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ABSTRACT. Let K be a number field, and let G be a finitely generated subgroup of K×.
For every prime number ℓ and for all positive integers m,n with m ⩾ n we show that the
structure of the Galois group of the Kummer extension K(ζℓm , ℓ

n√
G)/K(ζℓm) only depends

on G through parameters that express divisibility properties over K (respectively, over K(ζ4)
if ℓ = 2, ζ4 /∈ K, m ⩾ 2). Moreover, we describe an explicit finite procedure to compute
at once the Galois group structure for all extensions K(ζM ,N

√
G)/K(ζM ) with M,N positive

integers such that N | M . Our work builds on results in Kummer theory by the last-named
author joint with Debry, Hörmann, Perissinotto, Sgobba, and Tronto.

RÉSUMÉ. Soient K un corps de nombres et G un sous-groupe de type fini de K×. Pour tout
nombre premier ℓ et pour tous entiers positifs m,n avec m ⩾ n, la structure du groupe de
Galois de l’extension de Kummer K(ζℓm , ℓn

√
G)/K(ζℓm) dépend uniquement de G à travers

des paramètres qui expriment des propriétés de divisibilité sur K (respectivement, sur K(ζ4)
si ℓ = 2, ζ4 /∈ K, m ⩾ 2). De plus, nous décrivons une procédure finie explicite pour calculer
en une fois la structure du groupe de Galois pour toutes les extensions K(ζM , N

√
G)/K(ζM )

avec M,N entiers positifs tels que N | M . Notre travail s’appuie sur des résultats en théorie de
Kummer obtenus par le dernier auteur cité en collaboration avec Debry, Hörmann, Perissinotto,
Sgobba et Tronto.

1. INTRODUCTION

Kummer theory for number fields is a classical topic in algebraic number theory (see the stand-
ard references [6], [1]), and its development is natural and fundamental. Nowadays, Kummer
theory is applied, for example, to study questions on the reductions of algebraic numbers, most
notably Artin’s Conjecture on primitive roots (see the survey article [8]).

The purpose of this paper is solving two problems in Kummer theory for number fields in full
generality. The first problem concerns finite cyclotomic-Kummer extensions made with ℓm-th
roots of unity and ℓn-th radicals, where n ⩽ m and ℓ is a prime number. The second problem
concerns general finite cyclotomic-Kummer extensions made with M -th roots of unity and
N -th radicals, where N | M .

Let K be any number field, and let G be a finitely generated subgroup of K× which, without
loss of generality, may be taken torsion-free. Let ℓ be a prime number, and let n,m,N,M be
positive integers such that n ⩽ m and N | M .

If ζℓn ∈ K, then the main theorem of Kummer theory tells us that the Galois group of the
Kummer extension K( ℓn

√
G)/K is isomorphic to the group GK×ℓn/K×ℓn . However, without

the above assumption, classical Kummer theory cannot be applied. What one can do is adding
first to K sufficiently many roots of unity, thus considering the field L := K(ζℓm). Then, by
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Kummer theory over L, the Galois group of the Kummer extension L( ℓn
√
G)/L is isomorphic

to the group GL×ℓn/L×ℓn . What we achieve is showing that we can compute the group struc-
ture of this Galois group (of the Kummer extension over L) by only doing computations over
K (or over K(ζ4) if ℓ = 2, m ⩾ 2, and ζ4 /∈ K). Indeed, there are parameters for ℓ-divisibility
over K (respectively, over K(ζ4)) that suffice for the purpose. The structure of the Galois
group only depends on G through the divisibility parameters (see Theorem 6). The parameters
for ℓ-divisibility have been developed by Perucca and others, see [10, 2, 13], and Section 2.2 is
devoted to recalling their definition and properties.

The second problem that we consider is the generalization of the first where the parameters
ℓn, ℓm are replaced by integers N,M that are not necessarily powers of one same prime num-
ber. In this full generality we cannot hope to rely on divisibility parameters as before. Our aim,
which we were able to fully achieve, is describing an explicit finite procedure for computing at
once the structure of the Galois group for all Kummer extensions K(ζM ,N

√
G)/K(ζM ). This

procedure is in fact an algorithm which is suitable for mathematical softwares like [15, 7].
This second problem is tackled with in Section 5. Notice that Hörmann, Perissinotto, Perucca,
Sgobba, and Tronto were able to compute the degree of the extensions K(ζM ,N

√
G)/K(ζM )

if K is a multiquadratic field (for example, a quadratic field), a quartic field, or a number field
without quadratic subfields (in particular, a number field of odd degree), see [3, 9].

Finally, the last section is devoted to examples and explicit computations that show how our
general results can be applied in practice.

Acknowledgements. We thank Alexandre Benoist, Fritz Hörmann, and Sergei Iakovenko
for their valuable suggestions. Bryan Advocaat, Antigona Pajaziti, and Flavio Perissinotto
were kindly supported by the Luxembourg National Research Fund, with the grants PRIDE17
1224660, AFR-PhD 16981197, and PRIDE17 1224660.

2. PRELIMINARIES

Notation. We let ℓ be a prime number and denote by vℓ the ℓ-adic valuation defined on non-
zero integers. We consider a number field K and work within some fixed algebraic closure K̄
of K. We let µn be the group of n-th roots of unity in K̄ and we denote by ζn any primitive
n-th root of unity.

2.1. Finite abelian groups. Consider a finite and non-trivial abelian group G. To study its
structure as a product of cyclic groups we will suppose that the size of G is a power of ℓ. If G is
generated by r elements, then the number of cyclic components does not exceed r so the group
structure of G is a decomposition of G as the product of r′ ⩽ r cyclic groups. This amounts to
having an isomorphism

G ≃
r′∏
i=1

Cℓei

where the ei’s are a non-increasing list of positive integers. With the identification given by
such an isomorphism we may consider Cℓei to be a cyclic subgroup ⟨γi⟩ of G. Thus we can
write

G = ⟨γ1, . . . , γr′⟩ ≃ ⟨γ1⟩ × · · · × ⟨γr′⟩ .
To determine the group structure of G we will apply on several occasions the following well-
known result from group theory (see for example [5, Lemma 13.4]):
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Remark 1. An element of G whose order equals the exponent of G generates a cyclic com-
ponent C of G. In other words, there is a subgroup G′ of G such that G is the internal direct
product of C and G′.

2.2. Parameters for ℓ-divisibility. We say that an element a ∈ K× is ℓ-divisible if a ∈ K×ℓ.
If aζ /∈ K×ℓ holds for every root of unity ζ ∈ K ∩ µℓ∞ , then we say that a ∈ K× is strongly-
ℓ-indivisible. Elements a1, a2, ..., ar ∈ K× are said to be strongly ℓ-independent if

∏r
i=1 a

ei
i

is strongly ℓ-indivisible for all integers e1, e2, ..., er that are not all divisible by ℓ.

Every element a ∈ K× that is not a root of unity can be written in the form a = Aℓdζ with
d ∈ Z⩾0, ζ ∈ K ∩ µℓ∞ , and where A ∈ K× is strongly ℓ-indivisible, see [2, Lemma 7]. The
non-negative integer d is uniquely determined, while the non-negative integer h := vℓ(ord ζ)
may depend on the chosen decomposition. We call (d, h) parameters for ℓ-divisibility of a,
noting that h might not be unique. By [2, Section 6.1] we have a finite procedure as how to
find parameters for ℓ-divisibility.

Let G = ⟨b1, . . . , br⟩ be a finitely generated and torsion free subgroup of K× of positive rank
r. We define the parameters for ℓ-divisibility of G as the list of parameters for ℓ-divisibility
(di, hi) of bi, provided that the basis b1, . . . , br is an ℓ-good basis. By this we mean that
decomposing bi = Bℓdi

i ζℓhi as above with a strongly ℓ-indivisible element Bi, we have the
additional property that B1, . . . , Br are strongly ℓ-independent. By [2, Theorem 14] we know
that an ℓ-good basis exists, and by [2, Section 6.1] we know a finite procedure as how to
construct it from a given basis. The d-parameters d1, . . . , dr are uniquely determined up to
reordering by [2, Corollary 16]. The parameters for ℓ-divisibility (di, hi) are not unique up
to reordering, however they can be made unique if we impose additional conditions on them,
see [2, Propositions 31 and 33]. Recall that the ℓ-good bases are precisely the bases which
maximize the sum of their d-parameters; intuitively, this means that ℓ-good bases show all the
divisibility of G.

If ℓ is odd or ζ4 ∈ K, then the parameters for ℓ-divisibility of G do not change if we extend the
field from K to K(ζℓn) for some given n (see [2, Proposition 9] ). However, in the case when
ℓ = 2 and ζ4 /∈ K, these parameters may change when extending the field from K to K(ζ4),
and a precise description of when and how they do change is provided in [13].

Remark 2. Throughout the paper we assume K to be a number field. This is because our
results build on [2] by Debry and the last-named author. In particular, the existence of the
parameter d of ℓ-divisibility described at the beginning of this section comes from the fact that,
if K is a number field, only the roots of unity (of order coprime to ℓ) can be ℓn-th powers in
K× for every positive integer n. Since Kummer theory is valid for all fields, it is likely that
our results generalize to some extent in other settings (for example, the last two-named authors
are investigating local fields).

3. GROUPS OF RADICALS

In this section we fix some prime number ℓ. We let µK be the group of roots of unity in K and
we set z := vℓ(#µK). We recall the following lemma as it will be used multiple times:

Lemma 3. [12, Lemma 5] Let a1, . . . , ar be strongly ℓ-independent elements of K×. If
ζae11 . . . aerr ∈ K×ℓn holds for some positive integer n, for some non-negative integers e1, . . . , er
and for some ζ ∈ µK , then e1, . . . , er are all divisible by ℓn.
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Let I := {1, . . . , r} and let G := ⟨bi : i ∈ I⟩ be a finitely generated and torsion free subgroup
of K× of positive rank r. We suppose that b1, ..., br is an ℓ-good basis of G, and we write
bi = Bℓdi

i ζℓhi for some strongly ℓ-independent elements Bi ∈ K× and ζℓhi ∈ K.

The aim of this section is to prove the following result:

Theorem 4. The parameters for ℓ-divisibility of G determine the group structure of GK×ℓn/K×ℓn

for all n ⩾ 1. Moreover, for any given n, there is an explicit finite procedure to compute the
number of non-trivial direct cyclic factors of GK×ℓn/K×ℓn and each of their sizes. The group
structure only depends on n, on z = vℓ(#µK) and on the divisibility parameters of G over K.

Proof. Write δi := max(n − di, 0). Call bi,1 the class of bi modulo K×ℓn and call µℓz ,1 the
image of µℓz modulo K×ℓn . Let ℓwi,1 be the order of ζℓhi modulo K×ℓn , namely wi,1 =
max(0,min(hi, hi + n − z)). Then, calling vi,1 := vℓ(ord(bi,1)), by Lemma 3 applied to Bi

we have vi,1 = max(δi, wi,1).

For every i the intersection of ⟨bi,1⟩ with ⟨bi′,1 : i′ ̸= i⟩ is contained in µℓz ,1 (by Lemma 3
applied to B1, . . . , Br). The condition ⟨bi,1⟩ ∩ µℓz ,1 being trivial is equivalent to vi,1 = δi.

So, if vi,1 = δi, then in particular we can write

GK×ℓn/K×ℓn = ⟨bi,1⟩ × ⟨bi′,1 : i′ ̸= i⟩ .

Write I1 = I , and let D1 ⊆ I1 consist of those indices i such that vi,1 = δi. So the groups
⟨bi,1⟩ for i ∈ D1 are direct components of order ℓδi and they can be “detached” and collected,
leaving for us to investigate, in case I1 ̸= D1, the indices in I1 \D1. Let m1 ∈ I1 \D1 be the
least index such that wm1,1 ⩾ wi,1 for all i ∈ I1 \ D1, and set I2 := I1 \ (D1 ∪ {m1}). By
Remark 1, we have

⟨bi,1 : i ∈ I1 \D1⟩ ≃ ⟨bm1,1⟩ × ⟨bi,2 : i ∈ I2⟩ ,

where bi,2 stands for the class of bi modulo ⟨K×ℓn , bm1,1⟩. So we are left to investigate the
group structure of ⟨bi,2 : i ∈ I2⟩, in case I2 ̸= ∅.

We proceed by iteration. At the step j > 1, in case Ij := Ij−1\(Dj−1∪{mj−1}) is not empty,
we have to investigate the group structure of ⟨bi,j : i ∈ Ij⟩, where bi,j is the class of bi modulo
Hj := ⟨K×ℓn , bm1 , . . . , bmj−1⟩. Call ℓwi,j the order of ζℓhi modulo Hj . We claim that

(1) wi,j = max(0, wi,j−1 − wmj−1,j−1 + δmj−1) .

So the cyclic group ⟨bi,j⟩ has order ℓvi,j , where vi,j = max(δi, wi,j) by Lemma 3.

We then define Dj ⊂ Ij as the set of indices i satisfying vi,j = δi, and as above we collect
detachable cyclic components ⟨bi,j⟩ for i ∈ Dj , of order ℓδi . If Ij = Dj , then we are done.
Else, we define mj ∈ Ij \ Dj as the least index maximizing wi,j and (by Remark 1) collect
the cyclic component ⟨bmj ,j⟩, of order ℓwmj,j . If Ij \ (Dj ∪ {mj}) is empty, then we are done,
else we move on to the next step. The procedure clearly terminates in at most r steps.

We are left to prove the claim. By the definition of wi,j in (1), notice that wmj−1,j−1−δmj−1 is
the ℓ-adic valuation of the order of the torsion of Hj/Hj−1 and in particular it is non-negative.
Indeed, by construction Hj = ⟨Hj−1, bmj−1⟩ and wmj−1,j−1 is by definition the order of
ζ
ℓ
hmj−1

modulo Hj−1. So by elementary group theory the difference wi,j−1 − wi,j (we are
comparing the order of one same root of unity modulo Hj−1 and Hj respectively) is precisely
wmj−1,j−1 − δmj−1 unless wi,j−1 < wmj−1,j−1 − δmj−1 , in which case wi,j = 0 . □
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Remark 5. Consider the setting of Theorem 4. Write δi := max(n − di, 0). If z = 0, then
hi = 0 for every i, and the group structure is

∏r
i=1 Z/ℓδiZ.

In general, there is some positive integer k ⩽ r such that we can write

GK×ℓn/K×ℓn ∼=
k∏

j=1

Gj

where the group Gj is the product of the components of GK×ℓn/K×ℓn which are collected at
the j-th step in the proof of Theorem 4. We have:

Gj = (
∏
i∈Dj

Z/ℓδiZ)× Z/ℓwmj,jZ ,

where the (possibly empty) subsets Dj ⊆ I , the indices mj ∈ I and the integers δi and
wmj ,j > 0 are as in the proof of Theorem 4. The set Ik \Dk may be empty and, if that is the
case, we set the component Z/ℓwmk,kZ of Gk to be the trivial group.

Theorem 6. Suppose that ℓ is odd or ζ4 ∈ K. Let t be the greatest integer satisfying ζℓt ∈
K(ζℓ). Let m and n be positive integers such that m ⩾ n ⩾ 1. The group structure of the
Galois group of the Kummer extension K(ζℓm ,

ℓn
√
G)/K(ζℓm) only depends on the parameters

for ℓ-divisibility of G over K, and the integers n,max(m, t).

Proof. By Kummer theory, we have that

Gal(K(ζℓm ,
ℓn
√
G)/K(ζℓm)) ∼= GK(ζℓm)

×ℓn/K(ζℓm)
×ℓn .

Since we know by [2, Proposition 9] that the parameters of ℓ-divisibility of the group G do
not change if we extend the field from K to K(ζℓm), we can apply Theorem 4 over K(ζℓm).
Notice that, in this setting, we have z = max(m, t). □

Remark 7. For Theorem 6, in the remaining case ℓ = 2 and ζ4 /∈ K we can extend the field
from K to K(ζ4) to reduce to the known case (in particular, we work with the divisibility para-
meters of G over K(ζ4)). Taking this field extension is not an issue as soon as one investigates
K(ζ2m ,

2n
√
G)/K(ζ2m) for m ⩾ 2. So we are left to investigate K(

√
G)/K when ζ4 /∈ K. The

size of the Galois group of this extension is known by [2, Lemma 19 and Theorem 18] hence
the group structure is also known because the group is either trivial or it has exponent 2.

Remark 8. In Theorems 4 and 6 the assumption that G is torsion-free is just for convenience.
Firstly, adding to G torsion of order coprime to ℓ does not affect the considered questions. Now
suppose we have a group G whose torsion subgroup is ⟨ζℓh⟩ for some h > 0. The proofs of the
two above-mentioned results still hold by choosing b1 := ζℓh as a generator of G and defining
the parameters of ℓ-divisibility d1 := ∞ and h1 := h (where d1 is fixed to be n to determine
the group structure of GK×ℓn/K×ℓn or to study K(ζℓm ,

ℓn
√
G)/K(ζℓm)).

4. CONSIDERATIONS ON THE GROUP STRUCTURE

We collect here several observations on the group structure of GK×ℓn/K×ℓn computed in the
previous section. Remark 9 clarifies what the group structure depends on, Remarks 10 and 11
compare our result with [2], while the others deal with special cases and investigate how the
structure changes by varying the parameter n.
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Remark 9. The group structure determined in Theorem 4 only depends on G through the
divisibility parameters over K. The dependency on K is through z = vℓ(#µK) and the
divisibility parameters.

In Theorem 6 we work over the base field K(ζℓm), over which the divisibility parameters are
unchanged. So if m ⩾ t, where t is the integer defined in Theorem 6, the only dependency on
K is through the divisibility parameters.

Remark 10. We now investigate the size of the group #(GK×ℓn/K×ℓn). Indeed, by Remark
5 (setting wmk,j = 0 for all j if mk does not exists) we have

vℓ(#(GK×ℓn/K×ℓn)) =
∑

i∈I\{m1,...,mk}

δi +
k∑

j=1

wmj ,j .

Recalling that wi,j = max(0, wi,j−1 − wmj−1,j−1 + δmj−1), and applying this formula mul-
tiple times, we can write

∑
j wmj ,j = wmk,1 +

∑
j<k δmj . Moreover, since wmk,1 − δmk

=

maxi∈I(wi,1 − δi) we conclude that

vℓ(#(GK×ℓn/K×ℓn)) =
∑
i∈I

δi +max(0,max
i∈I

(wi,1 − δi)) .

In the setting of Theorem 6, this formula agrees with [2, Theorem 18] and also with [2, The-
orem 15 and Corollary 16] under the assumption that the Hn from loc. cit. is trivial (for ex-
ample, if hi = 0 for all i) because vi,1 = δi for all i. In particular, if (di, hi) = (0, 0)
holds for all i (which for any given G happens for almost all ℓ by [11, Theorem 2.7]), then
we have #(GK×ℓn/K×ℓn) = ℓnr. Moreover, still assuming that the group structure is∏r

i=1 Z/ℓδiZ, the following holds: if n ⩾ di for all i we have #(GK×ℓn+1
/K×ℓn+1

) =

ℓr ·#(GK×ℓn/K×ℓn).

Remark 11. The multiset of the pairs (di, hi) depends in general on the choice of the ℓ-good
basis of G. Clearly, the group structure determined in Theorem 4 cannot depend on this choice.
For the convenience of the reader we verify that the above result is the same even if we pick
a different basis. To achieve this, we change the basis of G imposing the conditions listed in
[2, Proposition 31] (with these additional conditions, the multiset is unique) and reordering the
generators so that di ⩽ dj holds for each i ⩽ j. Following the proof of [2, Proposition 31], we
then take the following steps, commenting on why the group structure does not change:

(1) If hi ⩽ z − di, we set hi = 0. Notice that the order of bi,1 is still δi.

(2) If i < j and 0 < hi ⩽ hj , we set hi = 0 (in case hi = hj we set instead hj = 0). If
di ⩽ dj and hi ⩽ hj , then we have wi,t ⩽ wj,t for every t: this still holds after this step.
In case hi ̸= hj we preserve the property i ̸∈ {m1, . . .mk} and wj,t is unchanged; else,
we preserve the property j ̸∈ {m1, . . .mk} and wi,t is unchanged.

(3) If i < j and if hi, hj > 0 and di + hi ⩾ dj + hj , we set hj = 0. If di ⩽ dj and
di + hi ⩾ dj + hj , then both wi,t ⩾ wj,t (for every t) and j ̸∈ {m1, . . .mk} hold and are
preserved. Moreover, wi,t is unchanged.

Remark 12. We have determined the group structure of GK×ℓn/K×ℓn so we know the expo-
nent of this group, namely ℓmaxi(vi,1). For large n the group structure of GK×ℓn/K×ℓn does
not involve the h-parameters explicitly, and indeed by (1) of the previous remark we may sup-
pose that hi = 0 holds for all i. Moreover, for all n ≫ 0 (at least, if n > z+max(d1, · · · , dr)),
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the group GK×ℓn/K×ℓn has precisely r components, which all grow by a factor ℓ when we
increase n by 1 (this is what we call eventual maximal growth). This regular growth of the ex-
isting components does not hold in general for small n, as we cannot assume the h-parameters
to be 0. Because of the eventual maximal growth, we may compute the group structure of
GK×ℓn/K×ℓn for all n by applying the algorithm in Theorem 4 finitely many times.

Remark 13. Supposing hi = 0 for every i, the family of groups GK×ℓn/K×ℓn can be ar-
bitrary among the family of finite abelian groups of order a power of ℓ, having at most r
components and having precisely r components for n ≫ 0, such that each existing component
grows by a factor ℓ by increasing n to n+1. Indeed, such groups are of the form

∏r
i=1 Z/ℓδiZ.

Remark 14. In the setting of Theorem 6, set n0 ⩾ t and consider m = n = n0 + x for
x ⩾ 0. We investigate how the group structure of GK(ζℓm)

×ℓn/K(ζℓm)
×ℓn , and hence the

group structure of the Galois group of the Kummer extension, changes when we increase x.
We apply our algorithm (see the proof of Theorem 4) for x = 0 and then describe how the
algorithm varies by increasing x. Let k be the number of steps of the algorithm when x = 0.
We first notice that the components of GK(ζℓm)

×ℓn/K(ζℓm)
×ℓn whose indices are in

⋃k
j=1Dj

(for x = 0) give rise to components of order ℓδi+x for every x. The order ℓvi of the other
components changes according to the following table, where we set yi := wmi,i − δmi (here
we suppose that Ik \Dk is not empty, else replace k by k − 1):

x vm1 vm2 · · · vmk

0 wm1,1 wm2,2 · · · wmk,k

0 < x ⩽ y1 wm1,1 wm2,2 + x · · · wmk,k + x
y1 < x ⩽ y2 δ1 + x wm2,2 + y1 · · · wmk,k + x
y2 < x ⩽ y3 δ1 + x δ2 + x · · · wmk,k + x

...
...

...
...

...
yk−1 < x ⩽ yk δ1 + x δ2 + x · · · wmk,k + yk−1

x > yk δ1 + x δ2 + x · · · δk + x

In particular, for each interval yi < x ⩽ yi+1 all components of the group but one increase
in size, and the stable component corresponds to the index mi. Moreover, we have maximal
growth starting from x = yk.

Remark 15. If there exists a choice of indices such that the parameters of divisibility of the
group G satisfy w1,1 > w2,1 > · · · > wr,1 and 0 < w1,1 − δ1 < w2,1 − δ2 < · · · < wr,1 − δr,
then the algorithm in the proof of Theorem 4 ends after r steps, with Dj = ∅ for all j.

5. GALOIS GROUPS OF KUMMER EXTENSIONS

Let G be a finitely generated and (without loss of generality) torsion free subgroup of K× of
positive rank r. Let N | M be positive integers. Our aim is to compute the structure of the
Galois group of all Kummer extensions relative to a cyclotomic extension, namely all groups

GM,N := Gal

(
K(ζM , N

√
G)

K(ζM )

)
.

Notice that GM,N is a finite abelian group, whose exponent divides N , and that has at most r
cyclic components. Considering the prime decomposition N =

∏
ℓe, we may identify GM,N
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with a product of ℓ-groups, as done in [12, Lemma 28]:

GM,N ≃
∏
ℓ

Gal

(
K(ζℓe ,

ℓe
√
G)

K(ζℓe ,
ℓe
√
G) ∩K(ζM )

)
.

We consider the Galois group Gℓe,ℓe = Gal(K(ζℓe ,
ℓe
√
G)/K(ζℓe)) and we call the positive

integer ℓer/#Gℓe,ℓe the ℓ-adic failure of maximality (for the degree of the Kummer extension).
The structure of Gℓe,ℓe for all e ⩾ 1 can be computed as in Section 3, as we are in the situation
of Theorem 6 with m = n = e (or we may apply Remark 7 if ℓ = 2 and ζ4 /∈ K).

Similarly, we consider the Galois group

HM,ℓe := Gal((K(ζℓe ,
ℓe
√
G) ∩K(ζM )/K(ζℓe))

and we call its cardinality the ℓ-adelic failure of maximality. By Schinzel’s Theorem on Abelian
radical extensions (see, for example, [11, Theorem 3.5]) the exponent of Hℓe,M divides the ℓ-
part of #µK . In particular, HM,ℓe is trivial if ζℓ /∈ K. If we suppose that ζℓ ∈ K, by [11,
Theorem 3.1 and Remark 3.8] (see also [14, Proposition 3.5]) there exist computable positive
integers e0,M0 that only depend on K, G, and ℓ for which we have

K(ζℓe ,
ℓe
√
G) ∩K(ζM ) = K(ζℓmin(e,e0) ,

ℓmin(e,e0)
√
G) ∩K(ζgcd(M,M0))

which implies that HM,ℓe does not change if we replace e by min(e, e0) and M by gcd(M,M0).
In particular, computing the structure of this group for all e and M amounts to only finitely
many computations. Now fix e ⩽ e0 and M | M0. To compute HM,ℓe , we may first com-
pute the largest subgroup H of G which is contained in K(ζM )×ℓe and then apply the method
discussed in Section 3 to compute the group structure of HK(ζℓe)

×ℓe/K(ζℓe)
×ℓe .

To conclude, by Galois theory HM,ℓe is a quotient of Gℓe,ℓe and hence by the third isomorphism
theorem of groups we can write

(2) GM,N ≃
∏
ℓ

Gℓe,ℓe/HM,ℓe ≃
∏
ℓ

GK(ζℓe)
×ℓe/HK(ζℓe)

×ℓe .

To compute the ℓ-part of the group GM,N , we can apply Theorem 4 on the group G over the
field K(ζℓe ,

ℓe
√
H).

Remark 16. There may be radicals in ℓe
√
G that are in K(ζM ) and in K(ζℓe+1) but not in

K(ζℓe), where we suppose ℓe|M . For example, take K = Q(
√
3), G = ⟨−25⟩, ℓe = 2: the

element −25 is a square in K(ζ4) = K(ζ3) but not in K(ζ2) = K. Such elements contribute
to the ℓ-adelic failure of maximality for (M, e) but not to the ℓ-adic failure for larger values of
e. So HM,ℓe may reduce in size by increasing e.

Remark 17. The following answers a question of Sergei Iakovenko (from an email to the last-
named author in 2021): There is a constant c such that for every prime number ℓ and for every
n,M ⩾ 1 the Galois group of

K(ζℓn ,
ℓn
√
G, ζM )/K(ζℓn , ζM )

contains a subgroup isomorphic to (gcd(c, ℓn)Z/ℓnZ)r. We can take c = #µK ·
∏

ℓ ℓ
Dℓ , where

Dℓ is the maximum of the multiset of d-parameters for ℓ-divisibility (hence Dℓ = 0 holds for
almost all ℓ). Indeed, for any fixed ℓ the group GK×ℓn/K×ℓn contains a subgroup of the form
(ℓDℓZ/ℓnZ)r by Remark 12. We conclude because the exponent of HM,ℓe divides #µK .
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Remark 18. The Galois group of K(ζM , ℓ
n√
G)/K(ζM ) has r′ ⩽ r components, where (fixing

K and G) the number r′ depends on ℓ, n,M . By construction, it is generated by r′ radicals of
elements that can be expanded to a set of generators for G. Notice that there are finitely many
possibilities for r′. By construction, the set of elements of G whose radicals generate the above
Galois group can be taken in a finite family of sets by varying ℓ, n,M .

6. EXAMPLES

We keep the notation of Sections 3 and 5. The following three examples show explicit compu-
tations of the group structure of GK×ℓn/K×ℓn .

Example 19. Let ℓ = 3 and K = Q(ζ9), so that z = 2. Consider G = ⟨18, 63⟩. By [2,
Example 27] (or with a direct check) this is a 3-good basis for G, with divisibility parameters
d2 = 1 and d1 = h1 = h2 = 0. Fixing n ⩾ 1, we have δ1 = n and δ2 = n − 1 and
w1,1 = w2,1 = 0 and hence vi,1 = δi for i = 1, 2. We conclude that

GK×3n/K×3n ≃ Z/3nZ× Z/3n−1Z .

Example 20. Suppose that the parameters for ℓ-divisibility of the group G are

(d1, d2, d3, d4, d5) = (1, 3, 3, 3, 5) and (h1, h2, h3, h4, h5) = (2, 3, 1, 0, 2) .

Let z = 5 and n = 4. Then we get the following tuples:

δ = (3, 1, 1, 1, 0),

w·,1 = (1, 2, 0, 0, 1),

v·,1 = (3, 2, 1, 1, 1).

We see that v1,1 = δ1,1, v3,1 = δ3,1 and v4,1 = δ4,1, so we conclude that b1,1, b3,1 and b4,1
generate direct components of order ℓ3, ℓ and ℓ respectively. If we then consider the indices in
I1 \ D1 = {2, 5}, the maximal wi,1 is given by w2,1 = 2, hence we get a direct component
generated by b2,1. This leaves us to investigate b5,2, which will generate a direct component
⟨b5,2⟩. We have w5,2 = w5,1 − w2,1 + δ2 = 0, hence b5,2 = 0.

Notice that for z = n ⩾ 7 we find the following values

δ = (n− 1, n− 3, n− 3, n− 3, n− 5),

w·,1 = (2, 3, 1, 0, 2) = h

and hence vi,1 = δi for all i. We can then conclude that each bi,1 generates a direct component
of order ℓδi . The parameters hi are not involved in the group structure as n is big enough, as
pointed out in Remark 12.

Example 21. Let K = Q(ζ4) and G = ⟨−15 + 20ζ4, 14ζ4⟩. If M = N = 4, we have
G4,4 ≃ Z/4Z×Z/4Z because the group H4,4 is trivial and the 2-divisibility parameters of the
group are all 0. Set now M = 140 and N = 4. Since 4

√
−15 + 20ζ4 generates Q(ζ20)/Q(ζ4)

(by [4, Theorem 2]) and 14ζ4 is a square in Q(ζ28), then

H = G ∩K(ζ140)
×4 = ⟨−15 + 20ζ4, (14ζ4)

2⟩

and hence by (2) the Galois group of the Kummer extension G140,4 is Z/2Z. Indeed, the d
parameters of 2-divisibility of G in K(ζ140) are respectively d1 = 2 and d2 = 1. In general,
the group H can be computed for every M and N = 2n:
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H =



G2n if 5, 7 ∤ M
⟨(−15 + 20ζ4)

2n , (14ζ4)
2n−1⟩ if 7 | M, 5 ∤ M

⟨(−15 + 20ζ4)
2n−2

, (14ζ4)
2n⟩ if 5 | M, 7 ∤ M,n ⩾ 2

⟨(−15 + 20ζ4)
2n−2

, (14ζ4)
2n−1⟩ if 35 | M,n ⩾ 2

⟨−15 + 20ζ4, (14ζ4)
2⟩ if 5 | M, 7 ∤ M,n = 1

G if 35 | M,n = 1

Hence we can compute by (2) the Galois group GM,N = G/H for every M and N = 2n.

The following example shows the feature presented in Remark 16.

Example 22. Let ℓ = 2, K = Q(ζ16
√
5) and G = ⟨5, 6⟩. The divisibility parameters are

(1, 3) for the former generator and (0, 0) for the latter. By Theorem 4 we calculate that G8,8 =

(Z/8Z)2 and that G16,16 = Z/8Z × Z/16Z. Since
√
5 ∈ K(ζ5) and

√
6 ∈ K(ζ3), for

M = 120 we have H = G∩K(ζ120)
×8 = ⟨54, 64⟩ and we can compute H120,8 = (Z/2Z)2 and

G120,8 = (Z/4Z)2. Since
√
5 ∈ K(ζ16), for M = 48 we have H = G∩K(ζ48)

×16 = ⟨58, 68⟩.
This implies that, for M = 240, H48,16 = H240,16 = Z/2Z and, by (2), G48,16 = G240,16 =
(Z/8Z)2.
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[4] F. HÖRMANN, A. PERUCCA, P. SGOBBA, S. TRONTO, Explicit Kummer generators of cyclotomic extensions,

JP J. Algebra, Number Theory Appl. 53 (2022), no. 1, 69–84.
[5] T. JUDSON, Abstract Algebra: Theory and Application. Virginia Commonwealth University, Math Depart-

ment (2011).
[6] S. LANG, Algebra, Springer New York (2011).
[7] W. BOSMA, J. CANNON, C. PLAYOUST, The Magma algebra system. I. The user language, J. Symbolic

Comput., 24 (1997), 235–265.
[8] P. MOREE, Artin’s primitive root conjecture – a survey. Integers. 12 (2005).
[9] F. PERISSINOTTO, A. PERUCCA, Kummer theory for multiquadratic or quartic cyclic number fields, Unif.

Distrib. Theory 17 (2022), no. 2, 165–194.
[10] A. PERUCCA, The order of the reductions of an algebraic integer, J. Number Theory 148 (2015), 121–136.
[11] A. PERUCCA, P. SGOBBA, Kummer theory for number fields and the reductions of algebraic numbers, Int. J.

Number Theory 15 (2019), no. 8, 1617–1633.
[12] A. PERUCCA, P. SGOBBA, S. TRONTO, Kummer theory for number fields via entanglement groups,

Manuscripta Math. 169 (2022), 251–270.
[13] A. PERUCCA, P. SGOBBA, S. TRONTO, Addendum to: Reductions of algebraic integers, J. Number Theory

167 (2016), 259–283.
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