
PhD-FSTM-2023-027
The Faculty of Science, Technology and Medicine

DISSERTATION

Defence held on 31/03/2023 in Esch-sur-Alzette

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE
by

Gabriel DUFLO
Born on 16 July 1994 in Vernon, (France)

LEARNING OPTIMISATION ALGORITHMS OVER GRAPHS

Dissertation defence committee
Dr Grégoire DANOY, dissertation supervisor
Université du Luxembourg

Dr Pascal BOUVRY, Chairman
Professor, Université du Luxembourg

Dr El-Ghazali TALBI, Vice Chairman
Professor, Université de Lille

Dr Roland BOUFFANAIS
Professor, University of Ottawa

Dr Ann Nowé
Professor, Vrije Universiteit Brussel

Abstract

The paradigm of learning to optimise relies on the following principle: instead of designing an algorithm to

solve a problem, we design an algorithm which will automate the design of such a solver. The initial idea was to

alleviate the limitations stated by the No Free Lunch Theorem by producing an algorithm which efficiency is less

dependent upon known instances of the problem to tackle. Hyper-heuristics constitute the main learning-to-

optimise techniques. These rely on a high-level algorithm performing a search process into a space of low-level

heuristics to tackle a given problem. Because the latter search space is problem-dependent, the vast majority

of hyper-heuristics are designed to tackle a specific problem. Due to this lack of generality, existing works fully

redesign hyper-heuristics when tackling a new problem, despite the fact that they may share a similar structure.

In this dissertation, we tackle this challenge by proposing a generic way for learning to optimise any problem. To

this end, this thesis introduces three main contributions: (i) an analysis of the formal functioning of learning-to-

optimise techniques; (ii) a model of generic hyper-heuristic, named Algorithm Learner for Graph Optimisation

problems (ALGO), constituting the central point of this work; (iii) a real-world use case where we use our

generic hyper-heuristic to automate the design of behaviours within a swarm of drones.

In the first part, we provide a formalism for optimisation and learning concepts, which we use to describe the

large body of knowledge that combines two layers of optimisation and/or learning. We then put an emphasis

on approaches using learning to improve an optimisation process, i.e., aiming at learning to optimise. In the

second part, we present ALGO, our model of generic hyper-heuristic. We explain how we abstract from a given

problem with a graph structure so that it can be used to tackle any optimisation problem. We also detail the

steps to follow in order to use ALGO to tackle a given problem. We finally present the modularity of ALGO

with inner components that a user can implement. The second part ends with a validation of our model, i.e.,

using ALGO to tackle a classical optimisation problem. In the third part, we use ALGO to tackle the problem

of area surveillance with a swarm of drones. We demonstrate that ALGO constitutes a novel and efficient way

to automate the design of such a distributed and multi-objective problem.

Acknowledgements

First and foremost, I would like to thank Dr. Grégoire DANOY for his immeasurable support. There is no

word to express how grateful I am for his patience, his knowledge and the quality of his guidance, which helped

me for my research and for writing this thesis. I could not have imagined having a better supervisor.

I would like to express my sincere gratitude to Prof. Pascal BOUVRY who gave me the opportunity to pursue

my PhD by welcoming me into his dynamic team. I felt lucky to work in a pleasant atmosphere throughout

my whole PhD studies. I would also like to thank Prof. El-Ghazali TALBI for his insights and advice which

allowed me to deepen my research.

Besides my supervision committee, I cannot name all my colleagues from the Parallel Computing & Optimisation

Group but I give a special thank you to Pierre-Yves HOUITTE for his support. He clearly contributed to the

good atmosphere within the team, despite his taste for Stade Rennais.

iii

Contents

Abstract ii

Acknowledgements iii

Contents iv

List of Figures viii

List of Tables x

List of Algorithms xi

Symbols xii

1 Introduction 1

1.1 Context . 1

1.2 Motivation & Contributions . 1

1.2.1 Research questions . 2

1.2.2 Research objectives . 2

1.2.3 Contributions . 3

1.3 Overview . 4

I Background & State of the Art 6

2 Learning vs Optimisation 7

2.1 Introduction . 7

2.2 Categorisation . 8

2.2.1 Optimisation . 8

2.2.1.1 Heuristics . 9

2.2.1.2 Metaheuristics . 10

2.2.2 Learning . 11

2.2.2.1 Supervised Learning . 11

2.2.2.2 Unsupervised Learning . 12

2.2.2.3 Reinforcement Learning . 12

2.2.2.4 Optimisation component . 13

2.3 Hybridisation . 14

2.3.1 Optimise Optimisation . 15

2.3.1.1 Generation of initial solutions . 15

2.3.1.2 Hyper-parameterisation . 15

2.3.2 Learning to Optimise . 16

2.3.2.1 Approximation of the objective function . 16

2.3.2.2 Improvement of the optimiser . 17

iv

Contents v

2.3.3 Optimise Learning . 17

2.3.3.1 Hyper-parameterisation . 17

2.3.3.2 Constraint of the search space . 18

2.3.4 Learning to Learn . 18

2.4 Conclusion . 19

3 Hyper-Heuristics and Reinforcement Learning 21

3.1 Introduction . 21

3.2 Hyper-heuristics . 21

3.2.1 Selective approaches . 23

3.2.2 Generative approaches . 23

3.3 Hyper-Heuristics based on Reinforcement Learning . 24

3.3.1 Selective approaches . 24

3.3.2 Generative approaches . 25

3.4 Conclusion . 26

II Learning Optimisation Algorithms over Graphs 27

4 Algorithm Learner for Graph Optimisation problems (ALGO) 28

4.1 Introduction . 28

4.2 Low-Level Heuristics . 30

4.2.1 Description of an ALGO-Friendly Optimisation Problem (AFOP) 31

4.2.2 Example of AFOPs . 33

4.2.2.1 Travelling Salesman Problem . 33

4.2.2.2 Vehicle Routing Problem . 33

4.2.2.3 Minimum Vertex Cover Problem . 35

4.2.2.4 Optimal Job Scheduling Problem . 35

4.2.3 Template of heuristics for an AFOP . 36

4.3 High-Level Algorithm . 38

4.3.1 Choosing actions . 40

4.3.1.1 Computation of the state-action value . 40

4.3.1.2 Graph Neural Networks . 40

4.3.1.3 Neural Networks . 41

4.3.2 Computing rewards . 41

4.3.2.1 Vectorial reward . 41

4.3.2.2 Scalarisation . 43

Linear scalarisation . 43

Chebyshev scalarisation . 43

4.3.3 Updating the policy . 44

4.3.3.1 Updating Θ . 44

4.3.3.2 Updating λ . 44

4.4 How to use ALGO? . 45

4.4.1 Formal description . 45

4.4.2 Implementation . 46

4.5 Conclusion . 47

5 Validation on the Travelling Salesman Problem 48

5.1 Introduction . 48

5.2 Modelling as an AFOP . 49

5.3 Implementation for ALGO . 50

5.3.1 Optimisation model . 52

5.3.2 Low-level heuristics . 52

5.3.3 State variables . 53

5.4 Experiments . 54

5.4.1 Training process . 55

Contents vi

5.4.2 Comparison heuristics . 55

5.4.3 Results . 57

5.5 Conclusion . 61

III Use Case: Covering an Area with a Swarm of UAVs 63

6 Design of Robot/UAV Swarms 64

6.1 Introduction . 64

6.2 Manual design of robot/UAV swarms . 65

6.3 Automated design of robot/UAV swarms . 66

6.3.1 Selective approaches . 67

6.3.2 Generative approaches . 67

6.4 Coverage of a Connected-UAV Swarm (CCUS) . 67

6.4.1 Formal expression . 68

6.4.1.1 Environment graph . 68

6.4.1.2 Communication graph . 68

6.4.1.3 Definition of instances . 69

6.4.1.4 Definition of solutions . 69

6.4.2 Multi-objective aspect . 69

6.4.2.1 Coverage rate . 70

6.4.2.2 Coverage time . 70

6.4.2.3 Connectivity . 70

6.5 Conclusion . 71

7 Learning to Optimise a Swarm of UAVs 73

7.1 Introduction . 73

7.2 Modelling as an AFOP . 74

7.3 Implementation for ALGO . 75

7.3.1 Optimisation model . 76

7.3.2 Low-level heuristics . 78

7.3.3 State variables . 79

7.4 Experimental Setup . 80

7.4.1 Performance metrics . 80

7.4.1.1 Swarm metrics . 81

Coverage speed . 81

Number of connected components . 81

7.4.1.2 Multi-objective metrics . 81

Hyper-Volume (HV) . 81

Inverted Generational Distance (IGD) . 81

Spread (Δ) . 82

7.4.2 Comparison heuristics . 82

7.4.2.1 Manually-designed heuristic . 82

7.4.2.2 Automatically-designed heuristic . 83

7.4.2.3 Pheromone-based heuristics . 83

Heuristic Φ . 84

Heuristic Φ-K . 84

7.4.3 Experimental process . 84

7.5 Experimental Results . 85

7.5.1 Factorial experiment . 85

7.5.2 Comparison with QLHH . 86

7.5.3 Stability . 87

7.5.3.1 Training . 87

7.5.3.2 Testing . 88

7.6 Conclusion . 90

Contents vii

IV Conclusion 91

8 Conclusion 92

8.1 Summary . 92

8.2 Contributions . 93

8.3 Perspectives . 95

Appendix A Other Contributions 97

Appendix B Experimental Results of QLHH on CCUS 99

Appendix C Implementation of ALGO 102

Bibliography 105

List of Figures

1.1 Organisation of the dissertation. 5

2.1 Inputs and output of the process of optimising over a space X . 8

2.2 Optimisation process (green rectangle) with two inner components: the initial solution (at the
top) and the optimiser (at the bottom). 9

2.3 Input and output of the process of learning to map an element of F to an element of X 11

2.4 In unsupervised learning, an initial vector of solutions V is obtained from the input data during
an initialisation phase. 12

2.5 Reinforcement learning makes an agent evolve in an environment by following the policy to learn. 12

2.6 The elements of S and A, respectively the states and actions, are obtained during episodes
through the interaction of an RL agent with an environment. They are used as an input of the
reinforcement learning process. 13

2.7 Optimisation component within the process of learning. 13

2.8 Using optimisation to obtain the initial solutions of another optimisation process. 15

2.9 Using optimisation to obtain a parameterisation for the optimiser of another optimisation process. 16

2.10 Using learning to approximate the objective function of an optimisation process. 16

2.11 Using learning to improve the optimiser of an optimisation process. 17

2.12 Using optimisation to obtain a parameterisation for the optimiser of the inner optimisation
component of a learning process. 18

2.13 Using optimisation for constraining the inner optimisation component of a learning process. . . . 18

2.14 Using a learning process for initialising another learning process. 19

3.1 Classification of hyper-heuristics proposed by Burke et al. [2013] 22

3.2 Overview of selective hyper-heuristics based on RL with perturbative low-level heuristics. 24

3.3 Overview of generative hyper-heuristics based on RL with constructive low-level heuristics. . . . 25

4.1 Overview of the process of hyper-heuristics. An hyper-heuristic HHi returns a heuristic H given
an optimisation problem Pi. The space of low-level heuristics of HHi must be defined according
to Pi. 29

4.2 On the left side, for each problem Pi, a hyper-heuristic HHi must be defined to generate a
heuristic H. On the right side, ALGO does not need to be redefined to tackle different problems. 29

4.3 Overview of the process of ALGO. The space of low-level heuristics is defined for a generic AFOP.
An overriding process is used in order to implement any compatible problem as an AFOP. 30

4.4 Workflow of ALGO for the high-level algorithm and the low-level heuristics. 31

4.5 A solution for the Travelling Salesman Problem (TSP). 34

4.6 A solution for the Vehicle Routing Problem (VRP). 34

4.7 A solution for the Minimum Vertex Cover Problem (MVCP). 35

4.8 A solution for the Optimal Job Scheduling Problem (OJSP). 36

4.9 Overview of the high-level process in ALGO. 39

4.10 Process for computing the state-action value QΘ(S, a, n). 40

4.11 Partial class diagram of ALGO, showing what one must override in order to apply ALGO on a
specific problem. 46

5.1 TSP solution obtained from S = {(a1, n3)t1 , (a1, n1)t2 , (a1, n4)t3 , (a1, n5)t4 , (a1, n2)t5}. Nodes
are added into the subtour by following the order given by the time of items in S, i.e., n3 →
n1 → n4 → n5 → n2. A node is added at the position where it minimises the growth of the
subtour. 49

viii

List of Figures ix

5.2 UML diagram showing the implementation of the TSP. 50

5.3 Insertion of a node at the position where it minimises the growth of the current tour. The
growth of the tour if item.node is inserted at the ith position is shown in (a). The insertion of
item.node into the current tour is shown in (b). 51

5.4 Results obtained by executing different TSP heuristics on 1000 instances from four classes. . . . 58

5.5 Tour obtained from different heuristics on a same instance where 100 nodes have been uniformly
spread in a 1000×1000 square. 60

6.1 Classification of swarm behaviours proposed by Brambilla et al. [2013] and extended by Schranz
et al. [2020] . 65

6.2 Swarm of UAVs covering an area with obstacles. The UAVs are flying from different bases (blue
squares) following a discretisation of the map (dashed blue lines), as shown in 6.2(a). At that
time, the environment graph (in green) and the communication graph (in red) are represented
in 6.2(b). The current solution as a set of paths (in blue) is depicted in 6.2(c). 68

6.3 Every UAV stores the known path of each UAV. When two UAVs can communicate, they compare
their known paths (6.3(a)) and update them according to their length (6.3(b)). 71

7.1 UML diagram showing the implementation of CCUS3O. 75

7.2 Usage of both swarm metrics and MO metrics to assess the performance of a heuristic. 80

7.3 Difference between the workflow of QLHH and ALGO. For QLHH (a), the policy is scalarised
from multiple policies. The multiple reward obtained by a choice of action are all used to update
their corresponding policy. For ALGO (b), the scalarisation occurs on the reward. The resulting
single reward is then used to update the single policy. 83

7.4 Solutions obtained with heuristics generated by QLHH and ALGO on two instances (the x axis
uses a logarithm scale due to the huge gap between heuristics). 87

7.5 Evolution of the front during the training according to HV, IGD and Δ. 88

7.6 Example of fronts obtained with different heuristics for two instances, from the classes (20x20/10)
on the left and (25x25/10) on the right. 89

8.1 Summary of contributions. 94

8.2 Area of application of ALGO. Among AFOPs, some optimisation problems may not be well
suited to be tackled by ALGO. 96

A.1 Overview of the proposed GP hyper-heuristic. 97

B.1 Comparison of non-dominated heuristics obtained with linear and Chebyshev scalarisations. . . . 99

B.2 Distributions of objective values obtained after running heuristics designed manually and the
heuristic generated by QLHH on testing instances. 100

B.3 Comparison of the generated heuristics with a random walk for one instance. 101

B.4 Heatmaps of the number of visits of vertices with a random walk (on the left) and the generated
heuristic (on the right). 101

C.1 Complete UML diagram for the implementation of ALGO. 103

List of Tables

2.1 Different possible hybridisations with learning and optimisation. 14

4.1 Elements to define for a problem in order to use ALGO. 45

5.1 Experimental parameters used for training ALGO for the TSP 55

5.2 Summary of TSP heuristics used as a comparison basis. 55

5.3 Comparison between the heuristic generated by ALGO and other heuristics according to a pair-
wise Wilcoxon signed-rank test. A blue cell indicates that the heuristic generated by ALGO
outperforms the given heuristic (row name) for the given instance class (column name) with a
95% statistical confidence. A gray cell indicates that there is no statistical confidence to differ-
entiate both heuristics. 61

7.1 Experimental parameters used for training ALGO. 85

7.2 Results of the factorial experiment. 86

7.3 Comparison between heuristics according to HV. 88

7.4 Comparison between heuristics according to IGD. 89

7.5 Comparison between heuristics according to Δ. 89

A.1 GP nodes of the proposed hyper-heuristic . 97

A.2 Comparison between the results obtained with GPHH-best and the other heuristics on the in-
stances from TSPLIB . 98

x

List of Algorithms

2.1 Constructive heuristic . 10

2.2 Perturbative heuristic . 10

4.1 Template of low-level heuristics . 37

5.1 TSP::get node tour(s) . 51

5.2 TSP::get edge tour(s) . 52

5.3 TourLength::compute value(s) . 52

5.4 TSP::terminal(s, a) . 53

5.5 TSP::get nodes(s, a) . 53

5.6 TSP::time(s, a, n) . 53

5.7 TSP::can communicate(s, a1, a2) . 53

5.8 VisitedNode::compute(s, a, n) . 54

5.9 DistanceEdge::compute(s, a, e) . 54

5.10 VisitedEdge::compute(s, a, e) . 54

5.11 Nearest Neighbour heuristic for the TSP . 56

5.12 Greedy Edge heuristic for the TSP . 56

5.13 Nearest Insertion heuristic for the TSP . 56

5.14 Farthest Insertion heuristic for the TSP . 57

5.15 Christofides heuristic for the TSP . 57

5.16 2-opt heuristic for the (symmetric) TSP . 58

7.1 CCUS3O::get position(s, a) . 76

7.2 CCUS3O::get shortest path(g, n1, n2) . 76

7.3 CCUS3O::get connected components(s) . 77

7.4 CoverageRate::compute value(s) . 77

7.5 CoverageTime::compute value(s) . 77

7.6 Connectivity::compute value(s) . 78

7.7 CCUS3O::terminal(s, a) . 78

7.8 CCUS3O::get nodes(s, a) . 78

7.9 CCUS3O::time(s, a, n) . 79

7.10 CCUS3O::can communicate(s, a1, a2) . 79

7.11 Visited::compute(s, a, n) . 79

7.12 DistanceBase::compute(s, a, n) . 79

7.13 Neighbourhood::compute(s, a, n) . 80

7.14 DistanceEdge::compute(s, a, e) . 80

xi

Symbols

NFLT No Free Lunch Theorem

SL Supervised Learning

UL Unsupervised Learning

RL Reinforcement Learning

QL Q-Learning

TSP Travelling Salesman Problem

VRP Vehicle Routing Problem

MVCP Minimum Vertex Cover Problem

OJSP Optimal Job Scheduling Problem

MO Multi-Objective

MA Multi-Agent

GA Genetic Algorithm

GP Genetic Programming

GNN Graph Neural Network

NN Neural Network

HH Hyper-Heuristic

HLA High-Level Algorithm

LLH Low-Level Heuristic

ALGO Algorithm Learner for Graph Optimisation problems

AFOP ALGO-Friendly Optimisation Problem

UAV Unmanned Aerial Vehicle

CCUS Coverage of a Connected-UAV Swarm

CCUS3O CCUS with 3 Objectives

G(N,E) Graph G where N is the set of nodes and E is the set of edges

xii

Chapter 1

Introduction

Contents

1.1 Context . 1

1.2 Motivation & Contributions . 1

1.2.1 Research questions . 2

1.2.2 Research objectives . 2

1.2.3 Contributions . 3

1.3 Overview . 4

1.1 Context

In this PhD work, we explore an area where machine learning is used to improve optimisation, hence the

paradigm of learning to optimise. Given a problem P , we do not design here an algorithm to tackle it, i.e.,

to find a solution to an instance of P , we aim at extracting information which makes an algorithm efficient or

not to find a good solution. This information is then used to output an algorithm that we can use to tackle P .

The idea behind learning to optimise is to alleviate the limitations stated by the No Free Lunch Theorem. To

tackle P , if we manually design an algorithm based on known instances of P , it will be at the expense of worse

performances on unknown instances. Automating the design of an algorithm to tackle P thus aims at obtaining

an algorithm with an overall behaviour less dependent on known instances. This process of automating the

design of a heuristic is referred to as a Hyper-Heuristics (HHs).

1.2 Motivation & Contributions

Along with the paradigm of learning to optimise, we show in Chapter 2 that other techniques consist in com-

bining two layers of optimisation/learning. For instance, optimisation can be used to improve the performance

of a learning algorithm or another optimisation process. We referred to these approaches as hybrid techniques.

Within them, both involved processes are entangled, resulting to a blurred border between optimisation and

learning. The literature is indeed missing a formal definition of optimisation and learning which can be used

to describe these hybrid techniques.

1

Introduction 2

As we describe in Chapter 3, hyper-heuristics have been used in numerous contexts and applied on a wide range

of optimisation problems. Nevertheless, they have demonstrated that they are well suited for tackling problems

based on graphs [Burke et al., 2013, Mazyavkina et al., 2021]. In the literature, many HHs using the graph

structure of instances can be found, even though their functioning is very similar. Some HHs designed to tackle

several optimisation problems can already be found in the literature [Khalil et al., 2017, Hao et al., 2021, Zhao

et al., 2021, Zhang et al., 2022, Lu et al., 2022]. Their implementation is however not modular. It means that,

despite a theoretical generic model, a significant amount of design and rewriting is required per problem.

In addition, one limitation of hyper-heuristics is the simplicity of the algorithm generated to tackle a given

problem. It is an advantage in terms of running time, control or explainability, but it may also induce limited

performance. This is even more true when the tackled problems are classical ones which have been deeply

studied in the literature. We believe that such HHs cannot generate an algorithm which is competitive with

existing techniques. On the other hand, we see a promising usage of HHs in a real-world context, where problems

may have multiple objectives, consider a dynamic environment, multiple agents, and/or distributed heuristics.

Using Reinforcement Learning (RL) in that context is promising thanks to its ability to approximate a future

reward from local interactions. In addition, RL has already shown a good potential for being used in a multi-

objective context, referred to as Multi-Objective Reinforcement Learning (MORL) [Van Moffaert et al., 2013,

Moffaert and Nowé, 2014], and in a multi-agent context, referred to as Multi-Agent Reinforcement Learning

(MARL) [Zhang et al., 2021]. As an example, we illustrate in Chapter 6 that there is a gap to fill when it

comes to designing the behaviour of a swarm of Unmanned Aerial Vehicles (UAVs). The dynamic aspect comes

from the fact that a UAV moves according to the position of others moving at the same time. One specificity

of a swarm is the limited control from human operators [Arnold et al., 2019]. It means that UAVs are flying

considering their local information, hence in a distributed way.

1.2.1 Research questions

Based on the aforementioned facts, this PhD manuscript aims at addressing the following three main research

questions. These are ordered from a general context to an application context.

Q1 How to depict a structured view of hybrid techniques?

Q2 How to learn to optimise any problem with reinforcement learning?

Q3 How to automate the design of a swarm of UAVs without predefining specific actions?

1.2.2 Research objectives

In order to answer the research questions, we first analyse the wide area of techniques combining both learning

and optimisation, which constitute the first objective O1. The purpose is to describe these various works by

using a single paradigm, and therefore to address a lack of analysis of approaches combining optimisation and

learning. It also aims at drawing a general context, to which belongs the area of learning to optimise, i.e., using

learning to improve optimisation. The state of the art analysis of this specific field corresponds to objective

O2. Validating both objectives O1 and O2 therefore answers P1.

With objective O3, we want to design a generic hyper-heuristic that can be used to tackle different problems.

The aim is to go beyond a generic theoretical model by providing a complete framework which permits to

generate heuristics for both classical and real-world problems, without the need to implement a new model for

Introduction 3

each problem. This represents the objective O4. Successfully tackling a classical benchmark with our generic

hyper-heuristic is used as a validation for our model, and thus answers P2.

Finally, we aim at applying our generic hyper-heuristic to automate the design of a swarm of UAVs. For that

purpose, as stated by objective O5, we model the task of surveillance with a swarm of drones as an optimisation

problem. We then use our generic hyper-heuristic to generate distributed heuristics for that problem to answer

P3.

The five research objectives of this PhD work are summarised hereinafter.

O1 Categorise techniques combining both learning and optimisation processes

O2 Survey the field of learning to optimise

O3 Design a generic hyper-heuristic based on reinforcement learning to tackle different optimisation problems

O4 Demonstrate the capacity of our hyper-heuristic to generate efficient and stable heuristics to tackle both

a classical benchmark and a real-world problem, i.e., surveillance with a swarm of drones

O5 Model the surveillance with a swarm of drones as a distributed optimisation problem

1.2.3 Contributions

As a first step towards achieving the objectives mentioned above, we introduce a formalism to describe both

optimisation and learning concepts. The idea is to extract components proper to both processes regardless of the

specific technique used. This description is then extended to hybrid techniques, i.e., combining optimisation

and/or learning at different levels. We indeed provide an analysis of their functioning by determining the

components involved in these hybridisations.

We then provide a state of the art analysis of the area to which this PhD work belongs to, i.e., hybrid techniques

using learning to improve optimisation aiming at learning to optimise.

As our main contributions, we design a generic hyper-heuristic, named Algorithm Learner for Graph Optimi-

sation problems (ALGO), and its abstract optimisation problem counterpart, referred to as ALGO-Friendly

Optimisation Problem (AFOP). The idea of ALGO is to use a single algorithm to generate a heuristic for any

compatible optimisation problem. A problem is compatible when it can be represented as an AFOP which is

based on a graph structure. We then define the latter abstract problem and we provide information on how to

override it for a given optimisation problem.

In this PhD thesis, we use ALGO in different contexts. For each of them, a description of the implementation

process is provided. We first apply our generic hyper-heuristic on a classical optimisation problem, the Travelling

Salesman Problem (TSP). As mentioned earlier, the purpose is not to generate a competitive heuristic to tackle

the TSP, given the wide range of competitive solvers for this problem. Nonetheless, we demonstrate the

efficiency and stability of the algorithm generated by ALGO. Secondly, we want to use ALGO in a dynamic

and distributed context, i.e., to automate the design of swarming behaviours. The quality of the behaviour

generated by ALGO illustrates its ability to tackle a wide range of problems with different natures: centralised

or distributed; single or multiple objectives; single or multiple agents.

In order to use ALGO to automate the design of swarming behaviours, we defined an optimisation problem to

describe the coverage of an area with a swarm of UAVs by considering the connectivity within the swarm. We

Introduction 4

name that problem the Coverage of a Connected-UAV Swarm (CCUS). A heuristic for that problem, generated

by ALGO, is then equivalent to the distributed behaviour of a UAV within the swarm.

1.3 Overview

This thesis is divided into three main parts, plus the conclusion, as depicted in Figure 1.1.

In Part I, background information is provided in order to introduce learning-to-optimise techniques in the

existing literature. Chapter 2 starts by a presentation of a wide range of techniques combining learning and

optimisation. After determining in which subarea this PhD work takes place, we analyse the state of the art of

advances in hyper-heuristics in Chapter 3.

In Part II , we introduce our novel model of hyper-heuristics, ALGO. We propose a formal definition of ALGO in

Chapter 4 and validate its usage and the performance of the algorithm it generates on a well-known benchmark

in Chapter 5.

Part III focuses on the usage of ALGO to tackle a real-world use case that is both multi-objective and distributed,

i.e. the coverage of an area by a swarm of UAVs. Chapter 6 first provides a survey of the state of the art on

robot/UAV swarm design, ending with a formal description of CCUS. The latter serves as a basis to motivate

the novelty of our hyper-heuristic approach in that domain. Chapter 7 contains the experimental details and

results of ALGO on the UAV swarm problem. The obtained swarming behaviour’s performance is analysed

and compared with state-of-the-art techniques.

The last part concludes this dissertation by summarising all the contributions and outcomes that have been

obtained during this PhD. A discussion on the perspectives and future works concludes the manuscript.

Introduction 5

III - USE CASE
II - MODEL

I - BACKGROUND

IV - CONCLUSION

chapter 2

Learning &
Optimisation

chapter 3

State of the
Art Analysis

chapter 4

Definition

chapter 5

Validation

chapter 6

State of the
Art Analysis

chapter 7

Experiments
& Results

chapter 8

Conclusion &
Perspectives

Figure 1.1: Organisation of the dissertation.

Part I

Background & State of the Art

6

Chapter 2

Learning vs Optimisation

Contents

2.1 Introduction . 7

2.2 Categorisation . 8

2.2.1 Optimisation . 8

2.2.2 Learning . 11

2.3 Hybridisation . 14

2.3.1 Optimise Optimisation . 15

2.3.2 Learning to Optimise . 16

2.3.3 Optimise Learning . 17

2.3.4 Learning to Learn . 18

2.4 Conclusion . 19

2.1 Introduction

This PhD work is using learning techniques in order to help optimisation. It thus lies at the edge of both the

optimisation and the learning domains. At lot of work has proposed to combine these two areas in different

ways. The purpose of this chapter is to formally describe the large body of works combining both optimisation

and learning and to define the specific area of this PhD work within the state-of-the-art.

Optimisation and learning are two powerful problem-solving tools. Both processes are different and require

different inputs, even if they both result in finding a solution to a problem. In order to illustrate how both

approaches can be applied to different types of problems, we introduce three problem examples, P1, P2 and

P3, that will be used throughout this chapter:

P1: Given a road network and two locations A and B, find the shortest way to go from A to B;

P2: Given a picture, detect whether it represents a dog or a cat;

P3: Given a person from a group, find the other similar individuals from that group.

The remainder of this chapter is organised as follows. Both the optimisation and the learning concepts are first

categorised in Section 2.2. We introduce there a formalism aiming at identifying optimisation and learning.

7

Learning vs Optimisation 8

Such a formal distinction between both processes is an important first step towards the description of the

possible hybridisation techniques, i.e., involving optimisation and learning. We present these techniques in

Section 2.3.

2.2 Categorisation

In this section, we focus on the categorisation of both optimisation and learning concepts. The objective is to

provide a formal description of optimisation and learning, to define inputs and outputs of both processes and to

extract inner components proper to them. The formalism introduced here is independent of specific techniques.

For instance, the description of an optimisation process encompasses any heuristic or metaheuristics algorithm.

Similarly, our description of learning applies for supervised learning, unsupervised learning and reinforcement

learning.

2.2.1 Optimisation

We first describe the concept of optimisation with a high-level overview. We want here to define an optimisation

process by what is required as an input and what is returned as an output. This overview is schematised in

Figure 2.1 for optimising over a space X , where X is the space of solutions of the problem to solve.

• Inputs. Two requirements are needed for the optimisation process: defining the constraints and defining

the objective function. Given a problem, if X is the space of solutions, let CX ⊆ X be the space of feasible

solutions, i.e., solutions respecting the constraints and FX : X → R be the objective function assigning a

value to each solution.

• Output. An optimisation process returns an element of CX , i.e., a feasible solution. This elements is

wanted to minimise or maximise FX . For the sake of simplicity, without loss of generality, it is considered

that an objective function is to be minimised in this chapter.

OPTIMX

CX ⊆ X

FX : X → R
x ∈ CX

Figure 2.1: Inputs and output of the process of optimising over a space X .

Example 2.1. The following presents possible models of the optimisation process to tackle the three aforemen-

tioned illustrative problems (see Section 2.1). For each problem these must be defined:

• X , the set of solutions,

• CX , the set of feasible solutions,

• FX , the objective function.

An example of optimisation problem model is provided below for each of the three illustrative problems. It is

worth noting that other models are however possible.

Learning vs Optimisation 9

P1: • X is the set of all possible paths in the road map.

• CX is the of all paths going from A to B.

• Given a path x ∈ X , FX (x) is its length.

P2: • The solution must be a choice between “dog” and “cat”, so X = {dog , cat}.

• From the definition of X , all solutions are feasible, so CX = X = {dog , cat}.

• The function FX must assign a score for each possible solution so that FX (dog) ≤ FX (cat) if a dog is

in the given picture, and vice versa. That objective function is supposed to analyse the given picture,

on a per-pixel basis for instance, and compute a score according to the given choice. Such a function

is very tough to manually design, which shows that simply optimising the detection for that problem

may not be appropriate.

P3: Let P be the set of persons in the group and p the person to whom it is asked to find similar people.

• X is the power set of P , i.e., elements of X are subsets of P .

• CX is the set of all solutions x ∈ X , i.e., all subgroups of P , containing p.

• Finally, to define a proper objective function FX , more information about the problem is required,

e.g., attributes of persons making a comparison possible or a threshold to detect whether another

person is “similar enough”. From this information, given a subgroup of persons x ∈ X , FX (x)

should return a score corresponding to a global similarity of people in x.

The concept of optimisation illustrated in Figure 2.1 can be extended by integrating inner components common

to each optimisation process, regardless of the specific technique used (heuristic or metaheuristic). The process

of optimisation is based on searching the optimal solution among feasible ones. We show that the searching

process relies on two inner components: an initial solution x0 ∈ X and an optimiser which can be assimilated

to a function O : X → X . They are both represented in Figure 2.2.

OPTIMX x ∈ CX

O : X → X

CX ⊆ X

FX : X → R

x0 ∈ X

Figure 2.2: Optimisation process (green rectangle) with two inner components: the initial solution (at the
top) and the optimiser (at the bottom).

Two main categories of techniques can be distinguished: exact algorithms where the optimal solution is guar-

anteed to be returned; and heuristic algorithms which can run in worst-case polynomial time for NP-hard

problems. The focus is made on heuristic algorithms in this chapter due to the nature of this PhD work. In

the following, we then show the two inner components are used in both heuristic and metaheuristic algorithms.

2.2.1.1 Heuristics

A heuristic algorithm can be described by the following: from an initial solution, the optimiser is called to update

the current solution until a termination condition is achieved. The last current solution is finally returned. Any

Learning vs Optimisation 10

heuristic algorithm follows this generic template, whether it be constructive or perturbative heuristics. Starting

from a non-feasible solution, a constructive heuristic consists in updating the current solution with the optimiser

until it becomes feasible (see Algorithm 2.1). The optimiser is here seen as a step to construct the solution. The

purpose of a perturbative heuristic is meanwhile to update a feasible solution with the optimiser until it reaches

a local optimum (see Algorithm 2.2). Perturbative heuristics work with the definition of a neighbourhood in the

space of solution X . The purpose of the optimiser is then to return the best solution from the neighbourhood

of the current solution.

Algorithm 2.1 Constructive heuristic

Input: CX ⊂ X
FX : X → R

Output: x ∈ CX
1: x← x0 ∈ X
2: while x /∈ CX do

3: x← O(x)

4: end while

5: return x

Algorithm 2.2 Perturbative heuristic

Input: CX ⊂ X
FX : X → R

Output: x ∈ CX
1: x← x0 ∈ CX
2: while FX (O(x)) < FX (x) do

3: x← O(x)

4: end while

5: return x

Example 2.2. In problem P1, a solution, i.e., an element of X , is a path in the road network, which can be

represented as a sequence of adjacent locations. A feasible solution, i.e., an element of CX , is a path going from

A to B.

• Constructive heuristic. The initial solution is an empty path starting from A, i.e., a sequence con-

taining only the location A. The optimiser then consists in adding a location to the current solution. The

process ends when the last location added is B.

• Perturbative heuristic. The initial solution is a path going from A to B. The action of the optimiser can

then be to replace a sub-path of the solution by another pass with the same starting and ending locations.

This is done until a local optimum is reached, i.e., there is no possibility to replace a sub-path by improving

the solution.

2.2.1.2 Metaheuristics

The process of metaheuristics is based on perturbative heuristics using a stochastic optimiser. The purpose

is to introduce a balance between exploitation and exploration. The exploration consists in not following

the optimiser of a perturbative heuristic, in order to avoid being stuck in a local optimum. Because of the

exploration, the termination condition must be different. Usually, a convergence condition is used.

There are different ways to classify metaheuristics. One of them is to distinguish the ones dealing with a

single solution at each iteration and ones working with a population of solutions. In case of population-based

metaheuristics, the optimiser has to update a set of solutions instead of a single one. More generally, the

optimiser can be represented by O : X a → X b, where a = b = 1 in the metaheuristic is single-solution based.

For instance, in a Genetic Algorithm (GA), the optimiser comprises all of operations to update a population of

individuals from a generation to another one.

Learning vs Optimisation 11

2.2.2 Learning

As with optimisation, we start by describing the concept of learning by the format of its inputs and output. An

high-level overview of a learning process if schematised in Figure 2.3. Given a problem to solve, as opposed to

optimisation, using learning does not consist in returning the solution to the problem. The purpose is to learn

a task which can be described by a space of features F and a space of solutions X . The task therefore consists

in finding a solution according to some features. As for optimisation, a high-level overview of the concept of

learning is schematised in Figure 2.3 where we define a learning process by the format of its inputs and output.

• Inputs. A learning process is based on a training data, i.e., a sample of features VF and a sample of

corresponding solutions VX . This training data provides an initial mapping from F to X .

• Output. From the initial mapping provided by the training data, the learning process aims at building

a complete mapping L : F → X in order to find a solution from any element of F .

LEARNF,X

VF ∈ Fn

VX ∈ Xn

L : F → X

Figure 2.3: Input and output of the process of learning to map an element of F to an element of X .

Example 2.3. The following introduces possible models for the learning process for tackling the three illustrative

problems (see section 2.1). For each of them, the goal is to identify both spaces F and X , i.e., to define the

wanted mapping L : F → X .

P1: • F represents the set of all possible couples of locations in the road map.

• X is the set of all possible paths.

P2: • F is a set of possible pictures.

• A solution is a choice between “cat” and “dog”, i.e., X = {cat , dog}.

P3: Let P be the set of people in the group.

• Any element of P can be given as a feature, i.e., the person to whom it is asked to find similar people,

so F = P .

• The task is to map a person to a group of persons from P , so X = P(P), i.e., the power set of P.

Different ways exist to learn the solution to a problem. Learning techniques can indeed be divided into three

categories: supervised learning, unsupervised learning, reinforcement learning. While these differ in their input

required for training, we show in the following that they always follow the scheme depicted in Figure 2.3.

2.2.2.1 Supervised Learning

In Supervised Learning (SL), the training data is directly composed of elements of F and X . To each feature

given as an input is assigned a label. The purpose is thus to assign a label to unknown features. SL techniques

can still be divided into two categories according to the nature of X . Both are depicted by Figure 2.3. If Y is

discrete, the process is called classification. To each element of X must be assigned a label. Solving P2 as in

Example 2.3 is an example of classification with two labels: “dog” and “cat”. If Y is continuous, the process is

a regression.

Learning vs Optimisation 12

2.2.2.2 Unsupervised Learning

Unlike SL, Unsupervised Learning (UL) does not directly take as an input elements of X . The input data is

said unlabelled. So X ∈ Xn is not directly given as an input. The main purpose of UL is not to label data but

to gather data into clusters. The latter can represent a high correlation or similarity between elements of F . If
the process takes VF ∈ Fn as an input, to each feature f ∈ F must be assigned a subset of VF corresponding to

the elements in the cluster of f . Hence, X ≡ P (VF) in Figure 2.3. Since an UL algorithm only needs VF ∈ Fn

as an input, a vector of solutions V must be generated in an initialisation phase as shown in Figure 2.4. There

are two main approaches for clustering algorithms. Let VF = {f1, · · · , fn} be the input data.

• V = {{f1}, {f2}, · · · , {fn}}
At initialisation, each element is in its own single-element cluster. The purpose of the algorithm is then

to merge clusters until a certain termination condition is met.

• V = {VF , VF , · · · , VF}
At initialisation, there is only one single cluster containing every element. The purpose of the algorithm

is then to split in different clusters until a certain termination condition is met.

LEARNF,P(VF)

V ∈ P(VF)n
L : F → P(VF)

initialisation

VF ∈ Fn

Figure 2.4: In unsupervised learning, an initial vector of solutions V is obtained from the input data during
an initialisation phase.

2.2.2.3 Reinforcement Learning

Reinforcement Learning (RL) involves an agent evolving in a certain environment. The environment is described

by a set of states S, and the agent has at its disposal a set of actions A. At each iteration, the agent chooses

an action from a certain state according to a policy. For each action chosen, the state of the environment

is updated and a reward is produced. The agent then processes that reward to improve its policy, i.e., next

actions chosen will provide better rewards (see Figure 2.5).

policy

actionstate

reward

AGENT

ENVIRONMENT

Figure 2.5: Reinforcement learning makes an agent evolve in an environment by following the policy to learn.

Learning vs Optimisation 13

The purpose of RL is to learn a policy which can be represented by a function Π : S → A, which is the output

of a learning algorithm according to Figure 2.3 with F ≡ S and X ≡ A. For the input, a RL algorithm does

not require a sample of states and a sample of actions, but the definition of an environment and an agent. The

interaction of the agent with the environment however produces a vector of actions chosen by the agent and a

vector of states from which actions have been chosen (see Figure 2.6). This set of states and actions are used

in the RL process in order to return a policy.

LEARNS,A

VS ∈ Sn

VA ∈ An

Π : S → A
Environment

Agent

episodes

Figure 2.6: The elements of S and A, respectively the states and actions, are obtained during episodes
through the interaction of an RL agent with an environment. They are used as an input of the reinforcement

learning process.

2.2.2.4 Optimisation component

Let F and X represent a task to learn, i.e., the purpose is to return a mapping from F to X . Given samples of

F and X , the learning process to return a function L : F → X is driven by an optimisation process, as shown

in Figure 2.7. Let L be the set of all possible function going from F to X . Therefore, the output of the learning
process, i.e., L : F → X ∈ L, can be considered as the output of an optimisation process over L.

OPTIML

CL ⊆ L

FL : L → R
L : F → X ∈ CL

LEARNF,X
VF ∈ Fn

VX ∈ Xn

Figure 2.7: Optimisation component within the process of learning.

It is necessary to define a feasible solutions space CL and an objective function FL for the inner optimisation

process. The space of feasible solutions corresponds to all the functions that can be obtained according to its

structure. This depends on the algorithm used. For instance, in the case of a neural network, its architecture

defines the space of feasible functions. The objective function depends on the technique used, i.e., supervised,

unsupervised or reinforcement learning.

• SL: The purpose is to find a function L : F → X so that the distance between VX and L(VF) ≡
{L(f)}f∈VF

is minimised, i.e., the function well predicts the label of elements of F . Given a distance

d : Xn ×Xn → R,
L = argmin

L′∈CL

FL(L
′) = argmin

L′∈CL

d(L′(VF), VX) (2.1)

Learning vs Optimisation 14

• UL: The quality of the returned function L : F → P (VF) is evaluated by the similarity of elements within

each cluster L(f), with f ∈ VF . Given a similarity score s : P (F)→ R,

L = argmin
L′∈CL

FL(L
′) = argmin

L′∈CL

∑
f∈VF

s(L′(f)) (2.2)

• RL: For each action a ∈ A taken from state s ∈ S, a reward is computed. The purpose is to find a policy

L : S → A so that the total reward is maximised. Given a reward function r : S ×A → R,

L = argmax
L′∈CL

FL(L
′) = argmax

L′∈CL

∑
s∈VS

r(s, L′(s)) (2.3)

2.3 Hybridisation

The design of an optimisation or learning process relies on empirical choices, e.g., a parameterisation, the

definition of an optimiser, the architecture of a neural network. Some works then aim at improving the efficiency

of an optimisation/learning algorithm by removing this empirical aspect with an automation process. The idea

is to use another level, referred to as the high level, of optimisation/learning from which results an element

used by the main optimisation/learning process, referred to as the low level. We refer to this methodology

as hybridisation. The four possible hybridisations are shown in Table 2.1. The column and row headers

give respectively the high-level and low-level processes. For instance, a learning-to-optimise technique uses

optimisation as at the low level and learning at the high level.

high level
Optimisation Learning

low level

Optimisation Optimise Optimisation (2.3.1) Learning to Optimise (2.3.2)

Learning Optimise Learning (2.3.3) Learning to Learn (2.3.4)

Table 2.1: Different possible hybridisations with learning and optimisation.

When optimisation is used at the low level (first row in Table 2.1), the high-level algorithm can be used for

the definition of the optimiser, the generation of initial solutions or the definition of the objective function (all

components are displayed in Figure 2.2).

Since a learning algorithm relies on an inner optimisation process (see Section 2.2.2.4), the high-level algorithm

usually occurs there when learning is used at the low level (second row in Table 2.1). All components from

optimisation can be targetted by the high-level algorithm.

When optimisation is used at the high level (first column in Table 2.1), the solution returned is directly used

as an input of the low-level algorithm.

When learning is the high-level algorithm (second column in Table 2.1), the returned function can be directly

used as a component of the low-level process. That function can also be called to return an element used within

the low-level algorithm.

The remainder of this chapter consists in presenting the four possible hybridisations (presented in Table 2.1)using

the formalism presented in the previous chapter. The objective is to provide a better understanding of how

both layers of optimisation/learning interact.

Learning vs Optimisation 15

2.3.1 Optimise Optimisation

Two main techniques aim at optimising another optimisation process. The high-level algorithm can be used to

generate good initial solutions for the low-level one (see Section 2.3.1.1), or to optimise the parameterisation of

the optimiser at the low level (see Section 2.3.1.2).

2.3.1.1 Generation of initial solutions

The first way to improve an optimisation algorithm is to start with better initial solutions (see Figure 2.8). This

choice is decisive for the local optimum to which the algorithm will converge. For that purpose, a high-level

optimisation process (green box on the left) can produce one or several solutions which are used as initial

solution(s) for the low-level optimisation process (green box on the right). In that case, both optimisation

algorithm work over the same space X . They also share the space of feasible solutions CX and objective

function FX .

OPTIMX

CX ⊆ X

FX : X → R
x0 ∈ CX

OPTIMX x ∈ CX

CX ⊆ X

FX : X → R

x0 ∈ X

Figure 2.8: Using optimisation to obtain the initial solutions of another optimisation process.

When a perturbative heuristic is used at the low level, the initial solution must be feasible, i.e., x0 ∈ CX . It can

therefore be obtained by a first constructive heuristic. Likewise, in case of a population-based metaheuristic,

the first individuals can be populated by solutions obtained with heuristics beforehand.

2.3.1.2 Hyper-parameterisation

Another way to improve an optimisation process is to find an optimal parameterisation for the optimiser

(see Figure 2.9). This technique is referred to as hyper-parameterisation. Let P be the set of all possible

parameterisations for the optimiser of the low-level optimisation (green box on the right). The latter can then

be seen as a function O : X × P → X . Consequently, the high-level algorithm (green box on the left) aims

at optimising over P, so that the element returned is the parameterisation used by the optimiser at the low

level. The optimisation over P then requires a definition of constraints CP and of an objective function FP .

The constraints could be simply bounds to the values of parameters. Given a parameterisation p ∈ P, the
objective value FP(p) is computed by applying the low-level optimisation process on different instances, i.e.,

over different spaces X , using the parameterisation p.

FP(p) =
∑
X

FX

(
OPTIMX (CX , FX , p)

)
(2.4)

where OPTIMX (CX , FX , p) is the solution provided by the low-level optimisation process over X by using p.

For instance, Stolfi et al. [2020] designed a coevolutionary algorithm to optimise the coverage of an area with

a swarm of Unmanned Aerial Vehicles (UAVs), which can be assimilated to the low-level optimisation process.

That algorithm is based on repulsive pheromone that UAVs drop on their way, and relies on three parameters:

the amount of pheromone left by each vehicle (τa ∈ [0.0, 1.0]); the radius of the area around the vehicle on which

Learning vs Optimisation 16

OPTIMX x ∈ CX

O : X × P → X

CX ⊆ X

FX : X → R

p ∈ CPOPTIMP

CP ⊆ P

FP : P → R

Figure 2.9: Using optimisation to obtain a parameterisation for the optimiser of another optimisation process.

the pheromone are dropped (τr ∈ [0.5, 2.5]); the distance from which UAVs can detect pheromone (τd ∈ [1, 10]).

The authors use a Genetic Algorithm (GA) to find the optimal value for τa, τr and τd, which is the high-level

optimisation algorithm. In that case, a tuple (τa, τr, τd) is an element of P ≡ R2 × Z, and the space of feasible

solutions is depicted by the bounds for each parameter, hence CP ≡ [0.0, 1.0]× [0.5, 2.5]× [1, 10].

2.3.2 Learning to Optimise

The vast majority of techniques using a high-level learning process for a low-level optimisation algorithm can

be split into two categories. Learning can first be used to approximate the objective function of the low-level

optimisation process (see Section 2.3.2.1). On the other hand, learning can also be applied to the optimiser

at the low level (see Section 2.3.2.2). A state of the art of works using “machine learning at the service of

metaheuristics” is provided by Karimi-Mamaghan et al. [2022]. Most of the works presented there can thus be

assimilated to the formalism presented in this section.

2.3.2.1 Approximation of the objective function

One way to use learning to improve an optimisation process is to approximate the objective function (see

Figure 2.10). In some case, the latter can indeed be time-consuming to evaluate on a solution. Where ap-

propriate, the objective function can be replaced by the function returned by a learning process. Since that

function must map a solution, i.e., an element from X , to a real value, a regression algorithm must be used

(see Section 2.2.2.1). It needs as an input a sample of solutions VX and a real-value vector VR.

OPTIMX

CX ⊆ X

FX : X → R
x ∈ CX

LEARNX ,R

VX ∈ Xn

VR ∈ Rn

Figure 2.10: Using learning to approximate the objective function of an optimisation process.

Consider an optimisation process over a space X with FX as an objective function, and FX (x) costly to evaluate

for a solution x ∈ X . The idea is to provide a relatively small amount of evaluations as an input of a regression

algorithm. The latter high-level process then requires a sample of solutions, noted VX , on which the evaluation

has been done, and VR ≡ {FX (x)}x∈VX
. That regression algorithm returns a mapping L : X → R which can

be used as the objective function of the low-level optimisation process. As an example, Zheng et al. [2019] use

high-level random forests as surrogates to approximate multi-objective evaluation functions.

Learning vs Optimisation 17

2.3.2.2 Improvement of the optimiser

Learning can also be aplied to improve the optimiser of an optimisation process (see Figure 2.11). The term

“hyper-heuristic” is used to describe these techniques. In that case, the optimiser requires an additional element

to obtain the next solution. This element is obtained from the current solution by calling the function returned

by the high-level learning process. Let Y be the set of additional elements for the optimiser. The latter is then

defined by O : X × Y → X . Given a current solution x ∈ X , the next solution in the optimisation process is

given by O(x, L(x)) where L : X → Y is the function returned by the learning process.

OPTIMX x ∈ CX

O : X × Y → X

CX ⊆ X

FX : X → R

LEARNX ,Y

VX ∈ Xn

VY ∈ Yn

L : X → Y

Figure 2.11: Using learning to improve the optimiser of an optimisation process.

Let a constructive heuristic be the optimisation process to tackle problem P1. A solution, i.e., an element of X ,
is a path which is feasible if it goes from A to B. The constructive heuristic, starting from the initial solution

x0 = [A] (a sequence containing only location A), then consists in adding a location to the current solution

until B is added. A learning algorithm can be used to help the optimiser to choose the location to add into the

current solution. For that purpose, the learning process is designed to return a mapping L : X → Y where Y is

the set of all locations. Given a current solution x = [A, · · ·] ∈ X , calling L(x) then returns the new location to

add into x. The new solution x′ = O(x, L(x)) = [A, · · · , L(x)] ∈ X is thus obtained. In a previous work, we use

this principle to generate heuristics for the Travelling Salesman Problem (TSP) [Duflo et al., 2019a]. The idea,

common to other such works, is to assimilate a heuristic to its optimiser and therefore the function L which is

returned by the high-level learning process. The search space of the high-level algorithm then becomes a space

of heuristics.

2.3.3 Optimise Learning

Techniques aiming at optimising a learning algorithm mainly consists in applying optimisation to the inner

optimisation component of the low-level learning process. Similarly to the optimise-optimisation technique

described in Section 2.3.1.2, a hyper-parameterisation can occur within the inner optimisation component (see

Section 2.3.3.1). On the other hand, the high-level optimisation process can be used to define the constraint of

the search space within the low-level learning algorithm (see Section 2.3.3.2).

2.3.3.1 Hyper-parameterisation

One way to apply optimisation on a learning process is to search for a parameterisation for the optimiser of

the inner optimisation process (see Figure 2.12). Since L is the space of all function mapping an element of

F to an element of X , the inner optimiser can be regarded as a function O : L → L. Similarly to what we

presented in Section 2.3.1.2, with P the set of all parameterisations for that optimiser, the latter can be seen as

O : L×P → L. The parameterisation p ∈ P chosen then results from a high-level optimisation process over P.

For instance, if a learning algorithm is based on a neural network representing the function mapping an element

of F to an element of X , the purpose of the inner optimisation process is to find the optimal weights within

Learning vs Optimisation 18

LEARNF,X

CL ⊆ L

FL : L → R

p ∈ CP

OPTIML L : F → X ∈ CL

O : L × P → LOPTIMP

CP ⊆ P

FP : P → R

VX ∈ Xn

VF ∈ Fn

Figure 2.12: Using optimisation to obtain a parameterisation for the optimiser of the inner optimisation
component of a learning process.

the neural network. In that case, the optimiser is the technique used to update those weights, e.g., a Stochastic

Gradient Descent (SGD). In that case, the value of the learning rate in the SGD can be obtained with a

high-level optimisation process over P where P is the domain of values for the learning rate.

2.3.3.2 Constraint of the search space

Optimisation can also be used to define the constraints of the inner optimisation process (see Figure 2.13). In

that case, the high-level optimisation process must return a subset of L, hence its definition over P(L), the
power set of L. The objective function at the high level then evaluates the quality of the function returned by

the low-level learning process.

FP(L)(c) = FL

(
OPTIML(c, FL)

)
(2.5)

where OPTIML (c, FL) is the function obtained by the low-level learning process where c describes the space of

functions obtainable.

OPTIML

CL ⊆ L

FL : L → R
L : F → X ∈ CL

LEARNF,X
VF ∈ Fn

VX ∈ Xn

OPTIMP(L)

CP(L) ⊆ P(L)

FP(L) : P(L) → R

Figure 2.13: Using optimisation for constraining the inner optimisation component of a learning process.

For instance, if a learning process is based on a Neural Network (NN), an element of L is defined by the

topology of the NN. Constraining the search space L usually happens with an hyper-parameterisation where

hyper-parameters define the topology of the NN, for instance the number of hidden layers and neurons per

layer. This approach is proposed by Qolomany et al. [2017] where they used Particle Swarm Optimisation

(PSO) at the high level. In that case, the space of feasible solutions at the high level (CP(L) in Figure 2.13)

can be depicted by bounds to both variables. Moreover, given a number of layers and neurons per layer, the

objective function (FP(L) in Figure 2.13) evaluates the accuracy of the low-level learning process by using the

NN with the specified number of layers and neurons per layer.

2.3.4 Learning to Learn

Using learning to improve another learning process is referred to as meta-learning. Existing techniques are

surveyed by Vanschoren [2019] and can then be described by the formalism presented in this section. It mainly

consists in initialising a model by another one according to the similarity between both tasks (see Figure 2.14).

Learning vs Optimisation 19

L′ : L → L

OPTIML L : F → X ∈ CL

CL ⊆ L

FL : L → R

L0 ∈ L

VF ∈ Fn

VX ∈ Xn

LEARNL,L

VL ∈ Ln

V ′
L ∈ Ln

LEARNF,X

Figure 2.14: Using a learning process for initialising another learning process.

The high-level learning algorithm (blue box on the left) is designed to map a learning model to another one.

The returned function is then called to initialised the low-level learning process (blue box on the right).

Learning processes operating for different tasks can rely on a Neural Network (NN) with a same architecture.

An element of L then corresponds to an assignment to the weights of that NN. Given a learning algorithm based

on a similar NN, the idea is to relate the corresponding task to previous ones. A task is therefore equivalent to

an element of L, as a result of the corresponding learning process. A clustering algorithm (see Section 2.2.2.2)

can be used for that purpose. It will return a function L′ : L → P(L), which can be called on the new task

and therefore returns a set of tasks. Among them, one can be chosen to initialise the weights of the NN, or an

average of weights can be done, which produces L0 ∈ L.

2.4 Conclusion

In this chapter, a formal representation of the optimisation and learning processes has been introduced. It has

been shown that this formalisation is independent of the specific optimisation or learning technique used. We

first defined these two concepts with the format of their inputs and output. Given a problem to solve and a

space of solutions, using an optimisation process will directly return a feasible solution according to a space of

feasible solutions and an objective function. On the other hand, a learning process will return a function which

aims at mapping a space of features to the space of solutions. To solve the problem, the function must then

be called on the feature which can be assimilated to the instance of the problem to get a solution. The process

of learning is based on a training data, i.e., a sample of features and a sample of corresponding solutions. We

then identified inner components for both optimisation and learning processes. We show that any optimisation

algorithm is based on the definition of one or several initial solutions and an optimiser aiming at mapping one

or several solutions to another one(s). A learning process is meanwhile driven by an entire optimisation process.

In the second part of this chapter, we explored different hybridisation techniques permitting to combine opti-

misation and learning at different levels. The purpose is to use a process of optimisation/learning (at the high

level) to improve the efficiency of another process of optimisation/learning (at the low level). The identification

of inner components made in the first part of this chapter becomes useful to determine which components of

the low-level process are involved according to the hybrid technique.

• When the low-level process is optimisation, the helper process mainly happens within its optimiser compo-

nent. It comes to hyper-parameterisation or hyper-heuristics when the high-level process is optimisation

or learning respectively.

• Since a learning process incorporates an optimisation component, the latter is usually involved when

learning is used as low-level process. Another level of learning can be used to initialise the model according

to similarities with previous models, while an optimisation process can help defining the searching space

of functions.

Learning vs Optimisation 20

This work consists in using reinforcement learning for generating heuristics for an optimisation problem. It

thus falls within the area of learning to optimise (Figure 2.11), and more particularly within hyper-heuristics.

The next chapter then provides a state of the art of hyper-heuristics, with a special focus on techniques based

on reinforcement learning.

Chapter 3

Hyper-Heuristics and Reinforcement

Learning

Contents

3.1 Introduction . 21

3.2 Hyper-heuristics . 21

3.2.1 Selective approaches . 23

3.2.2 Generative approaches . 23

3.3 Hyper-Heuristics based on Reinforcement Learning 24

3.3.1 Selective approaches . 24

3.3.2 Generative approaches . 25

3.4 Conclusion . 26

3.1 Introduction

This PhD work takes place in the context of “learning to optimise”, and specifically hyper-heuristics which can

be equated to the category of applying a learning process to improve the optimiser of an optimisation process

(see Section 2.3.2.2 in Chapter 2). A first presentation of hyper-heuristics is provided in Section 3.2 along with

a state of the art. In our case, we use Reinforcement Learning (RL) as a learning process. A particular focus

is given to techniques relying on RL. A detailed state of the art is then provided in Section 3.3.

3.2 Hyper-heuristics

A hyper-heuristic consists in an algorithm performing a searching process in a space of heuristics. Initially

described by Cowling et al. [2001] as a “heuristic to choose a heuristic”, the purpose was to select the right

heuristic to execute on a given instance. The idea is to overcome the limitation of the No Free Lunch Theorem

(NFLT) stating that “if an algorithm performs well on a certain class of problems then it necessarily pays for

that with degraded performance on the set of all remaining problems” [Wolpert and Macready, 1997]. If one

heuristic cannot perform well on every instance, one can choose which one to apply among a set of predefined

21

Hyper-Heuristics and Reinforcement Learning 22

heuristics. Such hyper-heuristics correspond to selective approaches (detailed in Section 3.2.1). They are to

be put in perspective with generative approaches (detailed in Section 3.2.2). Heuristic generation was more

recently introduced as a technique that does not rely on a pre-existing set of heuristics to be designed. Instead

of providing predefined heuristics, the user provides components of the problem that the hyper-heuristic uses to

build a new heuristic. These techniques have the advantage of covering a wider space of heuristics by reducing

the limitation of human imagination. Heuristic selection and heuristic generation constitute the main two

categories of hyper-heuristics. However, a more detailed classification has been proposed by Burke et al. [2013]

and is depicted in Figure 3.1.

Feedback Heuristic search space

Online learning High level Low level

Offline learning Heuristic selection Constructive heuristic

No learning

Hyper-
heuristic

Heuristic generation Perturbative heuristic

Figure 3.1: Classification of hyper-heuristics proposed by Burke et al. [2013]

The heuristic search space is divided into two levels: the high-level algorithm performing the search process,

and the nature of the low-level heuristics.

High level The high-level algorithm performing the search process is categorised as a heuristic selection or

a heuristic generation. That category determines the format of the search space. In selective approaches,

the space is composed of pre-existing heuristics. In generative approaches on the other hand, a template of

heuristics is defined and comprises a dynamic part defining the search space.

Low level Hyper-heuristics are also distinguished whether the search space contains constructive or pertur-

bative heuristics. Both types of heuristic are defined and categorised in Section 2.2.1.1 in Chapter 2. There

we provide a generic description of constructive and perturbative heuristics based on an optimiser, respectively

in Algorithms 2.1 and 2.2. That optimiser constitutes the dynamic part within the template of heuristics in

generative hyper-heuristics.

Feedback Independently of the heuristic search space, hyper-heuristics are also divided according to the

nature of their feedback. The feedback is the information that the high-level algorithm gets from the space

of low-level heuristics and which is used for the searching process. An online learning means that it takes

place while the hyper-heuristic is executed on instances of a problem. RL is mainly used for that purpose. A

hyper-heuristic using an offline learning performs the searching process beforehand. A set of training instances

must be provided in order to select or generate a heuristic which can then be executed on future instances. In

that case, a Genetic Algorithm (GA) or Genetic Programming (GP) is often used at the high-level. The hyper-

heuristic can also use no feedback if the high-level algorithm is simply a heuristic (instead of a metaheuristic

or a machine learning algorithm).

In the remainder of this section, a state of the art of hyper-heuristics is presented. A distinction is made

between selective and generative approaches. Techniques based on RL are omitted in this section, since there

is an emphasis on hyper-heuristics based on RL presented in Section 3.3.

Hyper-Heuristics and Reinforcement Learning 23

3.2.1 Selective approaches

Most of hyper-heuristics in the literature are based on selective approaches. It can be explained by the fact that

they were the first introduced [Cowling et al., 2001] and they are simpler to design than generative approaches.

Considering an optimisation problem with several (meta)heuristics already existing to tackle it, there are high

chances that a selective hyper-heuristic using that pool of low-level heuristics will have better performance than

executing one of them only.

Recent works using selective approaches do not simply select one low-level heuristic among the provided pool,

but try to combine them. In that case, an Evolutionary Algorithm (EA) is used where each individual’s

chromosome represents a sequence of heuristics to apply. For each individual, the fitness is computed by

applying the sequence of heuristics to a set of training instances and summing the objective values obtained.

Lin et al. [2020] use that principle to tackle the Multi-Skill Resource Constrained Project Scheduling Problem

(MS-RCPSP). They provided ten low-level perturbative heuristics that each GP individual combine within a

tree representation. In [Hao et al., 2021], authors propose a framework of hyper-heuristics for tackling multiple

optimisation problems by using a high-level Evolutionary Multitasking Algorithm (EMA). Each individual’s

chromosome is a sequence of heuristics which is executed on different tasks, i.e., to tackle different graph-based

problems. Elaziz et al. [2020] focus on the problem of finding thresholds in an image segmentation. The authors

utilise several existing metaheuristics which are combined by individuals within a EA population.

3.2.2 Generative approaches

In generative hyper-heuristics, defining the space of low-level heuristics is a harder task than in selective hyper-

heuristics. Given an optimisation problem to tackle, the main way to define the space of low-level heuristics is

to extract the information common to several heuristics and to make it a template of heuristics. The dynamic

part of such a template represents the searching space. For instance, the most common way of addressing it

is to make a template of greedy heuristics (constructive heuristics then) where the dynamic part is a scoring

function. A Genetic Programming (GP) algorithm is then a straightforward approach to use at the high-level

since the tree structure of individuals then represents a function [Burke et al., 2009].

In some previous work, we used that principle to design a hyper-heuristic based on GP to generate constructive

heuristics for the Travelling Salesman Problem (TSP) [Duflo et al., 2019a]. The low-level heuristics consist

in greedy ones where nodes are added into the solution at each iteration. The choice of nodes is based on

the ranking induced by the scoring function to learn. In [Kieffer et al., 2020], the authors deal with the Bi-

level Cloud Pricing Optimisation Problem (BCPOP). They use a GP hyper-heuristic to generate constructive

heuristics for low-level instances of BCPOP. The low-level greedy heuristics start by selecting all bundles of

the instance, and remove one item at each iteration according to the scoring function. Guizzo et al. [2020]

designed a hyper-heuristic based on Grammatical Evolution (GE) to generate a mutant reduction strategy.

Each individual has a genotype which is a sequence of rules from the grammar. It is then translated into a

tree-structure phenotype which represent the mutant reduction strategy.

Even though most generative hyper-heuristics relying on an offline learning use GP as a high-level algorithm,

some works considered learning the scoring function with a neural network. Kieffer et al. [2022] designed

a hyper-heuristics to tackle the Multi-dimensional 0-1 Knapsack Problem (MKP). The authors use the tree

structure of GP individuals to represent a scoring function. In that case, the latter function evaluates the

relevance of putting a certain object into a sack. They however do not use a GP algorithm to generate the tree,

as a classical hyper-heuristic would do [Drake et al., 2014]. They indeed designed a Recurrent Neural Network

Hyper-Heuristics and Reinforcement Learning 24

(RNN) to build the tree structure depicting the scoring function. Starting from the root of the tree, each step

of the RNN returns a node from a set of operators and terminals.

3.3 Hyper-Heuristics based on Reinforcement Learning

As mentioned earlier, RL is the main technique used as a high level for hyper-heuristic relying on online learning.

RL has indeed become the most widely used heuristic selection method in recent literature. This is due to the

convenience of representing low-level heuristics as RL actions. More detail is provided in Section 3.3.1 where we

present RL-based hyper-heuristics relying on heuristic selection. It is also interesting to note that recent works

from RL community propose techniques comparable to hyper-heuristic (without mentioning it) [Mazyavkina

et al., 2021]. These works constitute most of existing usage of RL in generative approaches. We present them

in Section 3.3.2.

3.3.1 Selective approaches

The purpose of RL is to learn a policy comparable to a function Π : S → A with S the set of states and A the

set of actions (see Section 2.2.2.3). Given an optimisation problem to tackle, the basic approach when using

RL is to map the pool of existing heuristics to A. The goal of choosing an action at each RL iteration then

becomes choosing a heuristic in a selective hyper-heuristic. The RL states represent instances of the problem

in case of constructive heuristics, so that choosing an action will produce a solution for those instances, and

feasible solutions for perturbative heuristics, so that choosing an action will modify those solutions. Figure 3.2

shows the typical workflow followed by selective hyper-heuristics with perturbative low-level heuristics.

HeuristicSolution

domain barrier

STATE ACTION

execute on instanceupdate the solution

LLH1

LLH2

LLH4

LLH3

space of heuristics

space of solutions

S1

S3

S5 · · ·

S4

S2

· · ·

Figure 3.2: Overview of selective hyper-heuristics based on RL with perturbative low-level heuristics.

Hyper-Heuristics and Reinforcement Learning 25

Pylyavskyy et al. [2020] provides four perturbative heuristics to tackle the “Kiwi.com” problem. The latter

problem “seeks to find the best possible flight routes between specifically given areas in order to minimise the

travelling cost”. Their hyper-heuristic consists in giving a score to each low-level heuristic. At each iteration,

the heuristic with the best score is selected and applied on an instance so that its score is updated according

to the improvement of the result obtained with the newly obtained solution. Lassouaoui et al. [2020] designed

a hyper-heuristic with the same principle. They use a Thompson Sampling algorithm to select among six

perturbative low-level heuristics to tackle the problem of feature selection. In [Zhao et al., 2021], the authors

diversify the way to select actions, i.e., low-level heuristics. They alternate between single-point and a multi-

point search. With the single-point search, heuristics are selected one or two at a time. On the other hand,

the multi-point search employs a GA where individuals are encoded with a set of low-level heuristics. The

individual retained defines the space of low-level heuristics for the single-point search. The multi-point search

is called at initialisation and when a single-point search does not change the state of the solution in continuous

time.

The aforementioned selective approaches using RL have the drawback of not using the information of the current

solution when choosing which low-level heuristic to apply. In contrast, Zhang et al. [2022] propose a framework

of selective hyper-heuristics based on deep RL. They work with a Deep Q-Network (DQN), so the last layer

contains one neuron per action, i.e., per low-level perturbative heuristic provided. The first layer describing

the state is provided by transforming a solution into a vector. For each problem to tackle, expert knowledge

is thus required to select the feature to use to encode the state. In [Qin et al., 2021], the authors designed

a hyper-heuristic which selects a population-based metaheuristic to evolve a population of solutions for the

Heterogeneous Vehicle Routing Problem (HVRP). They use a Convolutional Neural Network (CNN) for that

purpose. The state, i.e., the input of the CNN, is a vector containing objective values of all individuals from

the current population and a matrix indicating the difference between each individuals.

3.3.2 Generative approaches

Generative approaches using RL are more recent and more scarce in the literature. There is however a classical

way to design such hyper-heuristics, especially for generating constructive heuristics (depicted in Figure 3.3).

Given an optimisation problem to tackle, a solution is constituted of components from the instance (xi in

Figure 3.3). In general, instances are represented as graphs, and a solution as a sequence/set of nodes/edges

from that graph. With such a representation, RL states can be assimilated to solutions and the set of elements

xi represents RL actions.

Solution

STATE ACTION

x2

x4

x3

instance

x5
x8

x1

x6

x7

x3

update the solution

domain barrier

x1 x6x7

x1 x6x7 x3

Figure 3.3: Overview of generative hyper-heuristics based on RL with constructive low-level heuristics.

Hyper-Heuristics and Reinforcement Learning 26

Applying the above principle on graph-based problems has recently shown a growing interest. For that purpose,

a Graph Neural Network (GNN) is used to encode the information of a graph, and consequently RL states and

actions, with state variables assigned to nodes and edges. Khalil et al. [2017] were the first developing this

idea by using their GNN named structure2vec (S2V) [Dai et al., 2016]. They thereby generate greedy heuristic

for three graph-based optimisation problems: Minimum Vertex Cover (MVC), Maximum Cut (MAXCUT)

and Travelling Salesman Problem (TSP). This work paved the way to RL generating heuristics for graph-based

problems. Kool et al. [2022] use the same idea to generate heuristics for the TSP and multiple routing problems.

They use a Graph Attention Network (GAT) [Veličković et al., 2018] as a GNN. In [Manchanda et al., 2020],

authors also tackle different graph-based problem: Maximum Coverage Problem (MCP), MVC and Influence

Maximisation (IM). Their hyper-heuristic is based on a Graph Convolutional Network (GCN) [Hamilton et al.,

2017].

Our work is also in the continuity of the research made by Khalil et al. [2017]. We extracted information from

all works made in this area and notice that there is much similarity within the structure of proposed hyper-

heuristics. We thus design a general model which can be applied on a wide range of optimisation problems

based on a graph structure. A strong point of our model is its modularity. For instance, it is not limited

to the usage of one GNN. The hyper-heuristic is designed to take any GNN in consideration. Moreover, the

hyper-heuristic also works for problems with a multi-objective aspect. We also think that a greedy heuristic

generated by such an algorithm cannot be competitive for classical combinatorial problems which have already

been fully reviewed. We thus designed our model to be applied on dynamic instances of a problem. If a problem

involves multiple agents, it also considers generating distributed heuristics. We have already applied our model

in the context of the coverage of an area by a swarm of Unmanned Aerial Vehicles (UAVs) [Duflo et al., 2020a,b,

2021, 2022a,b]. In these work, a multi-objective graph-based optimisation problem has been designed for the

coverage of a swarm of UAVs remaining connected.

3.4 Conclusion

A hyper-heuristics consists in a High-Level Algorithm (HLA) performing a searching process in a space of Low-

Level Heuristics (LLHs). The purpose is to automate the design of an algorithm to tackle a specific optimisation

problem. This automation aims at leverage the limitations stated by the No Free Lunch Theorem (NFLT).

When designing an algorithm to tackle a problem, we are indeed led by a set of known instances to solve. The

efficiency of the produced algorithm is paid by worse performance when applied on unknown instances. The

idea of hyper-heuristics is thus to extract the complex information which makes an algorithm efficient or not

on an instance.

Hyper-heuristics have been deeply surveyed by Burke et al. [2013]. The proposed classification has thereafter

been taken over by all works contributing in this area. Hyper-heuristics are classified according to the nature of

the HLA and the LLHs (see Figure 3.1). Since this PhD work is based on hyper-heuristics using Reinforcement

Learning (RL) as a HLA, we provide a special focus on the usage of RL in that area.

We show that our work goes beyond related works by filling a lack of generality. Even though most of hyper-

heuristics based on RL have a similar behaviour, they are indeed redesigned from scratch. We thus propose

a model of generic hyper-heuristic based on RL, presented in next chapter, aiming at tackling any compatible

optimisation problem with the same algorithm generation.

Part II

Learning Optimisation Algorithms over

Graphs

27

Chapter 4

Algorithm Learner for Graph

Optimisation problems (ALGO)

Contents

4.1 Introduction . 28

4.2 Low-Level Heuristics . 30

4.2.1 Description of an ALGO-Friendly Optimisation Problem (AFOP) 31

4.2.2 Example of AFOPs . 33

4.2.3 Template of heuristics for an AFOP . 36

4.3 High-Level Algorithm . 38

4.3.1 Choosing actions . 40

4.3.2 Computing rewards . 41

4.3.3 Updating the policy . 44

4.4 How to use ALGO? . 45

4.4.1 Formal description . 45

4.4.2 Implementation . 46

4.5 Conclusion . 47

4.1 Introduction

Hyper-heuristics have been used in order to overcome the challenge for heuristics to tackle unknown instances.

That difficulty lies in the diversity of instances and the large number of parameters to set for a heuristic. Given

a problem and a set of known instances, designing an efficient algorithm to tackle known instances does not

guarantee an efficient behaviour for unknown ones. The purpose of a hyper-heuristic is therefore to extract

useful information from known instances to automate the design of a heuristic.

The design of a hyper-heuristic is based on two components: the High-Level Algorithm (HLA) and the space of

Low-Level Heuristics (LLHs), both interacting as depicted in Figure 4.1. The HLA (in blue) performs a search

process by manipulating representatives of heuristics from the space of LLHs (in green). In selective approaches,

a representative is simply a reference to a LLH. In generative approaches, they are usually scoring functions

(more details are provided in the state of the art in Section 3.2.2). If GP is used as a HLA, representatives are

28

Algorithm Learner for Graph Optimisation problems (ALGO) 29

High-Level Algorithm

optimisation problem

domain barrier

search process

Low-Level Heuristics

representative

objective values

fitness

heuristic

execution on instances

Pi

H

HHi

Figure 4.1: Overview of the process of hyper-heuristics. An hyper-heuristic HHi returns a heuristic H given
an optimisation problem Pi. The space of low-level heuristics of HHi must be defined according to Pi.

trees. If RL is the HLA, a representative can be a Q-table or a neural network. Each representative is given

a fitness by applying the corresponding heuristic on instances from the problem to tackle. The HLA finally

returns a representative, i.e., a heuristic.

Let Pi be an optimisation problem and HHi a hyper-heuristic to tackle it. It is not possible to use HHi on a

new problem Pj. Indeed while the HLA of HHi can remain unchanged as it is problem (over the domain barrier

in Figure 4.1), the space of LLHs must be redefined. This thus leads to a new hyper-heuristic HHj. In order

to alleviate this limitation, we propose Algorithm Learner for Graph Optimisation problems (ALGO), a novel

framework that aims at standardising the design of hyper-heuristics so that the same algorithm can be used to

generate a heuristic for any given problem (see Figure 4.2).

HH1

HH2

HHi

ALGO
...

P1 H

Pi

P2 H

H

...

P1

H

Pi

P2

Figure 4.2: On the left side, for each problem Pi, a hyper-heuristic HHi must be defined to generate a
heuristic H. On the right side, ALGO does not need to be redefined to tackle different problems.

In ALGO, each problem is initially expressed as a generic optimisation problem, so called a ALGO-Friendly

Optimisation Problem (AFOP), via an overriding process (see Figure 4.3). A single hyper-heuristic can then

be defined for tackling an AFOP. The overriding process consists in implementing any compatible problem as

an AFOP. That process is wanted to be convenient an intuitive. A strength of ALGO relies on the fact that

expressing a new problem as an AFOP is easier than redefining a new space of LLHs.

Algorithm Learner for Graph Optimisation problems (ALGO) 30

High-Level Algorithm

AFOP

domain barrier

search process

Low-Level Heuristics

representative

objective values

fitness

heuristic

execution on instances

H

ALGO

overriding
process

P1

P2

Pi

Figure 4.3: Overview of the process of ALGO. The space of low-level heuristics is defined for a generic AFOP.
An overriding process is used in order to implement any compatible problem as an AFOP.

The hyper-heuristic structure in ALGO (right part of Figure 4.3) is overviewed in Figure 4.4. ALGO uses RL

as a HLA. Since it is independent of the problem, the top part of Figure 4.4 is identical to Figure 2.5, i.e., it

represents the workflow of a classical RL algorithm. On the other side of the domain barrier, LLHs are defined

for an abstract AFOP. The latter problem is based on a graph structure in order to make this abstraction

possible (more details are provided in Section 4.2.1 where an AFOP is defined). The purpose of RL being to

learn a policy determining which action to choose from a given state, it is transformed into choosing which node

to add into a current solution. Given a graph representing an AFOP instance, the greedy heuristics (bottom

part of Figure 4.4) consist in iteratively adding nodes into a solution. For each solution (red nodes), a node is

chosen according to a scoring function (green bars).

The remainder of this chapter details the functioning of ALGO. The low-level aspect is first detailed in Sec-

tion 4.2. We define there an AFOP, how to model a problem as an AFOP, and how to design a heuristic for

such an abstract problem. The high-level part is explained in Section 4.3.

4.2 Low-Level Heuristics

This section describes the search space of low-level heuristics in ALGO. In a traditional hyper-heuristic, the

space of low-level heuristics is defined for a specific optimisation problem. The hyper-heuristic design process

then requires to define a template of low-level heuristics tackling the wanted problem. The learning process

thus occurs on the dynamic part of this template. In ALGO the input problem can be any AFOP, the latter

class of problems must thus first be defined, as detailed in Section 4.2.1. Some classical optimisation problems

are modelled as AFOPs in Section 4.2.2. Finally, a generic template of low-level heuristics for tackling a generic

AFOP is described in Section 4.2.3.

Algorithm Learner for Graph Optimisation problems (ALGO) 31

HIGH-LEVEL ALGORITHM

LOW-LEVEL HEURISTICS

AGENT

policy

actionstate

reward

ENVIRONMENT

heuristic

domain barrier

AFOP instance

solution node

Figure 4.4: Workflow of ALGO for the high-level algorithm and the low-level heuristics.

4.2.1 Description of an ALGO-Friendly Optimisation Problem (AFOP)

An AFOP is an optimisation problem with one or more minimisation objectives O. It is subject to a set of

constraints C. An AFOP can then be described by the following mathematical program:

(AFOP)

Minimise fo(S) ∀o ∈ O

subject to fc(S) ≤ bc ∀c ∈ C

S ∈ XI

(4.1)

where XI is the domain of solutions S for an instance I.

Definition 4.1. Let G(N,E) be a graph (where N is the set of nodes and E the set of edges) and A a set of

agents. An AFOP is an optimisation problem where any solution S (feasible or not) can be expressed as:

S =
{
(ai1 , nj1)t1 , · · · , (aik , njk)tk , · · ·

}
(4.2)

where aik ∈ A, njk ∈ N and tk ∈ R+, ∀k ≥ 1.

Algorithm Learner for Graph Optimisation problems (ALGO) 32

In other terms, a solution must be describable as a sequence of nodes per agent. Each element of such a solution

is a tuple (a, n)t ∈ A × N × R+ meaning that the agent a added the node n into the solution at the time t.

Since a solution is a set, there is no restriction about different elements sharing the same agent, node or time,

but two identical tuples (same agent, node and time) cannot be found in an AFOP solution.

An instance of an AFOP is thus defined by G(N,E) and A. Let I =
(
G(N,E), A

)
be an AFOP instance, then SI

refers to the set of all possible solutions obtainable from I. The domain of solutions XI mentioned in (4.1) is a

subset of SI and defines the search space of solutions. Consequently, any tuple (a, n)t ∈ A×N ×R+ cannot be

added into a solution. For each specific AFOP the function f : XI → R|O|+|C| must also be defined to provide a

value for every objective and constraint, along with the vector b ∈ R|C| giving the upper bounds in constraints.

Implementation We present here a object-oriented-like syntax included in the implementation of ALGO.

It provides attributes and methods to elements involved in an AFOP, i.e., nodes, edges, agents and solutions.

It must be noted that when using ALGO it is possible to add problem-specific attributes. Those presented

below are available with the creation of an AFOP. These attributes and methods can be used for any operation

involving an AFOP, e.g., computing the objective value of a solution, determining which nodes an agent can

add into a solution, and so on.

An AFOP instance is created from an adjacency matrix and the initial positions of agents (if necessary). Let

I =
(
G(N,E), A

)
be an AFOP instance. Then, ∀n ∈ N , ∀e ∈ E, ∀a ∈ A, the following methods and attributes

allow to describe I.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n.neighbours() := {n′ | (n;n′) ∈ E} ⊆ N

e.n1 ∈ N first node of edge e (base of the arrow if the graph is directed)

e.n2 ∈ N second node of edge e (head of the arrow if the graph is directed)

e.w ∈ R weight on edge e (1 if the graph is non-weighted)

a.first ∈ N initial position of agent a (NULL if none is given)

(4.3)

Thanks to its representation given in (4.2), a solution S ∈ SI can be filtered according to agents, nodes and

times. It can be useful for operations involving a solution, e.g., computing its objective value or verifying

whether it is feasible.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S.get agents() := {a | ∃n,∃t, (a, n)t ∈ S} ⊆ A

S.get nodes() := {n | ∃a,∃t, (a, n)t ∈ S} ⊆ N

S.get times() := {t | ∃a,∃n, (a, n)t ∈ S} ⊂ R+

S.filter agents(A′) := {(a, n)t | (a, n)t ∈ S, a ∈ A′} ∈ SI with A′ ⊂ A

S.filter nodes(N ′) := {(a, n)t | (a, n)t ∈ S, n ∈ N ′} ∈ SI with N ′ ⊂ N

S.filter times(t′) := {(a, n)t | (a, n)t ∈ S, t ≤ t′} ∈ SI with t′ ∈ R+

(4.4)

The first three filters, i.e., S.get agents(), S.get nodes(), S.get times(), consist in extracting respectively agents

involved in S, nodes which have been added into S, times at which node have been added. The last three

methods are used to filter elements from S according to the given set of agents, node or the given time. Since

they return an element of SI , they can be chained in order to combine filters.

• S.filter agents(A′) returns elements from S where an agent from A′ is involved. It can be useful to know

every node added by a specific agent.

Algorithm Learner for Graph Optimisation problems (ALGO) 33

• S.filter nodes(N ′) returns elements from S corresponding to a node from N ′. It can be used to know

when a specific node has been added.

• S.filter times(t′) returns elements from S which have been added before the time t′. It can be called to

know the state of a solution at a certain time.

4.2.2 Example of AFOPs

This section presents four standard optimisation problems modelled as AFOPs: the Travelling Salesman Prob-

lem (TSP); the Vehicle Routing Problem (VRP); the Minimum Vertex Cover Problem (MVCP); the Optimal

Job Scheduling Problem (OJSP). To model a problem as an AFOP, an instance I of that problem must be

defined as a graph G(N,E) and a set of agents A. A solution S must moreover be represented as in Equation 4.2,

i.e., S ∈ SI (see Definition 4.1). In the remainder of this section, we provide such a definition of instances and

representation of solutions for each of the four aforementioned problems.

4.2.2.1 Travelling Salesman Problem

Given a set of locations, the TSP consists in finding the shortest way to visit all of them and come back to the

initial location. It can be assimilated to finding the shortest Hamiltonian cycle in a complete weighted graph.

For the Symmetric TSP (STSP), the graph is undirected.

Since a TSP instance is already a graph, it can be directly assimilated to G(N,E) from an AFOP instance, with

N = {ni}1≤i≤|N | and E = {(n, n′) = (n′, n) | n ∈ N,n′ ∈ N,n ̸= n′}. A TSP solution is a path which can be

represented as a sequence of nodes. In addition, we consider only one agent for that problem, i.e., A = {a1}.
Accordingly, an AFOP solution S ∈ SI is equivalent to a sequence of nodes, ordered according to the time they

have been added into S. That sequence of nodes then represents the path of the TSP solution (the path is a

Hamiltonian cycle in case of a feasible solution).

Figure 4.5 shows a feasible TSP solution for a graph with seven nodes. The solution is represented as a selection

of edges, but is equivalent to a sequence of nodes, e.g., [n3, n4, n7, n6, n5, n2, n1, n3] if we consider n3 as the first

node. Such a solution can be assimilated to a solution S ∈ SI with the following definition.

S =
{
(a1, n3)0, (a1, n4)104, (a1, n7)187, (a1, n6)246, (a1, n5)327, (a1, n2)401, (a1, n1)524, (a1, n3)662

}
(4.5)

As mentioned above, only one agent a1 adds nodes into S. It adds them starting from n3 and following the

edges belonging to the cycle. The time at which a node n is added corresponds to the sum of weights of edges

traversed from n3 to n. By doing so, the length of the cycle can be obtained from S by taking the time of the

element added last, i.e., by calling max(S.get time()). In Equation 4.5, since (a1, n3)662 is the last element, the

length of the cycle is 662.

4.2.2.2 Vehicle Routing Problem

Given a number of vehicles and a set of locations including a depot, vehicles must visit all locations departing

from, and returning to, the depot. The VRP consists in finding the paths taken by vehicles so that the total

distance is minimised and all locations, excluding the depot, are visited exactly one time.

Algorithm Learner for Graph Optimisation problems (ALGO) 34

123

74

81
83

104

138

59

n1

n7

n6

n5

n4
n3

n2

Figure 4.5: A solution for the Travelling Salesman Problem (TSP).

As for TSP, G(N,E) is a complete weighted graph, with N = {d} ∪ {ni}1≤i<|N | where ni are the locations to

visit and d the depot. Each vehicle moreover represents an agent, then A = {ai}1≤i≤|A|. Given an AFOP

solution S ∈ SI , the path made by an agent a can be extracted by selecting elements of S involving a, i.e., by

calling S.filter agents({a}), and ordering nodes as a sequence according to the time they have been added into

S.

Figure 4.6 shows an example of solution for the VRP with eight locations to visit and three vehicles, each

colour representing the path taken by each vehicle. That VRP solution is then described by three sequences

of nodes (one per vehicle): [d, n2, n1, d]; [d, n5, n6, n3, d]; [d, n8, n7, n4, d]. It can be written as the following

solution S ∈ SI .

S =
{
(a1, d)0, (a2, d)0, (a3, d)0, (a2, n5)45, (a1, n2)59, (a3, n8)61, (a2, n6)88, (a3, n7)113, (a1, n1)122,

(a2, n3)147, (a1, d)179, (a3, n4)197, (a2, d)270, (a3, d)304

} (4.6)

Each agent adds nodes into S by following its corresponding cycle. For example, agent a1 adds nodes d, n2,

n1 and d again (orange cycle in Figure 4.6). Similarly to the TSP, the time at which a node n is added into S

by an agent a is the sum of the weight of edges traversed by a from d to n. The time at which an agent adds

its last node then correspond to the length of its path. By summing, that time for each agent, i.e., by calling∑
a∈A max (S.filter agents({a}).get times()), we obtain the total distance travelled. In Equation 4.6, the total

distance is then 179 + 270 + 304 = 753.

123

63

57 59

52

61
84

107

59 45

43

d

n1

n2

n3

n8
n7

n6

n5

n4

Figure 4.6: A solution for the Vehicle Routing Problem (VRP).

Algorithm Learner for Graph Optimisation problems (ALGO) 35

4.2.2.3 Minimum Vertex Cover Problem

Given an undirected graph, the MVCP consists in selecting the smallest subset of nodes covering every edge,

i.e., at least one of each edge’s node is selected.

Since a MVCP instance is a graph, it can be directly assimilated to G(N,E), with N = {ni}1≤i≤|N | and

E = {ei}1≤i≤|E|. With only one agent considered, i.e., A = {a1}, an AFOP solution S ∈ SI can simply

represent the nodes which are selected. In that case, the time at which they are added does not matter.

Figure 4.7 shows an example of a MVCP instance. The depicted solution (blue nodes) corresponds to the

set {n1, n6, n7, n8, n9, n10, n13}. Since only agent a1 is involved and there is no temporal aspect, the following

solution S ∈ SI is also equivalent.

S =
{
(a1, n7)0, (a1, n13)0, (a1, n6)0, (a1, n9)0, (a1, n8)0, (a1, n10)0, (a1, n1)0

}
(4.7)

n1

n14n13

n12
n11

n10

n9n8

n7

n6

n5

n4

n3
n2

Figure 4.7: A solution for the Minimum Vertex Cover Problem (MVCP).

4.2.2.4 Optimal Job Scheduling Problem

Given a set of jobs with a certain running time and a set of parallel machines executing jobs, the OJSP consists

in assigning jobs to machines by minimising the total running time.

To translate an OJSP instance into an AFOP instance, we can map jobs to the nodes of the graph and machines

to the agents. An assignment of jobs to machines is therefore represented by agents building a path within the

graph. The nodes belonging to the path of an agent equates to jobs executed by a machine. We can then define

A = {ai}1≤i≤|A| and a directed graphG(N,E) withN = {s}∪{ni}1≤i<|N | and E = {(n, ni) | n ∈ N, 1 ≤ i < |N |}.
Nodes ni correspond to jobs that agents can add into the solution. The node s is a “null” job assigned to each

machine, and can be seen as the starting point of each agent. Arrows in the graph have a weight symbolising

the running time of the job at their head. That is why there is no arrow pointing to node s.

Figure 4.8 depicts a solution for an OJSP instance with eight jobs and three machines. The solution can be

described as follow: machine a1 (in orange) executes jobs n2, n1 and n3; machine a2 (in green) executes jobs

n6, n4 and n5; machine a3 (in blue) executes jobs n8 and n7. As with the VRP, a solution S ∈ SI can represent

Algorithm Learner for Graph Optimisation problems (ALGO) 36

a set of paths taken by all agents, and can be written as follow.

S =
{
(a1, s)0, (a2, s)0, (a3, s)0, (a3, n8)5, (a2, n6)14, (a1, n2)60, (a2, n4)63, (a3, n7)84, (a2, n5)92,

(a1, n1)93, (a1, n3)114

} (4.8)

Similarly to the TSP and VRP, the time at which an agent a adds a node n into S is the sum of the

weight of arrows traversed by a from s to n. The total running time can then been obtained by calling

maxa∈A max (S.filter agents({a}).get times()).

n1

49

79

5

36
29

60
14

21

n8

n7

n6

n5

n4

n3

n2

s

Figure 4.8: A solution for the Optimal Job Scheduling Problem (OJSP).

4.2.3 Template of heuristics for an AFOP

Unlike traditional hyper-heuristics, ALGO is designed to tackle an abstract problem, referred to as an AFOP.

Given a new problem, there is therefore no need to redefine a space of low-level heuristics by using ALGO.

According to Definition 4.1, the format of its solution is the only specificity of an AFOP. Low-level heuristics in

ALGO must thus return solutions as in Equation 4.2. In this work, a greedy heuristic is used for that purpose

where, at each iteration, an agent a adds a node n at the time t into the solution, i.e., the element (a, n)t is

added into the solution. The choice of the node to add is done according to a scoring function which is the

only dynamic part among such heuristics. A low-level heuristic is thus depicted by its scoring function. The

purpose of the high-level algorithm thus consists in finding the best definition of that scoring function, which

will result in finding the best low-level heuristic. The generic process of such low-level heuristics is described

in Algorithm 4.1 as a template of heuristics.

In Algorithm 4.1, each agent’s process is done asynchronously (lines 2–17). The template of heuristics considers

distributed heuristics where each agent deals with local information denoted by Sa which is the current solution

according to the local knowledge of agent a. An agent a thus adds nodes into Sa until the solution is terminal

(lines 5–16). The condition for a solution to be terminal for an agent is determined by terminal : XI × A →
{0, 1}. For each iteration, agents first select the nodes which are allowed to be added into the solution with

get nodes : XI × A → P(N) (line 6). The definition of the latter function is directly linked to XI , i.e., the

domain of solutions for the problem. It means that S ∪ {(a, n)t} ∈ XI if and only if n ∈ get nodes(S, a).

Among all possible nodes to add into the solution, the agent selects the one maximising a certain scoring

function SCORE : XI ×A×N → R. In other words, SCORE(S, a, n) evaluates the choice of adding a couple (a, n)

into S. It still remains to set the time at which it must be added. To the duration of a’s process so far is added

“the time for agent a to reach node n according to the current solution Sa”, depicted by time : XI×A×N → R+

Algorithm Learner for Graph Optimisation problems (ALGO) 37

Algorithm 4.1 Template of low-level heuristics

Input: Instance I =
(
G(N,E), A

)
Output: Solution S ∈ SI
1: S ← ∅
2: for all agent a ∈ A do {asynchronously}
3: Sa ← ∅
4: t← 0
5: while ¬terminal(Sa, a) do
6: Ncand ← get nodes(Sa, a) ⊆ N
7: n← argmaxn′∈Ncand

SCORE(Sa, a, n
′)

8: t← t+ time(Sa, a, n)
9: Sa ← Sa ∪ {(a, n)t}

10: S ← S ∪ {(a, n)t}
11: for all agent a′ ∈ A\{a} do
12: if can communicate(S, a, a′) then
13: Sa ← Sa ∪ Sa′

14: end if
15: end for
16: end while
17: end for
18: return S

(line 8). The element (a, n)t is thus added into the solution known by agent a, i.e., Sa, and into the centralised

solution S (lines 9–10). Since this template of heuristics considers distributed heuristics, agents must be able

to communicate and share their local knowledge. For that purpose, every agent searches for other agents

with whom it can communicate (lines 11–15). The condition for two agents to communicate is depicted by

can communicate : XI × A2 → {0, 1}. Sharing the local knowledge of two agents a and a′ simply consists in

processing the union of Sa and Sa′ (line 13), as shown below.

• local information of a1: Sa1
= { (a1, n15)4 , (a2, n96)40 , (a2, n41)52 , (a4, n3)59, (a1, n17)98}

• local information of a2: Sa2
= { (a1, n15)4 , (a2, n96)40 , (a2, n41)52 , (a3, n30)77}

⇒ shared information: Sa1
∪ Sa2

= { (a1, n15)4 , (a2, n96)40 , (a2, n41)52 , (a4, n3)59 , (a3, n30)77 , (a1, n17)98}

In Algorithm 4.1, four methods must be defined for a specific AFOP: terminal for the terminal condition of

a solution; get nodes for getting nodes that can be added into the solution; time for determining the time

at which a node is added into the solution; can communicate for the communication condition between two

agents. They thus belong to the dynamic part of ALGO.

Example 4.1. We present a possible implementation of these four methods for the TSP.

• terminal(S, a) =

{
1 if |S| = |N |+ 1

0 otherwise

The solution is terminal when the agent adds its initial node after adding every node one time. In that

case, the solution hence contains |N |+ 1 elements.

• get nodes(S, a) =

{
N\S.get nodes() if |S| < |N |
{a.first} otherwise

Agent a can add only nodes not present in the solution unless they have been all added. In that case, the

agent is forced to add its initial node.

• time(S, a, n) = (p, n).w

where p ∈ N is the “position” of agent a according to S, i.e., the last node added by a into S. It can be

Algorithm Learner for Graph Optimisation problems (ALGO) 38

obtained with

p = argmax
n′∈S.filter agents({a}).get nodes()

max (S.filter agents({a}).filter nodes({n′}).get times())

The time for a to reach n according to S is then the weight of the edge linking the position of a and n.

• can communicate(S, a1, a2) = 0

Since only one agent is considered here, no communication is needed and this function is never called.

Given a problem to tackle, these four methods become static for the template of low-level heuristics. The

scoring function SCORE remains the only dynamic part and must be learnt by the high-level algorithm. The

next section then details how the high-level RL algorithm is used to generate a definition for SCORE.

4.3 High-Level Algorithm

RL is used as the high-level algorithm in ALGO. Its purpose is thus to find the best definition of SCORE (see

Algorithm 4.1). Since RL aims at learning a policy Π : S → A, with S the set of states and A the set of actions,

a mapping between RL elements and AFOP elements must be done in order to define a policy depending on

SCORE. This mapping is illustrated in Figure 4.4 where RL states are AFOP solutions and RL actions are nodes

from an AFOP instance.

Let I =
(
G(N,E), A

)
be an AFOP instance. At each step, an RL agent chooses an action from a certain state

by following its policy. With the proposed mapping, it is equivalent to an agent a ∈ A choosing a node n ∈ N

from a certain solution S ∈ SI according to a scoring function. Since AFOP may consider several agents, the

RL context is here a Multi-Agent Reinforcement Learning (MARL). While different MARL approaches exist

in the literature, in this work the most standard one has been chosen , i.e., every agent shares the same policy

[Zhang et al., 2021]. The RL state must hence be defined according to the agent choosing the action (otherwise,

every agent would choose the same action at the same time), i.e., S ≡ SI × A. By considering A ≡ N , line 7

of Algorithm 4.1 can be seen as a step for an RL agent, i.e., action ← Π(state).

n← argmax
n′∈Ncand

SCORE(Sa, a, n
′) ≡ n← Π(Sa, a) (4.9)

The method SCORE then acts like a state-action value, i.e., SCORE : S ×A → R. Among existing RL techniques,

we thus decided to choose one aiming at learning such a function, and more particularly Q-Learning (QL). The

state-action value in QL is Q : S × A → R. The purpose is to learn Q(state, action) in order to represent the

maximal future reward that the agent can get by choosing action from state. In that case, the policy is thus

defined as Π(state) = argmaxaction∈A Q(state, action). By using QL as the high-level algorithm, the method

SCORE can therefore be depicted by Q, since line 7 can be replaced by the step of a QL agent.

n← Π(Sa, a) = argmax
n′∈Ncand

Q(Sa, a, n
′) (4.10)

where Q : SI × A × N → R must be learnt so that at each iteration, agents detect which node will maximise

the future reward by adding it into the current solution. To learn Q, ALGO uses a parameterised policy, i.e.,

the line 7 of Algorithm 4.1 can be rewritten as

n← ΠΘ (Sa, a) = argmax
n′∈Ncand

QΘ (Sa, a, n
′) (4.11)

Algorithm Learner for Graph Optimisation problems (ALGO) 39

where Θ is a set of learnable parameters. The purpose of the high-level QL is thus to find the optimal value of

Θ so that QΘ(S, a, n) represents the maximal future reward obtainable if agent a adds node n into solution S.

An overview of the whole high-level process is shown in Figure 4.9. The interaction between the RL agent and

the environment seen in Figure 2.5 is detailed here in the context of ALGO. The whole process can be divided

into four steps, including three detailed in the following sections (illustrated in green).

(1) Choice. At each iteration, an agent a ∈ A chooses an action, i.e., a node n ∈ N , from a certain state,

i.e., the current solution S ∈ SI (each agent’s process is similar and executed asynchronously). This

operation, assimilated to the policy, is based on the state-action value QΘ(S, a, n) and therefore depends

on the current value of Θ.

Transition. When an agent processes an action, the state of the environment is changed. In an AFOP

context, when a node n has been chosen by agent a, it is added into solution S to make a new solution

S′ ∈ SI . This new state will be used for the next iteration of step (1).

(2) Reward. A reward is processed according to the action chosen by the agent. The purpose is to evaluate

how adding a node into the current solution improves or worsens it.

(3) Update. The reward computed is used to update the value of Θ. The latter which corresponds to a new

heuristic, will be used for the next iteration of step (1).

reward

Θ

AGENT

state action

ENVIRONMENT

REWARD

UPDATE

CHOICE

(2)

(3)

(1)

TRANSITION

Figure 4.9: Overview of the high-level process in ALGO.

The remainder of this section consists in detailing the three steps shown in orange in Figure 4.9, i.e., the

evaluation of an action for an agent (see Section 4.3.1), the computation of the reward for such an action (see

Section 4.3.2) and the update of the policy (see Section 4.3.3).

Algorithm Learner for Graph Optimisation problems (ALGO) 40

4.3.1 Choosing actions

This section describes the step (1) shown in Figure 4.9. The evaluation of an action, i.e., a node n ∈ N , for

an agent a ∈ A is made by calling QΘ(S, a, n) where S is the current solution (see Equation 4.11) in line 7 of

Algorithm 4.1.

4.3.1.1 Computation of the state-action value

The process for computing QΘ(S, a, n) is depicted in Figure 4.10. A set of state variable {x(S, a, n′)}n′∈N for

nodes and {y(S, a, e′)}e′∈E for edges are given as an input to a Graph Neural Network (GNN).

• x : SI × A × N → Rkx returns the state variables for a node from the perspective of an agent from the

current solution.

• y : SI × A × E → Rky returns the state variables for a edge from the perspective of an agent from the

current solution.

These state variables are defined for the specific AFOP. Each node thus has kx state variables and each edge

has ky state variables. The output of the GNN after L layers is an embedding structure assigning to each node

a p-dimensional vector where p and L are parameters of ALGO. For agent a, the embedded representation of a

node n′ is then given by µ
(L)
a,n′ ∈ Rp. From this embedding structure, two p-dimensional vectors are extracted

depicting respectively the embedded state and the embedded action:
∑

n′∈N µ
(L)
a,n′ and µ

(L)
a,n where n is the node

to evaluate. These two vectors are then given as an input of a Neural Network (NN) which outputs a scalar

value, i.e., the wanted evaluation QΘ(S, a, n). The set of learnable parameters Θ corresponds to the weights of

both the GNN and the NN.

µ
(L)
a,n

∑
n′∈N

µ
(L)

a,n′

G(N,E)

S

a

n

{
µ
(L)

a,n′ ∈ Rp
}

n′∈N

Θ

GNN

Θ

NN

{x(S, a, n′)}n′∈N

{y(S, a, e′)}e′∈E

QΘ(S, a, n)

Figure 4.10: Process for computing the state-action value QΘ(S, a, n).

The GNN and NN are thought modular. It means that any existing technique could be used. Sections 4.3.1.2

and 4.3.1.3 respectively describe GNNs and NNs approaches that can be used.

4.3.1.2 Graph Neural Networks

As mentioned earlier, one strength of ALGO is its design which does not depend on a single GNN. The only

condition for a GNN to be compatible is to embed nodes of the given graph into p-dimensional vectors, from

state variables assigned to nodes and edges. We present structure2vec (S2V) [Dai et al., 2016] as an example

in this section. Other GNNs can however be used, like GraphSAGE [Hamilton et al., 2017] or graph attention

networks (GATs) [Veličković et al., 2018].

Algorithm Learner for Graph Optimisation problems (ALGO) 41

Equation 4.12 details how to compute the embedding vector µ
(L)
a,n for a node n and an agent a after L layers by

using S2V. Our work extends the one of Khalil et al. [2017] to the multi-agent context. The embedding vector

in the GNN that they used [Dai et al., 2016] thus depends on node n only.

∀l ≥ 1

µ(l)
a,n = relu

θ1 · x(S, a, n) + θ2 ·
∑

(n,n′)∈E

relu
(
θ3 · y(S, a, (n, n′))

)
+ θ4 ·

∑
(n,n′)∈E

µ
(l−1)
a,n′

 ∈ Rp

µ(0)
a,n = 0 ∈ Rp

(4.12)

with θ1 ∈ Rp×kx , θ3 ∈ Rp×ky , θ2, θ4 ∈ Rp×p and relu is the REctified Linear Unit. An embedded information

is computed for each node and edge according to their state variable, respectively θ1 · x(S, a, n) ∈ Rp for node

n and θ3 · y(S, a, e) ∈ Rp for edge e. The embedding vector µ
(l)
a,n then depends on the embedded information

of n, the embedded information of all adjacent edges, and the embedding vector of adjacent nodes at the layer

l − 1. The embedding vector µ
(l+1)
a,n thus contains information about the l-hop neighbourhood of node n.

4.3.1.3 Neural Networks

Similarly to the GNN, any NN could be used at this stage. The only condition is to have 2p neurons on the

input layer, p neurons for the embedded state and p neurons for the embedded action, and one neuron on the

output layer, representing the final state-action value. We present in Equation 4.13 an example which is used

by Khalil et al. [2017].

QΘ(S, a, n) = θ⊤1 · relu

([
θ2 ·

∑
n′∈N

µ
(L)
a,n′ , θ3 · µ(L)

a,n

])
∈ R (4.13)

with θ1 ∈ R2p, θ2, θ3 ∈ Rp×p and [·, ·] is the concatenation operator.

4.3.2 Computing rewards

This section describes Step (2) in Figure 4.9. In RL the reward r : S × A → R is given for the choice of an

action from a certain state, i.e., r : SI ×A×N → R in the context of an AFOP.

4.3.2.1 Vectorial reward

In the definition of an AFOP, several objectives may be defined, i.e., |O| > 1, or constraints may be considered,

i.e., |C| > 0. For every action that an agent chooses, there must thus be a reward per objective and constraint.

The vectorial reward for an agent a choosing the node n from the current solution S is then given by r⃗(S, a, n) ∈
R|O|+|C|.

r⃗(S, a, n) =

r⃗o1(S, a, n)

r⃗o2(S, a, n)
...

r⃗c1(S, a, n)

r⃗c2(S, a, n)
...

=

fo1(S)− fo1(S
′)

fo2(S)− fo2(S
′)

...

fc1(S)− fc1(S
′)

fc2(S)− fc2(S
′)

...

= f(S)− f(S′) ∈ R|O|+|C| (4.14)

where O = {o1, o2, · · · }, C = {c1, c2, · · · }, and S′ = S ∪ {(a, n)t} with t = ta + time(S, a, n) and ta =

max (S.filter agents({a}).get times()) is the time at which a added the last node into S. For each objective

Algorithm Learner for Graph Optimisation problems (ALGO) 42

and constraint, the reward is thus the difference of objective value of solutions before and after the action of

the agent. Since objectives must be minimised in an AFOP, the reward must be positive if the objective value

after the action is smaller, and vice versa. The reward is therefore f(S)− f(S′) and not f(S′)− f(S).

For each action of type “agent a adds node n into the current solution S”, a vectorial reward r⃗(S, a, n) is thus

computed as defined in Equation 4.14. In ALGO, the reward may not be provided immediately after an action

but after τ consecutive actions from the same agent a (since the value of τ is set arbitrarily, it is a parameter

of ALGO). In that case, a cumulative reward r⃗Σ(S, a, n) is provided, i.e., the sum of consecutive rewards, for

that action. If τ = 1, then r⃗Σ(S, a, n) = r⃗(S, a, n) and the reward is given after each action made.

Let I =
(
G(N,E), A

)
be an AFOP instance with only one agent, i.e., A = {a}, and S ∈ SI . Then S(i) is the

solution obtained after i action made by agent a from the current solution S, and n(i) is the node added by

agent a into S(i).

S′ = S ∪ {(a, n)t}

S′′ = S′ ∪ {(a, n′)t′}
...

S(i+1) = S(i) ∪
{(

a, n(i)
)
t(i)

}
(4.15)

On the assumption that |A| = 1 and with Equation 4.14, the cumulative reward r⃗Σ(S, a, n) can be reduced to

the difference of objective values of solutions S and S(τ), i.e., the solutions after and before the τ consecutive

actions.

r⃗Σ(S, a, n) =

τ−1∑
i=0

r⃗
(
S(i), a, n(i)

)
= f

(
S
)
− f

(
S(τ)

)
∈ R|O|+|C| (4.16)

We now consider anAFOP instance I =
(
G(N,E), A

)
with several agents, i.e., |A| ≥ 2. Since solutions in

Equation 4.15 consider actions made by only one agent, the equality in Equation 4.16 is not true. More than τ

actions may have been made, all agents included, from S to reach S(τ) indeed. Even if r⃗Σ(S, a, n) only considers

actions made by a, f
(
S
)
− f

(
S(τ)

)
remains a good estimator of the cumulative reward since it still represents

the sum of consecutive actions from S to reach S(τ), all agents’ actions included and all agents sharing the same

policy. Equality in Equation 4.16 is thus considered true even with an instance considering several agents.

Eventually, the vectorial reward must be reduced to a scalar reward. For that, rewards received for objectives

are treated differently than rewards for constraints. Let r⃗Σ(S, a, n) ∈ R|O|+|C| be a vectorial reward computed

with Equation 4.16. Then r⃗ΣO(S, a, n) ∈ R|O| and r⃗ΣC (S, a, n) ∈ R|C| are subvectors of r⃗Σ(S, a, n) corresponding

to rewards for objectives and constraints respectively.

r(S, a, n) = scal
(
r⃗ΣO(S, a, n)

)︸ ︷︷ ︸
scalarisation of objectives

+ λ⊤ (r⃗ΣC (S, a, n) + b
)︸ ︷︷ ︸

penalisation of constraints

∈ R (4.17)

where λ ∈ R|C|
+ is a learnable parameter and scal : R|O| → R is the scalarisation of the rewards for objectives.

Different scalarisation techniques exist and can be used here. They are presented below in Section 4.3.2.2. On

the other side, if a constraint c ∈ C is violated, i.e., r⃗Σc (S, a, n) + bc < 0 as explained in (4.18), then a penalty

Algorithm Learner for Graph Optimisation problems (ALGO) 43

λc ≥ 0 is added to the scalar reward r(S, a, n).

c ∈ C is respected⇔ fc(S) ≤ bc ∀S ∈ SI

⇔ fc

(
S
)
− fc

(
S(τ)

)
≥ −bc ∀S ∈ SI ,∀τ ≥ 1

⇔ r⃗Σc (S, a, n) ≥ −bc ∀S ∈ SI ,∀(a, n) ∈ A×N, ∀τ ≥ 1

⇔ r⃗Σc (S, a, n) + bc ≥ 0 ∀S ∈ SI ,∀(a, n) ∈ A×N, ∀τ ≥ 1

(4.18)

4.3.2.2 Scalarisation

This part of ALGO is modular. It means that our framework uses an abstract way to transform a vectorial

reward into a scalar one. The user has then the possibility to define the scalarisation function according to its

needs. Most scalarisations functions rely on weights, one associated to each objective. It makes it possible to

control the nature of the heuristic generated by ALGO, if for instance the user wants to put an emphasis on

one or more objectives. The trade-off between objectives is given by {wo}o∈O and

∑
o∈O

wo = 1 (4.19)

where wo ∈ [0, 1] (by default, weights are set to wo = 1/|O|) ∀o ∈ O. We present in this section two examples

of scalarisation which can be used in ALGO. Different scalarisation functions are however conceivable.

Linear scalarisation The linear scalarisation is the most commonly used function, and is equivalent to a

weighted sum. By default, i.e., all weights are equal, it then consists in doing an average of the reward obtained

from objectives.

scal
(
r⃗ΣO(S, a, n)

)
=
∑
o∈O

(
wo · r⃗Σo (S, a, n)

)
(4.20)

Chebyshev scalarisation The Chebyshev scalarisation is a non-linear function introduced by Van Moffaert

et al. [2013]. It consists in taking the distance in the multi-objective space with a target point z∗ according to

the weighted L∞ metric. We remind that the infinite norm of a vector x is given by ∥x∥∞ = maxi |xi|. Given

a vector x ∈ R|O| a vector in the multi-objective space,

scal(x) = max
o∈O

(
wo · |xo − z∗o |

)
(4.21)

where z∗ ∈ R|O| the target point.In their work, Van Moffaert et al. [2013] scalarise the state-action value

Q(state, action). In that case, the target point corresponds to Q∗ = {Q∗
o}o∈O where Q∗

o(state, action) is the

optimal state-action value for objective o, e.g., the maximal future reward obtainable after choosing action from

state in Q-learning. Among multiple state-action values, the Chebyshev scalarisation then consists in returning

the one with the farthest value from the target point.

In ALGO, the scalarisation occurs on the reward, which means that there is no finite target point since the

reward must be maximised without upper bound. Among multiple rewards, returning the one with the farthest

value from the target reward is therefore equivalent to returning the one with the lowest value.

scal
(
r⃗ΣO(S, a, n)

)
= min

o∈O

(
wo · r⃗Σo (S, a, n)

)
(4.22)

Algorithm Learner for Graph Optimisation problems (ALGO) 44

4.3.3 Updating the policy

This section describes Step (3) in Figure 4.9. The update of the policy is done in two steps since there are

two learnable parameters in ALGO: Θ and λ. The update of Θ aims at improving the state-action value (see

Section 4.3.1). Updating λ is intended to correct the computation of the scalar reward (see Section 4.3.2).

4.3.3.1 Updating Θ

For each action made, the following tuple is stored in a memory M: the state in which the action is made,

i.e., the current solution and the agent performing the action; the action considered, i.e., the node chosen by

the agent; the cumulative reward for the τ following actions made by the same agent; the state after these τ

actions. In the context of AFOP, the tuple
(
S, a, n, r⃗Σ(S, a, n), S(τ)

)
is thus added into M for the following

action: “agent a adds node n into solution S”. Every such item i =
(
Si, ai, ni, r⃗

Σ(Si, ai, ni), S
(τ)
i

)
∈M makes

it possible to compute the following two values.
pred i(Θ) = QΘ (Si, ai, ni)

targ i = r(Si, ai, ni) + γ · max
n(τ)∈get nodes

(
S

(τ)
i ,ai

)QΘ

(
S
(τ)
i , ai, n

(τ)
)

(4.23)

where γ ∈ [0, 1] is the discount factor and represents the importance given to the future reward depicted by

maxn(τ) QΘ

(
S
(τ)
i , ai, n

(τ)
i

)
. It must be noted that in the computation of targ i, the scalar reward r(Si, ai, ni)

is used and computed with (4.17) from the vectorial reward r⃗Σ(Si, ai, ni) stored in memory. For an element

i ∈M, pred i(Θ) is the predicted value of the reward by doing the corresponding action, while targ i is the actual

reward, i.e., the target value. The purpose is thus to modify Θ in order to minimise the gap between pred i(Θ)

and targ i. For that, a mini-batch B ⊂ M is randomly selected from the memory, and a Stochastic Gradient

Descent (SGD) is processed over B to minimise the loss, formally defined below as the squared mean error.

loss =
∑
i∈B

(pred i(Θ)− targ i)
2

(4.24)

It should be noted that the target value is considered as a constant. It means that during its calculation, there

is no trace of Θ for the SGD, unlike the predicted value which depends on Θ. Moreover, the learning rate

α ∈ [0, 1] of the SGD is a parameter of ALGO.

4.3.3.2 Updating λ

In an AFOP, constraints do not restrict the choice of a node by an agent. It means that the current policy, i.e.,

the current heuristic, may lead to a non-feasible solution for some instances. If a constraint c ∈ C turns out to

be violated, it means that the penalty for violating that constraint was not high enough (see Section 4.3.2) and

the value of λc must then be increased. On the opposite, the penalty is high enough but care must be taken not

to have it too high. It would indeed increase the reward and may neglect the reward obtained with objective

values. If a constraint c ∈ C is respected, then λc must decreases.

A Gradient Descent (GD) is processed to update λ, where the value of the gradient depends on whether actions

from the mini-batch B have violated constraints.

λ← max

(
0, λ− η ·

∑
i∈B

(
r⃗ΣC (Si, ai, ni) + b

))
(4.25)

Algorithm Learner for Graph Optimisation problems (ALGO) 45

where η ∈ [0, 1] is the learning rate of the GD. For each element i ∈ B selected from the memory, r⃗Σc (Si, ai, ni)+

bc ≥ 0 means that the constraint c ∈ C is respected as shown in (4.18) and thus makes λc decrease. Finally,

any negative value of λ must be set to 0.

4.4 How to use ALGO?

In this section, we describe how a user can use ALGO for a specific optimisation problem. We start by doing a

formal description of steps to follow in Section 4.4.1. There is summarised all of dynamic parts in the generic

model ALGO. We then provide in Section 4.4.2 a more code-oriented description. We briefly describe the

structure of the implementation of ALGO so that one can use it to generate heuristics for a specific problem.

4.4.1 Formal description

Let P be an optimisation problem for which you want to generate a heuristic. This section describes the steps to

follow if you want to use ALGO to generate a heuristic for P . The first part consists in representing an instance

of P as I =
(
G(N,E), A

)
with G(N,E) a graph and A a set of agents. According to Definition 4.1, a solution

of I must then be represented as in Equation 4.2. Some examples are shown in Section 4.2.2. After defining

objectives, constraints and the domain of solutions as in Equation 4.1, you must implement all the dynamic

parts involved in ALGO. They are listed in Table 4.1 and are divided into three parts depending on whether

they refer to the definition of the optimisation model (see Section 4.2.1), the design of low-level heuristics (see

Section 4.2.3) or the state variables given as an input to the GNN (see Section 4.3.1).

optimisation model

f : XI → R|O|+|C| objective values (including constraints)

b ∈ R|C| upper bounds of constraints

low-level heuristic

terminal : XI ×A→ {0, 1} terminal condition for an agent

get nodes : XI ×A→ P(N) nodes that an agent can add into the current solution

time : XI ×A×N → R+ time for an agent to add a node into the current solution

can communicate : XI ×A2 → {0, 1} condition of communication between two agents

state variables

x : XI ×A×N → Rkx state variables of nodes

y : XI ×A× E → Rky state variables of edges

Table 4.1: Elements to define for a problem in order to use ALGO.

Let S ∈ XI be a solution of instance I. For each objective o ∈ O, fo(S) is the objective value of solution S.

Each constraint c ∈ C also provides an objective value fc(S). An upper bound bc must however be defined for

fc(S). These objective values and upper bounds are used for the computation of the reward.

In the heuristic generated by ALGO, each agent adds a new node into the current solution asynchronously.

Let S be that current solution. An agent a ∈ A thus runs until terminal(S, a) = 1. At each iteration, agent

a cannot add any node into S, only nodes contained in get nodes(S, a). Once agent a knows which nodes

it can adds into S, it evaluates each node n ∈ N with the state-action value QΘ(S, a, n) and choose the one

maximising it.

Algorithm Learner for Graph Optimisation problems (ALGO) 46

The computation of the state-action value uses all of information contained in G(N,E). You must hence define

state variables for nodes and edges which can be used in the computation of QΘ(S, a, n). One can add as many

state variables as he needs, so that x(S, a, n) gives the kx state variables of node n ∈ N according to agent a and

the current solution S, and y(S, a, e) gives the ky state variables of edge e ∈ E. In case the heuristic considers

multiple agents, and you want them to run in a distributed way, you must define the condition for two agents

to share their local knowledge. Two agents a1 and a2 can thus communicate if can communicate(S, a1, a2) = 1.

4.4.2 Implementation

Figure 4.11 depicts a part of the class diagram of ALGO. It shows the part to override in order to apply ALGO

on a specific optimisation problem. More detail about the implementation, including a complete class diagram,

is available in Appendix C. Among all classes involved in Figure 4.11, Graph represent an AFOP instance

I =
(
G(N,E), A

)
. It has three lists as attributes, containing objects of type Node, Edge or Agent. Moreover, an

object of type Solution is equivalent to a solution S ∈ SI . Such an object is seen as a set of items, where each

of them represents a tuple (a, n)t ∈ A ×N × R+, i.e., it has three attributes of type Node, Agent and float.

Since a solution is relevant for a certain instance, an object of type Solution also have an instance of Graph

as an attribute.

Problem

- objectives: list
- constraints: list
- node_variables: list
- edge_variables: list

+ is_terminal(s: Solution, a: Agent): bool
+ get_nodes(s: Solution, a: Agent): set
+ time(s: Solution, a: Agent, n: Node): float
+ can_communicate(s: Solution, a1: Agent, a2: Agent): bool

Objective

+ compute_value(s: Solution): float

Constraint

+ get_upper_bound(): float

NodeVariable

+ compute(s: Solution, a: Agent, n: Node): float

EdgeVariable

+ compute(s: Solution, a: Agent, e: Edge): float

1

1..*

0..*

0..*

0..*

LowLevelHeuristic

+ execute(g: Graph): Solution

0..*

1

...

Figure 4.11: Partial class diagram of ALGO, showing what one must override in order to apply ALGO on a
specific problem.

In our implementation, a heuristic is represented as an instance of LowLevelHeuristic. The heuristic being

dependent of the problem to tackle, it has an attribute of type Problem which is an abstract class (in yellow

in Figure 4.11). That class has four abstract methods corresponding to the elements to define in the context

of the low-level heuristic (see Section 4.4.1). These methods are called by the heuristic when executed on an

instance, i.e., within the method execute(g) where g is an object of type Graph. In order to apply ALGO on

a specific problem, a user must then create a class inheriting from Problem and override these four methods.

A problem also has a list of objectives and constraints to be written as in Equation 4.1. For each objective, the

user must then create a class inheriting from Objective and override the abstract method compute value(s)

Algorithm Learner for Graph Optimisation problems (ALGO) 47

which returns the corresponding objective value of the given solution s. Similarly, the user must create a class

inheriting from Constraint for each wanted constraint. Additionally to compute value(s), he must override

get upper bound().

Finally, the user must define the state variables to be given as an input to the GNN. For each variable assigned to

a node, one must create a class inheriting from NodeVariable and overriding the abstract method compute(s,

a, n). An equivalent process must be done with edge variables and class EdgeVariable.

4.5 Conclusion

In this chapter, Algorithm Learner for Graph Optimisation problems (ALGO), a model of generic hyper-

heuristic based on Reinforcement Learning (RL) has been introduced. ALGO permits to generate a heuristic

for any compatible optimisation problem, without the need to redesign a space of low-level heuristics for each

problem. The strengths of ALGO are threefold:

• Flexibility. ALGO can be used to tackle a wide range of optimisation problems, from classical ones,

e.g., routing or scheduling problems, to problems considering multiple agents or a dynamic environment.

ALGO is besides capable of generating distributed heuristics in a multi-agent context. Furthermore,

ALGO is not limited to single-objective optimisation problems.

• Modularity. Several parts of ALGO are interchangeable, e.g., the architecture of the Graph Neural

Network (GNN) within the RL algorithm or the scalarisation technique. A user then has the possibility

to use ALGO without being limited to a certain model.

• Ease of use. We designed the task needed to use ALGO on a new problem to be easy and straight-

forward. We wanted to avoid the situation where a user, with a generic model of hyper-heuristic, is obliged

to implement everything so that the theoretical model suits its optimisation problem.

The next chapter presents the application of ALGO on a classical optimisation problem: the Travelling Salesman

Problem (TSP). It will aim at validating the ability of ALGO to generate efficient heuristic in a classical context,

before using it in a real-world context (detailed in next chapters).

Chapter 5

Validation on the Travelling Salesman

Problem

Contents

5.1 Introduction . 48

5.2 Modelling as an AFOP . 49

5.3 Implementation for ALGO . 50

5.3.1 Optimisation model . 52

5.3.2 Low-level heuristics . 52

5.3.3 State variables . 53

5.4 Experiments . 54

5.4.1 Training process . 55

5.4.2 Comparison heuristics . 55

5.4.3 Results . 57

5.5 Conclusion . 61

5.1 Introduction

In this chapter, we validate ALGO, our proposed generic model of hyper-heuristic. Before using ALGO in a

real-world use case (presented in the next part of this thesis), we demonstrate the ability of ALGO to generate

efficient greedy heuristics for a classical optimisation problem, the Travelling Salesman Problem (TSP). Given

a set of points and the distance between all of them, the TSP consists in finding the shortest way to visit all

points exactly one time by ending at the initial point. In other terms, it is equivalent to finding the shortest

Hamiltonian cycle within a complete graph. The symmetric TSP is tackled in this chapter. Given two points A

and B, the distance to go from A to B is the same as going from B to A. We first present our modelling of the

TSP as an AFOP in Section 5.2. The implementation within ALGO is then detailed in Section 5.3. These two

sections can be used as a concrete example for a user who wants to apply ALGO on a specific problem. ALGO

was then trained to generate a greedy heuristic for the TSP. The training process is described and the obtained

results are presented in Section 5.4. The performance of the generated heuristic is compared to state-of-the-art

TSP heuristics.

48

Validation on the Travelling Salesman Problem 49

5.2 Modelling as an AFOP

This section presents how we modelled the TSP as an AFOP so that ALGO can generate TSP heuristics. The

first step is to represent a TSP instance as an AFOP instance, i.e., I =
(
G(N,E), A

)
where G is a graph and A

a set of agents. A solution S ∈ SI must moreover be mappable to a TSP solution.

S =
{
(ai1 , nj1)t1 , · · · , (aik , njk)tk , · · ·

}
∈ SI (5.1)

where aik ∈ A, njk ∈ N and tk ∈ R+, ∀k ≥ 1.

A TSP instance can be described as a complete graph G(N,E) which means that N = {ni}1≤i≤|N | and E =

{(n, n′) = (n′, n) | n ∈ N,n′ ∈ N,n ̸= n′}. An equivalent AFOP instance can then be I =
(
G(N,E), A

)
where

A = {a1} meaning that there is only one agent.

A TSP solution is a Hamiltonian cycle which can be represented as a sequence of nodes from N or a set of edges

from E. Since only one agent is considered, a solution written as in Equation 5.1 can be seen as a sequence

of nodes, where nodes are ordered by the time they were added into the solution. In the proposed modelling,

the latter sequence does not directly represent the TSP solution, but the order in which nodes are added to a

subtour. A node is added at the position where it minimises the growth of the subtour.

The mapping to get a TSP solution from a solution S ∈ SI is illustrated in Figure 5.1 with |N | = 5 and

S = {(a1, n3)t1 , (a1, n1)t2 , (a1, n4)t3 , (a1, n5)t4 , (a1, n2)t5}. Supposing that ti increases with i, nodes are added

to the subtour by following the order n3, n1, n4, n5, n2. The subtour is thus initialised with node n3. Nodes n1

and n4 are then added. Until that point, there has been only one way to insert a node into the subtour. For

next iteration, node n5 can be inserted into three different positions. The position minimising the growth of

the subtour is between nodes n3 and n4. The same process is repeated to insert n2, and to obtain the TSP

solution corresponding to S.

n1

n5n4

n3

n2

n1

n5n4

n3

n2

n1

n5n4

n3

n2

n1

n5n4

n3

n2

n1

n5n4

n3

n2

Figure 5.1: TSP solution obtained from S = {(a1, n3)t1 , (a1, n1)t2 , (a1, n4)t3 , (a1, n5)t4 , (a1, n2)t5}. Nodes are
added into the subtour by following the order given by the time of items in S, i.e., n3 → n1 → n4 → n5 → n2.

A node is added at the position where it minimises the growth of the subtour.

Finally, the domain of solutions XI ⊆ SI , the set of objectives O and the set of constraints C must be defined.

The TSP must then be represented as the following mathematical program.
Minimise fo(S) ∀o ∈ O

subject to fc(S) ≤ bc ∀c ∈ C

S ∈ XI

(5.2)

In this modelling, we do not want ALGO to produce non-feasible solutions during its exploration phase. The

domain of solutions XI then represents any Hamiltonian cycle within the graph G(N,E). With our modelling, a

solution S ∈ SI then belongs to XI if all nodes from N appear exactly one time in S. Since XI represents the

set of feasible solutions, there is no constraint defined here, i.e., C = ∅. Finally, only one objective is required

Validation on the Travelling Salesman Problem 50

for a TSP solution, i.e., O = {o1}, which is to minimise the length of the obtained Hamiltonian cycle. The

objective value fo1(S) then returns the length of the cycle obtained from S ∈ XI .

5.3 Implementation for ALGO

Now that we demonstrated that the TSP can be modelled as an AFOP, this section presents how the TSP was

implemented within ALGO’s implementation. The followed process is described in Chapter 4, Section 4.4.

An overview of the implementation is provided in Figure 5.2. The class TSP inherits from the abstract class

Problem. The four abstract methods used by the low-level heuristics must then be overridden (presented in

Section 5.3.2). An instance of TSP must declare a list of objectives and constraints so that the TSP is defined by

the mathematical program of an AFOP (Equation 5.2, see more detail in Section 5.3.1). In this implementation,

no constraint is given and one objective is defined, hence the class TourLength inheriting from Objective and

overriding the abstract method compute value. Finally, a list of state variables for nodes and edges must be

declared to be used as an input of the GNN (described in Section 5.3.3). In the proposed implementation, we

declare one state variable for nodes, identified by the class VisitedNode inheriting from the class NodeVariable

and overriding the abstract method compute. We also declare two state variables for edges, i.e., we write two

classes VisitedEdge and DistanceEdge inheriting from EdgeVariable and overriding the abstract method

compute. In addition, the class TSP defines two methods get node tour and get edge tour which return a

TSP solution, respectively as a sequence of nodes (see Algorithm 5.1) and a set of edges (see Algorithm 5.2),

from an object of type Solution.

Problem

- objectives: list
- constraints: list
- node_variables: list
- edge_variables: list

+ is_terminal(s: Solution, a: Agent): bool
+ get_nodes(s: Solution, a: Agent): set
+ time(s: Solution, a: Agent , n: Node): float
+ can_communicate(s: Solution, a1: Agent, a2: Agent): bool

Objective

+ compute_value(s: Solution): float

Constraint

+ get_upper_bound(): float

NodeVariable

+ compute(s: Solution, a: Agent, n: Node): float

EdgeVariable

+ compute(s: Solution, a: Agent, e: Edge): float

1

1..*

0..*

0..*

0..*

TSP

+ get_node_tour(s: Solution): list
+ get_edge_tour(s: Solution): set

TourLength

VisitedNode

VisitedEdge

DistanceEdge

Figure 5.2: UML diagram showing the implementation of the TSP.

We remind that the classes Graph and Solution represent respectively an AFOP instance, i.e., I =
(
G(N,E), A

)
,

and an AFOP solution, i.e., S ∈ SI . The class Graph has three attributes: a list of Node objects, a list of

Edge objects and a list of Agent objects. The class Solution is seen as a set of Item objects, where Item,

corresponding to a tuple (a, n)t ∈ A×N × R+, has three attributes of type Agent, Node and float.

Algorithm 5.1 describes how to map a solution s to a TSP solution written as a sequence of nodes. Since s

is a set of items, it must be transformed into a list s sorted where items are ordered according to their time

Validation on the Travelling Salesman Problem 51

(line 2). The tour is initialised with the first node in s sorted (line 4). At each iteration, the index i min

at which item.node must be added in order to minimise the growth of the tour is calculated (lines 6–14 and

Figure 5.3(a)). The node item.node is then added into the tour by concatenating the first part of the tour,

i.e., tour[1 : i min-1], a list containing only item.node, and the second part of the tour, i.e., tour[i min

: count+1] (line 15 and Figure 5.3(b)).

Algorithm 5.1 TSP::get node tour(s)

Input: s: Solution

Output: list

1: graph ← s.get graph()

2: s sorted ← sort(s) {according to times}
3: first node ← s sorted[1].node

4: tour ← [first node, first node]

5: for item ∈ s sorted[2 : |s|] do
6: i min ← 2

7: v min ← graph.edges[tour[1]][item.node].w + graph.edges[item.node][tour[2]].w

- graph.edges[tour[1]][tour[2]].w

8: for i ← 3 to |tour|-1 do
9: v tmp ← graph.edges[tour[i-1]][item.node].w + graph.edges[item.node][tour[i]].w

- graph.edges[tour[i-1]][tour[i]].w

10: if v tmp < v min then
11: i min ← i

12: v min ← v tmp

13: end if
14: end for
15: tour ← tour[1 : i min-1] + [item.node] + tour[i min : |tour|]

16: end for
17: return tour

(1) graph.edges[tour[i-1]][item.node]
(2) graph.edges[item.node][tour[i]]
(3) graph.edges[tour[i-1]][tour[i]]

(1) tour[1 : i min-1]

(2) tour[i min : |tour|]
item.node

first node

tour[i-1] tour[i]

(3)

(1) (2)

(a) To compute the growth of the tour if item.node is
added at the ith position, the weight of edges linking
item.node to the tour at that position (green lines
(1) and (2)) are summed. The weight of the edge
which would be remove from the tour (green line (3))
is substracted. The index i min is the one minimising

that value.

item.node

first node

tour[i min-1] tour[i min]

(1) (2)

(b) The new tour is obtained by concatenating
the first part of the tour (from the beginning to
(i min-1)th position), item.node, and the second part

of the tour (from i minth position to the end).

Figure 5.3: Insertion of a node at the position where it minimises the growth of the current tour. The growth
of the tour if item.node is inserted at the ith position is shown in (a). The insertion of item.node into the

current tour is shown in (b).

Similarly to the above algorithm, Algorithm 5.2 describes how to map s to a TSP solution written as a set

of edges. As previously, the solution s is ordered according to the time of its items (line 2). The tour is

then initialised by the edge linking the first two nodes in s sorted (line 4). A node is added into the tour

by removing an edge from it and adding edges linking both adjacent nodes to the node to add. The edge to

remove is calculated so that the node item.node is added into the tour by minimising its growth (lines 6–14).

Validation on the Travelling Salesman Problem 52

The tour is then updated by removing the calculated edges, i.e., edge to remove, and by adding the two edges

to reach item.node, i.e., edges to add (line 15).

Algorithm 5.2 TSP::get edge tour(s)

Input: s: Solution

Output: set

1: graph ← s.get graph()

2: s sorted ← sort(s) {according to times}
3: first edge ← graph.edges[s sorted[1].node][s sorted[2].node]

4: tour ← { first edge, first edge }
5: for item ∈ s sorted[3 : |s|] do
6: v min ←∞
7: for e ∈ tour do
8: v tmp ← graph.edges[e.n1][item.node].w + graph.edges[item.node][e.n2].w - e.w

9: if v tmp < v min then
10: edges to add ← { graph.edges[e.n1][item.node], graph.edges[item.node][e.n2] }
11: edge to remove ← e

12: v min ← v tmp

13: end if
14: end for
15: tour ← tour \ { edge to remove } ∪ edges to add

16: end for
17: return tour

5.3.1 Optimisation model

We created a class TourLength inheriting from Objective and therefore overriding the abstract method

compute value(s), calculating the objective value of solution s and described in Algorithm 5.3. It consists in

summing the weight of every edge belonging to the tour. The latter is obtained by calling get edge tour(s)

on tsp, an object of type TSP.

Algorithm 5.3 TourLength::compute value(s)

Input: s: Solution

Output: float

1: tour ← tsp.get edge tour(s)

2: length ← 0

3: for e ∈ tour do
4: length ← length + e.w

5: end for
6: return length

5.3.2 Low-level heuristics

The implementation of the low-level heuristics corresponds to overriding the abstract methods from the class

Problem which are used by the low-level heuristic.

A solution is considered terminal when all nodes from the graph have been added into it. In Algorithm 5.4, the

method terminal(s, a) returns TRUE whether the number of items in s is the same as the number of nodes

in the graph on which it is defined, and FALSE otherwise.

Since a solution cannot contain a node more than one time, the method get nodes(s, a) in Algorithm 5.5

returns the set of all nodes which are not contained in the given solution s.

Validation on the Travelling Salesman Problem 53

Algorithm 5.4 TSP::terminal(s, a)

Input: s: Solution, a: Agent

Output: bool

1: graph ← s.get graph()

2: return |s| = |graph.nodes|

Algorithm 5.5 TSP::get nodes(s, a)

Input: s: Solution, a: Agent

Output: set

1: graph ← s.get graph()

2: candidates ← ∅
3: for n ∈ graph.nodes do
4: if n /∈ s.get nodes() then
5: candidates ← candidates ∪ { n }
6: end if
7: end for
8: return candidates

Given a solution s, the time to add the given node n is the difference of length between the tour corresponding

to s and the tour after adding n. Algorithm 5.6 describes that process. The tour corresponding to solution

s is obtained by calling get node tour(s) on an instance of the problem (line 2). The difference of length is

calculated for each possible index at which n can be added (line 5). Finally the lowest difference is returned.

Algorithm 5.6 TSP::time(s, a, n)

Input: s: Solution, a: Agent, n: Node

Output: float

1: graph ← s.get graph()

2: tour ← tsp.get node tour(s)

3: delta ←∞
4: for i ← 1 to |s| do
5: delta tmp ← graph.edges[tour[i]][n].w + graph.edges[tour[i+1]][n].w

- graph.edges[tour[i]][tour[i+1]].w

6: delta ← min(delta, delta tmp)

7: end for
8: return delta

In this implementation, only one agent is considered. The method can communicate described in Algorithm 5.7

is thus never been called.

Algorithm 5.7 TSP::can communicate(s, a1, a2)

Input: s: Solution, a1: Agent, a2: Agent

Output: bool

1: return FALSE

5.3.3 State variables

The implementation of state variables is used as an input to the GNN. We should then provide any information

that we want the GNN to consider in order to return a relevant embedded solution.

In this implementation, only one state variable is given for nodes. It states if a node has already been added

into the current solution and is represented by an instance of VisitedNode. Algorithm 5.8 shows the state

variable of a given node n is 0.0 if n is in the given solution s, and 1.0 otherwise.

Validation on the Travelling Salesman Problem 54

Algorithm 5.8 VisitedNode::compute(s, a, n)

Input: s: Solution, a: Agent, n: Node

Output: float

1: if n ∈ s.get nodes() then
2: return 0.0

3: else
4: return 1.0

5: end if

Two state variables are defined for edges: its distance (depicted by an instance of DistanceEdge) and whether

it belongs to the tour corresponding to the given solution s (represented by an instance of VisitedEdge). In

Algorithm 5.9, the state variable of the given edge e equals to its weight if e is “involved” for the choice of a

new node, and 0.0 otherwise. An edge e is considered “involved” if it may belong to the tour of the solution

obtained after the next iteration, i.e., if it belongs to the tour of s, or if at least one of its adjacent node is not

contained in s.

Algorithm 5.9 DistanceEdge::compute(s, a, e)

Input: s: Solution, a: Agent, e: Edge

Output: float

1: tour ← get edge tour(s)

2: if e ∈ tour or e.n1 /∈ s.get nodes() or e.n2 /∈ s.get nodes() then
3: return e.w

4: else
5: return 0.0

6: end if

Algorithm 5.10 describes the state variable determining if an edge belongs to the given solution. It returns 0.0

if it is the case, and 1.0 otherwise.

Algorithm 5.10 VisitedEdge::compute(s, a, e)

Input: s: Solution, a: Agent, e: Edge

Output: float

1: tour ← get edge tour(s)

2: if e ∈ tour then
3: return 0.0

4: else
5: return 1.0

6: end if

5.4 Experiments

This section presents the experiments performed to assess the performance of ALGO on the TSP. These have

been conducted on the High Performance Computing (HPC) platform of the University of Luxembourg [Varrette

et al., 2022]. We first describe the training process in Section 5.4.1. We then present all heuristics which

have been used as a comparison basis for the heuristic generated by ALGO. We finally present our results in

Section 5.4.3.

Validation on the Travelling Salesman Problem 55

5.4.1 Training process

Training instances are complete graphs which have been randomly generated by placing nodes uniformly on

a 1000×1000 grid. The number of nodes is also uniformly chosen from 50 and 100. ALGO has been trained

on 30 000 episodes with the parameterisation summarised in Table 5.1. The definition and notation of ALGO

parameters are provided in the previous chapter, Section 4.3, where the high-level part of ALGO, i.e., related

to RL, is described.

Parameter Notation Value

ALGO

learning rate α 0.01

exploration rate ϵ 0.05

discount factor γ 0.9

size of movement frame τ 30

embedding dimension p 32

number of layers L 3

memory size |M| 1000

mini-batch size |B| 32

training instances

number of episodes 30 000

minimal number of nodes 50

maximal number of nodes 100

array size 1000×1000

Table 5.1: Experimental parameters used for training ALGO for the TSP

5.4.2 Comparison heuristics

In order to assess the performance of the heuristic generated by ALGO, we have executed it on testing instances

along with six classical existing heuristics for the TSP. We briefly describe each of them in the remainder of

this section with a pseudo-code considering a complete weighted graph as an instance and a subset of edges

from that graph as a solution. A summary is provided in Table 5.2 which indicates the type of heuristic and

their time complexity.

Name Type Time complexity

Nearest Neighbour Constructive O
(
n2
)

Greedy Edge Constructive O
(
n2 log(n)

)
Nearest Insertion Constructive O

(
n2
)

Farthest Insertion Constructive O
(
n2
)

Christofides Constructive O
(
n3
)

2-opt Perturbative -

Table 5.2: Summary of TSP heuristics used as a comparison basis.

Nearest Neighbour (Algorithm 5.11) It consists in building a tour as a sequence of nodes. At each iteration,

an unvisited node is added at the end of the solution. The chosen node is the nearest one from the last node

added into the solution. The first node is chosen randomly.

Validation on the Travelling Salesman Problem 56

Algorithm 5.11 Nearest Neighbour heuristic for the TSP

Input: complete weighted graph G(N,E)

Output: tour ⊂ E
1: tour ← ∅
2: ncurr ← select(N)
3: Nrem ← N\{ncurr}
4: while |Nrem | ≠ ∅ do
5: nnext ← argminn∈Nrem

weight((ncurr , n))
6: tour ← tour ∪ {(ncurr , nnext)}
7: Nrem ← Nrem\{nnext}
8: ncurr ← nnext

9: end while
10: return tour

Greedy Edge (Algorithm 5.12) Edges are first sorted according to their weight. Starting from the smallest

one, they are iteratively considered to be added into the solution. At each iteration, if adding the considered

edge can still lead to a feasible solution, it is added into the solution.

Algorithm 5.12 Greedy Edge heuristic for the TSP

Input: complete weighted graph G(N,E)

Output: tour ⊂ E
1: tour ← ∅
2: Eord ← sort(E) {according to weights}
3: for all e ∈ Eord do
4: if tour ∪ {e} can lead to a feasible solution then
5: tour ← tour ∪ {e}
6: end if
7: end for
8: return tour

Nearest Insertion (Algorithm 5.13) Starting from a subtour obtained with the two nearest nodes, it itera-

tively grows this subtour by adding a node at the position where its length increases least. At each iteration,

the node chosen is the nearest one from a node already in the subtour.

Algorithm 5.13 Nearest Insertion heuristic for the TSP

Input: complete weighted graph G(N,E)

Output: tour ⊂ E
1: (n1, n2)← argmine∈E weight(e)
2: tour ← {(n1, n2)}
3: Nrem ← N\{n1, n2}
4: while Nrem ̸= ∅ do
5: n← argminn′∈Nrem

minn′′∈N\Nrem
weight((n′, n′′))

6: if |tour | = 1 then
7: tour ← tour ∪ {(n1, n), (n, n2)}
8: else
9: (nx, ny)← argmin(n′,n′′)∈tour weight((n

′, n)) + weight((n, n′′))− weight((n ′,n ′′))
10: tour ← tour ∪ {(nx, n), (n, ny)}\{(nx, ny)}
11: end if
12: Nrem ← Nrem\{n}
13: end while
14: return tour

Farthest Insertion (Algorithm 5.14) Similarly to the Nearest Insertion heuristic, it iteratively grows a

subtour by adding a node at the position where its length increases least. However, the first subtour is made

Validation on the Travelling Salesman Problem 57

with the two farthest nodes, and at each iteration, the chosen node is the farthest one from a node already in

the subtour.

Algorithm 5.14 Farthest Insertion heuristic for the TSP

Input: complete weighted graph G(N,E)

Output: tour ⊂ E
1: (n1, n2)← argmine∈E weight(e)
2: tour ← {(n1, n2)}
3: Nrem ← N\{n1, n2}
4: while Nrem ̸= ∅ do
5: n← argmaxn′∈Nrem

minn′′∈N\Nrem
weight((n′, n′′))

6: if |tour | = 1 then
7: tour ← tour ∪ {(n1, n), (n, n2)}
8: else
9: (nx, ny)← argmin(n′,n′′)∈tour weight((n

′, n)) + weight((n, n′′))− weight((n ′,n ′′))
10: tour ← tour ∪ {(nx, n), (n, ny)}\{(nx, ny)}
11: end if
12: Nrem ← Nrem\{n}
13: end while
14: return tour

Christofides (Algorithm 5.15) The minimum spanning tree is first obtained from the given graph. In this

tree, nodes with an odd degree are selected to form a subgraph on which is run a minimum-weight perfect

matching. Both the spanning tree and the matching are united which gives a graph where all nodes have an

even degree. An Euler tour can then be calculated, from which the solution is obtained by removing repeated

nodes.

Algorithm 5.15 Christofides heuristic for the TSP

Input: complete weighted graph G(N,E)

Output: tour ⊂ E
1: Emst ← minimum spanning tree

(
G(N,E)

)
2: Nodd ← {n | |{n′|(n, n′) ∈ Emst} ∪ {n′|(n′, n) ∈ Emst}| is odd}
3: Eodd ← {(n, n′) | n ∈ Nodd , n

′ ∈ Nodd}
4: Emwpm ← minimum weight perfect matching

(
G(Nodd ,Eodd)

)
5: Ntour ← eulerian path

(
G(N,Emst∪Emwpm)

)
{ordered}

6: ncurr ← Ntour [1]
7: Nrem ← N\{ncurr}
8: for all n ∈ Ntour do
9: if n ∈ Nrem then

10: tour ← tour ∪ {(ncurr , n)}
11: Nrem ← Nrem\{n}
12: ncurr ← n
13: end if
14: end for
15: return tour

2-opt (Algorithm 5.16) It iteratively updates a solution by swapping two edges. At each iteration, if swapping

two edges from the current solution decreases the length of the tour, they are swapped.

5.4.3 Results

The heuristic generated by ALGO and the heuristics presented in Section 5.4.2 have been executed on 1000

instances from different classes, each class being defined by the range of number of nodes. Instances have been

Validation on the Travelling Salesman Problem 58

Algorithm 5.16 2-opt heuristic for the (symmetric) TSP

Input: complete weighted graph G(N,E) and tour ⊂ E
Output: tour ⊂ E
1: improvement ← TRUE

2: while improvement do
3: improvement ← FALSE

4: for all (n1, n2) ∈ tour do {assuming that n1 → n2}
5: for all (n3, n4) ∈ tour\{(n1, n2)} do {assuming that n3 → n4}
6: if weight((n1, n3)) + weight((n2, n4)) < weight((n1, n2)) + weight((n3, n4)) then
7: tour ← tour ∪ {(n1, n3), (n2, n4)}\{(n1, n2), (n3, n4)}
8: improvement ← TRUE

9: end if
10: end for
11: end for
12: end while
13: return tour

randomly generated in the same way as for the training process (see Section 5.4.1). For example, instances

from the class 100-200 have a number of nodes uniformly generated between 100 and 200. After executing all

heuristics on one instance, the score given to heuristics is the approximation ratio, i.e., the ratio of the length

of the obtained tour to the length of the optimal tour. For each instance, the shortest tour obtained among

all heuristics is considered to be the optimal one for the computation of the approximation ratio. The average

over the 1000 testing instances per class is retained and shown in Figure 5.4.

Figure 5.4: Results obtained by executing different TSP heuristics on 1000 instances from four classes.

Figure 5.4 shows that the heuristic generated by ALGO provides better solutions than other constructive heuris-

tics. This outperformance is confirmed with a Pairwise Wilcoxon Signed-Rank (PWSR) test (see Table 5.3).

The generated heuristic, with a quadratic running time, thus outperforms Greedy Edge heuristic, running in

O
(
n2 log(n)

)
, and Christofides heuristic, running in O

(
n3
)
. It is also interesting to notice that the generated

heuristic drastically improves the performance of other insertion heuristics, which shows the impact of the learn-

ing process. For all instance classes, the Nearest Insertion heuristic indeed provides solutions approximately 1.3

times worse than the generated heuristic. The Farthest Insertion heuristic’s quality decreases with the higher

Validation on the Travelling Salesman Problem 59

number of nodes. The returned solutions are approximately 1.4 times worse than the ones provided by the

generated heuristic for instances from 10-50, and it goes up to 2.5 times worse for instances from 200-500.

Another important property of ALGO is its good stability. It has indeed been trained on instances from 50-100.

The performance of the generated heuristic is however similar for any instance class. The approximation ratio

even slightly decreases with the higher number of nodes. Another interesting aspect of the heuristic generated

by ALGO is its lower standard deviation. Only Christofides heuristic for 100-200 instances shows a lower

deviation (1016 for 1015). In general, that standard deviation is close to the one provided by Christofides and

2-opt heuristics. This ability also demonstrates the good stability of the heuristic.

Despite the good performance of the generated heuristic, the provided solutions are in average worse than

solutions obtained with the 2-opt heuristic, the only perturbative heuristic. This counter performance is however

alleviated by the better running time. In addition, solutions returned by the generated heuristic are often 2-opt

local optima. It can be viewed on Figure 5.5 where all heuristics have been executed on an instance with 100

nodes (randomly generated as for the training process). The solution obtained by the generated heuristic, in

Figure 5.5(g), does not have crossing edges which means it is a 2-opt local optimum. With the decrease in the

approximation ratio of the generated heuristic with the high number of nodes, the performance becomes even

similar to the 2-opt heuristic. This is determined by the PWSR test, whose results are depicted in Table 5.3,

stating that there is no statistical confidence in distinguishing the performance of both heuristics on instances

from 200-500.

After observing the good performance of the heuristic generated by ALGO on instances randomly generated, we

wanted the execute it on more diverse instances. We thus applied the heuristic learnt by ALGO from random

instances to instances from TSPLIB [Reinelt, 1991]. All heuristics have then been executed on 104 TSPLIB

instances, with a size going from 17 to 2152 nodes. The comparison between heuristics is made according to

a PWSR test and is shown in Table 5.3. In that table, the mean and standard deviation is less relevant than

for random instances since there is much more diversity among instances. When two heuristics provide distinct

results with a 95% confidence, the mean and standard deviation are however useful to determine which heuristic

outperforms the other one.

From Table 5.3, we can see that the heuristic generated by ALGO outperforms other heuristics with a quadratic

running time, hence other insertion heuristics. It shows that ALGO could learn knowledge from random

instances that the generated heuristic uses for more diverse instances. The difference with the Nearest Insertion

is similar to the difference for random instances, i.e., the solution is approximately 1.3 times worse. The

difference with the Farthest Insertion is even bigger than for big random instances since the solutions are more

than 3.5 times worse than solutions provided by the generated heuristic.

However, the heuristic generated by ALGO shows a lack of performance compared to heuristics with a higher

running time. Even if there is no statistical distinction of performance with the Greedy Edge heuristic, the

generated heuristic is outperformed by Christofides and 2-opt heuristics. According to the good performance of

the heuristic generated by ALGO on random instances and its stability, we believe that this lack of performance

on TSPLIB could be reduced by diversifying training instances. For example, instances with a non-uniform

distribution of nodes in the 1000×1000 square could be used along with instances that we have used for these

experiments.

Validation on the Travelling Salesman Problem 60

(a) Nearest Neighbour (b) Greedy Edge (c) Nearest Insertion

(d) Farthest Insertion (e) Christofides (f) 2-opt

(g) ALGO

Figure 5.5: Tour obtained from different heuristics on a same instance where 100 nodes have been uniformly
spread in a 1000×1000 square.

Validation on the Travelling Salesman Problem 61

RANDOM
TSPLIB

10–50 50–100 100–200 200–500

ALGO
4.702e+3 7.378e+03 1.031e+04 1.544e+04 2.591e+05

± 9.966e+02 ± 7.540e+02 ± 1.016e+03 ± 1.938e+03 ± 2.127e+06

Nearest Neighbour
5.350e+03 8.424e+03 1.168e+04 1.735e+04 2.855e+05

± 1.225e+03 ± 9.568e+02 ± 1.206e+03 ± 2.182e+03 ± 2.389e+06

p-value 8.452e-153 3.165e-164 4.606e-165 3.331e-165 1.027e-03

Greedy Edge
5.117e+03 7.976e+03 1.104e+04 1.627e+04 2.559e+05

± 1.135e+03 ± 8.499e+02 ± 1.118e+03 ± 2.006e+03 ± 2.105e+06

p-value 1.234e-130 1.981e-148 1.754e-156 5.870e-160 4.680e-01

Nearest Insertion
5.876e+03 9.508e+03 1.346e+04 2.059e+04 3.487e+05

± 1.425e+03 ± 1.123e+03 ± 1.518e+03 ± 2.803e+03 ± 2.936e+06

p-value 8.662e-165 3.331e-165 3.331e-165 3.331e-165 9.354e-17

Farthest Insertion
6.764e+03 1.266e+04 2.080e+04 3.860e+04 1.002e+06

± 1.996e+03 ± 2.255e+03 ± 3.593e+03 ± 8.260e+03 ± 8.679e+06

p-value 5.336e-165 3.331e-165 3.331e-165 3.331e-165 2.647e-17

Christofides
4.928e+03 7.643e+03 1.059e+04 1.572e+04 2.494e+05

± 1.044e+03 ± 7.669e+02 ± 1.015e+03 ± 1.941e+03 ± 2.057e+06

p-value 4.114e-116 1.153e-118 7.834e-120 1.252e-122 3.869e-02

2-opt
4.523e+03 7.288e+03 1.026e+04 1.543e+04 2.434e+05

± 1.064e+03 ± 7.683e+02 ± 1.036e+03 ± 1.944e+03 ± 2.016e+06

p-value 2.057e-72 6.262e-18 6.727e-06 2.293e-01 1.180e-10

Table 5.3: Comparison between the heuristic generated by ALGO and other heuristics according to a pairwise
Wilcoxon signed-rank test. A blue cell indicates that the heuristic generated by ALGO outperforms the given
heuristic (row name) for the given instance class (column name) with a 95% statistical confidence. A gray cell

indicates that there is no statistical confidence to differentiate both heuristics.

5.5 Conclusion

In this chapter, we intended to validate ALGO. For that purpose, we used it to generate heuristics for a classical

optimisation problem, the Travelling Salesman Problem (TSP). We first provide our implementation of the TSP,

i.e., we describe the steps to follow in order to achieve our objective to generate TSP heuristics. That section

can be used as a concrete example for using our generic model of hyper-heuristic. We want to provide an

exhaustive description at the coding level, i.e., what classes to create, what methods to override, so that the

implementation can be used by ALGO.

In the second part of this chapter, we describe our experiments. We explain how we trained ALGO to generate

a heuristic to tackle the TSP. For the training process, instances have been randomly generated by placing

nodes uniformly on a square. The number of nodes has also been uniformly generated between 50 and 100, i.e.,

instances belong to the class 50-100. We also briefly describe six existing classical TSP heuristics. We used

them as a comparison basis to assess the performance of the heuristic generated by ALGO. All heuristics have

then been executed on random instances from different classes. Our results show that the heuristic generated

by ALGO outperforms all other constructive heuristics for any instance class, which demonstrates a good

performance and a good stability. Only the 2-opt heuristic provides better performance on random instances,

but with a difference decreasing with the greater size of instances. There is even no statistical distinction

between both heuristics for instances from the class 200-500.

We also executed heuristics on instances from TSPLIB. We could notice a slight decline in performance from

the generated heuristic. It still outperforms heuristics with a quadratic running time, including other insertion

Validation on the Travelling Salesman Problem 62

heuristics which shows the impact of the learning process. There is however no statistical distinction with the

Greedy Edge heuristic and it is outperformed by Christofides and 2-opt heuristics. This lack of performance is

due to a lack of diversity in training instances. We believe that including instances generated non-uniformly

in the training set would improve the quality of the heuristic generated by ALGO. This task could be part of

future work, but our purpose with ALGO was to tackle dynamic problems. We have thus shown in this chapter

the stability of ALGO and its ability to generate efficient heuristics for a classical optimisation problem. In

next part, we use ALGO in a real-world context, which is to automate the design of swarming behaviours.

Part III

Use Case: Covering an Area with a

Swarm of UAVs

63

Chapter 6

Design of Robot/UAV Swarms

Contents

6.1 Introduction . 64

6.2 Manual design of robot/UAV swarms . 65

6.3 Automated design of robot/UAV swarms . 66

6.3.1 Selective approaches . 67

6.3.2 Generative approaches . 67

6.4 Coverage of a Connected-UAV Swarm (CCUS) . 67

6.4.1 Formal expression . 68

6.4.2 Multi-objective aspect . 69

6.5 Conclusion . 71

6.1 Introduction

The usage of Unmanned Aerial Vehicles (UAVs) finds its roots where human intervention might be difficult,

risky or costly. Initially thought for military purposes, UAVs have demonstrated their tremendous potential in

civilian applications such as parcel delivery, rescue mission or environment monitoring. Current applications

nonetheless rely on the usage of a single UAV (remotely piloted or autonomous), which faces multiple limitations,

such as its range of action, payload capacity and system resilience.

Using several autonomous UAVs simultaneously as a swarm is one promising solution to address these limita-

tions. Inspired by natural phenomena, e.g., birds flocks or ant colonies, swarm intelligence allows one to achieve

complex tasks while solely relying on local decisions and interactions. Such a distributed and self-organised

approach allows multi-UAV systems to be more scalable, resilient and flexible.

While robot swarming has received an increasing interest over the past years, no single definition yet exists.

In this work, the definition of Arnold et al. [2019] will be considered. The authors define a robot swarm as

“a group of three or more robots that perform tasks cooperatively while receiving limited or no control from

human operators”. This definition implies three requirements. First, a swarm should first contain at least three

robots/UAVs, otherwise the internal interaction would be absent or too low. Second, robots in a swarm should

cooperate to perform tasks which implies that the behaviour of one will influence the behaviour of the others.

Third, a swarm finally receives few or no control from human operators which makes a swarm differ from a

64

Design of Robot/UAV Swarms 65

fleet in which there is a centralised behaviour, with a central unit shared by every robot/UAV. The behaviour

of a swarm should thus be distributed. The few control from human operators implies that the behaviour to

achieve a task must emerge from the local interactions between robots/UAVs.

Collective Exploration

Coordinated Motion

Collective Transport

Collective Localisation

Aggregation

Pattern Formation

Self-Assembly

Object Clustering and Assembly

Self-Healing

Self-Reproduction

Human-Swarm Interaction

Consensus

Task Allocation

Collective Fault Detection

Collective Perception

Synchronisation

Group Size Regulation

Swarm Behaviours

Spatial Organisation

Navigation

Decision Making

Miscellaneous

Figure 6.1: Classification of swarm behaviours proposed by Brambilla et al. [2013] and extended by Schranz
et al. [2020]

Such behaviours have been classified by Brambilla et al. [2013], Schranz et al. [2020] in four categories as

depicted in Figure 6.1: spatial organisation (robots have to organise themselves in order to form patterns or

simply aggregate), navigation (robots have to coordinate their movement), decision making (robots have to

influence themselves in order to take a common decision) and miscellaneous (other significant behaviours which

could not belong to any of the three previous categories). Since this work focuses on the area coverage by

a swarm of UAVs, it falls in the “navigation” category containing four subcategories: collective exploration,

coordinated motion, collective transport and collective localisation. The remainder of this section focuses on

collective exploration since it is the target of this work.

In the remainder of this chapter, we present existing works about the design of robot/UAV swarms. We start

this state of the art by introducing techniques based on a manual design in Section 6.2. We then present

approaches aiming at automating the design of swarming behaviours in Section 6.3. Finally, we describe in

Section 6.4 an optimisation problem that we defined for the coverage of an area by a swarm of UAVs.

6.2 Manual design of robot/UAV swarms

The literature contains a variety of studies based on path planning to manually design the behaviour of robots

or UAVs, including in the context of coverage as surveyed in Cabreira et al. [2019]. The idea is to compute

the optimal path of robots/UAVs offline, i.e., before starting the mission. In some works, these pre-computed

paths may be updated or recomputed. For instance Siemiatkowska and Stecz [2021] recalculate a Vehicle

Routing Planning (VRP) when UAVs detect a threat on their way. Besides, the problem of path planning

is often formulated as a variant of VRP. It is also the case of Semiz and Polat [2020] who solve a problem

of area coverage (different from the problem tackled in this work). These path planning techniques are not

comparable the work proposed in this thesis. Indeed, most of these studies do not suit the above definition

of a swarm. Nevertheless, with path planning techniques, UAVs are following the path computed beforehand,

which implies a strong control from a human operator. Moreover, these techniques are usually exact methods

and/or metaheuristics which are too expensive for an online usage.

Design of Robot/UAV Swarms 66

Another way to manually design robot/UAV swarms considers online techniques, based on the direct or indirect

communication between robots/UAVs. Some of those are based on line-of-sight communication. The work of

Nouyan et al. [2008] consists in chaining a swarm of robots between two points where robots have different

colours according to the direction of the chain. Ducatelle et al. [2011] propose a communication system for

making a swarm of robots reach an unknown target point. However, when dealing with collective exploration,

the vast majority relies on a stigmergy process such as pheromone-based systems. Some works focus on the

design of the swarm system Sun et al. [2019], Na et al. [2020] which abstracts from the application, i.e., the

collective task. The idea is to design a pheromone system as close as possible to how pheromone would evolve

in nature. These pheromone systems are used to investigate the impact of using multiple pheromones in the

context of a collective task Liu et al. [2020, 2021].

Most of the literature, meanwhile, deals with task-specific systems, i.e., how to use the pheromone for the wanted

collective task. Kuiper and Nadjm-Tehrani [2006] first introduced a pheromone-based system to optimise the

coverage of an area by a swarm of UAVs. In that work, UAVs have to choose a direction according to the

amount of repulsive pheromones left by other UAVs. Rosalie et al. [2018] proposed an extension of the latter

work where the random aspect is replaced by a chaotic system. The objective is to obtain a movement which

seems unpredictable from the outside, while being deterministic. Danoy et al. [2015] combined the work of

Kuiper and Nadjm-Tehrani [2006] with a multi-hop clustering approach in order to consider the connectivity

of the swarm during the coverage task. The added connectivity objective aims to maintain a good exchange

of information inside the swarm and thus improve its performance. Brust et al. [2017] extended the previous

work with a dual-pheromone model in order to tackle three objectives of the swarm: area coverage, swarm

connectivity and target tracking.

Although such pheromone-based approaches have demonstrated good results, Hunt et al. [2019] show that they

face limitations particularly when the density of the swarm is very high (the number of robots/UAVs relative to

the size of the area). Added to this limitation, such a pheromone-based behaviour has to be designed manually,

which can be very time-consuming and is specific to an application. For instance, the pheromone evaporation

rate or the balance between different pheromones (in case of using multiple types) may differ according to the

emergent task of the swarm.

6.3 Automated design of robot/UAV swarms

One approach that recently raised some interest consists in automating the design of swarming behaviours, as

mentioned by Birattari et al. [2019]. This process can be assimilated to a hyper-heuristic which has been deeply

surveyed by Burke et al. [2013], Epitropakis and Burke [2018], Burke et al. [2019]. Hyper-heuristics are used

more generally in optimisation for automating the design of heuristics for a given problem. Li and Malik [2017]

first assimilate that process to learning to optimise where they view an optimisation algorithm as a policy in

a Markov Decision Process (MDP). In the context of robot/UAV swarms, a heuristic corresponds to the local

behaviour of each UAV used to tackle global problems like optimising the coverage of an area.

Another way to automate the design of a swarm of robots/UAVs is proposed by Kouzehgar et al. [2020]. They

use Reinforcement Learning (RL) to generate the behaviour of a swarm of autonomous buoys to cover an area.

The RL algorithm makes it possible to adapt to any shape change of the area to cover, even while the coverage

occurs. Such approaches are however assimilated to metaheuristics since the behaviour learnt is specific to the

current shape of the area. We will hence not detail similar approaches in the remainder of this section.

Design of Robot/UAV Swarms 67

6.3.1 Selective approaches

The process of hyper-heuristics has only been recently applied in the context of UAV/robot swarm and is still

an open research area as outlined by Birattari et al. [2019]. The latter manifesto presents the current challenges

of “automatically designing a swarm for any mission with a given class”. Most existing techniques consist in

providing UAVs/robots a set of predefined actions, so that they can learn at each step which action to use

according to the given task and the state of the environment. For instance, Birattari et al. [2021] developed

AutoMoDe which is a framework for automating the design of a robot swarm with different specialisations

(corresponding each to a set of behaviours). Ligot et al. [2022] extend the latter work with a way to automatically

generate different missions along with a performance indicator. Reinforcement Learning (RL) is mainly used

as a high-level algorithm. The idea is to represent the actions of RL by the different behaviours of the swarm.

Yu et al. [2018] used it in the context of a self-assembling swarm and Yu et al. [2019] in the more specific case

of surface cleaning. It is also used by Nagavalli et al. [2017] for choosing a sequence of behaviours for a given

task, like navigating in an environment with obstacles.

These selective approaches are prominently used in the context of robot/UAV swarming, since it is convenient

to provide specific behaviours to a robot or UAV. The searching space of behaviours is however limited to

the actions specified by the user. Similarly to classical hyper-heuristics, considering generative approaches

considerably increase the size of the searching space. In the context of robot/UAV swarm, it permits to obtain

more complex behaviours with a greater adaptability to dynamic environment.

6.3.2 Generative approaches

A second and more recent branch of hyper-heuristics relying on a generative approach exists in the literature

but it has not received much attention yet in the robot/UAV community. Generative hyper-heuristics do not

need a set of predefined low-level heuristics, but a set of “building blocks” from which the high-level algorithm

will construct possibly unseen low-level heuristics. We were first to explore this research direction [Duflo et al.,

2020a,b, 2021, 2022a,b]. We represented the task of the swarm as a multi-objective optimisation problem

(presented in Section 6.4). We then used ALGO to generate distributed heuristics for that problem.

6.4 Coverage of a Connected-UAV Swarm (CCUS)

The following UAV swarm surveillance scenario is considered in this work: several UAVs equipped with ad hoc

communication capabilities take off from different bases to cover a common area (see Figure 6.2(a) with blue

squares as bases of UAVs). These UAVs evolve as a swarm which needs to cover as much area as possible,

as fast as possible while remaining as connected as possible. That connectivity aspect is crucial in such a

distributed system since it will enhance the communication within the swarm. The local information of each

UAV will therefore spread faster, which in turn will result in an improved performance of the global system

(i.e., swarm). In this context, the information exchanged by UAVs is the current solution according to their

distributed knowledge. A formalisation of a solution is described in Section 6.4.1.4. Once the UAVs have

finished covering the area, they must return to their base (i.e., initial starting point). Such a surveillance

scenario can find numerous civil applications that require a fast and efficient coverage of a large area, such as

search and rescue missions, forest fire or pollution detection.

We designed in [Duflo et al., 2020b] the Coverage of a Connected-UAV Swarm (CCUS) optimisation problem

for that purpose. It optimises the coverage of an area by a swarm of UAVs with two objectives: the coverage

Design of Robot/UAV Swarms 68

Environment graph Communication graph Starting points of UAVs Paths of UAVs

(a) (b) (c)

Figure 6.2: Swarm of UAVs covering an area with obstacles. The UAVs are flying from different bases
(blue squares) following a discretisation of the map (dashed blue lines), as shown in 6.2(a). At that time, the
environment graph (in green) and the communication graph (in red) are represented in 6.2(b). The current

solution as a set of paths (in blue) is depicted in 6.2(c).

speed and the swarm connectivity. We later extended CCUS in [Duflo et al., 2022b] to a three-objective model,

referred to as CCUS3O, which targets coverage time, coverage rate and connectivity. What motivates the

introduction of a third objective is that the coverage objective in CCUS includes both the coverage time and

the coverage rate in one single value. Such a scalarisation introduces a bias that not only can negatively impact

the performance but also reduces the explainability of the objective value. Using three objectives in CCUS3O

thus permits to have more atomic objectives. The remainder of this section first presents a formal definition

of instances and solutions (see Section 6.4.1), followed by the evaluation of solutions according to the three

objectives (see Section 6.4.2).

6.4.1 Formal expression

The CCUS3O model considers two entities: an environment graph which is a discretisation of the area and

the communication graph which depicts the communication network of the swarm. Both are represented in

Figure 6.2(b) and detailed hereinafter.

6.4.1.1 Environment graph

The environment graph is a discretisation of the environment which defines where UAVs can move and which

ways they can take (see Figure 6.2(b)). It is represented as Ge = (V,Ee) with V the set of vertices and Ee

the set of edges. This graph is here considered static, i.e., the set of edges remains the same along with their

length, and connected.

As a notation, dist : V 2 → R returns the length of the shortest path between two given vertices. The

neighbourhood of a vertex v is besides represented by N e(v) which is the set of every vertex linked to v in the

environment graph.

6.4.1.2 Communication graph

The communication graph indicates the position of UAVs (i.e., vertices) and connects them (i.e., edges) if they

are close enough for communicating , i.e., below a predefined communication range threshold Dcom from each

other (see Figure 6.2(b)). The value of Dcom is directly related to the ad hoc communication setup. The

Design of Robot/UAV Swarms 69

communication graph is noted Gc = (U,Ec), with U the set of UAVs. Unlike the environment graph, it is

dynamic and not always connected since the position of UAVs changes during the coverage task.

As a notation, pos : U → V returns the position of a given UAV, i.e., the vertex on which the UAV is currently

located. Moreover, the neighbourhood of a UAV u is depicted by N c(u) which is the set of every UAV in the

communication range of u.

6.4.1.3 Definition of instances

A CCUS3O instance is defined by an environment graph and an initial communication graph, and can be

written as I = (Ge, Gc). Since Gc belongs to the instance, the initial position of UAVs is therefore specific

which means that two different initial positions result in two different instances. The set of CCUS3O instances

is depicted as I. Given two graphs Ge = (V,Ee) and Gc = (U,Ec), then I = (Ge, Gc) ∈ I if and only if ∀u ∈ U

N c(u) = {u′ ∈ U\{u} | dist(pos(u), pos(u′) ≤ Dcom}

From that definition, an instance class can be defined by an environment graph and the size of the communication

graph. Given a connected graph G and an integer k > 0, the class of instances C(G, k) thus represents the

instances with k UAVs in an environment graph G. Instances from a same class thus only differ in terms of the

initial position of UAVs.

C(G, k) = {(G, (U,Ec)) ∈ I | |U | = k}

6.4.1.4 Definition of solutions

A solution for a CCUS3O instance I ∈ I is a set of paths in Ge. It can be defined as S = {Pu}u∈U , with each

path Pu starting at the origin vertex of the corresponding UAV u, as represented in Figure 6.2(c). A solution

is moreover considered feasible if and only if the paths Pu are cycles, i.e., Pu[1] = Pu [|Pu|], ∀u ∈ U . In the

CCUS3O scenario, it means that every UAV has returned to its starting point. As a notation, S̄ refers to the

vertices of Ge not appearing in S, i.e., not visited by any UAV.

S̄ = {v ∈ V | ∄u ∈ U, v ∈ Pu}

6.4.2 Multi-objective aspect

At any moment during the execution of the coverage mission, the current solution can be evaluated according to

the three CCUS3O objectives: coverage time, coverage rate and connectivity. Any solution S is thus evaluated

by O(S) ∈ R3:

O(S) =

O(rate)(S)

O(time)(S)

O(conn)(S)

Design of Robot/UAV Swarms 70

where O(rate)(S), O(time)(S) and O(conn)(S) refer to the objective values of S according to the coverage time,

the coverage rate and the connectivity. Let O = {rate, time, conn} denote the set of CCUS3O objectives.

6.4.2.1 Coverage rate

During a coverage mission, UAVs are expected to cover as much area as possible. In CCUS3O it corresponds

to maximising the number of vertices visited in the environment graph. For any solution S, its objective value

for the coverage rate O(rate)(S) is then defined as the difference between the number of non-visited vertices,

i.e.,
∣∣S̄∣∣, and the number of vertices in the environment graph, i.e., |V |.

O(rate)(S) =
∣∣S̄∣∣− |V |

The result is always a non-positive number to obtain a minimisation objective. For missions where the whole area

covered is considered, this objective is then equal to the opposite of the number of vertices in the environment

graph.

6.4.2.2 Coverage time

Besides covering as much area as possible, the time for UAVs to come back to their base must be minimised.

In the CCUS3O model, UAVs are considered to fly at a constant speed. The fact that the speed is constant

states that the time spent and the distance travelled are proportional, regardless of the value of the speed. The

coverage time can therefore be calculated from the distance travelled by UAVs. During a coverage mission, the

UAVs do not return to their base at the same moment. The total coverage time thus corresponds to the time

needed by the UAV which finished last, i.e., with the longest trip. For any solution S (including non-feasible

ones), O(time)(S) is defined as:

O(time)(S) = max
u∈U

lu

where lu is the length of the path made by UAV u at the current time and the path from the current position

to the starting vertex (i.e., base station). It thus depict the length of the cycle made by UAV u if the latter

comes back to its initial vertex from the current position.

lu = dist (pos(u), Pu[1])︸ ︷︷ ︸
distance from the initial vertex

+

|Pu|−1∑
i=1

dist (Pu[i], Pu[i+ 1])︸ ︷︷ ︸
distance travelled so far

Since the objective is to cover the area as fast as possible, the coverage time objective should be minimised.

Furthermore, minimising the longest cycle (compared to minimising the average for instance) prevents the

situation where some UAVs finish their tour much earlier than other ones.

6.4.2.3 Connectivity

Efficient information sharing is of prime importance for UAV swarms which are highly mobile ad hoc networks

relying on distributed decision making. In CCUS3O, it is considered that every UAV u asynchronously shares its

Design of Robot/UAV Swarms 71

local information with every UAV in its communication neighbourhood depicted by N c(u). As a consequence,

every UAV in the same connected component of the communication graph has similar local information about

the area that has been covered. This connectivity objective thus aims at minimising the average number of

connected components in Gc. For that purpose a discretisation of the time T = {t1, t2, · · · } ⊂ R is considered

and for a solution S, TS ⊂ T contains every time lower than or equal to the current time of S. The objective

value for the connectivity O(conn)(S) is then obtained as:

O(conn)(S) =
1

|TS |
∑
t∈TS

ct

where ct is the number of connected components in Gc at time t.

Each UAV keeps in memory the representation of the solution (according to its distributed knowledge), i.e.,

the path made by every UAV so far. When two UAVs communicate, they share that information and keep for

each path the most recent one, as shown in Figure 6.3.

0: [1, 7, 9]

1: [5, 6, 4, 5, 7]

2: [9, 0]

...

0: [1, 7, 9, 3]

1: [5, 6]

2: [9, 0, 4, 6, 2]

...

(a) Each UAV’s known path is compared to the one from the coming
information. It is red if the length is smaller than the one from the

coming information, and green otherwise.

0: [1, 7, 9, 3]

1: [5, 6, 4, 5, 7]

2: [9, 0, 4, 6, 2]

...

0: [1, 7, 9, 3]

1: [5, 6, 4, 5, 7]

2: [9, 0, 4, 6, 2]

...

(b) Each UAV’s known path is updated according to the path with
the biggest length among both information.

Figure 6.3: Every UAV stores the known path of each UAV. When two UAVs can communicate, they compare
their known paths (6.3(a)) and update them according to their length (6.3(b)).

6.5 Conclusion

When designing a swarm of robots/UAVs, the difficulty lies in the fact that the wanted behaviour is only

emergent from the controlled local interactions. Manually defining local rules to robots or UAVs within the

swarm, by aiming a emerging behaviour, can therefore be a challenging and time-consuming task. It explains the

rise of techniques with the purpose of automating that process. These techniques can be assimilated to hyper-

heuristics where the behaviour to return is a low-level heuristic that a high-level algorithm aims at searching.

However, the vast majority of such existing techniques rely on selective approaches, i.e., UAVs are given a set

of predefined tasks/rules/actions, and the purpose is thus to choose when to apply an action according to the

situation.

Design of Robot/UAV Swarms 72

In this work, we go beyond the state-of-the-art by proposing a generative approach to automate the design of

a swarm of UAVs. For that purpose, we first describe the task of covering an area with a swarm of UAVs as a

multi-objective optimisation problem. We then apply our designed algorithm ALGO on that problem to return

a distributed heuristic for it.

Chapter 7

Learning to Optimise a Swarm of

UAVs

Contents

7.1 Introduction . 73

7.2 Modelling as an AFOP . 74

7.3 Implementation for ALGO . 75

7.3.1 Optimisation model . 76

7.3.2 Low-level heuristics . 78

7.3.3 State variables . 79

7.4 Experimental Setup . 80

7.4.1 Performance metrics . 80

7.4.2 Comparison heuristics . 82

7.4.3 Experimental process . 84

7.5 Experimental Results . 85

7.5.1 Factorial experiment . 85

7.5.2 Comparison with QLHH . 86

7.5.3 Stability . 87

7.6 Conclusion . 90

7.1 Introduction

Defining a priori the behaviour of each individual swarm member to obtain a desired collective behaviour is

difficult and time-consuming due to the high uncertainty of a swarm operation. As a consequence, classical

multi-robot design techniques are not applicable, as they require the global specifications of the systems to

define the behaviour of individual robots Birattari et al. [2019]. Other methods, mainly belonging to the field

of evolutionary swarm robotics, Silva et al. [2016] have been proposed to automate the design of more complex

systems like robot swarms. Here, the design problem is modelled as an optimisation problem which consists in

finding an optimal parameterisation and architecture of the neural network used to control each swarm member.

However, as outlined in Francesca and Birattari [2016], these have limitations, for instance, they are typically

applied to a single use case (i.e., no generalisation study).

73

Learning to Optimise a Swarm of UAVs 74

Automating the design of flexible/reusable swarming behaviours would, thus, overcome these challenges. How-

ever, as outlined by Birattari et al. [2019], automatic robot swarm design still remains an open research problem.

In this chapter, we propose to automate the design phase of UAV swarms. This is done by using ALGO to

generate distributed heuristics for the problem of CCUS3O described in Chapter 6, Section 6.4. More precisely,

it seeks to improve the state-of-the-art in automated algorithm design to generate efficient swarming behaviours

in the context of area coverage. The problem of covering an area consists of moving UAVs so that any location

of the area is visited by at least one UAV at some point in time.

The remainder of this chapter is organised as follows. It first presents in Section 7.3 how to implement CCUS3O

as an AFOP so that it can be used in ALGO. The following sections are related to the experiments. In

Section 7.4, the experimental setup and process are described, while the results are shown in Section 7.5.

7.2 Modelling as an AFOP

This section presents how we modelled CCUS3O as an AFOP so that ALGO can generate CCUS3O heuristics.

The first step is to represent CCUS3O as an AFOP. An instance must therefore be mapped to an AFOP

instance, i.e., I =
(
G(N,E), A

)
where G is a graph and A a set of agents. A solution S ∈ SI must moreover be

mappable to a CCUS3O solution.

S =
{
(ai1 , nj1)t1 , · · · , (aik , njk)tk , · · ·

}
∈ SI (7.1)

where aik ∈ A, njk ∈ N and tk ∈ R+, ∀k ≥ 1.

A CCUS3O instance is composed of the environment and the communication graphs. The environment graph is

assimilated toG(N,E) and the vertices of the communication graph, i.e., UAVs, represent A. A CCUS3O solution

being a set of paths in the environment graph, one path per UAV, can hence be written as in Equation 7.1.

Given a solution S ∈ SI , the path of each agent a can be extracted by selecting elements added by a, i.e., by

calling S.filter agents({a}). The elements are then ordered by the time they have been added into S. It gives

a sequence of nodes per agent, which is the definition of a CCUS3O solution.

Finally, the domain of solutions XI ⊆ SI , the set of objectives O and the set of constraints C must be defined.

CCUS3O must then be represented as the following mathematical program.

(AFOP)

Minimise fo(S) ∀o ∈ O

subject to fc(S) ≤ bc ∀c ∈ C

S ∈ XI

(7.2)

In this modelling, we do not want ALGO to produce non-feasible solutions during its exploration phase. The

domain of solutions XI then represents any feasible solution, i.e., paths of agents are cycles which union covers

all nodes from N . With our modelling, if an agent consecutively adds two non-adjacent nodes, the path is filled

by the shortest path between those two nodes. An agent cannot however consecutively adds the same node.

Such solution then belongs to XI . Since all solutions belonging to XI are feasible, there is no constraint defined

here, i.e., C = ∅. Finally, the three objectives of CCUS3O are considered, so O = {rate, time, conn}.

Learning to Optimise a Swarm of UAVs 75

7.3 Implementation for ALGO

Now that we demonstrated that CCUS3O can be modelled as an AFOP, this section presents the proposed

implementation to be included within ALGO’s implementation. The process that we follow is described in

Chapter 4, Section 4.4.

An overview is provided in Figure 7.1. The class CCUS3O inherits from the abstract class Problem. The four

abstract methods used by the low-level heuristics must then be overridden (presented in Section 7.3.2). An

instance of CCUS3O must declare a list of objectives and constraints so that the TSP is defined by the mathemat-

ical program of an AFOP (Equation 7.2, see more detail in Section 7.3.1). In this implementation, no constraint

is given and three objectives are defined, hence the classes CoverageRate, CoverageTime and Connectivity

inheriting from Objective and overriding the abstract method compute value. Finally, a list of state variables

for nodes and edges must be declared to be used as an input of the GNN (described in Section 7.3.3). In the pro-

posed implementation, we declare three state variables for nodes, identified by classes Visited, DistanceBase

and Neighbourhood inheriting from the class NodeVariable and overriding the abstract method compute. We

also declare one state variables for edges, i.e., we write the class DistanceEdge inheriting from EdgeVariable

and overriding the abstract method compute. In addition, the class CCUS3O defines three methods to utilise

elements present in the definition of CCUS3O and could not be mapped into the definition of an AFOP. In

CCUS30, the position of an UAV is a node of the environment graph. From a certain solution s, that posi-

tion can be retrieve by calling get position(s, a) where a is an agent, i.e., an UAV in CCUS3O context

(see Algorithm 7.1). The shortest path between two nodes n1 and n2 from a graph g is computed by calling

get shortest path(g, n1, n2) (see Algorithm 7.2). Finally, given a solution s, the connected components

within the communication graph is obtained by calling get connected components(s) (see Algorithm 7.3).

Problem

- objectives: list
- constraints: list
- node_variables: list
- edge_variables: list

+ is_terminal(s: Solution, a: Agent): bool
+ get_nodes(s: Solution, a: Agent): set
+ time(s: Solution, a: Agent , n: Node): float
+ can_communicate(s: Solution, a1: Agent, a2: Agent): bool

Objective

+ compute_value(s: Solution): float

Constraint

+ get_upper_bound(): float

NodeVariable

+ compute(s: Solution, a: Agent, n: Node): float

EdgeVariable

+ compute(s: Solution, a: Agent, e: Edge): float

1

1..*

0..*

0..*

0..*

CCUS3O

+ get_position(s: Solution, a: Agent): Node
+ get_shortest_path(g: Graph, n1: Node, n2: Node): float
+ get_connected_components(s: Solution): set

CoverageRate

Visited

DistanceEdge

CoverageTime

Connectivity

DistanceBase

Neighbourhood

Figure 7.1: UML diagram showing the implementation of CCUS3O.

We remind that the classes Graph and Solution represent respectively an AFOP instance, i.e., I =
(
G(N,E), A

)
,

and an AFOP solution, i.e., S ∈ SI . The class Graph has three attributes: a list of Node objects, a list of

Edge objects and a list of Agent objects. The class Solution is seen as a set of Item objects, where Item,

corresponding to a tuple (a, n)t ∈ A×N × R+, has three attributes of type Agent, Node, float.

Learning to Optimise a Swarm of UAVs 76

The position of an UAV is a node from the environment graph. In the context of an AFOP, it is the last node

added into the solution by the corresponding agent. The method get position(s, a) then returns the last

node added by agent a into solution s.

Algorithm 7.1 CCUS3O::get position(s, a)

Input: s: Solution, a: Agent

Output: Node

1: t ← -1

2: for item ∈ s.filter agents({a}) do
3: if t < item.time then
4: n ← item.node

5: end if
6: end for
7: return n

As an initialisation step, the distance between all nodes from G(N,E) is computed with |N | Dijkstra’s algorithm.

The result is stored in a matrix as an attribute of the instance of Graph (we remind that our framework allows

the user to add attributes to objects instantiating Graph, Node, Edge and Agent). We name that attribute

d. From that point, to compute the shortest path between two nodes n1 and n2 in a graph g, the method

get shortest path(g, n1, n2) simply processes an A* search algorithm. The method is used when an UAV

choose a destination node which is not adjacent to its current position.

Algorithm 7.2 CCUS3O::get shortest path(g, n1, n2)

Input: g: Graph, n1: Node, n2: Node

Output: list

1: path ← [n1]

2: n curr ← n1

3: while n curr ̸= n2 do
4: min length ←∞
5: for n ∈ n curr.neighbours() do
6: if g.d[n1][n] + g.d[n][n2] < min length then
7: n next ← n

8: min length ← g.d[n1][n] + g.d[n][n2]

9: end if
10: end for
11: path ← path + [n next]

12: n curr ← n next

13: end while
14: return path

Given a solution s, representing a solution S ∈ SI , the method get connected components(s) returns a

partition of A, in the form of a set of sets of agents. The idea is to represent an edge from the communication

graph, linking two agents a1 and a2, with can communicate(s, a1, a2) = TRUE.

7.3.1 Optimisation model

Given a solution s, the three objective values are computed by calling compute value(s) from an instance of

classes CoverageRate, CoverageTime and Connectivity respectively.

Given a solution s, CoverageRate::compute value(s) returns the difference between the number of nodes in

the graph and the number of nodes added into the solution (see Algorithm 7.4).

Learning to Optimise a Swarm of UAVs 77

Algorithm 7.3 CCUS3O::get connected components(s)

Input: s: Solution

Output: set

1: graph ← s.get graph()

2: components ← ∅
3: visited ← ∅
4: for agent ∈ graph.agents do
5: if agent /∈ visited then
6: component ← ∅
7: waiting ← { agent }
8: while waiting ̸= ∅ do
9: a1 ← select(waiting)

10: waiting ← waiting \ { a1 }
11: component ← component ∪ { a1 }
12: visited ← visited ∪ { a1 }
13: for a2 ∈ graph.agents do
14: if a2 /∈ visited and ccus.can communicate(s, a1, a2) then
15: waiting ← waiting ∪ { a2 }
16: end if
17: end for
18: end while
19: components ← components ∪ { component }
20: end if
21: end for
22: return components

Algorithm 7.4 CoverageRate::compute value(s)

Input: s: Solution

Output: float

1: graph ← s.get graph()

2: return |graph.nodes| - |s.get nodes()|

Given a solution s, CoverageTime::compute value(s) computes the length of the tour made by each agent

and returns the maximal one (see Algorithm 7.5). The length of such a tour is the time at which an agent has

added its last node into the solution added to the distance to its initial node.

Algorithm 7.5 CoverageTime::compute value(s)

Input: s: Solution

Output: float

1: graph ← s.get graph()

2: max time ← 0.0

3: for a ∈ graph.agents do
4: t ← max(s.filter agents({a}).get times()) + graph.d[ccus.get position(s, a)][a.first]

5: if t > max time then
6: max time ← t

7: end if
8: end for
9: return max time

Given a solution s, Connectivity::compute value(s) computes the number of connected components in the

communication graph at different times. It then returns the average of them (see Algorithm 7.6). The time step

between two measures is a parameter of CCUS3O. That value is hence obtained by calling get time step()

on an object of type CCUS3O (line 8).

Learning to Optimise a Swarm of UAVs 78

Algorithm 7.6 Connectivity::compute value(s)

Input: s: Solution

Output: float

1: count ← 0

2: mean ← 0.0

3: t ← 0

4: while t ≤ max(s.get times()) do
5: n ← |ccus.get connected components(s.filter times(t))|

6: mean ← (count * mean + n) / (count + 1)

7: count ← count + 1

8: t ← t + ccus.get time step()

9: end while
10: return mean

7.3.2 Low-level heuristics

The implementation about low-level heuristics corresponds to the overriding of abstract methods from the class

Problem which are used by the low-level heuristic.

A solution is terminal for an agent if all nodes from the graph have been added into it, and the agent’s position

is its initial node (see Algorithm 7.7).

Algorithm 7.7 CCUS3O::terminal(s, a)

Input: s: Solution, a: Agent

Output: bool

1: graph ← s.get graph()

2: return |s.get nodes()| = |graph.nodes| and ccus.get position(s, a) = a.first

As long as some nodes from N are not added into the solution, an agent can choose any node from the graph

but its current position. If all nodes have been added into the solution, the agent has no choice but going to

its initial position (see Algorithm 7.8).

Algorithm 7.8 CCUS3O::get nodes(s, a)

Input: s: Solution, a: Agent

Output: set

1: graph ← s.get graph()

2: if |s.get nodes()| = |graph.nodes| then
3: candidates ← { a.first }
4: else
5: candidates ← ∅
6: for node ∈ graph.nodes do
7: if node ̸= ccus.get position(s, a) then
8: candidates ← candidates ∪ { node }
9: end if

10: end for
11: end if
12: return candidates

The time for an agent to add a node into the solution, is the time for an UAV to reach the node in the

environment graph. It is hence equivalent to the distance between the agent’s position and the node to add

(see Algorithm 7.9).

Learning to Optimise a Swarm of UAVs 79

Algorithm 7.9 CCUS3O::time(s, a, n)

Input: s: Solution, a: Agent, n: Node

Output: float

1: graph ← s.get graph()

2: return graph.d[ccus.get position(s, a)][n]

Two agents can communicate if the distance between their position is lower than a certain communication

range (see Algorithm 7.10). The value of this communication range is a parameter of CCUS3O. Its value is

thus obtained by calling get com range() on an object of type CCUS3O (line 2).

Algorithm 7.10 CCUS3O::can communicate(s, a1, a2)

Input: s: Solution, a1: Agent, a2: Agent

Output: bool

1: graph ← s.get graph()

2: return graph.d[ccus.get position(s, a1)][ccus.get position(s, a2)] ≤ ccus.get com range()

7.3.3 State variables

The implementation of state variables is used as an input to the GNN. We should then provide any information

that we want the GNN to consider in order to return a relevant embedded solution. Three state variables are

defined for nodes, one for each CCUS3O objective.

The coverage rate objective is depicted by the class Visited, where compute(s, a, n) returns 1.0 if n has

been added into s, regardless of agent a (see Algorithm 7.11).

Algorithm 7.11 Visited::compute(s, a, n)

Input: s: Solution, a: Agent, n: Node

Output: float

1: if n ∈ s.get nodes() then
2: return 1.0

3: else
4: return 0.0

5: end if

The class DistanceBase represents the coverage time objective. the method compute(s, a, n) simply returns

the distance between the position of a in s and node s (see Algorithm 7.12).

Algorithm 7.12 DistanceBase::compute(s, a, n)

Input: s: Solution, a: Agent, n: Node

Output: float

1: graph ← s.get graph()

2: return graph.d[n][a.first]

Finally, the class Neighbourhood provides an information useful for the connectivity objective with its method

compute(s, a, n). The latter returns the number of agents (exluding a) within the communication range of

node n (see Algorithm 7.13).

Only one state variable is defined for edges. In the class DistanceEdge, the method compute(s, a, e) returns

the weight of e, regardless of s and a (see Algorithm 7.14).

Learning to Optimise a Swarm of UAVs 80

Algorithm 7.13 Neighbourhood::compute(s, a, n)

Input: s: Solution, a: Agent, n: Node

Output: float

1: graph ← s.get graph()

2: count ← 0

3: for agent ∈ graph.agents do
4: if agent ̸= a and graph.d[ccus.get position(s, agent)][n] ≤ ccus.get com range() then
5: count ← count + 1

6: end if
7: end for
8: return count

Algorithm 7.14 DistanceEdge::compute(s, a, e)

Input: s: Solution, a: Agent, e: Edge

Output: float

1: return e.w

7.4 Experimental Setup

This section introduces the setup used to conduct the experiments. In the following, the metrics used to assess

the performance of the generated heuristic with ALGO are presented. Then, the manually designed heuristic

used as basis of comparison is introduced. Finally details on the whole experimental process are provided.

7.4.1 Performance metrics

Two types of metrics are presented in this section: the metrics used to evaluate the performance of a swarm

according to the coverage and the connectivity; the metrics used for comparing two sets of non-dominated

solutions in multi-objective optimisation. As depicted in Figure 7.2, a heuristic H1 provides different solutions

S1, S2, · · · , Sk. The swarm metrics evaluate these solutions according to the coverage and the connectivity. For

a solution Si, a couple of values (cov i, coni) is therefore returned and can be displayed in a two-dimensional

coordinate system. The obtained set of 2D points thus represents the heuristic H1 whose performance can

finally be evaluated using the three MO metrics.

Swarm metrics

MO metrics

Swarm metrics Swarm metrics

(HV 1, IGD1,∆1)

H1

· · ·

(covk, conk)(cov2, con2)(cov1, con1)

SkS2S1

MO metrics

· · ·

(HV 2, IGD2,∆2)

H2

Figure 7.2: Usage of both swarm metrics and MO metrics to assess the performance of a heuristic.

Learning to Optimise a Swarm of UAVs 81

7.4.1.1 Swarm metrics

Two state-of-the-art metrics Brust et al. [2017] are defined here to assess the performance of the swarm. The

coverage speed evaluates the quality of the coverage while the number of connected components assesses the

connectivity.

Coverage speed Let n
(t)
v be the number of times the vertex v ∈ V has been visited at the time step

t ∈ {0, · · · , T}. Then, speed(r) is the time needed by the swarm to cover a rate r ∈ [0, 1] of the environment

graph.

speed(r) = argmin
0≤t≤T

∣∣∣{v ∈ V | n(t)

v > 0
}∣∣∣

|V |
≥ r

Number of connected components This metric is similar to the definition of the connectivity objective

of CCUS. The value of number is then the average number of connected components in the communication

graph.

number = O(conn) (ST)

7.4.1.2 Multi-objective metrics

For evaluating the quality of CCUS solutions, three metrics considering the multi-objective aspect have been

used: the Hyper-Volume (HV), the Inverted Generational Distance (IGD) and the spread (∆). For a set of

solutions, let P = {pi}i be the subset of non-dominated ones, and P ∗ = {p∗i }i be the optimal Pareto front.

These two sets are ordered according to one of their objective value. The Euclidean distance in the objective

space between two points from both fronts is given by d : {1, · · · , |P ∗|} × {1, · · · , |P |} → R+.

d(i, j) = ∥p∗i − pj∥2

Hyper-Volume (HV) HV represents the volume in the objective space covered by the points in P , relative

to a reference point w.

HV = volume

 |P |⋃
i=1

vi

with vi the hypercube in the objective space made by pi and w.

Inverted Generational Distance (IGD) IGD measures the proximity of the front P with the optimal

front P ∗.

IGD =
1

|P ∗|

√√√√|P∗|∑
i=1

(
min

1≤j≤|P |
d(i, j)

)2

Learning to Optimise a Swarm of UAVs 82

Spread (Δ) ∆ indicates how well the non-dominated solution are spread on the front P . It also take into

consideration the width of P compared to the optimal front P ∗.

∆ =

df + dl +
|P |−1∑
i=1

∣∣di − d̄
∣∣

df + dl + (|P | − 1) d̄

with df = d(1, 1) and dl = d (|P ∗| , |P |) the distances in the objective space between the first edges of P and

P ∗ and their last edge. Moreover, di = ∥pi − pi+1∥2 is the distance between two adjacent points in P , with

d̄ = 1
|P |
∑|P |−1

i=1 di the average distance.

7.4.2 Comparison heuristics

In order to evaluate the performance of the heuristic generated by ALGO, it has been executed on different

instances along with other heuristics which are presented in this section. The first heuristic has been specifically

designed manually for tackling CCUS3O, the second one has been automatically designed by a hyper-heuristic

specifically designed for CCUS3O, while the other two are state-of-the-art pheromone-based heuristics aiming

to cover an area. One of the two latter not considering the connectivity of the swarm, it is used as a bound for

the coverage objective.

7.4.2.1 Manually-designed heuristic

The Weighted Objective (WO) heuristic has been designed to tackle CCUS3O instances. It belongs to the space

of low-level heuristics (defined in Algorithm 4.1), where the scoring function fu depends on three values (one

per CCUS3O objective).

fu(v) =
∑
o∈O

a(o)uv

with

a
(time)
uv = W − dist(pos(u), v)− dist (v, Pu[0])

a
(rate)
uv = W · x(rate)

uv

a
(conn)
uv = min

(
W,W +Dcom − min

u′∈U\{u}
dist (v, pos (u′))

)

The value of W is set arbitrarily. For the coverage time objective, the weight linearly decreases according to

the distance of the path from the current position to the initial position passing by the vertex to evaluate.

The weight for the coverage rate objective is equivalent to the state variable of the vertex to evaluate. For the

connectivity objective, the weight depends on the distance to the closest UAV from the vertex to evaluate. If the

latter distance is lower than Dcom , i.e., is in the communication range of a UAV, then the weight is maximum;

otherwise, it linearly decreases according to that distance. Even though the quality of WO is not guaranteed,

it makes it possible to compare the performance of the heuristic generated by ALGO with a behaviour more

relevant than a random process.

Learning to Optimise a Swarm of UAVs 83

7.4.2.2 Automatically-designed heuristic

We compared the heuristic generated by ALGO with a previous Q-Learning-based Hyper-Heuristic (QLHH)

that we designed specifically to tackle CCUS [Duflo et al., 2021]. Both hyper-heuristics have a similar principle

but they differ in their use of scalarisation (see Figure 7.3).

reward1

action

reward2

UPDATEUPDATE

Π1 Π2

scalarisation

state state

REWARD

Π

Θ1 Θ2

(a) Process of QLHH.

reward1

action

reward2

state

REWARD

Π Θ

reward

scalarisation

UPDATE

(b) Process of ALGO.

Figure 7.3: Difference between the workflow of QLHH and ALGO. For QLHH (a), the policy is scalarised from
multiple policies. The multiple reward obtained by a choice of action are all used to update their corresponding
policy. For ALGO (b), the scalarisation occurs on the reward. The resulting single reward is then used to

update the single policy.

QLHH provides multiple policies that are scalarised into a single one, while ALGO uses a single policy and

scalarises the multiple rewards into a single one. The multiple policies of QLHH have their own learning process

from their own reward. This independence between objectives has shown difficulty in balancing them in the

generated heuristic, which is an issue in itself. If it turns out that connectivity has more emphasis, UAVs are

flying together rather than visiting new vertices, which can make episodes very long in the context of CCUS(3O)

since the terminal condition for UAVs to return to their base is that every vertex is visited. To overcome this

issue, the idea with QLHH is to update the weights during the scalarisation according to objectives “needing

support” but it obliges the user to define higher and lower bounds for each objective, which can be time

consuming. The single policy of ALGO is intended to break this independence and improve the balance of

objectives in the generated heuristics.

7.4.2.3 Pheromone-based heuristics

Different techniques based on pheromone have been used in the context of area coverage by a swarm of robot-

s/UAVs. Two have been implemented here in order to assess the quality of the coverage provided by the

generated heuristic. For both heuristics, the behaviour is very similar to the one described in Algorithm 4.1.

They however do not belong to the space of low-level heuristic since the choice of the next position v for a UAV

at a position vcurr is stochastic and thus depends on a probability P (v | vcurr).

Learning to Optimise a Swarm of UAVs 84

Heuristic Φ The first heuristic, referred to as Φ, is based on repulsive pheromones Kuiper and Nadjm-

Tehrani [2006], i.e., UAVs drop pheromones on their way to indicate visited places. The probability of a UAV

to go to a position is then inversely proportional to the amount of pheromone at that position (i.e., the more

pheromones, the less chance). The environment on which UAVs are evolving is a grid, and at each iteration,

UAVs assign the current coverage time to their current position. So each position is assigned a value which

corresponds to the last time a UAV has visited it. As with repulsive pheromone, the lower the value assigned

at a position, the higher the chance have UAVs to choose that position. Given a position v, let tv be the time

assigned to that position and N (v) be the set of adjacent positions. The probability to go to a position v for a

UAV at position vcurr is

P(v | vcurr) =

T − tv

(|N (vcurr)| − 1) · T
if v ∈ N (vcurr)

0 otherwise

with T =
∑

v∈N (vcurr)

tv.

Heuristic Φ-K The drawback of heuristic Φ is that it does not consider the connectivity of the swarm. That

is the purpose of the work of Danoy et al. [2015] which adds a dynamic clustering algorithm, so called KHOPCA

Brust et al. [2008], in order to maintain the connectivity inside the swarm of UAVs. Let this heuristic be Φ-K.

KHOPCA algorithm dynamically assigns a state value s(u) to each UAV u which represents the distance to the

cluster head (s(u) = 0 if u is the cluster head). For a UAV u, let N (u) be the set of UAVs in a communication

range of u. Then, s(u) is iteratively updated by following four simple rules:

s(u) =

min
u′∈N (u)

s(u′) + 1 if min
u′∈N (u)

s(u′) < s(u)

0 if min
u′∈N (u)

s(u′) = k

s(u) + 1 if s(u) ̸= 0 ∧ s(u) < min
u′∈N (u)

s(u′)

s(u) + 1 if s(u) = 0 ∧ min
u′∈N (u)

s(u′) = 0

where k+1 is the number of UAVs (k is the biggest possible distance from the cluster head). At initialisation,

s(u) = k for every UAV u. At each iteration, UAVs which are not cluster heads follow their cluster with a certain

probability PK, otherwise they choose their next position according to the probability defined in heuristic Φ.

When a UAV follows its cluster, it decides to go to the position of its neighbour (a UAV in its communication

range) with the lowest state value. Since the value of PK has a high impact on the quality of the coverage, let

Φ-KPK denote this heuristic with a certain value for PK.

7.4.3 Experimental process

For the experiments, all of the instances consider a grid graph as an environment graph. An instance class

is then defined by its grid dimension and the number of UAVs in the swarm (see Section 6.4.1.3). The set of

parameters is presented in Table 7.1.

The maximal distance of communication is the distance in which two UAVs can communicate (see Sec-

tion 6.4.1.2). The exploration rate is the chance of choosing a random action (defined as a percentage) instead

of following the policy (see Section 4.3.1). The discount factor is the importance given to the final reward

Learning to Optimise a Swarm of UAVs 85

(see Section 4.3.3). The size of movement frame is the number of movements considered for one reward (see

Section 4.3.2).

The next three parameters cannot be chosen empirically while they strongly affect the learning process. In

order to have a relevant value for them, a factorial experiment is processed (detailed in Section 7.5.1). The

learning rate defines how much of the gradient is used for a step of SGD (see Section 4.3.3). The embedding

dimension is the length of the vectors representing both states and actions (see Section 4.3.1). The mini-batch

size is the number of items selected from the memory to process the SGD (see Section 4.3.3).

When the parameterisation is defined, a stability experiment is processed where the purpose is to train ALGO on

instances from a certain class, and to execute the generated heuristic on other classes (detailed in Section 7.5.3).

The training then occurs on instances with 10 UAVs moving on a 20×20 grid. 50 instances are randomly chosen

from the latter instance class and the ALGO algorithm is executed 10 times on each. The generated heuristic

is finally executed on instances from other classes along with heuristics presented in Section 7.4.2 in order to

assess its performance.

Parameter name Notation Value

maximal distance of communication Dcom 4
exploration rate ϵ 0.05
discount factor γ 0.9
size of movement frame τ 10

Factorial experiment
learning rate α
embedding dimension p
mini-batch size |B|

Stability experiment
number of epochs 10
number of instances 50
grid width 20
grid height 20
number of UAVs 10

Table 7.1: Experimental parameters used for training ALGO.

7.5 Experimental Results

This section presents the experimental results of ALGO on the CCUS3O problem which have been conducted

on the High Performance Computing (HPC) platform of the University of Luxembourg Varrette et al. [2022].

The factorial experiment is first done to determine the best learning rate, embedding dimension and size of

the mini-batch. Then, ALGO performance is evaluated against QLHH. Finally, the experimental study on the

stability of ALGO with regard to state-of-the-art heuristics is depicted.

7.5.1 Factorial experiment

In order to assess the best parameterisation of ALGO, an analysis of the sensitivity to its three parameters has

been conducted. To this end, four values have been considered for each parameter. The size of the mini-batch

can be 16, 32, 48 or 64; the learning rate can be 0.01, 0.05, 0.1 or 0.2; and the embedding dimension can be

8, 16, 24 or 32. The objective is to learn a heuristic for each possible combination. The training is identical

to the stability experiment, i.e., on 50 instances from the class (20x20/10) (with a 20x20 grid graph as an

Learning to Optimise a Swarm of UAVs 86

environment and 10 UAVs) with 10 epochs. After the training, the generated heuristic for each parameterisation

is executed on 30 instances from the same class. These instances are the same for every heuristic generated. A

distribution of 30 solutions is thus obtained and the non-dominated solutions are retained so that the Pareto

fronts are compared with the three multi-objective metrics presented in Section 7.4.1.2. The results are depicted

in Table 7.2.

Parameters Multi-Objective Metrics
|B| α p HV IGD ∆

16 0.01 8 3.563e+00 6.942e-01 8.617e-01
16 0.01 16 - - -
16 0.01 24 6.645e+00 5.965e-01 9.522e-01
16 0.01 32 7.532e+00 5.956e-01 8.200e-01
16 0.05 8 2.991e+00 6.576e-01 8.408e-01
16 0.05 16 - - -
16 0.05 24 2.969e+00 8.368e-01 9.098e-01
16 0.05 32 3.298e+00 7.574e-01 8.167e-01
16 0.1 8 1.602e+00 9.394e-01 9.086e-01
16 0.1 16 3.311e+00 7.473e-01 7.297e-01
16 0.1 24 2.809e+00 7.216e-01 8.673e-01
16 0.1 32 3.656e+00 4.539e-01 8.551e-01
16 0.2 8 3.104e+00 7.455e-01 8.504e-01
16 0.2 16 2.076e+00 1.251e+00 7.994e-01
16 0.2 24 1.086e-01 1.626e+00 1.000e+00
16 0.2 32 7.462e-02 1.490e+00 7.501e-01
32 0.01 8 7.883e+00 5.409e-01 7.600e-01
32 0.01 16 3.361e+00 5.832e-01 8.480e-01
32 0.01 24 2.367e+00 8.676e-01 9.251e-01
32 0.01 32 7.830e+00 5.136e-01 9.184e-01
32 0.05 8 6.486e+00 6.043e-01 6.703e-01
32 0.05 16 2.977e+00 8.042e-01 6.723e-01
32 0.05 24 4.586e+00 6.299e-01 7.706e-01
32 0.05 32 2.358e+00 9.694e-01 8.213e-01
32 0.1 8 3.419e+00 7.671e-01 7.991e-01
32 0.1 16 2.775e+00 6.690e-01 9.633e-01
32 0.1 24 9.577e+00 4.979e-01 8.683e-01
32 0.1 32 5.263e+00 4.419e-01 7.582e-01
32 0.2 8 2.270e-01 1.294e+00 1.000e+00
32 0.2 16 6.113e+00 4.186e-01 9.379e-01
32 0.2 24 5.449e+00 1.268e+00 9.234e-01
32 0.2 32 7.062e+00 5.676e-01 9.237e-01

Parameters Multi-Objective Metrics
|B| α p HV IGD ∆

48 0.01 8 4.419e+00 7.434e-01 8.857e-01
48 0.01 16 2.702e+00 7.619e-01 8.098e-01
48 0.01 24 4.650e+00 5.815e-01 8.373e-01
48 0.01 32 2.289e+00 8.671e-01 9.658e-01
48 0.05 8 8.769e+00 4.804e-01 8.861e-01
48 0.05 16 6.567e+00 7.979e-01 6.383e-01
48 0.05 24 2.957e+00 5.162e-01 8.830e-01
48 0.05 32 4.494e+00 5.918e-01 6.276e-01
48 0.1 8 7.024e+00 1.597e+00 9.207e-01
48 0.1 16 6.233e+00 4.777e-01 8.452e-01
48 0.1 24 9.667e-01 9.502e-01 8.728e-01
48 0.1 32 3.356e+00 8.064e-01 8.829e-01
48 0.2 8 2.997e+00 8.235e-01 6.844e-01
48 0.2 16 - - -
48 0.2 24 1.871e+00 6.959e-01 8.636e-01
48 0.2 32 9.217e+00 5.140e-01 7.940e-01
64 0.01 8 2.151e+00 6.347e-01 6.748e-01
64 0.01 16 8.979e-01 1.046e+00 9.482e-01
64 0.01 24 7.462e+00 5.675e-01 8.355e-01
64 0.01 32 2.342e+00 8.683e-01 8.608e-01
64 0.05 8 9.521e+00 4.592e-01 7.856e-01
64 0.05 16 6.634e+00 5.055e-01 9.591e-01
64 0.05 24 5.551e+00 5.164e-01 8.548e-01
64 0.05 32 2.186e+00 9.269e-01 9.302e-01
64 0.1 8 1.866e+00 1.917e+00 9.719e-01
64 0.1 16 1.215e+01 4.513e-01 8.143e-01
64 0.1 24 3.701e+00 8.365e-01 9.691e-01
64 0.1 32 2.638e+00 9.070e-01 7.825e-01
64 0.2 8 3.982e+00 4.634e-01 9.389e-01
64 0.2 16 8.946e+00 4.437e-01 6.733e-01
64 0.2 24 4.195e+00 6.778e-01 8.196e-01
64 0.2 32 9.566e+00 4.821e-01 9.516e-01

Table 7.2: Results of the factorial experiment.

For each column of Table 7.2, i.e., for each metric, values are normalised and a color gradient is used to enhance

the quality of a parameterisation according to metrics (the more red the better). By looking at the table, it

can be noted that the model is very sensitive to the parameterisation. This is shown by the high disparity

of values. Among parameters, the size of the batch |B| seems to have an impact independently from other

parameters. Among the range of values, the bigger is |B|, the better are results in general. The size of the batch

has an impact for the IGD. Selecting less elements for the gradient descent indeed enhances the exploration. It

is not obvious to analyse the impact of the other two parameters independently according to Table 7.2. The

embedding dimension p has a direct impact on the size of the searching space (the higher p, the wider searching

space). For a certain learning rate α, the model would struggle to converge with a lower searching space,

i.e., a lower p. It is thus relevant to admit that the lower is p, the lower should be α. Among the best five

parameterisations, the convergence is observed and at the end, the selected paramterisation is the following:

|B| = 48; α = 0.2; p = 32.

7.5.2 Comparison with QLHH

This section aims at comparing the current hyper-heuristic ALGO to the one it extends, i.e., QLHH. In order

to compare both models, QLHH and ALGO have been trained on instances from class (15x15/10). QLHH uses

the parameterisation provided used by Duflo et al. [2021] while ALGO uses the parameterisation obtained after

Learning to Optimise a Swarm of UAVs 87

the factorial experiment described above. The generated heuristic has then been executed on several instances,

ten times, from the same class. The solutions are represented according to both swarm metrics for two instances

in Figure 7.4.

Figure 7.4: Solutions obtained with heuristics generated by QLHH and ALGO on two instances (the x axis
uses a logarithm scale due to the huge gap between heuristics).

Results shown in Figure 7.4 are representative of the behaviour on other instances. It shows the Pareto fronts

obtained by executing both generated heuristics ten times on two instances from the class (15x15/10). QLHH

generated a heuristic which provides solutions with a low number of connected components, around 1.5. This

is due to the fact that the scalarisation weights enhance the connectivity objective without making UAVs cover

new vertices, until a point where the weight for the coverage rate becomes too large. This explains why the

coverage speed is extremely high for solutions obtained by the heuristic generated by QLHH. The heuristic

generated by ALGO provides a worse connectivity since the number of connected components is around 3, but

also a much better coverage speed. For any instance, UAVs need between 100 and 150 units of time to cover

95% of the environment graph, while they need from 10 000 to 30 000 with the heuristic generated by QLHH.

By looking at Figure 7.4, ALGO may seem to focus on the coverage objective only, but this is not the case.

This idea is induced by the good connectivity obtained by the heuristic generated by QLHH in comparison,

but the solutions produced by the latter heuristic are practically unusable. Consequently, heuristics generated

by QLHH will not be used as a comparison for the stability experiment detailed below.

7.5.3 Stability

ALGO has been trained on instances from the (20x20/10) instance class. This class has been chosen since

the number of UAVs is high enough to have a wide range of values for the connectivity objective. Moreover,

the ratio of the number of vertices over the number of UAVs is good so that UAVs are not constrained to fly

together by the lack of free room. The generated heuristic has then been executed on other instance classes, i.e.,

(15x15/10), (20x20/5), (20x20/10), (20x20/15) and (25x25/10). The objective is not only to demonstrate

its good performance on other instance classes with different numbers of UAVs and environment grid sizes, but

also to validate its good stability against heuristics from the state-of-the-art.

7.5.3.1 Training

This section presents the training process along with the evolution of the Pareto front which depicts the

convergence of the model, and therefore justifies the training time. ALGO has been trained on 50 instances

over 10 epochs, resulting in 500 episodes. The evolution of the three MO metrics during the training is illustrated

in Figure 7.5. In terms of IGD, the algorithm features a very fast convergence in the first episodes and then

keeps improving at a slower pace. When considering HV, it appears that ALGO improves solutions steadily

Learning to Optimise a Swarm of UAVs 88

with a major increase around the 300th episode. With regard to the third metric, Δ, it converges until the

50th episode and then gets worse. This might be explained by the fact that adding any new non-dominated to

the front may completely disrupt the diversity.

Figure 7.5: Evolution of the front during the training according to HV, IGD and Δ.

7.5.3.2 Testing

For both WO and the generated heuristics, each UAV has a deterministic behaviour so they are not stochastic

as are heuristics Φ and Φ-K. However, since UAVs move asynchronously, two executions on a same instance

may provide two different solutions which makes these two heuristics non-deterministic. All heuristics have thus

been executed 30 times per instance, resulting in 30 solutions per instance. These distributions are compared

according to their Pareto front using the three MO metrics defined in Section 7.4.1. A Wilcoxon signed-rank

test is then used to assess the statistical significance of the results. The results of the latter test are displayed in

three tables, one per MO metric (HV in Table 7.3, IGD in Table 7.4 and Δ in Table 7.5). For each table, a cell

in dark blue means that the heuristic generated by ALGO outperforms the specific heuristic (column name)

for the specific instance class (row name) with a 95% confidence. A light-blue cell means that the heuristic

generated by ALGO provides better results in average but without statistical confidence.

Instance class Heuristic

grid #UAVs ALGO WO p-value Φ p-value Φ-K0.05 p-value Φ-K0.10 p-value Φ-K0.20 p-value

15x15 10 2.03e+01
±3.97e+00

1.92e+01
±3.54e+00

4.37e-04 5.42e+00
±1.27e+00

7.11e-15 7.94e+00
±1.81e+00

7.11e-15 1.01e+01
±2.03e+00

7.11e-15 1.40e+01
±2.93e+00

7.11e-15

20x20 05 1.35e+01
±3.01e+00

1.48e+01
±2.92e+00

1.20e-02 2.52e+00
±6.82e-01

7.63e-06 3.56e+00
±8.02e-01

7.63e-06 4.53e+00
±1.03e+00

7.63e-06 6.83e+00
±1.59e+00

7.63e-06

20x20 10 1.60e+01
±4.61e+00

1.75e+01
±4.21e+00

4.57e-02 3.27e+00
±9.60e-01

1.19e-07 4.81e+00
±1.27e+00

1.19e-07 6.39e+00
±1.78e+00

1.19e-07 9.40e+00
±2.52e+00

1.19e-07

20x20 15 1.67e+01
±3.69e+00

1.63e+01
±3.59e+00

1.40e-01 3.24e+00
±8.12e-01

1.86e-09 5.22e+00
±1.01e+00

1.86e-09 7.14e+00
±1.50e+00

1.86e-09 1.13e+01
±2.50e+00

1.86e-09

25x25 10 9.88e+00
±2.62e+00

1.40e+01
±2.14e+00

1.53e-05 1.62e+00
±4.86e-01

7.63e-06 2.72e+00
±5.71e-01

7.63e-06 3.74e+00
±7.10e-01

7.63e-06 5.65e+00
±1.22e+00

7.63e-06

Table 7.3: Comparison between heuristics according to HV.

According to the HV metric, the heuristic generated by ALGO outperforms all of pheromone-based heuristic.

However, for most of instance classes, WO heuristic provides better results with 95% confidence. This is an

unexpected result when looking at its results in terms of IGD and Δ metrics. It indeed clearly appears that

the generated heuristic outperforms WO for every instance class according to IGD and Δ. While these metrics

respectively measure the convergence and the diversity of the front, the results in terms of HV values are not

similarly competitive with respect to WO. This behaviour can be visualised in Figure 7.6 which displays the

non-dominated solutions for two different instances. It can be observed that despite a clear lack of diversity in

Learning to Optimise a Swarm of UAVs 89

the front of WO, its lowermost point is very distant from the other solutions (including dominated ones) which

in turn drastically increases the value of HV.

Instance class Heuristic

grid #UAVs ALGO WO p-value Φ p-value Φ-K0.05 p-value Φ-K0.10 p-value Φ-K0.20 p-value

15x15 10 3.74e-01
±1.46e-01

8.99e-01
±2.92e-01

3.54e-11 2.40e+00
±1.62e-01

7.11e-15 1.99e+00
±1.98e-01

7.11e-15 1.64e+00
±1.70e-01

7.11e-15 1.11e+00
±1.50e-01

7.11e-15

20x20 05 6.08e-01
±3.23e-01

1.25e+00
±4.08e-01

1.58e-03 2.57e+00
±2.21e-01

7.63e-06 2.35e+00
±2.09e-01

7.63e-06 2.16e+00
±1.85e-01

7.63e-06 1.69e+00
±1.72e-01

7.63e-06

20x20 10 6.68e-01
±3.27e-01

1.15e+00
±5.13e-01

1.26e-02 2.58e+00
±2.55e-01

1.19e-07 2.26e+00
±2.51e-01

1.19e-07 1.97e+00
±2.49e-01

1.19e-07 1.50e+00
±2.52e-01

1.19e-07

20x20 15 5.09e-01
±2.00e-01

1.32e+00
±3.25e-01

9.31e-09 2.51e+00
±2.12e-01

1.86e-09 2.14e+00
±1.58e-01

1.86e-09 1.78e+00
±1.55e-01

1.86e-09 1.14e+00
±1.57e-01

1.86e-09

25x25 10 8.60e-01
±3.73e-01

1.52e+00
±5.57e-01

6.58e-03 2.72e+00
±1.95e-01

7.63e-06 2.47e+00
±1.85e-01

7.63e-06 2.20e+00
±2.18e-01

7.63e-06 1.74e+00
±2.40e-01

7.63e-06

Table 7.4: Comparison between heuristics according to IGD.

In terms of IGD, the heuristic generated by ALGO outperforms all other heuristics as presented in Table 7.4.

It means that the non-dominated solutions provided by the generated heuristic are closer to the optimal front

than other heuristics. This result is particularly good since the front provided by the generated heuristic has

more points than other ones for most of instances (see Figure 7.6).

Instance class Heuristic

grid #UAVs ALGO WO p-value Φ p-value Φ-K0.05 p-value Φ-K0.10 p-value Φ-K0.20 p-value

15x15 10 8.26e-01
±6.43e-02

8.68e-01
±8.06e-02

6.31e-03 9.15e-01
±4.05e-02

6.46e-10 8.74e-01
±6.32e-02

1.15e-04 8.67e-01
±7.12e-02

9.31e-03 8.53e-01
±8.43e-02

6.68e-02

20x20 05 8.95e-01
±8.04e-02

9.00e-01
±5.45e-02

8.99e-01 9.18e-01
±3.54e-02

3.69e-01 8.88e-01
±5.11e-02

5.51e-01 9.29e-01
±4.40e-02

1.54e-01 8.47e-01
±4.78e-02

4.32e-02

20x20 10 8.34e-01
±4.33e-02

8.56e-01
±1.94e-01

1.15e-02 9.18e-01
±3.16e-02

3.58e-07 9.16e-01
±4.22e-02

3.58e-07 9.01e-01
±6.23e-02

2.05e-04 8.79e-01
±7.06e-02

1.38e-02

20x20 15 8.64e-01
±5.73e-02

8.91e-01
±6.26e-02

1.58e-01 9.27e-01
±3.61e-02

7.99e-06 9.13e-01
±3.26e-02

7.98e-04 8.88e-01
±5.89e-02

1.64e-02 8.48e-01
±6.70e-02

5.70e-01

25x25 10 8.42e-01
±2.84e-02

8.64e-01
±8.88e-02

2.46e-01 9.46e-01
±2.84e-02

7.63e-06 9.40e-01
±3.88e-02

7.63e-06 9.24e-01
±4.21e-02

7.63e-06 9.26e-01
±3.80e-02

7.63e-06

Table 7.5: Comparison between heuristics according to Δ.

This diversity in the Pareto fronts obtained with the ALGO generated heuristic is confirmed by the results

according to the Spread metric (Δ) presented in Table 7.5. ALGO obtained fronts are in the majority of cases

more diverse than with the state-of-the-art heuristics. For some class, heuristic Φ-K however provides more

diverse fronts, but with a 95% confidence only for the class (20x20/5).

Figure 7.6: Example of fronts obtained with different heuristics for two instances, from the classes (20x20/10)
on the left and (25x25/10) on the right.

Overall, except for some specific cases, the heuristic generated by ALGO outperforms the state-of-the-art

heuristics according to the three MO metrics. By observing the fronts obtained with different heuristics (see

Learning to Optimise a Swarm of UAVs 90

Figure 7.6 for example), several aspects can be pointed out. First, in terms of convergence of the Pareto front,

all of pheromone-based heuristics are completed outperformed by the generated heuristic. Most of solutions

provided by heuristics Φ and Φ-K are dominated by solutions from the front of the generated heuristic. Another

point is that WO heuristic provides the best coverage results for every instance. It however does not seem to

consider the connectivity aspect of the swarm while that heuristic has been designed for balancing CCUS3O

objectives. It shows that the limitation of manual design is even more apparent when trying to deal with

multi-objective optimisation problems. The last aspect is that the front obtained with the ALGO generated

heuristic is generally the one containing the most solutions. This is an important feature since it shows that it

is able to provide a larger set of well performing solutions.

The main purpose of this experiment was to demonstrate the stability of the model. After training ALGO on

instances from (20×20/10), the generated heuristic has showed very similar results after being executed on

other instance classes. The class where the generated heuristic seems to be the least efficient is (20×20/5) in

term of diversity of the front. This is however not due to the density of the swarm compared to the swarm

of the grid (less UAVs than during training), since the generated heuristic provides good results on instances

from (25×25/10) where the grid is bigger than during training. The model is thus able to generate a heuristic

without being overfitted by the dimension of the instance. The stability of the model is a very promising aspect

since it shows that the generated heuristic is able to perform well not only on unknown instances, but also in

unknown situations and therefore dynamic environments.

7.6 Conclusion

In this chapter, we introduced a novel approach for learning to optimise the coverage of an area by a swarm

of UAVs, i.e., automating the design of swarming behaviours in the context of area coverage missions. As a

first step, a multi-objective optimisation problem has been defined to formally describe the objectives of the

task to cover an area with a swarm of UAVs. This problem, called the Coverage of a Connected-UAV Swarm

with 3 Objectives (CCUS3O), considers the coverage rate, the coverage time and the swarm connectivity. A

CCUS3O instance represents a scenario for an area coverage mission. To automatically obtain the distributed

heuristics necessary to tackle CCUS3O, we used our generic hyper-heuristic ALGO. It has been experimented

on a set of CCUS30 instances. 50 instances from the class 20×20/10) (10 UAVs on a 20×20 grid) have been

used for the training. The generated heuristic has then been executed on 50 new instances of five different

classes. ALGO has revealed a better convergence than existing techniques by generating a heuristic not only

with better performance but also with more consideration of the multi-objective aspect. After processing a

factorial experiment to determine an efficient parameterisation, experimental results demonstrate that while

trained on a single instance class, the generated heuristic has shown to outperform on other classes a manually

designed problem-specific heuristic along with state-of-the-art techniques designed for the coverage by a swarm

of UAVs. In addition, empirical evidence of the good stability of the model and the better balance obtained on

both objectives, coverage speed and swarm connectivity, has been provided.

Part IV

Conclusion

91

Chapter 8

Conclusion

Contents

8.1 Summary . 92

8.2 Contributions . 93

8.3 Perspectives . 95

8.1 Summary

This PhD work lies at the intersection of two research domains: optimisation and learning. This dissertation

thus starts by presenting an overview of this wide domain in Chapter 2. To achieve this, a formalism to describe

both the optimisation and learning concepts is introduced. For each process, the format of the required input

and the returned output is defined, and generic components are extracted out of them. The purpose is to have

a formal representation of both processes independent to specific existing techniques. The first aim of this

categorisation is to understand the fundamental differences between optimisation and learning. This formalism

is then utilised to analyse hybrid techniques, i.e., combining two levels of optimisation or learning, with the

high-level process improving the quality of the low-level process. Four categories can be drawn depending on

whether optimisation or learning is used at the high or low level: optimise optimisation; learning to optimise;

optimise learning ; learning to learn. For each of them, we present how both processes can interact through

their components defined in the formalism introduced beforehand.

Since in this work a learning algorithm (high-level) is used to improve an optimisation process (low-level), the

latter belongs to the learning-to-optimise category. Thereby, Chapter 3 provides a state of the art about these

hybrid techniques, hyper-heuristics to be more specific. An emphasis is made on works using Reinforcement

Learning (RL) as the high-level learning algorithm. This makes it possible to draw the specific area in which

this PhD work takes place.

The second part is the central point of this dissertation. Our model of generic hyper-heuristic based on RL,

named Algorithm Learner for Graph Optimisation problems (ALGO), is presented in Chapter 4. Its purpose is

to tackle different optimisation problems without considering a time-consuming redesigning task. ALGO can

indeed be used to generate heuristics for different optimisation problems as long as they can be defined as an

abstract problem, named ALGO-Friendly Optimisation Problem (AFOP). Chapter 4 is divided into two main

sections, each presenting one level within our generic hyper-heuristic. In the first place, the low-level aspect

92

Conclusion 93

of ALGO, specific to the problem to tackle, is presented. An AFOP which is based on a graph structure,

and a set of rules that an user must follow in order to map a problem to an AFOPis provided. The space of

low-level heuristics to tackle such an abstract problem is then described. Secondly, the high-level RL algorithm

is presented. The modular aspect of ALGOis demonstrated, with abstract components that the user can

reimplement, e.g., the graph neural network to encode the graph information and the scalarisation to tackle

multi-objective problems.

Chapter 5 validates our model of generic hyper-heuristic by applying it to a classical optimisation problem:

the Travelling Salesman Problem (TSP). An implementation of the TSP as an AFOP is first provided, which

consists of a concrete example for an user who wants to use ALGO on a new problem. The results of the

conducted experiences are finally presented. These consisted in generating TSP heuristics with ALGO and to

compare their performance with state-of-the-art heuristics.

The real-world use case is finally presented in the third part. ALGO was used to automate the design of a

swarm of UAVs for covering an area. A state of the art about the design of robot/UAV swarm is first given in

Chapter 6, where existing techniques to manually and automatically design swarming behaviours are presented.

A description of a new optimisation problem, so called Coverage of a Connected-UAV Swarm (CCUS) is also

provided. CCUS is defined to illustrate the coverage of an area by a swarm of UAVs with the aim to remain

connected. The latter problem has the distinction of being multi-objective and considering multiple agents

running in a distributed way.

In Chapter 7, ALGO is used to generate distributed heuristics for CCUS. The resulting heuristic represents the

behaviour of UAVs within the swarm. Similarly to Chapter 5, An implementation of CCUS as an AFOP is first

presented, followed by a description of experiments and obtained results. We compared the generated heuristic

to state-of-the-art techniques, including pheromone-based algorithms.

8.2 Contributions

Our contributions are summarised in Figure 8.1. They are classified according to the part of this thesis to which

they belong.

The first objectives of this PhD thesis were to categorise techniques combining both learning and optimisation

processes, by putting an emphasis on those aiming at learning to optimise. To this end, we presented a formalism

to describe learning and optimisation concepts. It is helpful to categorise all of works combining both at different

layers. Thanks to this formalism, we could gather different techniques into one paradigm by identifying which

components of optimisation or learning are involved. Within this wide area, a focus was made on approaches

using learning to improve the performance of an optimisation process. We thus present a state of the art of

hyper-heuristics which are the mainly used learning-to-optimise techniques.

The main objective of this work was to design a generic hyper-heuristic based on RL to tackle different opti-

misation problems, which led to our main contribution, i.e., the design of ALGO. ALGO makes it possible to

generate heuristics for any compatible optimisation problem without the need to redesign the space of low-level

heuristics. The strength of ALGO is its modularity and flexibility. It can easily tackle different compatible

problems, regardless of whether they have a multi-objective aspect, a dynamic environment or a multi-agent

context. There is even the possibility to adjust inner components. For instance, a Graph Neural Network (GNN)

is used in ALGO’s workflow. The user can therefore use any GNN. Similarly, the treatment of multi-objective

optimisation problems is done with a scalarisation process which can be easily adapted by the user. In order to

Conclusion 94

apply ALGO on a new problem, the latter must override an abstract problem, AFOP. We then define an AFOP

and detail the steps of the overriding task which is thought to be as intuitive and straightforward as possible.

The model of ALGO was validated by applying it on the TSP. Experiments demonstrate that the TSP heuristic

generated by ALGO is not only efficient, but also stable, i.e., it performs well on instances with a bigger or

smaller size than the training instances. The generated heuristic moreover outperforms most of state-of-the-art

classical heuristics, and has similar performance than a 2-opt heuristic on big instances.

Since the heuristic generated by ALGO is limited by its greedy aspect (together with existing hyper-heuristic

so far), we believe that it cannot be competitive when applied on classical optimisation problems which have

already been deeply studied. We have thus thought ALGO to be mainly applied on dynamic problems, even

considering a distributed aspect. We hence use ALGO to tackle a real-world problem. For that purpose, we

defined CCUS which describes the task to cover an area with a swarm of UAVs by considering the connectivity

within the swarm. Applying ALGO to CCUS then makes it possible to automate the design of behaviours

within the swarm of UAVs. In the literature, the vast majority of existing techniques to automate the design of

a swarm are based on predefined rules or actions that a UAV must choose at each iteration. By using ALGO

in that context, we completely go beyond the state of the art by proposing a novel way to automate the design

of a swarm of UAVs.

III - USE CASE
II - MODEL

I - BACKGROUND

Implementation
process detailed and
illustrated on the TSP

Abstract optimisation
problem AFOP

Generic hyper-
heuristic ALGO

Automated design
of behaviours within
a swarm of UAVs

Opimisation
problem CCUS

Formalism of
optimisation and
learning concepts

Analysis of hybrid
techniques

Survey of
hyper-heuristics

Figure 8.1: Summary of contributions.

All the publications related to this PhD work are listed below.

• Gabriel Duflo, Grégoire Danoy, El-Ghazali Talbi, and Pascal Bouvry. Learning to Optimise a Swarm of

UAVs. Applied Sciences, 12(19):9587, January 2022b. ISSN 2076-3417. doi: 10.3390/app12199587

• Gabriel Duflo, Grégoire Danoy, El-Ghazali Talbi, and Pascal Bouvry. A Generative Hyper-Heuristic

based on Multi-Objective Reinforcement Learning: the UAV Swarm Use Case. In 2022 IEEE Congress

on Evolutionary Computation (CEC), pages 1–8, July 2022a. doi: 10.1109/CEC55065.2022.9870223

• Emmanuel Kieffer, Gabriel Duflo, Grégoire Danoy, Sébastien Varrette, and Pascal Bouvry. A RNN-

Based Hyper-heuristic for Combinatorial Problems. In Leslie Pérez Cáceres and Sébastien Verel, ed-

itors, Evolutionary Computation in Combinatorial Optimization, Lecture Notes in Computer Science,

pages 17–32, Cham, 2022. Springer International Publishing. ISBN 978-3-031-04148-8. doi: 10.1007/

978-3-031-04148-8 2

Conclusion 95

• Gabriel Duflo, Grégoire Danoy, El-Ghazali Talbi, and Pascal Bouvry. A Framework of Hyper-Heuristics

based on Q-Learning. In 2022 International Conference on Optimisation and Learning (OLA), Syracuse,

Italy, 2022c

• Gabriel Duflo, Grégoire Danoy, El-Ghazali Talbi, and Pascal Bouvry. A Q-Learning Based Hyper-

Heuristic for Generating Efficient UAV Swarming Behaviours. In Ngoc Thanh Nguyen, Suphamit Chit-

tayasothorn, Dusit Niyato, and Bogdan Trawiński, editors, Intelligent Information and Database Sys-

tems, pages 768–781, Cham, 2021. Springer International Publishing. ISBN 978-3-030-73280-6. doi:

10.1007/978-3-030-73280-6 61

• Gabriel Duflo, Grégoire Danoy, El-Ghazali Talbi, and Pascal Bouvry. Automating the Design of Efficient

Distributed Behaviours for a Swarm of UAVs. In 2020 IEEE Symposium Series on Computational In-

telligence (SSCI), pages 489–496, Canberra, Australia, December 2020b. IEEE. ISBN 978-1-72812-547-3.

doi: 10.1109/SSCI47803.2020.9308355

• Gabriel Duflo, Grégoire Danoy, El-Ghazali Talbi, and Pascal Bouvry. Automated design of efficient

swarming behaviours: a Q-learning hyper-heuristic approach. In Proceedings of the 2020 Genetic and

Evolutionary Computation Conference Companion, pages 227–228, Cancún Mexico, July 2020a. ACM.

ISBN 978-1-4503-7127-8. doi: 10.1145/3377929.3390026

• Gabriel Duflo, Grégoire Danoy, and Pascal Bouvry. A Q-Learning Hyper-Heuristic for UAV Swarming.

In 2020 International Conference on Optimisation and Learning (OLA), Cadiz, Spain, 2020c

• Gabriel Duflo, Emmanuel Kieffer, Matthias R. Brust, Grégoire Danoy, and Pascal Bouvry. A GP Hyper-

Heuristic Approach for Generating TSP Heuristics. In 2019 IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW), pages 521–529, Rio de Janeiro, Brazil, May 2019a. IEEE.

ISBN 978-1-72813-510-6. doi: 10.1109/IPDPSW.2019.00094

• Gabriel Duflo, Emmanuel Kieffer, Grégoire Danoy, and Pascal Bouvry. GP Hyper-Heuristic for the Travel-

ling Salesman Problem. In 2019 International Conference on Optimisation and Learning (OLA), Bangkok,

Thailand, 2019b

8.3 Perspectives

We showed that ALGO is able to generate a heuristic to tackle any problem that can be represented as an

AFOP. We therefore propose to study the efficiency of ALGO according to the AFOP to tackle. We indeed

suppose that the nature of the problem may influence the performance of ALGO. This analysis would be

useful to draw more precisely the area of application of ALGO, illustrated in Figure 8.2. In a more general

way, it would be interesting to specify which optimisation problem is an AFOP. A deep study could then help

determining the feasibility of the mapping to an AFOP.

In a later stage, ALGO could be used for analytical purposes thanks to its modularity. The impact of a graph

neural network on the generation of a heuristic could indeed be studied. In the same way, given a multi-

objective problem, we could observe the convergence of the learning process according to the scalarisation

chosen. Finally, some part of ALGO could become modular, especially the multi-agent aspect. At this point,

we consider a scenario with 100% collaboration between agents, all agents sharing the same policy with a

centralised learning. Other approaches are however conceivable. We could introduce some competition between

agents with techniques from game theory. Moreover, the possibility to use distributed or federated learning can

be added in ALGO.

Conclusion 96

Optimisation Problems

AFOPs
ALGO-worthy

Problems

Figure 8.2: Area of application of ALGO. Among AFOPs, some optimisation problems may not be well
suited to be tackled by ALGO.

Appendix A

Other Contributions

A GP Hyper-Heuristic Approach for Generating TSP Heuristics

corresponding
heuristic

GP population

training instances

low-level
heuristic

high-level
algorithm

evaluation

offspring

selection
mutation/crossover/reproduction

execution

with a fitness

Figure A.1: Overview of the proposed GP hyper-heuristic.

Name Description
set of operators

+ Add two inputs
- Subtract two inputs
* Multiply two inputs
/ Divide two inputs with protection
% Modulo between two inputs with protection

set of terminals
Nn Number of nodes in the graph
Nrn Number of remaining nodes to visit
Dcn Distance from the current node
Din Distance from the initial node
Dc Distance from the centroid of the nodes
Pd Predicted distance from the initial node
Dle Distance left estimation

Table A.1: GP nodes of the proposed hyper-heuristic

97

Appendices 98

Test GPHH-best Nearest neighbour Nearest insertion Greedy Christofides
instances mean std dev. mean std dev. p-value value p-value value p-value value p-value

ts225.tsp 136412.4 3387.212 147941.8 4076.552 7.11886e-17 151884.6 0 133459.7 0.7994262 133823.6 0.7745219
rat99.tsp 1381.677 29.24415 1474.923 59.65596 1.902147e-14 1465.884 0 1481.095 0 1325.171 0.9695625
rl1889.tsp 383303.7 5823.827 391697 7447.168 7.584303e-08 393573.5 0.05338111 378068 0.7889766 340583 1
u1817.tsp 69334.72 964.5484 69901.17 1181.565 0.01636283 70970.14 0.04076182 68517.05 0.7897301 65293.93 1
d1655.tsp 73740.45 1122.372 76950.71 1233.387 8.498443e-16 75390.58 0.07961539 72263.02 0.8977983 69989.38 1
bier127.tsp 136781.2 3841.962 145784.9 4241.502 2.435149e-13 145544.1 0.01623342 141351.1 0.1258296 133690.6 0.7487836
lin318.tsp 48039.78 1244.466 52865.57 1520.733 5.862237e-17 52299.12 0 49910.5 0.05434877 47830.88 0.535396
eil51.tsp 469.4567 12.76915 562.1576 32.86984 1.374741e-17 494.7529 0.02874414 481.5186 0.1386394 490.6541 0.04784139
d493.tsp 40453.72 590.4293 43403.9 893.9308 1.454267e-17 42140.47 0 40838.79 0.2611938 38333.65 1

kroB100.tsp 25254.54 813.0222 27955.27 1247.078 1.669134e-15 26908.61 0.02022685 25815.22 0.2484944 24316.05 0.8711435
kroC100.tsp 24114.56 616.4476 26094.22 1364.316 5.733966e-13 25780.57 0.02193806 23432.89 0.8747064 22632.53 1
ch130.tsp 7012.582 154.5253 7677.6 334.9915 3.362306e-17 7283.954 0.04391182 7844.935 0 6726.231 0.9570527
pr299.tsp 56980.64 1519.462 63334.8 2760.383 4.107702e-17 60263.85 0.02175183 63334.73 0.0008912489 53600.48 1
fl417.tsp 14555.84 666.7139 15706.24 504.8887 9.612834e-12 14887.62 0.2587874 13360.69 0.9739537 13707.55 0.9028805
d657.tsp 56882.87 947.1399 63456.26 952.5889 1.397338e-17 60081.63 0 56620.43 0.5641447 54004.06 1

kroA150.tsp 30660.12 587.0475 33440.39 702.5531 2.082407e-17 31588.4 0.05047068 31891.85 0.01281602 30089.76 0.8268097
fl1577.tsp 26163.75 581.1847 27813.25 734.2875 4.275012e-16 27625.77 0 25719.48 0.7662481 24216.51 1
u724.tsp 48423.29 620.0185 53834.65 1162.882 1.397428e-17 52629.51 0 49119.81 0.1179759 46955.06 0.9763688
pr264.tsp 60908.02 1293.462 57915.59 1261.642 1 65978.21 0 54974.84 1 54675.13 1
pr226.tsp 92837.77 4173.648 100178.3 5764.498 2.094478e-10 102887.2 0 97599.68 0.1807949 91753.45 0.5477194
pr439.tsp 130114.3 3009.391 136546.5 3981.135 2.973125e-12 133663.8 0.144199 128749.3 0.6465775 119181.3 1

xpr2308.tsp 8672.572 128.7851 9076.422 122.0759 5.465112e-11 9339.083 0 8632.146 0.5640092 8150.111 1
bcl380.tsp 1918.307 53.37217 2014.562 61.36226 2.590956e-07 2121.398 0 1876.972 0.7658752 1826.491 1
dkd1973.tsp 7792.836 68.11825 8520.187 126.6609 1.508983e-11 7990.916 0 7953.549 0.001037765 7247.629 1
pbd984.tsp 3281.114 48.26593 3582.584 71.60797 8.455617e-18 3480.203 0 3225.61 0.8011905 3139.56 1
dkg813.tsp 3931.528 61.91603 4044.898 81.07598 6.265391e-08 4082.176 0.01668589 3782.176 1 3576.115 1
rbx711.tsp 3632.072 86.08304 3821.43 78.24727 2.982211e-09 3941.668 0 3519.191 0.9126105 3501.695 0.9436677
rbu737.tsp 3934.535 43.39618 4284.951 116.2969 1.505204e-11 4157.718 0 3931.356 0.4997586 3715.348 1
dea2382.tsp 9927.748 171.8224 10202.24 229.9204 1.119734e-06 11074.04 0 9724.705 0.8341924 8845.206 1
bck2217.tsp 8038.587 74.88316 8567.246 84.23271 1.508038e-11 8777.92 0 7750.358 1 7679.882 1
xit1083.tsp 4262.549 55.46561 4677.546 61.75847 1.508038e-11 4374.092 8.207333e-05 4262.886 0.4651877 4073.27 1
icw1483.tsp 5334.868 89.92863 5725.362 99.80521 1.843717e-11 5629.58 0 5470.071 0.06932323 4969.913 1
dcb2086.tsp 7905.548 78.11186 8413.836 84.02766 8.455617e-18 8662.829 0 8076.356 0 7429.72 1
dka1376.tsp 5606.346 108.5535 5869.187 72.48792 4.561721e-13 6006.792 0 5761.826 0.08493456 5300.494 1
bva2144.tsp 7501.32 88.32525 8098.402 153.0135 8.455617e-18 8074.56 0 7441.435 0.6504908 7195.558 1
djc1785.tsp 7288.886 64.58055 7772.853 107.8659 1.508983e-11 7825.042 0 7158.487 0.9496844 6841.044 1
pka379.tsp 1603.686 29.45304 1630.845 34.44348 0.001749445 1580.694 0.6919587 1605.738 0.3806091 1530.744 1
fra1488.tsp 5124.243 61.52747 5572.661 129.8294 1.508983e-11 5151.302 0.338401 5407.792 0 4889.843 1
xqc2175.tsp 8179.526 122.6775 8610.238 107.738 2.299928e-15 8783.816 0 8140.881 0.578951 7775.502 1
fnb1615.tsp 5974.971 80.01615 6439.474 157.3768 1.508983e-11 6123.954 0.03469967 6034.764 0.2239577 5599.346 1
xqf131.tsp 647.8742 23.01932 708.0489 42.14538 3.791539e-07 687.1351 0.0381198 686.7936 0.04009066 612.0861 0.9075182

Table A.2: Comparison between the results obtained with GPHH-best and the other heuristics on the
instances from TSPLIB

Appendix B

Experimental Results of QLHH on

CCUS

Figure B.1: Comparison of non-dominated heuristics obtained with linear and Chebyshev scalarisations.

99

Appendices 100

Figure B.2: Distributions of objective values obtained after running heuristics designed manually and the
heuristic generated by QLHH on testing instances.

Appendices 101

Figure B.3: Comparison of the generated heuristics with a random walk for one instance.

Figure B.4: Heatmaps of the number of visits of vertices with a random walk (on the left) and the generated
heuristic (on the right).

Appendix C

Implementation of ALGO

102

Conclusion 103

Lo
w

Le
ve

lH
eu

ris
tic

Q
Le

ar
ni

ng

+
 la

un
ch

(n
um

_e
pi

so
de

s:
 in

t)
+

 p
ol

ic
y(

g:
 G

ra
p

h
, n

od
e_

va
rs

: l
is

t,
ed

ge
_v

ar
s:

 li
st

):
 in

t
+

 u
pd

at
e(

)

N
eu

ra
lN

et
w

or
k

-
em

be
dd

in
g_

di
m

en
si

on
: i

nt

+
 fo

rw
ar

d(
st

at
e:

 te
ns

or
, a

ct
io

n:
 te

ns
or

):
 te

ns
or

G
ra

ph
N

eu
ra

lN
et

w
or

k

-
em

be
dd

in
g_

di
m

: i
nt

-
nu

m
_n

od
e_

va
rs

: i
nt

-
nu

m
_e

dg
e_

va
rs

: i
nt

-
nu

m
_l

ay
er

s:
 in

t

+
 fo

rw
ar

d(
gr

ap
hs

: l
is

t,
no

de
_v

ar
s:

 te
ns

or
, e

dg
e_

va
rs

: t
en

so
r)

: t
en

so
r

S
ca

la
ris

at
io

n

+
 c

al
cu

la
te

(v
al

ue
s:

 li
st

):
 fl

oa
t

1

0.
.*1

1

P
ro

bl
em

+
 is

_t
er

m
in

al
(s

: S
o

lu
ti

o
n

, a
: A

g
en

t)
: b

oo
l

+
 g

et
_n

od
es

(s
: S

o
lu

ti
o

n
, a

: A
g

en
t)

: s
et

+
 ti

m
e(

s:
 S

o
lu

ti
o

n
, a

: A
g

en
t,

 n
: N

o
d

e)
: f

lo
at

+
 c

an
_c

om
m

un
ic

at
e(

s:
 S

o
lu

ti
o

n
, a

1:
 A

g
en

t,
 a

2:
 A

g
en

t)
: b

oo
l

O
bj

ec
tiv

e

+
 c

om
pu

te
_v

al
ue

(s
: S

o
lu

ti
o

n
):

 fl
oa

t

C
on

st
ra

in
t

+
 g

et
_u

pp
er

_b
ou

nd
()

: f
lo

at

N
od

eV
ar

ia
bl

e

+
 c

om
pu

te
(s

: S
o

lu
ti

o
n

, a
: A

g
en

t,
 n

: N
o

d
e)

: f
lo

at

E
dg

eV
ar

ia
bl

e

+
 c

om
pu

te
(:

 S
o

lu
ti

o
n

, a
: A

g
en

t,
 e

: E
d

g
e)

: f
lo

at

1

1.
.*

0.
.*

0.
.*

0.
.*

S
ol

ut
io

n

-
hi

st
or

y:
 s

et

+
 g

et
_n

od
es

()
: s

et
+

 g
et

_a
ge

nt
s(

):
 s

et
+

 g
et

_t
im

es
()

: s
et

+
 fi

lte
r_

no
de

s(
no

de
s:

 s
et

):
 S

o
lu

ti
o

n
+

 fi
lte

r_
ag

en
ts

(a
ge

nt
s:

 s
et

):
 S

o
lu

ti
o

n
+

 fi
lte

r_
tim

es
(t

im
e:

 fl
oa

t)
: S

o
lu

ti
o

n

G
ra

ph

0.
.*

1

H
eu

ris
tic

+
 e

xe
cu

te
(g

: G
ra

p
h

):
 S

o
lu

ti
o

n
0.

.*

1

N
od

e

+
 n

ei
gh

bo
ur

s(
):

 s
et

E
dg

e

+
 n

1:
 N

o
d

e
+

 n
2:

 N
o

d
e

+
 w

: f
lo

atA
ge

nt

+
 fi

rs
t:

N
o

d
e

1

1.
.*

1.
.*

1.
.*

0.
.*

2

0.
.*

1

Figure C.1: Complete UML diagram for the implementation of ALGO.

Bibliography

104

Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender Özcan, and

Rong Qu. Hyper-heuristics: a survey of the state of the art. Journal of the Operational Research Society, 64

(12):1695–1724, December 2013. ISSN 0160-5682, 1476-9360. doi: 10.1057/jors.2013.71.

5 citations in pages viii, 2, 22, 26, and 66.

Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo. Swarm robotics: a review from the

swarm engineering perspective. Swarm Intelligence, 7(1):1–41, 2013.

2 citations in pages ix and 65.

Melanie Schranz, Martina Umlauft, Micha Sende, and Wilfried Elmenreich. Swarm Robotic Behaviors and

Current Applications. Frontiers in Robotics and AI, 7:36, April 2020.

2 citations in pages ix and 65.

Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning for combinato-

rial optimization: A survey. Computers & Operations Research, 134:105400, October 2021. ISSN 0305-0548.

doi: 10.1016/j.cor.2021.105400.

2 citations in pages 2 and 24.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning Combinatorial Optimization

Algorithms over Graphs. In Advances in Neural Information Processing Systems, volume 30. Curran Asso-

ciates, Inc., 2017.

3 citations in pages 2, 26, and 41.

Xingxing Hao, Rong Qu, and Jing Liu. A Unified Framework of Graph-Based Evolutionary Multitasking Hyper-

Heuristic. IEEE Transactions on Evolutionary Computation, 25(1):35–47, February 2021. ISSN 1941-0026.

doi: 10.1109/TEVC.2020.2991717.

2 citations in pages 2 and 23.

Fuqing Zhao, Shilu Di, Jie Cao, Jianxin Tang, and Jonrinaldi. A Novel Cooperative Multi-Stage Hyper-Heuristic

for Combination Optimization Problems. Complex System Modeling and Simulation, 1(2):91–108, June 2021.

ISSN 2096-9929. doi: 10.23919/CSMS.2021.0010.

2 citations in pages 2 and 25.

Yuchang Zhang, Ruibin Bai, Rong Qu, Chaofan Tu, and Jiahuan Jin. A deep reinforcement learning based

hyper-heuristic for combinatorial optimisation with uncertainties. European Journal of Operational Research,

300(2):418–427, July 2022. ISSN 0377-2217. doi: 10.1016/j.ejor.2021.10.032.

2 citations in pages 2 and 25.

Hao Lu, Xingwen Zhang, and Shuang Yang. A Learning-based Iterative Method for Solving Vehicle Routing

Problems. In International Conference on Learning Representations, February 2022.

One citation in page 2.

Kristof Van Moffaert, Madalina M. Drugan, and Ann Nowe. Scalarized multi-objective reinforcement learning:

Novel design techniques. In 2013 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement

105

Bibliography 106

Learning (ADPRL), pages 191–199, Singapore, Singapore, April 2013. IEEE.

2 citations in pages 2 and 43.

Kristof Van Moffaert and Ann Nowé. Multi-Objective Reinforcement Learning using Sets of Pareto Dominating

Policies. Journal of Machine Learning Research, 15(107):3663–3692, 2014.

One citation in page 2.

Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-Agent Reinforcement Learning: A Selective Overview

of Theories and Algorithms. In Kyriakos G. Vamvoudakis, Yan Wan, Frank L. Lewis, and Derya Cansever,

editors, Handbook of Reinforcement Learning and Control, Studies in Systems, Decision and Control, pages

321–384. Springer International Publishing, Cham, 2021.

2 citations in pages 2 and 38.

Ross Arnold, Kevin Carey, Benjamin Abruzzo, and Christopher Korpela. What is A Robot Swarm: A Def-

inition for Swarming Robotics. In 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile

Communication Conference, pages 0074–0081. IEEE, 2019.

2 citations in pages 2 and 64.

Daniel H. Stolfi, Matthias R. Brust, Grégoire Danoy, and Pascal Bouvry. A cooperative coevolutionary approach

to maximise surveillance coverage of uav swarms. In 2020 IEEE 17th Annual Consumer Communications &

Networking Conference (CCNC), pages 1–6, 2020. doi: 10.1109/CCNC46108.2020.9045643.

One citation in page 15.

Maryam Karimi-Mamaghan, Mehrdad Mohammadi, Patrick Meyer, Amir Mohammad Karimi-Mamaghan, and

El-Ghazali Talbi. Machine learning at the service of meta-heuristics for solving combinatorial optimization

problems: A state-of-the-art. European Journal of Operational Research, 296(2):393–422, 2022. ISSN 0377-

2217. doi: https://doi.org/10.1016/j.ejor.2021.04.032.

One citation in page 16.

Yuan Zheng, Xiaogang Fu, and Yanwen Xuan. Data-driven optimization based on random forest surrogate. In

2019 6th International Conference on Systems and Informatics (ICSAI), pages 487–491, 2019. doi: 10.1109/

ICSAI48974.2019.9010547.

One citation in page 16.

Gabriel Duflo, Emmanuel Kieffer, Matthias R. Brust, Grégoire Danoy, and Pascal Bouvry. A GP Hyper-

Heuristic Approach for Generating TSP Heuristics. In 2019 IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW), pages 521–529, Rio de Janeiro, Brazil, May 2019a. IEEE.

ISBN 978-1-72813-510-6. doi: 10.1109/IPDPSW.2019.00094.

2 citations in pages 17 and 23.

Basheer Qolomany, Majdi Maabreh, Ala Al-Fuqaha, Ajay Gupta, and Driss Benhaddou. Parameters optimiza-

tion of deep learning models using particle swarm optimization. In 2017 13th International Wireless Com-

munications and Mobile Computing Conference (IWCMC), pages 1285–1290, 2017. doi: 10.1109/IWCMC.

2017.7986470.

One citation in page 18.

Joaquin Vanschoren. Meta-learning. Automated machine learning: methods, systems, challenges, pages 35–61,

2019.

One citation in page 18.

Bibliography 107

Peter Cowling, Graham Kendall, and Eric Soubeiga. A Hyperheuristic Approach to Scheduling a Sales Summit.

In Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, Edmund Burke, and Wilhelm Erben, editors, Practice

and Theory of Automated Timetabling III, volume 2079, pages 176–190. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2001. ISBN 978-3-540-42421-5 978-3-540-44629-3. doi: 10.1007/3-540-44629-X 11.

2 citations in pages 21 and 23.

D.H. Wolpert andW.G. Macready. No free lunch theorems for optimization. IEEE Transactions on Evolutionary

Computation, 1(1):67–82, April 1997. ISSN 1089778X. doi: 10.1109/4235.585893.

One citation in page 21.

Jian Lin, Lei Zhu, and Kaizhou Gao. A genetic programming hyper-heuristic approach for the multi-skill

resource constrained project scheduling problem. Expert Systems with Applications, 140:112915, February

2020. ISSN 09574174. doi: 10.1016/j.eswa.2019.112915.

One citation in page 23.

Mohamed Abd Elaziz, Ahmed A. Ewees, and Diego Oliva. Hyper-heuristic method for multilevel thresholding

image segmentation. Expert Systems with Applications, 146:113201, May 2020. ISSN 09574174. doi: 10.1016/

j.eswa.2020.113201.

One citation in page 23.

Edmund K. Burke, Mathew R. Hyde, Graham Kendall, Gabriela Ochoa, Ender Ozcan, and John R. Woodward.

Exploring Hyper-heuristic Methodologies with Genetic Programming. In Computational Intelligence, pages

177–201. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. ISBN 978-3-642-01798-8. doi: 10.1007/

978-3-642-01799-5 6.

One citation in page 23.

Emmanuel Kieffer, Gregoire Danoy, Matthias R. Brust, Pascal Bouvry, and Anass Nagih. Tackling Large-Scale

and Combinatorial Bi-Level Problems With a Genetic Programming Hyper-Heuristic. IEEE Transactions

on Evolutionary Computation, 24(1):44–56, February 2020. ISSN 1089-778X, 1089-778X, 1941-0026. doi:

10.1109/TEVC.2019.2906581.

One citation in page 23.

Giovani Guizzo, Federica Sarro, Jens Krinke, and Silvia Regina Vergilio. Sentinel: A Hyper-Heuristic for the

Generation of Mutant Reduction Strategies. IEEE Transactions on Software Engineering, pages 1–1, 2020.

ISSN 0098-5589, 1939-3520, 2326-3881. doi: 10.1109/TSE.2020.3002496.

One citation in page 23.

Emmanuel Kieffer, Gabriel Duflo, Grégoire Danoy, Sébastien Varrette, and Pascal Bouvry. A RNN-Based Hyper-

heuristic for Combinatorial Problems. In Leslie Pérez Cáceres and Sébastien Verel, editors, Evolutionary

Computation in Combinatorial Optimization, Lecture Notes in Computer Science, pages 17–32, Cham, 2022.

Springer International Publishing. ISBN 978-3-031-04148-8. doi: 10.1007/978-3-031-04148-8 2.

One citation in page 23.

John H Drake, Matthew Hyde, Khaled Ibrahim, and Ender Ozcan. A genetic programming hyper-heuristic for

the multidimensional knapsack problem. Kybernetes, 43(9/10):1500–1511, November 2014. ISSN 0368-492X.

doi: 10.1108/K-09-2013-0201. URL http://www.emeraldinsight.com/doi/10.1108/K-09-2013-0201.

One citation in page 23.

Yaroslav Pylyavskyy, Ahmed Kheiri, and Leena Ahmed. A Reinforcement Learning Hyper-heuristic for the

optimisation of Flight Connections. In 2020 IEEE Congress on Evolutionary Computation (CEC), pages

1–8, Glasgow, United Kingdom, July 2020. IEEE. ISBN 978-1-72816-929-3. doi: 10.1109/CEC48606.2020.

http://www.emeraldinsight.com/doi/10.1108/K-09-2013-0201

Bibliography 108

9185803.

One citation in page 24.

Mourad Lassouaoui, Dalila Boughaci, and Belaid Benhamou. A synergy Thompson sampling hyper-heuristic

for the feature selection problem. Computational Intelligence, page coin.12325, April 2020. ISSN 0824-7935,

1467-8640. doi: 10.1111/coin.12325.

One citation in page 25.

Wei Qin, Zilong Zhuang, Zizhao Huang, and Haozhe Huang. A novel reinforcement learning-based hyper-

heuristic for heterogeneous vehicle routing problem. Computers & Industrial Engineering, 156:107252, June

2021. ISSN 0360-8352. doi: 10.1016/j.cie.2021.107252.

One citation in page 25.

Hanjun Dai, Bo Dai, and Le Song. Discriminative Embeddings of Latent Variable Models for Structured Data.

In Proceedings of The 33rd International Conference on Machine Learning, pages 2702–2711. PMLR, June

2016. ISSN: 1938-7228.

3 citations in pages 26, 40, and 41.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, Learn to Solve Routing Problems! February 2022.

One citation in page 26.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph

attention networks. In International Conference on Learning Representations, 2018.

2 citations in pages 26 and 40.

Sahil Manchanda, AKASH MITTAL, Anuj Dhawan, Sourav Medya, Sayan Ranu, and Ambuj Singh. GCOMB:

Learning Budget-constrained Combinatorial Algorithms over Billion-sized Graphs. In Advances in Neural

Information Processing Systems, volume 33, pages 20000–20011. Curran Associates, Inc., 2020.

One citation in page 26.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Representation Learning on Large Graphs. In

Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

2 citations in pages 26 and 40.

Gabriel Duflo, Grégoire Danoy, El-Ghazali Talbi, and Pascal Bouvry. Automated design of efficient swarming

behaviours: a Q-learning hyper-heuristic approach. In Proceedings of the 2020 Genetic and Evolutionary

Computation Conference Companion, pages 227–228, Cancún Mexico, July 2020a. ACM. ISBN 978-1-4503-

7127-8. doi: 10.1145/3377929.3390026.

2 citations in pages 26 and 67.

Gabriel Duflo, Grégoire Danoy, El-Ghazali Talbi, and Pascal Bouvry. Automating the Design of Efficient

Distributed Behaviours for a Swarm of UAVs. In 2020 IEEE Symposium Series on Computational Intelligence

(SSCI), pages 489–496, Canberra, Australia, December 2020b. IEEE. ISBN 978-1-72812-547-3. doi: 10.1109/

SSCI47803.2020.9308355.

2 citations in pages 26 and 67.

Gabriel Duflo, Grégoire Danoy, El-Ghazali Talbi, and Pascal Bouvry. A Q-Learning Based Hyper-Heuristic for

Generating Efficient UAV Swarming Behaviours. In Ngoc Thanh Nguyen, Suphamit Chittayasothorn, Dusit

Niyato, and Bogdan Trawiński, editors, Intelligent Information and Database Systems, pages 768–781, Cham,

2021. Springer International Publishing. ISBN 978-3-030-73280-6. doi: 10.1007/978-3-030-73280-6 61.

4 citations in pages 26, 67, 83, and 86.

Bibliography 109

Gabriel Duflo, Grégoire Danoy, El-Ghazali Talbi, and Pascal Bouvry. A Generative Hyper-Heuristic based on

Multi-Objective Reinforcement Learning: the UAV Swarm Use Case. In 2022 IEEE Congress on Evolutionary

Computation (CEC), pages 1–8, July 2022a. doi: 10.1109/CEC55065.2022.9870223.

2 citations in pages 26 and 67.

Gabriel Duflo, Grégoire Danoy, El-Ghazali Talbi, and Pascal Bouvry. Learning to Optimise a Swarm of UAVs.

Applied Sciences, 12(19):9587, January 2022b. ISSN 2076-3417. doi: 10.3390/app12199587.

3 citations in pages 26, 67, and 68.

S. Varrette, H. Cartiaux, S. Peter, E. Kieffer, T. Valette, and A. Olloh. Management of an Academic HPC

& Research Computing Facility: The ULHPC Experience 2.0. In Proc. of the 6th ACM High Performance

Computing and Cluster Technologies Conf. (HPCCT 2022), Fuzhou, China, July 2022. Association for Com-

puting Machinery (ACM). ISBN 978-1-4503-9664-6.

2 citations in pages 54 and 85.

Gerhard Reinelt. TSPLIB—A Traveling Salesman Problem Library. ORSA Journal on Computing, 3(4):376–

384, November 1991. ISSN 0899-1499. doi: 10.1287/ijoc.3.4.376.

One citation in page 59.

Tauã M. Cabreira, Lisane B. Brisolara, and Paulo R. Ferreira Jr. Survey on Coverage Path Planning with

Unmanned Aerial Vehicles. Drones, 3:4, March 2019.

One citation in page 65.

Barbara Siemiatkowska and Wojciech Stecz. A Framework for Planning and Execution of Drone Swarm Missions

in a Hostile Environment. Sensors, 21(12):4150, January 2021.

One citation in page 65.

Fatih Semiz and Faruk Polat. Solving the area coverage problem with UAVs: A vehicle routing with time

windows variation. Robotics and Autonomous Systems, 126:103435, April 2020.

One citation in page 65.

Shervin Nouyan, Alexandre Campo, and Marco Dorigo. Path formation in a robot swarm: Self-organized

strategies to find your way home. Swarm Intelligence, 2(1):1–23, 2008.

One citation in page 66.

F. Ducatelle, G. A. Di Caro, C. Pinciroli, F. Mondada, and L. M. Gambardella. Communication assisted nav-

igation in robotic swarms: Self-organization and cooperation. In 2011 IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 4981–4988. IEEE, 2011.

One citation in page 66.

Xuelong Sun, Tian Liu, Cheng Hu, Qinbing Fu, and Shigang Yue. ColCOS Φ: A Multiple Pheromone Commu-

nication System for Swarm Robotics and Social Insects Research. In 2019 IEEE 4th International Conference

on Advanced Robotics and Mechatronics (ICARM), pages 59–66. IEEE, 2019.

One citation in page 66.

Seongin Na, Yiping Qiu, Ali E Turgut, Jǐŕı Ulrich, Tomáš Krajńık, Shigang Yue, Barry Lennox, and Farshad

Arvin. Bio-inspired artificial pheromone system for swarm robotics applications. Adaptive Behavior, 2020.

One citation in page 66.

Tian Liu, Xuelong Sun, Cheng Hu, Qinbing Fu, Hamid Isakhani, and Shigang Yue. Investigating Multiple

Pheromones in Swarm Robots - A Case Study of Multi-Robot Deployment. In 2020 5th International Con-

ference on Advanced Robotics and Mechatronics (ICARM), pages 595–601. IEEE, 2020.

One citation in page 66.

Bibliography 110

Tian Liu, Xuelong Sun, Cheng Hu, Qinbing Fu, and Shigang Yue. A Multiple Pheromone Communication

System for Swarm Intelligence. IEEE Access, 9:148721–148737, 2021. ISSN 2169-3536. doi: 10.1109/

ACCESS.2021.3124386.

One citation in page 66.

Erik Kuiper and Simin Nadjm-Tehrani. Mobility Models for UAV Group Reconnaissance Applications. In 2006

International Conference on Wireless and Mobile Communications (ICWMC’06), pages 33–33, Bucharest,

Romania, 2006. IEEE.

2 citations in pages 66 and 84.

Martin Rosalie, Grégoire Danoy, Serge Chaumette, and Pascal Bouvry. Chaos-enhanced mobility models for

multilevel swarms of UAVs. Swarm and Evolutionary Computation, 41:36–48, 2018.

One citation in page 66.

Grégoire Danoy, Matthias R. Brust, and Pascal Bouvry. Connectivity Stability in Autonomous Multi-level UAV

Swarms for Wide Area Monitoring. In Proceedings of the 5th ACM Symposium on Development and Analysis

of Intelligent Vehicular Networks and Applications - DIVANet ’15, pages 1–8, Cancun, Mexico, 2015. ACM

Press. ISBN 978-1-4503-3760-1. doi: 10.1145/2815347.2815351.

2 citations in pages 66 and 84.

Matthias R. Brust, Maciej Zurad, Laurent Hentges, Leandro Gomes, Gregoire Danoy, and Pascal Bouvry. Target

Tracking Optimization of UAV Swarms Based on Dual-Pheromone Clustering. In 3rd IEEE International

Conference on Cybernetics, pages 1–8. IEEE, 2017.

2 citations in pages 66 and 81.

Edmund R. Hunt, Simon Jones, and Sabine Hauert. Testing the limits of pheromone stigmergy in high-density

robot swarms. Royal Society Open Science, 6(11):190225, 2019.

One citation in page 66.

Mauro Birattari, Antoine Ligot, Darko Bozhinoski, Manuele Brambilla, Gianpiero Francesca, Lorenzo Garat-

toni, David Garzón Ramos, Ken Hasselmann, Miquel Kegeleirs, Jonas Kuckling, Federico Pagnozzi, Andrea

Roli, Muhammad Salman, and Thomas Stützle. Automatic Off-Line Design of Robot Swarms: A Manifesto.

Frontiers in Robotics and AI, 6, 2019.

4 citations in pages 66, 67, 73, and 74.

Michael G. Epitropakis and Edmund K. Burke. Hyper-heuristics. In Rafael Mart́ı, Panos M. Pardalos, and

Mauricio G. C. Resende, editors, Handbook of Heuristics, pages 489–545. Springer International Publishing,

Cham, 2018. ISBN 978-3-319-07123-7 978-3-319-07124-4. doi: 10.1007/978-3-319-07124-4 32.

One citation in page 66.

Edmund K. Burke, Matthew R. Hyde, Graham Kendall, Gabriela Ochoa, Ender Özcan, and John R. Wood-

ward. A Classification of Hyper-Heuristic Approaches: Revisited. In Michel Gendreau and Jean-Yves Potvin,

editors, Handbook of Metaheuristics, volume 272, pages 453–477. Springer International Publishing, Cham,

2019. ISBN 978-3-319-91085-7 978-3-319-91086-4. doi: 10.1007/978-3-319-91086-4 14. Series Title: Interna-

tional Series in Operations Research & Management Science.

One citation in page 66.

Ke Li and Jitendra Malik. Learning to Optimize. In 5th International Conference on Learning Representations,

ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

One citation in page 66.

Bibliography 111

Maryam Kouzehgar, Malika Meghjani, and Roland Bouffanais. Multi-agent reinforcement learning for dynamic

ocean monitoring by a swarm of buoys. In Global Oceans 2020: Singapore – U.S. Gulf Coast, pages 1–8,

2020. doi: 10.1109/IEEECONF38699.2020.9389128.

One citation in page 66.

Mauro Birattari, Antoine Ligot, and Gianpiero Francesca. AutoMoDe: A Modular Approach to the Automatic

Off-Line Design and Fine-Tuning of Control Software for Robot Swarms. In Nelishia Pillay and Rong Qu,

editors, Automated Design of Machine Learning and Search Algorithms, Natural Computing Series, pages

73–90. Springer International Publishing, Cham, 2021. ISBN 978-3-030-72069-8.

One citation in page 67.

Antoine Ligot, Andres Cotorruelo, Emanuele Garone, and Mauro Birattari. Towards an Empirical Practice in

Off-line Fully-automatic Design of Robot Swarms. IEEE Transactions on Evolutionary Computation, pages

1–1, 2022. ISSN 1941-0026. doi: 10.1109/TEVC.2022.3144848.

One citation in page 67.

Shuang Yu, Aldeida Aleti, Jan Carlo Barca, and Andy Song. Hyper-heuristic Online Learning for Self-assembling

Swarm Robots. In Yong Shi, Haohuan Fu, Yingjie Tian, Valeria V. Krzhizhanovskaya, Michael Harold Lees,

Jack Dongarra, and Peter M. A. Sloot, editors, Computational Science – ICCS 2018, volume 10860, pages

167–180. Springer International Publishing, 2018.

One citation in page 67.

Shuang Yu, Andy Song, and Aldeida Aleti. A Study on Online Hyper-heuristic Learning for Swarm Robots. In

IEEE Congress on Evolutionary Computation, pages 2721–2728, 2019.

One citation in page 67.

Sasanka Nagavalli, Nilanjan Chakraborty, and Katia Sycara. Automated sequencing of swarm behaviors for

supervisory control of robotic swarms. In 2017 IEEE International Conference on Robotics and Automation

(ICRA), pages 2674–2681. IEEE, 2017.

One citation in page 67.

Fernando Silva, Miguel Duarte, Lúıs Correia, Sancho Moura Oliveira, and Anders Lyhne Christensen. Open

issues in evolutionary robotics. Evol. Comput., 24(2):205–236, jun 2016.

One citation in page 73.

Gianpiero Francesca and Mauro Birattari. Automatic Design of Robot Swarms: Achievements and Challenges.

Frontiers in Robotics and AI, 3, 2016.

One citation in page 73.

Matthias R. Brust, Hannes Frey, and Steffen Rothkugel. Dynamic multi-hop clustering for mobile hybrid

wireless networks. In Proceedings of the 2nd International Conference on Ubiquitous Information Management

and Communication, ICUIMC ’08, page 130–135, New York, NY, USA, 2008. Association for Computing

Machinery. ISBN 9781595939937. doi: 10.1145/1352793.1352820.

One citation in page 84.

Gabriel Duflo, Grégoire Danoy, El-Ghazali Talbi, and Pascal Bouvry. A Framework of Hyper-Heuristics based

on Q-Learning. In 2022 International Conference on Optimisation and Learning (OLA), Syracuse, Italy,

2022c.

Gabriel Duflo, Grégoire Danoy, and Pascal Bouvry. A Q-Learning Hyper-Heuristic for UAV Swarming. In 2020

International Conference on Optimisation and Learning (OLA), Cadiz, Spain, 2020c.

Bibliography 112

Gabriel Duflo, Emmanuel Kieffer, Grégoire Danoy, and Pascal Bouvry. GP Hyper-Heuristic for the Travel-

ling Salesman Problem. In 2019 International Conference on Optimisation and Learning (OLA), Bangkok,

Thailand, 2019b.

