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“When I first read a biology textbook, it was like reading a thriller. 

Every page brought a new shock. 

As a physicist, I was used to studying matter that obeys precise mathematical laws. 

But cells are matter that dances.  

Structures spontaneously assemble, perform elaborate biochemical functions, 

and vanish effortlessly when their work is done.” 

– Uri Alon, Chapter 1- An Introduction to Systems Biology: Design Principles of 

Biological Circuits 
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Summary 

Cell-cell communication plays a significant role in shaping the functionality of the cells. 

Communication between the cells is also responsible for maintaining the physiological state of the 

cells and the tissue. Therefore, it is important to study the different ways by which cell-cell 

communication impacts the functional state of cells. Alterations in cell-cell communication can 

contribute to the development of disease conditions.  In this thesis, we present two computational 

tools and a study to explore the different aspects of cell-cell communication. In the first 

manuscript, FunRes was developed to leverage the cell-cell communication model to investigate 

functional heterogeneity in cell types and characterize cell states based on the integration of inter- 

and intra-cellular signalling. This tool utilizes a combination of receptors and transcription factors 

(TFs) based on the reconstructed cell-cell communication network to split the cell types into 

functional states. The tool was applied to the TabulaMurisSenis atlas to discover functional cell 

states in both young and old mouse datasets. In addition, we compared our tool with state-of-the-

art tools and validated the cell states using available markers from the literature. Secondly, we 

studied the evolution of gene expression in developing astrocytes under normal and inflammatory 

conditions. We characterized these cells using both transcriptional and chromatin accessibility data 

which were integrated to reconstruct the gene regulatory networks (GRNs) specific to the condition 

and timepoints. The GRNs were then topologically analyzed to identify key regulators of the 

developmental process under both normal and inflammatory conditions. In the final manuscript, 

we developed a computational tool that identified regulators of allergy and tolerance in a mouse 

model. The tool works by first reconstructing the cell-cell communication network and then 

analyzing the network for feedback loops. These feedback loops are important as they contribute 

to the sustenance of the tissue’s state. Identification of the feedback loops allows for the discovery 

of important molecules by comparative analysis of these feedback loops between various 

conditions.  

 In summary, this thesis encompasses various ways of cellular regulation using cell-cell 

communication in a tissue. These studies contribute to a better understanding of the role cell-cell 

communication plays in health and disease along with the identification of therapeutic targets to 

design novel strategies against diseases. 
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1. Introduction 

1.1. Systems biology: a perspective 

Systems biology at its core is meant as an inverse to the concept of reductionism that took a 

foothold in the scientific progress of the 19th and 20th centuries. Reductionism is the idea that a 

complex problem can be broken down into its constituent parts and can then be studied individually 

to understand the whole problem (Brigandt 2022). This found its use in the breaking down of 

scientific theories and concepts into their constituents to understand them. Substantial examples 

of those can be found in the theories of atoms being split into individual particles to conceptualize 

their individual roles in an atom. The systems biology approach gained traction in the early part of 

the 21st century which states that a system is more than the sum of its parts and breaking down 

into constituent parts leads to the loss of information that was composed in the original system 

(Wanjek 2011). The systems approach lends itself well to the discipline of biology, as biology is 

composed of a multitude of complex individual parts that can interact with each other in a myriad 

number of ways.  

 Studies focused on the reductionist approach have helped understand the role of different 

organs and cell types independently. At the molecular level, individual genes have been studied 

for their roles in physiology and the correlation of their expression with diseases (Pinero, Ramirez-

Anguita et al. 2020). The cells exert their roles through multiple levels of organization including 

the genome, transcriptome, epigenome, proteome, and metabolome levels (TA 2002). Each with 

its responsibility in the working of biological systems. The systems approach intends to use the 

knowledge generated from these individual levels in an integrated manner to explore the 

information that cannot be garnered by studying them separately. This integrated approach has 

been found useful in the development of therapies against diseases (Mulder, Hamidi et al. 2018, 

Xu, Ware et al. 2019). For example, the integration of transcriptomics, which signifies the number 

of transcripts along with DNA accessibility data from epigenetics could aid to unravel key 

regulatory mechanisms that govern the expression of genes in the cells and identify key regulators. 

Therefore, to gain a holistic understanding of biology it is important to utilize the systems approach 

of integration of these various levels. Biological systems are inherently robust to perturbations but 

under disease conditions perturbations could occur at multiple levels in the cells which can push 

the system into a dysfunctional state (del Sol, Balling et al. 2010). As the disruption occurs at 
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various levels it is important to study these various levels and the relationships between them. This 

holistic view of biology can then be utilized to develop approaches aimed at tackling various 

diseases. 

 

Figure 1. Diagrammatic representation of Systems Biology and reductionist approaches in 

biology. The figure summarises the difference in approach between the reductionist and systems biology 

approaches. Under the reductionist approach, the system is broken down into smaller levels and constituents 

and studied individually. In the systems biology approach, we integrate data from various OMICS 

technologies with biological knowledge to model biological processes. These models help in the prediction 

of disease biomarkers and drug targets. (Figure inspired by Schaub et al. 2020) 

 In cellular biology, this interaction between multiple levels of networks of signalling 

pathways, gene regulatory networks and cell-cell interaction networks provide a set of highly 

connected and interdependent networks that share information and studying them in the 

disconnected form leads to loss of information. Communication between cells is organized by a 

combination of cell-cell interactions, intracellular signalling and gene regulatory networks (Hunter 

2000). Thus, accurate comprehension of cell-cell communication requires a systems approach that 

relies on the interconnected roles of these different levels of information in cells. A better 
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understanding of cell-cell communication could aid in the development of strategies for diseases 

involving multiple cell types by finding the cells that wield a dominant role in the progression and 

establishment of these diseases (Armingol, Officer et al. 2021). 

1.2. Cell-cell communication and its role in cellular function 

Cells interact with their environment to receive signals, process them and then provide appropriate 

responses thus leading to the dissemination of biological information between cells. These 

interactions are important for their survival, proliferation and regulation of their functions as 

required. Cell-cell communication provides a collective behaviour to the cells of the tissue and 

coordinates the development and confers environmental adaptation to cells (Li and Elowitz 2019). 

The contribution of these communications has been studied under physiological conditions (Ruch 

2002, Park, Musson et al. 2017, Valls and Esposito 2022). Ligand-Receptor (L-R) based 

communication plays a major role in the communication that happens between cells, soluble 

molecules known as ligands are secreted by the cells and interact by binding with proteins on the 

surface of cells based on their conjugate structures also known as receptors. This initiates signal 

transduction downstream via signalling molecules ending in transcription factors (Heldin, Lu et 

al. 2016). These signals coming from the outside environment to the regulatory network of the cell 

shape the gene expression of transcription factors and their target genes which provide the 

functionality to the cells (Wray, Hahn et al. 2003). This regulation of genes also leads to the 

production of ligands downstream which relay the information back to other cells. Thus, this 

communication between cells allows sharing of information about the environment.  

 

Figure 2. Applications of cell-cell communication modelling using scRNA-Seq data. 
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The figure showcases the various avenues of research for modelling approaches based on cell-cell 

communication networks. (Figure modified from Armingol et al. 2020) 

 The critical balance of these interactions in regulating the specific function of cells and 

coordinating responses in the case of disease has been widely studied (Huang, Xu et al. 2022, 

Overton and Mastracci 2022). The balance of these communications is what maintains the 

physiological state of the cells in the tissue and modelling of cell-cell communication can be 

crucial in comprehending the role of different cells in various processes (Figure 2). Disturbance of 

this essential communication between cells can lead to a breakdown in the homeostatic state of the 

cells by dysregulation of the cellular functional state contributing to disease induction. Thus, 

understanding which signals between the cells regulates specific changes in the functional states 

would contribute to specifying the roles of various cell types and cell states in sustaining 

homeostasis and the development of disease.   

 Modelling of cell-cell communication allows the unravelling of the role of cell types along 

with ligands, receptors and TFs that constitute the interactions of these cell types with other cells. 

Under the condition of disease parts of these communications get altered or new interactions can 

be established that contribute to the dysfunction of these cells.  

1.3. Computational modelling of cell-cell communication    

Experimentally cell-cell communication can be studied on a few cell types and a handful of genes 

due to technical and monetary constraints. Computational modelling aids in the identification of 

genes playing a crucial role in cell-cell communication. In recent years, the advent of single-cell 

sequencing technologies has led to rapid growth in the availability of more and more data about 

the basic processes in biology. This has also led to research in utilising these new and high-

resolution data to identify and understand biological function which has ushered a boom in the 

number of computational tools (D'Argenio 2018). These new computational tools have led to rapid 

enhancement in our understanding of biological processes (Hill and Gerner 2021). Single-cell 

RNA sequencing (scRNA-seq) platforms have supported high throughput access to the 

transcriptome of cells. This has brought an era of development of computational tools based on 

high throughput sequencing. Transcription is a part of the “central dogma of replication, 

transcription and translation” and is responsible for the transcription of genes to mRNA which is 

then translated into proteins that mediate cellular functions. 
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 These tools further utilise the ligand-receptor information to establish the communication 

between cell types. Since then, several new tools have been published that utilize different types 

of algorithms to decipher cell-cell communication. Most recent of these tools are CellCall (Zhang, 

Liu et al. 2021), NicheNet (Browaeys, Saelens et al. 2020), CellChat (Huang, Xu et al. 2022), 

CellphoneDB (Vento-Tormo, Efremova et al. 2018, Efremova, Vento-Tormo et al. 2020), 

SpaOTsc (Cang and Nie 2020) and NCEM (Fischer, Schaar et al. 2022) which also represent the 

state-of-the-art modelling in cell-cell communication. All these tools utilize publicly available 

databases of Ligand-receptor and intracellular signalling with some also integrating gene 

regulatory data to further substantiate their results.  Of these tools CellphoneDB and CellChat use 

protein subunit information, taking into consideration multi-subunit receptor complexes while 

most other tools rely on single ligand-single receptor interactions. While all other tools utilize only 

transcriptomics data, SpaOTsc and NCEM can integrate spatial information by using spatial 

transcriptomics to model cell-cell communication.  

 CellPhoneDB was one of the first published tools to model cell-cell communication. These 

tools utilize protein complex information to model receptor complex formation. Then based on 

gene expression of ligands and receptors to calculate communication scores between various cell 

types. The study was able to recover important ligands-receptors based communications that play 

a significant role in the development of maternal-fetal communication in early pregnancy (Vento-

Tormo, Efremova et al. 2018). The study was further able to shed light on the roles of different 

cell types in the placenta and decipher the difference in cell communication channels between 

different subtypes of cells like natural killer cells. Further, the tool provides fundamental 

information regarding communication that is responsible for immunomodulation in the decidual 

layers of the placenta. Recently the tool saw an upgrade (Efremova, Vento-Tormo et al. 2020), 

which enables the reduction of time and memory utilization by the tool and further allows the 

addition of new interacting molecules to the analysis. 

 NicheNet, build up on the simple L-R based communication network by integrating 

signalling and gene regulatory networks. This method provides a model that establishes a 

relationship of ligands that regulate the expression of a target gene in the GRN. For this purpose, 

NicheNet uses a prior model of ligand-target along with gene expression data to establish these 

relations. The tool provides both ligand and target gene activity scores as a way of prioritizing 
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genes involved in the communication and regulation of cells. The study utilized the head and neck 

squamous cell carcinoma (HNSCC) tumour dataset to predict the genes involved in the partial 

epithelial-to-mesenchymal transition (p-EMT) program in malignant cells (Browaeys, Saelens et 

al. 2020).  Recently, NicheNet got an update referred to as Differential NicheNet (Guilliams, 

Bonnardel et al. 2022) that was used to compare cell-cell interactions across different niches and 

prioritise niche specific ligands and receptors. 

 CellChat (Huang, Xu et al. 2022) builds upon previous work by using multimeric 

complexes as in CellPhoneDB. Then combining it with network analysis and pattern recognition 

to identify important cell types that provide signals and the coordination between different sender 

cells. Following this, they can be put together in groups based on the communication computed by 

CellChat. The tool was applied to embryonic development and wounded skin datasets and the 

inferred networks were then confirmed using in-situ assays.  

 CellCall integrates ligand-receptor and TF activity to infer both the inter- and intracellular 

signalling in the cells (Zhang, Liu et al. 2021). It further embeds the signalling information of the 

cells by using pathway activity based on the Jaccard similarity coefficient index, to identify crucial 

pathways involved in the communication. The Jaccard index statistic is used to measure the 

similarity and diversity of sets. The inference of the cell communication is based on ligand-

receptor-TF by combining activity scores of TFs with the L2norm of the L-R interaction. The TF 

activity score is based on the enrichment of expression of the TF regulons. The tool was 

implemented on human testicular cells dataset identifying important pathways involved in 

communication during spermatogenesis, which was further confirmed using immunostaining. The 

tool was further utilized to identify pathways and TFs, on tumour immune microenvironment 

(TIME) immune datasets involved in monocyte/macrophage development, activation, polarization 

and recruitment and The Cancer Genome Atlas (TCGA) pancancer data those associated with 

patient survival. 

 Spatially optimal transporting of the single cells (SpaOTsc) tool was designed to utilize 

gene expression from spatial imaging datasets (Cang and Nie 2020). SpaOTsc provides multiple 

capabilities – mapping between scRNA-seq and spatial data, inferring spatial distances between 

single cells, quantitatively comparing spatial gene expression patterns, reconstructing spatial cell-

cell communications and identifying gene pairs that potentially regulate each other. The integration 
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of scRNA-seq and imaging datasets is performed by using the optimal transport algorithm where 

the transport cost is based on the dissimilarity in the expression of shared genes between the two 

datasets. The spatial metric for the scRNA-seq data is then calculated by using the cell-cell distance 

from the spatial data. This metric is used to calculate optimal transport between the distribution of 

sender and receiver cells. The tool mimics the physical process of ligand release and consumption 

by senders and receivers respectively to characterize the communication. In this method, the spatial 

range of signalling is also estimated, by using an ensemble of trees based machine learning model 

on the initial cell-cell communication network. The tool also infers the direct and indirect influence 

among genes across different cells by using partial information decomposition.  This tool was 

implemented on datasets from zebrafish embryo, Drosophila embryo and mouse visual cortex. 

These datasets were integrated with spatial counterparts to create cell-cell communication 

networks. The study utilized data generated from Slide-Seq (Rodriques, Stickels et al. 2019) and 

RNAseqFISH+ (Eng, Lawson et al. 2019) technologies along with scRNA-seq dataset of mouse 

olfactory bulb to compare inference of cell-cell communication with and without integration of 

scRNA-seq data with spatial transcriptomics.  

 Node-centric expression models (NCEM) was recently proposed to infer cell 

communication (Fischer, Schaar et al. 2022). The algorithm improves upon ligand-receptor based 

cell communication inference by using a spatial graph of cells. NCEM is defined as a graph neural 

network that predicts the gene expression vector of a cell based on its celltype, the niche and its 

spatial constraints. The study utilizes datasets from multiple spatial assay technologies including 

MERFISH (Xia, Fan et al. 2019) and 10x Visium from multiple tissues. The tool was able to 

identify spatial dependencies between cells as well as predict the length scale of interactions based 

on spatial information. 

 While these tools have been developed to pursue various avenues of research in cell-cell 

communication utilising a range of algorithms to define its significance in health and disease. 

There still is a need for improvement in the level of biological insights that can be provided by 

these tools. 

1.4. Characterizing Functional heterogeneity and niche induced cell states 
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Multicellular organisms are composed of cells of various types which vary in shape, size, and gene 

expression all specialized for their function (Prasad and Alizadeh 2019). This specialization in 

cells is contributed by the cell’s lineage and environment. Cell lineage broadly defines the 

functional role of these cells during development (Hartenstein, Omoto et al. 2021) in addition to 

this, the environment of the cell shapes the function of the cells. The effect of the environment is 

conducted in multiple ways on the cells which include vesicles, ligands, physical contact, etc. 

based on interactions with other cells in the environment.  This external communication of the cell 

leads to changes in gene expression of the cells which further impacts the functionality of the cell 

(Figure 3).  

 Cells are typically defined based on their well-defined functions and are known as cell 

types which may appear similar but still contain an inherent heterogeneity in the gene expression 

of individual cells (Altschuler and Wu 2010). With the boom in the generation of high throughput 

single-cell data, this heterogeneity of cells has become much more accessible to study and thus 

research in the role of functional states of cell types has gained more interest. In biological systems, 

heterogeneity contributes to the robustness and adaptive response (Kucharavy, Rubinstein et al. 

2018). Many cell types show plasticity in their function which corresponds to the different roles 

the cells must play under various conditions. This heterogeneity of cells has been known to play a 

crucial role in the proper function of cells which for meaningful biological states can be defined 

by multiple dimensions like cell cycle stages (McDavid, Finak et al. 2016), gene expression 

modules, etc.  

 Tissue resident specific differences in the expression of cell types across tissues further 

consolidate the idea of niche based functional specialization of the cells. Cells residing in different 

tissues are exposed to varying microenvironments known as the niche of the cell. This niche is 

composed of other cells of the tissue and cells interact with each other thus leading to a different 

combination of interactions for every single cell. These cells further differ in the expression of 

genes that compose the signalling of the cells and contribute to different transcription factor 

profiles across cells of the same cell type. These differences may arise from spatial or temporal 

differences as well as conditions of the tissue. For example, immune cells like macrophages and 

dendritic cells can be found across various tissues of the cells and based on the conditions of niche 

can acquire cell states of M1/M2 for macrophages (Zhang, Yang et al. 2021) and DCs could be in 
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activated/quiescent states or other known subsets (Boltjes and van Wijk 2014). While immune 

cells as they travel can acquire peripheral and tissue resident specific characteristics also. 

Moreover, the developmental process in cells also contributes to heterogeneity, as development is 

a continuous process a celltype can contain cells at different stages of development such as mature 

and immature cells. Thus, cell-cell communication plays an essential role in shaping the functional 

states of cell types based on their niche. 

 

Figure 3. Pillars of identity This figure demonstrates the role of lineage and environment on the 

phenotype and function of cells. (Figure from Morris 2019)  

 The role of this cellular heterogeneity also becomes quite apparent under conditions of 

disease and ageing. During ageing, induction of senescence (Mylonas and O'Loghlen 2022) or 

quiescence (Tumpel and Rudolph 2019) plays a detrimental effect as it reduces the number of stem 

cells available to replenish the pool of functionally active cells. In diseases, like infections, the 

immune cells shift towards inflammatory cell states which are required to clear the infections, 

while at the same time under cancer the tolerogenic cell states are relevant as they allow cancerous 

cells to escape the immune system by suppressing its response via anti-inflammatory molecules. 
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This heterogeneity of cells and cell states. These examples underline the impact of cell-cell 

communication in both healthy and disease conditions thus making it important to study their 

existence and roles.  

1.5. Identifying impacts of perturbation in cell-cell communication  

Development is a highly synchronized process that requires precise combination and cooperation 

between signals from the environment and the intrinsic gene expression (Li and Elowitz 2019). 

During the process of differentiation, cells change their morphology and cellular functions, based 

on the changes in gene expression that are required as part of the developmental process. These 

genes consist of key TFs and their regulated targets constituting the gene regulatory networks that 

govern the cell specification. Perturbations in the environment could lead to dysregulation in the 

developmental process due to changes in the GRN and have been extensively studied as they 

provide valuable information about the role of specific environmental signals and their effects on 

genes involved in development (Levine and Davidson 2005, Weidemuller, Kholmatov et al. 2021).  

During development, the regulatory changes in the GRN are not limited to the level of gene 

expression but also at the epigenomics level as explained below. 

  Regulation of gene expression happens at two levels, first, the expression of genes is 

strictly controlled by the binding of transcription factors in the gene’s promoter region, and the 

combination of various factors binding in the promoter controls the level of a gene expressed in a 

particular cell. Secondly, the expression is controlled at the epigenetic level by chromatin 

accessibility, methylation and acylation patterns which dictate the possibility of TFs binding to the 

promoter region by controlling the steric hindrance in the binding regions. Epigenetic patterns are 

important throughout the development of cells as they are specific to certain lineages supporting 

the idea that certain sets of genes provide lineage specific roles to cells (Kluger, Tuck et al. 2004, 

Rommelfanger and MacLean 2021). Also, as cells move from pluripotent to multipotent and 

differentiated cells the epigenetic patterns for other lineages become inaccessible for TF binding 

(Cedar and Bergman 2008, Boland, Nazor et al. 2014). These factors shed light on the need to 

study both gene expression and epigenetics simultaneously in an integrated way. Moreover, this 

method provides insights into the changes that occur during development or cases of perturbations 

to these systems leading to changes in the functional state of cells. While changes in gene 

expression lead to rapid changes in the cells as a response to environmental perturbations the effect 
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on the epigenetic markers could lead to more long term ramifications for the cells during their 

development. 

 Communication between cells is a well-regulated process and small changes in the 

concentration of ligand molecules could lead to dramatic changes in the cellular functional states 

that could contribute to loss of homeostasis at the tissue level. These changes occur as different 

molecules convey different information regarding the environment to the cells (Turner, Nedjai et 

al. 2014, Liu, Chu et al. 2021). These signals are produced by different cells in the environment as 

part of the response to changes like injury or disease and are meant to prepare the cells for an 

appropriate response to them. This communication between cells during injury/disease may lead 

to inflammation. Inflammation is an intrinsic mechanism that plays a significant role in the 

regulation of development, homeostasis and immune response (Bennett, Reeves et al. 2018, Chen, 

Deng et al. 2018, Dostert, Grusdat et al. 2019). Inflammation is mediated via a specific set of 

cytokines that bind to their cognate receptors and activate a different set of downstream signalling 

that cascade into changes in the expression of the genes that are at the core of gene regulatory 

networks of the cells. These changes in GRN are meant to activate anti-inflammatory responses 

for the cells as well as produce signals downstream that further communicate the information of 

environmental inflammation for other cells in the environment. As these cytokines linked with 

inflammation can create functional changes in cells by perturbing the gene expression of key genes 

thus making it essential to study their role in biology.  

 The role of cytokines is vital during development, in the orchestration of specific changes 

in gene expression as the cell develops and changes its functional nature of the cell (Robb 2007, 

Metcalf 2008). For example, during the development of immune cells, specific signals are required 

at certain time points during the development of the cells which then leads to the proper 

development of functional cells (Banyer, Hamilton et al. 2000, Arango Duque and Descoteaux 

2014, Wu, Xie et al. 2014). Perturbation in these communication signals during any stage of 

development can alter the intrinsic gene expression of the genes that are required for the cell’s 

specific functions (Jiang, Zhang et al. 2021). 

 Previous studies have inquired into the role of inflammatory cytokines in disease (Kany, 

Vollrath et al. 2019). These studies have showcased that inflammatory molecules if encountered 

by the cells when not essential for physiological response or development can lead to dysfunction 
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in the developing cells thus also affecting other cells in the environment that rely on the 

communication from these cells for maintaining their functional states. This dysfunction during 

development has also been involved in various disease conditions (Okin and Medzhitov 2012) and 

research in cytokine perturbation during cellular development can provide new avenues to study 

disease induction and thus help in the discovery of therapeutical targets for diseases.  

1.6. Feedback loops based regulation in cell-cell communication 

Connecting output signals back to inputs leads to the creation of feedback loops and has been 

recognized as an essential concept of biology playing roles in homeostasis, pattern formation, 

transcriptional regulation and recently as part of intercellular signalling as they account for the 

ability of system to continuously regulate itself (Brandman and Meyer 2008). Intercellular 

communication creates a complex network between cells and the presence of multiple feedback 

loops in these networks points to their role in communication.  

 Feedback loops have been identified in various tissues across cell types and have been 

studied for the precise role they play in maintaining specific functions in the tissue. In the heart, 

interactions between cardiomyocytes, fibroblasts and endothelial cells using multiple growth 

factors like Vascular endothelial growth factor (Vegf) and Neuregulin 1 (Nrg1), shape coronary 

vessel growth and maintenance (Tirziu, Giordano et al. 2010). Similarly, stromal cells which 

include fibroblasts, myofibroblasts, bone marrow stromal cells, etc interact with immune cells 

across tissues via various cytokines including Interleukin 6 (IL-6) playing role in both homeostasis 

and coordination of immune response (West 2019). In the liver, hepatocytes form feedback loops 

with liver sinusoidal endothelial cells and hepatic stellate cells using growth factors regulating the 

cellular phenotypes in homeostatic conditions (Iwakiri, Shah et al. 2014, Weiskirchen and Tacke 

2014). In the brain, interactions between neurons and microglia indicate their role in the 

regulation/maintenance of microglial activation and synaptic development of neurons via feedback 

(Eyo and Wu 2013), microglia also interact with astrocytes for the regulation of immune functions 

in the brain (Matejuk and Ransohoff 2020). In the immune system both the innate and adaptive 

response is dependent upon interactions between various immune cells such as macrophage, 

dendritic cell, natural killer cell, T cell and regulatory T cell, etc to regulate the response to 

injury/disease (Malyshev, Manukhina et al. 2014, Rahman, Tiwari et al. 2018).  
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Figure 4. Interaction between cells from the innate and adaptive immune system with other 

cell types. (Figure from Gasteiger and Rudensky 2014) 

 The immune system is meant to provide a robust response in case of infection or injury and 

plays an essential role in the communication between cells to regulate appropriate responses during 

any such event (Figure 4). This response is tightly regulated as the immune system consists of cells 

that play roles in inducing inflammation during the early phase of the response and other cells that 

can induce tolerance in the system once the issue with the injury/infection is resolved by the 

removal of inflammatory molecules or producing more tolerogenic molecules.  Thus, the balance 

between these two types of immune cells and the level of expression of pro-/anti-inflammatory 

molecules creates feedback of regulation between cells. This regulation is both spatial and 

temporal as specific inflammatory signals are required to start the response which is then taken 

over by signals that are meant to maintain the state of inflammation till the resolution of the 

injury/infection. This removes the signals in the environment that initiated the inflammatory 

immune response and inflammation is steadily removed from the system by the degradation of 

pro-inflammatory molecules over time. Similarly, to build tolerance there needs to be a 

communication of tolerogenic signals that could create feedback loops between cell types and thus 

create a state of tolerance.  

 In healthy individuals or animals, these feedback loops consist of ligands and receptors 

involved in the basic function of these cells like growth and development. While in the case of 

disease, these signals from the tissue resident cells and immune cells are involved in feedback 

loops that support the dysfunctional cell states of the cells. As in the case of allergic diseases, the 
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systemic response from the immune system after encountering specific allergens. This 

hypersensitive response to allergens is accompanied by inflammation which is shaped by the 

ligands and receptors creating feedback loops between different immune cells that sustains this 

state of inflammation in the tissues (Galli, Tsai et al. 2008). To counter the inflammatory effects 

of allergic diseases various therapies have been developed that attempt to cure the disease by 

developing a tolerance state in the tissues (Wisniewski, Agrawal et al. 2013). To accomplish this, 

it is important to understand the role of different regulatory cells and the feedback created between 

them which could then sustain this state of tolerance. 

 Modelling of feedback loops in cell-cell communication is an important and new avenue 

of research into the role of different cell types in both health and disease. As these feedbacks are 

responsible for regulating the overall state of the tissues their better understanding could aid in 

deciphering the molecules that are involved. This allows the development of better therapeutic 

targets for diseases by combining the various levels of complexities in the biological system as 

well as considering that it is important to study a composite picture of both health and disease as 

it involves the coordination and cooperation of many cell types and hundreds of molecules that 

work together to make the tissue and regulate its functions. 
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2 Scope and aims of the thesis 

2.1 Scope 

This Ph.D. thesis is focused on using systems biology approaches to decipher the role of cell-cell 

communication in health and disease. Systems biology is an emerging discipline that helps better 

our understanding of complex biological processes by integrating the various networks and 

organizational levels in biology. This thesis includes the development of computational methods 

and analysis of newly produced datasets to discover and understand the role of cell-cell 

communication in the regulation of both functional cell types and tissue homeostatic states. These 

tools allow us to better understand the underlying role of different molecules involved in this 

communication. Using these tools we study the changes that functional cell states, the effect of 

signal perturbations and the role of feedback loops in maintaining the state of a tissue. The 

development of these novel computational tools using single-cell technologies along with the 

integration of various networks in biology allow for a more holistic approach to modelling of 

health and disease.  

 

2.2 Aims  

 

These Ph.D. projects are aimed at developing computational tools and studying newly produced 

datasets to model health and disease to improve our understanding of the role of cell-cell 

communication in regulating cell and tissue states with the intent of discovering therapeutic 

strategies against diseases.  

 

Aim 1: Development of a computational method to resolve functional cell states using cell-

cell communication model. With this study, we focused on developing a novel tool of cell-cell 

communication that resolves functional cell states based on signals from the tissue niche. Several 

studies have showcased that cells in a celltype show functional heterogeneity which gets shaped 

by the signals coming to these cells from their niche. Therefore, we aimed at developing a cell-

cell communication model by integration of signalling, gene regulatory and ligand-receptor 

networks to characterize these functional states. In addition, we aimed at studying cell types and 

states across young and old tissue atlases to study the differences and similarities between them.  
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Aim 2: Study the development of astrocytes under inflammatory by Integrating 

transcriptional and chromatin accessibility. In this study, we first characterized the developing 

astrocytes using gene expression and chromatin accessibility in both normal and inflammatory 

conditions at global and individual genes levels. We explored the changes that occur during 

development and the impact of inflammatory conditions during development. Our main focus 

remained on the integration of transcriptomic and chromatin accessibility data to generate the gene 

regulatory networks of astrocytes developing from neural stem cells under normal and 

inflammatory conditions to discover the roles of various genes during the developmental process. 

The study provides a preliminary step in the development of therapeutical targets for neurological 

diseases with an inflammatory component.  

Aim 3: Development of a model of feedback loops in cell-cell communication network to 

discover key molecules in allergy and tolerance. With this study we aimed at developing a novel 

computational tool that first builds a cell-cell communication model network in different tissues 

and then discovers feedback loops between the cells involved in communication. Several studies 

have shown the role of these feedback loops in regulating the state of the tissue thus we applied 

the tool to a novel single cell dataset of immune cells during allergy and tolerance conditions of 

the tissue generated under the project. We leveraged these feedback loops to discover novel 

therapeutic targets for allergic inflammation and tolerance induction. 

2.3 Originality 

The studies presented in this thesis were designed to decipher the roles cell-cell communication 

plays in shaping cell and tissue states. In the first study, we developed a novel tool to identify cell 

sates using reconstructed cell-cell communication networks. In the second study, we generated 

transcriptomic and epigenomic data for developing astrocytes under normal and inflammatory 

conditions. Our analysis provided valuable insight into the impact of inflammation on 

development. In the last study, we generated single cell resolution gene expression data from 

immune cells to study allergy and tolerance in a mouse model. Under this project, we also created 

a new computational tool that identifies key regulators of allergic inflammation and tolerance 

induction using feedback loops in cell-cell communication networks. The focus of these studies 

was to improve our understanding of biological processes and aid in development of new 

therapeutic approaches against diseases.   
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3 Materials and Methods 

Materials and methods details are presented in the results section of this thesis for the three 

manuscripts (sections 4.1 to 4.3). A summary is described below for each of them –  

In “FunRes: resolving tissue-specific functional cell states based on a cell–cell communication 

network model” (section 4.1) we developed a cell-cell communication network based model to 

resolve functional cell states in cell types. The cell-cell communication network is reconstructed 

in a bottom-up approach for individual celltypes, at first identifying the conserved set of 

transcription factors. The signalling network upstream of these transcription factors is then 

modelled based on a Markov chain to identify sustained signals in the celltype. Next, the 

transcription factors via these signalling networks are then connected upstream to the set of 

conserved receptors expressed by the celltype. The cell-cell communication network is then 

established using a scaffold of ligand-receptor interactions collected from the literature. The 

communication network is pruned, and only high confidence interactions are retained as the final 

output by comparison with the background of all interactions. The final output is then used to 

establish combinations of receptor and transcription factors that are conserved together in a 

significant fraction of the celltype population and are involved in the communication network via 

the receptor providing sustained signals to the transcription factor. The cell states are resolved by 

creating an incidence matrix of the cells in columns and receptor-TF combinations as rows. 

Hierarchical clustering is then performed on the incidence matrix to resolve states represented by 

a split in columns and rows which represent different states and processes based on their similar 

profiles. Functional enrichment (Yu, Wang et al. 2012) is then performed on the row clusters in 

the incidence matrix to identify the biological processes that differentiate the cell states. Markers 

were then identified in these states using Seurat’s FindMarkers function. 

 We implemented the tool on the TabulaMurisSenis atlas to identify these cell states across 

tissues from young and old mice. Literature evidence was then used to establish support for the 

cell states identified using the tool. Comparative analysis was performed with state-of-the-art tools 

by identification of cell states to demonstrate the advantage of using cell-cell communication in 

establishing and understanding the cell states induced by the niche. 
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In “Transcriptional and chromatin accessibility profiling of neural stem cells differentiating into 

astrocytes reveal dynamic signatures affected under inflammatory conditions” we studied the 

transcriptional and chromatin accessibility changes during the development of astrocytes under 

normal and inflammatory conditions. The Neural stem cells (NSCs) differentiating into astrocytes 

were first characterized using qPCR to check for known astrocytic markers under both conditions. 

Bulk RNA-Seq and ATAC-Seq data were generated at 24h and 72h timepoints for both conditions 

along with control (0h). The global gene expression and chromatin accessibility were then studied 

to identify changes during normal development and under inflammation. The changing 

transcriptional and accessibility profiles were also explored using functional enrichment 

algorithms. Further, the gene expression changes of genes involved in astrocytic functional genes 

were also examined. We performed transcription factor binding motif analysis on the chromatin 

accessibility data using the HOMER (Hypergeometric Optimization of Motif EnRichment) tool. 

Through this analysis, we identified Nfe2l2 (aka Nrf2) as an important TF involved in response to 

inflammation. Finally, we reconstructed the GRNs for developing astrocytes under both conditions 

for both 24h and 72h timepoints by performing contextualisation (GRNOptR) over the networks 

created using differentially expressed genes. Topological analysis was then performed on the 

GRNs to identify key regulators of the development of astrocytes under normal and inflammatory 

conditions. 

 

In “Feedback loops in cell-cell communication identify key regulators of allergy and tolerance”, 

we utilized an AIT (Allergen Immunotherapy) model of the mouse to identify key regulators of 

allergy and tolerance by reconstructing the cell-cell communication network between a subset of 

immune cells involved in the allergy and tolerance state of the tissue. We generated single cell 

RNA (scRNA-Seq) sequencing data for specific immune cells (cDCs, pDCs, B cells, NK cells, 

Regulatory T cells and effector T cells) that have been characterized before as playing significant 

roles in the development and resolution of allergy as well as the induction of tolerance in a tissue. 

The cells were extracted from the Spleen and Peritoneal cavity of the mouse at different stages of 

the experiment. 

 Downstream analysis of pre-processing and quality control was performed using the Seurat 

package in R, which was further utilized to find cell clusters in the data. The cell clusters were 

then characterized using known markers. After annotation, the cell-cell communication network 
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was reconstructed for individual tissues and timepoints. For the reconstruction of the cell-cell 

communication networks, we utilized our recently published tool FunRes, which reconstructs the 

network in a bottom-up approach of identifying the conserved transcription factors and then 

linking them upstream by using a Markov chain model of the signalling network. Finally, the cell-

cell communication network is established by using conserved receptors and cognate ligand-

receptor information. We then applied our new computational tool C3Loop for feedback analysis 

on the cell-cell communication networks. The tool first identifies the feedback loops in the network 

and then performs a sensitivity analysis on loops by varying various parameters in the tool. The 

sensitivity analysis allows capturing molecules that are consistent even while the variation of 

parameters changes the feedback loops thus providing high confidence regulator genes. The tool 

then performs a comparative analysis between conditions to discover molecular targets against 

allergic inflammation and tolerance induction. We used literature based evidence to verify the 

effectiveness of our tool by accessing the molecules selected and the role they could play in allergy 

and tolerance. 
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4 Results  

4.1 Characterization of functional heterogeneity and niche induced cell states 

4.1.1 Preface 

This manuscript entitled “FunRes: resolving tissue-specific functional cell states based on a cell–

cell communication network model” was published in Briefings in Bioinformatics in July 2021 

accessible with DOI: 10.1093/bib/bbaa283. The pre-print version has been presented in this thesis 

and the supplementary data is accessible on the publisher’s website.  

 In recent years studies have shed light on the role of tissue microenvironments in the 

functionality of cells. The tissue microenvironment or niche is made up of all the cells constituting 

the tissue. These cells communicate with each other using molecules that bind to cognate receptors 

on other cells creating networks of communication between different cell types. Cell-cell 

communication plays a vital role in shaping the function of cells and the differences in the 

interactions between the cells contribute to the heterogeneity of the cells. These differences in 

interactions could also lead to changes in the function of cells that could be important to study and 

understand their role across cell types.  

  In recent years, many computational tools have been developed to discover novel cell 

subtypes but they have not taken into consideration the role of ell-cell communication. 

Understanding the role of cell-cell communication in the maintenance of cell subtypes could be 

important in discerning the role of specific functional cell subtypes found in diseases. 

 This study is the first proposed tool to resolve functional cell states using an underlying 

cell-cell communication network. The method uses a bottom-up approach to building cell-cell 

communication using conserved expression of transcription factors. The tool utilizes a Markov 

chain based model of signaling networks to identify sustained signals in the cells. These conserved 

transcription factors are then connected upstream to the conserved set of receptors via the sustained 

signals identified. Using a scaffold on ligand-receptor interactions which were manually curated 

using literature evidence the cell-cell communication network is reconstructed in the tissue. The 

tool was applied to 177 celltypes of 10 tissues from the Tabula Muris Senis atlas and disease 

datasets. This dataset contains cells from young and old mice helping in the identification of 

functional cell types. The application of the tool on the dataset allowed the characterization of 

emerging and vanishing cell states in aging and disease. The cell states were then evaluated, and 
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their possible functional roles were accessed based on the molecules involved in the cell-cell 

communication and known celltype markers. Further, the tool was compared with the state-of-the-

art clustering tools that are meant to identify cell clusters in data and showcased the tool identified 

the functional cell states more accurately, whereas the other tools were not satisfactory. Finally, 

the tool and its code were made publicly available to the community in a user-friendly way. 

Contribution: I implemented the computational algorithm, collected the data, processed the data, 

performed the analysis, and contributed to the manuscript and its figures. 

 

4.1.2 Published Manuscript 

FunRes: resolving tissue-specific functional cell states based on a cell–cell communication 

network model 

Sascha Jung1, Kartikeya Singh2 and Antonio del Sol1,2,3 

1Computational Biology Group, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), 

Derio, Spain 

2Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of 

Luxembourg, Esch-sur-Alzette, Luxembourg 

3IKERBASQUE, Basque Foundation for Science, Bilbao, Spain  

Abstract 

The functional specialization of cell types arises during development and is shaped by cell–cell 

communication networks determining a distribution of functional cell states that are collectively 

important for tissue functioning. However, the identification of these tissue-specific functional cell 

states remains challenging. Although a plethora of computational approaches have been successful 

in detecting cell types and subtypes, they fail in resolving tissue-specific functional cell 

states. To address this issue, we present FunRes, a computational method designed for the 

identification of functional cell states. FunRes relies on scRNA-seq data of a tissue to initially 

reconstruct the functional cell–cell communication network, which is leveraged for partitioning 

each cell type into functional cell states. We applied FunRes to 177 cell types in 10 different tissues 

and demonstrated that the detected states correspond to known functional cell states of various cell 
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types, which cannot be recapitulated by existing computational tools. Finally, we characterize 

emerging and vanishing functional cell states in aging and disease and demonstrate their 

involvement in key tissue functions. Thus, we believe that FunRes will be of great utility in the 

characterization of the functional landscape of cell types and the identification of dysfunctional 

cell states in aging and disease. 

 

Introduction 

In multicellular organisms, the functional specification of cell types arises during development and 

is further shaped by signals from other cells. In particular, the exchange of these signals through 

receptor–ligand-mediated cell–cell communication networks determines a distribution of different 

functional cell states that are collectively relevant for tissue functioning [1]. Thus, cell types are 

composed of a variety of functional cell states that are shaped by their tissue environment. More 

specifically, in response to different stimuli, cells of the same cell type can exhibit different 

phenotypes defined by physical, molecular and functional characteristics, called functional cell 

states. Great efforts have been devoted to characterize tissues pecific functional differences 

imparted by cell–cell interactions, which has led to the identification of functional cell states in 

various cell types. For instance, comparison of tissue-resident macrophages in different organs 

revealed functionally relevant differences in their gene expression programs [2]. While ileal and 

colonic macrophages showed higher expression of CD74 compared to other tissue-resident 

macrophages, TGFB2 is exclusively expressed by peritoneal macrophages [2]. Moreover, 

transplantation of these macrophages to other organs reprograms their expression profile towards 

tissue-resident cells, which demonstrates that the observed differences are largely imparted by 

their environment [2]. In addition, previous studies investigated the effect of the environment on 

the functional specification of stem cells with respect to their activity and the tissue compartment 

in which they reside. For example, neural stem cells in the subgranular and subventricular zones 

show subtle phenotypic differences driven by the niche. While subgranular zone stem cells express 

the transcription factor (TF) HES5, which is induced by Notch signaling, subventricular zone stem 

cells express Id proteins, which are induced by BMP signaling, to maintain their function [3, 4]. 

Although these studies have enabled the characterization of certain functional cell states 

determined by cell–cell interactions in specific cell types, the development of computational 
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methods would greatly aid the systematic identification and characterization of such states. The 

identification of cell types and subtypes has been traditionally performed by molecular biology 

approaches based on the shape and size of cells, while, more recently, these populations have been 

characterized by their expression of cellular membrane proteins. However, due to the limited 

number of surface proteins, it is likely that important functional differences between cell states 

cannot be described by combinations of these proteins alone. Advances in single-cell RNA 

sequencing (scRNA-seq) technologies have provided an unprecedented view on the cellular 

heterogeneity within individual cell types. However, the exploitation of these datasets requires 

computational tools for processing and clustering the data. A plethora of computational tools have 

been developed in recent years for the unsupervised clustering of scRNA-seq profiles [5–8]. 

Although these tools have enabled the identification of several novel cell subtypes, they do not 

specifically consider the effect of cell– cell interactions on tissue-specific functional processes, 

and therefore fail in resolving the heterogeneity in functional states of different cell types. In order 

to address this challenge, we present FunRes, a computational method for the identification of 

tissue-specific functional cell states that are induced by receptor–ligand-mediated cell–cell 

interactions. FunRes employs single-cell RNA-seq data to reconstruct the cell–cell communication 

network among cell types. In particular, FunRes exclusively detects interactions that are 

functionally relevant to each cell type by warranting the compatibility of the signal with the 

intracellular signaling and transcriptional network. Next, FunRes leverages this network to identify 

functional cell states by partitioning cell types based on cell–cell interactions and the functional 

annotation of downstream target TFs. We applied FunRes to 177 cell types in 10 different tissues 

and demonstrate that the detected states correspond to known functional cell states of various 

immune and non-immune cell types, including macrophages, NK and endothelial cells, which 

cannot be recapitulated by existing computational tools. Moreover, comparison of the identified 

functional cell states of the same cell types in different tissues showed conserved states carrying 

out essential cell-type functions as well as the existence of states with unique functionalities. 

Finally, we assessed the effect of aging and disease on the composition of functional cell states. 

Although the overall number of functional cell states does not significantly change, certain cell 

types, such as enterocytes of the large intestine, hepatic sinusoidal epithelial cells and pancreatic 

alpha cells, display vast differences in their composition of functional states. Moreover, we 

validate the detected functional cell states in aged and pathologic tissues by providing evidence 
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for their involvement in pathological tissue functions. In summary, FunRes constitutes the first 

computational method specifically designed for identifying functional cell states induced by 

receptor-ligand mediated cell–cell interactions and complements current clustering methodologies 

that successfully detect cell types and subtypes. We demonstrate that FunRes is applicable to a 

wide range of tissue conditions and can accurately detect functional cell states. Thus, we believe 

that FunRes will be of great utility in the characterization of the functional landscape of cell types 

and the identification of dysfunctional cell states in aging and disease. 

Material and Methods 

Assembly of cell–cell communication scaffolds, intracellular signaling and TF-gene 

regulatory interactions 

A cell–cell communication scaffold was generated for human and mouse on the basis of a 

previously published dataset including manually curated, validated and predicted intercellular 

interactions (Figure 1A) [9]. These interactions have been collected from different databases, i.e. 

DLRP [10], HPMR [11], IUPHAR [12], HPRD [13] and String DB [14] or manually validated in 

previous studies. The interactions were further filtered based on UniProt [15] annotations to 

include only ligands annotated to be ‘Secreted’. Since the original dataset only consists of human 

data, these interactions were mapped to mouse orthologs using BioMart from Ensembl [16]. The 

intracellular signaling network is composed of pathway interactions included in Omnipath [17], 

Reactome [18] and MetaCore from Thomson Reuters. In particular, all pathways from MetaCore 

were obtained including all signal transduction interactions while discarding transcriptional gene 

regulatory interactions. MetaCore objects were mapped to gene symbols using the provided 

mapping table. In case MetaCore objects of the regulator or regulated gene mapped to multiple 

gene symbols, all possible interactions between the associated gene symbols were generated using 

a mapping table provided by MetaCore. Gene regulatory interactions were obtained from 

MetaCore from Thomson Reuters, a manually curated resource of gene– gene interactions, on 01 

April 2019 for human and mouse genes. Only transcriptional regulatory interactions with known 

effects, i.e. activation or inhibition, were selected by filtering for ‘direct interactions’ with reported 

effects ‘activation’ or ‘inhibition’. MetaCore objects were again mapped to gene symbols using 

the provided mapping table. As in case of the intracellular signaling network, if MetaCore objects 
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of the regulator or regulated gene mapped to multiple gene symbols, all possible interactions 

between the associated gene symbols were generated using an in-house script. 

Selection of preserved TFs 

To select preserved TFs, FunRes identifies transcription factors that are expressed in at least a 

user-defined fraction of cells. For the analysis presented in this manuscript, we selected a 

permissive cutoff of 10% for all samples. For that, FunRes transforms the expression data into a 

binary format in which TFs with at least one count become ‘1’ while not-expressed TFs become 

‘0’ and aggregates the binary data by cell type. Finally, FunRes selects in each subpopulation the 

TFs that are expressed in the top five-percentile of cells.  

Detecting receptors inducing preserved TFs 

To detect receptors inducing the expression of the selected TFs, FunRes employs a Markov Chain 

model of intracellular signaling, called SigHotSpotter, to identify high-probability intermediate 

molecules (Figure 1A) [19]. In brief, SigHotSpotter uses singlecell RNA-seq data of a 

subpopulation and the assembled intracellular signaling network to create a state transition matrix 

representing the traversal of a signal through the network. The state transition matrix represents a 

finite discrete Markov Chain and is subsequently evolved to create the stationary distribution. The 

stationary distribution displays the intermediate molecules exhibiting the highest steady state 

probabilities. Afterwards, SigHotSpotter connects the intermediate molecules to interface TFs, i.e. 

the first transcription factors in the signal transduction chain, and characterizes the compatibility 

with their downstream targets. Calculating all shortest paths from highprobability intermediate 

molecules to downstream preserved TFs defines a compatibility score that classifies each molecule 

as being active or inactive. Here, a high-probability gene is deemed compatible with its 

downstream target if the expression of the gene and target TF agrees with the sign of the interaction 

path, i.e. an even number of inhibitions is an activating path while all other paths are inhibiting. In 

case of an activation, the intermediate and target genes have to be expressed whereas, in case of 

an inhibition, the target gene must not be expressed. Next, a gene is compatible, if a significant 

number of its targets is compatible. Significance is assessed using a hypergeometric test with P-

value cutoff 0.05. Following the same rationale, receptors are identified that target the compatible 

high-probability intermediates.  
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Inference of the cell–cell communication network 

The main algorithm consists of four steps. First, preserved TFs and the receptors regulating them 

are selected in each cell population, as described before. Second, ligands expressed in a 

userdefined fraction of cells are selected in each cell population. For this study, a fraction of 10% 

was selected. Third, ligand–receptor interactions are established between two cell populations if 

(i) the receptor was selected in the first step for the first population, (ii) the ligand was selected in 

the second step for the second population and (iii) the receptor-ligand interaction is contained in 

cell–cell communication scaffold. Every interaction between receptor r in subpopulation p1 and 

ligand l in subpopulation p2 is augmented with an interaction strength sr,l,p1,p2 defined by:  

 

Informally, the score is the product of average non-zero receptor expression values and average 

non-zero ligand expression values with respect to the receptor r and its expressing population p1 

as well as to the ligand l and its expressing population p2. Significance of each interaction is 

determined by comparing the score of an interaction between two cell types against a background 

distribution of scores between these cell types based on all interactions in the scaffold. Interactions 

in the 90th percentile that have at least one significant downstream TF target are retained in the 

final cell–cell communication network.  

Identification of functional cell states 

After inferring the cell–cell communication network, FunRes creates an incidence matrix of 

receptor/downstream TF expression for each cell type (Figure 1B). In particular, each cell in the 

cell type under study is represented by a binary vector in which each entry corresponds to a 

receptor/downstream TF pair. If both the receptor and downstream TF are expressed in a cell, the 

corresponding entry in the vector will be ‘1’ and ‘0’ otherwise. Hierarchical clustering is 

performed on the resulting incidence matrix using the ‘hclust’ R function with Euclidean distance 

and complete linkage. The optimal number of clusters is computed based on the Dunn index, an 

internal cluster evaluation metric comparing within-cluster with the between-cluster distances. 
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Finally, Gene Ontology [20, 21] enrichment of biological processes is performed using the DOSE 

R package (Figure 1B) [22]. Terms with false discovery rate lower than 0.01 are considered 

significant. Clusters having identical functional annotations are subsequently merged. The 

resulting clusters constitute the identified functional cell states. Importantly, FunRes does not 

require the proteins within the enriched GO terms to be identical, but only the terms themselves.  

Comparison with state-of-the-art clustering methods 

We selected Seurat [5, 6], SC3 [7] and SINCERA [8] for assessing their ability to detect functional 

cell states. All methods were employed in a standard workflow with default parameters in R. In 

particular, for Seurat, the 2000 most variable genes were detected using the ‘FindVariableFeatures’ 

method with selection method ‘vst’. Subsequently, the data were scaled (‘ScaleData’ function) and 

principal component analysis (PCA) (‘RunPCA’ function) was performed. Finally, the data were 

clustered by employing the ‘FindNeighbors’ and ‘FindClusters’ functions on the first 10 principal 

components. SC3 was invoked using the ‘sc3’ function and the maximum number of clusters was 

set to 10. SINCERA was invoked without specific pre-processing steps. All analyses were carried 

out in R v3.6.1.  

Results 

Identification of functional cell states based on cell–cell communication networks 

For the purpose of identifying niche-induced functional cell states, FunRes initially reconstructs 

the cell–cell communication networks among all cell types in a dataset (Figure 1A). In particular, 

it integrates transcriptional and signaling networks with extracellular ligand–receptor interactions 

following a bottom-up approach by first selecting transcription factors (TFs) whose expression is 

preserved across cells. Next, FunRes identifies receptors that regulate these preserved TFs by 

employing a previously introduced Markov Chain model that assesses signal transduction 

probabilities from receptors to their co-expressed TFs [19]. Finally, FunRes finds cognate ligands 

for these receptors from a previously curated set of ligand–receptor interactions [9]. Based on a 

previous study about the proportions of functional cell states in heterogeneous T cell populations, 

we required throughout this study both the ligands and receptors to be expressed in more than 10% 

of cells of the secreting and receiving cell population, respectively [23] After reconstructing the 

functional cell–cell communication network, FunRes partitions each cell type into different 



37 
 

functional cell states based on the identified cell–cell interactions and their downstream TF targets 

(Figure 1B). More specifically, hierarchical clustering is performed to group cells by their function 

based on the downstream effect of cell–cell interactions they are participating in. Finally, the 

optimal number of functional states in each cell type is determined by evaluating cluster 

consistency. Notably, the optimal number of states could be equal to one, which results in no 

partitioning of the cell type under consideration, suggesting no niche-induced functional 

heterogeneity.  

Functional evaluation of niche-induced cell states  

We employed FunRes to identify niche-induced functional cell states of 177 cell types in 10 mouse 

tissues from Tabula Muris Senis [24]. On average, each cell type was partitioned into 2.49 

functional states (median: 2), with a maximum of nine identified states in enterocytes of the 

intestinal epithelium and pancreatic alpha cells (Figure 2A). Nevertheless, the vast majority of cell 

types is partitioned into at most three functional cell states with 16% of cell types remaining 

unpartitioned. To assess the performance of our method, we evaluated the function of the identified 

cell states with known cell state markers compiled from literature and compared the performance 

of FunRes against current clustering methods. As a result, we were able to collect evidence for 

multiple functional cell states in the heart, kidney and liver. Firstly, we identified functional cell 

states of cardiac coronary vascular endothelial cells. As a result, FunRes detected two clusters 

differentiated by Bmpr2 signaling. While the Bmpr2-positive state corresponds to quiescent 

coronary vascular endothelial cells, the Bmpr2-negative state consists of activated cells 

undergoing endothelial mesenchymal transition, which is required for cardiac functioning [25]. In 

this regard, FosB is activated by Bmpr2 according to FunRes and is downregulated in active 

vascular endothelial cells [26]. Thus, Bmpr2 and FosB serve as markers for quiescent and active 

coronary vascular endothelial cells. In order to assess the ability of current clustering methods in 

identifying functional cell states, we compared the results from FunRes against Seurat [5, 6], SC3 

[7] and SINCERA [8]. As a result, SINCERA and SC3 detected 19 and 9 clusters, respectively, 

none of which could be distinguished using the marker genes of active and quiescent endothelial 

cells. Similar to FunRes, Seurat detected three clusters. However, no significant difference in the 

expression of these cell state markers could be detected. Consequently, none of the clusters 

corresponds to the functional cell states identified by FunRes (Supplementary Figure S1). 
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Secondly, we assessed the functional cell states of kidney macrophages and identified two states 

that are differentiated based on Nrp1 signaling. In particular, the first cluster expresses Nrp1 and 

Il10, all of which are known markers of M2 macrophages, an immunosuppressive cell state 

necessary for wound healing and cessation of the inflammatory response to pathogens (Figure 2B) 

[27, 28]. Previous reports showed that activation of Nrp1, which is involved in the cell–cell 

interactions differentiating the two clusters, induces this functional state, which underscores the 

accuracy of FunRes in detecting functionally relevant cell–cell interactions. In addition, the other 

functional cell state is characterized by active Tlr2 and Tlr4 signaling, which results in the 

polarization into M1 macrophages [29]. Indeed, cells belonging to this cluster express the M1 

markers Nfatc1, Tnfsf9 and Il16 [30–32]. Thus, the identified cell states correspond to M1 and M2 

polarization of macrophages, respectively. In contrast, current clustering methodologies cannot 

resemble this finding. Seurat was unable to cluster the data due to the failure of PCA with default 

parameters as the number of kidney macrophage cells is below the number of principal 

components to be computed. Sincera partitioned the cells into 35 different clusters having on 

average 1.09 cells whereas SC3 was the only tool providing a reasonable number of clusters. 

However, these populations do not correspond to M1 and M2 macrophages as known marker genes 

are expressed across clusters (Supplementary Figure S2). Thirdly, we investigated the functional 

states of liver B cells and identified two states that are distinguished by IL4R signaling [33]. 

Previous studies elucidated the role of IL4R signaling and found that it induces autophagy, a key 

mechanism for the maintenance of B cell memory against pathogens and synthesis of antigens, 

such as IgE [34]. Moreover, B cells with active IL4R signaling express the conventional B cell 

genes Tnfrsf13b and Tnfrsf13c (Figure 2C) [35, 36]. In contrast, the other identified cell state is 

deficient of IL4R signaling and express the plasma cell markers Sec61a1 (Figure 2C) [37]. 

Comparison of the cell states identified by FunRes to current clustering methodologies reveals that 

all of the other methods fail to detect the underlying functional heterogeneity. While Seurat was 

unable to perform clustering due to the failure of PCA with default parameters as the number of 

liver B cells is below the number of principal components to be computed, Sincera partitioned the 

data such that each cell belongs to a different cluster. In addition, SC3 did not detect any functional 

heterogeneity in liver B cells and leaves the data unpartitioned (Supplementary Figure S3). Finally, 

we applied our method to liver NK cells and detected two functional NK cell states defined by 

differential downstream signaling targets. In particular, cells of the second cluster specifically 
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activate Ikzf3 (Figure 2D), whereas other downstream signaling targets, such as Stat3, Stat1 and 

Ets1, are commonly activated in both clusters. Indeed, the second cluster is characterized by Ikzf2 

and Ikzf3 expression, two markers of peripheral NK cells (Figure 2E) [38]. In contrast, the first 

cluster shows high expression of the adaptive NK cell markers Klrc1 and Klrc2 (Figure 2F) [39, 

40]. Similar to the case of kidney macrophages, Sincera produced an excess of clusters with, on 

average, only 1.38 cells whereas Seurat produced no clusters due to the failure of PCA with default 

parameters as the number of liver NK cells is below the number of principal components to be 

computed. Although SC3 detected 2 clusters like FunRes, they could not be attributed to different 

functional NK cell states (Supplementary Figure S4). In summary, FunRes was able to dissect the 

functional heterogeneity of cell types in various tissues and accurately identified known functional 

states, while current clustering methods failed to provide satisfactory results. Moreover, 

comparison of the clusterings identified by each method shows only a moderate agreement 

between the functional cell states detected by FunRes and the results of Seurat, SC3 and SINCERA 

(Supplementary Figure S5).  

Comparison of functional cell states in different tissues 

 Next, we set out to characterize the niche-induced functional states of macrophages and B cells in 

different tissues. As expected, we detected conserved functional states of kidney and limb muscle 

macrophages with activated Tlr2, Tlr4 and Tnfrsf1a signaling pathways, which constitute the key 

signaling cascades for the recognition of antigens and the activation of macrophages [41, 42]. 

However, while kidney macrophages show an Nrp1-positive subpopulation corresponding to M2 

polarization, Nrp1 signaling is inactive in all limb muscle macrophages. However, a subset of cells 

in the limb muscle display activity of the Il1 decoy receptor Il1r2, which is unique to M2 polarized 

macrophages. Moreover, these cells display an activated Il6 signaling pathway, which has been 

previously shown to be an alternative mechanism for M2 macrophage polarization [43]. This 

demonstrates that M2 macrophages reside in both tissues but are alternatively activated. In contrast 

to macrophages, B cells were detected in the spleen, liver, limb muscle and lung having vastly 

different functional states that greatly differ between the spleen and liver/limb muscle/lung tissues 

(Figure 3A). In particular, the identified functional B cell states in the liver and limb muscle are 

commonly characterized by Il2 receptor signaling activity, which is involved in B cell proliferation 

and plasma cell differentiation [44, 45]. However, unique functional cell states are acquired 
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through Il4ra and Cxcr4 signaling activity in these tissues. As previously described, Il4ra promotes 

B cell autophagy required for memory maintenance and antigen presentation [33]. In contrast, 

Cxcr4 signaling is uniquely activated in the functional state of limb muscle B cells demonstrating 

the differentiation of these cells into plasma cells [46]. While B cells lose their responsiveness to 

Cxcl12, the cognate ligand of Cxcr4, during development, they regain their sensitivity upon 

differentiation into mature B cells [46]. Due to the involvement of Il4ra and Cxcr4 in plasma cell 

differentiation, we compared the downstream targets of these signaling cascades identified by 

FunRes and found Foxo1 to be the only common TF. Previous studies already revealed the key 

role of Foxo1 in plasma cell function and differentiation as an activator of Prdm1, a plasma cell 

master regulator [47]. Therefore, the identified functional B cell states unique to liver and limb 

muscle tissue, respectively, induce plasma cell differentiation through distinct signaling pathways. 

Opposed to liver and limb muscle tissues, the functional B cell states in the lung are characterized 

by Il2 and interferon gamma signaling, which is the only commonality with B cells from the spleen. 

Whereas a B cell state expressing Ifngr1 was detected in both spleen and lung tissues, their 

functions vary due to the presence of co-stimulatory signals. As expected, the identified functional 

B cell states in the spleen are characterized by active Cd40 and interferon gamma signaling 

corresponding to a proliferative state [48]. In contrast, no costimulatory signals were detected in 

pulmonary B cell states, which suggests an inhibition of B cell activity [48]. This finding is 

consistent with the second functional state identified in pulmonary B cells, which shows Il2 

receptor signaling activity as well as the absence of interferon gamma signaling, similar to the 

functional states of limb muscle and liver B cells [44, 45].  

Functional heterogeneity underlying aging and disease identifies emerging cell states 

Finally, we investigated the influence of different tissue conditions, such as aging and disease, on 

the functional states of cell types. In order to interrogate how aging affects the functional cell states 

of macrophages, we compared the identified states in kidney and limb muscle tissue in young and 

old mice. Based on our analysis, we observed a significant decline in macrophage polarization due 

to the inactivation of Nrp1 and Il6r signaling pathways. In particular, while a functional state of 

kidney macrophages exists in old mice that is characterized by the ability to respond to antigens 

through Tlr2 signaling, the capacity of limb muscle macrophages to antigen response is 

significantly reduced. Moreover, the heterogeneous activation pattern of macrophages in young 
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tissues has generally declined, which results in more homogeneous, quiescent states. This 

observation is consistent with previous studies reporting a significant decline of macrophage 

activation during aging, which is mediated by reduced Tlr signal transduction capacity due to 

dysfunctional MyD88 [49]. In order to determine whether the loss of niche-induced functional 

states is a general characteristic of aging tissues, we compared the number of identified functional 

states for each cell type (Figure 3B). However, no statistically significant difference could be 

detected (two-sided Wilcoxon-signed-rank test, P-value: 0.64). While in more than 85% of cell 

types, the number of states differed by at most two, three cell types differed in more than six niche-

induced functional states. For example, the increase of detected functional states in hepatic 

sinusoidal endothelial cells is largely driven by the specific activation of the transcription factors 

Mef2c, Nr3c1 and Jun through distinct signaling cascades of the same receptors. Indeed, these TFs 

carry out protective functions in hepatic endothelial cells by stimulating cellular survival, 

modulating the immune response and preventing the breakdown of the extracellular matrix [50–

52]. Similarly, an increase in nicheinduced functional states can be observed in pancreatic alpha 

cells due to an elevated selectivity in the activation of Bmpr1a, Itgav and Ddr1. These receptors 

regulate key functions of alpha cells, such as glucagon secretion [53], even though their 

combinatorial effect remains elusive. Furthermore, we observe a few of cellular processes unique 

to young and old tissues, respectively (Figure 3C and D). In contrast to hepatic sinusoidal 

endothelial and pancreatic alpha cells, enterocytes of the large intestinal epithelium show a marked 

reduction of heterogeneity with age, which is associated to the impairment of key signaling 

pathways, including protective signals, such as Lpa and Somatostatin, as well as fat uptake through 

the sortilin receptor. Likewise, we investigated the effects of pathologic tissue conditions on the 

functional states of cell types exemplified in a dataset of human liver cirrhosis [54]. Hepatic 

cirrhosis is a chronic disease characterized by the progressive formation of permanent scar tissue 

through fibrosis. Hepatocytes are the main parenchymal cells of the liver, making up 50–60% of 

the tissue and are involved in key functions, such as lipid synthesis and detoxification. However, 

their dysregulation in the context of liver fibrosis and the functional states they attain remains 

elusive. Therefore, we applied FunRes, to healthy and cirrhotic human liver samples for 

identifying the functional states of hepatocytes. As a result, our method detected two functional 

states in healthy liver tissue characterized by Sdc1 and Cd74 signaling. Indeed, Sdc1 is necessary 

for the uptake and degradation of triglyceride-rich lipoproteins in the liver and is therefore involved 
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in a key function of the liver [55]. In addition, Cd74 is a key component of the response to acute 

liver injury by antigen processing and host defense [56]. In contrast, a great diversity of functional 

states can be observed in cirrhotic liver tissue. In total, FunRes identified six functional states that 

are characterized by interferon gamma, leptin receptor, Cxcr4, Tnf, Cd40 and Caveolin-1 signaling 

(Figure 3E). While two functional states show a highly pro-inflammatory phenotype mediated by 

interferon gamma, Tnfrsf1a and Cxcr4, three states are characterized by Lepr, Cd40 and Cav1 

signaling. The function of leptin receptor in the context of cirrhosis has been subject to previous 

studies that demonstrated the production of Tnf and Il1 due to leptin signaling activation [57]. 

Moreover, in a rat model of liver cirrhosis, no significant changes in the expression of Lepr have 

been found, which is consistent with our data. Nevertheless, FunRes only detects significant 

signaling activity in pathologic livers highlighting the significance of this method. On the contrary, 

previous studies suggested that the functional hepatocyte state characterized by active Cd40 

signaling likely amplifies Fas-dependent apoptosis, thus contributing to the progressive formation 

of scar tissue in response to injury [58]. Finally, functional states with Caveolin-1 signaling activity 

regulate endocytosis, energy metabolism and fatty acid uptake as well as inhibit NOS3, which 

promotes liver fibrosis [59].  

Discussion and Conclusion  

In this study, we presented FunRes, a computational method for resolving tissue-specific 

functional cell states that are determined by receptor–ligand-mediated cell–cell interactions. This 

method accounts for the effect of cell–cell interactions on specific cellular processes, which have 

been shown to play a fundamental role in the specification of functional cell states [60–62]. 

Namely, FunRes identifies functional cell states based on the downstream target genes of cell–cell 

interactions and the cellular processes they participate in. Hence, our approach is conceptually 

different from current clustering methods solely relying on differences in the expression of the 

most variable genes regardless of their cellular function. As a result, unlike other methods, FunRes 

was able to resolve functional states of various cell types. Importantly, the cell–cell interactions 

underlying functional cell states were largely supported by previous studies, indicating that FunRes 

can inform about the cues inducing these states. The validation of our method was further 

corroborated by the comparison of functional cell states in different tissues and tissue conditions. 

In particular, FunRes identified previously reported differences in the functional states of 
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macrophages and B cells, including the appearance of specific functional cell states, such as 

wound-healing macrophages in the limb muscle. Furthermore, we applied FunRes to several 

examples of aging and disease to disentangle the composition of functional cell states in these 

conditions. For instance, in the case of liver cirrhosis, results show the emergence of novel 

functional hepatocyte states sustained by Caveolin-1 and Leptin signaling that are characterized 

by dysregulated metabolic processes contributing to pathological tissue functioning. A limitation 

of FunRes is that it solely considers receptor– ligand-mediated cell–cell interactions whereas it 

ignores other ways of cellular communication, such as via exosomes. In addition, this method does 

not incorporate the effect of environmental factors, such as metabolites, on the functional cell 

states [63]. In this regard, the method could be extended to overcome some of these limitations. In 

summary, FunRes is the first computational method that systematically resolves tissue-specific 

functional cell states, thereby providing a functional characterization of the identified states. Thus, 

we believe FunRes will be of great utility in the characterization of the tissue-specific functional 

landscape and in the identification of dysfunctional cell states underlying aging and disease. 

Author Contributions 

 S.J. implemented the software, conducted the analysis and wrote the manuscript. K.S. 

implemented the software and conducted the analysis. A.d.S. conceived the idea, supervised the 

work and wrote the manuscript.  

Data Availability 

The data underlying this article are available in figshare. The weblinks and identifiers of the 

individual datasets can be found in Supplementary Table S1. The source code of FunRes is 

deposited in a GitHub repository (https://git-r3lab.uni.lu/kartikeya.singh/funres).  

Supplementary Data 

Supplementary data are available online at Briefings in Bioinformatics. Acknowledgement We 

thank Ilya Potapov for fruitful discussions about the cell– cell communication network inference. 

Funding K.S. is supported by the Luxembourg National Research Fund (FNR) under the PRIDE 

program (Project code: 11012546) within the NextImmune DTU. Conflict of interest The authors 

declare no conflict of interest.  



44 
 

References 

1. Gartner ZJ, Prescher JA, Lavis LD. Unraveling cell-to-cell signaling networks with chemical 

biology. Nat Chem Biol 2017;13:564–8.  

2. Lavin Y, Winter D, Blecher-Gonen R, et al. Tissue-resident macrophage enhancer landscapes 

are shaped by the local microenvironment. Cell 2014;159:1312–26.  

3. Lugert S, Basak O, Knuckles P, et al. Quiescent and active hippocampal neural stem cells with 

distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell 

Stem Cell 2010;6:445–56.  

4. Hsieh J. Orchestrating transcriptional control of adult neurogenesis. Genes Dev 2012;26:1010–

21.  

5. Stuart T, Butler A, Hoffman P, et al. Comprehensive integration of single-cell data. Cell 

2019;177:1888–1902.e21. 6. Butler A, Hoffman P, Smibert P, et al. Integrating single-cell 

transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 

2018;36:411–20.  

7. Kiselev VY, Kirschner K, Schaub MT, et al. SC3: consensus clustering of single-cell RNA-seq 

data. Nat Methods 2017;14:483–6.  

8. Guo M, Wang H, Potter SS, et al. SINCERA: a pipeline for single-cell RNA-Seq profiling 

analysis. PLoS Comput Biol 2015;11:e1004575.  

9. Ramilowski JA, Goldberg T, Harshbarger J, et al. A draft network of ligand–receptor-mediated 

multicellular signalling in human. Nat Commun 2015;6:7866.  

10. Salwinski L. The database of interacting proteins: 2004 update. Nucleic Acids Res 

2004;32:449D–51.  

11. Ben-Shlomo I, Yu Hsu S, Rauch R, et al. Signaling receptome: a genomic and evolutionary 

perspective of plasma membrane receptors involved in signal transduction. Sci Signal 

2003;2003:re9–9. 12. Armstrong JF, Faccenda E, Harding SD, et al. The IUPHAR/BPS guide to 

Pharmacology in 2020: extending immunopharmacology content and introducing the 

IUPHAR/MMV guide to MALARIA PHARMACOLOGY. Nucleic Acids Res 2020;48: D1006–

21.  

13. Keshava Prasad TS, Goel R, Kandasamy K, et al. Human protein reference database–2009 

update. Nucleic Acids Res 2009;37:D767–72.  

14. Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: proteinprotein association networks 

with increased coverage, supporting functional discovery in genome-wide experimental datasets. 

Nucleic Acids Res 2019;47:D607–13.  

15. Consortium TU. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 

2019;47:D506–15.  

16. Cunningham F, Achuthan P, Akanni W, et al. Ensembl 2019. Nucleic Acids Res 

2019;47:D745–51. 17. Türei D, Korcsmáros T, Saez-Rodriguez J. OmniPath: guidelines and 

gateway for literature-curated signaling pathway resources. Nat Methods 2016;13:966–7.  



45 
 

18. Jassal B, Matthews L, Viteri G, et al. The reactome pathway knowledgebase. Nucleic Acids 

Res 2020;48:D498–503.  

19. Ravichandran S, Hartmann A, del Sol A. SigHotSpotter: scRNA-seq-based computational tool 

to control cell subpopulation phenotypes for cellular rejuvenation strategies. Bioinformatics 

2019;36:1963–5.  

20. Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The 

Gene Ontology Consortium Nat Genet 2000;25:25–9.  

21. The Gene Ontology Consortium. The gene ontology resource: 20 years and still GOing strong. 

Nucleic Acids Res 2019;47:D330–8.  

22. Yu G, Wang L-G, Yan G-R, et al. DOSE: an R/Bioconductor package for disease ontology 

semantic and enrichment analysis. Bioinformatics 2015;31:608–9.  

23. Zemmour D, Zilionis R, Kiner E, et al. Single-cell gene expression reveals a landscape of 

regulatory T cell phenotypes shaped by the TCR. Nat Immunol 2018;19:291–301.  

24. Pisco AO,McGeever A, Schaum N, et al. A single cell transcriptomic atlas characterizes aging 

tissues in the mouse. bioRxiv 2020;661728.  

25. Kovacic JC, Dimmeler S, Harvey RP, et al. Endothelial to mesenchymal transition in 

cardiovascular disease. J Am Coll Cardiol 2019;73:190–209.  

26. Franscini N, Bachli EB, Blau N, et al. Gene expression profiling of inflamed human endothelial 

cells and influence of activated protein C. Circulation 2004;110:2903–9.  

27. Dai X, Okon I, Liu Z, et al. A novel role for myeloid cell-specific neuropilin 1 in mitigating 

sepsis. FASEB J 2017;31:2881–92.  

28. Roszer T. Understanding the mysterious M2 macrophage ˝ through activation markers and 

effector mechanisms. Mediators Inflamm 2015;2015:1–16.  

29. Schlaepfer E, Rochat M-A, Duo L, et al. Triggering TLR2, -3, -4, -5, and -8 reinforces the 

restrictive nature of M1- and M2-polarized macrophages to HIV. J Virol 2014;88:9769–81.  

30. Zhao Z, Hou X, Yin X, et al. TNF induction of NF-κB RelB enhances RANKL-induced 

Osteoclastogenesis by promoting inflammatory macrophage differentiation but also limits it 

through suppression of NFATc1 expression. PLoS One 2015;10:e0135728.  

31. Wu J, Wang Y, Jiang Z. TNFSF9 is a prognostic biomarker and correlated with immune 

infiltrates in pancreatic cancer. J Gastrointest Cancer 2020. 32. Huang Y, Du KL, Guo PY, et al. 

IL-16 regulates macrophage polarization as a target gene of mir-145-3p. Mol Immunol 

2019;107:1–9.  

33. Xia F, Deng C, Jiang Y, et al. IL4 (interleukin 4) induces autophagy in B cells leading to 

exacerbated asthma. Autophagy 2018;14:450–64.  

34. Chen M, Hong MJ, Sun H, et al. Essential role for autophagy in the maintenance of 

immunological memory against influenza infection. Nat Med 2014;20:503–10.  



46 
 

35. Yan M, Brady JR, Chan B, et al. Identification of a novel receptor for B lymphocyte stimulator 

that is mutated in a mouse strain with severe B cell deficiency. Curr Biol 2001;11:1547–52.  

36. Schneider P, MacKay F, Steiner V, et al. BAFF, a novel ligand of the tumor necrosis factor 

family, stimulates B cell growth. J Exp Med 1999;189:1747–56.  

37. Schubert D, Klein M-C, Hassdenteufel S, et al. Plasma cell deficiency in human subjects with 

heterozygous mutations in Sec61 translocon alpha 1 subunit (SEC61A1). J Allergy Clin Immunol 

2018;141:1427–38.  

38. Holmes ML, Huntington ND, Thong RP, et al. Peripheral natural killer cell maturation depends 

on the transcription factor Aiolos. EMBO J 2014;33:2721–34.  

39. Lunemann S, Langeneckert AE, Martrus G, et al. Human liver-derived CXCR6 + NK cells are 

predominantly educated through NKG2A and show reduced cytokine production. J Leukoc Biol 

2019;105:1331–40.  

40. Abel AM, Yang C, Thakar MS, et al. Natural killer cells: development, maturation, and clinical 

utilization. Front Immunology 2018;9:1869.  

41. Janssens S, Beyaert R. Role of toll-like receptors in pathogen recognition. Clin Microbiol Rev 

2003;16:637–46.  

42. Parameswaran N, Patial S. Tumor necrosis factor-α Signaling in macrophages. Crit Rev 

Eukaryot Gene Expr 2010;20: 87–103.  

43. Mauer J, Chaurasia B, Goldau J, et al. Signaling by IL-6 promotes alternative activation of 

macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat Immunol 

2014;15:423–30.  

44. Mingari MC, Gerosa F, Carra G, et al. Human interleukin- 2 promotes proliferation of activated 

B cells via surface receptors similar to those of activated T cells. Nature 1984;312:641–3.  

45. Le Gallou S, Caron G, Delaloy C, et al. IL-2 requirement for human plasma cell generation: 

coupling differentiation and proliferation by enhancing MAPK–ERK Signaling. J Immunol 

2012;189:161–73.  

46. Mcheik S, Van Eeckhout N, De Poorter C, et al. Coexpression of CCR7 and CXCR4 during B 

cell development controls CXCR4 responsiveness and bone marrow homing. Front Immunol 

2019;10:2970.  

47. Vogel MJ, Xie L, Guan H, et al. FOXO1 repression contributes to block of plasma cell 

differentiation in classical Hodgkin lymphoma. Blood 2014;124:3118–29.  

48. Vazquez MI, Catalan-Dibene J, Zlotnik A. B cells responses and cytokine production are 

regulated by their immune microenvironment. Cytokine 2015;74:318–26.  

49. Dunston CR, Griffiths HR. The effect of ageing on macrophage toll-like receptor-mediated 

responses in the fight against pathogens. Clin Exp Immunol 2010;161:407–16.  

50. Salameh A, Galvagni F, Anselmi F, et al. Growth factor stimulation induces cell survival by 

c-Jun·ATF2-dependent activation of Bcl-X L. J Biol Chem 2010;285:23096–104.  



47 
 

51. Sturtzel C, Testori J, Schweighofer B, et al. The transcription factor MEF2C negatively 

controls Angiogenic sprouting of endothelial cells depending on oxygen. PLoS One 

2014;9:e101521.  

52. Goodwin JE, Feng Y, Velazquez H, et al. Endothelial glucocorticoid receptor is required for 

protection against sepsis. Proc Natl Acad Sci 2013;110:306–11.  

53. Nielsen SS, Christensen GL, Holst JJ, et al. Regulation of pancreatic α-cell function and 

proliferation by bone morphogenetic protein 4 (BMP4) in vitro. Endocrinology 2016;157:3809–

20.  

54. Ramachandran P, Dobie R, Wilson-Kanamori JR, et al. Resolving the fibrotic niche of human 

liver cirrhosis at single-cell level. Nature 2019;575:512–8.  

55. Stanford KI, Bishop JR, Foley EM, et al. Syndecan-1 is the primary heparan sulfate 

proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice. J Clin Invest 

2009;119:3236–45.  

56. Koch KS, Leffert HL. Ectopic expression of CD74 in Ikkβ-deleted mouse hepatocytes. Acta 

Histochem 2011;113: 428–35.  

57. Otte C, Otte J-M, Strodthoff D, et al. Expression of leptin and leptin receptor during the 

development of liver fibrosis and cirrhosis. Exp Clin Endocrinol Diabetes 2004;112: 10–7.  

58. Afford SC, Randhawa S, Eliopoulos AG, et al. CD40 activation induces apoptosis in cultured 

human hepatocytes via induction of cell surface Fas ligand expression and amplifies Fasmediated 

hepatocyte death during allograft rejection. J Exp Med 1999;189:441–6.  

59. Fernandez-Rojo MA, Ramm GA. Caveolin-1 function in liver physiology and disease. Trends 

Mol Med 2016;22: 889–904.  

60. Schrier SB, Hill AS, Plana D, et al. Synergistic communication between CD4+ T cells and 

monocytes impacts the cytokine environment. Sci Rep 2016;6:34942.  

61. Shalek AK, Satija R, Shuga J, et al. Single-cell RNA-seq reveals dynamic paracrine control of 

cellular variation. Nature 2014;510:363–9. 

62. Xue Q, Lu Y, Eisele MR, et al. Analysis of single-cell cytokine secretion reveals a role for 

paracrine signaling in coordinating macrophage responses to TLR4 stimulation. Sci Signal 

2015;8:ra59–9.  

63. Vishwakarma A, Rouwkema J, Jones PA, et al. The need to study, mimic, and target stem cell 

niches. Biol Eng Stem Cell Niches 2017;3–13. 

 

 

 

 

 



48 
 

Figures 

 

 

Figure 1. Method overview. (A) Based on single-cell RNA-seq data of a tissue, FunRes infers 

active receptors in each cell population. Based on these receptors, FunRes reconstructs a cell–cell 

communication network by identifying interactions having a significantly higher score compared 

to other interactions in the interaction scaffold. (B) Given a reconstructed cell–cell communication 

network of a tissue, FunRes identifies functional cell states for each cell type individually. First, 

cells are represented as a binary vector of receptor/downstream TF expression. If a receptor and 

its corresponding downstream TF is expressed in a cell, it will be represented as ‘1’ (red) and ‘0’ 

(blue) otherwise. An optimal number of clusters is determined, which will be subjected to 

functional enrichment analysis. If two clusters are enriched in the same processes, they will be 

merged. The merged clusters define the functional cell states.\ 
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Figure 2. Validation of FunRes and comparison to the state-of-the-art methods. (A) Histogram of 

the number of identified functional cell states in all cell types of all 

tissues. (B–D) Heatmaps of genes important for the function of the identified functional cell states 

in kidney macrophages (B), liver B cells (C) and liver NK cells (D). 

The expression values are scaled for each gene individually. (E and F) Visualization of how 

different cues from the environment induce downstream marker genes of 

peripheral (E) and adaptive (F) NK cell states. 
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Figure 3. Comparison of functional states across tissues and tissue conditions. (A) Heatmap of 

active signaling cascades induced by cell–cell interactions in B cells of 

three different tissues. Each row corresponds to a pair of receptor and downstream TF target, 

whereas columns correspond to cells. Expression of both the receptor and 

downstream TF target in a cell is depicted in red. Failure to express any of the two genes is depicted 

in grey. B cells from all tissues share active Il2 signaling cascades 

targeting common (Ets1, Foxo1) and unique downstream TFs (Stat3, Junb, Spib, Fos). (B) Bar 

chart of identified functional cell states per cell type in young and old tissues. 

The number of functional states does not significantly change in aging, except for certain cell 

types, such as pancreatic alpha cells, endothelial cells of the hepatic 
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sinusoid and enterocytes of the large intestine epithelium. (C and D) Cellular processes unique to 

pancreatic alpha cells in young and old tissues. The size of the dots 

represents the fraction of genes in the category that are expressed in the corresponding state, 

whereas the color indicates significance from blue (less significant) to 

red (most significant). (E) Heatmap of active signaling cascades induced by cell–cell interactions 

in hepatocytes of cirrhotic liver tissue. Each row corresponds to a pair 

of receptor and downstream TF target, whereas columns correspond to cells. Expression of both 

the receptor and downstream TF target in a cell is depicted in red. Six 

functional cell states were identified that are characterized by Interferon-gamma, CD40, Cav1 and 

Leptr signaling, respectively. 

 

4.1.3 Supplementary Information 

Supplementary Table 

 

 

 

 

 

Tissue Age Sequencing type Source Identifier 

Heart 3m Smart-seq https://doi.org/10.6084/m9.figshare.8273102.v2 Heart_facs.h5ad 

Heart 24m Smart-seq https://doi.org/10.6084/m9.figshare.8273102.v2 Heart_facs.h5ad 

Kidney 3m Smart-seq https://doi.org/10.6084/m9.figshare.8273102.v2 Kidney_facs.h5ad 

Kidney 24m Smart-seq https://doi.org/10.6084/m9.figshare.8273102.v2 Kidney_facs.h5ad 

Large 
Intestine 3m Smart-seq https://doi.org/10.6084/m9.figshare.8273102.v2 Large_Intestine_facs.h5ad 

Large 
Intestine 24m Smart-seq https://doi.org/10.6084/m9.figshare.8273102.v2 Large_Intestine_facs.h5ad 

Limb Muscle 3m Smart-seq https://doi.org/10.6084/m9.figshare.8273102.v2 Limb_Muscle_facs.h5ad 

Limb Muscle 24m Smart-seq https://doi.org/10.6084/m9.figshare.8273102.v2 Limb_Muscle_facs.h5ad 

Liver 3m Smart-seq https://doi.org/10.6084/m9.figshare.8273102.v2 Liver_facs.h5ad 

Liver 24m Smart-seq https://doi.org/10.6084/m9.figshare.8273102.v2 Liver_facs.h5ad 

Lung 3m Smart-seq https://doi.org/10.6084/m9.figshare.8273102.v2 Lung_facs.h5ad 

Lung 24m Smart-seq https://doi.org/10.6084/m9.figshare.8273102.v2 Lung_facs.h5ad 

Pancreas 3m Smart-seq https://doi.org/10.6084/m9.figshare.8273102.v2 Pancreas_facs.h5ad 

Pancreas 24m Smart-seq https://doi.org/10.6084/m9.figshare.8273102.v2 Pancreas_facs.h5ad 

Skin 3m Smart-seq https://doi.org/10.6084/m9.figshare.8273102.v2 Skin_facs.h5ad 

Skin 24m Smart-seq https://doi.org/10.6084/m9.figshare.8273102.v2 Skin_facs.h5ad 

Spleen 3m Smart-seq https://doi.org/10.6084/m9.figshare.8273102.v2 Spleen_facs.h5ad 

Spleen 24m Smart-seq https://doi.org/10.6084/m9.figshare.8273102.v2 Spleen_facs.h5ad 

Thymus 3m Smart-seq https://doi.org/10.6084/m9.figshare.8273102.v2 Thymus_facs.h5ad 

Thymus 24m Smart-seq https://doi.org/10.6084/m9.figshare.8273102.v2 Thymus_facs.h5ad 
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Supplementary Figures 

 

Supplementary Figure S1. A-C Heatmaps of genes important for the function of coronary vascular 

endothelial cells grouped by the clusters identified by (A) SINCERA, (B) SC3 and (C) Seurat. 

Expression values are scaled per gene. The identified clusters do not group highly expressed genes 

together. 

 

Supplementary Figure S2. A-B Heatmaps of genes important for the function of kidney 

macrophages grouped by the clusters identified by (A) SINCERA and (B) SC3. Expression values 

are scaled per gene. The identified clusters by SINCERA do not group highly expressed genes 

together. The clusters identified by SC3 are similar to the ones identified by FunRes. Seurat was 

unable to cluster the data due to a failure in principal component analysis. 
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Supplementary Figure S3. A-B Heatmaps of genes important for the function of liver B cells 

grouped by the clusters identified by (A) SINCERA and (B) SC3. Expression values are scaled 

per gene. The identified clusters by SINCERA do not group highly expressed genes together while 

SC3 did not detect any functional heterogeneity. Seurat was unable to cluster the data due to a 

failure in principal component analysis. 

 

 

Supplementary Figure S4. A-B Heatmaps of genes important for the function of liver NK cells 

grouped by the clusters identified by (A) SINCERA and (B) SC3. Expression values are scaled 

pergene. The identified clusters by SINCERA and SC3 do not group highly expressed genes 

together. Seurat was unable to cluster the data due to a failure in principal component analysis.  
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Supplementary Figure S5. Similarity of clusterings produced by FunRes, SC3, SINCERA and 

Seurat for (A) coronary vascular endothelial cells, (B) kidney macrophages, (C) liver B cells and 

(D) liver NK cells. Similarity was measured by the Rand index of the pairwise clusterings. 
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4.2 Identifying impacts of perturbation in cell-cell communication 

4.2.1 Preface 

In the previous study, we demonstrated the role of cell-cell communication and tissue niche in the 

function of celltypes. These interactions are an important factor in the maintenance of tissue 

physiology and alteration in the cell-cell communication in the tissue could lead to loss/alteration 

of function in various cell types. In this study “Transcriptional and chromatin accessibility 

profiling of neural stem cells differentiating into astrocytes reveal dynamic signatures affected 

under inflammatory conditions” we explored the effect of inflammatory conditions on astrocytes 

during their development. This study would help us understand the impact of acute inflammation 

on a tightly regulated process such as the development of cells from pluripotent to differentiated 

cells. 

 Inflammation is a regulatory mechanism employed by biological systems during various 

important processes including development and immune responses. While the role of 

inflammation has been well studied as part of various disorders including neurological disorders 

like Alzheimer's disease and epilepsy. Astrocytes are specialized cells of the central nervous 

system that are involved in major functions including neurogenesis and synaptogenesis. Loss of 

function in astrocytes has been implicated in neurodegenerative disorders. While the effect of 

inflammatory molecules on astrocytes has been studied but these studies did not explore the effect 

of inflammation during development. As astrocytic progenitors move postnatally to the brain and 

then develop into mature astrocytes the conditions of the area during that duration would shape 

the astrocytes. 

 This study had two novelties, firstly we characterized the development of astrocytes from 

neural stem cells at various timepoints under normal and inflammatory conditions. We employed 

TNF a major inflammatory cytokine for inflammatory conditions. As the role of astrocytes has 

been characterized in various diseases owing to their role in the regulation of a healthy state in the 

CNS. Also, inflammation has been identified as a constituent of many neurological diseases thus 

providing importance to the study from both perspectives of studying the development of 

astrocytes under both normal and inflammatory conditions. Secondly, we explored the major 

regulatory genes involved in the developmental process aiding in the identification of possible 

therapeutical targets for various neurological disorders. This was performed by the integration of 
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RNA-Seq and ATAC-Seq data generated under this study. The RNA-Seq data provides 

information of the transcriptomic changes that occur under the development of cells under 

inflammation compared to normal conditions. Further, the change in the epigenetic landscape of 

the cells was inferred using the ATAC-Seq data generated. 

  The bulk RNA-Seq and ATAC-Seq data generated during this study have been made 

available to the community by submitting them to open-source database. These datasets will 

support the community’s efforts to disseminate the role of inflammation in various disorders. 

Contribution: I pre-processed the RNA-Seq and ATAC-Seq data, analysed the data, and inferred 

the results. Further, I wrote the manuscript and created the figures for the manuscript.   

 

4.2.2 Manuscript  

Transcriptional and chromatin accessibility profiling of neural stem cells differentiating 

into astrocytes reveal dynamic signatures affected under inflammatory conditions  

 

Maria Angeliki S. Pavlou1,2*, Kartikeya Singh3*, Srikanth Ravichandran3, Rashi Halder4, Nathalie Nicot5,6, 

Cindy Birck1, Luc Grandbarbe1, Antonio del Sol3,7,8#ǂ, Alessandro Michelucci2,4#ǂ 

 

1Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg 

2Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 

Luxembourg, Luxembourg 

3Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of 

Luxembourg, Esch-sur-Alzette, Luxembourg 

4Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, 

Luxembourg 

5Translational Medicine Operations Hub, Luxembourg Institute of Health, Dudelange, Luxembourg 
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6LuxGen Genome Center, Luxembourg Institute of Health & Laboratoire national de santé, Dudelange, 

Luxembourg 

7Computational Biology Group, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), 

Derio, Spain 

 8IKERBASQUE, Basque Foundation for Science, Bilbao, Spain 
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Abstract 

Astrocytes arise from multipotent neural stem cells (NSCs) and represent the most abundant cell 

type of the central nervous system (CNS) playing key roles in the developing and adult brain. Since 

the differentiation of NSCs towards a gliogenic fate is a precisely timed and regulated process, its 

perturbation gives rise to dysfunctional astrocytic phenotypes. Inflammation, which often 

underlies neurological disorders, including neurodevelopmental disorders and brain tumors, 

disrupts the accurate developmental process of NSCs. However, the specific consequences of an 

inflammatory environment on the epigenetic and transcriptional programs underlying NSCs 

differentiation into astrocytes is unexplored yet. Here, we address this gap by profiling glial 

precursors from neural tissue derived from early embryonic stages along their astrocytic 

differentiation trajectory in the presence or absence of tumor necrosis factor-alpha (TNF), a master 

pro-inflammatory cytokine. By using a combination of RNA- and ATAC-sequencing approaches, 

together with footprint and integrated gene regulatory network analyses, we here identify key 

differences during the differentiation of NSCs into astrocytes under physiological and 

inflammatory settings. Notably, in agreement with its role to turn cells resistant to inflammatory 

challenges, we detect Nrf2 as a master transcription factor supporting the astrocytic differentiation 

under TNF exposure. Further, under these conditions, we unravel additional transcriptional 

regulatory hubs, including Stat3, Smad3, Cebpb and Nfkb2, highlighting the interplay between 
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signaling pathways underlying physiological astrocytic developmental processes and those 

involved in inflammatory responses. 

Overall, our study reports key transcriptional and epigenetic changes leading to the identification 

of molecular regulators of the astrocytic differentiation. Furthermore, our analyses provide a 

valuable resource for understanding inflammation-induced astrocytic phenotypes that might 

contribute to the development and progression of CNS disorders with an inflammatory component. 

 

 

 

 

 

 

 

Introduction 

In the developing brain, multipotent neural stem cells (NSCs) can give rise to neurons, 

oligodendrocytes and astrocytes. The process of differentiation towards a neurogenic or gliogenic 

fate is finely timed and regulated through mammalian brain development. During the expansion 

phase, NSCs self-replicate via symmetric cell division to expand their own pool. Later on, during 

mid-gestation they undergo asymmetric cell division and receive cues to differentiate into neurons. 

Lastly, from late-gestation to perinatal periods they enter the gliogenic phase and differentiate into 

astrocytes and oligodendrocytes (Hirabayashi and Gotoh 2005, Takouda, Katada et al. 2017). 

Importantly, undifferentiated NSCs still reside in two niches of the adult brain, namely the 

subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate 

gyrus (Gotz, Nakafuku et al. 2016). 

Astrocytes are active supporters of the neuronal network providing neurons with nutrients and 

metabolites, regulating neuronal synaptic transmission, participating in the formation and 

functioning of the synapses as well as directly communicating with neurons (Pavlou, Grandbarbe 

et al. 2019). Further, during development and homeostasis, astrocytes support the immune system 

and contribute to the formation of the blood brain barrier. Also, they contribute to oligodendrocyte 

differentiation and maturation as well as support myelination (Domingues, Portugal et al. 2016). 

Therefore, aberrant astrocytic phenotypes can give rise to neurological diseases, including 
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neurodevelopmental disorders (Pekny, Pekna et al. 2016). For example, dominant gain-of-function 

mutations in the gene coding for glial fibrillary acidic protein (GFAP), the hallmark intermediate 

filament in astrocytes, elicit the accumulation of cytoplasmic GFAP aggregates resulting in 

macrocephaly, white matter degeneration and developmental delay in Alexander disease (Quinlan, 

Brenner et al. 2007, Messing, Brenner et al. 2012). During inflammatory events in the CNS, several 

immune mediators, including cytokines and free radicals, affect intrinsic NSC properties and 

neurogenesis (Arvidsson, Covacu et al. 2015). Injuries of the CNS largely elicit proliferation and 

migration of NSCs toward the injury site, suggesting the activation of a putative regenerative 

response. However, detrimental cues encountered within the inflammatory niche are responsible, 

at least partly, of an incomplete regeneration from NSCs (Arvidsson, Covacu et al. 2015). Thus, 

in traumatic brain injuries, for example, attempts promoting a regenerative-favoring environment 

using endogenous or transplanted NSCs for reparative purposes represent critical challenges (Hess 

and Borlongan 2008, Lozano, Gonzales-Portillo et al. 2015). In a different context, perturbations 

of the fine-tuned process of NSCs differentiation under inflammatory conditions can also give rise 

to brain tumors. Indeed, inflammation is linked to gliomagenesis (Galvao and Zong 2013) and 

evidence indicates that NSCs can give rise to gliomas (Sanai, Alvarez-Buylla et al. 2005, Alcantara 

Llaguno and Parada 2016). Hence, defective differentiation abilities of NSCs and aberrant 

neoplastic astrocytic phenotypes in gliomas are attributed, at least partly, to the inflammatory 

tumor microenvironment. 

Tumor necrosis factor-alpha (TNF) is a crucial inflammatory cytokine mainly produced by 

microglia during neuroinflammatory processes. TNF induces various signaling responses within 

the cells that eventually result in apoptosis or necrosis (Idriss and Naismith 2000), cell survival, 

differentiation, and inflammation in cells expressing the corresponding receptors (Sun and Fink 

2007). Notably, the crosstalk between interferons and TNF affects the reprogramming of the 

macrophage epigenome and their inflammatory responses (Park, Kang et al. 2017). In this context, 

the role of  epigenetic processes in the establishment, maintenance and differentiation of NSCs is 

emerging (Adefuin, Kimura et al. 2014). For example, deficiency of the chromatin remodeler gene 

Cdh5 in NSCs leads to their improper activation altering cell fate decisions and favoring an 

astroglial over a neuronal identity (Hwang, Jaganathan et al. 2018).  

Here, we sought to investigate the dynamics of the transcriptional and chromatin accessibility 

changes underlying NSCs differentiation into astrocytes under normal and inflammatory 
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conditions. For this, we adopted an integrated genome-wide approach combining RNA-sequencing 

(RNA-seq) and assay for transposase-accessible chromatin followed by deep sequencing (ATAC-

seq) (Buenrostro, Giresi et al. 2013) to investigate the astrocytic differentiation process from 

murine neurospheres. We uncovered that normal differentiated astrocytes display mature cell-

specific characteristics, whereas differentiating cells exposed to TNF do not reach the same level 

of maturity. In line with these observations and in agreement with a more restricted lineage-

specific transcriptional program, we identified an overall reduction of chromatin accessibility in 

differentiated astrocytes compared to multipotent undifferentiated NSCs. Notably, this restriction 

was less pronounced under inflammatory conditions. Lastly, we reconstructed gene regulatory 

networks to identify transcription factors involved in the regulation of differentiation under normal 

and inflammatory settings. 

Overall, our findings shed light on the molecular mechanisms underlying NSC differentiation into 

astrocytes and the effect of an inflammatory environment during this developmental process, 

which might pave the way to novel therapeutic targets restoring appropriate astrocytic phenotypes 

in CNS disorders with an inflammatory component, including neurodevelopmental diseases and 

brain tumors.  

 

Materials and Methods 

Animals and ethics 

C57BL/6J mice, both wild type and transgenic mice expressing green fluorescent protein (GFP) 

under the control of glial fibrillary acidic protein (GFAP) promoter, were housed in individually 

ventilated cages (IVC) in a conventional animal facility at the University of Luxembourg in 

accordance with the EU Directive 2010/63/EU and Commission recommendation 2007/526/EC. 

We kept mice in groups under a dark-light cycle with ad libitum access to water and food. All the 

animal work of the present study has been conducted and reported in accordance with the ARRIVE 

(Animal Research: Reporting of In Vivo Experiments) guidelines to improve the design, analysis 

and reporting of research using animals, maximizing information published and minimizing 

unnecessary studies. We conducted all animal procedures in accordance with the local Committee 

for Care and Use of Laboratory Animals. 

Cell culture  

We isolated primary NSCs from the ventricular zone of single wild type mouse brains (C57BL/6J, 
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Harlan, The Netherlands) at embryonic day 14 (E14) as described before (Grandbarbe, Bouissac 

et al. 2003, Birck, Ginolhac et al. 2021). Primary cultures of neurospheres (NSPs) were kept under 

proliferating conditions in neurobasal medium (DMEM F12; Lonza) supplemented with 1% B27 

without vitamin A (Life Technologies), penicillin (100 U/ml; Lonza), streptomycin (100 g/ml; 

Lonza), and 20 ng/ml EGF (Epidermal Growth Factor; Life Technologies). We differentiated 

NSPs into astrocytes on 6-well or 12-well plates coated with poly-L-ornithine and by exchanging 

the proliferation medium with DMEM containing 10% FBS (Fetal Bovine Serum; Gibco), 

penicillin (100 U/ml; Lonza), and streptomycin (100 g/ml; Lonza). We differentiated cells into 

astrocytes at different time points (24, 48, 72 hours and 1 week) at 37°C in 5% CO2 and we kept 

them under normal conditions or treated with TNF (50 ng/ml; R&D Systems). 

Selection of astrocytes based on antibody-coated beads 

 We used NSPs and differentiating NSPs at different time points (24, 48 and 72 hours) to isolate 

astrocytes by magnetic separation. We enriched astrocytic populations by magnetic separation 

using ACSA1+ (GLAST) beads (MACS Miltenyi Biotec) according to the manufacturer’s 

recommendations. 

Real-Time qPCR (RT-qPCR) 

We kept murine NSPs under proliferating conditions or we differentiated them into astrocytes for 

24, 48 and 72 hours or 1 week with or without TNF treatment. We extracted total RNA by the 

innuPREP RNA Mini Kit (Westburg) according to manufacturer’s recommendations. 

Complementary DNA (cDNA) was synthetized by using the ImProm-II Reverse Transcription 

System (Promega). We conducted cDNA synthesis for 5 min at 25oC, followed by 1 hour at 42oC 

and then 15 minutes at 70oC. We measured gene expression levels using SYBR Green Supermix 

(Promega) following the manufacturer’s recommendations and by using CFX Connect Real-Time 

PCR Detection System (Bio-Rad).  The expression levels of mRNA were expressed as 2-ΔCt and 

normalized to beta actin levels. Primer sequences were as follows: Mki67 forward primer: 5’-

TTCCTTCAGCAAGCCTGAG-3’; Mki67 reverse primer: 5’-GTATTAGGAGGCAAGTT-3; 

Ccnb1 forward primer: 5’-AGAGGTGGAACTTGCTGAGCCT-3’; Ccnb1 reverse primer: 5’-

GCACATCCAGATGTTTCCATCGG-3’; Egr1 forward primer: 5’ 

AGCCGAGCGAACAACCCTAT-3’; Egr1 reverse primer: 5’-

TGTCAGAAAAGGACTCTGTGGTCA-3’; Gfap forward primer: 5’-

GGTTGAATCGCTGGAGGAG-3’; Gfap reverse primer: 5’-CTGTGAGGTCTGGCTTGG-3’; 
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Gpld1 forward primer: 5’-ACCCTAACCCAAGTCCTGCT-3’; Gpld1 reverse primer: 5’-

CAGGTCAGTCAGGTGCAGAA-3’; Nfkbia forward primer: 5’-

GCCAGTGTAGCAGTCTTGAC-3’; Nfkbia reverse primer: 5’-GCCAGGTAGCCGTGAGTAG-

3’; Actb forward primer: 5’-AGGGAAATCGTGCGTGACATCAAAGAG-3’; Actb reverse 

primer: 5’-GGAGGAAGAGGATGCGGCAGTGG-3’. 

 

 

Immunocytochemistry 

NSPs and differentiating cells were cultivated on poly-L-ornithine coated coverslips and fixed with 

4% paraformaldehyde in PBS, followed by a permeabilization with 0.05% Triton X-100 in PBS. 

We performed a blocking step in PBS containing 3% BSA at room temperature for 1 hour. We 

conducted immunostainings by incubating cells with primary antibodies diluted in blocking 

solution overnight at 4°C, followed by incubation with the corresponding secondary antibodies 

diluted in the blocking solution for 1 hour at room temperature (1:1000; Jackson 

ImmunoResearch). We used the following antibodies: rabbit anti-CD44 IgG (1:100; Abcam), 

rabbit anti-Kir4.1 IgG (1:100; Alomone Labs), rabbit anti-GLT1 (SLC1A2) IgG (1:100; Abcam), 

rabbit anti-GLAST (SLC1A3) IgG (1:100; Abcam), mouse anti-MAP2 IgG (1:200; Chemicon) 

and mouse anti-O4 IgM (1:100; Bio-Techne). For GFAP staining, we used a cyanine 3-conjugated 

mouse anti-GFAP IgG antibody (1:400; Sigma). Cells were then washed and mounted with DAPI-

Fluoromount G (SouthernBiotech, USA). Images were collected by confocal microscopy using a 

LSM 510 confocal microscope (Carl Zeiss Micro Imaging) and analyzed on Adobe Photoshop 

(San Jose, CA, USA) software.  

Preparation of mouse forebrain cell suspensions from GFAP-GFP transgenic mice and flow 

cytometry analyses 

GFAP-GFP transgenic mice (Gfap-eGFP mice (FVB/N- Tg(GFAPGFP)14Mes/J) were purchased 

from The Jackson Laboratory (Bar Harbor, USA). The genetic identification of transgenic mice 

was determined by the analysis of DNA extracted from tails of 3-week old mice. DNA was 

extracted from tail samples (<5 mm) using “DirectPCR Lysis Reagent” (Viagen Biotech, USA) 

containing freshly prepared 20 mg/ml of proteinase K (Invitrogen, Belgium). After a lysis 

incubation step at 55°C for 5 hours under gentle shaking (550 rpm), proteinase K was inactivated 

by incubating lysates at 85°C for 45 minutes. DNA analysis was performed by Polymerase Chain 
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Reaction (PCR). The PCR reaction mixture, with a total volume of 25 ml, contained 1 ml of DNA 

lysate, 12.5 ml of a PCR master mix (50 U/ml Taq DNA polymerase, 400 μM of each dNTP, 3 

mM MgCl2; Promega; The Netherlands), and 11.5 ml of primers mix (Eurogentec, Belgium). 

Primer sequences were as follows: GFP forward primer: 5’-AAGTTCATCTGCACCACCG-3’; 

GFP reverse primer: 5’-TCCTTGAAGAAGATGGTGCG-3’; internal positive control forward 

primer: 5’-CTAGGCCACAGAATTGAAAGATCT-3’; internal positive control reverse primer: 

5’-GTAGGTGGAAATTCTAGCATCATCC-3’. Initial denaturation at 94°C for 1 minute was 

followed by 35 cycles of denaturation at 94°C for 30 seconds, annealing at 60°C for 1 minute and 

extension at 72°C for 1 minute, with final extension at 72°C for 2 minutes. PCR samples were 

analyzed on a 2% agarose gel (ThermoFisher Scientific, Belgium), revealed on a ChemiDoc XRS+ 

System (Bio-Rad, Belgium) and visualized using ImageLab software (Bio-Rad).  

We collected forebrains from GFAP-GFP transgenic mice in calcium/magnesium-free HBSS at 

different postnatal developmental days (P4, P10 or P21). Tissue was diced and papain digested at 

33°C for 90 minutes (20 U/ml, Sigma) in dissociation buffer [EBSS (Sigma), D(+)-glucose 22.5 

mM, NaHCO3 26 mM and DNaseI 125 U/ml with EDTA 0.5 mM and L-cysteine–HCl 1 mM 

(Sigma)] and washed 3 times in dissociation buffer with BSA (1 mg/ml, Sigma) and trypsin 

inhibitor (1 mg/ml, Sigma) before mechanical dissociation through 5 ml and fire-polished Pasteur 

pipettes to a single cell suspension. Cells were pelleted, re-suspended in cold phosphate-buffered 

saline (PBS) with DNaseI at 1×106 cell/ml, passed through a 70-μm filter and 7-aminoactinomycin 

D (7-AAD, Sigma) added. FITC-positive/PE-Cy5-negative cells were taken into account for 

quantification. We performed flow cytometry analyses using a FACS Aria I SORP running FACS 

Diva6.3 software (BD Biosciences). 

RNA-sequencing analyses 

For RNA-sequencing analyses, murine NSPs were kept under proliferation conditions or were 

differentiated into astrocytes for 24 and 72 hours without or with TNF treatment and for 1 week 

under normal conditions. We extracted total RNA with TRIzol (Invitrogen) following the 

manufacturer’s recommendations. We added a DNase treatment to the RNA extraction using 

DNA-free kit DNase Treatment and Removal Reagents (Ambion-Thermofisher cat #AM1906) 

following manufacturer’s instructions. We checked the RNA quality using a Fragment Analyzer 

Systems (Agilent Technologies), RQN were between 3.4 and 10. We converted total RNA into 

Stranded Total RNA Library for RNA-sequencing by using the TruSeq Stranded Total RNA 
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Library Prep workflow with Ribo-Zero Gold kit according to Illumina’s instructions. Briefly, 

ribosomal RNA was removed from 300 ng of total RNA using biotinylated, target-specific oligos 

combined with Ribo-Zero Gold beads that deplete cytoplasmic and mitochondrial rRNA. Then, 

RNA was fragmented using divalent cations under elevated temperature. Cleaved RNA fragments 

are double stranded cDNA converted keeping strand-specificity. A single index adapter was 

ligated to each sample and DNA fragments were enriched using a polymerase. All libraries have 

been quantified using a Qubit HS dsDNA kit (Thermofisher) and the library quality check has been 

performed using a High Sensitivity NGS Fragment Analysis Kit on a Fragment Analyzer System 

(Agilent Technologies). We normalized indexed DNA libraries and pooled them at 10 nM. 

Libraries were paired-end sequenced at LuxGen Genome Center with 75bp length on a NextSeq 

Illumina sequencer. 

Fastq files contain raw sequenced data and FastQC tool was used for quality check. The fastq data 

was trimmed to remove bad quality reads using Trim Galore and trimmed reads were then aligned 

to the transcriptome using STAR aligner. STAR produces unsorted BAM files as output, which 

were then sorted using Samtools. We used the sorted files as input for Feature Counts to get gene 

expression counts. We conducted differential gene expression analyses using DESeq2 package in 

R. 

ATAC-sequencing analyses 

Cells grown as either free floating spheres (NSPs) or as astrocytes (for 24h and 72h non-treated or 

treated with TNF and for 1 week without TNF treatment) in poly-L-ornithine coated plates were 

washed once with ice-cold PBS and were spun at 500 g for 5min in a pre-chilled (4°C) fixed-angle 

centrifuge. We then re-suspended the cells in 200 μl of lysis buffer (5 mM PIPES pH 8, 85 mM 

KCl, 0.5% NP-40) and incubated them for 20 min on ice. Next, 800 μl of resuspension buffer (10 

mM Tris pH 7.5, 10 mM NaCl, 3 mM MgCl2, 0.1% Tween-20) were added to the cells. Following 

cell counting, we centrifuged 50,000 cells at 500 g for 10 min in a pre-chilled (4°C) fixed-angle 

centrifuge. The cell pellet was re-suspended in 50 μl of transposition mix (25 μl 2× TD buffer, 2.5 

μl transposase, 17 μl PBS, 0.5 μl 10% Tween-20 and 5 μl water). Transposition reactions were 

incubated at 37°C for 40 min in a thermomixer with shaking at 1’000 rpm. Reactions were cleaned 

up with MinElute Raction purification kit (Qiagen) following manufacturer’s recommendations. 

Following purification, library fragments were amplified using 1× NEBnext PCR master mix and 

0.6 μM of custom PCR primers 1 and 2, using the following PCR conditions: 72°C for 5 min; 98°C 
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for 30 s; and thermocycling at 98°C for 10 s, 63°C for 30 s and 72°C for 1 min. Full libraries were 

amplified for five cycles, after which an aliquot of the PCR reaction was used together with 9 μl 

of the PCR cocktail with Sybr Green at a final concentration of 0.05×. We ran this reaction for 30 

cycles to determine the additional number of cycles needed for the remaining reaction. Libraries 

were purified using AMPure XP magnetic beads (Beckman Coulter), quantified using qubit 

fluorimeter and diluted to make 4nM final concentration. We sequenced pooled libraries on 

NextSeq500 75bp paired end reads. We used the FastQC tool to perform quality check on fastq 

files containing raw sequenced reads and bad quality reads were removed using Trim Galore. The 

trimmed fastq reads were aligned to the genome using Bowtie2. We used Samtools to convert the 

SAM output files from Bowtie2 into sorted BAM files and to remove reads aligned to 

mitochondrial chromosomes. We used MACS2 to call chromatin accessibility peaks and the peaks 

that were found in the blacklisted regions of the genome (ENCODE) were removed before further 

analyses. Peaks were annotated using annotate peaks tool from HOMER and differential 

accessibility analysis was performed using DiffBind package in R. 

Transcription factor footprint analysis 

We used the Regulatory Genomic Toolbox to study the changes in the transcription factor binding 

motifs in open chromatin regions of the genome. Using the HINT tool (Li, Schulz et al. 2019), we 

identified transcription factor motifs in the epigenomic landscape. We conducted differential motif 

analysis using the rgt-motif analysis tool to identify transcription factor binding motifs 

differentially present across two conditions, thus providing information of underlying differences 

in gene regulation.  

Reconstruction of gene regulatory networks 

We re-constructed gene regulatory networks and identified hubs based on topology analyses. First, 

we inferred gene regulatory networks (GRNs) at each time point by using GRN inference tool 

GENIE3 (Huynh-Thu, Irrthum et al. 2010), which utilises Random forest-based ensemble methods 

to identify regulatory links between genes. We performed bootstrapping on these interactions and 

only selected interactions with significant value of more than zero in more than 50 percent of runs. 

To obtain high confidence networks, we further overlaid the re-constructed networks from 

GENIE3 with manually curated interactions from Metacore database. We further pruned the GRN 

by contextualising it using a tool developed in our group 

(https://gitlab.lcsb.uni.lu/andras.hartmann/GRNOptR). Briefly, the tool utilizes a parent network 

https://gitlab.lcsb.uni.lu/andras.hartmann/GRNOptR


66 
 

and differential gene expression data with respect to the preceding time-point to create 

contextualised gene expression networks. Contextualization removes nodes whose expression 

cannot be justified by the nodes regulating it as input. We then identified the regulatory hubs by 

performing topological analyses using the igraph package in R. We further used the clusterprofiler 

package in R to perform Gene Ontology pathways enrichment of transcription factors included in 

the re-constructed GRNs. We visualized the resultant networks using Cytoscape. 

 

Statistical analyses 

Data were analyzed using GraphPad Prism 8 software (GraphPad software, La Jolla, CA, USA) 

and R environment (R Core Team, Vienna, Austria). Unless otherwise indicated, all data are 

presented as mean ± standard deviation (SD) or standard error of the mean (SEM) of at least three 

independent biological experiments. We performed statistical analyses using unpaired t test or 

two-way ANOVA. All differences were considered significantly different at p value <0.05 and 

were annotated as follows: *<0.05, **<0.01.
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Results 

Characterization of an in vitro model of astrocytic differentiation from murine neurospheres   

To investigate the molecular mechanisms underlying NSCs differentiation into astrocytes under 

inflammatory conditions, we first characterized our in vitro cellular model of primary neurospheres 

(NSPs) derived from NSCs isolated from the ventricular zone at embryonic day-14 (E14) of the 

mouse embryos. Briefly, we differentiated NSPs into astrocytes in the presence of 10% fetal calf 

serum (FCS) for one or two weeks and analyzed them at specific intermediate stages, including 

24, 48 and 72 hours (Fig. 1A). Under these conditions, differentiating NSPs showed progressive 

increased expression levels of the pan-astrocytic immature marker GFAP and a concomitant 

decreased expression of the stem cell marker CD44 (Fig. 1B). After 2 weeks of differentiation, 

mature astrocytic markers, such as Kir4.1 (Kcnj10), GLT1 (Slc1a2) and GLAST (Slc1a3) were 

highly expressed (Fig. S1A). Notably, we did not detect neurons and oligodendrocytes in these 

culture conditions (Fig. S1B-C), while multipotentiality of the NSCs was confirmed by the 

appearance of these cells upon addition of 1% B27 and 2 ng/ml EGF to 0,5% FCS medium (Fig. 

S1D-E). At the transcriptional level, differentiating astrocytes at all stages showed significant 

decreased expression levels of the proliferating (Mki67 and Ccnb1) and stem cell (Egr1) markers 

compared to NSPs (Fig. 1C). On the other hand, the expression levels of Gfap and the astrocyte-

enriched gene Gpld1 were mainly up-regulated in differentiating cells at the different time points. 

We detected high Gfap expression levels at 48 and 72 hours, which dropped at 1 week, while 

Gpld1 expression was not detectable in NSPs and showed progressively increased levels up to 1 

week of differentiation (Fig. 1D). In order to corroborate these results in vivo, we investigated the 

decrease of Gfap expression along the astrocytic maturation by isolating GFP+ cells from GFAP-

GFP transgenic mice. For this, we separated GFP+ cells by FACS at postnatal day 4 (P4), P10 and 

P21, with P4 representing an immature phase, P10 signifying an intermediate stage, while P21 

corresponding to a mature astrocytic stage. In line with the in vitro model, the amount of GFAP-

GFP+ cells gradually decreased along these time points (P4: 39.2 ± 3.6%; P10: 21.0 ± 0.9%; P21: 

3.5 ± 1.3%) (Fig. 1E). Notably, we confirmed the upregulation of Gpld1 as a marker of astrocytic 

maturation in vivo from our previous transcriptomics analyses of GFP+ cells sorted from 

ALDH1L1-GFP transgenic mice when comparing cells isolated at P4, P10 and P21 (Fig. S2A) 

(Michelucci, Bithell et al. 2016). We similarly verified their progressive exit from the cell cycle 

by detecting the decrease of Ccnb1 expression levels (Fig. S2B). Lastly, to verify the purity of our 
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in vitro cultures, we sorted enriched astrocytic populations by MACS using an antibody against 

the pan-astrocytic marker GLAST (Slc1a3). GLAST+ cells exhibited similar expression levels of 

Mki67, Ccnb1, Gfap and Gpld1 to unsorted cells (Fig. S2C-D). Hence, this common gene 

expression pattern observed in GLAST+ and GLAST- cells suggests that our culture conditions 

give rise to pure astrocytic populations expressing GLAST levels consistent with their maturation 

state.  

Taken together, these results demonstrate that our in vitro model of NSPs differentiation into 

astrocytes represent a reproducible method enabling enrichment of astrocytic populations 

expressing markers of ex vivo-isolated astrocytes. 

 

Exposure of NSPs to TNF under differentiating conditions modulates the expression of 

specific NSC and astrocytic markers 

Next, we took advantage of our model to investigate the effect of inflammation during the 

differentiation of NSPs into astrocytes. For this, we cultivated the NSPs in differentiation medium 

with or without TNF (50 ng/ml), as in our previous study [21]. As expected, TNF treatment 

induced NF-κB activation in differentiating NSPs as shown by enhanced Nfkbia mRNA levels 

compared to untreated cells. This was particularly evident after 24, 48 and 72h, while Nfkbia 

mRNA levels were less enhanced at 1 week (Fig. 2A). While the decrease of the stem cell marker 

Egr1 was less significant in the presence of TNF when compared to untreated samples (Fig. 2B), 

TNF treatment did not cause significant changes in the expression levels of Ccnb1 (Fig. 2C) and 

Mki67 (Fig. 2D). Further, Gfap and Gpld1 were down-regulated in TNF-treated cells at 48 and 72 

hours of differentiation for the former, and at 72 hours and 1 week for the latter (Fig. 2E-F).  

These targeted gene expression studies, together with our recent analyses , show that exposure of 

differentiating NSPs to TNF induces the activation of the NF-κB pathway without affecting the 

exit of the differentiating astrocytes from the cell cycle. On the other hand, TNF treatment causes 

transcriptional changes in the expression levels of specific stem cell and astrocytic markers, thus 

affecting the physiologic astrocytic differentiation process. 

 

Transcriptomics analyses under normal and inflammatory conditions reveal discrete 

populations of differentiating astrocytes 
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As TNF affected the expression of specific NSC and astrocytic genes during differentiation of 

NSPs into astrocytes, we sought to expand our analyses by conducting a genome-wide RNA-

sequencing analysis of the astrocytic transcriptome at different time points, both under normal and 

inflammatory conditions. Principal component analysis (PCA) using the top 1’000 variable genes 

showed distinct clustering corresponding to the different conditions (Fig. 3A). We identified 

differentially expressed genes (p < 0.05) between different conditions and compared them at 24 

and 72h under normal or inflammatory conditions. Specifically, we detected 4’187 overexpressed 

genes and 4’544 down-regulated genes at 24h compared to undifferentiated NSPs, both with or 

without TNF. On the other hand, we detected 1’005 and 756 genes, respectively exclusively up- 

or down-regulated at 24h under control conditions, while 1’227 and 922 genes were 

correspondingly enhanced or decreased only under TNF treatments. We obtained similar results 

at 72h (Fig. 3B). Hierarchical gene clustering of the differentially expressed genes during normal 

differentiation (up- and down-regulated genes, adjusted p value < 0.05) revealed five major 

clusters differentially represented across the specific time points (Fig. 3C). Corresponding Gene 

Ontology (GO) enrichment analyses indicated that proliferating NSPs were mainly associated with 

cluster 1, largely characterized by RNA processing. Clusters 2 and 4, largely represented in NSPs 

and differentiating astrocytes at 24h, were characterized by processes associated with regulation 

of cell morphogenesis, motility and migration. Clusters 3 and 5, mostly enriched in differentiating 

astrocytes at 72h and 1 week, were characterized by terms linked to cell projection assembly and 

cilium organization (Fig. 3D). 

We conducted similar analyses to investigate the effect of TNF treatment at 24 and 72h.  

Hierarchical gene clustering of the differentially expressed genes during differentiation under 

normal and inflammatory conditions (up- and down-regulated genes, adjusted p value < 0.05) 

identified four major clusters differentially represented across the specific settings (Fig. 3E). 

Clusters 1 and 4, characterized by terms associated with response to molecule of bacterial origin 

and regulation of inflammatory response, were enriched under TNF treatment, at both 24 and 72h. 

On the contrary, cluster 2 described by terms linked to regulation of cell motility and migration, 

was under-represented under inflammatory conditions. Notably, we observed that the presence of 

TNF, especially when comparing conditions at 24h, decreased cluster 3, related to gliogenesis, 

glial cell differentiation and development (Fig. 3F).  
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Next, we used heat maps to visualize gene expression levels across different time points between 

normal and inflammatory conditions of specific genes associated with different astrocytic 

categories. Specifically, we analyzed markers linked to “developing and differentiated astrocytes”, 

“reactive astrocytes”, “A1 - neurotoxic - astrocytes” and “A2 - neuroprotective - astrocytes” taking 

advantage of different available datasets (Lovatt, Sonnewald et al. 2007, Cahoy, Emery et al. 2008, 

Liddelow, Guttenplan et al. 2017, Escartin, Galea et al. 2021) (Fig. S3A-D). Notably, astrocytic 

gene markers, including Gfap, Slc14a1 and Gja1 were up-regulated at 72h in the absence of TNF 

(Fig. S3A), while reactive astrocyte marker genes, including Timp1, Lcn2, Icam1 and Ptx3 were 

enhanced under inflammatory conditions, mainly at 24h or Sbno2, Cxcl10 and Cd109 (Zamanian, 

Xu et al. 2012, Grill, Syme et al. 2015, Rothhammer and Quintana 2015) at 72h (Fig. S3B). Further, 

we showed that the obtained astrocytic populations express a mixture of A1 and A2 markers, both 

under normal and inflammatory conditions (Fig. S3C-D). Lastly, due to the importance of glycogen 

and glucose metabolism in astrocytes, we also looked at the expression levels of genes associated 

with “glycogen activity” and “glucose metabolism” (Fig. S3E-F). Along the differentiation 

process, we detected increased expression levels of genes related to glycogen activity (Ugp2, Pygb, 

Ppp1r3c) and glucose metabolism (Lmbrd1, Pid1, Esr1, Upk3b, Lep), which were decreased under 

TNF exposure at 72h (Fig. S3E-F).  

Taken together, these results show that genes linked to gliogenesis and glial cell development are 

down-regulated in the presence of TNF, suggesting that an inflammatory environment alters the 

physiological astrocytic differentiation, thus affecting critical associated functional activities, 

including glycogen and glucose metabolic pathways.  

 

Chromatin accessibility profiling detects extensive chromatin remodeling along the 

astrocytic differentiation affected under TNF exposure  

To understand further the mechanisms underlying changes in gene expression under normal and 

inflammatory conditions, we sought to examine the corresponding chromatin accessibility profiles, 

which affect, at least partly, gene expression depending on their more open or closed states at 

specific loci. To do this, we performed ATAC-sequencing analyses under the same conditions as 

the transcriptome studies. A first PCA analysis using differential peaks discriminated the various 

time points and highlighted differences between treated and untreated samples. Of note, similarly 

to the PCA analyses of the RNA-seq samples, PC1 seemed to separate samples according to the 
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developmental stage, while PC2 divided them according to stage and treatment (Fig. 4A). Next, 

we conducted our analyses based on differentially accessible peaks in the promoter region nearest 

to the transcription start site (TSS). We identified differentially accessible peaks (p < 0.05) up- and 

down-regulated between different conditions and compared them at 24 and 72h under normal or 

inflammatory conditions. Specifically, we detected 545 up-regulated and 9’081 down-regulated 

accessible peaks at 24h compared to undifferentiated NSPs, both with or without TNF. On the 

other hand, we detected 102 and 960 accessible peaks, respectively exclusively up- or down-

regulated at 24h under control conditions, while 297 and 385 accessible peaks were 

correspondingly enhanced or decreased only under TNF treatments. We found similar proportions 

at 72h (Fig. 4B). Hierarchical gene clustering of the differentially accessible peaks across the 

analyzed normal differentiation time points (up- and down-accessible peaks, adjusted p value < 

0.05) revealed five major clusters differentially represented across the specific time points (Fig. 

4C). Clusters 1, 3 and 5, mainly associated to proliferating NSPs, were the highest represented in 

the heatmap, thus indicating that multipotent NSPs have higher chromatin accessibility when 

compared to differentiated astrocytes (Fig. 4C). NSPs were characterized by GO terms related to 

RNA processing, histone and covalent chromatin modifications (clusters 1 and 3), synapse 

organization and axonogenesis (clusters 3 and 5) as well as lipid and monovalent inorganic cation 

transport (cluster 5). On the other hand, cluster 2, mainly enriched in NSPs and 1 week-

differentiated astrocytes, was represented by GO terms related to response to chemical stress and 

external stimulus. Lastly, cluster 4, mostly enhanced in late-stage astrocytes, showed terms linked 

to lipid localization and transport (Fig. 4D).  

Under inflammatory conditions, we detected increased chromatin accessibility in TNF treated cells 

when compared to untreated cells. More precisely, following a TNF treatment at both 24 and 72h, 

prevalent clusters 1,2 and 3 were accessible (Fig. 4E). Enrichment analysis of these clusters 

specifically showed involvement of the NF-κB signaling pathway (cluster 2), results that come to 

agreement with the RNA-seq data. Cluster 4, which was under-represented under inflammatory 

conditions, was associated with GO terms related to cell junction assembly, while cluster 5, mainly 

enriched in 24h-differentiated astrocytes, was linked to regulation of developmental growth (Fig. 

4F). Lastly, we used volcano plots to analyze differentially accessible peaks across time points 

between normal and inflammatory conditions. Here, a comparison between TNF treated and 
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untreated samples showed a skewed distribution towards peaks that were more open under 

inflammatory conditions, both at 24 and 72h (Fig. S3G). 

Overall, we observed significant changes in chromatin accessibility upon astrocytic differentiation 

compared to undifferentiated cells, with genes associated, for example, with lipid localization and 

transport displaying increased accessible peaks in their promoter region. Upon TNF treatment, we 

detected a strong shift towards enhanced chromatin accessibility compared to normal conditions, 

with several gene clusters related to inflammation.  

 

Transcription factor binding analyses uncover dynamic footprints associated with astrocyte 

specification and maturation under normal and inflammatory conditions 

Next, we investigated changes in the transcription factor binding motifs across accessible 

chromatin regions by footprint analyses using HINT-ATAC (Li, Schulz et al. 2019) to detect 

transcription factors (TFs) associated with astrocyte specification and maturation with or without 

TNF treatment.  

We first analyzed differences in the TF binding motifs between NSPs and differentiating astrocytes 

at 24 and 72h under normal conditions. At 24h, we detected an enriched activity score for Atoh1, 

Dlx1, Rarg and Arid3a with a concomitant decreased score for Dmbx1 and Tcf21 TFs when 

compared to NSPs (Fig. 5A). Similar analyses conducted at 72h showed increased activity score 

for Hoxd8, Lhx3, Rarb, Rarg and Dlx1, together with a decreased score for Hes1, Tcf21 and Tcfl5 

TFs compared to NSPs (Fig. 5B). Hence, based on these analyses, ATOH1 and ARID3A represent 

TFs associated with astrocytic specification (24h), HOXD8, LHX3 and RARB represent TFs 

linked to astrocyte maturation (72h), and DLX1 and RARG are TFs linked to both processes (Fig. 

5A-B). 

By conducting similar analyses under inflammatory conditions, we detected at 24h increased 

activity score for Nfe2l2 (Nrf2) and a decreased score for Dmbx1, Arid3a, Arid3b and Atoh1 TFs 

when comparing to normal conditions (Fig. 5C). Lastly, at 72h Atoh1 and Rarg TFs showed an 

enhanced score by comparing TNF-treated versus untreated cells, while the score for Tcf21 and 

Dmbx1 was decreased (Fig. 5D). Due to the importance of Nfe2l2 (Nrf2) in regulating 

inflammatory responses, mainly by inducing the expression of antioxidants and cytoprotective 

genes, we analyzed its binding motifs across accessible chromatin regions at the genome-wide 

level. We detected enriched footprints across the whole genome in TNF-treated cells at 24h (Fig. 
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5E), thus suggesting that NRF2 represents a master TF driving the astrocytic differentiation in the 

presence of TNF. 

 

Transcriptional and chromatin accessibility states positively correlate at specific NSC and 

astrocytic gene loci 

Next, we sought to study the correlation between transcriptional and chromatin accessibility states 

at the genome-wide level to explore at which extent the chromatin states are linked to the 

transcriptional activities at specific gene loci. For this, we took advantage of our RNA-seq and 

ATAC-seq data to conduct correlation analyses between gene expression levels and their 

chromatin accessibility states at 24h. We used scatterplots to show the number of genes 

differentially expressed and exhibiting differentially accessible peaks at their promoter regions 

under normal (Fig. 6A) and inflammatory (Fig. 6B) conditions. By using Pearson’s correlation 

analysis for log fold change in gene expression and accessibility, we identified similar correlation 

coefficients (normal: R=0.38; inflammation: R=0.51) to those detected in analogous studies 

comparing RNA-seq and ATAC-seq datasets (Ackermann et al. 2016, Starks et al., 2019). In a 

second step, we conducted a targeted correlation analysis at specific NSC, resting and reactive 

astrocytic gene loci (Lovatt, Sonnewald et al. 2007, Cahoy, Emery et al. 2008, Liddelow, 

Guttenplan et al. 2017, Escartin, Galea et al. 2021). Here, we calculated at 24h a higher correlation 

score (R=0.64) compared to genome-wide levels. Under normal conditions, we showed that 

specific NSC (e.g. Ccnb1, Mki67, Egr1) or astrocytic (e.g. Gfap, Gpld1, Clcf1) markers exhibited 

respectively decreased or increased gene expression levels and accessibility (Fig. 6C). Under TNF 

exposure, we detected enhanced gene expression levels and accessibility for reactive astrocyte 

markers (e.g. Lcn2, Cxcl10, Osmr, Sbno2) (Fig. 6D). Interestingly, Nfkbia, a pan-inflammatory 

marker, exhibited both enhanced gene expression levels and accessibility states (Fig. 6D). 

Taken together, these results indicate that at specific NSC and astrocytic gene loci, gene expression 

levels are associated with chromatin accessibility states, thus indicating a close link between 

chromatin remodeling and gene expression at lineage-specific gene loci.  

 

Inference of gene regulatory networks enables the identification of key transcription factors 

associated with astrocytic differentiation under physiological and inflammatory conditions 
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To systematically identifying regulators of the astrocytic differentiation under physiological and 

inflammatory conditions, we reconstructed the corresponding gene regulatory network (GRN) for 

each analyzed time-point. The GRN after 24h of physiological differentiation was represented by 

262 interactions between 96 TFs, which, based on the topological analysis, include Esr1, Nr3c1, 

Foxa1, Gata2, Stat5a, Fosl2, Stat1, Nfia and Arid5b (Fig. 7A). Corresponding GO analyses 

highlighted terms associated to developmental processes, including “regulation of developmental 

process”, “tissue development” and “regulation of cell differentiation” (Fig. S4A). At 72h, when 

compared to 24h, the GRN consisted of 91 interactions between 46 TFs, thus reflecting a lineage-

committed network made up of less than half TFs when compared to earlier stages (Fig. 7B). The 

top regulatory hubs include Rxra, Rarg, Cebpb, Myc, Smad3, Rbpj and Esr1. Subsequent GO 

analyses showed enriched terms related to cell responses and communication, such as “cellular 

response to stimulus”, “signaling” and “signal transduction” (Fig. S4B), thus indicating that at 

earlier stages differentiated cells went through the developmental process (astrocyte specification) 

and later acquired their functional astrocytic properties (astrocyte maturation). Interestingly, 10 

TFs, including Esr1, Foxp1 and Nfe2l2, were shared between the two GRNs (Fig. S4C). Out of 

these, we identified Esr1 and Foxp1 as regulatory hubs at both time points. 

Similarly, we reconstructed GRNs under inflammatory conditions. Following a 24h 

differentiation, the GRN consists of 107 TFs and 393 interactions (Fig. 8A). We identified Stat3, 

Smad3, Nfkb1, Runx1, Ar, Cebpb, Relb, Nfkb2 and Atf3 as regulatory hubs. Out of these TFs, 75 

of them, such as Esr1, Nr3c1, Gata2, Stat5a, Fosl2, Sat1, Junb, Mef2c, Arid5b, Mef2a and Foxo3, 

were shared with the corresponding GRN under normal conditions (Fig. S5A), suggesting that the 

developmental process and the inflammatory response converge during the acquisition of the 

astrocytic phenotype. GO analyses of the TFs underlying the GRN at 24h under inflammatory 

conditions strengthen this observation, with terms associated to both developmental processes, 

such as “regulation of developmental process”, and inflammatory responses, including “immune 

system process”, be highly represented (Fig. S5B). Lastly, following a 72h differentiation under 

TNF treatment, the GRN is composed of 18 interactions between 15 TFs, including Rxra, Myc, 

Stat5b and Rorc (Fig. 8B). Corresponding GO analyses identified “response to chemical”, 

“response to hormone” and “response to lipid” as main enriched terms (Fig. S5C). Among the 

resultant TFs, 12 of them, including Rxra, Rarg, Stat5b and Myc were in common with the 
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corresponding network under physiological conditions, while 3 TFs (Thrb, Zfp217, Zbtb37) were 

unique to the inflammatory condition (Fig. S5D). 

Taken together, reconstructed GRNs enabled the identification of regulatory hub TFs playing 

critical roles along the differentiation of astrocytes in the presence or absence of TNF. These 

analyses allowed establishing the effect of an inflammatory environment along the astrocytic 

development, indicating that it affects the underlying transcriptional signatures skewing astrocytes 

towards a discrete astrocytic phenotype when compared to physiological settings. 

 

Discussion 

Astrogliogenesis depends on both extracellular cues and intrinsic dynamic changes of the 

epigenome. Perturbations during astrocytic development may result in neurological diseases, 

including neurodevelopmental disorders, such as Rett syndrome and fragile X mental retardation 

(Molofsky, Krencik et al. 2012) or Down syndrome and autism spectrum disorders (Sloan and 

Barres 2014). In recent years, computational approaches to study astrocytes and their development 

using next-generation sequencing technologies have enabled a better understanding of their 

phenotypic and functional role in the CNS (Magistri, Khoury et al. 2016, Goodnight, Kremsky et 

al. 2019). Further, the generation of novel in vitro models, such as astrocytes derived from induced 

pluripotent stem cells, has opened up a new area for studying neurological diseases in vitro. 

However, as the brain hosts a range of astrocyte populations, it is critical to develop standardized 

protocols for the in vitro generation of astrocytes with defined maturity states and phenotypic 

properties(Chandrasekaran, Avci et al. 2016). 

 

In vitro model characterization  

In this context, our in vitro NSP differentiation model enabled us to conduct kinetic analyses along 

the process of astrocytic differentiation. In this model, under specific culture conditions NSCs 

retain their multipotential properties, thus being able to give rise to neurons, astrocytes and 

oligodendrocytes. For our experiments, we differentiated NSPs into astrocytic populations by 

cultivating them in the presence of serum, as previously described(Birck, Ginolhac et al. 2021). In 

these conditions, we detected the highest Gfap expression levels at 48 and 72 hours, whereas its 

expression decreased after 1 week. Gfap expression pattern is supported by previous in vivo 

studies, documenting that although GFAP is a reliable marker of reactive astrocytes, it is mainly 
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not detectable in mature astrocytes of the healthy central nervous system (Sofroniew and Vinters 

2010). 

 

Targeted gene expression and genome-wide transcriptional analyses 

We have previously shown that TNF is a key regulator of astrocytic reprogramming into neural 

progenitor-like cells (Gabel, Koncina et al. 2016). In addition, TNF treatment of in vitro 

differentiated murine astrocytes resulted in modifications of their histone chromatin profile at the 

promoters of genes related to cell cycle, stemness or neuronal fate, thus indicating that 

inflammatory events intervene in such regulatory pathways . In the present study, RNA-seq 

analyses showed major gene expression changes along the physiological process of the astrocytic 

differentiation, which are modulated by TNF, suggesting the establishment of discrete astrocytic 

populations between normal and inflammatory conditions. More specifically, TNF-treated NSC-

derived astrocytes exhibited significant increased expression levels of classical reactive astrocytic 

marker genes, including Timp1, Lcn2, Icam1 and Ptx3. In line with these observations, reactive 

astrocytes in inflammatory environments display increased expression levels of various proteins 

that are absent or weakly expressed in resting states. Among those proteins, LCN2 and TIMP1 are 

highly up-regulated in reactive astrocytes, with LCN2 considered as a potential marker of 

astrogliosis . ICAM-1 is aberrantly expressed by astrocytes in CNS pathologies, such as multiple 

sclerosis, experimental allergic encephalomyelitis and Alzheimer's disease, suggesting a possible 

role for ICAM-1 in these disorders (Lee, Drabik et al. 2000). Lastly, Ptx3 is considered as a marker 

of A2 reactive astrocytes (Liddelow, Guttenplan et al. 2017, Neal, Luo et al. 2018). Hence, TNF-

treated NSC-derived astrocytes express markers of both A1 and A2 reactive types, thus 

representing a distinct type of astrocytes that do not exclusively relate to the described 

dichotomous distribution.  

Notably, the loss of normal astrocytic functions and not only reactivity contributes to the early 

pathologic events of neurological diseases, as described for example in multiple sclerosis (Parratt 

and Prineas 2010, Brosnan and Raine 2013). In this context, we sought to examine genes associated 

with important astrocytic functions, including glucose import from blood, the primary energy 

source for generating ATP in the brain, and the metabolism of glycogen, which represents an 

important energy reserve synthesized from glucose in astrocytes(Belanger, Allaman et al. 2011). 

Indeed, astrocytes represent an exclusive reserve of glycogen, which is transported to axons for 
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ensuring neuronal functions (Brown and Ransom 2007, Brunet, Allaman et al. 2010, Iglesias, 

Morales et al. 2017, Bak, Walls et al. 2018). Thus, the detection of decreased expression levels of 

genes associated with glucose and glycogen metabolism under TNF exposure suggests an 

impairment of key functional activities when NSCs differentiate into astrocytes under 

inflammatory conditions.  

 

Genome-wide chromatin accessibility profiling 

The ATAC-seq method enabled us to analyze the accessible chromatin landscape of differentiating 

astrocytes and the extent of its modifications upon inflammation, while providing insights into 

gene transcription complexity. We observed a general decrease of chromatin accessibility along 

NSC differentiation into astrocytes, thus suggesting a more lineage-restricted profile. However, 

upon TNF treatment, chromatin accessibility at the promoter region of specific NSC, astrocytic 

and inflammatory markers was up-regulated, indicating that inflammation-induced astrocytes 

retain some stemness vestige. The next step would be to identify which epigenetic mechanisms, 

such as DNA methylation or histone modifications, may be linked to the transcriptional and 

chromatin accessibility alterations that we identified either in the physiologic differentiating 

astrocytes or under inflammatory conditions. Intriguingly, a recent study showed that aberrant 

transcription in gliomas does not result from DNA methylation mechanisms, but rather from DNA 

methylation-independent modifications (Court, Le Boiteux et al. 2019).  

 

Footprint analyses 

Footprint analyses identified, among several modulated TF binding motifs across accessible 

chromatin regions, decreased levels of the downstream effector of the Notch pathway, HES1, when 

comparing differentiated astrocytes at 72h with NSCs. Since HES1 is involved in the repression 

of pro-neural gene expression and maintenance of NSCs (Ahmed, Gan et al. 2009, Imayoshi, 

Sakamoto et al. 2010, Yun, Byun et al. 2010), the preservation of its binding motifs under 

inflammatory conditions is in line with a less lineage-restricted fate of inflammation-induced 

astrocytes when compared to the corresponding naïve cells. Further, we detected increased levels 

of NRF2 binding motifs across accessible chromatin regions at 24h under inflammatory 

conditions. NRF2 is a master regulator of stress induced antioxidant response inducing the 

expression of antioxidants and cytoprotective genes(Habas, Hahn et al. 2013). In the brain, NRF2 
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is involved in astrocytic neuroprotective pathways via their interactions with neurons (Habas, 

Hahn et al. 2013, Liddell 2017). Interestingly, in our dataset, the NRF2 target gene Cebpb (Hayes 

and Dinkova-Kostova 2014) was both upregulated and accessible in the presence of TNF. Taken 

together, our results point towards NRF2 as a key TF orchestrating immune responses in 

differentiating astrocytes exposed to TNF. 

 

 

RNA-seq & ATAC-seq correlation analyses 

Our correlation analyses are consistent with previous correlation studies addressing gene 

expression and chromatin accessibility, thus providing further support to our data . Notably, 

correlation levels were enhanced when looking at NSC, astrocytic and inflammatory markers. 

Further, our chromatin accessibility and gene expression analyses resulted in similar biological 

processes and pathways, thus indicating concordant modules of regulation at these molecular 

levels.  

 

Reconstructed gene regulatory networks 

Gene regulatory networks (GRNs) inferred from our transcriptional analyses enabled the 

identification of TFs underlying the astrocytic differentiation under physiological and 

inflammatory conditions. Different pathways are known to be sequentially involved in the 

astrocytic differentiation process, with the Notch, STAT3 and BMP signaling pathways being the 

most important ones implicated in this process (Wen, Li et al. 2009). At 24h of differentiation 

under normal conditions, several TFs related to these pathways were highly represented in the 

GRN. These results validate once again the relevance of our in vitro model, which is often 

described in the literature as very different from the differentiation processes obtained in vivo 

(Lattke, Goldstone et al. 2021). Indeed, under our established differentiation conditions in the 

absence of growth factors and mitogen cocktails found in other studies (Tiwari, Pataskar et al. 

2018, Lattke, Goldstone et al. 2021), we obtained an efficient and reproducible process of 

astrocytic differentiation. Among the key detected regulators, Esr1, Nr3c1, Foxp1, Runx2 and Nfia 

appears particularly interesting as these TFs have been ascribed to this process. For example, Esr1-

dependent signaling in astrocytes is involved in the regulation of several important pathways, such 

as PI3K-AKT, ERK and JAK-STAT, and plays a crucial role on their metabolic control of 
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providing nutrients to the neurons (Spence, Hamby et al. 2011, Fuente-Martin, Garcia-Caceres et 

al. 2013) . Nr3c1, also known as glucocorticoid receptor, is an important component of the 

metabolic functions of astrocytes and is required for memory formation(Tertil, Skupio et al. 2018) 

. NSCs express Foxp1 promoting their maintenance and renewal (Pearson, Moore et al. 2020), and 

is required for differentiation towards astrocytes (Braccioli, Vervoort et al. 2017) . Runx2 promotes 

maturation-associated transcriptional changes in astrocytic cell culture models(Tiwari, Pataskar et 

al. 2018). Lastly, Nfia contributes to the gliogenic switch enabling rapid derivation of functional 

human astrocytes from pluripotent stem cells (Tchieu, Calder et al. 2019). Its expression is required 

for the maintenance of the astrocytic morphological complexity and its deficiency compromises 

the astrocyte-neuron communication (Zhang, Xu et al. 2021). Notably, most of the detected TFs 

show reduced chromatin accessibility after 24h of differentiation, thus suggesting that they are 

implicated in the first step of differentiation, but not in the astrocytic maturation. The TFs 

identified at 72h relate to the maturation and development of astrocytic functions. Compared to 

earlier time points, the network is less complex, characterized by the reduction of the number of 

TFs composing the GRN with a robust representation of TFs related to retinoic acid (RA). In 

astrocytes, GFAP expression induced by RA is mediated by the activation of RA receptor alpha 

(Rara), which downstream activates the PI3K pathway and binds to the STAT3-p300/CBP-SMAD 

complex (Herrera, Chen et al. 2010). The PI3K-AKT pathway plays also crucial roles in glutamate 

transport (Wu, Kihara et al. 2010) and synthesis of neuroprotective RANTES in astrocytes (Lin, 

Sun et al. 2011). The presence of Sox2 in the network reflects a certain degree of immaturity still 

at 72h of differentiation. In fact, SOX2 acts upstream the Notch pathway to maintain cell 

proliferation potential and its expression in the brain is restricted to neural stem and progenitor 

cells, glial precursors and proliferating astrocytes (Bani-Yaghoub, Tremblay et al. 2006). This 

observation is corroborated by the presence in the GRN of the effector of the Notch pathway, Rbpj, 

whose reduced accessibility suggests that the Notch pathway has lost part of its activity. 

Interestingly, reduction of Notch signaling in astrocytes promotes neurogenesis and absence of the 

Notch coactivator RBPJ activates neurogenesis in astrocytes (Santopolo, Magnusson et al. 2020). 

Lastly, the TGFB1-SMAD signaling, with Smad3 being among the TFs whose accessibility is 

increased, is involved in the fate commitment process of astrocytes (Stipursky and Gomes 2007). 

Under inflammation, the TFs that are involved in the GRN at 24h represent both astrocytic 

development and inflammatory responses. This is reflected by the overlap of regulatory hubs from 
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the normal condition and TFs (e.g. Stat3, Nfkb1, Nfkb2, Runx1, Atf3, Relb) representing the 

inflammatory part of the process. STAT3 and NFkB regulate the function and development of 

cells under inflammation (Herrmann, Imura et al. 2008, Lattke, Reichel et al. 2017, Platanitis and 

Decker 2018). The roles of NF-kB and STAT3 in colon, gastric, and liver cancers have been 

extensively investigated and the activation and interaction between STAT3 and NF-κB plays a 

fundamental role in the control of the communication between cancer cells and inflammatory cells 

(Grivennikov and Karin 2010, Fan, Mao et al. 2013). Specifically, STAT3 plays an important role 

in the development of astrocytes, such as it binds to the promoter region of GFAP, and its absence 

results in defects during astrogliogenesis (Hong and Song 2014). The decrease of chromatin 

accessibility at the promoter region of Stat3 may reflect the partial inhibition of the astrocytic 

differentiation induced by NFkB activation. NFKB1 and NFKB2 are critical effectors of the 

canonical NFkB pathway regulating expression of genes involved in inflammatory and cell-

survival responses (Lawrence 2009). Further, Runx1 codes for an important TF involved in the 

astrocytic development and its overexpression is linked to differentiation along astrocytic and 

neuronal lineages (Logan, Rusnak et al. 2015). Lastly, Cebpb is involved in the regulation of 

multiple pathways associated with inflammatory responses in astrocytes (Fields and Ghorpade 

2012). Atf3 expression in astrocytes is induced by NRF2, one of the major regulators of 

inflammatory responses (Hunt, Raivich et al. 2012). It is interesting to note that several TFs, such 

as Esr1, are present in the GRN both under normal and inflammatory conditions at 24h of 

differentiation, thus suggesting that although inflammation affects the astrocytic differentiation, 

patterns of the normal process still drive the process of differentiation.  

At 72h under inflammation, the GRN is composed by TFs involved in multiple metabolic 

functions. For example, Rarg, Rorc and Rxra are involved in the RA pathway, while Thrb is the 

thyroid hormone receptor. Astrocytes are the mediators of thyroid metabolism, which is linked to 

the proliferation and differentiation of astrocytes and also promotes neuronal development via 

astrocytes (Trentin 2006). The corresponding GO terms support these processes related to 

metabolism (e.g. “response to steroid hormone”, “response to corticosteroid” and “response to 

glucocorticoid”). Overall, the identified TFs support the tight interplay between development and 

inflammation influencing astrocytic functional activities. 
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Figure 1. In vitro differentiation of neurospheres (NSPs) into astrocytes. (A) Schematic 

showing the in vitro cellular model of primary neurospheres (NSPs) derived from NSCs isolated 

from the ventricular zone at embryonic day-14 (E14) of the mouse embryos and the subsequent 

passages to differentiate them into astrocytes. (B) Immunostaining analyses of CD44 (green) and 

GFAP (red) of NSPs and differentiating astrocytes obtained from primary murine cultures of NSPs 

cultivated under proliferation conditions (DMEM F12, 1% B27 (- vitamin A), antibiotics and 20 

ng/ml EGF) or differentiated into astrocytes (DMEM, 10% FBS and antibiotics) for 24h, 48h, 72h 

and 1 week. Nuclei were counterstained with DAPI (in blue). Scale bar: 50 μm. (C-D) RT-qPCR 

analyses showing mRNA expression levels of (C) the cell cycle genes Mki67 and Ccnb1, the NSC 

marker Egr1, (D) the astrocytic marker Gfap and the astrocyte-enriched gene Gpld1. Results are 

expressed as mean ± standard deviation. *p < 0.05; **p < 0.01, n ≥ 4. (E) Quantification of GFAP+ 

cells from mouse forebrain cell suspensions of GFAP-GFP transgenic mice by FACS at postnatal 

day 4 (P4), P10 and P21. Bars represent the mean ± SEM. **p < 0.01, n = 3. 
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Figure 2. Gene expression levels of NSC and astrocyte markers following treatment of NSCs 

with TNF upon astrocytic differentiation. NSPs were differentiated into astrocytes with or 

without exposure to TNF (50 ng/ml) for 24 h, 48 h, 72 h and 1 week. RT-qPCR analyses show the 

mRNA expression levels of (A) Nfkbia, (B) Egr1, (C) Ccnb1, (D) Mki67, (E) Gfap and (F) Gpld1. 

Results are expressed as mean ± standard deviation. *p < 0.05; **p < 0.01, n ≥ 4. 
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Figure 3. Transcriptomic signature of differentiating astrocytes under nomal and 

inflammatory conditions. (A) Representation of first two principal components (PC) analysis of 

the top 1’000 most variable genes across all the conditions analyzed by RNA-seq. (B) Venn 

diagrams showing the number of significantly differentially expressed genes (p < 0.05) and their 

overlap across comparisons 24h TNF vs 24 h (left) and 72h TNF vs 72h (right). (C) Heatmap 

showing normalized (z scores) raw gene expression counts of differentially expressed genes under 

normal conditions based on absolute log2 fold change from comparisons between the different 

time points (1 week vs 72h, 72h vs 24h and 24h vs 0h). (D) Dot plot showing gene set enrichment 

analysis of genes in clusters identified in the heatmap (Fig. 3C). (E) Heatmap showing normalized 

(z scores) raw gene expression counts under inflammatory conditions (24h TNF vs 24h and 72h 

TNF vs 72h) based on absolute log2 fold change. (F) Dot plot showing gene set enrichment 

analysis of genes in clusters identified in the heatmap (Fig. 3E). 
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Figure 4. Chromatin accessibility profile of differentiating astrocytes under normal and 

inflammatory conditions. (A) Representation of first two principal components (PC) analysis of 

the top 1’000 most variable genes across all the conditions analyzed by ATAC-seq. (B) Venn 

diagrams showing the number of significantly differentially accessible peaks (p < 0.05) and their 

overlap across comparisons 24h TNF vs 24h (left) and 72h TNF vs 72h (right). (C) Heatmap 

showing normalized (z scores) raw expression of differential peaks under normal conditions based 

on absolute log2 fold change from comparisons between the different time points (1 week vs 72h, 

72h vs 24h and 24h vs 0h). (D) Dot plot showing gene set enrichment analysis of genes in clusters 

identified in the heatmap (Fig. 4C). (E) Heatmap showing normalized (z scores) raw expression 

peak counts under inflammatory conditions (2h TNF vs 24h and 72h TNF vs 72h) based on 

absolute log2 fold change. (F) Dot plot showing gene set enrichment analysis of genes in clusters 

identified in the heatmap (Fig. 4E). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



96 
 

 A B 

C D 

E 
Nfe2l2 (Nrf2) 



97 
 

Figure 5. Chromatin footprinting activity under normal and inflammatory conditions. (A-

D) Activity score plots for different time point under normal and inflammatory conditions.  (E) 

Comparison of the activity of Nfe2l2 (Nrf2) gene based on motif enrichment analysis at 24h 

between normal (red line) and inflammatory (blue line) conditions.  

 

Figure 6. Correlation analyses of transcriptional and chromatin accessibility changes upon 

the differentiation process under normal and inflammatory conditions. Scatter plots for 

combined RNA-seq and ATAC-seq data (A, B) at the genome-wide level and (C, D) at specific 

NSC, resting and reactive astrocytic gene loci at 24h under (A, C) normal and (B, D) inflammatory 

conditions. Plots display Pearson's correlation coefficient indicating correlation levels between 

RNA-seq and ATAC-seq data, along with corresponding p-values (considering differentially 

B A 

D C 
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expressed genes with adjusted p value < 0.05 and differentially accessible peaks with false 

discovery rate (FDR) < 0.05). Blue and orange dots represent marker genes, which are significantly 

differentially expressed (adjusted p value < 0.05), have more than 2 fold positive change 

(upregulation) or more than 2 fold negative change (downregulation) respectively in gene 

expression and have a significantly differentially accessible peak (FDR < 0.05) in their promoter 

region. Red lines represent the regression line of correlation between fold change in gene 

expression and accessibility. 
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Figure 7. Reconstructed gene regulatory networks under normal conditions. TF-TF 

regulatory network at (A) 24h and (B) 72h time points. Color legend represents differential 

accessibility of the TFs (green: upregulated; red: downregulated; grey: not differentially 

accessible).    
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Figure 8. Reconstructed gene regulatory networks under inflammatory conditions. TF-TF 

regulatory network at (A) 24h and (B) 72h time points. Color legend represents differential 

accessibility of the TFs (green: upregulated; red: downregulated; grey: not differentially 

accessible). 
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4.2.3 Supplementary Information 

Supplementary figures 

 

Supplementary Figure 1. Generation of pure and mature astrocytic populations. (A) Primary 

murine neurospheres (NSPs) were differentiated into astrocytes (DMEM, 10% FBS) for 2 weeks. 

Pictures show immunostaining of differentiated astrocytes labeled with Kir4.1, SLC1A2 or 

SLC1A3 (in green) together with GFAP (in red). Nuclei were counterstained with DAPI (in blue). 

Scale bar: 50 μm. (B-C) Primary murine neurospheres (NSPs) were cultivated for 72h in an altered 

differentiation medium (DMEM, 0.5% FBS, 1% B27 (- vitamin A), 2 ng/ml EGF). Pictures show 
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immunostaining of undifferentiated and differentiated NSPs at different time points (24h, 48h and 

72h) labeled with antibodies against (B) GFAP (green) and MAP2 (red) or (C) O4 (green) and 

GFAP (red). Nuclei were counterstained with DAPI (in blue). Scale bar: 50 μm. (D-E) 

Magnification of (D) MAP2+ neurons (red) and (E) O4+ oligodendrocytes (green). Scale bar: 50 

μm. 
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Supplementary Figure 2. Assessment of the validity of the in vitro model. (A-B) Gene 

expression levels of (A) Gpld1 and (B) Ccnb1 obtained from the transcriptomics analyses of GFP+ 

cells sorted from ALDH1L1-GFP transgenic mice comparing cells isolated at P4, P10 and P21 

[25]. Results are shown as log FC relative to P4. (C-D) Primary murine neurospheres (NSPs) were 

cultivated under proliferation conditions or differentiated into astrocytes for 24h, 48h and 72h. We 

used GLAST magnetic beads to separate GLAST/SLC1A3+ and GLAST/SLC1A3- cells by 

MACS. Graphs show RT-qPCR results of Mki67, Ccnb1, Gfap and Gpld1 in (C) 

GLAST/SLC1A3+ and (D) GLAST/SLC1A3- cells. Bars represent the mean ± SD of 2 

independent experiments.  
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Supplementary Figure 3. Gene expression analyses for specific astrocytic markers and 

chromatin peak distribution comparing normal and inflammatory conditions along NSP 

differentiation. (A-F) Heat maps showing gene expression of specific astrocytic markers 

classified in various categories: (A) “developing and differentiated astrocytes”, (B) “reactive 

astrocytes”, (C) “A1 astrocytes”, (D) “A2 astrocytes”, (E) “glycogen activity” and (F) “glucose 

metabolism”. Heat maps represent normalized (z scores) raw gene expression counts of 

differentially expressed genes (adjusted p value < 0.05) in normal (24h vs 0h, 72h vs 24h) and 

inflammatory (24h TNF vs 24h and 72h TNF vs 72h) conditions. (G) Volcano plots showing the 

distribution of open and closed differentially accessible peaks at different time points upon 

astrocytic development between treated and untreated NSPs (24h TNF vs 24h and 72h TNF vs 

72h). 

 

Supplementary Figure 4. Enrichment analysis of transcription factors in gene regulatory 

networks under normal conditions. (A-B) Gene Ontology terms for (A) 24h and (B) 72h time 

points. (C) Venn diagram showing the comparison between 24h and 72h. 
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Supplementary Figure 5. Enrichment analysis of transcription factors in gene regulatory 

networks under inflammatory conditions. (A) Venn diagram showing the comparison of 

astrocytic differentiation between physiological and inflammatory conditions at 24h. (B-C) Gene 

Ontology terms for (B) 24h and (C) 72h time points. (D) Venn diagram showing the comparison 

of astrocytic differentiation between physiological and inflammatory conditions at 72h.   
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4.3 Feedback loops based regulation in cell-cell communication  

4.3.1 Preface 

In the study “Feedback loops in cell-cell communication identify key regulators of allergy and 

tolerance” we aimed to utilize cell-cell communication based network to identify regulators of 

allergy and tolerance using feedback loops analysis. Allergic diseases have seen a dramatic rise in 

their prevalence over the past several decades and these diseases put a lot of pressure on the 

medical system. Allergies are caused by persistent or repetitive exposure to environmental entities 

known as allergens resulting in the development of allergic inflammation. Further, tolerance can 

be induced to counter this inflammation and has been used to develop therapies for allergic 

diseases. 

 In this study we present a new computational tool C3Loop (Cell-Cell Communication 

based feedback Loop), to find key molecular regulators by identifying feedback loops in cell-cell 

communication networks. We made two novel contributions to this study, firstly this was the first 

time immune cells have been characterized from different tissues during various timepoints 

including the development of allergy, its resolution and induction of tolerance from this mouse 

model of allergy and AIT. These cells are responsible for the hyper-inflammatory response in the 

tissue upon encountering an allergen. Secondly, a novel computational tool is developed to identify 

feedback loops in the cell-cell communication network in the tissues. These feedback loops sustain 

the state of the cells in a tissue. These feedback loops can be both pro- and anti-inflammatory based 

on the type of molecules involved in the loops. We used this information about the feedback loops 

to identify and characterize them across tissues and timepoints. Sensitivity analysis is then 

performed using variation in computational parameters to the tool to remove bias due to ad hoc 

parameters. This sensitivity analysis also allows for curation by the selection of targets that are 

consistent across parameters. Comparisons are then performed between conditions to determine 

the regulators involved in feedback loops. These regulatory targets identified were then curated 

based on their possible role in allergy and tolerance. We propose a set of novel genes expressed 

by specific immune cell types that can be utilized to develop therapies and explore the mechanisms. 
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Abstract 

Over the last decades the incidence of allergic disease has risen proving to exert considerable social 

and economic burdens on society. Allergen sensitization involve different cell to cell 

communication mechanisms and inflammatory process. Allergen specific immunotherapies (AIT) 

stands as the only curative treatment for allergic diseases that is able to reinstate immune 

homeostasis. As allergen sensitization, AIT is known to involve immune cell crosstalk leading to 

the induction of tolerance. Cell-cell communication plays a vital role in immune responses by 

shaping the functionality of the cells and the coordination between them. Feedback loops between 

the cells of a tissue are responsible for the maintenance the tight inflammatory/tolerance 

equilibrium. Here we developed C3Loop (cell-cell communication based feedback loop), a novel 

computational tool for the identification of feedback loops in the cell-cell communication between 

cells in allergic reaction and in a highly successful model of AIT. Using these feedback loops, key 

regulators of the communication networks that play vital role in maintenance of allergen 

inflammation and tolerance in tissues were identified. 

 

Introduction 

The prevalence of allergic diseases is rising globally. Industrialized countries show a higher 

prevalence of allergy than non-developed countries, yet low- and medium-income nations are 

experiencing a sharp rise as they become more industrialized over time (Pawankar 2014). In a 

healthy state, the type 2 T helper response and allergen-specific immunoglobulin (Ig) E (IgE) 

production are necessary and beneficial to defend the organism against extracellular parasites, such 

as helminths. However, when the Th2 response is dysregulated or misdirected, allergic diseases 

appear. Allergy occurs when harmless antigens from foreign sources such as food, pets, pollen and 

others are not tolerated by the immune system of the host (Bluestone 2011, Giardino, Gallo et al. 

2016). Allergic diseases develop in two clear and distinctive steps. In the first phase, known as the 

sensitization phase, the immune system meets the allergen for the first time and remains poised to 

react to it in future encounters. During this phase, allergen specific IgE is produced by plasma cells 

and accumulated on the surface of allergy effector cells such as eosinophils and mast cells 

(Lambrecht and Hammad 2014). During the second phase, or effector phase, allergen re-exposure 
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allows allergen binding to the IgE pre-loaded on the surface of allergy effector cells causing them 

to release soluble mediators that will cause the allergic reaction and leading toa variety of 

symptoms depending on the organ or tissue where this occurs (Yao, Chen et al. 2021). Due to the 

immunological nature of allergy, it is crucial that therapies for allergic diseases not only treat 

symptoms but also tackle the underlying stratum of the disease, the Th2 cells. Indeed, classically, 

treatments of allergic diseases have been focused on reducing allergic symptoms by blocking the 

activity of the main allergic mediators. However, blocking allergy mediators is often not enough 

to fully treat the symptoms. Indeed, the most prominent downside of symptomatic drugs is that 

upon treatment discontinuation, symptoms commonly relapse (Chung, La Grenade et al. 2019). 

Therefore, curative therapies such as allergen-specific immunotherapy (AIT) often represent the 

best treatment option in the context of allergic diseases. AIT has long-term effects in providing 

sustained relief of symptoms and reducing the need for symptomatic medication (Akdis and Akdis 

2015). AIT stablishes immune tolerance by modifying the T and B cell compartment which are 

vital for implementing response towards the causative allergen (Marogna, Spadolini et al. 2010). 

One of the main and most described mechanism of AIT is the induction of T regulatory cells 

(Tregs) which has been described in both mice and humans (Palomares, Martin-Fontecha et al. 

2014). For this study, we used an adjuvated-AIT to treat experimental allergic asthma to cat. This 

model was published as a highly successful method to treat allergy in mice and mimicked many 

of the human features of disease and treatment (Leonard, Montamat et al. 2021). AIT effectively 

changes the immune system response to allergens to which coordination via cell-cell 

communication between the different specialized cell types is crucial.    

 The role of cell-cell communication is intrinsic to the immune response, activation and 

resilience of the immune system depend on the appropriate regulation of this communication 

between immune cells and resident tissues. Under various studies the role of cell-cell 

communication has been studied and established across cell types and tissues (Ruch 2002, Huang, 

Xu et al. 2022, Overton and Mastracci 2022, Valls and Esposito 2022). Ligands and receptors form 

a vital fraction of this communication. Ligands produced by cells form the signal which interacts 

with surface bound molecules called receptors on the cells (Heldin, Lu et al. 2016). Interactions 

between cognate ligands and receptors lead to the initiation of signal transduction via signalling 

networks in the cells that conclude into gene regulatory networks downstream. These signalling 
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changes end in transcription factors that lead to regulation of gene expression and production of 

ligands as response to the incoming signals (Weidemuller, Kholmatov et al. 2021).  

 Immune cells communicate with each other to understand and regulate their environment. 

The immune system is composed of various cells with their specialized functions in the relay of 

this communication. This division of labor has been well studied under various physiological and 

disease conditions (Swanson, Pelanda et al. 2013). For example, macrophages play the role of 

sentinels as part of the innate immune system keeping vigil in the body to find any points of 

dysfunction or damage that could be harmful. They communicate that information via cells like 

dendritic cells to cells of the adaptive immune system like B and T cells (Garcia 2019). Cells 

interact with each other mainly via cytokines and physical contacts to mount a response and shape 

the function of immune cells. This network of interactions contains loops between different cell 

types which provide regulatory control to the immune response. These regulatory mechanisms are 

required as to control the proliferation and function of the immune cells such that the cells do not 

damage other cells and tissues in the vicinity. Feedback loops are constructed when outputs of a 

system are connected to its inputs. In communication these loops are formed by connecting ligands 

secreted to their cognate receptors. Feedback loops form the basis of regulation between immune 

cells in various tissues as they play a vital role of coordination during immune responses (Rahman, 

Tiwari et al. 2018, Zhou, Fu et al. 2022). Both allergic inflammation and tolerance in the tissues 

require these feedback loops to maintain the state of the cells and the tissues. 

 In this study we employ a novel tool C3Loop, that identifies feedback loops in cell-cell 

communication between the cell types of a tissue. Prior studies have employed computational 

frameworks for investigating feedback loops (Jung, Potapov et al. 2021, Xin, Lyu et al. 2022), 

however, these tools are designed to work on small networks. As the number of interactions 

increase in a cell-cell communication, the possible feedback loops would increase exponentially 

thus making the computation of such large and complex systems very time expensive. In our tool 

we break down this problem by deconstructing the cell-cell communication network into strongly 

connected component (SCC) clusters and then using the bridges between the clusters to find 

feedback loops. The tool also takes into consideration both pro- and anti- inflammatory loops 

which have not previously been explored, hence taking a more holistic approach to disease 

modelling. Finally, the tool creates a ranked list of potential gene candidate targets of inflammation 
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or tolerance by comparing feedback loops between conditions. These targets are based on the 

number of both pro- and anti-inflammatory feedback loops that a certain gene is involved in. Based 

on which feedback loops, pro- or anti-inflammatory the genes are more involved in, we identify 2 

types of targets - allergy or tolerance respectively. The future aim of follow-up studies will be to 

interfere with those gene targets to prove the accuracy of our method and to identify them as 

potential candidates for new immunomodulatory therapies.  

 In this study, we generated a single cell RNA sequencing data set from specific immune 

cells from the Spleen and the peritoneal cavity (PC) of a highly successful CpG-AIT mouse model. 

These cells were extracted from 4 different timepoints at different stages during the AIT model to 

understand which feedback loops where important in each key phase of allergy modulation. The 

feedback loops-based analysis was performed by reconstructing the cell-cell communication 

network between the cells of a tissue. Key regulatory molecules and cell types were then identified 

using these feedback loops by performing topological analysis. 

 

Materials & Methods 

Animal welfare 

All experimental animal procedures and experiments were reviewed and approved internally by 

the animal welfare structure (AWS) of the Luxembourg Institute of Health (LIH) and ultimately 

authorized by the competent authority of the Luxembourgish Ministry of Agriculture under the 

European Directive 2010/63/EU. The protocols approved and used was DII-2019-05. 

High-dose CpG-ODN allergen-specific immunotherapy (hCpG-AIT) mouse 

model 

The hCpG-AIT model consisted of three main stages: allergen sensitization, treatment (hCpG-

AIT) and challenge. During the sensitization phase, the mice received three i.p. injections of 200 

μl every two weeks (days 0, 14 and 28) containing Fel d 1 (10 μg) and aluminum hydroxide (500 

μg), both diluted in PBS (Figure 1). Control mice received only aluminum hydroxide diluted in 

PBS. Two weeks after the last sensitization injection, the treated group of mice received three i.p. 

injections of 200 μl on days 42, 56 and 70 consisting of hCpG-AIT treatment containing CpG-
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ODN (21 μg) and Fel d 1 (10 μg) diluted in PBS. Non-treated mice received a vehicle containing 

only PBS (Fig. 1). Two weeks after the last treatment course, the mice underwent a daily allergen 

challenge in the form of a 50 μl nasal instillation (NI) of Fel d 1 (5μg) diluted in PBS on days 83, 

84 and 85 (Fig.1). All reagents and buffers used for the preparation of these solutions were free of 

endotoxin to prevent co-activation of any other too-like receptor than TLR9 during treatment and 

resemble the Good Manufacturing Practice (GMP) conditions necessary for human pharmaceutical 

products. Female BALB/cJRj mice were purchased from Janvier labs France (Strasbourg). 

 

Sorting and single-cell sequencing of key immune cells 

Mice were subjected to the protocol described above but sacrificed at key time points; day 43 (one 

day after first AIT injection, t1), day 82 (before nasal instillation challenge, t2) and day 86 (after 

full protocol completion, t3). Key immune cells previously identified in this model by mass 

cytometry (Leonard, Montamat et al. 2021) were sorted by fluorescence-activated cell sorting. B 

cells (CD19+), NK cells (CD49b+NKp46+), macrophages (CD11b+F4/80+CD11c-), classical 

dendritic cells (cDCs, CD11c+CD317-CD11b-) and plasmacytoid DC (pDCs, 

CD11c+CD317+CD11b-) were sorted from the peritoneal cavity (PC). The same immune cell types 

were sorted from the Spleen with the addition of T regulatory cells (CD3+CD4+CD25hiCD127lo) 

and T effector/memory cells (CD3+CD4+CD44+). To note that pDCs were only sorted from the PC 

from the hCpG-AIT condition since too few pDC are found in a steady state PC. Cells from two 

mice were pooled for each time point (t1, t2 and t3) and group of mice (control, allergic and hCpG-

AIT mice) (Figure 1). Cells were stained extracellularly  and sorted in a BD FACSAria™ III Cell 

Sorter individually in a cooled 384 well plate containing mineral oil provided by Single Cell 

Discoveries (Netherlands). Plates were immediately frozen at -80oC and shipped in dry ice to 

Single Cell Discoveries (Netherlands) for processing. 

 

Single cell RNA Sequencing 

Single-cell mRNA sequencing was performed according to an adapted version of the SORT-seq 

protocol (Muraro, Dharmadhikari et al. 2016). In brief, single cells were FACS-sorted into 384-

well plates containing 384 primers and mineral oil (Sigma). After sorting, plates were snap-frozen 

on dry ice and stored at −80 °C. For amplification, cells were heat-lysed at 65 °C followed by 

cDNA synthesis using the CEL-Seq2 protocol and robotic liquid-handling platforms 
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(Hashimshony, Senderovich et al. 2016). After second-strand cDNA synthesis, the barcoded 

material was pooled into libraries of 384 cells and amplified using in vitro transcription. Following 

amplification, the rest of the CEL-seq2 protocol was followed for preparation of the amplified 

cDNA library using TruSeq small RNA primers (Illumina). The DNA library was paired-end 

sequenced on an Illumina Nextseq 500. Reads were mapped to the reference transcriptome of 

mm10 with Burrows–Wheeler Aligner and counts were generated. 

Data cleaning and clustering 

Raw counts files were combined and integrated based on the condition of the mice from which the 

cells were extracted and sequenced. Integration is performed based on workflow recommended 

for Seurat integration (Satija, Farrell et al. 2015, Butler, Hoffman et al. 2018, Stuart, Butler et al. 

2019, Hao, Hao et al. 2021). Anchors were first identified in the data which are then used to 

integrate all the conditions to remove any bias in the data based on sequencing other 

technical/biological variations such as batch effects that could occur during sequencing. Clustering 

is then performed on the integrated data using Seurat and clusters are identified based on 

expression of known markers. 

Cell-cell communication network reconstruction 

Reconstruction of cell-cell communication was performed using the FunRes tool (Jung, Singh et 

al. 2021). FunRes first identifies conserved set of transcription factors and receptors in each 

cellular population and then the sustained intracellular signalling are recognised using a Markov 

chain model (Ravichandran, Hartmann et al. 2019). The active signalling genes are identified using 

this approach are then connected to the conserved receptors upstream and conserved transcription 

factors downstream of these signalling genes. The intercellular communication is then ascertained 

by linking the conserved set of receptors and ligands produced by the cellular populations. 

Bootstrapping is performed on the ligand-receptor network to get high confidence ligand-receptor 

interactions between cellular populations.    

Feedback regulation in cell-cell communication network 

To create feedback loops in the network the ligands are associated with the known set of 

transcription factors (TFs) identified in the previous steps. The association is done by calculating 

the shortest paths from the TFs to the expressed ligands in each cell type thus completing the 
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intracellular signalling starting from receptors and ending in ligands. These ligands are then 

connected to complete the communication network. This provides the basis of network for 

calculating feedback loops. Feedback loops are described as such when a path has the same starting 

and end points. For further details of the feedback loops algorithm refer to Supplementary data. 

Sensitivity analysis 

Computational tools have an inherent bias because of the choice of variables for the different 

parameters in the tool. We implemented a sensitivity analysis by performing the aforementioned 

feedback loop analysis using a range of parameters for variables that govern the generation of 

feedback loops in the communication networks. These variables include the path probability from 

signalling gene to conserved TFs, bootstrapping significance variable and feedback generation 

based on TF to ligand paths. This leads to production of communication networks that are distinct 

as variation in variables lead to loss of important nodes in the network.   

Target identification 

Immune feedback loops involve both inflammatory and anti-inflammatory interactions between 

cells. Similarly, the overall feedback in the tissues is responsible for either transformation of the 

tissue towards an inflammatory/disease or tolerance functional state for the tissue. We annotate 

the feedback loops by annotating individual genes as “pro-inflammatory”, “anti-inflammatory” or 

both. Feedback loops must consist of at least 2 of these interactions and the loops are annotated as 

pro- or ant-inflammatory based on the overall sum of pro-inflammatory and anti-inflammatory 

interactions in the loop. Individual interactions between the genes are annotated by using an OR 

logic between the genes. To ascertain targets for allergic and tolerance state of the tissue we apply 

a comparative analysis between feedback loops. Under the comparative analysis the targets are 

identified based on their involvement in feedback loops based on the type of target we wish to get. 

We identify the targets for allergic inflammation by comparing feedback loops in allergy vs control 

condition by calculating genes in more pro-inflammatory loops in allergy condition and less in the 

control condition. Similarly, tolerance targets are identified by ranking based on the number of 

anti-inflammatory feedback loops the gene is involved in. Further curation of targets was 

performed by identifying the cell type and level of gene expression across various conditions for 

the genes.  
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Results 

Identification of cell types and gene expression profiles  

Selected immune cells were extracted from the Spleen and peritoneal cavity (PC) from the three 

groups of mice- control, allergic and AIT- at various timepoints during the different stages of the 

mouse AIT (Fig. 1). Extracted cells were then sorted at a single-cell level using known surface 

markers by FACS and sequenced at Single Cell Discoveries (Netherlands). The SORT-Seq 

platform, an automated version of the CEL-Seq2 protocol (Hashimshony, Senderovich et al. 2016, 

Muraro, Dharmadhikari et al. 2016) was used. Quality measurement and pre-processing were 

performed using the Seurat package in R. The cell and transcript numbers per sample plate, 

distribution of detected genes were also analysed. After pre-processing, 9947 cells remained which 

were then clustered downstream using the recommended workflow. A mean of 4450 transcripts 

were expressed by the cells, which represent 1497 genes on average (SupplFig. 1A). The gene 

transcripts count, and genes expressed showed a correlation of 0.93 (SupplFig. 1B). Clustering 

was then performed by using anchor integration method in the Seurat package of data from the 

different samples. The number of clusters was then optimised using the silhouette score analysis 

of the clusters. Using the FindAllMarkers function all the top expressed genes for each population 

were investigated and dotplot was created from Seurat package in R to determine the expression 

of various markers in the identification of the cell clusters. 

 We identified and annotated 19 clusters using known literature genes based on CD markers. 

One of the clusters (Cluster 12) was removed from downstream analysis due to lack of known 

immune phenotypical markers in the population. The following cell populations were identified in 

our dataset: Natural killer cells (NK cell, Cd3- Nkp46+), Cxcr7+ Macrophage (Cd11bhi F480hi 

Cxcr7+ Ccr2- MHCII+), Ccr2+ Macrophage (Cd11bmid F480mid Cxcr7- Ccr2+ MHC2+), Cxcr2+ 

Macrophage (CD11b+ F480- Cd64+ Cxcr2+ MHCII-), pDC (Cd11c+ Cd11b- Cd317+ MHCII+), 

Cd4+ Ccr7+ DC (Cd11c+ Cd11bmid Cd4+ Ccr7+ MHC2hi), cDC1 (Cd11c+ Cd11b- F480mid MHC2+), 

cDC2 (Cd11c+ Cd11b+ MCHIIlo), DC (Cd11c+ Cd11bmid MHCIIhi), Non-follicular B cell (Cd19+ 

Cxcr5- MHCII+), Follicular B cell (Cd19+ Cxcr5+ MHCII+), Central memory Cd4+ T cell (Cd3+ 

Cd4+ Foxp3- Gata3- Cd44mid Cd62lmid), Effector memory Cd4+ T cell (Cd3+ Cd4+ Foxp3- Gata3- 

Cd44+ Cd62llo), Effector memory Cd4+ Th2 cell  (Cd3+ Cd4+ Foxp3- Gata3+ Cd44+ Cd62llo), 

Naive Treg (Cd3+ Cd4+ Foxp3+ Cd25hi Gata3- Ccr7mid), Active Treg (Cd3+ Cd4+ Foxp3+ Cd25hi 
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Gata3- Ccr7-), NKT cell (Cd3+ Ncr1+ Cd4+ Foxp3+ Gata3+) and Mast cell (Gata2+, Gp49a+) (Fig. 

2A,B).   

Effect of CpG-AIT on key cell types 

Some of the identified populations were found specifically enriched/depleted under certain 

conditions/timepoints. In peritoneal cavity (SupplFig. 2A), Non-follicular B cell, Cxcr7+ 

Macrophage and NK cell clusters were reduced at the CpG-AIT t1 timepoint. On the contrary, the 

NKT cell, pDC, Cxcr2+ Macrophage and Cd4+ Ccr7+ DC clusters were enriched in treated mice at 

t1 when compared to both non-treated groups. Indeed, a clear shift in the macrophage phenotype 

can be observed in the site of injection 24h after the treatment. We observed a switch from lower 

number of Cxcr7-expressing macrophages towards an enrichment of Cxcr2 macrophages. The 

Cxcr7+ Macrophage cluster was also depleted at Allergic t3, in favor of Ccr2+ Macrophages. 

Regarding population changes in the Spleen (SupplFig. 2B), we found depletion of the Cd4+ Ccr7+ 

DC, Activated cDC2 and cDC2 clusters, as well as a slight decrease in pDC and NK cell numbers 

for CpG-AIT t1 timepoint. Simultaneously, we observed that Central memory Cd4+ T cells, 

Effector memory Cd4+ Th2 cells, Mast cells, NKT cells and Cxcr2+ Macrophages were enriched, 

the latter having the same tendency as in the peritoneal cavity. The lower pDC number observed 

in t1 is still found at t3 in CpG-AIT vs Allergic. Similarly, CpG-AIT induces a persistent reduction 

of Central memory Cd4+ T cell in the CpG-AIT for t2 and t3 when compared to non-treated 

conditions.  

  

Reconstructed cell-cell communication networks 

Cell-cell communication networks were reconstructed for each time point, condition and tissue 

from which cells were extracted and sequenced. To compare the communication networks, a 

reconstruction was performed using default parameters of FunRes (Jung, Singh et al. 2021). The 

average number of populations in the communication network was 5 and 12 for peritoneal cavity 

and Spleen respectively. The communication networks consisted of 215 and 651 interactions on 

average respectively for PC and Spleen. 

 We compared the Ligand-Receptor (L-R) interactions for various networks (Control vs 

Allergic and Allergic vs CpG-AIT) to identify the combinations that are unique and shared 
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between the conditions. The comparison aids in identification of differential L-R interactions 

between the conditions of concern at various timepoints. We also inquired the role of individual 

ligands and receptors in the networks by analysing the fraction of interactions they were involved 

in. As expected, the top ligands and receptors perform basic physiological functions of regulating 

immune cells, cellular adhesion, and migration of cells. This obvious but important finding 

validates our tool since indeed these are genes that compose the fundamental core of cell-cell 

interaction between immune cells.  

 For all the timepoints (t1, t2 and t3) we performed two comparisons – Allergic vs Control 

and CpG-AIT vs Allergic, for both PC and Spleen. For t1, in the comparison Allergic vs Control, 

the cell-cell communication network for PC has 5 and 4 unique interactions in Allergic and Control 

condition respectively. We observed that Spp1 ligand interacts with Cd44 in Allergic whereas it 

interacts with Itga4 and S1pr1 in Control. For the comparison CpG-AIT vs Allergic, in the PC 

several receptors were unique to both conditions. Plaur is unique to Allergic while Il1rap, Il1r2, 

Tnfrsf1a and Ifngr2 were some of the unique receptors for CpG-AIT network (Fig 3A). In Spleen, 

for the Allergic condition comparison, the cell-cell communication network had unique 

interactions with Ccr1, Lifr and Nrp1 receptors compared to Control. For CpG-AIT condition the 

unique interaction included Il1rn-Il1r2, Ifng-Ifngr2 and multiple chemokines (Cxcl9, Cxcl10, 

Cxcl11) with receptor Cxcr3. While Ebi3-IL27ra and Tnf-Traf2 interactions were present in 

Allergic conditions (Fig 3B). 

 For t2 timepoint in PC, several interactions were found for the Allergic vs Control 

comparison with the receptors Ccr1, Ccr2 and Ccr5 being unique for Allergic condition. While for 

the CpG-AIT vs Allergic comparison Ifng interaction with both Ifngr1 and Ifngr2 were unique to 

CpG-AIT, interaction of Ccl7-Ccr2 and Ccl12-Ccr2 were only found in the Allergic conditions 

(SupplFig 3A). For the Spleen, in the Allergic vs Control comparison Cxcl10-Ccr3 is unique to 

Allergic conditions. In the CpG-AIT comparison, Tnfrsf1b interactions with Lta and Tnf are 

unique to CpG-AIT while multiple interactions with receptors Ccr2, Ccr3, Ifngr1, Ifngr2, Il2rg and 

Cxcr3 were unique to Allergic conditions (SupplFig. 3B).  

 At timepoint t3 in PC multiple cytokines interact with Ccr1, Ccr2 and Ccr5 receptors in 

Allergic conditions while the Cxcl13-Cxcr5 pair was found unique to Control. For the CpG-AIT 

vs Allergic comparison, Ccl7-Ccr2, Ccl2-Ccr1 and Ccl2-Ccr5 are unique to the Allergic conditions 
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while Spp1-S1pr1, Il1b-Il1rap, Cxcl13-Cxcr5 and Ifng-Ifngr2 are unique to CpG-AIT conditions 

(SupplFig 3C). In Spleen, the interactions Tnf-Tnfrs1a, Ifng-Ifngr1, Ifng-Ifngr2 along with others 

were unique to the Allergic conditions when compared to the communication network in Control. 

Lta-Tnfrsf1b, Ccl5-Sdc4 and Lpl-Lrp1 are unique to Allergic conditions compared to CpG-AIT 

while Ebi3-Il27ra, Ccl5-Cxcr3, Il6-Il6ra are unique to CpG-AIT, along with multiple cytokines 

interacting with Ccr1 were unique to CpG-AIT in contrast to Allergic conditions (SupplFig 3D). 

  We observed many interactions shared across the conditions at different timepoints and 

tissues in the re-constructed networks. These common interactions between the conditions 

demonstrates the common biological processes between the conditions which would represent 

basic functions required in the tissue. Similarly, we prove that a very well-studied immune disease 

such as allergy, and a highly efficient successful immunomodulatory treatment have distinct cell-

cell communication dynamics showcased by the distinctive feedback loops of each condition.   

Regulators of feedback loops 

To identify the key unique central regulators of allergy and tolerance we investigated the feedback 

loops in our reconstructed cell-cell communication networks using C3Loop. For this purpose, the 

intracellular signalling was extended from receptor to downstream ligands via the conserved set 

of receptors in each population. After the intracellular signalling was completed, these ligands 

were connected to their cognate receptors in all the cell populations in the network to form loops. 

The molecular regulators were then identified by detecting the feedback loops in the networks by 

using our algorithm. As the study is concerned with the pro- and anti- inflammatory processes, the 

feedback loops are also annotated as such by using literature based evidence of the inflammatory 

nature of each molecule involved. We next compared these feedback loops across conditions for a 

given timepoint to identify the regulators of allergic inflammation and tolerance. For this purpose, 

the Allergic vs Control and CpG-AIT vs Allergic comparisons pairs were performed respectively. 

The final set of targets were then ranked based on their involvement in pro- (Allergy targets) or 

anti- (Tolerance targets) inflammatory feedback loops across timepoints. The top ranked genes 

were considered as candidates and then curated based on biological knowledge of their role in 

allergy/tolerance. These candidates were considered across timepoints and tissues as these provide 

for higher confidence in the predictions. In addition, novelty, and feasibility to be translated to a 
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future treatment were also factored in the final selection of target genes for experimental 

validation.  

 The top candidates include various cytokines/chemokines along with their receptors, 

integrins and various phenotypic markers vital for cellular function of cells. We identified a final 

list of candidate targets based on their function, expression profile (Fig. 4 for Spleen and SupplFig. 

4 for PC) and novelty being predicted to be tested in subsequent validation experiments. The 

targets for allergic inflammation were predicted using the comparison Allergic vs Control 

conditions across tissues and timepoints and were then curated based on their role in allergy. For 

allergy the final predicted targets include Tnfrsf1a (TNFR1), Klrd1 (CD94), Fn1, Lpl/Lrp1, 

Adam17 and Mmp9. 

 We also identified the populations that expressed the key regulators of feedback loops in 

order to discover their possible roles during allergy and tolerance. Under allergic conditions in 

Spleen, Tnfrsf1a was relatively higher expressed in Effector memory Cd4+ Th2 cells in allergic t2 

and Cd4+ Ccr7+ DCs at Allergic t3 timepoint. Tnfrsf1a is also expressed in NKT cell, activated 

cDC2 and macrophage populations across various timepoints in both PC and Spleen. Klrd1 was 

expressed by pDC in Spleen as well as in NK cell in both PC and Spleen with higher expression 

in different Allergic and CpG-AIT timepoints. Fn1 was expressed across multiple cell types in 

both PC and Spleen with higher expression for t1 and t2 Allergic timepoints. Both Lpl and Lrp1 

were found to be expressed in many cell types mainly in macrophage and dendritic populations 

with significantly higher expression at Allergic timepoints in both PC and Spleen, Adam17 was 

expressed in most populations in both PC and Spleen with variable expressions across timepoints. 

Mmp9 was expressed in Effector memory Cd4+ Th2 population at Allergic t2 timepoint in Spleen 

while having relatively higher expression in NK, NKT and Follicular B cells in CpG-AIT 

timepoints.   

 Next, using the comparison CpG-AIT vs Allergic conditions we were able to identify 

regulators of tolerance in the cell-cell communication networks using our feedback loops 

algorithm. These genes can be targeted to inhibit the tolerance state induced by the cell-cell 

communication network and hence prove their role in the success of the therapy. Indeed, predicting 

and proving that these genes are important for reinstating tolerance in the context of allergy would 

make them ideal targets to be enhanced in AIT and therefore improve the effectiveness of the 
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therapy. The most interesting of these targets are as follows – S1pr1, Il1r2/ Il1rn, Lifr/Il6st, Il18r1. 

These targets were selected for their role in tolerance, expression across condition/timepoints (Fig. 

5 for Spleen and SupplFig. 5 for PC) and their novelty.  

 S1pr1 was highly expressed across B cell populations and macrophage in PC in CpG-AIT 

t1 and t2 timepoints as well as in Non-follicular B cell and Central memory Cd4+ T cell in Spleen 

in CpG-AIT t2 timepoint. Both Il1r2 and Il1rn were expressed mainly in macrophage populations 

across PC and Spleen with higher expression at CpG-AIT timepoints. Il6st and Lifr were expressed 

in dendritic populations in Spleen with higher expression in CpG-AIT while being expressed 

across multiple cell populations in PC. The expression of Il18r1 was higher at CpG-AIT t1/t2 

timepoints in the B and T cell populations of PC. In Spleen, Il18r1 was expressed at relatively 

higher expression at CpG-AIT t1 timepoint in Effector memory Cd4+ Th2 cells.   

 Apart from these top interesting candidates there was a plethora of attractive candidates 

which are involved in many biological processes. These genes perform basic functions for different 

cellular populations and targeting these genes could result in loss of functionality of the cells and 

may lead to disruption in immune responses. These genes can be classified in 3 categories, 

functional cell surface markers (B2m, C3, Cd19, Cd14, Cd3g, Cd247, etc), chemokines 

ligand/receptors (Ccl3, Ccl5, Ccr5, etc) and integrins (Itgam, Itgal, Itgav, Itgb7, etc). The 

functional marker genes are vital for different cellular populations and suppression of any of these 

genes would result is loss of functionality by their respective cell populations. These chemokines 

and their respective receptors have previously been studied for both pro- and anti-inflammatory 

roles. As chemokines play role in both migration and function of immune cells, inhibition of their 

genes can damage fundamental processes of the immune system. Lastly, the aforementioned 

integrins are responsible for migration and residence of cells in tissues and loss of these integrin 

proteins in tissues can dismantle the tissue structures as well. Therefore, these genes were not 

considered further as targets as their role is vital to immune system as well as to basic cellular 

functions. 
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Discussion 

The development of allergy occurs when an abnormal immune response is generated against an 

harmless environmental substance. The allergic response is accompanied by robust inflammation 

which may have a debilitating impact over an individual’s health. With the rising burden of 

allergies across the globe, it has become pertinent to understand the mechanisms involved in 

allergic inflammation to develop therapeutic strategies to counteract the inflammatory response 

either by inhibiting cellular or molecular entities that are at its origin. Allergic inflammation has 

been linked to the responses mediated by Th2 cells which secrete pro-inflammatory molecules that 

lead to hyperresponsiveness against the allergen. Th2 cells, while vital for understanding allergic 

immune responses, are part of a compendium of immune cells that are involved in these responses 

including dendritic cells, macrophages, regulatory T cells, other T cell subsets, etc. Under healthy 

conditions, these cell populations communicate with each other to regulate their response and 

maintain their functionality. Feedback loops between these cells are essential for maintenance of 

these functional states and the genes involved in these feedback loops constitute the key regulators 

of inflammation/tolerance between the cells. These regulators can then be purposed to develop 

therapeutic interventions against allergic inflammation and/or for tolerance induction. In this 

study, we generated gene expression data at single cell resolution using cells extracted at various 

timepoints of the sensitization, tolerance induction and challenge stages of a highly successful 

adjuvanted-AIT mouse model (Leonard, Montamat et al. 2021). Indeed, including the 

immunostimulatory CpG adjuvant in AIT strikingly reduces the burden of allergy, hence, it is the 

ideal model in which study how cell-cell communication feedback loops transition from an 

inflammatory and dysregulated state back to homeostasis and tolerance.  

 We used FunRes (Jung, Singh et al. 2021) to model cell-cell communication networks and 

used our new tool C3Loop to study feedback loops. This tool represents the next step in 

understanding not just the role that cell-cell communication plays in regulation of cellular 

functions but also the role of feedback in maintenance of cellular and tissues states. In order to 

identify these feedback loops, our tool starts first with completing the intracellular signalling 

between surface receptors and secreted ligands. This leads to completion of the cell-cell 

communication networks which can be used afterwards for feedback loop identification. Next, we 

use a deconstructing framework to make the process of this identification tractable both in time 
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and computationally. Identification of feedback loops allows for their annotation based on their 

role in inflammation which can be used to understand the role of different genes and cellular 

populations. These pro- and anti- inflammatory feedback loops play antagonistic roles and the 

balance between the two dictates the progress or remission of disease. Therefore, this tool can be 

utilized to identify target genes whose inhibition could disrupt different processes involved in the 

induction, progression or maintenance of diseases.  

Identification of immune cell types 

We identified various immune populations in the cells extracted across different stages of the 

experiment. Unexpectedly, although mast cells and NKT cells, specifically CD4+ NKT cells, were 

not included in the original sorting strategy (material and methods) we detected them in the 

downstream analysis of the scRNA-seq data in both the Spleen and PC. NKT cells could have been 

included among the sorted cell when sorting T cell and NK cells since they share many markers. 

In respect to mast cells, they could have been wrongly sorted when sorting myeloid cells such as 

macrophages, pDCs, DCs due to the complexity of this cell linage.  

We have found that macrophages change their phenotype upon treatment. Indeed, we found an 

enrichment of Cxcr2+ macrophages in detriment of Cxcr7+ macrophages after only 24h CpG-AIT 

at t1. Interestingly, the expression of Cxcr7 on macrophages have been associated with M1 (pro-

inflammatory) phenotype (Zhang, Zhang et al. 2020) and inflammation induction in several 

disease contexts such as atherosclerosis (Ma, Liu et al. 2013, Cai, Chen et al. 2020). Conversely, 

Cxcr2-expressing macrophages (M2, anti-inflammatory) have been associated with a tolerogenic 

and regenerative role (Di Mitri, Mirenda et al. 2019). Indeed, these two distinct phenotypes of 

macrophages fit the overall interpretation of the data as Cxcr2+ anti-inflammatory and regenerative 

macrophages are induced by CpG-AIT while Cxcr7+ inflammatory macrophages are dampened. 

Similar to macrophages, we have also observed crucial modulation of the DC compartment. 

Plasmacytoid DCs, crucial for tolerance induction under CpG-modulation conditions (Volpi, 

Fallarino et al. 2013), were shown to be increased in peritoneal cavity but decreased in the Spleen 

at t1. These phenomena could indicate a local recruitment to the site of injection but systemic 

migration of pDC to secondary immune organs, such as lymph nodes, to induce allergen tolerance. 

Further in timeline of the CpG-AIT model, pDCs are increased in both peritoneal cavity and Spleen 

at t3, solely in the CpG-AIT conditions. The interpretation of this result becomes complex since 
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no injection is performed in the peritoneal cavity at that point, but a nasal allergen challenge is 

applied. However, this generalized induction of pDC numbers could be due a specific tolerance 

reaction occurring only in previously treated mice due to the imprinting of innate immune cells 

trained immunity as described in other settings (Netea, Dominguez-Andres et al. 2020). Other DCs 

subtypes were also modulated by CpG-AIT. One of the most notable changes in DCs was the 

decrease of both cDC2 and activated cDC2 cells at t1 after CpG-AIT but not in the non-treated 

conditions. This result fits our previous observation (Leonard, Montamat et al. 2021) and brings 

another layer of evidence by which CpG-AIT can reduce allergy burden since cDC2 have been 

implicated in antigen presentation for the generation of Th2 cells (Kumar, Jeong et al. 2019). The 

Cd4+ Ccr7+ DC cluster was increased in PC while dramatically reduced in Spleen at t1 after 

treatment. This cluster of DCs follows a similar pattern as pDCs, which could indicate an increased 

migratory state. Indeed, Ccr7+ expression in DCs has been linked with migration (Jang, Sougawa 

et al. 2006) and favours the meeting of DCs with naïve T cells for antigen presentation (Brandum, 

Jorgensen et al. 2021).  

 In terms of adaptive immunity, we observed decreased non-follicular B cells in the 

peritoneal cavity indicating a possible migration of this cell type. However, the biggest effect in 

the immune adaptive immune system was found in CD4+ T cells. We observed higher numbers of 

central memory and effector memory Th2 CD4+ T cells at t1 only in the CpG-AIT conditions. This 

phenomenon is most likely derived from the fact that the CpG-AIT includes the causative allergen, 

hence antigen-specific CD4+ T cells, specially Th2 cells, would react and expand when presented 

with the allergen. Interestingly, the increase in central memory CD4+ T cells at t1 was followed by 

a persistent decrease of the same cells in the treated mice at t2 and t3, suggesting that CpG-AIT 

could be depleting part of the central memory and long living CD4 T cells pool responsible for 

perpetuating the allergic reaction. Surprisingly, we did not observe any changes in the number of 

both naïve and memory CD4 Treg cell subtypes.  

 Finally, and unexpectedly, we found that although NKT cells are not know to express 

TLR9 they are modulated by CpG-AIT, probably due to the indirect effect of TLR9-activated DCs 

and pDCs (Paget, Mallevaey et al. 2007). Contrary to the literature that attributes NKT a pro-

allergic role (Iwamura and Nakayama 2018), we found NKT cells induced by the CpG-adjuvanted 

AIT 24h after the first injection of the treatment in both the peritoneal cavity and Spleen, 
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suggesting that this cell type could be contributing to the success of the therapy. Indeed, these 

NKT cells induced by CpG-AIT are very different from the NKT cell types associated with allergy 

since they express FoxP3 and Gata3, transcription factors usually attributed to Treg and Th2 cells 

respectively (Fig. 2C) (Geginat, Paroni et al. 2014). FoxP3-expressing NKT have been described 

when induced by TGF- (Monteiro, Almeida et al. 2010). These cells have been implicated in 

tolerance situations such as cancer (Li, Peng et al. 2015), but the literature on this cell type is 

scarce. Interestingly, double positive Gata3+ FoxP3+ biTregs resembling the NKT cells we have 

found have been described to specifically supress Th2 cells and therefore could be crucial for the 

success of AIT (Sjaastad, Owen et al. 2021). Indeed, we have previously shown that such biTreg 

cell type is induced by CpG-AIT at t3 (Leonard, Montamat et al. 2021). To our knowledge, this is 

the first time that a FoxP3+ NKT cell have been described in the context of re-introduction of 

tolerance through AIT. In addition, to our best of knowledge this is the first time that double 

positive FoxP3+ Gata3+ NKT have been described in the mouse system and their possible 

contribution to an allergen tolerization process.  

Reconstructed cell-cell communication networks and ligand-receptor pairs 

Re-constructing the cell-cell communication networks allowed us to identify the ligand-receptor 

interactions between the different immune cell populations across timepoints and tissues in our 

experiments. We compared ligand-receptor interactions across conditions for all the timepoints 

and tissues. Using this comparison, we were able to identify most important ligand-receptor 

combinations.  

 Spp1 (Osteopontin) has been recognised as a selective marker for a macrophage 

subpopulation implicated for its role in infiltration and M2 polarization. It has also been associated 

with adverse outcome of various cancers (Dong, Wu et al. 2021). Cd44 is a transmembrane 

glycoprotein which is expressed by some leukocytes and has been studied for its involvement in 

both health and disease. Among other function, Cd44 plays important in leukocyte recruitment and 

may have both protective or disease promoting roles in asthma (Rothenberg 2003, Katoh 2021). 

Nrp1 is a transmembrane protein playing important roles in axon guidance, angiogenesis, and cell 

migration. Expression of Nrp1 on T cell and dendritic populations provides capacity to suppress 

anti-tumor responses. On Treg cells Nrp1 plays suppressive role in incidence of inflammatory 

diseases (Gaddis, Padgett et al. 2019). Plaur (Urokinase plasminogen activator receptor), which is 
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the cognate receptor for Plau, is a serine protease receptor and is involved in airway remodelling 

a clinical feature of asthma (Ierodiakonou, Portelli et al. 2016). Plaur also plays role in cancer-

associated processes such as metastasis, proliferation, cell differentiation and angiogenesis via 

cell-cell and cell-extracellular matrix interactions (Liu, Chen et al. 2021). Tnf is a pleiotropic 

cytokine, and its functions are mediated via two receptors Tnfr1 and Tnfr2 which act via NF-kB 

pathways. Interestingly for the reinstalment of tolerance, Tnf-Tnfr2 interactions plays role in 

activation, expansion, function, and stability of Treg cells. Tnfr2 expressing Treg cells have also 

been implicated in suppressive role in cancer immune invasion (Yang, Islam et al. 2021). Traf2 

mediates crosstalk between Tnfr1 and Tnfr2 receptors and thus dictates the outcomes of TNF 

stimulation. Traf2 is involved in negative regulation of apoptosis and necroptosis via Tnfr1 

signalling and is also necessary to keep the non-canonical NF-kB pathway inactive (Borghi, 

Verstrepen et al. 2016). Cxcl9, Cxcl10 and Cxcl11 are chemokines that act via Cxcr3 receptor 

expressed by a multitude of immune cells. Transduction of signals through Cxcr3 in the cells leads 

to activation of two major transcription factors Stat1 and NF-kB via PI3K/MAPK pathways. These 

ligands have been implicated in migration, metastasis, and tumour metabolism. Cxcl10/Cxcr3 

interactions particularly drives Th1 polarization while Cxcl11/Cxcr3 induces immunotolerance 

state in T cells (Li, Han et al. 2022). Further, higher affinity of Cxcl11 to bind with Cxc3 compared 

to Cxcl10 also suggests potential to restrain inflammation (Zohar, Wildbaum et al. 2014, Li, Han 

et al. 2022). Ccr1 is a chemokine receptor expressed by many immune cells which leads to 

activation and accumulation of cells in allergic airway inflammation. Deficiency of Ccr1 in mouse 

models of Asthma has indicated its role in regulating the levels of Th2 chemokines (Feng, Ju et al. 

2020). Ccr2 is involved in promotion of Th1 immune responses and is implicated in various 

inflammatory diseases. It is also an important receptor for mediation of monocyte recruitment and 

is required for pathogenesis of T cell- and macrophage- mediated inflammatory diseases (Izikson, 

Klein et al. 2000). Ccr3 plays critical role in allergic inflammation via the PI3K/AKT pathway and 

loss of Ccr3 gene has been implicated in reduction of eosinophilic inflammation and Th2 immune 

responses (Yuan, Liu et al. 2022). Ccr5 is a marker of Th1 cells, and its abrogation can alter Th2 

induced inflammatory response with studies demonstrating its role in development of OVA-

induced airway hyperresponsiveness (AHR) in a mouse model (Fuchimoto, Kanehiro et al. 2011). 

Il1r2 is associated with many aspects of pro-inflammatory Il-1 signalling, it competes with other 

Il1 receptors (Il1r1, Il1r3) for interaction with its ligands. Additionally, Il1r2 can sequester Il-1 
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ligands by its soluble form created by its enzymatic cleavage or alternative splicing (Supino, 

Minute et al. 2022). Ifng is an important regulator of both innate and adaptive immunity and is 

vital for regulation of inflammation. While Ifng is known as a major pro- inflammatory cytokine 

produced by a range of immune cells it has also been studied for its induction of tolerogenic 

characteristics in dendritic cells. In Tregs, Ifng plays intricate part in its regulatory functions 

(Rozman and Svajger 2018). Ifng signalling via Ifngr2 also causes switching from Th2 to Th1 

phenotype as Ifng has growth inhibitory and proapoptotic effects on Th2 cells (Schroder, Hertzog 

et al. 2004). IL-27 is a cytokine which influences both innate and adaptive immune responses and 

has both pro- and anti-inflammatory roles. IL-27 is also crucial in maintaining the balance of Th1 

and Th2 immunity. The role of IL-27 is dependent on the cells expressing and the specific disease 

environments (Povroznik and Robinson 2020). Ebi3 is a subunit of Il27 which has potential of 

inducing proliferative response, Th1 polarization and Ifng production in naïve Cd4+ T cells 

(Pflanz, Timans et al. 2002).    

Regulators of feedback loops – allergy targets 

The key regulators and targets for allergy were identified on the basis of the number of pro-

inflammatory feedback loops the genes were involved in. We also took into consideration their 

involvement in anti-inflammatory feedback loops. Allergy targets were selected as such due to 

their predominant involvement in pro-inflammatory loops but not anti-inflammatory loops. 

TNFR1 is a cognate receptor for TNF-alpha, a cytokine produced by a range of cell types and 

associated with most inflammatory diseases. Anti-TNF therapies have been successful in diseases 

like rheumatoid arthritis. Indeed, genetic inhibition of TNFR1 leads to blockade of TNF-a induced 

inflammation which reduces allergen-induced response (Sousa Garcia, Chen et al. 2017). Further, 

therapy based on local inhibition of TNFR1 has been established against allergic diseases by 

restricting allergen or antigen presentation (European patent – EP2746396A1). Klrd1(CD94) is a 

surface marker expressed as heterodimer CD94 with different isoforms of NKG2. CD94/NKG2 

regulate the effector functions and cell survival of NK and CD8+ T cells. CD94/NKG2 interacts 

with its ligand HLA-E in humans and its homolog Qa-1 in mouse (Gunturi, Berg et al. 2004). 

CD94 has been studied in tumor resistance (Kamiya, Seow et al. 2019) and NKG2A immune 

checkpoint inhibition has been used in development of cancer immunotherapy (van Hall, Andre et 

al. 2019). Interestingly for controlling inflammatory responses, CD94 has been shown key in 
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supressing CD4 effector T cells via CD8 T regulatory cells (Kim and Cantor 2011). Fn1 

(Fibronectin) is an extracellular matrix protein which plays key role in communication between 

intra and extra cellular environment and thus regulates cell behaviour. It has also been involved in 

systemic immune responses and has been studied for its role in eradication of pathogens (Sandig, 

McDonald et al. 2009). Moreover, it plays a critical role in development of fibrosis in heart, 

kidneys etc including during the remodelling of airways in allergen induced rhinitis and thus has 

been recognised as an interesting target for fibrosis. (Hirshoren, Kohan et al. 2013). Lpl 

(Lipoprotein lipase) is involved in the removal of lipoproteins and triglycerides from circulation 

and has been implicated in immunomodulatory role in allergic and skin diseases (Trakaki and 

Marsche 2020). Further, LRP1 (Low-density lipoprotein receptor–related protein 1), a cognate 

receptor of Lpl, plays vital role as a negative regulator for DC-mediated adaptive immune response 

in HDM induced airway inflammation (Mishra, Yao et al. 2018). ADAM17 also known as TACE 

cleaves cell surface proteins like cytokines, cytokine receptors and adhesion proteins. Adam17 

governs various pro- and anti-inflammatory responses required for appropriate response to damage 

and stress. The enzymatic function of Adam17 has been studied as a potential target for cancer 

immunotherapy (Wu, Mishra et al. 2019) and Th2 mediated diseases like allergies (Chen, Cheng 

et al. 2021). Matrix metalloproteinases (MMPs) are a family of enzymes involved in many 

physiological and pathological processes. MMP9 is involved in cell trafficking and inflammation 

by interacting with ECM proteins. Mmp9 protein levels activity has shown significant association 

with severity and inflammation in allergic asthma patients (Belleguic, Corbel et al. 2002). 

Inhibition of MMP9 has been demonstrated to decrease lymphatic inflammation and infiltration in 

allergen induced Asthma (Cataldo, Tournoy et al. 2002). 

Regulators of feedback loops – allergen immunotherapy targets 

Similarly, immunotherapy targets were selected based on their involvement in anti-inflammatory 

loops. These anti-inflammatory loops are responsible for countering inflammation in tissues. The 

anti-inflammatory loops are induced and sustained as part of inflammatory signals to the cells. 

Thus, in order to make sure that these targets are able to perturb tolerance we also take into 

consideration the pro-inflammatory feedback loops these genes are involved. 

 Sphingosine-1-phosphate (S1p) together with its receptor (S1pr1) are involved in 

lymphocyte trafficking, hence able to modulate immune responses (Syed, Raue et al. 2019). The 
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S1PR1-KLF2 axis also regulates migration of T cell out of the lymph nodes (Tindemans, van 

Schoonhoven et al. 2020). Further, in models of colitis S1PR1 signalling has been studied to 

govern the number and function of tumour associated T cell and Tregs (Priceman, Shen et al. 

2014). IL-1 pathway is involved in the generation of inflammation, angiogenesis, and 

haematopoiesis. Inflammation mediated through IL-1 contributes to many diseases like 

rheumatoid arthritis, type 2 diabetes, systolic heart failure and pustular psoriasis and inhibition of 

IL-1 signalling is considered a major target for development of therapies (Peters, Joesting et al. 

2013). IL-1RA is the main cognate receptor for IL-1 ligand. Il1r2 functions as a receptor antagonist 

to IL-1RA acting as a decoy receptor for IL-1 signal transduction. Similarly, Il1rn modulates the 

activity of IL-1 thus acting as a potent anti-inflammatory molecule and the equilibrium between 

IL-1 and Ilrn levels in local tissues influences the localized inflammatory effect (Godwin, Reeder 

et al. 2019, Tahtinen, Tong et al. 2022). Sortilin (Sort1) acts as receptor, co-receptor and trafficking 

regulator mediating immune responses via IL-6 signalling. Sort1 regulates secretion of cytokines 

involved in cytotoxicity and inflammation thus effecting immune functions across various cells. 

Sortilin expression has been implicated in Th1 response, antigen clearance and graft tolerance. 

Further,  the absence of Sortilin leads to defect in induction of macrophages and T cells leading to 

aberrant immune response against infections (Talbot, Saada et al. 2018). Leukemia inhibitory 

factor receptor (LIFR) is part of IL-6 receptor family which is an heterodimer formed of LIFR 

and gp130 (Il6st) as its subunits. Studies have shown that expression of this receptor is upregulated 

in circulating immune cells of untreated MS patients (Janssens, Van den Haute et al. 2015). 

Through its interaction with Lif, this receptor is involved in proliferation of T cells and induction 

of tolerance by Tregs (Metcalfe 2011). Il18r1 is a subunit of the Il18r receptor which is a member 

of the Il1 receptor family. Its cognate ligand Il18 along with Il18r have been implicated in several 

inflammatory diseases like Asthma by regulating both innate and adaptive immunity (Zhu, Whyte 

et al. 2008) plays important functions in the pathogenesis of asthma. The loss of Il18r1 from Treg 

cells leads to failure in controlling T cell mediated colitis in animal models (Harrison, Srinivasan 

et al. 2015). Further, reports have noted that IL-18 itself did not induce the differentiation of the 

Il18r1+ Tregs suggesting a prior polarization of the cells (Alvarez, Al-Aubodah et al. 2020). 

 Our study predicts key regulators of allergic inflammation and tolerance 

induction/maintenance. The cell-cell communication networks of two states, immune 

dysregulation and immune tolerance, were re-constructed utilizing our previously published tool. 
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The tool is then extended to complete the intracellular signalling and reconstruct the complete cell-

cell communication network. This completed cell-cell communication network can then be used 

to identify sustained feedback loops in each of the analysed conditions. While feedback loops have 

been studied for small networks with few nodes, larger networks pose an exponentially larger 

problem. Direct methods of feedback loop identification in these larger networks are both 

computationally expensive and have high time complexity as the number of possible feedback 

loops explodes exponentially based on connectivity of the network exponentially as the number of 

nodes and edges expand. We utilized a novel algorithm for detection of feedback loops in the 

communication networks between the cells. This algorithm is able to reduce both the 

computational time and memory usage by breaking down the larger network into smaller parts. 

The algorithm finds bridges between the clusters and therefore decreases the interaction and space 

that needs to be explored to identify all possible feedback loops in the networks. Topological 

analysis of the feedback loops allows the prediction of its regulators. Integrating biological 

information with the key regulators in these feedback loops, we predicted genes which can be 

inhibited to suppress the allergic inflammation or establishment of tolerance through AIT.  

 We predicted targets for inhibition of both allergic inflammation and tolerance by 

performing comparisons of Allergic vs Control and CpG-AIT vs Allergic respectively. The top 

targets predicted for allergy are TNFR1, Klrd1, Fn1, Lpl/Lrp1, Adam17 and Mmp9. All these 

genes have been previously identified to play crucial roles in inflammation. TNFR1 has been 

established as a therapeutic target for allergy, while the other predicted genes form a novel set of 

targets that could be explored for treatment of allergic diseases. Similarly, for inhibiting tolerance 

we predicted – S1pr1, Il1r2/ Il1rn, Lifr/Il6st, Il18r1. These genes are involved in induction and 

maintenance of tolerance by either generation of subsequent anti-inflammatory molecules or 

quenching pro-inflammatory molecules. While these genes have been studied for their roles in 

inflammation and for their expression on various cell types, they remain unexplored for tolerance 

induction and maintenance in allergy. Therefore, they have the potential be developed for novel 

therapeutic approaches. In addition, our results support the validity of our algorithm in identifying 

known and predicting new key nodes of cell-cell interaction in feedback loops in immune 

dysregulated environments as well as intolerance-inducing therapies. We expect this and similar 

tools to be used in future studies to screen available and newly produced single cell datasets to 
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better understand molecular disease pathophysiology and identify the key pathways to be 

modulated with a translational aim.  

 

Figure Legends 

Figure 1. Schematic diagram of mouse model and single-cell RNA sequencing experiment. 

BALB/c mice were subjected the sensitization on days 0, 14, and 28 followed by CpG-AIT on 

days 42, 56 and 60, finally allergen challenge was performed on days 83, 84 and 85.  The indicated 

cell tyoes sorted from the Peritoneal cavity and/or the Spleen of the three groups mice.  

Figure 2. (A) UMAP plot with annotated cell clusters (B) Dotplot of marker genes expression 

across all cell populations (C) Dotplot for expression of genes Foxp3, Ncr1 and Gata3 in cell 

populations. 

Figure 3. Setmaps for all unique L-R interactions across the conditions – Control, Allergic and 

CpG-AIT for (A) t1 PC (B) t1 Spleen. 

Figure 4. Scaled gene expression of allergy targets expressed in Spleen (A) Tnfrsf1a (B) Klrd1 (C) 

Fn1 (D) Lpl (E) Adam17 (F) Lrp1 (G) Mmp9  

Figure 5. Scaled gene expression of immunotherapy targets expressed in Spleen (A) S1pr1 (B) 

Il1r2 (C) Il1rn (D) Il6st (E) Lifr (F) Il18r1. 

Supplementary Figure Legends 

Supplementary Figure 1. (A) Distribution of number of genes and transcripts expressed by the 

cells. (B) Correlation plot between number of genes (Y-axis) and transcripts expressed (X-axis) 

by all cells in the data. (C) Distribution of number of genes (Left) and transcripts expressed (Right) 

for all the 384-well sequenced plates (X-axis).   

Supplementary Figure 2. Number of cells for all the cell populations across all timepoints and 

conditions in (A) Peritoneal cavity (PC) (B) Spleen. 

Supplementary Figure 3. Setmaps for all unique L-R interactions across the conditions – Control, 

Allergic and CpG-AIT for (A) t2 PC (B) t2 Spleen (C) t3 PC (D) t3 Spleen. 
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Supplementary Figure 4. Scaled gene expression of allergy targets expressed in PC (A) Tnfrsf1a 

(B) Fn1 (C) Lpl (D) Klrd1 (E) Adam17 

Supplementary Figure 5. Scaled gene expression of immunotherapy targets expressed in PC (A) 

Il1r2 (B) Il1rn (C) S1pr1.  
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5 Discussion 

Multicellular organisms are made up of cells each with its specialized function. This specialization 

is a combination of a cell lineage and its environment (Morris 2019). The cell receives signals 

from its environment which regulate the expression of genes that impart the cell its functionality 

(Gosselin, Link et al. 2014, Chacon-Martinez, Koester et al. 2018). These environments are made 

up of the neighbouring cells that via multiple ways can influence the cell including soluble 

molecules, physical contact, etc (Alberts B 2002). Cells secrete soluble molecules known as 

ligands which can bind to structures called receptors on the surface of other cells it is called a 

Ligand-Receptor (L-R) interaction and is an important part of cell-cell communication. Early 

research in the field required overexpression/inhibition experiments of ligands/receptors to study 

their role in biology (Singh, Phillips et al. 2000, Schneider, Willen et al. 2014). As ligand-receptor 

interactions are promiscuous which means multiple ligands can bind to multiple receptors with 

receptors also having subunits makes their study experimentally problematic. Recent advances in 

high-throughput data generation have provided an important opportunity to create computational 

models of cell-cell communication. These computational models have been helpful not only in 

studying these interactions under physiological conditions but also have been utilized to 

understand the role various genes play in the dysfunction of cells due to disease. While this growth 

in data has fuelled advancement in our understanding of the role of cell-cell communication in 

health and disease conditions. There remain many limitations in the field that still need to be 

addressed. This thesis presents three studies that study cell-cell communication and its influence 

on cells including the role of signals from the niche in creating functional cell states within 

celltypes, the effect of ligand perturbation on the transcriptome and epigenome of the cells and the 

role of feedback loops in maintaining the state of tissues. These studies focused on both aspects of 

filling the gap in our basic understanding of the role of cells in heath as well as the identification 

of therapeutic targets in case of disease. 

5.1 Characterization of functional heterogeneity and niche induced cell states 

Functional heterogeneity in cells serves a vital purpose in the maintenance of homeostasis as these 

cells can be used to play various roles as required under conditions of stress. This functional 

heterogeneity is shaped and maintained by the signals coming from a cell’s niche. The niche in a 

tissue is composed of all the other cells in the tissue providing sustained signals and shaping the 
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functional state of the cells by contributing to the signalling and transcription factor profile of these 

cells. Cell-cell communication provides a new and promising approach to understanding the role 

of tissue in regulating these functional states. This approach also helps gain an understanding of 

the role other cell types play in maintaining the cell states thus opening new avenues in developing 

strategies to revolve the detrimental effects of aging and disease on various cell types. 

 We designed a new pipeline and produced a computational tool to identify these functional 

cell states using the cell-cell communication network of the tissue. The tool relies on celltype 

annotated single cell gene expression data to re-construct these cell-cell communication networks. 

We identified the states across celltypes and tissues from various datasets to identify their 

functional role in the tissues.  

5.1.1 Strengths 

Leveraging the advantages provided by single cell resolution of emerging techniques the tool 

ventures into the applications of cell-cell communication. FunRes uses transcription factor (TF) 

conservation as the starting point of its pipeline as the transcription factors play a dominant role in 

molding the function of the cells. The pipeline also uses a previously established model of 

signaling to re-enforce the cell-cell communication model. The final part of reconstructing the cell-

cell communication model uses a scoring method comparing individual interactions with the 

background of all the interactions. These steps used in the reconstruction of cell-cell 

communication add to the confidence of the tool’s predictions. The high confidence level of these 

predictions is also supported by the manually curated protein-protein interaction and ligand-

receptor scaffold used in the pipeline.  

 We next demonstrated the effectiveness of the tool by applying it to multiple datasets of 

aging and disease. The datasets in total consisted of 177 cell types which provide a broad range of 

the tool’s application. The cell states were then validated using literature evidence providing 

support to the tool’s results. The tool provides for an effective tool for the reconstruction of cell-

cell communication network which can also be useful in developing our understanding of the 

changes that occur during aging or disease. The variation in cell states can help devise strategies 

to counter the adverse effects of aging or disease in cells. The validation also accompanies a 

comparison of cell states for cell types across tissues. This cross-tissue analysis provides insights 

into the states shared and specialized to tissues, which have been previously studied as well.   
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 Finally, we compared FunRes with state-of-the-art clustering methods (SC3, Seurat and 

SINCERA) to establish the effectiveness of the tool. We observed higher accuracy compared to 

all the tools in identifying functional cell states by FunRes. Demonstrating the usefulness of using 

a tool based on cell-cell communication in the identification of functional cell states. 

5.1.2 Limitations 

As the tool is based on single cell RNA sequencing (scRNA-Seq) data it is also accompanied by 

limitations of these technologies. scRNA-Seq technologies provide a wide range of depth in their 

sequencing which is a measure of the number of transcripts required by the sequencer to produce 

counts which leads to dropouts in the data. Further, the interactions data that we use in the 

reconstruction of the cell-cell communication network are not complete and biased as certain 

molecules have been much more studied in comparison to others. As part of the characterization 

of the cell states identified we utilize known markers. But these markers were not designed for cell 

states and have been designated as cell type markers under various contexts. Thus, the idea of 

using them for characterizing cell states is far from perfect but these are the best available literature 

evidence to support the study. 

5.2 Identifying impacts of perturbation in cell-cell communication 

Cells reside in different microenvironments which can regulate their function and changes in the 

environment can lead to shifts in the function of the cells. These kinds of changes are even more 

prominent when they occur during highly controlled processes like development which require a 

specific set of signals to be received by the cells from their microenvironment. These signals are 

then responsible for changes in the transcriptional and epigenetic landscape of the cells which can 

lead to dysregulation of cellular function as they modify the developmental path taken by these 

cells. 

 Here we studied the changes in the transcriptional and epigenetic profiles of astrocytes 

developing in normal and inflammatory conditions. As inflammation is a component in many 

neurological disorders and astrocytes are a major component of the central nervous system the 

study uses omics technologies to study the effects of inflammation on these cells.  
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5.2.1 Strengths 

The study intends to fill the gaps in our current knowledge regarding the development of astrocytes 

under inflammation. For this purpose, we used a previously established model of Astrocyte 

development and studied the role of TNF- a master inflammatory cytokine known to be involved 

in various inflammatory processes both in healthy and disease conditions. This study involved the 

usage of a multi-omics method to study the gene expression and chromatin accessibility of the 

astrocytes during the developmental process. We employed the bulk RNA-sequencing and ATAC-

sequencing techniques to explore the changes in astrocytes at a genome wide level. Using the 

generated data, we re-constructed the gene regulatory networks (GRNs) for various timepoints. 

The GRNs are re-constructed using a manually curated TF-TF interaction scaffold and then further 

contextualised using the gene expression data to create high confidence regulatory networks. The 

topological analysis of these networks assists in the identification of regulatory genes involved in 

astrocyte development. Owing to the role astrocytes play in various neurological disorders with an 

inflammatory component these genes can be used in advancing therapeutic targets for these 

disorders.    

5.2.2 Limitations 

While the study uses advanced omics technology to study the development of astrocytes, these 

techniques have their limitations. First, the study utilised an in-vitro model of the development of 

astrocytes, while these models provide an important method to examine the role of inflammation 

in their development the model cannot be translated directly into therapies without establishing 

them in in-vivo models. The RNA-Seq provides a snapshot of the transcriptome thus not favorable 

to studying the dynamics of development further the transcriptome expression does not correlate 

with the protein expression of the genes adding to the limitations of the technologies involved. 

ATAC-Seq technology intends to capture the accessibility of transcription factor binding to the 

promoter regions in the genome. While this technique does offer information about the epigenetic 

landscape of the cells, it cannot be used to study other epigenetic markers like histone 

modifications. The GRN re-construction is also constricted by the fact that the TF-TF interactions 

database used in the study while proving high confidence interactions remains incomplete. Further, 
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it would be important to test our predicted targets using knockdown experiments to establish their 

functional role in astrocytic development.        

5.3 Feedback loops based regulation in cell-cell communication 

Allergic diseases pose a growing challenge in health across the world and are caused when the 

immune system responds aberrantly to certain environmental factors called allergens. The immune 

system is composed of various cell types and the coordination between them is important to 

provide appropriate immune responses. Feedback is an important aspect of the maintenance of 

cellular states by a constant exchange of information in form of signals between the cells. 

 In this study, we explored the role of feedback in cell-cell communication by implementing 

a computational tool that identifies feedback loops after re-constructing the cell-cell 

communication network in a tissue. We utilized this tool on a model of allergy and tolerance to 

identify the molecular and cellular regulators of allergy and tolerance. This study generated 

scRNA-Seq data from immune cells which play specific roles in the immune system in the context 

of allergic disease and its therapy. We propose novel targets that can be utilized moving forward 

to understand the mechanisms of allergic diseases and develop therapies. 

5.3.1 Strengths 

In the biological context, the study utilizes a novel model of allergy induction and its resolution 

by installing a tolerant state in the tissue. We studied a subset of immune cells for this purpose by 

generating single cell resolution gene expression data from the cells across two tissues from 

multiple timepoints across the experiment. On the computational front, the study introduces a 

novel computational tool with identifies feedback loops in re-constructed cell-cell communication 

networks. The cell-cell communication network is reconstructed using an upgraded model of a 

previously published cell-cell communication tool. The strengths of the computational tool also 

include the use of manually curated interactions to model the TF-TF interactions and cell-cell 

interactions. Further, the tool resolves the issue of the time taken in calculating the feedback for 

larger networks by using an algorithm that can break the problem down into smaller pieces and 

solve them. These feedback loops aid in the identification of molecular and cellular targets of 

allergy and tolerance. The targets were then validated using literature to create a list of possible 



158 
 

therapeutic targets. This study has novelties in both computational and biological sections along 

with strengthening the conceptual role of cell-cell communication and feedback regulation in the 

maintenance of allergy and tolerance states in tissues. Also, the code for the feedback tool and data 

generated by this study will be made available using open-source databases for the research 

community. 

5.3.2 Limitations 

This study intends to push forward our understanding of cell-cell communication and the role 

feedback play in the maintenance of tissue states. But still there remain certain limitations to this 

study. First, the in-vivo study of the mouse model is intended to develop strategies for human 

allergies while mice provide a good model there still are known differences between mouse models 

and human physiology. The study also is constrained by other technical limitations of the 

technology used to generate the gene expression data along with changes that occur during the 

processing of the cells. The study in its current form is also limited in its applications because 

while our molecular targets have been validated using literature evidence it is necessary to provide 

experimental evidence. We are currently in process of resolving this limitation by performing 

perturbation experiments for the therapeutic targets identified by the tool. 

5.4 Outlook 

This thesis through its research projects explores important aspects of cell-cell communication. 

But as previously mentioned this research work accompanies certain limitations. Here we discuss 

the future avenues of further research from different perspectives – technical, biological and 

conceptual. Implementation of such new frameworks should allow for better optimization in 

modelling processes involving communication between cells. This would allow a better and more 

accurate understanding of biology and could help develop therapeutic strategies that remain 

unexplored. 

Overcoming technical limitations 

The computational tools developed in this thesis and the wider research community depend upon 

the evolution of high-throughput technologies. The data produced by these technologies serve as 



159 
 

the backbone of the computational tools being developed (Berger, Peng et al. 2013). In the projects 

“Characterization of functional heterogeneity and niche induced cell states” (sections 4.1) and 

“Feedback loops based regulation in cell-cell communication” (sections 4.3) we have utilized 

single cell RNA-sequencing datasets which rely on the technologies developed recently that count 

the number of transcripts in individual cells (Jovic, Liang et al. 2022). These technologies are 

limited by the technical resolution in the depth of capturing the number of genes and minimum 

transcripts that can be processed using these technologies. Further, the data generated in the study 

“Identifying impacts of perturbation in cell-cell communication” (section 4.2) is bulk RNA-seq 

and ATAC-seq data to study developing astrocytes, usage of single cell resolution data in similar 

time series based study could help understand the developmental process of important cells like 

astrocytes in CNS, as well as changes in their functional cell states under inflammatory conditions 

thus providing a better understanding of core developmental/differentiation processes and the 

impact of inflammation has on these processes. This study also relies on the integration of 

transcriptomic and epigenetic information of cells, but the data does not belong to the same cells. 

Only recently, technologies have been developed to study both transcriptomics and epigenomics 

in the same cell at single cell level (Reyes, Billman et al. 2019). Usage of these new technologies 

can greatly exemplify the knowledge gained during such experiments providing a more systematic 

understanding of the developmental process in cells that perform key functions like astrocytes in 

CNS. Also, ATAC-seq data can only retrieve knowledge of chromatin accessibility in cells but is 

unable to take into consideration other epigenetic markers of DNA acylation and methylation that 

control the expression of genes (Jaenisch and Bird 2003). Therefore, to capture information of the 

regulatory mechanisms in cells it is essential to develop techniques to capture multi-OMICS data 

from the same cell. 

Incompleteness of biological knowledge in literature 

The studies in this thesis utilize knowledge of biological interactions from the literature to model 

ligand-receptor interactions as well as signalling and gene regulatory networks. This knowledge 

has been acquired over decades of experimental research that has yielded high confidence 

interaction knowledge of components of all the networks that in combination make cell-cell 

communication feasible. Expansion in the knowledge of these interactions could help identify 

previously unknown channels of communication between cells and the possible role they play in 
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the functional regulation of cells. In the study “Characterization of functional heterogeneity and 

niche induced cell states” (sections 4.1) we utilize known markers to identify functional cell states. 

In absence of relevant cell state/subtype markers for the celltypes in our datasets, we had to use 

celltype markers to identify these cell states (Trapnell 2015). Aggregation of cell state markers 

could be highly useful to characterize the exact cell states/subtypes like those discovered using our 

FunRes tool. Investigation using better cell state markers could further facilitate understanding the 

states that appear or vanish during aging/disease conditions (Ponting 2019). The tool also provides 

the receptor-TF combinations that regulate these cell states thus facilitating gene targets for 

developing therapeutic approaches by modulating cell states. Also, in the study “Feedback loops 

based regulation in cell-cell communication” (section 4.3) we use known markers to annotate cell 

clusters identified in the project. The study is the first sequencing experiment for cells extracted 

from mouse treated by hCpG-AIT. The cell clusters identified in this study could potentially help 

in better annotation of cells in further experiments using hCpG-AIT treatment against allergic 

inflammation. In the same study the annotation of feedback loops is done as pro-/anti- or both 

based on literature evidence. Many of the molecules were annotated to be involved in both 

processes, while this may be fundamental to biological processes a better determination of 

involvement of the genes in either pro- or anti- inflammatory processes could be advantageous in 

assessing possible targets of allergic inflammation and tolerance induction thus advancing work 

on identification of therapeutic targets against allergic diseases as well as other disease involving 

inflammation/tolerance.       

New conceptual frameworks for biological processes 

The conceptual frameworks implemented in various computational tools are an essential part of 

understanding biological processes. In the study “Characterization of functional heterogeneity and 

niche induced cell states” (sections 4.1) we used the knowledge that cells are shaped by the signals 

they receive from their niche. The identity of these cells belonging to specific celltypes are based 

on certain markers but in a different niche, the same cell types acquire different functional states. 

This framework was able to infer cell states in celltypes across tissues, with shared and distinct 

receptor-TF combinations demonstrating the advantage of using our new framework. For the study 

“Feedback loops based regulation in cell-cell communication” (section 4.3), we developed a novel 

framework involving feedback loops in cell-cell communication. The role of feedback has been 
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already established in the maintenance of cell and tissue states (Brandman and Meyer 2008, 

O'Brien 2022). We implemented this new framework to identify gene targets for allergy and 

tolerance. These studies demonstrate the importance of developing these new conceptual 

frameworks to understand the underlying biology. While these studies have explored some aspects 

of cell-cell communication, its role in many fundamental biological processes such as homeostasis 

(Valls and Esposito 2022) and self-organization (Hiraiwa 2020, Japon, Jimenez-Morales et al. 

2022) remains unexplored. The development of computational tools that could model these 

processes would be beneficial in understanding the role of different cellular signals and responses 

in biological systems.  

 

6 Conclusion 

Development of therapeutic targets against diseases requires an accurate characterization of the 

role of different celltypes and genes involved in the dysregulation of cells. Cell-cell 

communication provides a new avenue of research to determine the role of different cellular 

populations and the genes that regulate their functionality. This thesis aimed to perform studies 

and develop computational tools that improve our understanding of the role cell-cell 

communication plays in cellular function. These projects focus on the limitations of existing tools 

and fill the gap in current knowledge in the literature. 

In summary, this thesis provides the following contributions:  

- Development of a new method to resolve cell states: FunRes is a novel computational 

tool designed to utilize a reconstructed cell-cell communication network to resolve 

functional cell states. It was applied to ageing and disease datasets to determine 

appearing/vanishing functional cell states. The tool has been developed in R and its code 

for FunRes is publicly available at: https://git-r3lab.uni.lu/CBG/FunRes.  

- Studying the development of astrocytes under normal and inflammatory conditions: 

The project was designed to study the development of astrocytes under normal and 

inflammatory conditions. Bulk transcriptomics and epigenomics data were generated 

during the project. Using an integrated approach GRNs were reconstructed and key genes 
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were identified. The code used to analyse the data and generate manuscript figures is in the 

private repository: https://git-r3lab.uni.lu/CBG/Astrosys. The bulk RNA-seq and ATAC-

seq data along with the manuscript code would be made public after publication.  

- Implemented a new method to identify key regulators of allergy and tolerance using 

feedback loops: C3Loop is a new computational tool that reconstructs cell-cell 

communication network and identifies feedback loops. The tool was utilized to find key 

regulators of allergic inflammation and tolerance induction in a mouse model. The code 

for C3Loop has been submitted to a private repository: https://git-

r3lab.uni.lu/CBG/C3Loop. The single cell RNA-seq data generated during the project 

along with the tool’s code would be made publicly available upon publication. 

 

Through the projects in this thesis, we explored the role of cell-cell communication through the 

development of an analytical study and two novel computational tools. These projects were 

envisioned to explore various aspects of cell-cell communication. Determining the part various 

cell types and states play in health and disease could provide a potential first step toward the 

development of new therapeutic approaches. These projects provide insights into biological 

processes by application of systems biology based computational modelling.  
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