

Later, Borjas (1987) adapts the Roy (1951) model of self-selection to immigration.

He concludes that depending on the factors in source countries, the immigrants are

self-selected from the upper- and lower-tails of the skill distributions. Therefore, de-

pending on their skill levels, their performance may exhibit better or worse trajectories

in comparison with the natives.

According to the literature, one important factor underlying the wage conver-

gence of some immigrant groups is the acquisition of proficiency in the host country’s

language. Grenier (1984) demonstrates that language attributes explain one-third of

4



the wage gap of Hispanic white workers in comparison with non-Hispanic workers in

the US, and emphasizes the policy need to assist Hispanic Americans in their English

learning process. Chiswick (1991) shows that for an additional year of residence in

the US, the probability of becoming proficient in English increases only by 3 per cent

among the illegal aliens registered in Los Angeles. This finding supports the relevance

and importance of policies aiming at fostering the language proficiency acquisition of

immigrants.

There is an abundance of recent studies on the impact of host country language

proficiency on immigrants’ labour market outcomes. By using data from many different

countries, they come to a consensus that language proficiency is positively correlated

with higher earnings and higher employment probabilities. Dustmann and Fabbri

(2003) is among the first studies that find the positive effect of language on earnings and

job-finding probabilities, in their study on ethnic minorities in the UK. One possible

explanation for the effect on earnings can be that, instead of a direct effect on earnings,

language proficiency leads to a higher employment rate and a higher probability of

working at better-quality jobs. Once the selection is taken into account, language

proficiency does not seem to result in higher earnings (Aldashev et al. (2009)).

Although language proficiency is positively correlated with labour market out-

comes, this correlation varies substantially between high- and low-skilled workers. For

more educated workers, the return on earnings is more significantly pronounced for

Hebrew proficiency in Israel (Berman et al. (2003)), Catalan proficiency in Catalonia

(Di Paolo and Raymond (2012)), Spanish proficiency in Spain (Budria and Swed-

berg (2015)). None of these studies finds a statistically significant effect of language

proficiency on earnings for workers with low education. In line with these findings,

Hayfron (2001) shows no effect of Norwegian proficiency on the labour market out-

comes of potentially low-skilled immigrants from Third World countries. Isphording

(2014) comments on this topic as "Language skills are shown to be complementary

to further forms of pre-migration acquired human capital, acting as the medium of

translation to apply home country knowledge in the host county labour market."

Two papers shed light on language requirements in occupations. Chiswick and

Miller (2010) find that, in the US, higher earnings are observed for workers having
5



better English skills and workers working at occupations with greater English require-

ments, implying a high incentive for a match between workers’ English skills and

firms’ language requirements. This relationship exists both for the natives and for the

immigrants. Additionally, Autor et al. (2006) point out that high-skill workers per-

form different and more interactive (or communicative) tasks compared with low-skill

workers.

In summary, language acquisition brings benefits in terms of better wages and

better employment probabilities. Language requirements highly differ between jobs

requiring high skills and low skills. The effect of language proficiency, thus, varies

substantially for high- and low-skilled workers. Therefore, workers evaluate the cost

of and expected benefit from language acquisition to decide on their investment in it.

1.2.2 Impact of immigrants on the employment opportunities of natives

This literature consists of theoretical and empirical papers, contrary to the lit-

erature on the effects of language proficiency on labour market outcomes which lacks

a sound theoretical framework. The evidence is mixed in the literature that studies

find either positive or negative effects on natives’ labour market performance. These

effects depend on whether immigrants are substitutes or complements of natives in

the labour market. If immigrants and natives in the same skill group compete for

jobs in the corresponding skill level, immigration has a detrimental effect on natives’

labour market outcomes. As the intensity of this competition decreases, this detrimen-

tal effect tends to disappear and starts to exhibit a positive effect due to the positive

externalities the immigrants create. This relationship is referred to as the degree of

substitutability between natives and immigrants. The effect of immigration on natives

depends on the skill composition of the immigrants and the degree of substitutability

between immigrants and natives in each skill group (Card, 2009; Ottaviano and Peri,

2012). Two seminal studies, Borjas (1990) and Card (2001) demonstrate that when

low-skilled immigrants are employed as substitutes for low-skilled natives, immigra-

tion slightly reduces the employment rates of the low-skilled natives, while there is no

visible effect on wages. A study showing a positive effect of immigration is Sussman

6



and Zakai (1998). This study provides evidence of the complementarity between Rus-

sian and Israeli physicians in Israel. They demonstrate that Russian physicians could

only take low-profile generalist jobs in Israeli hospitals, allowing their Israeli counter-

parts to promote to better-paying ranks. As a result, Russian high-skilled immigrants

ameliorated the labour market outcomes of high-skilled Israeli natives.

Peri and Sparber (2009) propose a general equilibrium model by using a Nested-

CES production structure to explain this issue and argue that low-skilled immigrants

are more advantageous for jobs requiring manual and physical tasks, whereas the same

relationship holds for the low-skilled natives and language-intensive tasks. This study

also provides evidence of the complementarity between low-skilled immigrants and

low-skilled natives, in the US. It shows that low-skilled immigrants are concentrated

in physically intensive occupations in the sectors of agriculture, construction, and per-

sonal or household services. On the other hand, they rarely engage in communication-

intensive activities like salespersonship or supervision, because they lack relevant

country-specific skills, including language skills. They identify two critical factors in

the wage formation of low-educated natives, namely: (i) whether immigrants compete

for natives’ jobs or they take jobs where they are inherently advantageous, and (ii)

whether natives change their occupational choices to protect themselves from immi-

gration. When manual tasks are outsourced to low-skilled immigrants and low-skilled

natives shift to language-intensive jobs, even low-skilled natives benefit from immigra-

tion due to their shift to better jobs within low-skilled jobs. Lewis (2013) argues that

this divergence in occupation choices may partly be due to the worse language skills of

immigrants. Although this theoretical framework is very relevant and explanatory, it

has one significant drawback: it rules out the possibility of skill downgrading because

it assumes that all workers work at jobs exactly matching their skills. Muysken et al.

(2015) and Amuedo-Dorantes and De la Rica (2011) point out that skill downgrading

is substantial for immigrants, in their studies by using German and Spanish data,

respectively.

7



1.2.3 Methodology

Diamond-Mortensen-Pissarides Framework (DMP) is the benchmark model of

frictional unemployment (Diamond (1982), Mortensen (1982), and Pissarides (1985)).

The baseline DMP Framework has three main components: The number of matches

is determined according to a constant returns to scale matching function depending

on the number of unemployed workers and the number of open vacancies; firms can

enter the market and open vacancies freely with an incurred cost of vacancy creation;

the surplus of a match is shared between the worker and the firm by Nash Bargaining.

This setting provides a useful tool to analyze the effects of policies on key aggregate

labour market outcomes by determining the equilibrium values of the wage rate, the

unemployment rate and the number of job vacancies. Since using homogeneous agents

as in the baseline model leaves out important labour market outcomes such as job-

to-job transitions, this search and matching framework has been extended in various

ways, including heterogeneity of workers and/or firms by skill levels.

In this context, Albrecht and Vroman (2002) develop a search and matching

framework with two skills on both sides of the market. On-the-job search is not

included in their model. They present the conditions for a cross-skill matching equi-

librium, where high-skilled agents are willing to take low-skilled jobs, and an ex-post

segmented equilibrium with no skill mismatch. One of the early studies that used

two-sided skill heterogeneity with on-the-job search is Gautier (2002). With on-the-

job search, high-skilled workers’ willingness to accept low-quality jobs depends on the

relative productivity of jobs and the workers’ probability to find a better job. Dolado

et al. (2008) explore the phenomenon of on-the-job search in a labour market char-

acterized by heterogeneous jobs and workers. The authors use a matching model to

analyze how the decision to search for a new job while currently employed affects

the distribution of workers across jobs, wage inequality, skill mismatch, as well as the

overall efficiency of the labour market. The study finds that on-the-job search can

have both positive and negative effects, and suggests that policy interventions aimed

at reducing search frictions may improve labour market outcomes.
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1.3 The Model

This section describes the setting with two-dimensional skill heterogeneity on

both sides of the matching market, first without a skill upgrade mechanism. I start

by presenting the model’s assumptions.

1.3.1 Environment and Main Assumptions

Time is continuous. The economy is populated by workers with a population

size normalized to one. Workers have two skill dimensions: a generic skill dimension

and a host-country language proficiency dimension, which can both be either low or

high. Skill endowments of workers are denoted by (gi, si) ∈ {l, h}×{l, h} 1 with the g

representing the generic skill and s representing host-country language proficiency, the

superscript i relates to the individual i’s skills. Firms open job vacancies by announcing

minimum skill requirements at each skill dimension. Skill requirements are denoted by

(gj, sj) ∈ {l, h} × {l, h}, where the superscript j relates to firm j’s skill requirements

for the job it advertised. A worker has to satisfy the minimum skill requirements

announced by a firm, gi ≿ gj and si ≿ sj, in order to be productive. There is free

entry for firms to create job vacancies. All workers and firms are risk-neutral, live

infinitely and discount the future at the same discounting rate, r, lower than one.

Production takes place when a firm and a worker match. Produced output is

shared between the firm and the worker in a match. Workers’ share or their wages

is determined via a wage bargaining mechanism. Unemployed workers receive a flow

utility that can be interpreted as home production or leisure gain. Workers are free

to apply to any job they prefer over their current employment status. The matching

mechanism is random. The number of matches in a job market, characterized by the

minimum skill requirements, is assumed to have a closed-from matching function that

depends on the number of job vacancies and the number of job applicants in this

market.

Job destruction in the economy occurs via a) an exogenous channel: at each
1l (h) stands for low-skill (high-skill) with a preference relation h ≿ l.
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job market, exogenous job destruction arrives at a Poisson rate, and b) an endogenous

channel: some workers quit their jobs when they find a job yielding a higher lifetime

utility.

1.3.2 Population dynamics and matching rates

The population consists of employed and unemployed workers. Workers en-

dowed with high skills in both dimensions are eligible to work in all sectors. I use

the following notation for the population shares of workers with high-high skill en-

dowments working at each of the four sectors: πhh,hh, πhh,hl, πhh,lh, πhh,ll. Workers

with high generic skills and low language proficiency endowments are eligible to work

in two sectors: hl and ll. Therefore, they are πhl,hl, πhl,ll. Similarly, there are two

possibilities for the workers with low generic skill and high language proficiency en-

dowments: lh and ll. The population shares of these workers are πlh,lh, πlh,ll. Workers

with low-skill endowments at both dimensions can only work at the ll -sector: πll,ll. Fi-

nally, there are four types of unemployed workers according to their skill endowments:

πhh,u, πhl,u, πlh,u, πll,u.

Without a skill upgrade mechanism, cumulative population shares of four worker

groups, γ(gi,si) , ∀(gi, si) ∈ {l, h} × {l, h}, are constant, where the sum of γ’s is equal

to 1 for all t:

γ(g
i,si) = π

(gi,si),u
t +

∑
gi≿gj̃

si≿sj̃

π
(gi,si),(gj̃ ,sj̃)
t

1 = γhh + γhl + γlh + γll

(1)

The population dynamics of employed workers can be explained as follows. At

each time t, the population share of each worker-sector match, π(gi,si),(gj ,sj)
t , changes

by an outflow rate and an inflow rate. Outflow occurs via two channels. First, some

matches at each sector face a job destruction shock at a sector-specific constant rate,

χ(gj ,sj) , ∀(gj, sj) ∈ {l, h} × {l, h}, leaving the firm with an open vacancy and the

worker unemployed. Second, some workers employed at (gj, sj) find a more preferred
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job, (gj̃, sj̃), via on-the-job search and vacate their positions. Inflow occurs simply

via matches between job seekers and open job vacancies in each sector, that is the

job finding rate2, p(gj ,sj), times the sum of the workers that find (gj, sj) preferable

over (gj̃, sj̃),
∑

(gj ,sj)≿(gj̃ ,sj̃)

π(gi,si),(gj̃ ,sj̃). As a result, the following equation represents

the population dynamics:3

π̇
(gi,si),(gj ,sj)
t = −

(
χ(gj ,sj)+

∑
(gj ,sj)≾(gj̃ ,sj̃)

p(g
j̃ ,sj̃)

)
π
(gi,si),(gj ,sj)
t +p(g

j ,sj)
∑

(gj ,sj)≿(gj̃ ,sj̃)

π(gi,si),(gj̃ ,sj̃)

(2)

The number of worker-firm matches implies the number of the unemployed as

γ(g
i,si)’s are constant.

A worker with skills (gi, si) employed at sector (gj̃, sj̃) would be willing to apply

a sector (gj, sj) if and a) skills of the worker satisfy the minimum skill requirements of

this sector, gi ≿ gj and si ≿ sj, and b) a) this sector offers them a higher asset value,

(gj, sj) ≿ (gj̃, sj̃). Therefore, the number of workers that would be job seekers at each

sector, Π(gj ,sj)
t can be expressed by the following equation:

Π
(gj ,sj)
t =

∑
gi≿gj

si≿sj

(
γ(g

i,si) −
∑

(gj ,sj)≾(gj̃ ,sj̃)

π
(gj ,sj),(gj̃ ,sj̃)
t

)
(3)

Here, the first summation stands for the first condition. Only workers that satisfy the

skill requirements can be job seekers at sector (gj, sj). The terms within parentheses

express that among workers with skills (gi, si) only the unemployed ones and those that

are employed at less preferred sectors (gj̃, sj̃) would be job-seekers at sector (gj, sj).

Job seekers and firms with open job vacancies match randomly. I assume the

following standard Cobb-Douglas function, which has been widely used in the literature

(Blanchard and Diamond [1989], Petrongolo [2001]), as the matching function giving

the number of matches at jobs with minimum skill requirements (gj, sj) at time t,
2The job finding rates are given by the equation (5).
3The whole set of equations governing the time derivatives of the population shares of each worker-

firm match is given in Appendix 1.8.1 as the equation set (21).
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M
(gj ,sj)
t .

M
(gj ,sj)
t = A(gj ,sj)(Π

(gj ,sj)
t )α(v

(gj ,sj)
t )1−α (4)

where A(gj ,sj) is a scale parameter, α(gj ,sj) stands for the elasticity of the number of

matches with respect to the number of job seekers and v
(gj ,sj)
t is the number of open

vacancies at sector (gj, sj).

Job finding rate at sector (gj, sj) at time t, p(g
j ,sj)

t , is simply the matching rate

divided by the number of applicants:

p
(gj ,sj)
t = A(gj ,sj)(Π

(gj ,sj)
t )α−1(v

(gj ,sj)
t )1−α (5)

In the same fashion, worker finding rates, q(g
j ,sj)

t , are matching rates divided

by the number of vacancies for each sector:

q
(gj ,sj)
t = A(gj ,sj)(Π

(gj ,sj)
t )α(v

(gj ,sj)
t )−αj (6)

1.3.3 Asset values of firms

In case of a match between a worker endowed with skills (gi, si) and a firm with

skill requirements (gj, sj), production takes place. Each firm pays a fraction of the

produced output, y(gi,si),(gj ,sj), to their worker as wage, w(gi,si),(gj ,sj)
t . Each match at

sector (gj, sj) may end through the exogenous job destruction channel at rate χ(gj ,sj)

or the endogenous channel of losing their worker to another sector due to on-the-job

search. Therefore, the asset value of a filled vacancy is the remainder of the output

after wage payoff, (y(gi,si),(gj ,sj) −w
(gi,si),(gj ,sj)
t ), minus the expected value loss due to a

possible end of a match, plus the time derivative of the asset value, J̇ (gi,si),(gj ,sj)
t :4

4The whole set of equations governing the asset values of firms are given in Appendix 1.8.1 as the
equation set (22).
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rJ
(gi,si),(gj ,sj)
t = y(g

i,si),(gj ,sj) − w
(gi,si),(gj ,sj)
t + J̇

(gi,si),(gj ,sj)
t

− (χ(gj ,sj) +
∑
gi≿gj̃

si≿sj̃

(gj ,sj)≾(gj̃ ,sj̃)

p(g
j̃ ,sj̃))J

(gi,si),(gj ,sj)
t (7)

Holding a job vacancy incurs a fixed vacancy holding cost, k(gj ,sj). We let V (gj ,sj)
t

denote the asset value of holding a job vacancy. A firm with a job vacancy with a

skill requirement (gj, sj), matches with a worker at rate q(g
j ,sj)

t , and a match yields an

asset value increase from V
(gj ,sj)
t to J (gi,si),(gj ,sj)

t in case of a match with a worker with

skill endowments (gi, si). The asset value gain of firms at sector hh is straightforward,

(Jhh,hh
t −V hh

t ), as they can only match with hh-type workers. Thus, their expected gain

is the probability of matching with a worker times the asset value gain, (Jhh,hh
t −V hh

t ).

As the other sectors allow for matches with workers over-qualified with at least one

skill requirement, their expected asset value gain in case of a match depends on the

probabilities of matching with each worker type and the corresponding asset values of

filled jobs, J (gi,si),(gj ,sj)
t . Therefore, the asset values of holding job vacancies are:5

rV
(gj ,sj)
t =− k(g

j ,sj) + V̇
(gj ,sj)
t + q

(gj ,sj)
t

(( ∑
gĩ≿gj

sĩ≿sj

J (gĩ,sĩ),(gj ,sj)
∑

(gj̃ ,sj̃)≾(gj ,sj)

π
(gĩ,sĩ),u
t +

∑
(gj̃ ,sj̃)≾(gj ,sj)

π
(gĩ,sĩ),(gj̃ ,sj̃)
t

Π
(gj ,sj)
t

)
− V

(gj ,sj)
t

)

(8)

Here, the term inside the second summation gives the share of workers with skills

(gĩ, sĩ) among all job-seekers for a job with skill requirements (gj, sj). A worker of

(gĩ, sĩ) skills would be willing to relocate to a (gj, sj)-job when being unemployed or

working at a less preferred job, (gj̃, sj̃) ≾ (gj, sj). As the search is random, this share

is equal to the probability of finding a (gĩ, sĩ)-worker. The first summation simply
5The whole set of equations governing the asset values of holding a vacancy are given in Appendix

1.8.1 as the equation set (23).
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sums worker types satisfying (gj, sj) skill requirements.

1.3.4 Asset values of workers

Unemployed workers engage in job search and can form a match at a job finding

rate p(g
j ,sj)

t with a firm holding a job vacancy at sector (gj, sj) in case they are eligible

to seek a job at this sector. An unemployed worker with skill endowments (gi, si)

that matches with a firm with skill requirements (gj, sj) enjoys an asset value increase

from U
(gi,si)
t to E(gi,si),(gj ,sj)

t . Furthermore, they benefit from an unemployment ben-

efit at a rate b. Therefore, the asset value of an unemployed worker is the value of

the unemployment benefit, plus the time derivative of the asset value of staying un-

employed, plus the expected asset value gain from finding a job. The following set

of equations gives the asset values of the unemployed workers in the absence of skill

upgrade possibility:6

rU
(gi,si)
t = b+ U̇

(gi,si)
t +

∑
gi≿gj̃

si≿sj̃

p
(gj̃ ,sj̃)
t

(
E

(gi,si),(gj̃ ,sj̃)
t − U

(gi,si)
t

)
(9)

I introduce the skill upgrade mechanism as follows. Immigrant workers are all

assumed to be endowed with low language skills and may opt for acquiring high lan-

guage skills by paying a cost, c, for this investment. Whereas native workers (hh- and

lh-types) are already endowed with high language skills, and thus have no maximiza-

tion problem. In order to take into account the dual nature of language acquisition

costs, i.e. a monetary cost and a heterogeneous effort component, I assume this cost

has a mean of µ and is distributed normally with a standard deviation σ, c ∼ N (µ, σ).

The benefit of investing in language acquisition, in other words upskilling from hl- to

hh-type or upskilling from ll- to lh-type, is that they then become eligible for jobs

requiring a high language skill. Thus, it is optimal for an immigrant worker that is

subject to a cost of c to upgrade their language skills if its benefit exceeds its cost,

c. The equations governing this mechanism for unemployed workers can be written as
6The whole set of equations governing the asset values of unemployed workers without skill acqui-

sition are given in Appendix 1.8.1 as the equation set (24).
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follows: 7

rU
(gi,h)
t = b+ U̇

(gi,h)
t +

∑
gi≿gj̃

sj̃

p
(gj̃ ,sj̃)
t

(
E

(gi,h),(gj̃ ,sj̃)
t − U

(gi,h)
t

)
(10)

rU
(gi,l)
t (c) = max

{
b+ U̇

(gi,l)
t +

∑
gi≿gj̃

p
(gj̃ ,l)
t

(
E

(gi,l),(gj̃ ,l)
t −U

(gi,l)
t

)
,−c+ rU

(gi,h)
t (c)

}
(11)

The asset values of the employed workers, E(gi,si),(gj ,sj)
t , can be written in the

following way. A worker with skill endowments (gi, si) employed at sector (gj, sj)

earns a wage at rate w(gi,si),(gj ,sj)
t . At each instant, they face the risk of exogenous

job destruction at rate χ(gj ,sj). In case of exogenous job destruction, their asset value

decreases from E
(gi,si),(gj ,sj)
t to the asset value of being unemployed U

(gi,si)
t . Those

seeking a job at a sector (gj, sj) providing a higher asset value may form a match

at probability p
˜(gj ,sj)

t and consequently enjoy a value increase from E
(gi,si),(gj ,sj)
t to

E
(gi,si), ˜(gj ,sj)
t . Therefore, the asset value of an employed worker is equal to the sum of

their wage, expected asset value gain through successful on-the-job search, the time

derivative of their asset value, minus the expected value loss due to the probability of

facing exogenous job destruction:8

rE
(gi,si),(gj ,sj)
t = w

(gi,si),(gj ,sj)
t + Ė

(gi,si),(gj ,sj)
t − χ(gj ,sj)(E

(gi,si),(gj ,sj)
t − U

(gi,si)
t )

+
∑
gi≿gj̃

si≿sj̃

(gj ,sj)≾(gj̃ ,sj̃)

p
(gj̃ ,sj̃)
t

(
E

(gi,si),(gj̃ ,sj̃)
t − E

(gi,si),(gj ,sj)
t

)
(12)

The language acquisition mechanism is the same for employed workers as the

unemployed workers. Here, the benefit of acquiring a high language skill is becoming

eligible to conduct an on-the-job search at jobs requiring a high language skill. High-

skilled immigrants become eligible for jobs requiring high skills in both skill dimensions,

and jobs that do not require a high generic skill but a high language skill. The low-

skilled immigrants can only become eligible to work at the latter. Thus, equation sets
7The whole set of equations governing the asset values of unemployed workers with skill acquisition

are given in Appendix 1.8.1 as the equation set (25).
8The whole set of equations governing the asset values of employed workers without skill acquisition

are given in Appendix 1.8.1 as the equation set (26).
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(11)-(12) characterize the asset values of the employed workers:9

rE
(gi,h),(gj ,sj)
t = w

(gi,h),(gj ,sj)
t + Ė

(gi,h),(gj ,sj)
t − χ(gj ,sj)(E

(gi,h),(gj ,sj)
t − U

(gi,h)
t )

+
∑
gi≿gj̃

sj̃

(gj ,sj)≾(gj̃ ,sj̃)

p
(gj̃ ,sj̃)
t

(
E

(gi,h),(gj̃ ,sj̃)
t − E

(gi,h),(gj ,sj)
t

)
(13)

rE
(gi,l),(gj ,l)
t (c) = max

{
w

(gi,l),(gj ,l)
t + Ė

(gi,l),(gj ,l)
t − χ(gj ,l)(E

(gi,l),(gj ,l)
t − U

(gi,l)
t )

+
∑
gi≿gj̃

gj≾gj̃

p
(gj̃ ,l)
t

(
E

(gi,l),(gj̃ ,l)
t − E

(gi,l),(gj ,l)
t

)
,−c+ rE

(gi,h),(gj ,l)
t (c)

}
(14)

1.3.5 Wage determination

The total surplus in a match is the sum of workers’ gain and firms’ gain from

forming a match, that is (E(gi,si),(gj ,sj)
t −U (gi,si)

t )+(J
(gi,si),(gj ,sj)
t −V (gj ,sj)

t ). This surplus

is shared between a worker and a firm according to a wage bargaining mechanism à la

Pissarides (1994). The assumption in this model is that this surplus is shared according

to workers’ bargaining powers, δ(gi,si),(gj ,sj) ∈ (0, 1), and firms’ bargaining powers,

(1−δ(gi,si),(gj ,sj)) ∈ (0, 1) when a match is formed and re-negotiated continuously when

the match is kept active. The following equation gives the surplus sharing mechanism

for all eligible (gi, si), (gj, sj) pairs:

(1− δ(g
i,si),(gj ,sj))(E

(gi,si),(gj ,sj)
t − U

(gi,si)
t ) = δ(g

i,si),(gj ,sj)J
(gi,si),(gj ,sj)
t (15)

9The whole set of equations governing the asset values of employed workers with skill acquisition
are given in Appendix 1.8.1 as the equation set (27).
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1.4 Equilibrium

In this section, I provide the definition of equilibrium and explain the derivation

strategy for finding it.

1.4.1 Equilibrium without skill upgrade

Definition 1.1 A steady-state equilibrium is a set of a) unemployed workers’ asset

values, U (gi,si), b) employed workers’ lifetime values, E(gi,si),(gj ,sj), c) asset values of

filled vacancies, J (gi,si),(gj ,sj), d) asset values of open vacancies, V (gj ,sj), e) population

shares of worker-firm matches and unemployed workers, π(gi,si),(gj ,sj), f) vacancy cre-

ation rates v(gj ,sj), g) wage levels, w(gi,si),(gj ,sj) that satisfy the equation sets (1)-(9),

(12), (15) and a vector of 1) population shares of worker-firm matches, π̂(gi,si),(gj ,sj),

2) vacancy creation rates, v̂(gj ,sj), and 3) wage levels ŵ(gi,si),(gj ,sj) that give a solu-

tion to the system of equation sets (1)-(9), (12), and (15), the free entry conditions,

V (gj ,sj) = 0, and the steady-state conditions π̇(gi,si),(gj ,sj) = U̇ (gi,si) = Ė(gi,si),(gj ,sj) =

J̇ (gi,si),(gj ,sj) = V̇ (gj ,sj) = 0.

At the steady-state, population shares of a) matches between worker types and

sectors, and b) unemployed workers of each type are constant, π̂(gi,si),(gj ,sj) = 0, leading

to the following set of equations:

(
χ(gj ,sj) +

∑
gi≿gj̃

si≿sj̃

p̂
(gj̃ ,sj̃)
t

)
π̂
(gi,si,gj ,sj)
t = p̂

(gj ,sj)
t

∑
(gj ,sj)≻(gj̃ ,sj̃)

(
π̂
(gi,si,gj̃ ,sj̃)
t + π̂

(gi,si,u)
t

)
(16)

The free entry conditions and the steady-state conditions, V̇ (gj ,sj)
t , yield the

following set of equations:
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k(g
j ,sj) = q̂

(gj ,sj)
t

∑
(gj ,sj)≿(gj̃ ,sj̃)

∑
gĩ≿gj

sĩ≿sj

π̂
(gĩ,sĩ,gj ,sj)
t + π̂

(gĩ,sĩ,u)
t

Π̂
(gj ,sj)
t

Ĵ
(gĩ,sĩ,gj ,sj)
t (17)

The following equation set that wraps up the equilibrium characterization is

obtained as follows. Combining the equation sets (7)-(9) and (12) gives relation-

ships between the asset values of workers and firms. Combining these with equation

(15), which represents the wage bargaining mechanism, and imposing the free entry

condition eliminates the workers’ asset values. Finally, the steady-state conditions

U̇ (gi,si) = Ė(gi,si),(gj ,sj) = J̇ (gi,si),(gj ,sj) = V̇ (gj ,sj) = 0 yield the following nine equations

relating firms’ asset values, Ĵ (gi,si),(gj ,sj), only to steady-state population shares of the

employed, π̂(gi,si),(gj ,sj), and the vacancy creating rates:

(1− δ(g
i,si,gj ,sj))(y(g

i,si,gj ,sj) − b) = (r + χ(gj ,sj))Ĵ
(gi,si,gj ,sj)
t

+
∑
gj≿gj̃

sj≿sj̃

1− δ(g
i,si,gj ,sj)

1− δ(gi,si,gj̃ ,sj̃)
δ(g

i,si,gj̃ ,sj̃)p̂
(gj̃ ,sj̃)
t Ĵ

(gi,si,gj̃ ,sj̃)
t

(18)

Therefore, the equation sets (16)-(18) characterize the 22x22 equation-unknown

system at the equilibrium:10 where the unknowns are a) nine population shares of

steady-state worker-firm matches, π̂(gi,si),(gj ,sj), b) four vacancy creation rates, v̂(gj ,sj),

and c) nine asset values of filled vacancies Ĵ (gi,si),(gj ,sj). From this point on, the vector
−→
Ŝ = [π̂(gi,si),(gj ,sj), Ĵ (gi,si),(gj ,sj), v̂(g

j ,sj)]′ denotes these 22 steady-state values. Subse-

quently, the wage rates can also be obtained from the solution of this 22x22 equation-

unknown system, and they are given in Appendix 1.8.1.
10The whole sets of equations governing the equilibrium are given in Appendix 1.8.1 as the equation

sets (28)-(30).
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1.4.2 Equilibrium with skill upgrade

In this subsection, I present the procedure to obtain the equilibrium with skill

upgrade as no tractable solutions exist. This iterative procedure consists of six steps.

1. The equilibrium is characterized without a skill upgrade possibility, as pre-

sented by the equation sets (16)-(18) and denoted by
−→
Ŝ . This steady-state is stored

as
−→
S0 =

−→
Ŝ implying the 0-th iteration step.

2. By using equation sets (9) and (12), employed workers’ asset values (nine

values), and unemployed workers’ asset values (four values) are obtained and stored

as the vector
−→
W0.

3. Workers that are endowed with low skills in both skill dimensions can be a)

employed at jobs requiring ll-skills, or b) unemployed. Workers that are endowed with

high generic skills and low language skills can be c) employed at jobs requiring hl-skills,

d) jobs requiring ll-skills, or e) unemployed. As there is no condition asserting the same

level of language acquisition benefits for these cohorts, one should expect different

rates of language acquisition (i.e. between unemployed hl-workers and between hl-

workers employed at hl-jobs). As normal distribution with a mean µ and a standard

deviation of σ is assumed for the language acquisition cost distribution, the cumulative

distribution function of the benefit of language acquisition gives the fractions of workers

who find it infeasible to invest. Thus, the rates of language acquisition can be written

as follows:
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This is done by using the following equations:

ϕhl,hl(ι) = 1− Φ[ŵhh,hl(ι) − χhl(Êhh,hl(ι) − Ûhh(ι)) + p̂hh(ι)(Êhh,hh(ι) − Êhh,hl(ι))

− ŵhl,hl(ι) + χhl(Êhl,hl(ι) − Ûhl(ι)) ≤ µ]
(19a)

ϕhl,ll(ι) = 1− Φ[ŵhh,ll(ι) − χll(Êhh,ll(ι) − Ûhh(ι)) + p̂lh(ι)(Êhh,lh(ι) − Êhh,ll(ι))

+ p̂hl(ι)(Êhh,hl(ι) − Êhh,ll(ι)) + p̂hh(ι)(Êhh,hh(ι) − Êhh,ll(ι))

− ŵhl,ll(ι) + χll(Êhl,ll(ι) − Ûhl(ι))− p̂hl(ι)(Êhl,hl(ι) − Êhl,ll(ι)) ≤ µ]

(19b)

ϕll,ll(ι) = 1− Φ[ŵlh,ll(ι) − χll(Êlh,ll(ι) − Û lh(ι)) + p̂lh(ι)(Êlh,lh(ι) − Êlh,ll(ι))

− ŵll,ll(ι) + χll(Êll,ll(ι) − Û ll(ι)) ≤ µ]
(19c)

ϕhl,u(ι) = 1− Φ[p̂ll(ι)(Êhh,ll(ι) − Ûhh(ι)) + p̂lh(ι)(Êhh,lh(ι) − Ûhh(ι))

+ p̂hl(ι)(Êhh,lh(ι) − Ûhh(ι)) + p̂hh(ι)(Êhh,hh(ι) − Ûhh(ι))

− p̂hl(ι)(Êhl,hl(ι) − Ûhl(ι))− p̂ll(ι)(Êhl,ll(ι) − Ûhl(ι)) ≤ µ]

(19d)

ϕll,u(ι) = 1− Φ[p̂ll(ι)(Êlh,ll(ι) − Û lh(ι)) + p̂lh(ι)(Êlh,lh(ι) − Û lh(ι))

− p̂ll(ι)(Êll,ll(ι) − Û ll(ι)) ≤ µ]
(19e)

where ϕ(gi,si),(gj ,sj)(ι) stands for the fraction of workers with skill endowments (gi, si)

and employment status (gj, sj) investing in language acquisition at the iteration step

ι with the first step being ι = 0.

4. hl-type (ll-type) workers become hh-type (lh-type) while keeping their em-

ployment status. The corresponding population share changes when the language

acquisition rates are as denoted in equation set (19) can be represented as the vector,
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−→π (ι+1):

−→π (ι+1) =



πhh,hh(ι+1)

πhh,hl(ι+1)

πhh,lh(ι+1)

πhh,ll(ι+1)

πhl,hl(ι+1)

πhl,ll(ι+1)

πlh,lh(ι+1)

πlh,ll(ι+1)

πll,ll(ι+1)

πhh,u(ι+1)

πhl,u(ι+1)

πlh,u(ι+1)

πll,u(ι+1)



=



πhh,hh(ι)

πhh,hl(ι)

πhh,lh(ι)

πhh,ll(ι)

πhl,hl(ι)

πhl,ll(ι)

πlh,lh(ι)

πlh,ll(ι)

πll,ll(ι)

πhh,u(ι)

πhl,u(ι)

πlh,u(ι)

πll,u(ι)



+



0

ϕhl,hl(ι)πhl,hl(ι)

0

ϕhl,ll(ι)πhl,ll(ι)

−ϕhl,hl(ι)πhl,hl(ι)

−ϕhl,ll(ι)πhl,ll(ι)

0

ϕll,ll(ι)πll,ll(ι)

−ϕll,ll(ι)πll,ll(ι)

ϕhl,u(ι)πhl,u(ι)

−ϕhl,u(ι)πhl,u(ι)

ϕll,u(ι)πll,u(ι)

−ϕll,u(ι)πll,u(ι)



(20)

5. However, −→π (ι+1) leads to a different steady-state than the initial population

changes before then language acquisition. At this step, a new steady-state,
−−→
Sι+1, is

obtained by using the new initial population shares in the equation (20).

6. New values of workers’ asset values,
−→
W(ι+1) are computed by using the

equation sets (9) and (12). If the Euclidean distance between the workers’ asset values

at iteration ι and iteration ι+1 is close enough to zero, ∥
−→
W(ι+1)−

−→
W(ι)∥ < ε, the steady-

state at iteration step ι,
−→
S (ι), is the approximate steady-state with costly language

acquisition. Else, the iterative procedure repeats itself between steps three and six.
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1.5 Data and calibration

In this section, I explain the parameter choices for the simulations conducted

to estimate the effects of subsidizing immigrants’ language acquisition costs provided

at different rates. To this end, I utilize a set of exogenous parameter values used in the

search and matching literature, and three data sources. The corresponding parameter

value choices are presented in Table 1.

Table 1: Parameter value choices

Parameter Symbol Value

Interest rate r 1/300

Elasticity of vacancies in the matching function α 0.5

Bargaining powers of job-seekers δ(g
i,si),(gj ,sj) 0.5

Job separation rates at jobs requiring high generic skills χhh, χhl 0.1

Vacancy creation costs at jobs requiring high generic skills khh, khl 0.5

Unemployment benefit b 0.4

Productivity at jobs requiring low generic skills yl 1

Productivity at jobs requiring high generic skills yh 1.5

Population share of high-skilled natives πhh
0 23.56%

Population share of high-skilled immigrants πhl
0 5.04%

Population share of low-skilled natives πlh
0 56.03%

Population share of low-skilled immigrants πll
0 15.37%

Mean language acquisition cost µ 7.2

Matching efficiency parameter A 1.8682

Job separation rates at jobs requiring low generic skills χlh, χll 0.089

Vacancy creation costs at jobs requiring low generic skills klh, kll 0.47

Standard deviation of language acquisition cost σ 2.4323

The first set of parameter values is chosen to be in line with the widely-used

values in the literature. The interest rate, r, is set to 1/300, which corresponds to

approximately one month11. The elasticity of the number of matches with respect

to the number of job seekers, α, in the matching function, is set to 0.5 (Petrongolo
11r=1/300 corresponds to an annual interest rate of approximately 2.5%
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and Pissarides (2001)).12 Following this elasticity choice, equal bargaining powers,

δ(g
i,si),(gj ,sj) = 0.5, are given to workers and firms to satisfy the Hosios efficiency condi-

tion (Hosios (1990)). As job separation rates and vacancy creation costs may differ for

high- and low-skilled workers, I use fixed values (0.1 and 0.5 respectively [Petrongolo

and Pissarides (2001)]) and leave the corresponding values for the low-skilled to be

calibrated. The productivity of jobs requiring a low generic skill is normalized to 1,

and 50% more productivity is assumed for jobs requiring a high generic skill. For the

unemployment benefit, I use a standard 0.4 rate as in Gautier (2002).

The second set of parameters is related to population composition in terms of

migrant status, education level and language proficiency attainment. I employ the

survey conducted by Diehl et al. (2016). This survey is part of the The SCIP project

(“Causes and Consequences of Socio-Cultural Integration Processes among New Immi-

grants in Europe”) with a focus on migrants’ socio-economic integration trajectories.

It is conducted in two waves in 2010/2011 and 2012/2013 with one and a half years in

between. The corresponding panel data contains observations on the educational level

and German proficiency of Polish and Turkish immigrants in Germany. 1089 individ-

uals start with no knowledge of German. 13.12% of university graduates and 9.77%

of individuals with an education level lower than a university degree respond to the

question "How well would you say you speak German?" as well or very well in the sec-

ond wave. To assign a value to mean financial language acquisition cost, I use Goethe

Institut language course fees in Germany to attain a B2-level German for an absolute

beginner. Finally, I use OECD Labour Force Statistics data for Germany (2012), to

assign values for population shares by education and migration status, unemployment

rates by education and migration status, and skill mismatch rate.

The remaining four parameters are the matching efficiency parameter in the

matching function, job separation rates and vacancy creation costs at jobs requiring

low generic skills and the standard deviation of language acquisition cost. I choose

values for these parameters that yield equilibrium unemployment and language ac-

quisition rates as close as possible to data. To this end, I minimize the squared

weighted difference between the target and simulated values of unemployment rates,
12Estimations of this elasticity yield values in the following range: α ∈ (0.4, 0.7).
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min
∑

[π̂i(uidata − ûi)]2, by constraining the equilibrium language acquisition rates to

stay in the vicinity of 0.99 times to 1.01 times of their actual values.

The following table presents the target unemployment and language acquisition

rates when A = 1.8682, χlh = χlh = 0.089, klh = kll = 0.47, σ = 2.4323.

Table 2: Unemployment and language acquisition rates - Target vs simulation

Parameter Target Simulation Target data source
Unemployment rate 3.50% 3.50% OECD
Skill mismatch rate 6.00% 6.52% OECD

Unemployment rate among high-skilled natives 1.40% 1.51% OECD
Unemployment rate among high-skilled immigrants 4.80% 4.63% OECD

Unemployment rate among low-skilled natives 3.53% 3.49% OECD
Unemployment rate among low-skilled immigrants 6.18% 6.21% OECD
High-skilled immigrant language acquisition rate 13.12% 13.22% GESIS
Low-skilled immigrant language acquisition rate 9.77% 9.74% GESIS
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1.6 Results

In this section, I simulate the effects of language acquisition subsidies on the

economic performance of immigrants directly, and native workers indirectly. I start

with the case of not having a language acquisition subsidy by using the baseline param-

eter values presented in the previous section. Then, I simulate the model for different

subsidy rates for each percentage point between providing no subsidy and a 100%

subsidy for the financial costs of language acquisition.

1.6.1 Language acquisition

Figure 1 and Table 3 present the simulated language acquisition rate changes

for immigrant workers for each percentage increase in language acquisition subsidies.

Simulations start with 13.2% of the high-skilled immigrants and 9.7% of the low-skilled

immigrants acquiring language proficiency in the absence of language acquisition sub-

sidies. By using this benchmark scenario, the model generates language acquisition

rates of 67.0% and 39.1% for high- and low-skilled immigrants, respectively, when the

financial cost of language acquisition is fully subsidized, as shown in the upper-left part

of Figure 1. This difference comes from the fact that the expected gain of language

acquisition is higher for high-skilled immigrants due to two factors. First, language

acquisition decreases the unemployment probability for high-skilled immigrant workers

more than for their low-skilled counterparts. It enables high-skilled immigrant workers

to be recruited at two more types of firms, with skill requirements being hh and lh,

while it enables low-skilled workers to be recruited at only one more firm type, with

an lh requirement. Second, the model generates a minute difference between the wage

rates for job vacancies requiring lh and ll skills, leading to a minute gain in expected

income for a low-skilled immigrant worker given that they find employment. At the

same time, the model generates a significant difference between the wage rates for job

vacancies requiring hh and hl skills, leading to a significant gain of language acquisition

for a high-skilled immigrant worker given that they find employment.
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Figure 1: Language acquisition rates by skills and employment statuses

The model also generates different language acquisition rates among high- and

low-skilled immigrant workers with different employment statuses. The upper-right

part of Figure 1 shows that unemployed high-skilled immigrants acquire language pro-

ficiency the most, followed by high-skilled immigrants employed at jobs requiring low

and high generic skills, respectively. Language acquisition enables unemployed high-

skilled immigrants to be recruited at all job types instead of only jobs requiring hl and

ll skills. It enables high-skilled immigrants employed at a job requiring a low generic

skill to find a better-paying job at three job types (hh, hl, and lh) instead of only one

job type (hl). It enables high-skilled immigrants employed at a job requiring a high

generic skill to find a better-paying job at one job type (hh) instead of no improve-

ment possibility. The lower-left part of Figure 1 shows that unemployed low-skilled

immigrants acquire a high language skill more than employed low-skilled immigrants.

The intuition behind this difference is the same as the intuition behind the difference

between high-skilled immigrants that are unemployed and employed at ll-sector.
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Table 3: Simulated effects of language acquisition subsidies on language acquisition
rates

Subsidy rates 0 25% 50% 75% 100%

High-skilled immigrants 13.2% 23.3% 36.7% 51.9% 67.0%

Low-skilled immigrants 9.7% 14.9% 21.7% 29.8% 39.1%

High-skilled immigrants initially employed at hl-jobs 12.6% 22.4% 35.6% 50.8% 66.0%

High-skilled immigrants initially employed at ll-jobs 17.6% 29.4% 43.9% 59.4% 73.5%

Unemployed high-skilled immigrants 18.9% 31.0% 45.8% 61.2% 75.1%

Low-skilled immigrants initially employed at ll-jobs 9.6% 14.8% 21.5% 29.6% 38.8%

Unemployed low-skilled immigrants 11.4% 17.2% 24.5% 33.1% 42.7%

1.6.2 Vacancy creation

Figure 2 presents the effects of language acquisition subsidies on vacancy cre-

ation rates. The left part of the figure depicts the shares of vacancies for highly

productive jobs among all job vacancies. I find that the share of highly productive

job vacancies increases from 27.4% to 29.2% as a result of subsidizing the financial

costs of immigrants’ language acquisition fully. This is due to the fact that in the ab-

sence of a language subsidy, 13.2% of high-skilled immigrant workers choose to learn

the local language, resulting in only 84.70% of highly skilled workers (all high-skilled

natives and 13.2% of high-skilled immigrants) being proficient in the local language.

These workers can move to a highly productive job irrespective of the language skill

requirement (a job requiring hh and hl skill sets). Therefore, when matched with a

high-skilled worker, a firm requiring a low generic skill face the risk of losing 84.70%

of its worker to either of hh- or hl-sectors, while 15.30% of its worker is constrained

to move to only the hl-sector. Then, the share of high-skilled workers with language

proficiency among all high-skilled workers increases from 84.70% to 94.18% as more

high-skilled immigrant workers (from 13.2% to 67.0%) improve their language skills

as a result of subsidizing language acquisition costs of immigrants fully. This change

creates a higher hazard of losing a high-skilled worker to a better-paying job, lowering

the incentive of creating a job vacancy with a low-skill requirement.

27



Figure 2: Vacancy creation rate changes

The right part of Figure 2 illustrates the decomposition of vacancy creation

rate changes in each sector. Vacancy creation with high skill requirements at both

skill dimensions (vhh) increases from 1.31% to 1.45% of the population. This is driven

by the increase in the pool of workers that the hh-sector can recruit. Vacancy creation

with a high generic and a low language skill requirement slightly decreases from 0.28%

to 0.27% of the population. Although the pool of workers this sector can attract

remains the same, the hazard of losing a worker becomes higher through two channels.

First, more immigrant workers acquire high language skills making them eligible to

match with a vacancy in the hh-sector. Second, the vacancy creation rate increase at

the hh-sector further exacerbates the hazard of losing any worker to the hh-sector.

Vacancy creation with a low generic and a high language skill increases from

2.57% to 2.81% of the population. There are two factors with opposite effects on this

change. As more immigrant workers acquire language skills, the number of workers an

lh-firm can recruit increases. On the other hand, the probability of losing a high-skilled

immigrant to a highly productive job increases as the vacancy creation rate at the hh-

sector increase and also as high-skilled immigrant workers that newly acquire language

proficiency gains eligibility to move to the hh-sector. The vacancy creation rate in the

sector requiring only low skills at both skill dimensions decreases from 1.64% to 1.36%

of the population. The pool of workers it can attract remains the same, the whole
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workforce. The exit rate from this sector increase for high-skilled workers same as the

lh-sector. Additionally, a higher number of low-skilled immigrants gaining eligibility

to apply for the lh-sector, and a higher vacancy creation rate at the lh-sector further

reduce the rate of vacancy creation in this sector. Overall, my simulations produce a

vacancy creation rate increase from 5.81% to 5.89% of the population following fully

subsidizing immigrants’ financial language acquisition costs.

1.6.3 Unemployment

Figure 3 and Table 4 depict the effects of language acquisition subsidies on

unemployment rates. The left side of the figure contains unemployment rate changes

for natives and immigrants in terms of their generic skill levels. Language acquisition

translates into significantly lower unemployment rates for immigrants as they become

eligible to work in more and better-paying jobs. My simulations generate an unem-

ployment rate decrease from 4.63% to 2.69% for high-skilled and from 6.21% to 5.65%

for low-skilled immigrant workers. 13

Figure 3: Unemployment and skill mismatch rates

Improving immigrants’ language skills has mixed indirect effects on native work-
13Population shares of a) employed workers by skill endowments and employment statuses, b) and

unemployed workers by skill endowments are given in Appendix 1.8.2 as Figure 8 and Figure 9,
respectively.
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ers. A higher vacancy creation rate helps alleviate the unemployment rate of high-

skilled natives. At the same time, more immigrants become eligible to compete with

high-skilled natives. My model implies that the positive effect of more job vacancy

creation slightly exceeds the negative effect of higher competition. In consequence,

high-skilled natives enjoy a slightly lower unemployment rate (1.51% to 1.50%). Low-

skilled natives suffer from a higher unemployment rate from 3.49% to 3.59%. This

increase is caused by two factors: lower job-finding probability and higher competi-

tion. Financing immigrants’ language acquisition results in a lower overall vacancy

creation rate at the low-skill segment of job vacancies (4.21% to 4.17%), decreasing

the probability of job finding. Language acquisition further increases competition for

jobs requiring a low generic and a high language skill, exacerbating the unemployment

rate of low-skilled natives.

The right side of the figure shows the simulated effects of language acquisition

subsidies on the aggregate unemployment rate and skill mismatch rate. The above-

mentioned unemployment rate changes imply an unemployment rate decrease from

3.50% to 3.36% when all financial costs of language acquisition are subsidized. As this

subsidy significantly improves the allocation of immigrant workers to job vacancies

skill mismatch rate also decreases significantly from 6.52% to 4.60%.

Table 4: Simulated effects of language acquisition subsidies on unemployment rates

Subsidy rate 0 25% 50% 75% 100%
Unemployment rate 3.50% 3.48% 3.44% 3.40% 3.36%
Skill mismatch rate 6.52% 6.13% 5.64% 5.10% 4.60%

Unemployment rate among high-skilled natives 1.51% 1.51% 1.50% 1.50% 1.50%
Unemployment rate among high-skilled immigrants 4.63% 4.27% 3.79% 3.23% 2.69%

Unemployment rate among low-skilled natives 3.49% 3.51% 3.53% 3.55% 3.59%
Unemployment rate among low-skilled immigrants 6.21% 6.12% 5.99% 5.83% 5.65%

1.6.4 Expected income

Figure 4 shows simulation results for the effects of language acquisition subsidies

on wage rates for each possible match type depending on workers’ skills and firms’ skill

requirements. The left (right) part of the figure shows expected wage rate changes for

jobs requiring a high (low) generic skill. I observe an increase in wage levels up to

0.45% for jobs requiring a high generic skill and a decrease in wage levels up to a loss
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of 1.32% for jobs requiring a low generic skill. The intuition is the following: Highly

productive vacancy supply increases for a constant vacancy demand as high-skilled

labour supply remains constant. This results in firms enjoying a lower part of the

output created by a match. As the vacancy supply of jobs requiring only a low-generic

skill decrease with a constant size of the population being eligible to work at this

skill segment, a higher part of the output remains at firm. An increase in overall

productivity also drags all wages slightly upward.

Figure 4: Wage rate changes

Figure 5 illustrates the simulated effects of language acquisition subsidies on

high- and low-skilled immigrant and native workers. The main winners of the subsidy

scheme are high-skilled immigrants with an expected income increase of 22.8%. This

increase is due to a lower unemployment rate (4.63% to 2.69%), and a significantly

higher proportion of high-skilled immigrants (13.2% to 69.0%) becoming eligible at

hh-sector. 14 A higher employment rate and a lower expected wage rate given em-

ployment resulted in a slight 0.35% increase in the expected income of low-skilled

immigrants. High-skilled natives enjoy slight increases in their employment rate and

expected wage given employment, together with a slight decrease in job quality due

to higher competition. These effects translate into a 0.03% increase in their expected

income. The only losers of this subsidy scheme are low-skilled natives. Their expected
14My model generates that a match between a hh-type worker and a hh-type job offers a wage

41.4% higher than a match between a hl-type worker and a hl-type job. The simulated wage rates
offered for each worker-firm match can be found in Appendix 1.8.2 as Table 5.
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income is simulated to decrease slightly by 0.07%. This decrease is caused by a lower

employment rate, a lower wage rate given employment and alleviated by a slightly

better job quality due to the increase in job vacancy creation rate at lh-sector.

Figure 5: Expected income changes by worker group

1.6.5 Aggregate outcomes

Figure 6 shows the effects of language acquisition subsidies on aggregate pro-

duction and the time needed to pay off their cost. Here, the aggregate subsidy cost

is calculated as the number of individuals that improve their language skills times the

amount of financial support per person, which is the mean language acquisition cost,

µ, multiplied by the subsidy rate. Simulations imply that subsidizing language acqui-

sition costs fully is optimal. A full subsidy may bring a 0.25% increase in production,

with paying off its cost in less than eleven years.
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Figure 6: Impact on production

Figure 7 depicts changes in average income and income inequality. Average

income increases by 1.16% accompanied by a deterioration of income equality. Income

inequality increases by 1.75% when inequality is expressed in terms of the coefficient

of variation of income. The reason behind this increase is that the average income of

the high-skilled increases by 3.12% while the average income of the low-skilled almost

remains unchanged with a 0.02% increase. However, language acquisition subsidies are

simulated to decrease income inequality among high- and low-skilled workers. Income

inequality within high-skilled workers decreases by 19.6%. This decrease is attributed

to high-skilled immigrants’ expected income increase by 22.8% while high-skilled na-

tives enjoy only a 0.03% increase in their expected income, implying a narrower gap

between these two cohorts. The gap between income levels of low-skilled natives and

immigrants also shrinks as a result of natives slightly losing their income by 0.07%

while immigrants enjoy a 0.35% increase. This simulated result implies a 0.35% de-

crease in income inequality among low-skilled workers.
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Figure 7: Average income and income inequality
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1.7 Conclusion

Economists have a consensus on the benefits of high-skilled migration for both

the migrants and their destination countries. Language barriers appear to be one of

the most prominent factors hampering the labour market integration of immigrants,

in particular the high-skilled. In this study, I argue that fully funding the financial

costs of migrants’ language acquisition may bring significant gains for the economy,

migrants, and many natives. However, these gains can be achieved to the extent of

marginally worsening the labour market performance of low-skilled natives. Still, it is

clear that the net aggregate effect of the language training subsidy is positive. While

introducing redistributive policies goes beyond the scope of this study, it could be an

interesting avenue for future research.

I modelled the labour market by using a search and matching framework of the

Diamond-Mortensen-Pissarides type with two-dimensional skill heterogeneity on both

sides of the labour market. My model contains a costly skill upgrade mechanism with

which migrants can acquire host-country language proficiency, making them eligible

for a higher set of jobs. I simulate the effects of a policy of subsidizing the language

acquisition cost of migrants on migrants’ labour market integration and the effects of

this integration on natives’ labour market performance. By using data on a subset of

migrants in Germany, I forecast that fully subsidizing the language acquisition costs

of immigrants may bring an additional approximately ten billion dollars to the GDP

of an economy the size of the German economy. This gain is mainly driven by three

channels: a) a simulated aggregate unemployment rate decrease from 3.50% to 3.36%,

b) a skill mismatch rate decrease from 6.52% to 4.60%, and c) an increase in the

share of job vacancies requiring high generic skills from 27.4% to 29.2% among all job

vacancies. As expected, high-skilled migrants enjoy the highest gain from this subsidy

policy as they overcome the language barrier and become eligible to work at more jobs

in the high generic skill segment. Low-skilled migrants enjoy a lower unemployment

rate as they become eligible to be hired for more vacancies. High-skilled natives enjoy

minor gains both in terms of expected income and employment rate. The main factor

underlying these increases is the higher vacancy creation rate at the high generic skill
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segment due to firms finding it more attractive to create vacancies with high generic

skills. This betterment in the skill composition of new vacancies and the increase in

competition for jobs at the low generic skill segment resulted in slightly worse labour

market outcomes for low-skilled natives.

This study has two main caveats. First, the economy in this model is a closed

economy in the sense that it treats the stock of migrants as given. Such a policy

might indeed impact the inflow and outflow of migrants and I do not account for the

impact that the language subsidy might have on potential variations in the volume

and composition of immigrants. Second, the skill composition in the labour market is

the only endogenous factor affecting job vacancy creation rates. This limitation rules

out any impact of other potential constraints that may affect the vacancy creation

rates.
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1.8 Appendix

1.8.1 Equations

Population dynamics The time derivatives of the population shares of each worker-

firm match are given in the equation set (21). The first superscript denotes the hired

worker’s skill endowment, while the latter denotes the firm’s skill requirements:

π̇hh,hh
t = −χhhπhh,hh

t + phht (πhh,hl
t + πhh,lh

t + πhh,ll
t + πhh,u

t ) (21a)

π̇hh,hl
t = −(χhl + phht )πhh,hl

t + phlt (π
hh,lh
t + πhh,ll

t + πhh,u
t ) (21b)

π̇hh,lh
t = −(χlh + phht + phlt )π

hh,lh
t + plht (π

hh,ll
t + πhh,u

t ) (21c)

π̇hh,ll
t = −(χll + phht + phlt + plht )π

hh,ll
t + pllt π

hh,u
t (21d)

π̇hl,hl
t = −χhlπhl,hl

t + phlt (π
hl,ll
t + πhl,u

t ) (21e)

π̇hl,ll
t = −(χll + phlt )π

hl,ll
t + pllt π

hl,u
t (21f)

π̇lh,lh
t = −χlhπlh,lh

t + plht (π
lh,ll
t + πlh,u

t ) (21g)

π̇lh,ll
t = −(χll + plht )π

lh,ll
t + pllt π

lh,u
t (21h)

π̇ll,ll
t = −χllπll,ll

t + pllt π
ll,u
t (21i)

Firms The asset values of firms are given in the equation set (22). The first super-

script denotes the hired worker’s skill endowment, while the latter denotes the firm’s
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skill requirements:

rJhh,hh
t = yhh,hh − whh,hh

t + J̇hh,hh
t − χhhJhh,hh (22a)

rJhh,hl
t = yhh,hl − whh,hl

t + J̇hh,hl
t − (χhl + phht )Jhh,hl

t (22b)

rJhh,lh
t = yhh,lh − whh,lh

t + J̇hh,lh
t − (χlh + phlt + phht )Jhh,lh

t (22c)

rJhh,ll
t = yhh,ll − whh,ll

t + J̇hh,ll
t − (χll + plht + phlt + phht )Jhh,ll

t (22d)

rJhl,hl
t = yhl,hl − whl,hl

t + J̇hl,hl
t − χhlJhl,hl

t (22e)

rJhl,ll
t = yhl,ll − whl,ll

t + J̇hl,ll
t − (χll + phlt )J

hl,ll
t (22f)

rJ lh,lh
t = ylh,lh − wlh,lh

t + J̇ lh,lh
t − χlhJ lh,lh

t (22g)

rJ lh,ll
t = ylh,ll − wlh,ll

t + J̇ lh,ll
t − (χll + plht )J

lh,ll
t (22h)

rJ ll,ll
t = yll,ll − wll,ll

t + J̇ ll,ll
t − χllJ ll,ll

t (22i)

Vacancies The asset values of holding a vacancy are given in the equation set (23).

The superscript denotes the firm’s skill requirements:

rV hh
t = −khh + V̇ hh

t + qhht (Jhh,hh
t − V hh

t ) (23a)

rV hl
t = −khl + V̇ hl

t

+
qhlt
Πhl

t

[(πhh,lh
t + πhh,ll

t + πhh,u
t )Jhh,hl

t + (πhl,ll
t + πhl,u

t )Jhl,hl
t − Πhl

t V
hl
t ]

(23b)

rV lh
t = −klh + V̇ lh

t +
qlht
Πlh

t

[(πhh,ll
t + πhh,u

t )Jhh,lh
t + (πlh,ll

t + πlh,u
t )J lh,lh

t − Πlh
t V

lh
t ] (23c)

rV ll
t = −kll + V̇ ll

t +
qllt
Πll

t

[πhh,u
t Jhh,ll

t + πhl,u
t Jhl,ll

t + πlh,u
t J lh,ll

t + πll,u
t J ll,ll

t − Πll
t V

ll
t ]

(23d)

Unemployed workers without skill acquisition The asset values of unemployed

workers without skill acquisition are given in the equation set (24). The superscript
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denotes the worker’s skill endowment:

rUhh
t = b+ U̇hh

t + phht (Ehh,hh
t − Uhh

t )

+ phlt (E
hh,hl
t − Uhh

t ) + plht (E
hh,lh
t − Uhh

t ) + pllt (E
hh,ll
t − Uhh

t )
(24a)

rUhl
t = b+ U̇hl

t + phlt (E
hl,hl
t − Uhl

t ) + pllt (E
hl,ll
t − Uhl

t ) (24b)

rU lh
t = b+ U̇ lh

t + plht (E
lh,lh
t − U lh

t ) + pllt (E
lh,ll
t − U lh

t ) (24c)

rU ll
t = b+ U̇ ll

t + pllt (E
ll,ll
t − U ll

t ) (24d)

Unemployed workers with skill acquisition The asset values of unemployed

workers with skill acquisition are given in the equation set (25). The superscript

denotes the worker’s skill endowment:

rUhh
t = b+ U̇hh

t + phht (Ehh,hh
t − Uhh

t )

+ phlt (E
hh,hl
t − Uhh

t ) + plht (E
hh,lh
t − Uhh

t ) + pllt (E
hh,ll
t − Uhh

t )
(25a)

rUhl
t (c) = max

i∈{hl,hh}
{b+ U̇hl

t + phlt (E
hl,hl
t − Uhl

t ) + pllt (E
hl,ll
t − Uhl

t ),−c+ rUhh
t } (25b)

rU lh
t = b+ U̇ lh

t + plht (E
lh,lh
t − U lh

t ) + pllt (E
lh,ll
t − U lh

t ) (25c)

rU ll
t (c) = max

i∈{ll,lh}
{b+ U̇ ll

t + pllt (E
ll,ll
t − U ll

t ),−c+ rU lh
t (c)} (25d)

Employed workers without skill acquisition The asset values of employed work-

ers without skill acquisition are given in the equation set (26). The first superscript

denotes the hired worker’s skill endowment, while the latter denotes the firm’s skill
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requirements:

rEhh,hh
t = whh,hh

t + Ėhh,hh
t − χhh(Ehh,hh

t − Uhh
t ) (26a)

rEhh,hl
t = whh,hl

t + Ėhh,hl
t − χhl(Ehh,hl

t − Uhh
t ) + phht (Ehh,hh

t − Ehh,hl
t ) (26b)

rEhh,lh
t = whh,lh

t + Ėhh,lh
t − χlh(Ehh,lh

t − Uhh
t ) + phlt (E

hh,hl
t − Ehh,lh

t )

+ phht (Ehh,hh
t − Ehh,lh

t )
(26c)

rEhh,ll
t = whh,ll

t + Ėhh,ll
t − χll(Ehh,ll

t − Uhh
t ) + plht (E

hh,lh
t − Ehh,ll

t )

+ phlt (E
hh,hl
t − Ehh,ll

t ) + phht (Ehh,hh
t − Ehh,ll

t )
(26d)

rEhl,hl
t = whl,hl

t + Ėhl,hl
t − χhl(Ehl,hl

t − Uhl
t ) (26e)

rEhl,ll
t = whl,ll

t + Ėhl,ll
t − χll(Ehl,ll

t − Uhl
t ) + phlt (E

hl,hl
t − Ehl,ll

t ) (26f)

rElh,lh
t = wlh,lh

t + Ėlh,lh
t − χlh(Elh,lh

t − U lh
t ) (26g)

rElh,ll
t = wlh,ll

t + Ėlh,ll
t − χll(Elh,ll

t − U lh
t ) + plht (E

lh,lh
t − Elh,ll

t ) (26h)

rEll,ll
t = wll,ll

t + Ėll,ll
t − χll(Ell,ll

t − U ll
t ) (26i)

Employed workers with skill acquisition The asset values of employed workers

with skill acquisition are given in the equation set (27). The first superscript denotes

the hired worker’s skill endowment, while the latter denotes the firm’s skill require-
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ments:

rEhh,hh
t = whh,hh

t + Ėhh,hh
t − χhh(Ehh,hh

t − Uhh
t ) (27a)

rEhh,hl
t = whh,hl

t + Ėhh,hl
t − χhl(Ehh,hl

t − Uhh
t ) + phht (Ehh,hh

t − Ehh,hl
t ) (27b)

rEhh,lh
t = whh,lh

t + Ėhh,lh
t − χlh(Ehh,lh

t − Uhh
t )

+ phlt (E
hh,hl
t − Ehh,lh

t ) + phht (Ehh,hh
t − Ehh,lh

t )
(27c)

rEhh,ll
t = whh,ll

t + Ėhh,ll
t − χll(Ehh,ll

t − Uhh
t ) + plht (E

hh,lh
t − Ehh,ll

t )

+ phlt (E
hh,hl
t − Ehh,ll

t ) + phht (Ehh,hh
t − Ehh,ll

t )
(27d)

rEhl,hl
t (c) = max

i∈{hl,hh}
{whl,hl

t + Ėhl,hl
t − χhl(Ehl,hl

t − Uhl
t ),−c+ rEhh,hl

t } (27e)

rEhl,ll
t (c) = max

i∈{hl,hh}
{whl,ll

t + Ėhl,ll
t − χll(Ehl,ll

t − Uhl
t ) + phlt (E

hl,hl
t − Ehl,ll

t ),

− c+ rEhh,ll
t }

(27f)

rElh,lh
t = wlh,lh

t + Ėlh,lh
t − χlh(Elh,lh

t − U lh
t ) (27g)

rElh,ll
t = wlh,ll

t + Ėlh,ll
t − χll(Elh,ll

t − U lh
t ) + plht (E

lh,lh
t − Elh,ll

t )} (27h)

rEll,ll
t (c) = max

i∈{ll,lh}
{wll,ll

t + Ėll,ll
t − χll(Ell,ll

t − U ll
t ),−c+ rElh,ll

t (c)} (27i)

Equilibrium without skill acquisition The equation sets (28)-(30) characterize

the equilibrium without skill acquisition:

χhhπ̂hh,hh
t = p̂hht (π̂hh,hl

t + π̂hh,lh
t + π̂hh,ll

t + π̂hh,u
t ) (28a)

(χhl + p̂hht )π̂hh,hl
t = p̂hlt (π̂

hh,lh
t + π̂hh,ll

t + π̂hh,u
t ) (28b)

(χlh + p̂hht + p̂hlt )π̂
hh,lh
t = p̂lht (π̂

hh,ll
t + π̂hh,u

t ) (28c)

(χll + p̂hht + p̂hlt + p̂lht )π̂
hh,ll
t = p̂llt π̂

hh,u
t (28d)

χhlπ̂hl,hl
t = p̂hlt (π̂

hl,ll
t + π̂hl,u

t ) (28e)

(χll + p̂hlt )π̂
hl,ll
t = p̂llt π̂

hl,u
t (28f)

χlhπ̂lh,lh
t = p̂lht (π̂

lh,ll
t + π̂lh,u

t ) (28g)

(χll + p̂lht )π̂
lh,ll
t = p̂llt π̂

lh,u
t (28h)

χllπ̂ll,ll
t = p̂llt π̂

ll,u
t (28i)
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khh = q̂hht Ĵhh,hh
t (29a)

khl =
q̂hlt

Π̂hl
t

[(π̂hh,lh
t + π̂hh,ll

t + π̂hh,u
t )Ĵhh,hl

t + (π̂hl,ll
t + π̂hl,u

t )Ĵhl,hl
t ] (29b)

klh =
q̂lht

Π̂lh
t

[(π̂hh,ll
t + π̂hh,u

t )Ĵhh,lh
t + (π̂lh,ll

t + π̂lh,u
t )Ĵ lh,lh

t ] (29c)

kll =
q̂llt

Π̂ll
t

[π̂hh,u
t Ĵhh,ll

t + π̂hl,u
t Ĵhl,ll

t + π̂lh,u
t Ĵ lh,ll

t + π̂ll,u
t Ĵ ll,ll

t ] (29d)

(1− δhh,hh)(yhh,hh − b) = (r + χhh + δhh,hhp̂hht )Ĵhh,hh
t

+
1− δhh,hh

1− δhh,hl
δhh,hlp̂hlt Ĵ

hh,hl
t +

1− δhh,hh

1− δhh,lh
δhh,lhp̂lht Ĵ

hh,lh
t

+
1− δhh,hh

1− δhh,ll
δhh,llp̂llt Ĵ

hh,ll
t

(30a)

(1− δhh,hl)(yhh,hl − b) = (r + χhl + δhh,hlp̂hlt + p̂hht )Ĵhh,hl
t

+
1− δhh,hl

1− δhh,lh
δhh,lhp̂lht Ĵ

hh,lh
t +

1− δhh,hl

1− δhh,ll
δhh,llp̂llt Ĵ

hh,ll
t

(30b)

(1− δhh,lh)(yhh,lh − b) = (r + χlh + δhh,lhp̂lht + p̂hlt + p̂hht )Ĵhh,lh
t

+
1− δhh,lh

1− δhh,ll
δhh,llp̂llt Ĵ

hh,ll
t

(30c)

(1− δhh,ll)(yhh,ll − b) = (r + χll + δhh,llp̂llt + p̂lht + p̂hlt + p̂hht )Ĵhh,ll
t (30d)

(1− δhl,hl)(yhl,hl − b) = (r + χhl + δhl,hlp̂hlt )Ĵ
hl,hl
t +

1− δhl,hl

1− δhl,ll
δhl,llp̂llt Ĵ

hl,ll
t (30e)

(1− δhl,ll)(yhl,ll − b) = (r + χhl + p̂hlt + δhl,llp̂llt )Ĵ
hl,ll
t (30f)

(1− δlh,lh)(ylh,lh − b) = (r + χlh + δlh,lhp̂lht )Ĵ
lh,lh
t +

1− δlh,lh

1− δlh,ll
δlh,llp̂llt Ĵ

lh,ll
t (30g)

(1− δlh,ll)(ylh,ll − b) = (r + χll + p̂lht + δlh,llp̂llt )Ĵ
lh,ll
t (30h)

(1− δll,ll)(yll,ll − b) = (r + χll + δll,llp̂llt )Ĵ
ll,ll
t (30i)

Equilibrium wage levels The equilibrium wage levels for each worker-firm match

are given in the equation set (31). The first superscript denotes the hired worker’s
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skill endowment, while the latter denotes the firm’s skill requirements:

ŵhh,hh = δhh,hhyhh,hh + (1− δhh,hh)b+ δhh,hhp̂hht Ĵ
hh,hh
t +

1− δhh,hh

1− δhh,hl
δhh,hlp̂hlt Ĵ

hh,hl
t

+
1− δhh,hh

1− δhh,lh
δhh,lhp̂lht Ĵ

hh,lh
t +

1− δhh,hh

1− δhh,ll
δhh,llp̂llt Ĵ

hh,ll
t

(31a)

ŵhh,hl = δhh,hlyhh,hl + (1− δhh,hl)b+ δhh,hlp̂hlt Ĵ
hh,hl
t

+
1− δhh,hl

1− δhh,lh
δhh,lhp̂lht Ĵ

hh,lh
t +

1− δhh,hl

1− δhh,ll
δhh,llp̂llt Ĵ

hh,ll
t

(31b)

ŵhh,lh = δhh,lhyhh,lh + (1− δhh,lh)b+ δhh,lhp̂lht Ĵ
hh,lh
t +

1− δhh,lh

1− δhh,ll
δhh,llp̂llt Ĵ

hh,ll
t (31c)

ŵhh,ll = δhh,llyhh,ll + (1− δhh,ll)b+ δhh,llp̂llt Ĵ
hh,ll
t (31d)

ŵhl,hl = δhl,hlyhl,hl + (1− δhl,hl)b+ δhl,hlp̂hlt Ĵ
hl,hl
t +

1− δhl,hl

1− δhl,ll
δhl,llp̂llt Ĵ

hl,ll
t (31e)

ŵhl,ll = δhl,llyhl,ll + (1− δhl,ll)b+ δhl,llp̂llt Ĵ
hl,ll
t (31f)

ŵlh,lh = δlh,lhylh,lh + (1− δlh,lh)b+ δlh,lhp̂lht Ĵ
lh,lh
t +

1− δlh,lh

1− δlh,ll
δlh,llp̂llt Ĵ

lh,ll
t (31g)

ŵlh,ll = δlh,llylh,ll + (1− δlh,ll)b+ δlh,llp̂llt Ĵ
lh,ll
t (31h)

ŵll,ll = δll,llyll,ll + (1− δll,ll)b+ δll,llp̂llt Ĵ
ll,ll
t (31i)
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1.8.2 Figures and tables

Figure 8: Population shares of employed workers

Figure 9: Population shares of unemployed workers
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Table 5: Wage rates offered at each possible worker-firm match

Skill endowment Skill requirement Wage before subsidy Wage after subsidy

High-High High-High 1.4687 1.4689

High-High High-Low 1.1267 1.1318

High-High Low-High 0.80341 0.80061

High-High Low-Low 0.75815 0.75544

High-Low High-Low 1.0385 1.0393

High-Low Low-High 0.83181 0.82073

Low-High Low-High 0.97463 0.97427

Low-High Low-Low 0.80446 0.79978

Low-Low Low-Low 0.96315 0.96073
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2 A Versatile Epidemiological and Economic

Model for Analysing Public Health Crises

and Pandemics: Insights from COVID-19

Abstract

This study analyses the effects of social contact limitation policies against an

unexpected epidemic on economic productivity and individuals’ mental well-being be-

sides epidemic evolution. We develop a rich economic-epidemiological model with

heterogeneous agents, a government imposing social contact limitations, and individu-

als endogenously deciding on their number of daily social contacts. Agents’ behaviour

is determined by balancing the risk of infection with the need for social contacts and

labour income. We combine various data sources from Belgium to parameterize indi-

vidual utility, social contacts, economic sectors and infection dynamics. We replicate

the first fifteen months of COVID-19 in Belgium and simulate the following months

for a wide set of combinations of social contact limitations without a pharmaceutical

solution. We find that the timing of social contact limitations matters significantly

more than their stringency, with the earliest interventions resulting in the lowest losses

in economy and mental well-being for a given number of life losses.

2.1 Introduction

The recent COVID-19 pandemic has highlighted the importance of understand-

ing the complex interplay between public health, social well-being, and economic fac-

tors during times of crisis. While the specific context of COVID-19 provides valuable

insights, the need for a versatile and adaptable framework to analyse and respond to

future pandemics or public health emergencies is paramount.

In this paper, we present a comprehensive model that integrates epidemiological

dynamics, endogenous labour supply and social contact decisions among heterogeneous
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agents. We use this framework to assess the impact of non-pharmaceutical interven-

tions (NPIs) on life losses, social welfare and economic activity. Although our model

is calibrated and fitted to match real infection data from the COVID-19 pandemic,

with its flexible structure, it can be adapted to study the spread and impact of other

infectious diseases, such as seasonal influenza or emerging infectious diseases, helping

to inform disease control strategies and resource allocation.

In the aftermath of the COVID-19 pandemic, examining its multifaceted con-

sequences is paramount for preparing for future pandemics. In particular, the tradeoff

between protecting lives on the one hand and safeguarding economic activity and so-

cial interactions on the other hand, raises a crucial question: "What is the optimal

way to set up non-pharmaceutical interventions when they are the only solution avail-

able?" Social contact limitations, implemented as a measure to contain the spread

of the virus, have indeed had notable repercussions both on the labour market and

on mental well-being. The restrictions placed on workplaces have led to a decline

in individual income and, consequently, a decrease in macro-level economic activity.

Moreover, these limitations have also indirectly constrained the labour supply of par-

ents through school closures and caused job losses due to the closure of a variety of

“non-essential” activities. The psychological impact of social contact limitations can-

not be overlooked, as individuals have experienced heightened feelings of loneliness and

depression, consequently affecting their mental well-being (De Pedraza et al. [2020],

Foa et al. [2020]). The optimal timing and strategy for implementing and lifting such

restrictions require meticulous assessment, as extended lockdowns are unsustainable

from this perspective too. An important dimension of COVID-19 that is also apparent

in many viruses is its heterogeneous impact across age groups, with older individuals

being more susceptible to severe illness and mortality. This variation led to differing

levels of risk tolerance among the population, complicating the imposition of social

contact limitations. The effectiveness of these measures varied based on the specific

sub-groups and the contexts in which they were applied, such as schools, workplaces,

or public gatherings. This chapter offers insights into optimal strategies, in terms

of responsiveness and stringency, for mitigating the adverse effects of social contact

limitations, while maintaining the objective of safeguarding public health. The devel-

opment of adaptable policy tools as in our research may allow policymakers to rapidly
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assess the potential impact of various interventions and make informed decisions based

on specific contexts.

This chapter contributes to the literature in four important ways. First, by us-

ing micro-data, we empirically estimate the relationship between economic decisions,

infection avoidance, and mental well-being. Second, we present an empirically rele-

vant utility function (in terms of income, social contacts, and infection avoidance) that

allows endogenous and heterogeneous contact reductions depending on age and sec-

tor. Third, we incorporate the specific impact of social contact limitations on parents’

labour market outcomes and mental well-being, which was in neglected economic-

epidemiological models. Finally, we simulate the effects of responsiveness and strin-

gency of social contact limitations on the economy, health, and mental well-being.

With the interdisciplinary nature of our model, we make it relevant to researchers and

professionals across various fields, including public health, economics, and social sci-

ences, promoting a more holistic understanding of the factors influencing public health

crises and their consequences.

To comprehensively study the impact of epidemics on society, we develop a

tractable and rich economic-epidemiological model that allows us to realistically simu-

late the effects of an unexpected epidemic on health, economy and mental well-being.

Our model incorporates three main building blocks: an epidemiological component, an

economic component, and a utility maximization problem depending on daily social

contacts. Our primary focus is on identifying policies that reduce life losses with a

minimal impact on labour supply and mental well-being. To do so, we estimate a

utility function (which accounts for mental well-being), and calibrate our model for

the first fourteen months of COVID-19 in Belgium, at the time when vaccines were

introduced. Our simulations thus allow us to test the impact of various NPI scenarios

if vaccines had remained unavailable. We find that the responsiveness of restrictions

matters much more than their stringency, with the earliest interventions saving most

lives. With social contact limitations imposed early, looser stringency brings signif-

icant gains in terms of labour supply and life satisfaction with a minimal effect on

life losses. These results suggest that it is possible to minimize the tension between

protecting the people and protecting the economy.
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The rest of the chapter is organized as follows: In Section 2, we give a brief

overview of related literature. In section 3, we present our model. Section 4 describes

our data sources and the variables we use in our analysis. Section 5 presents our

empirical results and calibration. In Section 6, we present and discuss our simulation

results. We provide our conclusion in Section 7.

2.2 Related Literature

To provide accurate assessments of the response of an economy to the emer-

gence of the COVID-19 pandemic, researchers have conducted analyses by combining

economic models and epidemiological SIR models.

Early papers such as Alvarez et al. (2020), Eichenbaum et al. (2020a), Jones et

al. (2020) analyzed the impact of policies imposed uniformly on the whole population

and/or economic decisions uniformly taken by all individuals.

Alvarez et al. (2020) developed a simple planning model to analyze the optimal

timing and duration of COVID-19 lockdowns. The authors suggest that a short but

intense lockdown can be more effective than a longer but less stringent one in reducing

the spread of the virus while minimizing economic costs. In the macroeconomic-

SIR model of Eichenbaum et al. (2020a), individuals reduce their consumption and

work activities to decrease the likelihood of contracting the virus. While this helps to

mitigate the impact of the epidemic, it also contributes to a larger economic downturn.

In a dynamic macroeconomic model, Jones et al. (2020) find that a combination of

social distancing and remote work can be highly effective in reducing the spread of the

virus while minimizing the economic costs of lockdowns.

Policies targeting different groups of the population are found to significantly

outperform uniform policies. Acemoglu et al. (2020) studied targeted lockdowns

where different age groups have varying infection, hospitalization and mortality rates.

They find that stricter policies on the elderly may markedly alleviate economic losses

and life losses. Brotherhood et al. (2020) emphasize the importance of age-specific

policies in controlling the spread of the virus. The authors show that targeting testing

52



towards the most vulnerable groups, such as the elderly, can be an effective way to

reduce the overall spread of the virus and its impact on the economy. Additionally,

the authors highlight the importance of age-specific policies, such as social distancing

measures targeted towards specific age groups, in reducing the number of infections

and deaths. Rampini (2020) divided the population into a young and an old group

with different health specificities and rates of labour force participation. He finds that

lifting interventions sequentially (for the younger group first and the older group later

on) can substantially reduce mortality, demands on the health care system, and the

economic cost of interventions.

While the economic-epidemiological literature mainly focuses on the relation-

ship between economic decisions and health outcomes, the mental well-being of in-

dividuals was also significantly affected during lockdowns and due to social contact

reductions. The findings of Ammar et al. (2020) reveal psychosocial strain due to

home confinements with an approximately 71% reduction in social activity leading

to a life satisfaction loss of 16%. De Pedraza et al. (2020) concludes that personal

well-being is negatively impacted by increasing COVID-19 cases and deaths, extended

lockdowns, significant limitations on public life, and an economic decline. On the

other hand, Foa et al. (2020) find that due to their impact on reducing life losses

and disease incidence, lockdowns during pandemics have an overall positive effect on

subjective well-being with a one-month lockdown reducing the negative effect of the

pandemics on subjective well-being by 9%.

It is estimated that parents’ mental well-being and labour market performance

of parents are affected more than people without children during COVID-19 lock-

downs. Huebener et al. (2021) show that satisfaction with life decreased more for

individuals with children than for other individuals, together with severe adverse ef-

fects on parental labour market outcomes during COVID-19 lockdowns in Germany.

Fuchs-Schündeln et al. (2020) document that 26% of the German workforce has chil-

dren aged 14 or younger, and only due to school and child-care closures, 11 % of all

workers (42 per cent of all parents) were directly affected leading to an 8% loss in

working hours.
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2.3 Model

In this section, we describe our model’s building blocks. The spread of the epi-

demic is represented via an extended SEIRD model exploiting contact matrices in the

population. We partition our population into 176 individual types depending on sev-

eral factors, such as employment status or age. Each individual type maximizes utility,

which depends on income, number of social contacts, and risk of getting infected. To

curb the spread of the epidemic, the policymaker imposes a set of limitations on social

contact. These social contact limitations also constrain labour supply and affect life

satisfaction on top of their effects on disease transmissions.

2.3.1 Model environment

Social contacts

The epidemic spreads via social contact between contagious and susceptible individ-

uals. We assume four contact locations: home, school, workplace, and other (e.g.:

public transport, public events, private gatherings, shopping places, parks,...). In the

absence of mobility restrictions, all individuals are free to engage in social contact at

home and other locations. On top of contacts at these two locations, some individual

types engage in school contacts and some others engage in workplace contacts.

Age groups

We partition our population into 16 age groups (0-4, 5-9, ..., 70-74, 75+). The effects

of the epidemic (i.e. mortality and susceptibility rates) vary across age groups.

Employment statuses

We further partition each age group into 11 individual statuses. Individuals are either

employed or non-working. By supplying labour, most workers generate social contacts

in the workplace. In the first step, we partition employed workers into four categories.

When teleworking is possible, individuals can work without generating contacts. The

labour supply of workers active in essential sectors is exogenously fixed. In the ab-
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sence of policy intervention, non-essential workers supply labour endogenously. Other

workers are associated with sectors that provide service for contacts at other locations.

They supply endogenous labour under some constraints. Since a fraction of workers is

also parents, their labour supply may be constrained by school closures, which transfer

the responsibility of caring for children during working hours. Hence, we partition each

of these four employed worker categories into two sub-categories: workers impacted

by school closures and those not impacted. We assume a fraction of each category

is subject to childcare, meaning that any decision on the number of school contacts

affects their labour supply. Workers without children are not directly affected by deci-

sions related to school contacts. We name the corresponding eight employment types as

remote& parent, remote& childfree, essential& parent, essential& childfree, non−

essential& parent, non−essential& childfree, other& parent, and other& childfree.

The non-working population is decomposed into three individual types. None

of these types supplies labour. The first type is the students, who generate contacts

at school. The other two types are the unemployed and the nilf (not in the labour

force). nilf contains people who are not students, employed, or unemployed (seeking

for a job).

2.3.2 Epidemic evolution

Our model is in discrete time. When the epidemic emerges, a small fraction of

each individual type becomes exposed to it.

Health statuses

The epidemiological model involves several health statuses. Each individual can

experience one of five main health statuses: 1. Susceptible individuals are those who

have either not been exposed to the virus or have lost immunity after recovery. We

assume all individuals are susceptible to the epidemic before its outbreak. 2. Exposed

individuals are those who are in an incubation period. They have been exposed to

the disease, but are not yet contagious. 3. The infected status follows the incubation
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period. At this stage, individuals become contagious and can transmit the disease to

susceptible individuals with whom they enter into contact. 4. If an infected individual

recovers, they enter into the phase of the recovered. At this phase, they are immune to

a new infection until immunity vanishes. 5. The individuals who do not recover from

the infection become deceased.

There are four subgroups within the group of infected individuals. 1. contagious

Individuals without displaying any disease symptoms are asymptomatically infected.

We further partition asymptomatic individuals into two groups based on the level of

information they possess regarding their infection: 1a. Positively tested asymptomati-

cally infected are those that learn their infection upon testing. 1b. Asymptomatically

infected without noticing are those that are contagious without realizing it. 2. In-

dividuals who develop symptoms are symptomatically infected. We further partition

symptomatic individuals into two groups: 2a. Mildly infected individuals have mild

symptoms without developing a need to be admitted to an intensive care unit (ICU).

2b. Critically infected need intensive care.

Among the individuals who recovered from an infection, some were not aware

that they had been infected, and they thus ignore the fact that they have gained

immunity. We thus also partitioned recovered individuals into two subgroups, whose

behaviour may differ: 1. Individuals who recovered from an asymptomatic infection

without realizing their infection and recovery, 2. Individuals who realized that they

have recovered either from a symptomatic infection or an asymptomatic infection with

a positive test result.

The following diagram (Figure 10) summarizes the health statuses mentioned

above and the evolution pattern of the disease. Here, parameters coloured in green

denote the transition probabilities between each health status.

56



Figure 10: Flowchart of the epidemiological model
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Epidemiological model

The following set of equations describes the dynamics of the epidemic’s evo-

lution. First, we let i ∈ {employment,age} denote the individual type in terms of

employment status and age.

Si
t denotes the number of susceptible individuals of type i at time t, whereas T i

t

denotes the number of new infections. Ri
A,t stands for the number of individuals who

are immune after recovering from an asymptomatic infection without realizing their

infection and recovery. Ri
t stands for the number of individuals who are immune after

realising that they recovered from either a symptomatic infection or an asymptomatic

infection with a positive test result. Immune individuals lose immunity each day by

the daily immunity loss probability, ℓ.

Si
t+1 = Si

t − T i
t + ℓ(Ri

A,t +Ri
t) (1)

Ei
t represents the number of exposed individuals at time t. Newly infected

individuals, in other words, individuals who are exposed to the disease, at time t enter

into an incubation period t+1. In this period they develop no symptoms and they are

not contagious yet. At each period, they leave the incubation period at a probability

p and become contagious.

Ei
t+1 = Ei

t(1− p) + T i
t (2)

As common in this literature, we assume that upon becoming contagious, indi-

viduals either never develop symptoms and become asymptomatically infected, or they

develop symptoms immediately. We model a testing policy by which asymptomatic

individuals get randomly tested. This policy allows testing a fraction σt of the asymp-

tomatic population at time t. When they are tested, infected individuals become aware

of their infection, which decreases the pool of unaware infected individuals A. Here,

Ai
t represents the number of asymptomatically infected individuals at time t whose

infection is not revealed by random testing. ϕA is the probability of not developing
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symptoms. Asymptomatically infected individuals recover at a rate rA.

Ai
t+1 = [Ai

t(1− rA) + pϕAE
i
t ](1− σt) (3)

Conversely, the number of asymptomatically infected individuals that know

their infection, P i
t , increases thanks to σt. A fraction of the group Ai

t+1 learn their

infection at time t upon random testing by a probability, σt. Those that already know

their infection recover at the asymptomatic recovery rate, rA.

P i
t+1 = [Ai

t(1− rA) + pϕAE
i
t ]σt + P i

t (1− rA) (4)

Those who develop symptoms become mildly infected, M . Mildly infected may

recover at a rate rM ≥ rA, develop a need for a bed at an intensive care unit at a

rate ν or directly lose their lives at a rate dageM . A mildly infected individual enters the

critical infection phase, C, upon developing a need for the intensive care unit. They

are either discharged from the ICU to a normal hospital bed at a probability r̂C , or

they lose their lives at a probability, d̂ageC , which is higher than the mortality rate when

being mildly infected, d̂ageC ≥ dageM .

M i
t+1 =M i

t (1− rM)(1− ν)(1− dageM ) + Ei
tp(1− ϕA)

age + Ci
t r̂

age
C (5)

Ci
t+1 = Ci

t(1− r̂C)(1− d̂ageC ) +M i
t (1− rM)ν (6)

Di
t denotes the stock of the deceased individuals at time t. Two sources for the

inflow to the status, D, are those who lose their lives when mildly infected and when

critically infected.

Di
t+1 = Di

t +M i
td

age
M + Ci

t d̂
age
C (7)

Equations (8) and (9) give the evolution of the numbers of immune individuals,

without realizing their immunity, Ri
A,t, and by knowing their immunity, Ri

t. Each day

a fraction ℓ of these individuals lose their immunity, decreasing the pool of individuals

at these health statuses. Daily new recoveries from A, P , M , and C increase the
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number of immune individuals.

Ri
A,t+1 = Ri

A,t(1− ℓ) + Ai
trA(1− σt) (8)

Ri
t+1 = Ri

t(1− ℓ) + P i
t rA +M i

trM + r̂CC
i
t (9)

Popit stands for the population size at time t. It is simply the population size

minus the number of life losses at time t.

Popit+1 = Popit −Di
t (10)

Quarit is the number of quarantined individuals of type i at time t. We assume

the following: Positively tested asymptomatically infected, P is kept under home

quarantine. Mildly infected, M , either doesn’t develop a need for hospitalization, at a

probability ρ, or they need to be hospitalized. M are also kept under home quarantine

when they are not hospitalized.

Quarit = P i
t + ρM i

t (11)

Hospit is the number of hospitalized individuals of type i at time t. All critically

infected and a fraction of mildly infected are hospitalized.

Hospit = (1− ρ)M i
t + Ci

t (12)

Act denotes the active population who are free to have social contacts other

than home. Actit is simply the non-quarantined and non-hospitalized population.

Actit = Popit −Quarit −Hospit (13)

We assume everyone who develops symptoms at time t is tested. The remaining

testing capacity is allocated randomly to individuals without disease symptoms. Here,
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δt and σt are testing capacity and random testing probability at time t.

σt =

δt −
∑
i

p(1− ϕA)E
i
t−1∑

i

(Si
t + Ei

t + Ai
t +Ri

A,t +Ri
t)

(14)

ICU capacity is limited. When ICU capacity is overwhelmed, some individuals

with a need for ICU cannot be admitted to the ICU. For simplicity, we assume no

prioritization of ICU capacity for any individual type. When the ICU capacity, χ, is

overwhelmed, individuals admitted at the ICU recover at the regular recovery rate, rC .

We assume individuals with a denied ICU admission recover at a lower rate than the

regular recovery rate of those who are admitted, r̄C < rC . Thus, the average recov-

ery rate for individual type i is the weighted average of recovery rates of individuals

admitted and denied at the ICU:

r̂C,t =


rC if

∑
i

Ci
t ≤ χ

χrC+(
∑
i
Ci

t−χ)r̄C

Ci
t

if
∑
i

Ci
t > χ

(15)

We assume an individual has a higher mortality rate, d̄ageC > dageC , when denied

an ICU bed. Then, the average mortality rate for individual type i can be written

as the weighted average of mortality rates of individuals admitted and denied at the

ICU:

d̂ageC,t =


dageC if

∑
Ci

t ≤ χ
χdageC +(

∑
i
Ci

t−χ)d̄ageC

Ci
t

if
∑
i

Ci
t > χ

(16)

Disease transmission

Disease transmission occurs when a susceptible individual (S) engages in social

contact with an infected individual (A, P , M , or C) at one of the contact locations

(home, school, workplace, other). Following and extending Prem et al. (2017), We use

the following expression for the number of new exposures to the disease at location ∈

{work, school, other}, T i
location,t:
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T i
location,t = Si

tπ
age
t

∑
i′

µi,i′

location,t

πAA
i′
t

Acti
′
t︸ ︷︷ ︸

fraction of contagious

(17)

Here, the term inside the summation sign is the effective number of contagious indi-

viduals a member of type i meets from type i′ at time t. µi,i′

location,t is the number of

daily social contacts at location ∈ {work, school, other} between these two individual

types. A susceptible individual of type i can only meet active individuals (neither

hospitalized nor at home quarantine), Acti′t . Among Acti′t , only the asymptomatically

infected without a test result, Ai′
t , can spread the disease. Therefore, the fraction

Ai′
t /Act

i′
t gives the probability of meeting with the disease. πA is the relative conta-

giousness of asymptomatic infection to symptomatic infection. As anyone is free to

meet with anyone, the sum of these effective numbers of contagious individuals from

all groups gives the total effective number of contagious individuals type i can meet.

Finally, πage
t is the susceptibility coefficient representing the fact that each age group

has different per contact probabilities of entering into the incubation period. πage
t is

time-dependent to reflect the transmission rate difference before and after masks were

used and social distancing rules were implemented. We assume tmask is the day masks

become obligatory.

πage
t =

π
age
0 , ift < tmask

πmask ∗ πage
0 , ift ≥ tmask

(18)

The number of new exposures to the disease at home is different than other

locations as quarantined patients, Quari′t , are also a source of transmission. Here the

contagious among i′, (Acti′t +Quari
′
t ), also contains the asymptomatically infected with

a test result, P i′
t , and the non-hospitalized mildly infected ρM i′

t .

T i
home,t = Si

tπ
age
t

∑
i′

µi,i′

home,t

πA(A
i′
t + P i′

t ) + ρM i′
t

Acti
′
t +Quari

′
t︸ ︷︷ ︸

effective fraction of contagious

The number of total infections of individual type i, T i
location,t can be written as
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the sum of newly exposed at location ∈ {home, school, workplace, other}: 15

T i
t = T i

home,t + T i
school,t + T i

work,t + T i
other,t (19)

As all members of type i are identical, the probability of exposure to the disease

is the newly exposed within type i at location ∈ {home,work, school, other} divided

by the number of susceptible within i:

τ ilocation,t = T i
location,t/S

i
t (20)

2.3.3 Non-pharmaceutical interventions

The policymaker intervenes by imposing non-pharmaceutical interventions (NPIs) that

limit social contact at three contact locations; namely schools, workplaces and other

locations; to curb the spread of the epidemic.

Quarantined individuals have no contacts other than home contacts. Let j

stand for a sub-group of the population depending on health status, employment type,

and age, j ∈ {health, employment, age}. For location ∈ {school, work, other}, social

contacts of quarantined individuals, health ∈ {P,M,C} are:

µj,j′

location,t = 0 (21)

All remaining limitations are applicable if health status is health ∈ {S,E,A,RA, R}

School closures

The policymaker dictates the number of school contacts at time t. Here, µi,i′

s,0

is the number of school contacts between individuals of types i and i′ before the
15We assume the probability of being exposed to the disease at more than one location on the same

day is zero for simplification.
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epidemic. λs,t is the fraction of pre-disease school contacts to be held at time t. For

employment ∈ {student}:

µj,j′

s,t = λs,tµ
j,j′

s,0 (22)

This limitation acts as a cap on workplace contacts of non-remote employed

workers that have children and whose labour supply may be constrained by school clo-

sures. For employment ∈ {essential& parent, non−essential& parent, other& parent}:

µj,j′

w,t ≤ λs,tµ
j,j′

w,0 (23)

We assume school closures also affect remote workers that are subject to child-

care although less so than essential workers. Here, ζ is the partial effect of school clo-

sures on the labour supply of remote workers. For employment ∈ {remote& parent}:

Lj
t = (1− ζ) + ζλs,t (24)

Workplace contacts

The policymaker sets a cap on workplace contacts by imposing workplace clo-

sures. Essential workers are exempt from this limitation. Non-essential and other

workers can now engage in workplace contacts at a maximum rate that is determined

by the policymaker as a fraction of the pre-epidemic workplace contacts, µj,j′

w,0. λw,t is

the maximum fraction of pre-disease workplace contacts that can be held at time t. For

employment ∈ {non−essential& parent, non−essential& childless, other& parent,

other& childless}:

µj,j′

w,t ≤ λw,tµ
j,j′

w,0 (25)
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Other location limitations

The policymaker sets a cap on other contacts for all individuals by imposing

workplace closures. Here, µj,j′

o,0 is the number of other contacts between i and i′ before

the epidemic. λo,t is the maximum fraction of pre-disease other contacts that can be

held at time t.

µj,j′

o,t ≤ λo,tµ
j,j′

o,0 (26)

We assume a minimum level of other contacts, λo,min, would be present in

any case (e.g. public transport), and we associate other workers with the rest of

other contacts (i.e. sectors providing leisure activities). Therefore, for employment ∈

{other&parent, other& childless}:

µj,j′

w,t ≤
λo,t − λo,min

1− λo,min

µj,j′

w,0 (27)

2.3.4 Life satisfaction maximization

At the beginning of each day, individuals in the population observe the state of

the epidemic and optimally decide on the number of social contacts they would like to

have. This optimization is done by maximizing a utility function, which depends on

three parameters we empirically found to be correlated with life satisfaction: income,

a measure of social isolation and the risk of getting infected. For simplicity, individuals

update their behaviour every day based on the evolution of the situation by maximizing

for one period. First, we present the sociality (as a measure of social isolation) and

income functions.

We define sociality as an individual’s number of daily social contacts. Here,

µi
location,0’s are the pre-epidemic sum of daily social contacts at each contact location.

κilocation,t’s are the fractions of social contacts kept at time t. κit = (κihome,t, κ
i
school,t,
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κiwork,t, κ
i
other,t) is the vector of social contacts at all locations.

sociality(κit) = κihome,tµ
i
home,0 + κischool,tµ

i
school,0 + κiwork,tµ

i
work,0 + κiother,tµ

i
other,0 (28)

We assume income is immediately consumed and is proportional to daily work-

place contacts for non-remote workers. Remote workers supply full labour unless they

are affected by school closures.

Li
t =


1, if type ∈ {remote & childless}

1− (1− ζ)λs,t, if type ∈ {remote & parent}

κiw,t, else

(29)

We assume the non-working population enjoys a basic income and the working

population is compensated at the same rate when they are not able to supply labour

due to social contact limitations. The rest of the income is paid as wage, ω. We assume

wage to be unity, to equalize the income at full labour supply to 1. Income function:

income(Li
t) =

b(1− Li
t) + ωLi

t, if type /∈ {nilf, student, unemployed}

b, if type ∈ {nilf, student, unemployed}
(30)

The risk of disease exposure creates a disincentive to form social contacts. In-

dividuals observe the daily state of the epidemic and assess the probability of being

susceptible and the risk of disease exposure per contact. 16 Any infected individual,

health ∈ {P,M,C}, knows that the probability of being susceptible is zero. Indi-

viduals at a health state health ∈ {S,E,A,RA, R} know that if they are susceptible

a contagious person may transmit the disease to them. They observe the number

of active cases, corresponding to health ∈ {P,M,C}, and calculate the probability

of being susceptible. We assume this probability to be the number of susceptible at

each type divided by the number of individuals belonging to the set of individuals at

health ∈ {S,E,A,RA, R}. Furthermore, since the risk of dying following infection is
16A second disincentive might exist because of the risk of contaminating others. However, we found

no correlation between having an acquaintance diagnosed with COVID-19 and life satisfaction.
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age-specific, it implies that an older individual would be more hesitant to form social

contacts than a younger individual.

In light of the argumentation given above, we define the maximization problem

of expected daily utility in equation (31), which we explain in Appendix 2.8.1. Here,

αs, αi, αe represent how much individuals value having social interactions, income and

facing the risk of being exposed to the virus. δage is the age-specific probability of death

upon entering the exposed health phase, πS,t is the probability of being susceptible

when an individual is not informed by their health status (health ∈ {S,E,A,RA, R}),

and τ(κit) is the daily probability of entering into the exposed phase at the next day,

which depends on the number of social contacts at day t.

max
κi
h,t,κ

i
w,t,κ

i
o,t

E(LSi
t) =

{
αsln(socialityi

t(κ
i
t)) + αiln(incomeit(κ

i
w,t))

+ αe δage︸︷︷︸
mortality rate by age,

πS,t︸︷︷︸
prob. of being susceptible,

τ(κit)︸ ︷︷ ︸
exposure prob.

} (31)

subject to non-pharmaceutical interventions given in equations (22)-(27).
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2.4 Data

We use several data sources from Belgium to simulate and analyze the effects

of NPIs on the economy, life satisfaction, and COVID-19 evolution.

Social contact matrices

Prem et al. (2017) provide estimations of daily social contacts among sixteen

age intervals (0-4, 5-9, ... 70-74, 75+) at four contact locations (home, school, work-

place, other) for 152 countries by using contact diaries from the POLYMOD survey17.

We use their estimations for the number of contacts at each contact location among

each age group in Belgium in 2017. A heat map of daily contacts at each location

is given below (Figure 11) with darker points indicating more contacts. The highest

numbers of contacts are as follows: 1. At home, 2.51 contacts per day between age

groups 10-14 and 10-14. 2. At school, 4.20 contacts per day between age groups 10-14

and 10-14. 3. At work, 1.75 contacts per day between age groups 30-34 and 35-39. 4.

At other locations, 2.58 contacts per day between age groups 20-24 and 20-24.
17A survey conducted with 7290 participants in eight European countries to examine mixing pat-

terns among populations to address the increasing use of mathematical models in determining the ef-
fects of interventions on infectious diseases transmitted through respiratory or close contact (Mossong
et al. [2008]).
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Figure 11: Daily social contacts in Belgium

We assume the minimum daily home contact cannot fall below 1.3 as the average

household size in Belgium is 2.3.

Sectoral composition of employed workers

Our source for Belgian labour force composition is the following study: Fana

et al. (2020), The COVID confinement measures and EU labour markets. Fana et al.

(2020) decomposes the Belgian labour force into five categories:

1. Essential and fully active (27%): food production, utilities, health and all the other
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sectors

2. Active via telework (30%): education, most of the public administration, finance,

insurance and telecommunications

3. Mostly essential and partly active (18%): mostly retail and manufacturing of chem-

icals and paper, which remain to some extent active even in the strict confinement

situation

4. Mostly non-essential (17%): the majority of manufacturing not previously men-

tioned, as well as some machine and computer repair activities and construction

5. Closed (8%): Hotels, restaurants and accommodation, estate and travel agencies,

plus leisure and recreation services

We directly take the sizes of the first, second, and fifth categories as the sizes of essen-

tial workers, remote workers, and other workers in our model. We assign the total size

of the third and fourth categories as the size of non-essential workers in our model.

We use the estimations of Fuchs-Schündeln et al. (2020) to give values to the

sizes of the employed workers affected by school closures due to the need for child-

care. By using German data, Fuchs-Schündeln et al. (2020) estimate that 11 per

cent of workers are affected by childcare, which translates into 8 per cent of foregone

working hours18. We assume that age groups between the ages of 25-54 (76.7% of

the employed) have children of school age and distribute the 11% subject to child-

care over the employed between the ages of 25-54 (11%/76.7%=14.3%). We finally

assign the remaining labour supply loss (8%-70%x11% = 0.3%) to remote workers

(0.3%/(30%x11%) = 9.1%) when all non-remote workers which are subject to child-

care lose their labour supply in case of full school closure. Table 6 summarizes these

values.
18We use these estimations for Germany as we weren’t able to find a similar study for Belgium.
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Table 6: Labour force composition in Belgium

Parameter Value

Share of remote workers 30%

Share of essential workers 27%

Share of non-essential workers 35%

Share of workers providing labour supply to

activities related with other location contacts 8%

Share of workers constrained by childcare (ages 25-54) 14.3%

Labour supply loss of teleworkers constrained by childcare 9.1%

Demography

We use OECD demographics data for several demographic values of Belgium.

We use data from 2017 as it is the year of the social contact matrices we employ. The

total population in 2017 is 11,349,081. To determine the sizes of the type student, we

use school enrolment data for Belgium in 2017 from OECD. To determine the sizes

of the employed, unemployed, and nilf (not in the labour force), we use the shares of

each group within the population above the age of 15, by assuming no one works up

to the age of 14. We then partition the employed population by applying the sectoral

composition shares presented above to each age group beginning with the age of 15.

Table 7 presents the resulting population decomposition.
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Table 7: Decomposition of the population of Belgium into individual types

Age Nilf School Unemp Rem C Rem NC Ess C Ess NC Non C Non NC Oth C Oth NC

0-4 311579 313169 0 0 0 0 0 0 0 0 0

5-9 8206 657350 0 0 0 0 0 0 0 0 0

10-14 7813 625879 0 0 0 0 0 0 0 0 0

15-19 0 581003 10967 0 10925 0 13110 0 9469 0 2913

20-24 27578 332099 58582 0 76677 0 92012 0 66453 0 20447

25-29 22705 103891 61581 23664 141369 28397 169642 20509 122520 6310 37698

30-34 53859 52359 44422 24707 147600 29648 177120 21413 127920 6588 39360

35-39 46145 53931 36444 26250 156821 31500 188185 22750 135911 7000 41819

40-44 80122 18218 32310 25878 154595 31053 185514 22427 133982 6901 41225

45-49 101269 19509 32147 27153 162211 32583 194653 23532 140583 7241 43256

50-54 139180 20258 32382 26774 159949 32129 191938 23204 138622 7140 42653

55-59 210834 19347 34053 0 154012 0 184814 0 133477 0 41070

60-64 473791 17212 9886 0 57270 0 68724 0 49634 0 15272

65-69 564572 15194 547 0 9116 0 10939 0 7900 0 2431

70-74 470590 12299 60 0 3410 0 4092 0 2955 0 909

75+ 973953 25074 0 0 2635 0 3162 0 2284 0 703

COVID-19 disease characteristics

We gather several data sources and estimations in order to parameterize disease

characteristics. The incubation period is 5.1 days à la Lauer et al. (2020). Therefore,

the daily probability of leaving the incubation period and becoming contagious is 1 /

5.1 = 0.1961. 40% of cases become asymptomatic as estimated by Ma et al. (2021). We

assume a daily immunity loss probability is 0.0003 implying that 95% of the recovered

individuals stay immune after six months (Dan et al. [2021]). The expected recovery

duration is 6.5 and 9.5 days for asymptomatic and symptomatic infection (Rhee et al.

[2021], Rees et al. [2020]), respectively. The average length of stay at the ICU is set

to 17.5 days à la Zeleke et al. (2021). We use age-specific mortality rates from Verity

et al. (2020), in Appendix 2.8.3 in Table 16. We assume an average duration of 7 days

before death in the ICU (Auld et al. [2020], Larsson et al. [2021]). Thus, one-seventh

of the age-specific mortality rates give daily mortality rates. From Sciensano (2023),

we calculated that the mortality rate outside ICU was 11.9% of that in the ICU until

the last day of our calibrated period, 19/04/2021. We assume, when a patient is denied

an ICU bed due to the ICU capacity overwhelming, they do not recover until they are

admitted to the ICU. For the unlikely case of ICU capacity being overwhelming, we
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assume the mortality rate is three times more when a patient is denied an ICU bed.

From Sciensano (2023), we fathom approximately 69.77% of the symptomatic patients

did not require hospitalization. Thus, this is the probability of not developing a need

for hospitalization when mildly infected, ρ. An asymptomatically infected individual

is assumed to be 75% as contagious as a person with symptoms (Cevik et al. [2021])19.

We use the actual number of ICU beds in Belgium dedicated to COVID-19 patients,

corresponding to 15.9 beds per 100,000 people (Berger et al. [2022]). Finally, each age

group has different probabilities of entering into the incubation period upon contact

(Davies et al. [2020]), leading to age-specific susceptibility rates given in Appendix

2.8.3 in Table 16.

Table 8: COVID-19 disease characteristics

Parameter Symbol Value Phase

Prob. of becoming contagious p 0.1961 E

Prob. of not showing symptoms ϕA 0.4000 E

Prob. of developing need for critical care ν 0.0571 M

Immunity loss prob. ℓ 0.0003 RA,R

Prob. of recovery when asymptomatically infected rA 0.1538 A,P

Prob. of recovery when symptomatically infected rM 0.1050 M

Prob. of discharge from critical care rC 0.1429 C

Prob. of death when critical care is needed dC Age-specific C

Prob. of death when critical care is not needed dM 0.119dC M

Prob. of discharge from critical care (overwhelmed) r̂C 0 C (≥ χ)

Prob. of death (overwhelmed) d̂C 3dC C (≥ χ)

Ratio of the mildly infected under home quarantine ρ 0.6977 M

Relative contagiousness of the asymptomatic πA 0.7500 A

Critical care capacity per 100,000 people χ 15.9

Base susceptibility rate πage Age-specific S

19This value should be approached cautiously as estimations vary significantly.
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Disease evolution in Belgium

We use the COVID-19 monitoring data set from the Belgian Institute of Health (Sci-

ensano) for the daily numbers of active cases, ICU occupancy rates, life losses, and

COVID-19 tests. We use data from the period between 02/03/202020 and 19/04/2021.

Utility function

We use the WageIndicator Survey of Living and Working in Coronavirus Times.

This survey contains information on several outcomes such as income, life satisfaction,

workload changes, or feelings of loneliness. The survey is conducted in 143 countries

between March 2020 and March 2021.

Table 9 presents the descriptive statistics from WageIndicator Survey of Living

and Working in Coronavirus Times. We modify the data in several ways. We discard

observations a) from countries with less than ten observations and b) from observations

without a valid gender response. We create a categorical variable named income loss.

Income loss has the value a) 2 if a respondent expects job loss or their workplace to go

out of business, b) 1 if a respondent expects only less income, and c) 0 if a respondent

expects neither less income nor job loss or their workplace to go out of business. The

survey contains two questions on a) being ever tested for COVID-19, and b) having

recovered in case of a positive test result. We lump the responses to two questions

into a categorical variable with five values, named test result. The values from 0 to 4

are a) has never tested for COVID-19, b) has tested positive and not yet recovered c)

has tested positive and recovered, c) is waiting for a test result, and d) has ever tested

but without any positive test result. The survey contains a question I feel lonely in

this corona crisis with values between 1 and 5, with 5 corresponding to the loneliest

case. We create a sociality parameter that is the opposite of feeling lonely, with 5

corresponding to the highest level of being social. We further use a set of variables,

such as doing regular exercise or living with partner, that can affect life satisfaction.
2002/03/2020 is the day Belgium started to announce new positive COVID-19 cases every day.

Only a single positive COVID-19 case was announced on 04/02/2020 before 02/03/2020.
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Table 9: Descriptive statistics

No of observations Mean Std. dev. Min Max

Life satisfaction 16998 6.05 2.47 1 10

Male 17004 1.38 0.484 1 2

Age 17004 42.3 12.3 10 90

Weekly Cases per 1000 17004 0.957 1.12 0 10.01

Health problems 16999 2.10 0.759 1 5

Tertiary education 17004 0.544 0.498 0 1

Workload increased 13889 0.314 0.464 0 1

Workload decreased 13889 0.340 0.474 0 1

Can work remotely 13889 0.344 0.475 0 1

Without work due to Covid-19 13889 0.363 0.481 0 1

Income loss 10848 0.549 0.580 0 2

Sociality 17000 3.17 1.31 1 5

Has an acquaintance tested positive 16243 0.188 0.391 0 1

Test result 16999 0.735 1.52 0 4

Lives with partner 17001 0.619 0.486 0 1

Lives with children 17001 0.467 0.499 0 1

Lives with other 17001 0.254 0.435 0 1

Cares about pets 17001 0.298 0.457 0 1

Under self isolation 17000 0.567 0.496 0 1

Does regular exercise 17000 2.83 1.33 1 5

N 17004

Non-pharmaceutical interventions

Oxford COVID-19 Government Response Tracker (OxCGRT) provides a comprehen-

sive data set on the list of policies implemented against the spread of COVID-19. We

extract the following timeline given in Table 10 as the implementation timeline of

social contact limitations in Belgium.
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Table 10: Timeline of NPIs in Belgium

Date Workplaces Schools Other locations

14/03/2020 Closed Mildly restricted

18/03/2020 Restricted Strictly restricted

11/05/2020 Relaxed

08/06/2020 Mildly restricted

29/07/2020 Strictly restricted

01/09/2020 Opened

30/09/2020 Mildly restricted

02/11/2020 Restricted Closed Strictly restricted

16/11/2020 Opened

01/12/2020 Relaxed

29/03/2021 Closed

19/04/2021 Opened

Here, we assume workplaces are restricted when the policy "require closing

(or work from home) for all-but-essential workplaces (eg grocery stores, doctors)" was

implemented. Although during the summer of 2020, no school closure policies were

in place, we let the schools open on 01/09/2020 because schools were closed due to

the summer holiday. We assumed other location contacts were strictly limited when

the policies "require cancelling of public events" and "restrictions on gatherings of 10

people or less" were together in place. When one of these policies on public events or

gatherings was relaxed, we assumed other location contacts were mildly restricted.
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2.5 Empirical results and calibration

In this subsection, we explain our calibration strategy for two sets of parame-

ters: a) the effects of being social (αs), income (αi), and disease exposure (αe) on life

satisfaction; b) two disease evolution parameters, namely the susceptibility rate mul-

tiplier21, and the initial effectiveness of wearing facial masks, πmask. We use estimated

coefficients from OLS estimations for the first set of parameters. For the second set of

parameters, we choose parameter values that minimize the distance between data on

daily ICU occupancy rates and our simulations.

We combine social contact limitation data from Oxford COVID-19 Government

Response Tracker, disease evolution data from Sciensano, and data from WageIndicator

Survey of Living and Working in Coronavirus Times on perceptions of life satisfaction,

loneliness, the risk of income loss, infection status, and several personal characteristics.

We run OLS estimations to determine the factors affecting life satisfaction. We present

our estimation results in Table 11. The first and the third estimations are done with

contact limitations included in the estimation.22 The first and the second estimations

contain perceptions of workload change. The entire set of the estimated determinants

of life satisfaction including all control variables23 can be found in Appendix 2.8.3

as Table 17. The OLS estimations explain 27.0% to 27.3% of the variation in life

satisfaction.
21We use age-specific susceptibility rates from Chinese data, then multiply these base susceptibility

rates with a calibrated value.
221. School closures, 2. Workplace closures, 3. Cancellations of public events, 4. Restrictions

on gatherings, 5. Public transport closures, 6. Stay-at-home requirements, 7. Restrictions on the
internal move, 8. International travel controls

23gender, age, health problems, tertiary education, working from home, living with part-
ner/children/others, care for pets, feeling under self-isolation, doing regular exercise, self-suffered
fever/diarrhoea
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Table 11: OLS estimations for the determinants of life satisfaction

(1) (2) (3) (4)
Income loss = 1 -0.482*** -0.494*** -0.486*** -0.498***
Income loss = 2 -1.229*** -1.242*** -1.239*** -1.253***
Sociality = 2 0.760*** 0.763*** 0.774*** 0.774***
Sociality = 3 1.167*** 1.164*** 1.180*** 1.179***
Sociality = 4 1.330*** 1.330*** 1.350*** 1.350***
Sociality = 5 1.472*** 1.468*** 1.492*** 1.489***
Test result = Positive, still infected 0.0212 0.0254 0.0316 0.0153
Test result = Positive, recovered 0.405** 0.404** 0.379** 0.370**
Test result = Waiting -0.0725 -0.0542 -0.0977 -0.0976
Test result = Negative 0.166*** 0.167*** 0.151*** 0.138**
Weekly cases per thousand people -0.0198 -0.0241 -0.0724 -0.119**
Weekly cases square per million people 0.0194 0.0199 0.0240* 0.0307**
Has an acquaintance tested positive 0.0240 0.0222 0.0186 0.0129
Constant 8.623*** 6.588*** 7.891*** 6.238***
Contact limitation dummies Yes No Yes No
Workload change opinions Yes Yes No No
Control variables Yes Yes Yes Yes
Observations 10417 10422 10417 10422
Adjusted R2 0.273 0.272 0.271 0.270

* p<0.10, ** p<0.05, *** p<0.01

We find that the income loss categorical variable we constructed is statistically

significantly correlated with life satisfaction even at 1% significance level. An expec-

tation of facing an income loss is found to lower life satisfaction by between 0.482 and

0.498 points on a scale of 10 compared with the case of expecting no change in income.

When an individual expects a job loss or their workplace to go out of business, life

satisfaction is expected to decrease by between 1.229 and 1.253 points in comparison

with the case of no income loss.

We find a positive correlation between life satisfaction and being social at a

statistical significance level of less than 1%. The difference between feeling most and

least social is estimated to account for 1.468 to 1.492 life satisfaction points. We further

observe a decreasing return for this correlation. In the model including all variables,
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we estimate that life satisfaction increases by 0.760 points between feeling least social

and the sociality score one step above. For each sociality level increase, we observe

0.407, 0.163, and 0.142 point increases in life satisfaction.

Our findings for the impact of COVID-19 test results on life satisfaction are

as follows: We find no significant correlation between life satisfaction and being still

infected after a positive test result or waiting for a test result. Note that these two

answers correspond to only 0.51% and 0.53% of the observations we use in our OLS

models. Our models point out a positive correlation between life satisfaction and

recovery following a positive test result, which is reported by 1.42% of the respondents

in our OLS model. The impact is estimated to be between 0.370 and 0.405 points

at a 5% statistical significance level in comparison with having never been tested.

The estimated coefficient of having all test results negative (17.14% of the answers) is

between 0.138 and 0.166 points with a statistical significance level of at least 5%.

One more parameter in WageIndicator Survey of Living and Working in Coro-

navirus Times, has an acquaintance tested positive, could be correlated to life sat-

isfaction, and thus be included in the utility function, as the probability of being

asymptomatically contagious and the corresponding risk of transmitting the disease

might deter individuals from engaging in social contact. However, our estimations yield

no statistically significant correlation between having a positively tested acquaintance

and life satisfaction.

Table 12 presents the calibrated values for the three coefficients representing

the effects of having social interactions (αs), income (αi), and disease exposure (αe)

in the utility function; and two disease evolution parameters, the susceptibility rate

multiplier, and the initial effectiveness of wearing facial masks, πmask.
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Table 12: Calibrated coefficients

Parameter Symbol Value

Effect of ln(sociality) on life satisfaction αs 0.5685

Effect of ln(income) on life satisfaction αi 1.3512

Effect of disease exposure on life satisfaction αe -2.2726 × 107

Susceptibility rate multiplier 1.1

Initial effectiveness of wearing facial masks πmask 91.9%

We calibrate αs by using the coefficients we estimated in OLS estimations for

the effect of sociality on life satisfaction. Concretely, we seek the best fit between

the impact of sociality on expected utility function and the impact of sociality on life

satisfaction in OLS estimations. We first assume "Sociality = 5" and "Sociality =

1" correspond to the maximum and the minimum possible numbers of daily social

contact, respectively. In the social contact matrices we employ (Prem et al. [2017]),

individuals within the age group 30-34 engage in the highest number of daily social

contact, 18.7589. We assume this number corresponds to the case of "Sociality = 5".

In our model, an individual who is neither hospitalized nor under home quarantine has

only their home contacts and 10% of their other contacts during the most stringent

lockdown. The age group 70-74 is endowed with the lowest "home contacts plus 10%

of other contacts" value among the age groups in our social contact matrices. They

are endowed with 1.1239 and 2.2115 daily contacts at home and other locations. Thus,

we assume the minimum possible daily contacts, corresponding to "Sociality = 1", is

1.1239 + 0.1 × 2.2115 = 1.3450.

As we normalize pre-epidemic contact rates to 1, we normalize the maxi-

mum possible daily social contacts, 18.7589, to 1, and the minimum, 1.3450, to

1.3450/18.7589 = 0.0717. We then assume the number of daily contacts increases

equally between each sociality value, leading to a vector of −→soc = [0.0717 0.3038 0.5359

0.7679 1]’ for "Sociality = 1" to "Sociality = 5". As the maximum possible number

of daily contacts is normalized to 1, its impact on the utility function is ln(1) = 0. As
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the estimated coefficient of "Sociality = 5" gives the impact of social contacts on life

satisfaction relative to "Sociality = 1", we normalize it to 0, and the remaining coef-

ficients accordingly to reach a vector of −→socOLS = [-1.48025 -0.7125 -0.30775 -0.14025

0]’, which is the average values of the estimated effects of sociality on life satisfac-

tion. Here, we are seeking a coefficient, αs, that gives closest values between αsln(
−→soc)

(the impact of sociality in the expected utility function) and −→socOLS (the estimated

impact of sociality on life satisfaction). We find that αs = 0.5685 yields the closest

values ([-1.4981 -0.6773 -0.3547 -0.1501 0]’) to the estimated impact of sociality on life

satisfaction with R2 = 0.9975.

To calibrate αi, we follow the procedure in the preceding paragraph. We assume

the pre-epidemic income level, 1, corresponds to the case of "Income loss = 0", the

minimum possible income level, b = 0.4, to "Income loss = 2", and (1 + b)/2 = 0.7 to

"Income loss = 1". Here, our target vector is [-1.24075 -0.49 0]’, as we estimated an

average of -1.24075 and -0.49 points (out of ten) impact on life satisfaction in cases

of "Income loss = 2" and "Income loss = 1", in comparison with the benchmark case

"Income loss = 0". Here, we find that αi = 1.3512, accompanied by ιi = −0.0028,

gives the closest correspondence and a vector of [-1.2409 -0.4847 -0.0028]’ to the natural

logarithm of income instead of the target [-1.24075 -0.49 0]’.

For the calibration of the impact of the risk of infection on utility, αe, we use the

following strategy. Having recovered after having tested positive adds 0.3895 points on

average (the average of four estimations) to life satisfaction in comparison with having

never been tested. In the utility function, the difference between the impact of these

two cases is a) not having a risk of being exposed to the virus term (health status R) in

case of a positive test result followed by recovery, and b) having a risk of being exposed

to the virus term (unknown health status with possibilities of S,E,A,R,RA) in case

of having never been tested. Therefore, we aim to match a 0.3895-point increase in

utility from eliminating the expected risk of being exposed to the virus. The daily

probability of becoming exposed to the virus depends on the following factors: a)

the daily probability of being at the susceptible, S, phase given that an individual

does not know their health status (S,E,A,R,RA), πS,t = St

St+Et+At+Rt+RA,t
, b) the

daily probability of entering into the incubation period by having social contact with
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a contagious individual, τ(κit). Furthermore, as mortality rates are different among

age groups, given exposure to the virus, each age group has different incentives to

alter their social contacts as their fear of death is proportional to their age-specific

mortality rate. Thus, as given in the maximization problem (31), mortality probability

upon exposure, δage, also affects infection risk avoidance proportionally.24 We use the

median values of the probability of being susceptible, πS,t = 0.9735, and the daily

probability of entering into the incubation period by having social contact with a

contagious individual, τ(κit) = 0.0001331, that correspond to the disease evolution data

between the 02/03/202025 and the last day of our calibration, 19/04/2021. We then

use the median value of the mortality probability upon exposure, δage = 0.0001322,

and multiply these three values with αe to reach -0.3895, the impact of the risk of

infection on life satisfaction. The corresponding αe is -2.2726 × 107. This calibrated

αe leads to a -0.3895 point impact for the risk of becoming infected on life satisfaction

for the age group with the median mortality rate, 30-34, a -0.0068 point impact for

the youngest age group, 0-4, and a -45.25 point impact for the oldest age group, 75+.

We calibrate the two disease evolution parameters, the susceptibility rate mul-

tiplier, and the initial effectiveness of wearing facial masks, πmask, by minimizing the

distance between daily ICU occupancy data and our simulated ICU occupancy values,

that is we use the two values that minimize min
∑
t

[(ICUdata
t −

∑
iC

i
t)]

2.26 The result-

ing daily ICU occupancy and life loss simulations can be seen in Figures 12 and 13,

respectively. Finally, our simulations start with an initial exposure rate of 1/1,000,000

among each type-age group.
24Derivation of the mortality probability upon exposure, δage, is given in Appendix 2.8.2.
25The first COVID-19 case in Belgium was recorded on 04/02/2020. Then, no cases were reported

until 02/03/2020, on which 16 new infections were recorded, followed by an exponential growth of
positive cases.

26For computational feasibility, we considered a simple grid search over the subsets of [0.5, 0.6, . . .,
1.4, 1.5] for the susceptibility rate multiplier, and [0.85, 0.851, . . ., 0.949, 0.95] for πmask.
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Figure 12: Critical care occupancy data vs simulated critical care occupancy

Figure 13: Confirmed death data vs simulated number of deaths
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2.6 Simulations

In this section, we simulate various NPI scenarios and study their impacts on

three outcomes: the number of life losses, economic costs (measured by the expected

loss of supplied labour), and social welfare loss (measured by the expected loss of

utility, proxied thanks to our regressions on life satisfaction). Our simulations start

on 19/04/2021, the last day of the period we calibrated by using actual contact limi-

tations. We simulate our model for two years following this date. NPI scenarios are

characterized by two dimensions: (i) responsiveness and (ii) stringency.

By responsiveness, we mean that NPIs are not in place on a permanent basis

and that a criterion is used to decide when to (re)introduce or interrupt them. Since

NPIs induce economic costs, for instance in terms of loss of labour supply, they should

be implemented only when necessary. The criterion we use is the ICU bed occupancy

rate, so NPIs are imposed when ICU occupancy exceeds an upper threshold, and

are lifted when ICU occupancy falls below a lower threshold. The most responsive

approach we consider would be to impose NPIs when the ICU occupancy rate reaches

only 10% and to lift them when the ICU occupancy rate falls below 5%. The least

responsive approach we consider would be to impose NPIs only when ICU is used at

90% of its capacity and to lift NPIs when occupancy falls below 60%.

By stringency, we mean that NPIs can restrict mobility with various intensity

levels. Mobility restrictions can be applied in three distinct contact locations: work-

places, schools, and “other locations”. The stringency of NPIs in these three locations

is captured by λw, λs and λo, respectively. These λ parameters represent the share

of daily contacts (relative to pre-epidemic contacts) that are allowed when NPIs are

implemented, so the smaller the value of λ, the more stringent the policy. For instance,

λs = 0 means that schools are fully closed. We assume that schools and workplaces

can be fully closed (λw and λs can go as low as 0), while for “other places”, we set the

lowest possible contact rate at 0.1. In our simulations, for all locations, we consider

10% increments up to no limitation.

Figure 14 provides a summary of the effects of NPIs’ responsiveness and strin-
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gency on life losses per thousand people, average labour supply loss, and an average

loss of life satisfaction. The upper-left figure simultaneously describes these effects on

all three outcomes. On this upper-left figure, the point of origin would describe a situ-

ation with minimum life losses, labour supply loss and life satisfaction loss. The other

three figures are two-dimensional and pertain to the three possible pairs of outcomes

(labour supply and life satisfaction, labour supply and life losses, and life satisfaction

and life losses).

Figure 14: Summary of the effects of NPIs’ stringency and responsiveness

In each of these graphs, the red circles represent “lockdown outcomes” that

result from NPIs with maximal stringency: schools and workplaces are closed and

access to other locations is limited to its strict minimum (λw = 0, λs = 0, λo = 0.1).

What distinguishes these red circles from each other is their level of responsiveness.

The corresponding lower and upper threshold on ICU occupancy is displayed next to

each red circle.

Let us now describe how the three outcomes of interest are impacted by a change
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in NPI responsiveness, considering that when NPIs are imposed, we use the lockdown

as a stringency benchmark. First, NPI responsiveness has a strong preserving effect

on lives and social welfare. For instance, the least responsive approach (60%-90%

thresholds) leads to about sixteen deaths per thousand people and an expected loss

of life satisfaction of 2.7 (on a scale from zero to ten), whereas a responsive approach

(10%-20%) would lead to only five deaths per thousand people and an expected loss of

life satisfaction of only 0.75. This is rather intuitive since intense lockdowns would in

this case be imposed as soon as ICUs are being slightly used. One may thus expect that

this strategy has severe economic costs. It, therefore, appears counterintuitive that

NPI responsiveness also has a mild protective effect on labour supply. For instance,

the least responsive scenario (60%-90%) implies a labour supply loss of 33%, whereas

the most responsive scenario (5%-10%) implies a 30% loss. This phenomenon can

be explained by two factors: a) although the frequency of NPIs decreases as they

become less responsive, it takes a lot of time for the reproduction rate of the disease

to decrease and for the occupancy rate to fall below the threshold to lift the NPIs,

leading to a small difference between the time spent under NPIs between most and

least responsive policies, b) as the risk of infection is higher under a less responsive

scenario, more workers would prefer to endogenously reduce their labour supply to

avoid that risk, leading to exacerbation of labour supply loss. In short, responsiveness

may slightly benefit the economy and is for sure critical in preserving lives and social

welfare.

Second, let us analyse the impact of NPI stringency on the three outcomes.

More specifically, let us depart from the lockdown under four levels of responsiveness

(the four red circles corresponding to ICU thresholds of 5%-10%, 10%-20%, 40%-70%,

and 60%-90%), and study how decreasing stringency in these four cases affects the

outcomes. The blue, green and magenta trails of dots that depart from each of these

four red circles represent outcomes that result from various decreases in NPI stringency,

holding the level of responsiveness constant. Blue and green dots represent outcomes

obtained by gradually opening workplaces and/or at “other places”, but keeping schools

closed27. Blue dots are the boundary cases of stringency 28, and green dots are the
27Their impact is discussed in detail with examples in Table 13 and Table 14.
28Boundary cases are as follows: a) Other contacts are limited to the minimum possible rate:

λo = 0.1 and workplace contacts change by 10% increments: λw ∈ {0, 0.1, . . . , 1}, b) Other contacts
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remaining cases. Magenta dots instead represent outcomes when opening schools to

various degrees, while keeping workplaces and other locations closed.29

A first important observation is that opening workplaces and other locations

strongly reduces labour supply losses while it has virtually no impact on life losses

and life expectancy. Under the most reactive approach (5%-10%), the labour supply

was at 70% (relative to the pre-pandemic level). Allowing workplaces to operate fully

resulted in an increase to 80.9%, while additionally relaxing other locations led to a

labour supply level of 86.2%. These gains were accompanied by minor increases in life

losses, with 0.16, and 0.28 deaths per 1000 people, respectively. The statement that

opening workplaces and other locations reduces labour supply losses at close to zero

costs in terms of life and welfare outcomes is valid for all levels of responsiveness, except

for the least reactive approach (60%-90%). When policies are sluggish, a trade-off

appears between labour and life and social welfare outcomes: the benefits of reopening

workplaces and other locations on the labour market come at the cost of more life

losses and lower social welfare.

This notion of a trade-off between economic costs and life and welfare costs

is even more pronounced when it comes to opening schools: school openings improve

labour supply (notably by relaxing working parents’ constraints) but increase life losses

and decrease social welfare. One exception is worth noting: when policies are very

reactive, reopening schools can also be beneficial to social welfare, though it is still

detrimental to life outcomes.

Table 13 discusses in detail the impact of different NPI stringency levels of the

workplace and other contacts (blue and green dots) on life, labour supply, and life

satisfaction losses in an early intervention case. With 5% and 10% ICU occupancy

thresholds to lift and impose NPIs, allowing workplaces to operate fully resulted in a

labour supply level increase from 70.0% to 80.9%. Allowing other location contacts

are not restricted: λo = 1 and workplace contacts change by 10% increments: λw ∈ {0, 0.1, . . . , 1},
c) Non-essential workplace contacts are not allowed: λw = 0 and other contacts change by 10%
increments: λo ∈ {0.1, 0.2, . . . , 1}, d) Workplace contacts are not restricted: λw = 1 and other
contacts change by 10% increments: λo ∈ {0.1, 0.2, . . . , 1}.

29For illustrative purposes, for the least responsive case (60%-90%), we only display school contact
limitations λs ∈ {0, 0.1, . . . , 0.5} as allowing higher contacts at schools yielded huge increases in life
losses.
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increased labour supply from 70.0% to 72.5%. Imposing no restrictions on workplace

and other contacts led to a labour supply increase to 86.2%. These gains were accom-

panied by small increases in life losses, with 0.16, 0.93 and 0.28 death per day over

a simulation period of 730 days, respectively. For life satisfaction, we observe that

the effect of being more social, and having a higher income through a higher labour

supply exceeds the effect of facing a slightly higher risk of exposure to the epidemic.

As stringency of limitations has a limited effect on life losses, looser limitations on

workplace and other contacts may alleviate losses in labour supply and life satisfac-

tion without causing a high impact on the number of deaths when limitations are

imposed frequently at low ICU occupancy levels.

Table 13: Impact of NPI stringency for an early intervention case (5% to lift and 10%
to impose)

Policy 1 Policy 2 Policy 3 Policy 4

Allowed contacts at workplaces 0 100% 0 100%

Allowed contacts at schools 0 0 0 0

Allowed contacts at other locations 10% 10% 100% 100%

Life satisfaction (normalized) 0 0.0095 0.0223 0.0329

Mean active labour supply 70.0% 80.9% 72.5% 86.2%

Extra life losses per day 0 0.16 0.93 0.28

Table 14 describes in detail the impact of NPI stringency in a late intervention

case. With 60% and 90% ICU occupancy thresholds to lift and impose NPIs, open-

ing up workplaces, other locations, and both locations brought labour supply gains

from 65.9% to 70.1%, 76.8%, and 71.3%, respectively. However, in this case of late

intervention, these gains were realized with significant increases in deaths, between 15

and 28 deaths per day on average. In all three cases, life satisfaction was also affected

negatively.
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Table 14: Impact of NPI stringency for a late intervention case (60% to lift and 90%
to impose)

Policy 1 Policy 2 Policy 3 Policy 4

Cap on non-essential workplace contacts 0 100% 0 100%

School contacts 0 0 0 0

Cap on other contacts 10% 10% 100% 100%

Life satisfaction (normalized) 0 -0.0198 -0.1191 -0.1475

Mean active labour supply 65.9% 70.1% 66.8% 71.3%

Extra life losses per day 0 15.58 18.66 28.06

Table 15 presents a summary of the impact of four example policy sets differing

in stringency and responsiveness. In figures 15-19, we present an overlook of the

factors underlying our simulated results by using these example policy sets. Policy

1 is the policy set with the most responsive (imposed at 5% and lifted at 10% ICU

occupancy) and stringent (all non-essential work and school contacts are forbidden,

10% of other contacts are allowed) limitations. From Policy 1 to Policy 2, stringency

changes (workplaces are open, schools are closed, 50% of other contacts are allowed)

while timing remains the same. From Policy 1 to Policy 3, timing changes (imposed

at 60% and lifted at 90% ICU occupancy) while stringency remains the same. From

Policy 1 to Policy 4, both stringency changes while timing remains the same.

Table 15: Comparison of the impact of NPI stringency and responsiveness

Policy 1 Policy 2 Policy 3 Policy 4

Cap on non-essential workplace contacts 0 100% 0 100%

School contacts 0 0 0 0

Cap on other contacts 10% 50% 10% 50%

Criteria to impose (in terms of ICU occupancy) 5% 5% 60% 60%

Criteria to lift (in terms of ICU occupancy) 10% 10% 90% 90%

Life satisfaction (normalized) 0 0.0151 -2.2642 -2.3261

Mean active labour supply 70.0% 83.0% 65.9% 68.8%

Life losses per 1000 3.71 3.74 15.93 16.39
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To conclude, the main two takeaways from this simulation exercise are the fol-

lowing. First, increasing the responsiveness of NPIs is beneficial to all three outcomes,

though the impact on labour supply is milder. Second, decreasing the NPIs’ inten-

sity always improves labour supply, and the effect on social welfare and life outcomes

depends on the nature of the NPIs and the level of responsiveness of policies. When

policies are responsive, opening schools can improve social welfare (though it increases

life losses), while opening workplaces and other locations is neutral both in terms of

social welfare and life losses. When policies are sluggish, opening any of the locations

has adverse impacts on life losses and social welfare. These results suggest that re-

sponsiveness is crucial for two reasons: (i) it improves all outcomes holding stringency

constant, and (ii) it mitigates the adverse impacts of a reduction of NPI stringency,

and by doing so, it allows the implementation of measures that minimize economic

costs.

Figure 15 shows the effects of NPIs on critical care needs. Here, blue curves

represent actual ICU occupancy rates in Belgium until 19/04/2021, and orange curves

represent our simulation results. Before 19/04/2021, these results were based on the

NPI stringency that had been actually applied, whereas after this date we apply differ-

ent NPI scenarios. The upper-left figure represents the rate of critical care occupancy

when the most responsive strategy (based on ICU thresholds of 5%-10%) with lock-

down levels of stringency is applied (Policy 1 in Table 7). When NPIs are applied, only

the minimum possible rate of other contacts is allowed while no school or non-essential

workplace contacts are allowed. This leads to a fast drop in the ICU occupancy need,

and consequently, there are frequent phases with strict lockdowns and without NPIs.

As NPIs are imposed at a low ICU occupancy rate, ICU need never exceeds 13.4%, a

rate slightly higher than 10%.
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Figure 15: Critical care need

(a) Responsiveness: 5%-10%
Stringency: λw = 0, λo = 0.1, λs = 0

(b) Responsiveness: 60%-90%
Stringency: λw = 0, λo = 0.1, λs = 0

(c) Responsiveness: 5%-10%
Stringency: λw = 1, λo = 0.5, λs = 0

(d) Responsiveness: 60%-90%
Stringency: λw = 1, λo = 0.5, λs = 0

The lower-left part of the figure represents the effects of a different set of NPIs

where the responsiveness of NPIs is maintained at its highest level, but NPI stringency

is reduced. In this case, NPIs are looser with workplaces kept open, schools kept closed,

and half of the other location pre-epidemic contacts are allowed during the NPI phases

(Policy 2 in Table 7). Under this NPI scenario, as a lower fraction of social contacts is

restricted, a longer time is needed to lift NPIs. Critical care needs never exceed 13.7%

under this scenario.

On the upper-left to the upper-right part of Figure 15, we maintain NPI strin-

gency but consider instead the lowest level of responsiveness (60%-90% ICU thresh-

olds). In this case, NPIs are imposed most stringently when 90% ICU occupancy is

reached and lifted when the ICU occupancy rate drops to 60% (Policy 3 in Table 7).
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Under this scenario, ICU need cannot be kept under control until it surpasses 100%.

This is because although contacts outside the home are limited to the minimum pos-

sible rate, the number of contagious individuals is still at a high rate, causing the

per-contact exposure rate to stay high. This effect is further exacerbated as there is

also a high number of individuals already in the incubation period becoming infected

during the NPI phase. Our simulations yielded a maximum 127% ICU need rate.

The lower-right part of Figure 15 corresponds to Policy 4 in Table 7. Here,

NPIs are imposed at 90% and lifted at 60% of ICU occupancy. The stringency of NPIs

is the same as in the lower-left part of the figure. Here, observe a longer recovery

duration, and longer periods with ICU capacity overwhelmed with a maximum 137%

ICU need rate.

Figure 16 displays the impact of our four representative NPI policies on life

losses. The ordering of policies is the same as it is in Figure 15. We obtain 3.71

deaths per thousand people since the beginning of the epidemic when we simulated

epidemic evolution with the most stringent and responsive NPIs. Our simulations

imply that stringency plays a small role in life losses. With our example policy of

keeping workplaces open, and schools closed, and allowing half of the pre-epidemic

other location contacts, we obtain 3.74 deaths per thousand people, accounting for a

difference of one more death every second day. However, changing the responsiveness

of NPIs resulted in a much bigger change in life losses. When we maintain the highest

level of stringency while changing responsiveness from the thresholds of 5%-10% to

60%-90%, we obtain 15.93 deaths per thousand people, accounting for 188 more deaths

each day on average. Loosening these NPIs slightly (from Policy 3 to Policy 4 in Table

13) exacerbated this situation by adding 7 more deaths daily.
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Figure 16: Life losses

(a) Responsiveness: 5%-10%
Stringency: λw = 0, λo = 0.1, λs = 0

(b) Responsiveness: 60%-90%
Stringency: λw = 0, λo = 0.1, λs = 0

(c) Responsiveness: 5%-10%
Stringency: λw = 1, λo = 0.5, λs = 0

(d) Responsiveness: 60%-90%
Stringency: λw = 1, λo = 0.5, λs = 0

Figure 17 presents optimal daily social contact rates endogenously determined

under given NPIs. In each figure, home contacts are given in red, workplace contacts in

yellow, and other contacts in purple. These contacts are given as ratios with respect

to their pre-epidemic rates, which are 1. Individuals optimize their social contacts

at each contact location by observing the number of infected people they may get

in contact with. For illustrative purposes, as NPIs are imposed according to ICU

needs, we use ICU need (in blue) to represent the severity of the epidemic. The

first row of the figure comprises daily contact rate changes for example young (non-

essential workers within the age interval 15-19) and an example old (not in the labour

force within the age interval 75+) individual group when the most stringent and most

responsive NPIs are in place. At one extreme, young individuals tend to engage in

as many social contacts as they can. This simulated result is due to their very low
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mortality rate (d15−19
C =0.000148). At the other extreme, our model generates a result

that the elderly tend to decrease their social contacts even when they are allowed to

have them. This is driven by their mortality rate is approximately 700 times larger

than the example young group at the age interval 15-19 (d75+C =0.1061). This suggests

that our endogenization of exposure behaviour is properly calibrated. For illustrative

purposes, we present the impact of NPIs on social contact rates via an individual group

in between (within the age interval 35-39, non-essential workers, not constrained by

childcare), with a mortality rate, d35−39
C =0.00146.
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Figure 17: Optimal daily social contacts for example individual groups

(a) Responsiveness: 5%-10%
Stringency: λw = 0, λo = 0.1, λs = 0

(b) Responsiveness: 5%-10%
Stringency: λw = 0, λo = 0.1, λs = 0

(c) Responsiveness: 5%-10%
Stringency: λw = 0, λo = 0.1, λs = 0

(d) Responsiveness: 60%-90%
Stringency: λw = 0, λo = 0.1, λs = 0

(e) Responsiveness: 5%-10%
Stringency: λw = 1, λo = 0.5, λs = 0

(f) Responsiveness: 60%-90%
Stringency: λw = 1, λo = 0.5, λs = 0

The second and third rows of Figure 17 illustrate social contact changes of the

sample individual group (within the age interval 35-39, non-essential workers, not con-

strained by childcare) for four sets of policies we compare. The middle-left part of the
95



figure stands for the effects of the most stringent and responsive NPIs. Our model

generates that this averagely cautious individual group engages in as many social con-

tacts as they are allowed to when the disease incidence rate is very low, corresponding

to an ICU occupancy of less than 5%. Then, they start to gradually cut back on home

contacts first, as home contacts cause a higher probability of disease exposure due to

not wearing protective gear. Then, they cut back on other contacts, mainly driven by

the fact that they do not generate income. Finally, around an incidence rate corre-

sponding to a 35% ICU occupancy, they start endogenously decreasing their labour

supply. For younger (older) age groups, we observe similar effects at higher (lower)

incidence rates.

Stringency changes from the most stringent to a policy of allowing non-essential

work contacts and half of the other location contacts, when we move from the middle-

left to lower-left parts of Figure 17. Here, as the disease incidence rate is kept at very

low levels, we observe no incentives to endogenously reduce work or other contacts.

We observe an endogenous reduction in home contacts due to a trade-off between

avoiding infection risk and enjoying social interactions. Timing changes from the most

responsive to the least responsive as we move from the left to right parts of the middle

and low rows of Figure 17. Even though workplace contacts are allowed, we predict

that workers might voluntarily decrease their work contacts, exacerbating the labour

supply loss due to NPIs. We observed reductions in home and other contacts with a

negative impact on life satisfaction.

Figure 18 depicts the labour supply streams for the four example policies we

compare. Orange curves represent labour supply and blue curves represent ICU needs.

The upper-left part of the figure represents the impact of the most stringent and most

responsively imposed NPIs on labour supply. When NPIs are in place, all non-essential

work, and most of the work related to other location contacts are abandoned. Further,

due to the childcare effect, school closures decrease labour supply in the essential and

remote sectors. As a result, our model generates labour supply losses of almost 40%

during lockdown phases. Under the scheme of implementing the most responsive NPIs,

labour supply frequently diminishes to a level slightly above 60%. When restrictions

are lifted, labour supply approaches, but does not reach 100%, due to the fact that
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the labour supply of some parents is constrained by school closures, as well as because

non-essential workers endogenously reduce their labour supply. the indirect effect of

endogenous labour supply reduction. We observe a slight gradual decrease in labour

supply as infection risk increases during the phases in which NPIs are lifted. Overall,

we simulated a 31% loss in labour supply under this scenario.

Figure 18: Labour supply

(a) Responsiveness: 5%-10%
Stringency: λw = 0, λo = 0.1, λs = 0

(b) Responsiveness: 60%-90%
Stringency: λw = 0, λo = 0.1, λs = 0

(c) Responsiveness: 5%-10%
Stringency: λw = 1, λo = 0.5, λs = 0

(d) Responsiveness: 60%-90%
Stringency: λw = 1, λo = 0.5, λs = 0

The lower-left part of the figure stands for the policy with all pre-epidemic

work and half of the other contacts allowed. Here, a slightly higher time is spent

under the NPIs. However, as work and other contacts are partially allowed, labour

supply diminishes to the vicinity of 80%, with a gradual increase in labour supply as

the risk of infection decreases. We simulated a 14.8% aggregate labour supply loss

under this scenario. The upper-right part of the figure stands for the most stringent

policy imposed very late, at 90% ICU occupancy. In this case, labour supply is limited
97



to the same level as in the upper-left part during the NPI phases. NPI phases last

longer as recovery to a low ICU occupancy takes longer when there are many more

infected individuals. During the short-lived phases of no NPIs, labour supply does

not reach its maximum allowed rate because of endogenous reduction in work contacts

when the risk of infection is too high. Aggregate labour supply loss was 34.1% under

this scenario. Even when the NPIs are less stringent by keeping this timing (the lower-

right part of the figure), labour supply remained lower than what it used to be under

the policy depicted in the lower-left part of the figure, due to the risk of infection

staying too high. In this case, aggregate labour supply loss was 28.7%.

Figure 19 shows the daily life satisfaction levels our model generated for the

four example policies we compare in the same order as in Figure 15. Orange curves

represent life satisfaction and blue curves represent ICU needs. In all parts of the figure,

we observe the same expected pattern at the instant NPIs are lifted and re-imposed.

When NPIs are imposed, contacts and income are reduced causing a negative jump in

the value of life satisfaction. From then on, life satisfaction gradually increases mainly

due to the gradual decrease in the risk of infection. When NPIs are lifted, contacts and

income increase, leading to a positive jump in life satisfaction. As the risk of infection

increases following the relaxation of NPIs, life satisfaction gradually decreases.
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Figure 19: Life satisfaction

(a) Responsiveness: 5%-10%
Stringency: λw = 0, λo = 0.1, λs = 0

(b) Responsiveness: 60%-90%
Stringency: λw = 0, λo = 0.1, λs = 0

(c) Responsiveness: 5%-10%
Stringency: λw = 1, λo = 0.5, λs = 0

(d) Responsiveness: 60%-90%
Stringency: λw = 1, λo = 0.5, λs = 0

Between two sets of NPIs with the same timing, the environment is almost

identical at the instant NPIs are lifted. Therefore, we observe almost identical levels

of life satisfaction between the upper-left and the lower-left, and between the upper-

right and the lower-right parts of Figure 19. However, in the left column of the figure,

life satisfaction levels at this instant are higher as the risk of infection is lower, and

as an effect of this endogenous contact reduction is lower. As we move from the

upper parts to the lower parts of the figure, timing remains the same with stringency

becoming looser. As stringency loosens, more contacts and more labour supply are

allowed during the NPI phases. During these phases, our model generates lower life

satisfaction loss compatible with this intuition.

Overall, by keeping stringency constant, we found that life satisfaction decreases
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as we wait longer to implement NPIs. When timing is kept constant, a lower strin-

gency increases life satisfaction when NPIs are implemented at low levels of disease

incidence. When stringency is lower, NPIs remain in place for a longer time. However,

disease evolution is under control. Thus, the risk of infection does not affect life sat-

isfaction significantly. Moreover, with fewer restrictions on social contacts and labour

supply, life satisfaction is higher during the NPI phases. A lower stringency has a

negative effect on life satisfaction when NPIs are implemented at high levels of disease

incidence. In this case, the disease cannot be kept under control as ICU need exceeds

ICU capacity, and it takes much longer to reach the threshold to lift NPIs, leading to a

longer time spent with a high life satisfaction loss. The benefit of loosening restrictions

on social contacts and labour supply falls short of the loss of life satisfaction.
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2.7 Conclusion

In the absence of vaccines or effective medical treatments, governments must

resort to non-pharmaceutical interventions (NPIs) to mitigate the spread of infectious

diseases. Among the various NPIs, social contact limitations play a pivotal role in

controlling transmission. Despite their efficacy in preserving lives, these measures can

also inflict negative consequences on economic productivity and individuals’ mental

well-being. This underscores the intricate balance and challenges involved in devising

social contact limitation policies.

In our study, we sought to address the overarching research question: "Given

the full range of NPIs, which policy combinations, in terms of stringency and respon-

siveness, offer an optimal balance between the adverse effects on health, economy, and

mental well-being?" Our findings underscore the importance of responsiveness in im-

plementing social contact limitations, rather than solely focusing on their stringency.

The most effective strategies involve early interventions, as these lead to the lowest

losses in economy and mental well-being for a given number of life losses.

This research has broader implications for managing the societal impact of

infectious diseases beyond the specific case of COVID-19. By understanding the com-

plex interplay between policy design, economic productivity, mental well-being, and

the progression of a pandemic, we can better inform the development of NPI strate-

gies for future outbreaks. As the threat of emerging infectious diseases persists, it

is crucial to continue refining our understanding of these trade-offs and to develop

adaptable models and policy tools that will enable us to safeguard public health while

minimizing the social and economic consequences of such crises.

To conduct this study we developed an economic-epidemiological model of

COVID-19 transmission that interrelates pandemic evolution, labour supply and men-

tal well-being. By incorporating key features such as SEIRD models, social contact

matrices by age, and varying degrees of NPI responsiveness and stringency, our model

provides a valuable tool for policymakers and researchers to evaluate the effectiveness of

different intervention strategies and their consequences on public health and economic
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outcomes. Furthermore, the model’s adaptability allows for the exploration of various

scenarios, taking into account differences in population demographics, sector-specific

labour supply, and the nature of the crisis at hand.

In our model environment, disease transmission occurs via social contacts be-

tween sub-groups of the population, in terms of age and employment status, at four

contact locations: a) home, b) schools, c) workplaces, and d) other locations. We

model the evolution of the pandemic by an extended version of SEIRD models. NPIs

determine a) the maximum ratio of the pre-pandemic daily number of social contacts

at each contact location except for home, and b) the timing of these social contact

limitations. The timing or responsiveness of NPIs depends on a) an upper intensive

care unit (ICU) occupancy rate to impose them, and b) a lower ICU occupancy rate

to lift them. Individuals observe the state of the pandemic and NPIs and maximize

a mental well-being function that we obtained through econometric estimation and

that interrelates the age-specific propensity to avoid infection, income, and the daily

number of social contacts. Income comes from economic activity, which takes place ei-

ther remotely without social contacts or at different types of workplaces through social

contacts. Income is affected by workplace closures for non-remote workers and school

closures for a proportion of the population that we assume to be affected by childcare

needs. By combining data from several sources we replicated the first 15 months of

the COVID-19 pandemic in Belgium and simulated the rest of the pandemic by using

combinations of policy sets differing in stringency and timing. Our simulations implied

that responsiveness matters most for the NPIs and strict lockdowns are not necessary

when they are imposed for a short duration at a very early stage of each pandemic

wave.

The interdisciplinary nature of our study makes it relevant to researchers and

professionals across various fields, including public health, economics, and social sci-

ences, promoting a more holistic understanding of the factors influencing public health

crises and their consequences. However, our findings should be taken into consider-

ation with the caveats of our model. We use constant disease specificities, such as

mortality rate or transmission rate, after the period that we have replicated. The

emergence of new disease variants would alter the quantitative results of each NPI
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simulation, although qualitatively we still would end up favouring early interventions.

Furthermore, we assumed labour supply can be mobilized immediately after NPIs are

lifted. However, this approach leaves out any changes in labour demand, which would

make the policy of imposing frequent social contact limitations more difficult.

In conclusion, our work offers a robust and versatile framework that can be

utilized to better understand and navigate the challenges posed by public health crises

and pandemics, transcending the specific case of COVID-19 and providing valuable

insights for future events.
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2.8 Appendix

2.8.1 Utility function

We define the expected daily utility or daily life satisfaction of an individual of

type i in case of survival as:

LSi
survival,t = Constanti × (socialityit(κ

i
t))

αs × (incomeit(κ
i
w,t))

αi

We define the expected daily utility or daily life satisfaction of an individual of

type i in case of survival as:

LSi
death,t = Constanti × (socialityit(κ

i
t))

αs × (incomeit(κ
i
w,t))

αi × ∆̂

where ∆̂ is the effect of ending up with death due to disease exposure at time t.

Taking the natural logarithm of the daily life satisfaction functions gives the

following expected life satisfaction expression:

E(LSi
t) = ln(Constanti) + αsln(sociality

i
t(κ

i
t)) + αiln(income

i
t(κ

i
w,t)) + p∆t (κ

i
t)ln(∆̂)

where p∆t is the daily probability of ending up with death due to disease exposure at

time t. We let αe = ln(∆̂) for simplicity.

We regard the constant term as the impact of individual-specific attributes

or behaviours, such as age, gender, or doing regular exercise, that are statistically

significantly correlated with life satisfaction and not related to social contacts. p∆t ,

the daily probability of ending up with death due to disease exposure at time t, depends

on three factors: a) an age-specific mortality rate, dageC (given entry into the exposed

phase, older people die with a higher probability than younger people), b) the daily

probability of being susceptible for the individuals with an unknown health status

(S,E,A,R,RA), πS,t = St

St+Et+At+Rt+RA,t
(only the susceptible individuals may enter

into the exposed phase), and c) the probability of exposure to the disease through
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social contact, τ(κit). Therefore, the expected life satisfaction maximization problem

can be written as:

max
κi
h,t,κ

i
w,t,κ

i
o,t

E(LSi
t) =

{
αsln(socialityi

t(κ
i
t)) + αiln(incomeit(κ

i
w,t))

+ αe δage︸︷︷︸
mortality rate by age,

πS,t︸︷︷︸
prob. of being susceptible,

τ(κit)︸ ︷︷ ︸
exposure prob.

} (32)

for the individuals with an unknown health status (S,E,A,RA). Individuals under

home quarantine or at the hospital cannot maximize their life satisfaction as they are

enforced to have a fixed number of contacts.

2.8.2 Mortality probability upon exposure

The mortality probability upon exposure, δage, is derived as follows. With a

probability ϕA, infection remains asymptomatic, only leading to recovery. Now, let

δageM and δageC represent the mortality probabilities while being mildly and critically

infected, respectively. A person may die, recover, or enter into the critically infected

phase when they are at the mildly infected phase. When a person is critically infected,

they may die or re-enter the mildly infected phase. Thus,

δageM =
{
pageM,death.1 + pageM,recovery.0 + pageICU [p

age
dischargeδ

age
M + δageC ]

}
(33)

δageM = pageM +pageICU [p
age
dischargeδ

age
M +δageC ], where pageICU , pdischarge, and pM,recovery, pageM

are the probabilities of becoming critically infected while mildly infected, becoming

mildly infected while critically infected, and the probability of recovery and death

without developing an ICU need. These probabilities can be written in terms of daily

probabilities of each event they depend on:

pageICU =
ν

ν + rM + dageM

pageM,death =
dageM

ν + rM + dageM
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pagedischarge =
rC

rC + dageC

δageC =
dageC

rC + dageC

Now, we plug these four equations into (33):

δageM =
dageM

ν + rM + dageM

+
ν

ν + rM + dageM

[ rC
rC + dageC

δageM +
dageC

rC + dageC

]
(34)

Simplifying equation (33), yields:

δageM =
νdageM rC + νdageM dageC + rMrCd

age
M + rMd

age
M dageC + rCd

age
M dageC + dageM dageM dageC

rMrC + rMd
age
C + rCd

age
M + dageM dageC

(35)

Finally, as δage = ϕA × 0 + (1− ϕA)δ
age
M ,

δage = (1−ϕA)
νdageM rC + νdageM dageC + rMrCd

age
M + rMd

age
M dageC + rCd

age
M dageC + dageM dageM dageC

rMrC + rMd
age
C + rCd

age
M + dageM dageC

(36)

Plugging the values in Table 8 into equation (35) yields:

δage = 0.6
0.00224dageC + 0.021669(dageC )2 + 0.014161(dageC )3

0.015005 + 0.0295dageC + 0.119(dageC )2
(37)

2.8.3 Tables and figures

Table 16 shows age-specific mortality rates and base susceptibility rates.
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Table 16: Age-specific disease characteristics

Age group Base susceptibility rate Mortality rate

0-4 40% 0.0026%

5-9 40% 0.0026%

10-14 38% 0.0148%

15-19 38% 0.0148%

20-24 79% 0.06%

25-29 79% 0.06%

30-34 86% 0.146%

35-39 86% 0.146%

40-44 80% 0.295%

45-49 80% 0.295%

50-54 82% 1.25%

55-59 82% 1.25%

60-64 88% 3.99%

65-69 88% 3.99%

70-74 74% 8.61%

75+ 74% 10.61%
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Table 17 presents OLS estimations including the estimated coefficients of all

regressors.

Table 17: Dependent variable: Life satisfaction

(1) (2) (3) (4)
Male 0.0858** 0.0786* 0.0939** 0.0895**
Age -0.0259** -0.0257** -0.0270** -0.0264**
Age square per thousand people 0.338** 0.337** 0.342** 0.340**
Weekly cases per thousand people -0.0198 -0.0241 -0.0724 -0.119**
Weekly cases square per million people 0.0194 0.0199 0.0240* 0.0307**
Health problems -0.542*** -0.534*** -0.544*** -0.538***
Tertiary education 0.225*** 0.222*** 0.232*** 0.230***
Workload increased -0.145*** -0.146*** -0.144*** -0.147***
Workload decreased -0.143*** -0.151*** -0.143*** -0.152***
Home office 0.207*** 0.205*** 0.212*** 0.207***
Without work -0.225*** -0.229*** -0.229*** -0.229***
Income loss = 1 -0.482*** -0.494*** -0.486*** -0.498***
Income loss = 2 -1.229*** -1.242*** -1.239*** -1.253***
Sociality = 2 0.760*** 0.763*** 0.774*** 0.774***
Sociality = 3 1.167*** 1.164*** 1.180*** 1.179***
Sociality = 4 1.330*** 1.330*** 1.350*** 1.350***
Sociality = 5 1.472*** 1.468*** 1.492*** 1.489***
Has an acquaintance tested positive 0.0240 0.0222 0.0186 0.0129
Test result = Positive, still infected 0.0212 0.0254 0.0316 0.0153
Test result = Positive, recovered 0.405** 0.404** 0.379** 0.370**
Test result = Waiting -0.0725 -0.0542 -0.0977 -0.0976
Test result = Negative 0.166*** 0.167*** 0.151*** 0.138**
Lives with partner 0.279*** 0.283*** 0.280*** 0.281***
Lives with children -0.0147 -0.0147 -0.0174 -0.0192
Lives with others -0.0663 -0.0692 -0.0668 -0.0702
Cares for pets -0.116** -0.119** -0.124*** -0.130***
Under self isolation -0.0313 -0.0310 -0.0167 -0.00238
Does regular exercise 0.220*** 0.220*** 0.218*** 0.217***
Self suffered fever 0.0923 0.0863 0.0991 0.0999
Self suffered diarrhea -0.0557 -0.0592 -0.0548 -0.0609
Constant 8.623*** 6.588*** 7.891*** 6.238***
Observations 10417 10422 10417 10422
Adjusted R2 0.273 0.272 0.271 0.270

* p<0.10, ** p<0.05, *** p<0.01
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3 Social, economic and health costs of vac-

cine hesitancy

Abstract

In this study, we provide a tractable and rich framework that allows us to

realistically simulate the effects of vaccine hesitancy on the economy, life losses and

mental well-being during an epidemic. Our model is based on the extensive model

we present in Chapter 2 with several properties related to vaccination incorporated,

such as temporary immunity, age-specific vaccination hesitancy rates, a daily vaccina-

tion capacity, and a limited vaccine efficacy rate. We calibrate our model to replicate

the first fifteen months of COVID-19 in Belgium. Then, we simulate scenarios with

varying rates of willingness to get vaccinated and disease transmission. The base-

line scenario with a 27.1% vaccine hesitancy rate (Kessels et al (2021)) predicts the

COVID-19 pandemic would be under control without social contact limitations dis-

torting economic productivity and mental well-being. However, in our scenarios with

higher disease transmission rates, our baseline vaccination rates imply high costs of

vaccine hesitancy in the economy, health and mental well-being. We further present

upper thresholds of vaccine hesitancy rates for each disease transmission rate to avoid

social contact limitations without overwhelming the health system.

3.1 Introduction

Vaccination has historically played a crucial role in curbing the spread of in-

fectious diseases worldwide. Vaccines reduce infection risk, decrease illness severity,

and alleviate stress induced by potential infection. Widespread vaccination also gen-

erates positive externalities: it curtails virus transmission, facilitates herd immunity,

and lessens the healthcare burden. Moreover, broad immunization reduces the need

for non-pharmaceutical interventions, which carry economic and social welfare costs

through constrained social interactions.
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Nevertheless, the recent pandemic triggered by the novel coronavirus has brought

the issue of vaccine hesitancy to the forefront. This phenomenon, characterized by the

reluctance or refusal to receive vaccination, has been identified by the World Health

Organization as one of the top ten global health threats even prior to the pandemic.

Vaccine hesitancy has not only contributed to the resurgence of contagious diseases

but also jeopardizes the ability of governments to effectively tackle emerging health

crises.

In light of these concerns, this chapter investigates the health, economic, and

well-being costs of vaccine hesitancy. We aim to model the effects of vaccine hesitancy

against COVID-19 on disease progression, labour supply, and mental well-being, three

areas that critically shape the overall public health outcomes of the pandemic. To this

end, we extend the model presented in Chapter 2 by introducing vaccine technology

and studying its impact under different hesitancy scenarios as well as different trans-

mission rates. The potential emergence of more contagious virus strains underscores

the importance of achieving higher levels of vaccine acceptance. This chapter seeks to

provide quantitative measures of this relationship, enabling a better understanding of

the impact of vaccine uptake on controlling the spread of infectious diseases.

This chapter integrates a vaccination scheme into the economic-epidemiological

model we introduced in Chapter 2, incorporating actual vaccination rates by age group

in Belgium up until June 2021. The baseline scenario, with a vaccine hesitancy rate of

27.1% (Kessels et al. [2021]), indicates that current vaccination rates in Belgium can

control COVID-19 spread while maintaining social distancing rules and protective gear.

However, hypothetical scenarios with higher transmission rates show the significant

costs of vaccine hesitancy, with hospital capacities, overwhelmed until vaccination

rates exceed 80%. This results in significant life losses, reduction in supply and mental

well-being in the absence of social contact limitations.

We organize the rest of the chapter as follows: Section 2 presents our model.

Section 3 presents a description of our data sources. We present and discuss our

simulations in Chapter 4. Chapter 5 concludes.
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3.2 Model

We define our model in this section. We incorporate a vaccination scheme into

our economic-epidemiological model in Chapter 2. This vaccination scheme has several

properties listed below.

Vaccine efficacy We define vaccine efficacy as the probability of becoming protected

from the disease upon vaccination. We make the following assumptions. If a susceptible

individual, at the health phase S, is vaccinated, vaccination is effective by a probability,

ξ = ξ̂ ∈ [0, 1]. Thus, ξ̂ of the susceptible individuals enter into the recovered phase,

R, at the next time step. (1-ξ̂) of the susceptible remain at S. If an individual is

at one of the following health phases, E,A, P,M,C, meaning that they are already

exposed to the disease and are not recovered yet, vaccination is ineffective. These

individuals follow the disease evolution path, and either become immune upon recovery

or decease. If an individual gets exposed to the disease on their vaccination day, we

count them already in the disease evolution phase, and thus vaccination is ineffective.

If an individual is at the health phase, RA, meaning that they are already immune

without noticing following an asymptomatic infection, vaccination is 100% effective.

This assumption is to rule out the unrealistic case of immediately losing immunity due

to an inefficient vaccine.

Daily vaccination capacity Vaccines are not available until they are invented at

a certain time after the beginning of the epidemic, tvac. Inspired by daily vaccination

data, we assume the number of available daily vaccines, V̂t, fluctuates during the first

days of vaccination. Then, they reach a maximum vaccination capacity, Vmax, at time

tvac,max. The number of available vaccines can be written as below:

Vt =


0 if t < tvac

V̂t ∈ (0, Vmax) if tvac ≤ t < tvac,max

Vmax if tvac,max ≤ t

(1)
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Vaccine hesitancy We assume some individuals among each age group are vaccine-

hesitant, meaning that they are not willing to get vaccinated. ηage ∈ [0, 1] represents

the fraction of vaccine-hesitant individuals for each age group, age ∈ {0 − 4, 5 −

9, . . . , 70− 74, 75+}. At each t, the total number of vaccinated individuals among age

group age cannot exceed (1− ηage)
∑
type

Poptype,aget .

Vaccine allocation to age groups We assume individuals with a revealed in-

fection, namely the positively tested asymptomatically infected (P ), mildly infected

(M), and critically infected (C), are ineligible for vaccination. We further assume

that individuals at the recovered with noticing health status, R, are also ineligible for

vaccination as they are already immune.

The rest of the population is unaware of their health status. These individ-

uals are susceptible (S), exposed (E), asymptomatically infected (A), and recovered

without noticing (RA). We let these individuals be eligible for vaccination, as the re-

maining individuals are either already infected or know they are immune. Vaccines are

randomly administered to people at these health phases, as the statuses are unknown.

For the sake of brevity, we let U i
t denote the number of individuals within individual

group i that are eligible for vaccination. Therefore, U i
t is:

U i
t = Si

t + Ei
t + Ai

t +Ri
A,t (2)

For t ≥ tvac,max, we allocate the daily vaccination capacity by prioritizing the

age groups by mortality rates in descending order.30 In other words, we first let the

oldest age group be vaccinated. Then, if there are available vaccines left, we let the

next oldest age group be vaccinated. We follow this procedure until all vaccines are

used or until everyone except for the vaccine-hesitant individuals is vaccinated. The

equations governing this procedure can be given as follows:

The oldest age group is accessible to all available vaccines. Thus, the number
30For t < tvac,max, we use actual age-specific vaccination data.
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of available vaccines for this group, V 75+
t , is:

V 75+
t = Vmax (3)

We let βage
t denote the number of vaccines administered to the age group age.

If the individuals within the age group age eligible for vaccination, (
∑
type

U type,age
t ),

are fewer than the number of vaccine-hesitant individuals within the age group age,

ηage
∑
type

Poptype,aget , no vaccination is performed for the age group age. If there are

individuals willing to get vaccinated, (
∑
type

U type,age
t > ηage

∑
type

Poptype,aget ), and there

are sufficient vaccines for everyone, everyone is vaccinated. If there are individuals

willing to get vaccinated, but the number of available vaccines is not sufficient to

vaccinate everyone, all available vaccines are used for this age group. Subsequently,

the remaining vaccines are administered to the next oldest age group. This procedure

is used until either all vaccines are used or there is no individual left willing to get

vaccinated. Therefore, the number of daily vaccines administered to the age group

age:

βage
t =



0 if
( ∑

type

U type,age
t − ηage

∑
type

Poptype,aget

)
≤ 0( ∑

type

U type,age
t − ηage

∑
type

Poptype,aget

)
if 0 <

( ∑
type

U type,age
t − ηage

∑
type

Poptype,aget

)
≤ V age

t

V age
t if V age

t <
( ∑

type

U type,age
t − ηage

∑
type

Poptype,aget

)
(4)

and the number of vaccines available for the age group age31:

V age
t =

(
Vmax −

∑
age′>age

βage′

t

)
∀age ∈ [0− 4, . . . , 75+] (5)

Lastly, we distribute vaccines proportionately to the individual types within
31{0− 4} < {5− 9} < . . . < {70− 74} < {75+}.
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each age group, age ∈ {0− 4, . . . , 75+}:

βtype,age
t

βage
t

=
U type,age
t∑

type′
U type′,age
t

∀age ∈ {0− 4, . . . , 75+} (6)

The effect of vaccination on infection dynamics βi
t is the number of vaccines

administered on the individual group i at time t. Vaccines are administered randomly

over the individuals at health phases Si
t , Ei

t , Ai
t, and Ri

A,t. Thus, the probability

of a vaccine being administered to each of these groups is equal to the share of the

corresponding group among U i
t . Infected individuals (T i

t , E
i
t , Ai

t) follow the infection

path and become immune upon recovery. Vaccines administrated on Si
t , and Ri

A,t can

result in immunity. For the sake of brevity, we define the probabilities, ψi
S\T,t and

ψi
RA,t. ψi

S\T,t is the fraction of the susceptible that do not become exposed to the

disease, (Si
t − T i

t ), among individuals eligible for vaccination within individual group

i at time t. ψi
RA,t is the fraction of the recovered without noticing, (Ri

A,t), among

individuals eligible for vaccination within individual group i at time t.

ψi
S\T,t =

Si
t − T i

t

Si
t + Ei

t + Ai
t +Ri

A,t

ψi
RA,t =

Ri
A,t

Si
t + Ei

t + Ai
t +Ri

A,t

A fraction, ψi
RA,t, of βi

t are administered on the recovered without noticing

among i. As we assume all these vaccines are efficient, to rule out the unrealistic case

of losing immunity because of the vaccine being inefficient, βi
tψ

i
RA,t of the recovered

without noticing among i enter into the recovered with noticing health phase at time

t+1. An ℓ fraction of the rest of the individuals at this health phase, (Ri
A,t − βi

tψ
i
RA,t)

lose immunity and switch to S at t + 1. Furthermore, there is an influx from asymp-

tomatically infected as some of them recover without their infection revealed by random

testing, rAAi
t(1− σt).

Ri
A,t+1 = (1− ℓ)(Ri

A,t − βi
tψ

i
RA,t) + rAA

i
t(1− σt) (7)
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A fraction ℓ of the individuals that are recovered with noticing lose immunity,

and shift to S at time t+ 1. There is an influx from the symptomatically infected, P ,

M , and C, upon recovery. Newly vaccinated from A become aware of their immunity,

βi
tψ

i
RA,t. Furthermore, the amount of the susceptible individuals that are vaccinated

and not exposed to the disease at time t, βi
tψ

i
S\T,t, become immune by probability ξ.

Therefore, the number of the recovered among i at time t+1 can be written as follows:

Ri
t+1 = (1− ℓ)Ri

t + rAP
i
t + rMM

i
t + r̂CC

i
t + ξβi

tψ
i
S\T,t + βi

tψ
i
RA,t (8)

The evolution equation of the susceptible individuals can be written by taking

into account the following health phase changes: T i
t of them get exposed to the disease

and move to E. ξβi
tψ

i
S\T,t of them are vaccinated with efficient vaccines and thus

move to the health phase, R. If not vaccinated, a fraction, ℓ, of the recovered without

noticing, Ri
A,t − βi

tψ
i
RA,t, lose immunity. Lastly, a fraction, ℓ, of the recovered with

noticing, Ri
t, also lose immunity.

Si
t+1 = Si

t − T i
t − ξβi

tψ
i
S\T,t + ℓ(Ri

t +Ri
A,t − βi

tψ
i
RA,t) (9)

We use the rest of the epidemiological model in Chapter 2 as vaccines are

assumed to be ineffective when an individual is already infected. We further keep

the economic and life satisfaction components of the model as vaccines have no direct

effect on these outcomes.

3.3 Data

Actual daily vaccination data

We assume an individual is immune against COVID-19 by a probability of

95%, ξ̂ = 0.95, as found by Polack et al. (2020) for the efficacy rate of the Pfizer-

BioNTech vaccine after the second dose. We assume immunity is realized after when

the single dose of Johnson & Johnson or the second dose of other available vaccines is
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administered.

We use the actual vaccination data from the COVID-19 monitoring data set

from the Belgian Institute of Health (Sciensano). This data set contains comprehensive

information on daily vaccination doses for age groups 0-17, 18-34, 35-44, 45-54, 55-64,

65-74, and 75+. The first Johnson & Johnson vaccines are administered before the first

of the second doses of other vaccine brands. These first vaccines were administered

on 29/12/2020 in Flanders on ten people within four different age groups between

the ages 18 and 64. We take this day, 29/12/2020, as the vaccine invention day, tvac.

We use our calibrated vaccine evolution from Chapter 2 until tvac. Then, we proceed

with using actual vaccine data until 7/6/2021, which corresponds to tvac,max in the

model. To simulate the future evolution of vaccination after tvac,max we assume a

daily vaccination capacity as the maximum seven-day moving average of second dose

vaccines per day: Vmax = 84049.

Vaccine hesitancy data

Kessels et al. (2021) provide a survey of the Belgian population on their willingness to

get vaccinated against COVID-19. The survey took place in October 2020 and contains

the answers of 2.060 individuals from Belgium. We count the respondents who said

they might definitely get vaccinated or probably get vaccinated as individuals willing to

get vaccinated. We count the other respondents who said they would probably not get

vaccinated or definitely not vaccinated as hesitant to get vaccinated. Overall, 72.9%

of the population is willing and 27.1% of the population is hesitant to get vaccinated

according to this survey.
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Table 18: Vaccination willingness by age

Age group Willingness

18-24 69.9%

25-34 64.9%

35-44 64.5%

45-54 69.4%

55-64 80%

65-80 86.7%

Table 18 presents the age-specific rates of willingness to get vaccinated. By

following these values, we set vaccine hesitancy rates as η0−4 = η5−9 = η10−14 =

η15−19 = η20−24 = 0.301, η25−29 = η30−34 = 0.351, η35−39 = η40−44 = 0.355, η45−49 =

η50−54 = 0.306, η55−59 = η60−64 = 0.200, and η65−69 = η70−74 = η75+ = 0.133.
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3.4 Simulations

In this section, we present and discuss our simulation results. We simulate

our environment for different disease transmission and vaccine willingness rates, with

and without NPIs. From these simulations, we obtain losses in life, labour supply,

and life satisfaction for each scenario. We run simulations for each combination of

disease transmission and vaccine willingness rates for the following 365 days after

tvac,max = 7/6/2021, the last day we use actual vaccination data.

As the Delta-variant was the dominant COVID-19 variant at the starting day

of our simulations, we use a baseline disease transmission rate of 1.75 times the initial

transmission rate per contact (Campbell et al. [2021]). We use several different hypo-

thetical disease transmission rates to observe the effect of transmission rate changes

on losses in lives, labour supply, and life satisfaction. the transmission rates we used

are 2, 2.25, 2.5, 2.75, and 3 and times the initial rate.

We use a baseline overall vaccine willingness rate of 72.1%, with rates varying

between 64.9% and 86.7% for different age intervals (Kessels et al. (2021)). A vaccine

hesitancy rate of 72.1% implies 27.9% of the population is hesitant to get vaccinated.

We run our simulations with this baseline hesitancy rate and different hypothetical

hesitancy rates down to 2.79% by decrements of 2.79% from 27.9%. The hypothetical

hesitancy rates we use correspond to cases with vaccine hesitancy among each group

reduced by 10%, 20%, ..., 90%.

Figure 20 presents the predicted effects of different vaccine hesitancy and disease

transmission rates on the maximum ICU need without any NPIs when masks are in

use. Here, the vertical axis shows different vaccination rates. The horizontal axis

corresponds to the maximum ICU need. Each colour represents a different disease

transmission rate between 1.75 and 3 times the initial rate, as indicated in the graph

legend.
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Figure 20: Maximum ICU need for different vaccination and transmission rates

Our simulations yield that our baseline vaccination rate of 72.9% is sufficient

to keep the spread of COVID-19 under control without ending up in ICU capacity

overwhelming. In the scenario of a transmission rate of 2.75 times the initial rate, the

baseline vaccination rate results in ICU capacity overwhelming. This capacity over-

whelming can be avoided without imposing NPIs in case 10% of the vaccine-hesitant

individuals (10%×27.9%=2.79% of the population) are convinced of vaccination. Ac-

cording to our simulations, when the transmission rate is 3 times the initial rate,

approximately 50% of vaccine-hesitant individuals have to be convinced to avoid ICU

overwhelming without NPIs. In this case, the vaccination rate corresponds to 86.05%.

Figure 21 shows an overview of the predicted impact of vaccination rates on life

losses, labour supply and life satisfaction. For transmission rates at or slightly above

that of the Delta-variant, increasing the baseline vaccination rate bring small benefits

in the three outcomes of interest. If the transmission rate increases (e.g. looser social

distancing rules, new variants), differences in vaccine hesitancy levels yield significant

differences in health outcomes, economic outcomes and life satisfaction, as explained

in Table 19 below in detail.
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Figure 21: Life losses, labour supply loss, and life satisfaction levels for different vac-
cination and transmission rates

Table 19 displays the social, economic, and health costs of vaccine hesitancy for

a set of our simulations. The first column stands for different vaccine hesitancy rates

between the baseline rate, 27.9% and the scenario of only one-tenth of the vaccine-

hesitant population within each age group remaining vaccine-hesitant, corresponding

to a 2.79% vaccine hesitancy rate. In the next columns, we present the predicted

effects of vaccine hesitancy on life satisfaction (columns 2-4), labour supply (columns

5-7), and life losses (columns 8-10). For comparison, we consider three scenarios of

disease transmission rates: a) a low transmission rate scenario with the Delta-variant

rate, σ = 0.1418 ("Transmission rate = 1.75" in Figure 21), without NPIs, shown in

columns 2-5-8, b) a high transmission rate scenario with a transmission rate three times

that of the initial rate, σ = 0.243 ("Transmission rate = 3.00" in Figure 21), without

NPIs, shown at columns 3-6-9, c) the same high transmission rate scenario, σ = 0.243,

with NPIs, shown at columns 4-7-10. In the last case, we present the results obtained

from an example policy set (most stringent restrictions: schools and non-essential

workplaces kept closed, other contacts kept at a minimum 10% pre-epidemic rate)

imposed at 50% and lifted at 20% ICU occupancy.
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Table 19: Social, economic, and health costs of vaccine hesitancy

Life satisfaction Labour supply Life losses

σ = 0.1418 σ = 0.243 σ = 0.1418 σ = 0.243 σ = 0.1418 σ = 0.243

Hesitancy Free Free NPI Free Free NPI Free Free NPI

2.79% 2.590 2.479 2.240 99.4% 99.0% 99.0% 25192 25816 25428

5.58% 2.586 2.474 2.356 99.2% 98.6% 98.2% 25213 26212 25487

8.37% 2.583 2.467 2.350 99.0% 98.1% 97.4% 25236 26698 25565

11.16% 2.579 2.457 2.339 98.8% 97.6% 96.5% 25262 27368 25654

13.95% 2.574 2.441 2.324 98.7% 97.1% 95.6% 25292 28029 25760

16.74% 2.569 2.414 2.297 98.5% 96.5% 94.5% 25328 28917 25897

19.53% 2.563 2.362 2.244 98.3% 95.6% 92.9% 25371 29921 26088

22.32% 2.555 2.278 2.161 98.2% 94.5% 91.0% 25423 31012 26285

25.11% 2.544 2.142 2.025 98.0% 93.4% 89.0% 25490 32276 26679

27.90% 2.530 1.801 1.684 97.8% 92.3% 86.8% 25579 33873 27229

At the low disease transmission rate scenario, σ = 0.1418, we observe only small

gains from reducing the vaccine-hesitancy rate. Even in the case of convincing 90%

of the vaccine-hesitant population (row 4), the benefit of reducing vaccine hesitancy

is 1.06 fewer deaths per day (column 8), an increase in the average labour supply

over a one-year period from 97.8% to 99.4% (column 5), and a 0.060 point increase

in the value of the life satisfaction function we utilize (column 2). Although with

Delta-variant disease characteristics, a 27.9% vaccine-hesitancy rate appears to be

sufficient for a life without a need for NPIs, a higher transmission rate may bring a

need to convince many individuals to get vaccinated. With a 27.9% vaccine-hesitancy

rate (the bottom row), our model predicts 22.7 more deaths per day, or 8294 more

deaths overall (columns 8 and 9), accompanied by an average labour supply fall from

97.8% to 86.8%, and a life satisfaction loss by 0.729 points between the low and high

transmission rate cases of σ = 0.1418 and σ = 0.243. In the case of convincing 90%

of the vaccine-hesitant population, an increase in the transmission rate translates into

724 deaths (2.0 per day), a labour supply loss decrease from 99.4% to 99.0%, and a

life satisfaction loss by 0.111 points.

At the high disease transmission rate scenario (σ = 0.243), the baseline vaccine

hesitancy rate of 27.9% appears to be significantly costly. According to our simulations,

the benefit of convincing only 10% of the vaccine-hesitant individuals (2.79% of the

population, bottom two rows) is equivalent to saving 1597 lives (4.4 lives per day,
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column 9), an increase from 92.3% to 94.3% in labour supply (column 6), and a

0.341 point increase in life satisfaction (column 3). As vaccination rates increase, the

benefit of convincing the same amount of individuals follows a decreasing returns-to-

scale pattern as expected. Between hesitancy rates of 5.58% and 2.79%, we observe

differences of 396 deaths (1.1 per day), 0.4% labour supply, and 0.005 life satisfaction

points. When the two extreme vaccine-hesitancy scenarios (fourth and the bottom

rows) are compared, the cost of having a 27.9% instead of a 2.79% vaccine hesitancy

rate is 8057 lives (22.1 per day), 6.7% of overall labour supply, and 0.678 life satisfaction

points.

The combination of 27.9% and a high transmission rate (σ = 0.243) results in

an ICU need of around 240% of the ICU capacity, accompanied by high costs in lives,

labour supply, and life satisfaction, as also implied by Figure 20 and Figure 21. In

such a case, it is reasonable to assume that governments would prefer to impose NPIs.

In columns 4, 7, and 10, we present the impact of an example NPI set for the high

transmission rate scenario (σ = 0.243). This NPI set consists of the most stringent

restrictions (schools and non-essential workplaces kept closed, other contacts kept at a

minimum 10% pre-epidemic rate) imposed and lifted at 50% and 20% ICU occupancy,

respectively. We observe that, under a vaccine-hesitancy rate of 27.9%, NPIs may bring

down life losses until a level (27229 life losses since the beginning of the epidemic) that

can be reached without NPIs when the vaccine-hesitancy rate is around 11% (27368

lives with 11.16% vaccine hesitancy). Here, when NPIs are imposed, the cost of not

being able to decrease the vaccine-hesitancy rate from 27.9% to 11.16% is equivalent

to 10.8% of annual labour supply, and 0.773 life satisfaction points.32 Without any

NPIs, the cost is 6505 lives (17.8 per day), 5.3% of annual labour supply, and 0.656

life satisfaction points.

32Corresponding values are given as bold in the seventh and the bottom rows.
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3.5 Conclusion

The COVID-19 pandemic has emphasized the vital role vaccination plays in

controlling infectious diseases and mitigating their societal and economic consequences.

This study builds on Chapter 2’s economic-epidemiological model, which integrates

pandemic evolution, labour supply, and mental well-being, to analyze the multifaceted

effects of vaccine hesitancy. Applied to Belgium’s COVID-19 pandemic, the framework

is flexible enough to be adapted to other public health crises, enabling policymakers

and researchers to evaluate vaccine hesitancy implications in various contexts.

We use actual vaccination rates by age group in Belgium until June 2021. Then,

we simulate the following months by letting individuals get vaccinated by using several

realistic properties such as temporary immunity incorporated as a daily probability of

immunity loss, age-specific vaccination hesitancy rates, a daily vaccination capacity,

and a vaccine efficacy rate lower than 100%. Our baseline scenario with an overall

27.1% vaccine hesitancy rate (Kessels et al (2021)) yields results in line with reality.

Current vaccination rates in Belgium would be sufficient even in the presence of the

more lethal Delta variant to keep the spread of COVID-19 under control by keeping

social distancing rules and protective gears without imposing social contact limita-

tions that hamper economic productivity and constrain social life. However, in our

hypothetical scenarios with higher disease transmission rates, our baseline vaccination

rates indicate high costs of vaccine hesitancy. In the worst-case scenario, we consid-

ered, with a disease transmission rate 50% of the initial COVID-19 transmission rate at

the beginning of the pandemic, hospital capacities would be overwhelmed until overall

vaccination rates corresponding to an overall vaccination rate slightly higher than 80%

were reached, resulting in high life losses, and significant losses in labour supply and

mental well-being at the absence social contact limitations.

Our findings underscore the importance of incorporating behavioural aspects,

such as individual decision-making on infection avoidance and social contacts, in mod-

elling vaccine hesitancy consequences. This approach enables us to understand the

factors influencing vaccination decisions and public health outcomes.
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