
A performance-oriented comparative study of the Chapel
high-productivity language to conventional programming

environments
Guillaume Helbecque

guillaume.helbecque@univ-lille.fr

Université de Lille

CNRS/CRIStAL UMR 9189

Inria Lille-Nord Europe

France

Jan Gmys
Université de Lille

CNRS/CRIStAL UMR 9189

Inria Lille-Nord Europe

France

Tiago Carneiro
University of Luxembourg

FSTM

Luxembourg

Nouredine Melab
Université de Lille

CNRS/CRIStAL UMR 9189

Inria Lille-Nord Europe

France

Pascal Bouvry
University of Luxembourg

DCS-FSTM/SnT

Luxembourg

ABSTRACT

The increase in complexity, diversity and scale of high performance

computing environments, as well as the increasing sophistication

of parallel applications and algorithms call for productivity-aware

programming languages for high-performance computing. Among

them, the Chapel programming language stands out as one of the

more successful approaches based on the Partitioned Global Ad-

dress Space programming model. Although Chapel is designed for

productive parallel computing at scale, the question of its com-

petitiveness with well-established conventional parallel program-

ming environments arises. To this end, this work compares the

performance of Chapel-based fractal generation on shared- and

distributed-memory platforms with corresponding OpenMP and

MPI+X implementations. The parallel computation of the Mandel-

brot set is chosen as a test-case for its high degree of parallelism

and its irregular workload. Experiments are performed on a cluster

composed of 192 cores using the French national testbed Grid’5000.

Chapel as well as its default tasking layer demonstrate high per-

formance in shared-memory context, while Chapel competes with

hybrid MPI+OpenMP in distributed-memory environment.

KEYWORDS

Chapel, MPI, Multi-core, OpenMP, Parallel computing, Productivity-

awareness

1 INTRODUCTION

Nowadays, we observe a dramatic increase in complexity, diversity

and scale of High Performance Computing (HPC) environments.

According to the TOP500 bi-annual ranking of the most powerful

systems [14], modern supercomputers are increasingly large (mil-

lions of cores) and heterogeneous (CPU-GPU). On the other hand,

HPC applications and algorithms also tend to be more and more

sophisticated. Actually, in order to benet from the parallelism

provided at dierent levels of the hardware, hybrid hierarchical

parallelism is recommended.

This is a reason why there is an increased research interest in

software development productivity in HPC [5, 8]. Dierent pro-

gramming models/languages, runtimes and libraries need to be

used together to eciently exploit all levels of parallelism. As a

consequence, to deal with such complexity, eorts towards produc-

tivity are crucial for harnessing the processing power of modern

supercomputers.

To this end, the DARPA High Productivity Computing System

(HPCS) program represents an eort for creating high-productivity

languages for the next generation of supercomputers [10]. Among

these languages, Chapel stands out, as it is competitive to both

C+OpenMP and MPI+X in terms of performance and scalability [3].

The recent arrival of this language raises the question of its

competitiveness with well-established conventional parallel pro-

gramming environments. For this purpose, this paper provides a

comparison point between Chapel and the widely adopted OpenMP

and MPI+X parallel programming libraries. The focus is put on the

parallel computation of the Mandelbrot set. This embarrassingly

parallel application allows massive parallelism, while facing irregu-

lar workload.

In this paper, we illustrate the main parallel features of Chapel,

MPI and OpenMP using the Mandelbrot test case. Six implementa-

tions are proposed using Chapel, C+OpenMP, C+MPI with dierent

communication models (two-sided blocking and non-blocking, one-

sided), and a hybrid one, combining C+MPI and OpenMP. Chapel

as well as its default tasking layer demonstrate high performance in

shared-memory context. Moreover, in distributed-memory environ-

ment, it presents similar performance to hybrid MPI+OpenMP, even

though we did not explore other features, such as the distributed

iterators.

The remainder of the paper is structured as follows. Section 2

presents related works. Section 3 denes the Mandelbrot set compu-

tation. Section 4 provides an overview of each parallel programming

environment and describes the corresponding implementations. Ex-

perimental results are reported in Section 5. Finally, we draw the

conclusions in Section 6 and outline some future works.

1

Helbecque et al.

2 RELATEDWORKS

In various domains, empirical studies compare dierent parallel

programming environments for a typical problem in the respective

eld of research. In [13], Parenteau et al. develop Chapel-based

alternatives for two CFD applications. These were compared to

conventional MPI-based algorithms, and the competitiveness of

Chapel is highlighted. In [6], Gmys et al. are dealing with three

productivity-aware languages (Chapel, Julia and Python) to solve

the 3D Quadratic Assignment Problem parallel metaheuristic on a

multi-core shared-memory computer. The comparison is done in

terms of performance, scalability and productivity. Moreover, re-

latedworks in the context of irregular applications (like Branch-and-

Bound tree-search algorithms) show that it is possible to achieve

parallel eciency and performance, but also high productivity, by

using the Chapel language [2].

The parallel Mandelbrot set computation is a well-studied prob-

lem. Some authors use this test-case to describe how the fundamen-

tals of task parallel programming are dealt with dierent ecient

parallel environments, like Chapel, OpenMP, X10, OpenCL, etc [9].

However, the latter focus on illustrating the fundamentals of task

parallel programming without performing a performance analysis.

Another study conducts performance evaluation on shared-memory

architecture using MPI and OpenMP [7], but doesn’t include PGAS-

based environments.

Our paper aims at providing a useful data point using shared-

and distributed-memory multi-core systems for supercomputer pro-

grammers. The well-known parallel Mandelbrot set computation is

chosen because it is a complete application (not a microbenchmark

kernel) that allows easy decomposition into a large number of irreg-

ular subproblems, while retaining a relative simplicity. The latter

allows us to illustrate the programming eort in each environment

by short but complete code snippets and thereby provide to the

reader a sense of "productivity", which is a hard-to-evaluate and

necessarily somewhat subjective measure.

3 MANDELBROT SET COMPUTATION

In this paper, we consider the parallel computation of the Mandel-

brot set as a test-case. It is dened as the set of complex numbers

 =  +  ∈ C such that the sequence ()∈N ⊂ C dened by

0 = 0, +1 = 2 + , (1)

remains bounded in C (see Figure 1). In practice, we can prove

that a point  of the complex plan belongs to the Mandelbrot set

if and only if | | ≤ 2, ∀ ∈ N. This observation directly yields a

simple "escape time" algorithm shown in Algorithm 1. Considering

a bounded domain Ω (hereafter called image) uniformly cut into

pixels. For each pixel (,) ∈ Ω the algorithm determines the

smallest integer  required for observing divergence of ()∈N.

Then the luminous intensity  of pixel (,) is dened as

 (,) =
1


min

=0,...,
{ : | | > 2}, (2)

where  ∈ N is an arbitrary maximum number of allowed itera-

tions.

This well-known parallel application allows to illustrate the

main parallel features and to investigate the parallel eciency of

the programming environments considered in this paper. As we can

Figure 1: Monochrome Mandelbrot set.

Algorithm 1: Pseudo implementation of the Mandelbrot

set computation

1 function Compute_pixel(, ) :

2  =  = 0;

3  = 0;

4 while 2 + 2 < 4 and  <  do

5  =  ;

6  = 2 − 2 + ;

7  = 2 + ;

8  =  + 1;

9 end

10  (,) = / ;

11 end

12 function Compute_image() :

13 for  = 0 to _ do

14 for  = 0 to _ do

15 Compute_pixel(, );

16 end

17 end

18 end

see in Algorithm 1, the nested for-loops can be easily andmassively

parallelized due to the independence of each pixel. The granularity

of the application (amount of work performed per pixel/line of the

image) can be controlled by adjusting the maximum number of

iterations  . However, one has to deal with the irregular workload

resulting from the drastically dierent amount of work performed

per pixel (see Figure 2).

The parallelization of Algorithm 1 is thus based on a domain

decomposition. In order to preserve the relative simplicity of the

implementation, the decomposition is assumed only along the lines,

i.e. only the rst for-loop in Algorithm 1 (line 13) is parallelized.

Moreover, in order to achieve some workload regularization, lines

are mapped to processing elements in round-robin fashion. For

comparison purposes, we require that the computation is determin-

istic. It means that the domain decomposition is done statically and

we know in advance which thread computes which lines.

2

A performance-oriented comparative study of Chapel to conventional programming environments

4 PARALLEL PROGRAMMING
ENVIRONMENTS

This section presents the studied parallel programming environ-

ments and highlights their main features. Six parallel implemen-

tations of the Mandelbrot set computation are described using

Chapel, OpenMP, MPI with dierent communication models (two-

sided blocking and non-blocking, one-sided), and a hybrid one,

combining MPI and OpenMP.

4.1 OpenMP

The OpenMP API (Open Multi-Processing Application Program-

ming Interface) [12] is a collection of compiler directives, library

routines and environment variables for shared-memory parallelism

in C, C++ and Fortran programs. It is portable across dierent ar-

chitectures and supported by numerous compilers. It relies on the

Single Program Multiple Data (SPMD) execution model, where a

set of tasks share a common address space and are executed in an

asynchronous way.

OpenMP directives are added to the code using the #pragma pre-

processor mechanism. The most common way to introduce paral-

lelism is the omp parallel directive which creates a parallel region

where concurrent threads execute the same code. The omp forwork

sharing directive allows to distribute iterations of a for-loop among

threads. Several clauses can be employed to modify the behavior of

the work sharing construct, for instance whether loop iterations are

distributed using a static scheduling (Master-Worker model) or a

dynamic one (Work-Pool model). Round-robin static distribution of

lines onto threads is achieved by the schedule(static,1) clause,

where the parameter 1 represents the chunk size. Another impor-

tant point is that OpenMP relies on a fork-joinmodel, where a set of

threads is created entering a parallel region (fork), and is destroyed

at the end (join). This model thus implies implicit synchroniza-

tion mechanisms. A more complete documentation of OpenMP is

available in [12].

The OpenMP parallel Mandelbrot generation is described in

Algorithm 2. One can see that parallelization is achieved through

a minimal and incremental modication of the sequential code

(addition of line 2). The composite omp parallel for directive is

0 100 200 300 400 500 600 700 800

Line number

0.000

0.001

0.002

0.003

0.004

0.005

0.006

C
o
m
p
u
ta
ti
o
n
ti
m
e
[s
]

Figure 2: Computation time per line of pixels for an im-

age of size 1024x768 and  = 1000, on AMD EPYC 7301 CPU

@2.20GHz.

Algorithm 2: Pseudo OpenMP parallel implementation of

the Mandelbrot set computation

1 function Compute_image_omp() :

2 #pragma omp parallel for schedule(static, 1);

3 for  = 0 to _ do

4 for  = 0 to _ do

5 Compute_pixel(, );

6 end

7 end

8 end

added in order to distribute the iterations of the rst for-loop (line

3) onto threads.

4.2 Chapel

Chapel (Cascade High Productivity Language) [4] is an open-source

high-productivity and high-performance programming language

that follows the Partitioned Global Address Space (PGAS) program-

ming model. Chapel allows shared- and distributed-memory execu-

tions, and runs on top of the GASNet one-sided communication and

active message library. Furthermore, as Chapel belongs to the PGAS

class of languages, the application has a global memory addressing

space, and each segment of this space is assigned to a dierent

locale [1]. In turn, a locale refers to a unit of the machine resources

that can store variables and run Chapel tasks, which is similar to

an MPI process. It is also worth to say that the language supports

object-oriented design and C or Fortran interoperability features.

In Chapel, parallelism is expressed in terms of tasks, which can be

run on one or several locale(s). The program is started with a single

task, and parallelism is added through data or task-parallel features,

such as the coforall statement, which is a parallel version of the

for-loop, introducing task parallelism by creating a distinct task per

loop iteration. This feature is suitable to create concurrent tasks,

especially when the loop iterations are independent, like in the

Mandelbrot set computation. Moreover, it is possible to explicitly

control locality via the on clause that allows to migrate a task

on the specied locale. The number of locales is passed to the

implementation using the command line parameter -nl , where 

is the number of locales on which the application is executed. The

detailed Chapel documentation is available in [4].

The implementation of the Mandelbrot written in Chapel is de-

picted in Algorithm 3. First of all, a coforall statement is used to

create as much tasks as locales (line 2). Then, each allocated task is

migrated on its associated locale (line 3). Following this, another

coforall statement is used to create as much tasks as threads per

locale (line 4). Finally, each task thus created computes sequentially

its lines of pixels. Unlike the OpenMP implementation, the distri-

bution of lines onto threads is done manually, by computing the

corresponding indices (line 5).

4.3 MPI

MPI (Message-Passing Interface) [11] is a library interface speci-

cation for message-passing on shared- and distributed-memory

multi-core computers. MPI is widely used in academic and industrial

3

Helbecque et al.

Algorithm 3: Pseudo Chapel parallel implementation of

the Mandelbrot set computation

1 function Compute_image_chpl() :

2 coforall  = 0 to _ do

3 on loc do

4 coforall  = 0 to _ do

5 for  =  . +  ∗ _ to

_ by _ ∗ _ do

6 for  = 0 to _ do

7 Compute_pixel(, );

8 end

9 end

10 end

11 end

12 end

13 end

areas for its portability, standardization and its high performance.

MPI denes a set of subroutines, usable in C or Fortran. Typically,

a SPMD model is used, where a set of MPI processes, having their

own exclusive address space, execute the same program.

Executing an MPI program in parallel consists in launching mul-

tiple copies of the same program on a set of specied hosts. The

MPI environment can be initialized using the MPI_Init routine,

enabling interprocess communications. MPI_Finalize shuts down

the environment and cleans up all MPI-related state. Other process

management operations like MPI_Comm_size and MPI_Comm_rank

allow to query the number of MPI processes in a given MPI com-

municator and the rank of the calling MPI process, respectively.

Initially, the MPI standard (MPI-1) species a point-to-point com-

munication model through send and receive operations. Since this

latter implies both sender and receiver sides, we usually refer to this

model as two-sided. Later, MPI-2 introduces new functionalities, like

one-sided communications, also known as Remote Memory Access

(RMA). MPI one-sided communications are limited to accessing

only a specically declared memory area on the target, called a win-

dow. Unlike with two-sided operations, the target process doesn’t

perform any action. The detailed MPI documentation is available

in [11].

In the remainder of this section, four MPI implementations

are described using dierent communication models: two-sided

with blocking and non-blocking operations, one-sided, and hybrid

MPI+OpenMP. Each MPI process will perform the computation

of its lines, while only the master process stores the image. This

implies communication of data between processes.

4.3.1 Two-sided communications. The two main routines for MPI

two-sided communications are MPI_Send and MPI_Recv. The send/receive

buers, sender/receiver ranks and data types must be explicitly

specied by the programmer. Moreover, these are blocking commu-

nications involving implicit synchronizations.

The MPI parallel implementation with two-sided blocking com-

munications is described in Algorithm 4. First, the MPI environment

is initialized, and each process reads its rank and the number of MPI

processes (lines 1-3), which are used to explicitly map processes

Algorithm 4: Pseudo MPI parallel implementation of the

Mandelbrot set computation with two-sided blocking com-

munications

1 MPI_Init();

2 MPI_Comm_size();

3 MPI_Comm_rank();

4 for  =  to _ by  do

5 Compute_line();

6 if rank ≠ 0 then

7 MPI_Send(/*args*/);

8 else

9 MPI_Recv(/*args*/);

10 end

11 end

12 MPI_Finalize();

onto work items (lines of the image). Each MPI process sequentially

computes the lines it is assigned to (lines 4-5). Completed lines are

send to the master process (rank 0) introducing synchronization

points between the latter and all non-zero ranks. When the work is

nished, the MPI environment is shut down and the master process

writes the image to an output le (not included in time measurings).

The previous MPI algorithm represents the most basic MPI par-

allel implementation of the Mandelbrot set computation. However,

implicit synchronization could induce communication overheads

that become signicant for ne-grained computations. This is why

MPI also includes non-blocking operations. The most basic ones are

MPI_Isend and MPI_Irecv. The use of non-blocking communica-

tions leave the user responsible for explicit synchronization, for in-

stance by using the MPI_Waitall routine. A variant of Algorithm 4

using non-blocking communications is shown in Algorithm 5.

Algorithm 5: Pseudo MPI parallel implementation of the

Mandelbrot set computation with two-sided non-blocking

communications

1 MPI_Init();

2 MPI_Comm_size();

3 MPI_Comm_rank();

4 for  =  to _ by  do

5 Compute_line();

6 if rank ≠ 0 then

7 MPI_Isend(/*args*/);

8 else

9 MPI_Irecv(/*args*/);

10 end

11 MPI_Waitall();

12 end

13 MPI_Finalize();

4.3.2 One-sided communications. When dealing with one-sided

communications, the main calls are MPI_Put to send data to the

window of another process, MPI_Get to fetch data from the win-

dow of another process, and MPI_Accumulate to update data by

4

A performance-oriented comparative study of Chapel to conventional programming environments

combining the existing data and the data sent. Moreover, like in

two-sided non-blocking operations, explicit synchronizations are

required. It can be achieved via the MPI_Fence routine.

Algorithm 6: Pseudo MPI parallel implementation of the

Mandelbrot set computation with one-sided communica-

tions

1 MPI_Init();

2 MPI_Comm_size();

3 MPI_Comm_rank();

4 MPI_Win_create();

5 MPI_Fence();

6 for  =  to _ by  do

7 Compute_line();

8 if rank ≠ 0 then

9 MPI_Put(/*args*/);

10 end

11 MPI_Fence();

12 end

13 MPI_Win_free();

14 MPI_Finalize();

Algorithm 6 shows a variant of the previous MPI-based algo-

rithms using one-sided communications. Similarly, the implemen-

tation begins with the initialization steps, followed by the window

creation procedure MPI_Win_create (line 4). Synchronization on

the window (line 5), eectively acting as a global barrier, is required

to ensure that the window is completely accessible by every process

before performing any operations. The mapping of processes onto

work items is identical to the previous MPI-based algorithms. The

dierence is that the master process is no more involved in the com-

munications. At the end, the windows is freed with MPI_Win_free

(line 13) and the MPI environment is closed.

4.3.3 Hybrid MPI+OpenMP. In this last section, we focus on a hy-

brid MPI+OpenMP program to combine the distributed features

of MPI with the multi-threaded execution model of OpenMP. The

MPI environement is initialized using the MPI_Init_thread sub-

routine with the MPI_THREAD_FUNNELED multi-threading support,

indicating that MPI calls will only be issued from the master thread

of each process.

The hybrid approach is illustrated in Algorithm 7. At most one

MPI process is allowed per computer node. This can be done using

the --map-by ppr:1:node mapping policy. Locally to each node,

the computation of lines is done in parallel using OpenMP, like

in Algorithm 2 (line 4). Then, MPI is used for the inter-processes

communications (lines 5-9). As lines computed per process are send

to rank 0 in a single batch, we choose to deal communications with

the basic two-sided blocking communication model.

5 EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the implementations

introduced in Section 4. Section 5.1 introduces the experimental

testbed, and Section 5.2 denes the experimental protocol. The per-

formance results in shared- and distributed-memory environments

are presented and analyzed in Section 5.3 and 5.4, respectively.

Algorithm 7: Pseudo MPI+OpenMP parallel implementa-

tion of the Mandelbrot set computation

1 MPI_Init_thread(MPI_THREAD_FUNNELED);

2 MPI_Comm_size();

3 MPI_Comm_rank();

4 Compute_image_omp( ,);

5 if rank ≠ 0 then

6 MPI_Send(/*args*/);

7 else

8 MPI_Recv(/*args*/);

9 end

10 MPI_Finalize();

5.1 Experimental testbed

The experiments are carried out using the French national Grid’5000

experimental testbed. All computer nodes operate under Debian

GNU/Linux 11 (bullseye), 64 bits and are equipped with  AMD

EPYC 7301 CPUs@2.20GHz (a total of 32 cores/64 threads per node)

and 192  RAM. All computer nodes are interconnected through

a 25 Gbps Ethernet network Intel Ethernet Controller XXV710. The

number of computer nodes in the experiments ranges from 1 to 6.

Thus, up to 192 processing cores are used in the experiments. Con-

cerning the Chapel implementation, each computer node hosts one

Chapel locale. Table 1 presents the tools/libraries and optimization

ags used for compiling the programs.

Table 1: Summary of the tools/libraries and optimization

ags used for compilation and execution.

Tools/libraries Version

C compiler  10.2.1

Open MPI 4.1.0

OpenMP 4.5

Chapel 1.25.0

C optimization ag -O2

Chapel optimization ag --fast

Chapel’s multi-locale code runs on top of GASNet, and the run-

time should be built taking account the characteristics of the system

on which the multi-locale code is supposed to run. One can see in

Table 2 a summary of the runtime congurations for multi-locale

execution. The UDP GASNet implementation is the one used for

communication (CHPL_COMM_SUBSTRATE) along with SSH, which is

responsible for getting the executables running on dierent locales

(GASNET_PSM_SPAWNER).

5.2 Experimental protocol

For each implementation, the computation time is measured while

varying the granularity, controlled by the maximum number of

iterations  , that takes its value in {100, 1000, 10000, 100000}. The

image size is xed to 1024x768 and 5120x3840 for shared- and

5

Helbecque et al.

Table 2: Summary of the Chapel environment conguration

for multi-locale execution.

Variable Value

CHPL_RT_NUM_THREADS_PER_LOCALE 64

CHPL_TARGET_CPU 

CHPL_HOST_PLATFORM 64

CHPL_LLVM 

CHPL_COMM 

CHPL_COMM_SUBSTRATE 

GASNET_PSM_SPAWNER ℎ

distributed-memory experiments, respectively. For each experi-

ment, the relative speed-up  , dened by

 () =
 (1)

 ()
, (3)

is then measured, where  () corresponds to the execution time

using  processing units, and  (1) is the corresponding sequential

time. The clock_gettime timer C function is used, since it is valid

for all implementations (using the C interoperability in Chapel).

Experiments are performed multiple times, and the average is con-

sidered.

5.3 Results on shared-memory system

Figure 3 depicts the relative speed-up measured while varying

the number of processing units from 1 to 64. Dierent maximum

number of iterations  are considered in order to see the eect

of the granularity. Hyperthreading is allowed for the Chapel and

OpenMP implementations, but the overloading of MPI processing

elements is disabled (with the -nooversubscribe ag).

We can see that the MPI-based implementations suer from

high parallel overheads. Indeed, for low granularity,  = 100, the

workload is not suciently large to counterbalance the MPI com-

munication overheads. This is why speed-up remains bounded by

10. However, when the granularity increases, the MPI implemen-

tations are able to take advantage of parallelism to reach a high

speed-up, very close to the ideal one ( = 100000). In addition,

we note that the implementation based on two-sided non-blocking

communications performs better than its blocking counterpart. In

these experiments, no dierence appears between the one-sided

and the two-sided non-blocking MPI implementations. Concerning

the speed-up of the OpenMP implementation, we observe the same

behavior as in MPI, i.e., the application scales poorly for very ne

granularity. This is explained by the fact that the fork-join model of

OpenMP is costly, and need to be counterbalance by a suciently

large workload. When  increases, the OpenMP speed-up is getting

closer to the ideal one. We also note that hyperthreading allows

OpenMP to obtain good performance, although the speed-up for

64 threads is quite far from ideal. Finally, interestingly, we can see

that the Chapel implementation doesn’t suer much from parallel

overheads. Even with a low granularity, we note that Chapel can

easily obtain a speed-up that reached 50 using hyperthreading, and

scales well with the ideal speed-up when  is growing.

In order to investigate the high performance of Chapel compared

to the other implementations, we suggest to measure the compu-

tation time when xing  = 1. In accordance with Algorithm 1, it

represents the minimum valid value of  for which the workload

for each pixel is negligible, almost zero, and thus the computation

time reects the parallel overheads. Experiments are performed

fty times, and the average is considered.

These results are depicted in Figure 4. Firstly, concerning the

MPI-based implementations, we can see that for two-sided com-

munications, the computation time is slightly increasing with the

number of processing cores, and we note that the removal of im-

plicit synchronizations through non-blocking operations allows

a minor gain. Moreover, we observe that the MPI one-sided ap-

proach is more expensive than others, due to the fact that this

model requires the creation of a window, in addition to commu-

nication and synchronization mechanisms. Secondly, we observe

also that the OpenMP computation time is growing with  . We

note that OpenMP is faster than all MPI-based implementation,

except when using hyperthreading. Finally, we observe that Chapel

is consistently faster than all others. Interestingly, the computa-

tion time is decaying with the number of processing units. This

behavior can partly explain the very good Chapel performance in

the shared-memory multi-core experiments of Figure 3, whatever

the granularity. The Chapel ℎ default tasking layer, that

provides a lightweight implementation of Chapel tasking as well as

an optimized implementation of synchronization variables, is thus

very appropriate, and allows high performance [15, 16].

5.4 Results on distributed-memory system

In this section, the parallel speed-up is observed while varying the

number of processing units from 1 to 192. MPI processes overload-

ing and hyperthreading are not allowed. The hybrid MPI+OpenMP

implementation uses 1, 2, 3, 4, and 6 MPI process(es) with 32 threads

each. Communications are performed by process 0. The results are

presented in Figure 5.

Firstly, when considering low granularity,  = 100, all imple-

mentations suer from high parallel overheads. Each speed-up

associated to MPI-based implementation remains bounded by 20.

This is also true for the hybrid MPI+OpenMP program. Actually, the

OpenMP parallelism cannot counterbalance the MPI overheads gen-

erated by the distribution of work onto computer nodes. Regarding

Chapel, we observe an almost ideal speed-up for 32 processing units,

since it implies only one locale. Indeed, we have seen in the previous

section that Chapel is particularly ecient in single locale execution.

However, when considering multi-locale executions (more than 32

cores), the performance dramatically drops. When  is growing,

each implementation scales well, since the parallel overheads are

counterbalance by the workload. The distributed-memory experi-

ments allow to better see the dierences between the MPI-based

implementations. The two-sided blocking communication model is

outperformed by its counterparts, whatever the granularity. More-

over, we note for this application that the one-sided communication

model is not as good as the two-sided non-blocking one. Actually,

it can be explain by the fact that tasks are independent, and thus

few inter-process communications occur. The hybrid MPI+OpenMP

program is as good or better than all others, whatever the value of

 . In addition, we observe that for high granularity ( = 100000

for example), Chapel is able to compete with the hybrid program.

6

A performance-oriented comparative study of Chapel to conventional programming environments

1 4 8 16 32 64

0

10

20

30

40

50

60

S
p
e
e
d
-u
p

N = 100

Ideal speed-up

Chapel

C+OpenMP

C+MPI One-sided

C+MPI Two-sided blocking

C+MPI Two-sided non-blocking

1 4 8 16 32 64

N = 1000

1 4 8 16 32 64

N = 10000

1 4 8 16 32 64

N = 100000

Processing units

Figure 3: Speed-up achieved by all ve shared-memory implementations. The number of processing units varies from 1 to 64

(hyperthreading enabled for Chapel and OpenMP). Results are for dierent maximum number of iterations  .

2 4 8 16 32 64

Processing units

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

C
o
m
p
u
ta
ti
o
n
ti
m
e
[s
]

Chapel

OpenMP

MPI Two-sided non-blocking

MPI Two-sided blocking

MPI One-sided

Figure 4: Computational overhead measured by all ve

shared-memory implementations when considering  = 1.

The number of processing units varies from 2 to 64 (hyper-

threading enabled for Chapel and OpenMP)

As we did in the previous section, we investigate the communi-

cation overheads in the distributed-memory experiments by xing

 = 1. Again, experiments are performed fty times, and the aver-

age is considered.

The results are depicted in Figure 6. First of all, we can see that

for two-sided MPI, the communication overheads for both block-

ing and non-blocking communication models are approximately

the same. Moreover, we note a light increase when the number of

processing units growths. For one-sided MPI, this last observation

is also true. The higher the number of processing units, the higher

the communication overheads. However, compared to two-sided

MPI, the latter are 2 times higher for 96 and 128 processing units,

and almost 6 times higher for 192. Like in the shared-memory ex-

periments, it can be attributed to the window management, that

requires creation, communication and synchronizationmechanisms.

Concerning the hybrid MPI+OpenMP approach, we can see that

the overheads remain constant, whatever the number of processing

units. This can be justied by the fact that only one MPI process is

allowed per computer nodes. Finally, we note that the communica-

tion overheads of Chapel in our distributed-memory experiments

are high. Indeed, from 3 computers nodes (96 processing units),

overheads are 10 to 21 times higher than the ones observe using

the hybrid model. Chapel may suer from the fact that our cluster

is not equipped with high-performance network between nodes.

This last observation can explain the poor performance of Chapel

in distributed-memory when  is low (see Figure 5).

6 CONCLUSION

In this paper, we have compared the Chapel high-productivity pro-

gramming language to the well-established conventional parallel

programming libraries OpenMP and MPI+X, in terms of perfor-

mance. Shared- and distributed-memory multi-core experiments

were conducted on a cluster composed of 192 processing cores,

using the French national testbed Grid’5000.

In this work, the embarrassingly parallel computation of the

Mandelbrot set was chosen as a test-case for its high degree of

parallelism and its irregular workload. This study represents a

good comparison element between Chapel and its OpenMP and

MPI counterparts. However, this study should be extended to more

complicated problems, involving dependent tasks, and thus more

communication between processing units.

Chapel outperforms its counterparts in shared-memory context.

This may be explain by its ℎ default tasking layer that pro-

vides a lightweight implementation of Chapel tasking as well as an

optimized implementation of synchronization variables. Moreover,

in distributed-memory environment, Chapel competes with hybrid

MPI+OpenMP, even though its ℎ tasking layer seems to

suer from the lack of high-performance network of the cluster.

Finally, we plan to investigate the use of Chapel and other high-

productivity languages for more complex applications, in particular

irregular ones (such as tree-search algorithms). Another important

aspect is GPU programming support. Although there exist two

modules that facilitate GPU programming in Chapel (GPUIterator

and GPUAPI), they are not yet mature.

ACKNOWLEDGEMENT

Experiments presented in this paper were carried out using the

Grid’5000 testbed, supported by a scientic interest group hosted

7

Helbecque et al.

1 32 64 96 128 192

0

50

100

150

200

S
p
e
e
d
-u
p

N = 100

Ideal speed-up

Chapel

C+MPI+OpenMP

C+MPI One-sided

C+MPI Two-sided blocking

C+MPI Two-sided non-blocking

1 32 64 96 128 192

N = 1000

1 32 64 96 128 192

N = 10000

1 32 64 96 128 192

N = 100000

Processing units

Figure 5: Speed-up achieved by all ve distributed-memory implementations. The number of processing units varies from 1 to

192 using 6 computer nodes (hyperthreading disabled for Chapel and OpenMP). Results are for dierent maximum number of

iterations  .

32 64 96 128 192

Processing units

0.0

0.5

1.0

1.5

2.0

C
o
m
p
u
ta
ti
o
n
ti
m
e
[s
]

Chapel

MPI+OpenMP

MPI Two-sided non-blocking

MPI Two-sided blocking

MPI One-sided

Figure 6: Computational overhead measured by all ve

distributed-memory implementations when considering  =

1. The number of processing units varies from 32 to 192 using

6 computer nodes (hyperthreading disabled for Chapel and

OpenMP).

by Inria and including CNRS, RENATER and several Universities

as well as other organizations (see https://www.grid5000.fr).

REFERENCES
[1] George Almasi. 2011. PGAS (partitioned global address space) languages. In

Encyclopedia of Parallel Computing. Springer, 1539–1545.
[2] T. Carneiro, J. Gmys, N. Melab, and D. Tuyttens. 2020. Towards ultra-scale

Branch-and-Bound using a high-productivity language. Future Gener. Comput.
Syst. 105 (2020), 196–209.

[3] B. Chamberlain, E. Ronaghan, B. Albrecht, L. Duncan, M. Ferguson, B. Harsh-
barger, D. Iten, D. Keaton, V. Litvinov, P. Sahabu, and G. Titus. 2018. Chapel
comes of age: Making scalable programming productive.

[4] Chapel 2022. The Chapel Parallel Programming Language. https://chapel-lang.org
[5] S. Faulk, J. Gustafson, P. Johnson, A. Porter, W. Tichy, and L. Votta. 2004. Mea-

suring HPC productivity. International Journal of High Performance Computing
Applications 18 (2004).

[6] J. Gmys, T. Carneiro, N. Melab, E.-G. Talbi, and D. Tuyttens. 2020. A compara-
tive study of high-productivity high-performance programming languages for
parallel metaheuristics. Swarm and Evolutionary Computation 57 (June 2020).

[7] E. Gomez. 2020. MPI vs OpenMP: A case study on parallel generation of Mandel-
brot set.

[8] J. Kepner. 2004. HPC Productivity: An Overarching View. The International
Journal of High Performance Computing Applications 18, 4 (2004), 393–397.

[9] D. Khaldi, P. Jouvelot, C. Ancourt, and F. Irigoin. 2013. Task Parallelism and
Data Distribution: An Overview of Explicit Parallel Programming Languages. In
Languages and Compilers for Parallel Computing, Hironori Kasahara and Keiji
Kimura (Eds.). Springer Berlin Heidelberg, 174–189.

[10] E. Lusk and K. Yelick. 2007. Languages for High-Productivity Computing: the
DARPA HPCS Language Project. Parallel Processing Letters 17 (2007), 89–102.

[11] Open MPI 2022. Open MPI: Open Source High Performance Computing. https:
//www.open-mpi.org

[12] OpenMP API 2022. The OpenMP API specication for parallel programming.
https://www.openmp.org

[13] M. Parenteau, S. Bourgault-Cote, F. Plante, E. Kayraklioglu, and E. Laurendeau.
[n.d.]. Development of Parallel CFD Applications with the Chapel Programming
Language.

[14] TOP500 ranking 2022. TOP500. https://www.top500.org
[15] K. Wheeler, R. Murphy, D. Stark, and B. Chamberlain. 2011. The Chapel Tasking

Layer Over Qthreads.
[16] K. Wheeler, R. Murphy, and D. Thain. 2008. Qthreads: An API for programming

with millions of lightweight threads. In 2008 IEEE International Symposium on
Parallel and Distributed Processing. 1–8.

8

