GALOIS GROUPS OF KUMMER EXTENSIONS OF NUMBER FIELDS

BRYAN ADVOCAAT, CHI WA CHAN, ANTIGONA PAJAZITI, FLAVIO PERISSINOTTO, AND ANTONELLA PERUCCA

Abstract

Let K be a number field, and let G be a finitely generated subgroup of K^{\times}. For every prime number ℓ and for all positive integers m, n with $m \geqslant n$ we provide parametric formulas for the structure of the Galois group of the Kummer extension $K\left(\zeta_{\ell^{m}}, \sqrt[\ell^{n}]{G}\right) / K\left(\zeta_{\ell^{m}}\right)$. Moreover, we describe an explicit finite procedure to compute at once the Galois group structure for all extensions $K\left(\zeta_{M}, \sqrt[N]{G}\right) / K\left(\zeta_{M}\right)$ with M, N positive integers such that $N \mid M$. Our work builds on results about the size of those Galois groups by the last-named author joint with Debry, Hörmann, Perissinotto, Sgobba, and Tronto.

1. Introduction

Kummer theory for number fields is a classical topic in algebraic number theory (see the standard references [6], [1]), and developing it is natural and fundamental. Nowadays, Kummer theory is applied, for example, to study questions on the reductions of algebraic numbers, most notably Artin's Conjecture on primitive roots (see the survey article [8]).
The purpose of this paper is solving two problems in Kummer theory for number fields in full generality. The former problem concerns finite cyclotomic-Kummer extensions made with ℓ^{m} th roots of unity and ℓ^{n}-th radicals, where $n \leqslant m$ and ℓ is a prime number. The latter problem concerns general finite cyclotomic-Kummer extensions made with M-th roots of unity and N-th radicals, where $N \mid M$.
Let K be any number field, and let G be a finitely generated subgroup of K^{\times}which, without loss of generality, may be taken torsion-free. Let ℓ be a prime number, and let n, m, N, M be positive integers such that $n \leqslant m$ and $N \mid M$.
If $\zeta_{\ell^{n}} \in K$, then the main theorem of Kummer theory tells us that the Galois group of the Kummer extension $K(\sqrt[n]{G}) / K$ is isomorphic to the group $G K^{\times \ell^{n}} / K^{\times \ell^{n}}$. However, without the above assumption, classical Kummer theory cannot be applied. What one can do is adding first to K sufficiently many roots of unity, thus considering the field $L:=K\left(\zeta_{\ell^{m}}\right)$. Then, by Kummer theory over L, the Galois group of the Kummer extension $L(\sqrt[n]{G}) / L$ is isomorphic to the group $G L^{\times \ell^{n}} / L^{\times \ell^{n}}$. What we achieve is showing that we can compute the group structure of this Galois group (of the Kummer extension over L) by only doing computations over K (or over $K\left(\zeta_{4}\right)$ if $\ell=2, n>1$, and $\zeta_{4} \notin K$). Indeed, there are parameters for ℓ-divisibility over K (respectively, over $K\left(\zeta_{4}\right)$) that suffice for the purpose. These parameters determine the structure of the Galois group (see Theorem3) and there are explicit formulas for the group structure that only depend on those parameters (see Remark (4). The parameters for ℓ-divisibility have been developed by Perucca and others, see [10, 2, 15], and Section [2.2] is devoted to recalling their definition and properties.

The second problem that we consider is the generalization of the first where the parameters ℓ^{n}, ℓ^{m} are replaced by integers N, M that are not necessarily powers of one same prime number. In this full generality we cannot hope to rely on divisibility parameters as before. Our aim, which we were able to fully achieve, is describing an explicit finite procedure for computing at once the structure of the Galois group for all Kummer extensions $K\left(\zeta_{M}, \sqrt[N]{G}\right) / K\left(\zeta_{M}\right)$. This procedure is in fact an algorithm which is suitable for mathematical softwares like [17, 7]. This second problem is tackled with in Section 5 . Notice that Hörmann, Perissinotto, Perucca, Sgobba, and Tronto were able to compute the degree of the extensions $K\left(\zeta_{M}, \sqrt[N]{G}\right) / K\left(\zeta_{M}\right)$ if K is a multiquadratic field (for example, a quadratic field), a quartic field, or a number field without quadratic subfields (in particular, a number field of odd degree), see [3, 9].
Finally, the last section is devoted to examples and explicit computations that show how our very general and theoretical results can be applied in practice.
Acknowledgements. We thank Alexandre Benoist, Fritz Hörmann, and Sergei Iakovenko for their valuable suggestions. Bryan Advocaat, Antigona Pajaziti, and Flavio Perissinotto were kindly supported by the Luxembourg National Research Fund, with the grants PRIDE17 1224660, AFR-PhD 16981197, and PRIDE17 1224660.

2. Preliminaries

Notation. We let ℓ be a prime number and denote by v_{ℓ} the ℓ-adic valuation defined on nonzero integers. We consider a number field K and work within some fixed algebraic closure \bar{K} of K. We let μ_{n} be the group of n-th roots of unity in \bar{K} and we denote by ζ_{n} any primitive n-th root of unity.
2.1. Finite abelian groups. Consider a finite and non-trivial abelian group \mathcal{G}. To study its structure as a product of cyclic groups we will suppose that the size of \mathcal{G} is a power of ℓ. If \mathcal{G} is generated by r elements, then the number of cyclic components does not exceed r so the group structure of \mathcal{G} is a decomposition of \mathcal{G} as the product of $r^{\prime} \leqslant r$ cyclic groups. This amounts to having an isomorphism

$$
\mathcal{G} \simeq \prod_{i=1}^{r^{\prime}} C_{\ell^{e_{i}}}
$$

where the e_{i} 's are a non-increasing list of positive integers. With the identification given by such an isomorphism we may consider $C_{\ell^{e} i}$ to be a cyclic subgroup $\left\langle\gamma_{i}\right\rangle$ of \mathcal{G}. Thus we can write

$$
\mathcal{G}=\left\langle\gamma_{1}, \ldots, \gamma_{r^{\prime}}\right\rangle \simeq\left\langle\gamma_{1}\right\rangle \times \cdots \times\left\langle\gamma_{r^{\prime}}\right\rangle .
$$

To determine the group structure of \mathcal{G} we will apply on several occasions the following wellknown result from group theory (see for example [5, Lemma 13.4]):

Remark 1. An element of \mathcal{G} whose order equals the exponent of \mathcal{G} generates a cyclic component C of \mathcal{G}. In other words, there is a subgroup \mathcal{G}^{\prime} of \mathcal{G} such that \mathcal{G} is the internal direct product of C and \mathcal{G}^{\prime}.
2.2. Parameters for ℓ-divisibility. We say that an element $a \in K^{\times}$is ℓ-divisible if $a \in K^{\times \ell}$. If $a \zeta \notin K^{\times \ell}$ holds for every root of unity $\zeta \in K \cap \mu_{\ell \infty}$, then we say that $a \in K^{\times}$is strongly-ℓ-indivisible. Elements $a_{1}, a_{2}, \ldots, a_{r} \in K^{\times}$are said to be strongly ℓ-independent if $\prod_{i=1}^{r} a_{i}^{e_{i}}$ is strongly ℓ-indivisible for all integers $e_{1}, e_{2}, \ldots, e_{r}$ that are not all divisible by ℓ.

Every element $a \in K^{\times}$that is not a root of unity can be written in the form $a=A^{\ell^{d}} \zeta$ with $d \in \mathbb{Z}_{\geqslant 0}, \zeta \in K \cap \mu_{\ell \infty}$, and where $A \in K^{\times}$is strongly ℓ-indivisible, see [2, Lemma 7]. The non-negative integer d is uniquely determined, while the non-negative integer $h:=v_{\ell}(\operatorname{ord} \zeta)$ may depend on the chosen decomposition. We call (d, h) parameters for ℓ-divisibility of a, noting that h might not be unique. By [2, Section 6.1] we have a finite procedure as how to find parameters for ℓ-divisibility.
Let $G=\left\langle b_{1}, \ldots, b_{r}\right\rangle$ be a finitely generated and torsion free subgroup of K^{\times}of positive rank r. We define parameters for ℓ-divisibility of G as the list of parameters for ℓ-divisibility $\left(d_{i}, h_{i}\right)$ of b_{i}, provided that the basis b_{1}, \ldots, b_{r} is an ℓ-good basis. By this we mean that decomposing $b_{i}=$ $B_{i}^{\ell^{d_{i}}} \zeta_{\ell^{h_{i}}}$ as above with a strongly ℓ-indivisible element B_{i}, we have the additional property that B_{1}, \ldots, B_{r} are strongly ℓ-independent. By [2, Theorem 14] we know that a ℓ-good basis exists, and by [2, Section 6.1] we know a finite procedure as how to construct it from a given basis. The d-parameters d_{1}, \ldots, d_{r} are uniquely determined up to reordering by [2], Corollary 16]. The parameters for ℓ-divisibility $\left(d_{i}, h_{i}\right)$ are not unique up to reordering, however they can be made unique if we impose additional conditions on them, see [2, Propositions 31 and 33]. Recall that the ℓ-good bases are precisely the bases which maximize the sum of their d-parameters; intuitively, this means that ℓ-good bases show all the divisibility of G.
If ℓ is odd or $\zeta_{4} \in K$, then the parameters for ℓ-divisibility of G do not change if we extend the field from K to $K\left(\zeta_{\ell^{n}}\right)$ for some given n (see [2, Proposition 9]). However, they may change in the excluded case by extending the field from K to $K\left(\zeta_{4}\right)$, and a precise description of when and how they do change is provided in [15].

3. Groups of radicals

In this section we fix some prime number ℓ. We set $z:=v_{\ell}\left(\# \mu_{K}\right)$. We recall the following lemma as it will be used multiple times:

Lemma 2. [13, Lemma 5] Let a_{1}, \ldots, a_{r} be strongly ℓ-independent elements of K^{\times}. If $\zeta a_{1}^{e_{1}} \ldots a_{r}^{e_{r}} \in K^{\times \ell^{n}}$ holds for some positive integer n, for some non-negative integers e_{1}, \ldots, e_{r} and for some $\zeta \in \mu_{K}$, then e_{1}, \ldots, e_{r} are all divisible by ℓ^{n}.

Let $I:=\{1, \ldots, r\}$ and let $G:=\left\langle b_{i}: i \in I\right\rangle$ be a finitely generated and torsion free subgroup of K^{\times}of positive rank r. We suppose that b_{1}, \ldots, b_{r} is an ℓ-good basis of G, and we write $b_{i}=B_{i}^{\ell_{i}^{d_{i}}} \zeta_{\ell^{h_{i}}}$ for some strongly ℓ-independent elements $B_{i} \in K^{\times}$.
The aim of this section is to prove the following result (see Remark 5 for how to deal with the missing case):

Theorem 3. Suppose that ℓ is odd or $\zeta_{4} \in K$. The parameters for ℓ-divisibility of G determine the group structure of $G K^{\times \ell^{n}} / K^{\times \ell^{n}}$ for all $n \geqslant 1$. Moreover, for any given n, there is an explicit finite procedure to compute the number of non-trivial direct cyclic factors of $G K^{\times \ell^{n}} / K^{\times \ell^{n}}$ and each of their sizes.

Proof. Without loss of generality, we may assume $z \geqslant n$, as the divisibility parameters of G do not change if we extend the field K to $K\left(\zeta_{\ell^{n}}\right)$. Write $\delta_{i}:=\max \left(n-d_{i}, 0\right)$. Moreover, call $b_{i, 1}$ the class of b_{i} modulo $K^{\times \ell^{n}}$ and call $\mu_{\ell^{z}, 1}$ the image of $\mu_{\ell^{z}}$ modulo $K^{\times \ell^{n}}$. Let $\ell^{w_{i, 1}}$ be the order of $\zeta_{\ell^{h_{i}}}$ modulo $K^{\times \ell^{n}}$, so we have $w_{i, 1}=\max \left(0, h_{i}+n-z\right)$. Then, calling $v_{i, 1}:=v_{\ell}\left(\operatorname{ord}\left(b_{i, 1}\right)\right)$, by Lemma 2 applied to B_{i} we have $v_{i, 1}=\max \left(\delta_{i}, w_{i, 1}\right)$.

For every i the intersection of $\left\langle b_{i, 1}\right\rangle$ with $\left\langle b_{i^{\prime}, 1}: i^{\prime} \neq i\right\rangle$ is contained in $\mu_{\ell^{z}, 1}$ (by Lemma 2 applied to B_{1}, \ldots, B_{r}). If $\left\langle b_{i, 1}\right\rangle \cap \mu_{\ell^{z}, 1}$ is trivial, which means $v_{i, 1}=\delta_{i}$ (by Lemma 2 applied to B_{i}), then in particular we can write

$$
G K^{\times \ell^{n}} / K^{\times \ell^{n}}=\left\langle b_{i, 1}\right\rangle \times\left\langle b_{i^{\prime}, 1}: i^{\prime} \neq i\right\rangle
$$

Write $I_{1}=I$, and let $D_{1} \subseteq I_{1}$ consist of those indices i such that $v_{i, 1}=\delta_{i}$. So the groups $\left\langle b_{i, 1}\right\rangle$ for $i \in D_{1}$ are direct components of order $\ell^{\delta_{i}}$ and they can be "detached" and collected, leaving for us to investigate, in case $I_{1} \neq D_{1}$, the indices in $I_{1} \backslash D_{1}$. Let $m_{1} \in I_{1} \backslash D_{1}$ be the least index such that $w_{m_{1}, 1} \geqslant w_{i, 1}$ for all $i \in I_{1} \backslash D_{1}$, and set $I_{2}:=I_{1} \backslash\left(D_{1} \cup\left\{m_{1}\right\}\right)$. By Remark 1, we have

$$
\left\langle b_{i, 1}: i \in I_{1} \backslash D_{1}\right\rangle \simeq\left\langle b_{m_{1}, 1}\right\rangle \times\left\langle b_{i, 2}: i \in I_{2}\right\rangle
$$

where $b_{i, 2}$ stands for the class of b_{i} modulo $\left\langle K^{\times \ell^{n}}, b_{m_{1}, 1}\right\rangle$. So we are left to investigate the group structure of $\left\langle b_{i, 2}: i \in I_{2}\right\rangle$, in case $I_{2} \neq \emptyset$.
We proceed by iteration. At the step $j>1$, in case $I_{j}:=I_{j-1} \backslash\left(D_{j-1} \cup\left\{m_{j-1}\right\}\right)$ is not empty, we have to investigate the group structure of $\left\langle b_{i, j}: i \in I_{j}\right\rangle$, where $b_{i, j}$ is the class of b_{i} modulo $H_{j}:=\left\langle K^{\times \ell^{n}}, b_{m_{1}}, \ldots, b_{m_{j-1}}\right\rangle$. Call $\ell^{w_{i, j}}$ the order of $\zeta_{\ell^{h_{i}}}$ modulo H_{j}. Then we have $w_{i, j}=\max \left(0, w_{i, j-1}-w_{m_{j-1}, j-1}+\delta_{m_{j-1}}\right)$.
The cyclic group $\left\langle b_{i, j}\right\rangle$ has order $\ell^{v_{i, j}}$, where $v_{i, j}=\max \left(\delta_{i}, w_{i, j}\right)$ by Lemma 2 .
We then define $D_{j} \subset I_{j}$ as the set of indices i satisfying $v_{i, j}=\delta_{i}$, and as above we collect detachable cyclic components $\left\langle b_{i, j}\right\rangle$ for $i \in D_{j}$, of order $\ell^{\delta_{i}}$. If $I_{j}=D_{j}$, then we are done. Else, we define $m_{j} \in I_{j} \backslash D_{j}$ as the least index maximizing $w_{i, j}$ and (by Remark 1 collect the cyclic component $\left\langle b_{m_{j}, j}\right\rangle$, of order $\ell^{w_{m_{j}, j}}$. If $I_{j} \backslash\left(D_{j} \cup\left\{m_{j}\right\}\right)$ is empty, then we are done, else we move on to the next step. The procedure clearly terminates in at most r steps.

Remark 4. There is some positive integer $k \leqslant r$ such that we can write

$$
G K^{\times \ell^{n}} / K^{\times \ell^{n}} \cong \prod_{j=1}^{k} G_{j}
$$

where the group G_{j} is the product of the components of $G K^{\times \ell^{n}} / K^{\times \ell^{n}}$ which are collected at the j-th step in the proof of Theorem 3. We have:

$$
G_{j}=\left(\prod_{i \in D_{j}} \mathbb{Z} / \ell^{\delta_{i}} \mathbb{Z}\right) \times \mathbb{Z} / \ell^{w_{m_{j}, j}} \mathbb{Z}
$$

where the (possibly empty) subsets $D_{j} \subseteq I$, the indices $m_{j} \in I$ and the integers δ_{i} and $w_{m_{j}, j}>0$ are as in the proof of Theorem 3 . The set $I_{k} \backslash D_{k}$ may be empty and, if that is the case, we set the component $\mathbb{Z} / \ell^{w_{m_{k}}, k} \mathbb{Z}$ of G_{k} to be the trivial group.

Remark 5. In the remaining case $\ell=2$ and $\zeta_{4} \notin K$ we will extend the field from K to $K\left(\zeta_{4}\right)$ to reduce to the known case (in particular, we work with the divisibility parameters of G over $K\left(\zeta_{4}\right)$). Taking this field extension is not an issue as soon as one investigates $\sqrt[2^{n}]{G}$ for $n>1$. So we are left to investigate $K(\sqrt{G}) / K$ when $\zeta_{4} \notin K$. The size of the Galois group of this extension is known by [2] hence the group structure is also known because the group is either trivial or it has exponent 2 .

4. CONSIDERATIONS ON THE GROUP STRUCTURE

We collect here several observations on the group structure of $G K^{\times \ell^{n}} / K^{\times \ell^{n}}$ computed in the previous section. Remarks 6 and 7 compare our result with [2], while the others deal with special cases and investigate how the structure changes by varying the parameter n.
Remark 6. The group structure described in the proof of Theorem 3 agrees with [2, Theorem 18]. Indeed, by Remark 4 (setting $w_{m_{k}, j}=0$ for all j if m_{k} does not exists) we have

$$
v_{\ell}\left(\#\left(G K^{\times \ell^{n}} / K^{\times \ell^{n}}\right)\right)=\sum_{i \in I \backslash\left\{m_{1}, \ldots, m_{k}\right\}} \delta_{i}+\sum_{j=1}^{k} w_{m_{j}, j}
$$

Recalling that $w_{i, j}=\max \left(0, w_{i, j-1}-w_{m_{j-1}, j-1}+\delta_{m_{j-1}}\right)$, we can write $\sum_{j} w_{m_{j}, j}=w_{m_{k}, 1}+$ $\sum_{j} \delta_{m_{j}}$. Moreover, since $w_{m_{k}, 1}-\delta_{m_{k}}=\max _{i \in I}\left(w_{i, 1}-\delta_{i}\right)$ and by definition of $w_{i, 1}$, we conclude that

$$
v_{\ell}\left(\#\left(G K^{\times \ell^{n}} / K^{\times \ell^{n}}\right)\right)=\sum_{i \in I} \delta_{i}+\max \left(0, \max _{i \in I}\left(h_{i}-\delta_{i}+n-z\right)\right)
$$

The formulas above agree with [2, Theorem 15 and Corollary 16] under the assumption that $H_{n}=0$ (for example, if $h_{i}=0$ for all i) because $v_{i, 1}=\delta_{i}$ for all i. Moreover, if $\left(d_{i}, h_{i}\right)=$ $(0,0)$ holds for all i (which for any given G happens for almost all ℓ by [11, Theorem 2.7]), then we have $\#\left(G K^{\times \ell^{n}} / K^{\times \ell^{n}}\right)=\ell^{n r}$. Moreover, if $n \geqslant d_{i}$ for all i we have in particular $\#\left(G K^{\times \ell^{n+1}} / K^{\times \ell^{n+1}}\right)=\ell^{r} \cdot \#\left(G K^{\times \ell^{n}} / K^{\times \ell^{n}}\right)$.

Remark 7. The multiset of the pairs $\left(d_{i}, h_{i}\right)$ depends in general on the choice of the ℓ-good basis of G. We now verify that the group structure determined in Theorem 3 does not depend on this choice. To achieve this, we change the basis of G imposing the conditions listed in [2, Proposition 31] (with these additional conditions, the multiset is unique). As reordering the basis of G does not change the group structure, we may suppose that $d_{i} \leqslant d_{j}$ holds for each $i \leqslant j$. Following the proof of [2, Proposition 31], we then take the following steps, commenting on why the group structure does not change:
(1) If $h_{i} \leqslant z-d_{i}$, we set $h_{i}=0$. Notice that the order of $b_{i, 1}$ is still δ_{i}.
(2) If $i<j$ and $0<h_{i} \leqslant h_{j}$, we set $h_{i}=0$ (in case $h_{i}=h_{j}$ we set instead $h_{j}=0$). If $d_{i} \leqslant d_{j}$ and $h_{i} \leqslant h_{j}$, then we have $w_{i, t} \leqslant w_{j, t}$ for every t : this still holds after this step. In case $h_{i} \neq h_{j}$ we preserve the property $i \notin\left\{m_{1}, \ldots m_{k}\right\}$ and $w_{j, t}$ is unchanged; else, we preserve the property $j \notin\left\{m_{1}, \ldots m_{k}\right\}$ and $w_{i, t}$ is unchanged.
(3) If $i<j$ and if $h_{i}, h_{j}>0$ and $d_{i}+h_{i} \geqslant d_{j}+h_{j}$, we set $h_{j}=0$. If $d_{i} \leqslant d_{j}$ and $d_{i}+h_{i} \geqslant d_{j}+h_{j}$, then both $w_{i, t} \geqslant w_{j, t}$ (for every t) and $j \notin\left\{m_{1}, \ldots m_{k}\right\}$ hold and are preserved. Moreover, $w_{i, t}$ is unchanged.

Remark 8. We have determined the group structure of $G K^{\times \ell^{n}} / K^{\times \ell^{n}}$ so we know the exponent of this group, namely $\ell^{\max _{i}\left(v_{i, 1}\right)}$. For large n the group structure of $G K^{\times \ell^{n}} / K^{\times \ell^{n}}$ does not involve the h-parameters explicitly, and indeed by (1) of the previous remark we may suppose that $h_{i}=0$ holds for all i. Moreover, for all $n \gg 0$ (for $n>z+\max \left(d_{1}, \cdots, d_{r}\right)$), the group $G K^{\times \ell^{n}} / K^{\times \ell^{n}}$ has precisely r components, which all grow by a factor ℓ when we increase n by 1 (this is what we call eventual maximal growth). This regular growth of the existing components does not hold in general for small n, as we cannot assume the h-parameters
to be 0 . Because of the eventual maximal growth, we may compute the group structure of $G K^{\times \ell^{n}} / K^{\times \ell^{n}}$ for all n by applying the algorithm in Theorem 3 finitely many times.
Remark 9. Supposing $h_{i}=0$ for every i, the family of groups $G K^{\times \ell^{n}} / K^{\times \ell^{n}}$ can be arbitrary among the family of finite abelian groups of order a power of ℓ, having at most r components and having precisely r components for $n \gg 0$, such that each existing component grows by a factor ℓ by increasing n to $n+1$. Indeed, such groups are of the form $\prod_{i=1}^{r} \mathbb{Z} / \ell^{\delta_{i}} \mathbb{Z}$.

Remark 10. We set $n_{0}=z_{0}$ and consider $n=n_{0}+x$ and $z=z_{0}+x$ for $x \geqslant 0$. We investigate how the group structure of $G K^{\times \ell^{n}} / K^{\times \ell^{n}}$ changes when we increase x. We apply our algorithm (see the proof of Theorem 3) for $x=0$ and then describe how the algorithm varies by increasing x. Let k be the number of steps of the algorithm when $x=0$. We first notice that the components of $G K^{\times \ell^{n}} / K^{\times \ell^{n}}$ whose indices are in $\bigcup_{j=1}^{k} D_{j}($ for $x=0)$ give rise to components of order $\ell^{\delta_{i}+x}$ for every x. The order $\ell^{v_{i}}$ of the other components changes according to the following table, where we set $t_{i}:=w_{m_{i}, i}-\delta_{m_{i}}$ (here we suppose that $I_{k} \backslash D_{k}$ is not empty, else replace k by $k-1$):

x	$v_{m_{1}}$	$v_{m_{2}}$	\cdots	$v_{m_{k}}$
0	$w_{m_{1}, 1}$	$w_{m_{2}, 2}$	\cdots	$w_{m_{k}, k}$
$0<x \leqslant t_{1}$	$w_{m_{1}, 1}$	$w_{m_{2}, 2}+x$	\cdots	$w_{m_{k}, k}+x$
$t_{1}<x \leqslant t_{2}$	$\delta_{1}+x$	$w_{m_{2}, 2}+t_{1}$	\cdots	$w_{m_{k}, k}+x$
\vdots	\vdots	\vdots	\ddots	\vdots
$t_{k-1}<x \leqslant t_{k}$	$\delta_{1}+x$	$\delta_{2}+x$	\cdots	$w_{m_{k}, k}+t_{k-1}$
$x>t_{k}$	$\delta_{1}+x$	$\delta_{2}+x$	\cdots	$\delta_{k}+x$

In particular, for each interval $t_{i}<x \leqslant t_{i+1}$ all components of the group but one increase in size, and the stable component corresponds to the index m_{i}. Moreover, we have maximal growth starting from $x=t_{k}$.

Remark 11. If we can order the indices i such that the parameters of divisibility of the group G satisfy $w_{1,1}>w_{2,1}>\cdots>w_{r, 1}$ and $0<w_{1,1}-\delta_{1}<w_{2,1}-\delta_{2}<\cdots<w_{r, 1}-\delta_{r}$, then the algorithm in the proof of Theorem 3 ends after r steps, with $D_{j}=\emptyset$ for all j.

5. Galois groups of Kummer extensions

Let G be a finitely generated and (without loss of generality) torsion free subgroup of K^{\times}of positive rank r. Let $N \mid M$ be positive integers. Our aim is to compute the structure of the Galois group of all Kummer extensions relative to a cyclotomic extension, namely all groups

$$
\mathcal{G}_{M, N}:=\operatorname{Gal}\left(\frac{K\left(\zeta_{M}, \sqrt[N]{G}\right)}{K\left(\zeta_{M}\right)}\right)
$$

Notice that $\mathcal{G}_{M, N}$ is a finite abelian group, whose exponent divides N, and that has at most r cyclic components. Considering the prime decomposition $N=\prod \ell^{e}$, we may identify $\mathcal{G}_{M, N}$ with a product of ℓ-groups, as done in [13, Lemma 28]:

$$
\mathcal{G}_{M, N} \simeq \prod_{\ell} \operatorname{Gal}\left(\frac{K\left(\zeta_{\ell^{e}}, \sqrt[\ell^{e}]{G}\right)}{K\left(\zeta_{\ell^{e}}, \sqrt[\ell^{e}]{G}\right) \cap K\left(\zeta_{M}\right)}\right)
$$

We call the Galois group $\mathcal{G}_{\ell^{e}, \ell^{e}}=\operatorname{Gal}\left(K\left(\zeta_{\ell^{e}}, \sqrt[\ell^{e}]{G}\right) / K\left(\zeta_{\ell^{e}}\right)\right)$ the ℓ-adic group and we call the positive integer $\ell^{e r} / \# \mathcal{G}_{\ell^{e}, \ell^{e}}$ the ℓ-adic failure of maximality (for the degree of the Kummer extension). The structure of the ℓ-adic group $\mathcal{G}_{\ell^{e}, \ell^{e}}$ can be computed as in Section 3 . It only
depends on the parameters for ℓ-divisibility of G over K, except for $\ell=2$ and $\zeta_{4} \notin K$ and $e \geqslant 2$, where it only depends on the parameters for ℓ-divisibility of G over $K\left(\zeta_{4}\right)$.
Similarly, we call the Galois group

$$
\mathcal{H}_{M, \ell^{e}}:=\operatorname{Gal}\left(\left(K\left(\zeta_{\ell^{e}}, \sqrt[\ell^{e}]{G}\right) \cap K\left(\zeta_{M}\right) / K\left(\zeta_{\ell^{e}}\right)\right)\right.
$$

the ℓ-adelic group and we call its cardinality the ℓ-adelic failure of maximality. By Schinzel's Theorem on Abelian radical extensions (see, for example, [11, Theorem 3.5]) the exponent of $\mathcal{H}_{\ell^{e}, M}$ divides the ℓ-part of $\# \mu_{K}$. In particular, $\mathcal{H}_{M, \ell^{e}}$ is trivial if $\zeta_{\ell} \notin K$. If we suppose that $\zeta_{\ell} \in K$, by [11, Theorem 3.1 and Remark 3.8] (see also [16, Proposition 3.5]) there exist computable positive integers e_{0}, M_{0} that only depend on K, G, and ℓ for which we have

$$
\left.K\left(\zeta_{\ell^{\ell}}, \sqrt[\ell^{e}]{G}\right) \cap K\left(\zeta_{M}\right)=K\left(\zeta_{\ell^{\min \left(e, e_{0}\right)}}, \sqrt\left[\ell_{\min \left(e, e_{0}\right)}^{G}\right) \cap K\left(\zeta_{\operatorname{gcd}\left(M, M_{0}\right)}\right)\right]{ }\right)
$$

which implies that the ℓ-adelic group $\mathcal{H}_{M, \ell^{e}}$ does not change if we replace e by $\min \left(e, e_{0}\right)$ and M by $\operatorname{gcd}\left(M, M_{0}\right)$. In particular, computing the structure of the ℓ-adelic group for all e and M amounts to only finitely many computations. Now fix $e \leqslant e_{0}$ and $M \mid M_{0}$. To compute $\mathcal{H}_{M, \ell^{e}}$, we may first compute the largest subgroup H of G which is contained in $K\left(\zeta_{M}\right)^{\times \ell^{e}}$ and then apply the method discussed in Section 3 to compute the group structure of $H K\left(\zeta_{\ell^{e}}\right)^{\times \ell^{e}} / K\left(\zeta_{\ell^{e}}\right)^{\times \ell^{e}}$.

To conclude, by Galois theory $\mathcal{H}_{M, \ell^{e}}$ is a quotient of $\mathcal{G}_{\ell^{e}, \ell^{e}}$ and hence by the third isomorphism theorem of groups we can write

$$
\begin{equation*}
\mathcal{G}_{M, N} \simeq \prod_{\ell} \mathcal{G}_{\ell^{e}, \ell^{e}} / \mathcal{H}_{M, \ell^{e}} \simeq \prod_{\ell} G K\left(\zeta_{\ell^{e}}\right)^{\times \ell^{e}} / H K\left(\zeta_{\ell^{e}}\right)^{\times \ell^{e}} \tag{1}
\end{equation*}
$$

To compute the ℓ-part of the group $\mathcal{G}_{M, N}$, we can apply Theorem 3 on the group G over the field $K\left(\zeta_{\ell^{e}}, \sqrt[\ell^{\ell}]{H}\right)$.
Remark 12. There may be radicals in $\sqrt[\ell^{e}]{G}$ that are in $K\left(\zeta_{M}\right)$ and in $K\left(\zeta_{\ell^{e+1}}\right)$ but not in $K\left(\zeta_{\ell^{e}}\right)$, where we suppose $\ell^{e} \mid M$. For example, take $K=\mathbb{Q}(\sqrt{3}), G=\langle-25\rangle$, $\ell^{e}=2$: the element -25 is a square in $K\left(\zeta_{4}\right)=K\left(\zeta_{3}\right)$ but not in $K\left(\zeta_{2}\right)=K$. Such elements contribute to the ℓ-adelic failure for (M, e) but not to the ℓ-adic failure for larger values of e. So the ℓ-adelic group $\mathcal{H}_{M, \ell^{e}}$ may reduce in size by increasing e.

Remark 13. The following answers a question of Sergei Iakovenko: There is a constant c such that for every prime number ℓ and for every $n, M \geqslant 1$ the Galois group of

$$
K\left(\zeta_{\ell^{n}}, \sqrt[\ell^{n}]{G}, \zeta_{M}\right) / K\left(\zeta_{\ell^{n}}, \zeta_{M}\right)
$$

contains a subgroup isomorphic to $\left(\operatorname{gcd}\left(c, \ell^{n}\right) \mathbb{Z} / \ell^{n} \mathbb{Z}\right)^{r}$. We can take $c=\# \mu_{K} \cdot \prod_{\ell} \ell^{D_{\ell}}$, where D_{ℓ} is the maximum of the multiset of d-parameters for ℓ-divisibility (hence $D_{\ell}=0$ holds for almost all ℓ). Indeed, for any fixed ℓ the group $G K^{\times \ell^{n}} / K^{\times \ell^{n}}$ contains a subgroup of the form $\left(\ell^{D_{\ell}} \mathbb{Z} / \ell^{n} \mathbb{Z}\right)^{r}$ by Remark 6 . We conclude because the exponent of the ℓ-adelic group divides $\# \mu_{K}$.

Remark 14. The Galois group of $K\left(\zeta_{M}, \sqrt[\ell^{n}]{G}\right) / K\left(\zeta_{M}\right)$ has $r^{\prime} \leqslant r$ components, where (fixing K and G) the number r^{\prime} depends on ℓ, n, M. By construction, it is generated by r^{\prime} radicals of elements that can be expanded to a set of generators for G. Notice that there are finitely many possibilities for r^{\prime}. By construction, the set of elements of G whose radicals generate the above Galois group can be taken in a finite family of sets by varying ℓ, n, M.

6. EXAMPLES

We keep the notation of Sections 3 and 5 . The following three examples show explicit computations of the group structure of $G K^{\times \ell^{n}} / K^{\times \ell^{n}}$.
Example 15. Let $\ell=3$ and $K=\mathbb{Q}\left(\zeta_{9}\right)$, so that $z=2$. Consider $G=\left\langle 18,6^{3}\right\rangle$. By [2, Example 27] (or with a direct check) this is a 3 -good basis for G, with divisibility parameters $d_{2}=1$ and $d_{1}=h_{1}=h_{2}=0$. Fixing $n \geqslant 1$, we have $\delta_{1}=n$ and $\delta_{2}=n-1$ so we get $w_{1,1}=w_{2,1}=n-2$ and hence $v_{i, 1}=\delta_{i}$ for $i=1,2$. We conclude that

$$
G K^{\times 3^{n}} / K^{\times 3^{n}} \simeq \mathbb{Z} / 3^{n} \mathbb{Z} \times \mathbb{Z} / 3^{n-1} \mathbb{Z}
$$

Example 16. Suppose that the parameters for ℓ-divisibility of the group G are

$$
\left(d_{1}, d_{2}, d_{3}, d_{4}, d_{5}\right)=(1,3,3,3,5) \quad \text { and } \quad\left(h_{1}, h_{2}, h_{3}, h_{4}, h_{5}\right)=(2,3,1,0,2)
$$

Let $z=5$ and $n=4$. Then we get the following tuples:

$$
\begin{aligned}
\underline{\delta} & =(3,1,1,1,0) \\
\frac{w_{\cdot, 1}}{v_{\cdot, 1}} & =(1,2,0,0,1) \\
\underline{v} & (3,2,1,1,1)
\end{aligned}
$$

We see that $v_{1,1}=\delta_{1,1}, v_{3,1}=\delta_{3,1}$ and $v_{4,1}=\delta_{4,1}$, so we conclude that $b_{1,1}, b_{3,1}$ and $b_{4,1}$ generate direct components of order ℓ^{3}, ℓ and ℓ respectively. If we then consider the indices in $I_{1} \backslash D_{1}=\{2,5\}$, the maximal $w_{i, 1}$ is given by $w_{2,1}=2$, hence we get a direct component generated by $b_{2,1}$. This leaves us to investigate $b_{5,2}$, which will generate a direct component $\left\langle b_{5,2}\right\rangle$. We have $w_{5,2}=w_{5,1}-w_{2,1}+\delta_{2}=0$, hence $b_{5,2}=0$.
Notice that for $z=n \geqslant 7$ we find the following values

$$
\begin{aligned}
\underline{\delta} & =(n-1, n-3, n-3, n-3, n-5), \\
\underline{w_{\cdot, 1}} & =(2,3,1,0,2)=\underline{h}
\end{aligned}
$$

and hence $v_{i, 1}=\delta_{i}$ for all i. We can then conclude that each $b_{i, 1}$ generates a direct component of order $\ell^{\delta_{i}}$. The parameters h_{i} are not involved in the group structure as n is big enough, as pointed out in Remark 8 .
Example 17. Let $K=\mathbb{Q}\left(\zeta_{4}\right)$ and $G=\left\langle-15+20 \zeta_{4}, 14 \zeta_{4}\right\rangle$. If $M=N=4$, we have $\mathcal{G}_{4,4} \simeq$ $\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$ because the 2-adelic group $\mathcal{H}_{4,4}$ is trivial and the 2-divisibility parameters of the group are all 0 . Set now $M=140$ and $N=4$. Since $\sqrt[4]{-15+20 \zeta_{4}}$ generates $\mathbb{Q}\left(\zeta_{20}\right) / \mathbb{Q}\left(\zeta_{4}\right)$ (by [4, Theorem 2]) and $14 \zeta_{4}$ is a square in $\mathbb{Q}\left(\zeta_{28}\right)$, then

$$
H=G \cap K\left(\zeta_{140}\right)^{\times 4}=\left\langle-15+20 \zeta_{4},\left(14 \zeta_{4}\right)^{2}\right\rangle
$$

and hence by (1) the Galois group of the Kummer extension $\mathcal{G}_{140,4}$ is $\mathbb{Z} / 2 \mathbb{Z}$. Indeed, the d parameters of 2-divisibility of G in $K\left(\zeta_{140}\right)$ are respectively $d_{1}=2$ and $d_{2}=1$. In general, the group H can be computed for every M and $N=2^{n}$:

$$
H= \begin{cases}G^{2^{n}} & \text { if } 5,7 \nmid M \\ \left\langle\left(-15+20 \zeta_{4}\right)^{2^{n}},\left(14 \zeta_{4}\right)^{2^{n-1}}\right\rangle & \text { if } 7 \mid M, 5 \nmid M \\ \left\langle\left(-15+20 \zeta_{4}\right)^{n-2},\left(14 \zeta_{4}\right)^{2^{n}}\right\rangle & \text { if } 5 \mid M, 7 \nmid M, n \geqslant 2 \\ \left\langle\left(-15+20 \zeta_{4}\right)^{2^{n-2}},\left(14 \zeta_{4}\right)^{2^{n-1}}\right\rangle & \text { if } 35 \mid M, n \geqslant 2 \\ \left\langle-15+20 \zeta_{4},\left(14 \zeta_{4}\right)^{2}\right\rangle & \text { if } 5 \mid M, 7 \nmid M, n=1 \\ G & \text { if } 35 \mid M, n=1\end{cases}
$$

Hence we can compute by (1) the Galois group $\mathcal{G}_{M, N}=G / H$ for every M and $N=2^{n}$.
The following example shows the feature presented in Remark 12 ,
Example 18. Let $\ell=2, K=\mathbb{Q}\left(\zeta_{16} \sqrt{5}\right)$ and $G=\langle 5,6\rangle$. The divisibility parameters are $(1,3)$ for the former generator and $(0,0)$ for the latter. By Theorem 3 we calculate that $\mathcal{G}_{8,8}=$ $(\mathbb{Z} / 8 \mathbb{Z})^{2}$ and that $\mathcal{G}_{16,16}=\mathbb{Z} / 8 \mathbb{Z} \times \mathbb{Z} / 16 \mathbb{Z}$. Since $\sqrt{5} \in K\left(\zeta_{5}\right)$ and $\sqrt{6} \in K\left(\zeta_{3}\right)$, for $M=120$ we have $H=G \cap K\left(\zeta_{120}\right)^{\times 8}=\left\langle 5^{4}, 6^{4}\right\rangle$ and we can compute $\mathcal{H}_{120,8}=(\mathbb{Z} / 2 \mathbb{Z})^{2}$ and $\mathcal{G}_{120,8}=(\mathbb{Z} / 4 \mathbb{Z})^{2}$. Since $\sqrt{5} \in K\left(\zeta_{16}\right)$, for $M=48$ we have $H=G \cap K\left(\zeta_{48}\right)^{\times 16}=\left\langle 5^{8}, 6^{8}\right\rangle$. This implies that, for $M=240, \mathcal{H}_{48,16}=\mathcal{H}_{240,16}=\mathbb{Z} / 2 \mathbb{Z}$ and, by (1), $\mathcal{G}_{48,16}=\mathcal{G}_{240,16}=$ $(\mathbb{Z} / 8 \mathbb{Z})^{2}$.

REFERENCES

[1] J. CASSELS, A. FröHLICH, Algebraic Number Theory. Thompson Book Company, Washington D.C. (1967), 85-94.
[2] C. Debry, A. Perucca, Reductions of algebraic integers, J. Number Theory 167 (2016), 259-283.
[3] F. Hörmann, A. Perucca, P. Sgobba, S. Tronto, Explicit Kummer theory for quadratic fields, JP J. Algebra, Number Theory Appl. 49 (2021), no. 2, 151-178.
[4] F. Hörmann, A. Perucca, P. Sgobba, S. Tronto, Explicit Kummer generators of cyclotomic extensions, JP J. Algebra, Number Theory Appl. 53 (2022), no. 1, 69-84.
[5] T. Judson, Abstract Algebra: Theory and Application. Virginia Commonwealth University, Math Department (2011).
[6] S. Lang, Algebra, Springer New York (2011).
[7] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), 235-265.
[8] P. Moree, Artin's primitive root conjecture - a survey. Integers. 12 (2005).
[9] F. Perissinotto, A. Perucca, Kummer theory for multiquadratic or quartic cyclic number fields, Unif. Distrib. Theory 17 (2022), no. 2, 165-194.
[10] A. Perucca, The order of the reductions of an algebraic integer, J. Number Theory 148 (2015), 121-136.
[11] A. Perucca, P. Sgobba, Kummer theory for number fields and the reductions of algebraic numbers, Int. J. Number Theory 15 (2019), no. 8, 1617-1633.
[12] A. Perucca, P. Sgobba, S. Tronto, The degree of Kummer extensions of number fields, Int. J. Number Theory 17 (2021), no. 5, 1091-1110.
[13] A. Perucca, P. Sgobba, S. Tronto, Kummer theory for number fields via entanglement groups, Manuscripta Math. 169 (2022), 251-270.
[14] A. Perucca, P. Sgobba, S. Tronto, Explicit Kummer theory for the rational numbers, Int. J. Number Theory 16 (2020), no. 10, 2213-2231.
[15] A. Perucca, P. Sgobba, S. Tronto, Addendum to: Reductions of algebraic integers, J. Number Theory 167 (2016), 259-283.
[16] O. JÄrviniemi, A. Perucca, Unified treatment of Artin-type problems. Res. number theory 9 (2023), no. 10, https://doi.org/10.1007/s40993-022-00418-6
[17] SageMath, the Sage Mathematics Software System (Version 9.8), The Sage Developers (2023), https: //www.sagemath.org

