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Abstract

The importance of data in transportation research has been widely recognized
since it plays a crucial role in understanding and analyzing the movement of
people, identifying inefficiencies in transportation systems, and developing
strategies to improve mobility services. This use of data, known as mobility
analysis, involves collecting and analyzing data on transport infrastructure
and services, traffic flows, demand, and travel behavior. However, traditional
data sources have limitations.

The widespread use of mobile devices, such as smartphones, has enabled
the use of Information and Communications Technology (ICT) to improve
data sources for mobility analysis. Mobile crowdsensing (MCS) is a paradigm
that uses data from smart devices to provide researchers with more detailed
and real-time insights into mobility patterns and behaviors. However, this
new data also poses challenges, such as the need to fuse it with other types
of information to obtain mobility insights. In this thesis, the primary source
of data that is being examined and leveraged is the popularity index of local
businesses and points of interest from Google Popular Times (GPT) data. This
data has significant potential for mobility analysis as it overcomes limitations
of traditional mobility data, such as data availability and lack of reflection of
demand for secondary activities.

The main objective of this thesis is to investigate how crowdsourced data
can contribute to reduce the limitations of traditional mobility datasets. This
is achieved by developing new tools and methodologies to utilize crowd-
sourced data in mobility analysis.

The thesis first examines the potential of GPT as a source to provide
information on the attractiveness of secondary activities. A data-driven
approach is used to identify features that impact the popularity of local
businesses and classify their attractiveness based on these features. Secondly,
the thesis evaluates the possible use of GPT as a source to estimate mobility
patterns. A tool is created to use the crowdness of a station to estimate transit
demand information and map the precise volume and temporal dynamics
of entrances and exits at the station level. Thirdly, the thesis investigates
the possibility of leveraging the popularity of activities around stations to
estimate flows in and out of stations. A method is proposed to profile stations
based on the dynamic information of activities in catchment areas. Through
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this data, machine learning techniques are used to estimate transit flows at
the station level. Finally, this study concludes by exploring the possibility of
exploiting crowdsourced data not only for extracting mobility insights under
normal conditions but also to extract mobility trends during anomalous
events. To this end, we focused on analyzing the recovery of mobility during
the first outbreak of COVID-19 for different cities in Europe.
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Chapter 1

Introduction

1.1 Context and motivation

Mobility in Europe is undergoing significant changes [1]. The European
Commission predicts that by 2030 automated mobility will be deployed
at large scale, and that traffic on high-speed rail will double [2]. These
transformations are driven by a variety of factors, including advances in
technology, changing societal attitudes, and a growing focus on sustainabil-
ity [3]. One of the key drivers of change in mobility is the proliferation of
new technologies [4], such as electric and autonomous vehicles, as well as
the development of new transportation services and platforms, such as ride-
sharing and micromobility options. These technologies and services have the
potential to revolutionize the way people move around and access transporta-
tion, offering more convenient, efficient, and sustainable options [2][3]. The
success of digital mobility services is heavily reliant on the availability and
utilization of data. Digitalization, the process of converting information and
data into digital form and using digital technologies to transform traditional
processes and systems, has played a vital role in enabling the development of
these new mobility services. Through digitalization, it has become possible
to create digital systems and platforms that enhance the movement of people
in a more efficient and convenient manner.

Why data is important for mobility?

Data plays a crucial role in the mobility of modern cities. It helps to un-
derstand and analyze the movement of people, identify bottlenecks and
inefficiencies in the transportation system, and develop strategies to improve
individual mobility choices as well as the offered mobility services [5]. Ex-
amples of data for mobility are the routes that people are taking, the modes
chosen to they reach their destination, the time of day that travel is occurring,
and the level of congestion on the roads.

17



Data enables mobility analysis, which is a fundamental tool in transporta-
tion. This process involves the collection and analysis of data pertaining to
transport infrastructure and services, traffic flows, demand, and travel behav-
ior. By utilizing this data, mobility analysis aims to enhance the efficiency of
transportation systems. Through mobility analysis, transportation authorities
can identify patterns and trends in travel behavior, and use this information
to improve the efficiency of the transportation system [6]. An example of the
use of mobility analysis can be found in public transportation (PT), where
data can be used in the short term to optimize routes and schedules, reducing
waiting times and increasing the system’s reliability [7]. While in the long
term, it can be exploited to identify areas of the city with high demand
for transportation services, and to plan for the deployment of additional
infrastructure or services to meet that demand [8].

More in general, data plays a vital role in the mobility of modern cities,
helping to optimize the transportation system and promote sustainable mo-
bility [9][10]. As the amount of data available to cities continues to grow,
it is becoming increasingly important for cities to develop the capacity to
effectively analyze and utilize this data to improve the mobility of their
citizens.

Traditional mobility data

However, the traditional data sources exploited in mobility analysis such as
traffic counts and public transit ridership can have several limitations [11].
One limitation is data availability [12]. These data sources may not be
available for all regions or may be limited in scope, making it difficult to get
a comprehensive understanding of the transportation system state in every
location. Additionally, traditional data sources can suffer the problem of
granularity, i.e. the data may not be updated frequently, which can make
it difficult to get an updated picture. Another limitation of traditional data
sources is data accuracy [13]. These data sources may not be completely
accurate due to measurement errors or data quality issues [14]. This can lead
to incorrect or misleading conclusions. Furthermore, traditional data sources
frequently do not adequately reflect the demand for secondary activities.
These activities, such as leisure or recreational, may be overlooked in data
collection efforts but can still be a significant factor in terms of mode choice.
In recent years, advances in technology and the increasing availability of
data from new sources have helped to address some of these limitations [15].
The use of these new data sources can help to improve the accuracy and
relevance of transportation data and make it more widely available, enabling
transportation planners and researchers to make more informed and effective
decisions about transportation systems.

18



Crowdsourced data

Recently, new technologies have been introduced and deployed providing
multiple sources of data that can be utilized for mobility analysis [16]. The
widespread of mobile devices enables the use of Information and Commu-
nications Technology (Information and Communications Technology (ICT))
by unleashing the potential to improve the quality of mobility. The enor-
mous number of smart devices provides a potential source of data according
to the mobile crowdsensing (MCS) paradigm [17]. Mobile CrowdSensing
(MCS) leverages the collective intelligence and sensing capabilities of a large
number of mobile devices to gather, process, and disseminate data about
various aspects of the physical world [18]. These devices, also known as
sensors or crowd sensors, are typically carried by individuals and can be
equipped with a variety of sensors such as cameras, microphones, GPS, ac-
celerometers, and more. The information obtained from MCSs is called
Crowsourced/Crowdsensed data. Crowdsourced data has the potential to
revolutionize the way we collect, analyze, and use data about the world
around us. It allows us to gather information from a wide range of sources
and locations, and to do so in a timely and cost-effective manner. Crowd-
sourced data has been applied to a variety of fields, including environmental
monitoring [19], urban planning [20], and disaster response [21].

The main motivation behind this thesis is to explore the power of this
data for mobility analysis. However, also crowdsourced data come with its
own set of challenges; One of the main limitations of crowdsourced data
is that it is not collected specifically for mobility analysis, making it less
suitable for such purposes. To address specific research questions for mobility,
multiple data sources may need to be combined, which can lead to additional
challenges in merging the different sources. Also, crowdsourced data is not
made directly available by the providers, but often it is processed and offered
in an aggregated way to preserve privacy and anonymity.

Among other crowdsourced data currently being available, in this thesis
the main source we aim to study and leverage is the popularity index of local
businesses and points of interest via the Google Popular Times(GPT). Since
2015, Google has made available a new feature called GPT, which consists
of anonymized crowdsourced data passively collected from Google users.
This data provides the temporal profile of the number of people visiting a
place, such as a retail store, restaurant, or public venue. This type of data
has significant potential for mobility analysis due to its unique advantages
over traditional mobility data.

One advantage is its availability. Transportation system data is often
difficult to obtain, as it requires new data collection efforts and may not be
readily available in certain areas. GPT data, on the other hand, is already
provided by Google and is globally accessible, making it possible to obtain
mobility analysis in areas where traditional transportation data is not typically
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available. Another advantage is the information on places and local business
activities, which can provide valuable insights into secondary activities that
are difficult to obtain from traditional mobility data.

However, there are some drawbacks to using GPT for mobility analysis.
One limitation is the lack of transparency in the data pre-processing. While
Google provides the processed data in an aggregated and normalized form,
the exact methods and algorithms used for this processing are not disclosed.
This lack of transparency can make it difficult to fully understand and trust
the results obtained from GPT data. Another limitation is the fact that
GPT data does not directly provide information on mobility. To gather
mobility information from GPT data, it must be carefully processed and
analyzed. Despite these limitations, GPT data can still be a valuable source of
information for mobility analysis if properly used and interpreted. This thesis
seeks to investigate the potential of GPT data as a source of information for
mobility analysis, taking into account its limitations.

1.2 Objectives and Contributions

This dissertation aims to explore how crowdsourced data can contribute to
mobility by formulating a list of objectives translated into research questions
(RQ). The main RQ of this thesis can be formulated as follows:

Main RQ

How can we leverage novel crowdsourced data for mobility analysis,
and overcome the limitations of traditional data sources?

Following this broad Research Question (RQ), this thesis aims to con-
tribute to the knowledge on how crowdsourced data can be leveraged for
mobility analysis and to provide insights that may be useful for researchers,
policymakers, and other stakeholders interested in mobility. To investigate
this potential, we identified several specific sub-questions related to the main
RQ. One of the key contributions of this thesis is to improve the understand-
ing the potential of crowdsourced data for addressing the RQs, and which
may require additional data sources or approaches.

Each chapter in this thesis focuses on addressing a specific sub-question,
generating a corresponding contribution. Fig 1.1 shows all research questions
and the chapters where they are addressed together with the corresponding
contribution.

As stated in our main research question, the objective of this dissertation
is to understand the strengths and limitations of using crowdsourced data
for mobility analysis, and to identify specific areas where it can be effectively
utilized. To achieve this, we start by investigating the unique insights and

20



contributions that crowdsourced data brings to the field of mobility. To this
end, the first RQ is formulated as follows:

RQ1

What are the key differences between crowdsourced data and tradi-
tional transport data in terms of their potential for mobility analysis?

We argue that crowdsourced mobility data is different from traditional
mobility data in different ways, and can add value to traditional data sources
by providing additional insights and information. Answering this first RQ
will be crucial for the rest of the dissertation, as it will provide the founda-
tion for our exploration of the potential of crowdsourced data for mobility
research. This RQ aims to identify the key ways in which the potential of
crowdsourced data can be useful for mobility research, as well as the main
differences between crowdsourced and traditional approaches to collecting
and analyzing mobility data.

In order to provide a solution to RQ1, Chapter 2 presents a comparison
between crowdsourced and traditional mobility data. This comparison in-
cludes a detailed analysis of the different limitations of both data types, as
well as an examination of the state of the art of studies that have used these
data sources for mobility analysis. The chapter also explores the potential
contributions that each data type can offer for understanding and improving
mobility in various contexts.

To aid in the evaluation of the different data types, the chapter introduces
a scoring scheme that is designed to assess the suitability of each data source
for a given research objective or application. This scoring scheme takes
into account various aspects such as accessibility, temporal dynamics, and
disaggregation. By using this scoring scheme, researchers can more easily
identify the strengths and weaknesses of each data source and select the
most appropriate for their particular needs. Overall, the contribution of this
chapter is to provide a comprehensive comparison of the two types of data
and a framework for evaluating their suitability for mobility analysis. The
main challenge of this contribution is to determine a standardized approach
for evaluating the different aspects of different sources of data.

Among all the different types of crowdsourced data, one stands out as
particularly useful for mobility analysis: GPT. This dataset is notable for its
availability and granularity, which make it well-suited for analyzing mobility.
Specifically, from Chapter 2 emerge that the impact of GPT on mobility
analysis is twofold. First, the ability of GPT to provide dynamic information
about points of interest allows for the analysis of secondary activities, which
are often overlooked in mobility research. In addition, the characteristic of
wide availability allows mobility planners and researchers to gain insights
into regions where traditional mobility data is not available. These two main
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Figure 1.1: List of RQs with link with the chapter where the RQ is addressed,
the main challenge and the contribution

benefits of GPT for mobility prompted us to further investigate these aspects.
To this end, we formulated two sub-research questions, one for each potential
of GPT for mobility research. First, in order to more deeply understand the
potential of GPT for secondary activities analysis we formulated the following
RQ:
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RQ2

Can GPT be used to classify local businesses to understand dynamic
demand profiles?

GPT data can be a valuable resource for understanding the popularity and
attractiveness of local businesses (local business (LB)s). By analyzing the GPT
at LBs, it is possible to identify patterns and trends of attractivity that may be
influenced by a variety of factors, such as the type of business, location, and
centrality. The objective of this RQ is to investigate the relationship between
the GPT of LBs and their attractiveness. This is important for mobility analysis
because it provides dynamic information on trends in secondary activities
in a city. Traditionally, mobility research on secondary activities has relied
on static data sources, such as OpenStreetMap data, or has required a lot of
effort to collect information through travel surveys. GPT can provide a more
direct and updated understanding of secondary activities, improving the
analysis of mobility. In Chapter 3 we address RQ2, by proposing an analysis
where we use GPT to examine LBs with the goal of identifying factors that
influence their popularity and using machine learning techniques to classify
the category and attractiveness of LBs based on these factors. Our approach
has two main contributions: to identify the features that can impact the
popularity of LBs, and to classify the category and attractiveness of LBs based
on these features. The main challenge in this RQ is the normalization of the
data, which can make it difficult to distinguish between different types of
LBs with varying capacities.

Having established the opportunity of GPT for secondary activities we
can then focus on the second contribution of this novel data for mobility
research. This second potential involves exploiting GPT to obtain information
on transportation systems where data may not be available or accessible. The
next research question will specifically investigate this possibility using the
example of a specific transportation system, the transit system. The RQ is
formulated as follows:

RQ3

Can GPT be used to estimate mobility patterns such as transit demand
information?

GPT do not provide in fact direct information about mobility flows. How-
ever, the goal of this research question is to determine if it is possible to
develop a methodology to process GPT in order to extract the mobility flows
of transit stations. This objective could result crucial because understanding
transit flows can help evaluate the efficiency and effectiveness of the transit
system, and such data is not always available everywhere or may only be
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available for limited periods of time.
In Chapter 4, RQ3 is analyzed. We focus on examining the relationship

between the GPT of a transit station and the actual transit flows at the
station. We begin proposing a preliminary analysis of the correlation between
these two types of data. Then the main contribution of this chapter is the
development of an estimation tool that uses GPT data to estimate the transit
flows at the station. This tool is designed to exploit the GPT data for the
station itself in order to provide an estimate of the transit information (in-
and outflows) at the station. The main challenge of this approach is to
estimate two flows using a single value. Specifically, we are employing one
single dataset, the GPT of the station, to estimate the in- and outflow of
transit users at transit stations.

The estimation tool presented in Chapter 4 requires real transit data for
training purposes. The intended use of this tool is for researchers or mobility
planners to input a limited or general amount of transit data, such as a yearly
report, and for the tool to utilize the GPT of stations to provide a precise
and current estimation of long-term transit data. This contribution addresses
RQ3 by demonstrating the ability to extract transit flows from GPT. However,
it does not exhaustively explore the potential of GPT to provide transit
information in situations where such data is completely absent. As a result, in
order to fully investigate this aspect, the focus of the following problem is on
adapting the proposed estimation tool to obtain transit information without
requiring any transit data. The problem is formulated on the following RQ:

RQ4

How can we convert GPT data into transit demand information auto-
matically?

This research question focuses on the potential of GPT to extract tran-
sit information, to be used alone without combining it with transit data.
Specifically, the main question is whether it is possible to obtain transit flows
from the estimation tool developed, without having to rerun the training
procedure that uses transit information. In order to address this RQ, it is
necessary to consider the previous contributions obtained from RQ2 and RQ3.
The former demonstrates the potential of GPT to offer valuable insights into
the dynamics of secondary activities, while the latter presents an estimation
tool for extracting transit information. For RQ4, the aim is to merge these
findings and attempt to utilize the popularity of secondary activities as a
substitute for the initial data required in the estimation tool. To summarize,
the objective behind this RQ is to leverage the popularity of activities around
stations as a determinant for estimating flows in and out of stations.

In Chapter 5 we address Research Question 4 by developing a model that
is able to estimate the transit flows at a station without the need for training
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data. Specifically, we use the GPT for the activities around the station as a
substitute for the transit flows data of the station. The goal of this model is to
enable the estimation of transit flows at a station even in cases where transit
information is not available. This can be crucial for transportation planners
and researchers who need transit data in areas where such information is
not accessible or does not exist. By using the model to estimate transit flows
based on the GPT for the surrounding area, it may be possible to provide
valuable insights into the transit flows at a station even in the absence of
traditional transit data. The challenge connected with this RQ is that different
cities can have different structures, which can make it difficult to compare
the areas around stations in different locations. This requires adapting the
model to take in consideration for the unique characteristics of each city, such
as the type and density of local businesses, sociodemographic information,
and other factors that may influence transit flows of stations.

The previous sub-research questions have primarily focused on the utility
of crowdsourced data, such as Google popular times (gpt), for analyzing
mobility trends and flows under ordinary conditions. However, it is also
important to consider how such data can be used to understand mobility
during anomalous events, which are occurrences that disrupt the normal
functioning of transportation systems and significantly impact mobility pat-
terns. These events may include natural disasters, public health crises, or
other unexpected situations. The last research question aims to investigate
the potential of using crowdsourced data to analyze mobility during anoma-
lous events and gain insights into how these events impact mobility patterns.
The RQ is formulated as follow:

RQ5

Can Crowdsourced data be used to analyze mobility during anomalous
events?

Anomalous events, such as natural disasters or public health emergencies,
can have a significant impact on mobility patterns. These events can disrupt
transportation networks, change the way people move within a given area,
and affect the demand for different modes of transportation. This research
question aims to understand how crowdsourced data can be used to analyze
mobility patterns during such events, and how these patterns may differ
from the patterns observed in standard conditions. Chapter 6 addresses
the research question of how anomalous events, such as the COVID-19
pandemic has influenced mobility patterns. Our contribution is an analysis
of multiple cities using crowdsourced information available from datasets, to
understand the changes in mobility patterns during the outbreak and recovery
of the pandemic. We analyze data for multiple modes of transportation,
including driving, walking, and transit, in order to identify patterns of
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similarity between major European cities. The challenge of this RQ was
the need to analyze the mobility of different cities using multiple types of
data, including crowdsourced data and COVID-19 cases information. This
required merging and integrating different datasets in order to understand
how mobility patterns were influenced by the pandemic in each city. This
process can be complex and may require adapting data analysis techniques to
account for the unique characteristics of each dataset and the way it reflects
mobility patterns.

1.3 Thesis Structure

This thesis is composed of four parts. Part I introduces the thesis (with
context, motivation, objectives of the thesis and the addressed challenges),
background and the state of the art. Then, Part II proposes solutions to
address the research questions regarding the use of GPT as an indicator
of mobility in standard conditions. It follows Part III which deals with the
research question on how to exploit crowdsourced data during special events.
Finally, Part IV concludes the thesis. The overall structure of the thesis it is
presented in Figure 1.2.

The manuscript is organized as follows:

• Chapter 2 presents essential notions required to read the dissertation.
The notions include an overview of the limitations of traditional data
collections for mobility and the possible solutions that can arise from
crowdsourced data, with an emphasis on Google Popular Times.

• Chapter 3 proposes an analysis of how GPT are correlated with zones
and Local businesses activities.

• Chapter 4 presents a tool that leverages as input GPT, and it is able to
estimate precisely the passenger flows of individual subway stations.
Our methodology is applied in 185 stations from two different cities:
New York and Washington D.C. The results are validated using two
months of transit count data from the stations of the two cities.

• Chapter 5 introduce the development of a model that is able to estimate
the transit flows at a station, exploiting the GPT of the surrounding
area around the station, the advantage of this method is that it does
not require training data from the transit and can be applied to cities
where this data is not available.

• Chapter 6 presents an analysis for multiple cities through crowd-
sourced information, to shed light on the changes undergone during
both the outbreak and the recovery of SARS-COVID-19 pandemic.

• Chapter 7 concludes the work and outlines future research directions .
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Chapter 2

Background

In this chapter, we address RQ1, “ How can we leverage novel crowdsourced
data for mobility analysis, and to overcome the limitations of traditional data
sources? “.

The purpose of this chapter is to provide a technical background and
overview of the current state of the art in datasets used for mobility analysis.
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This chapter aims to provide a comprehensive overview of the various
types of datasets that are used in mobility analysis and to highlight the
strengths and weaknesses of each type. By understanding the characteristics
and limitations of different datasets, researchers and analysts can make more
informed decisions about which data sources are most appropriate for their
specific needs and research questions. The chapter is divided into three main
sections. In the first section, we introduce a scoring scheme that we can
use to evaluate the different sources of data. In the following section, we
focus on traditional mobility datasets, which are commonly used in mobility
analysis. These datasets are typically collected from various sources such
as travel surveys, traffic counters, smart card data, etc. They provide a
wealth of information on the movement patterns of individuals, but they
also have certain limitations. For example, traditional mobility datasets may
not capture all forms of movement, and they may be impossible to access
in certain regions. Additionally, the accuracy and granularity of the data
may vary depending on the source. In the last section of the chapter, we
introduce novel crowdsourced data, which refers to data that is collected and
contributed by a large number of individuals through smartphones or smart
devices. Crowdsourced data has the potential to offer a more comprehensive
and detailed view of mobility patterns, as it can capture a wider sample of
individuals and can be collected from a more diverse set of sources. However,
crowdsourced data also has its own set of challenges and limitations, such as
potential biases in the data collection process and the need for effective data
cleaning and aggregation techniques.

2.1 Scoring scheme

In this section, we present a scoring scheme that we propose in order to
evaluate the various sources of data that are used for mobility analysis. This
scoring scheme is meant to compare the different datasets and assess their
strengths and limitations in terms of the specific needs of mobility analysis.
To do this, the scoring scheme entails several different aspects characterising
the data; To identify key features to assess in the dataset, we exploited the
classic big data evaluation method known as the 5Vs [22]: volume, value,
variety, velocity, and veracity. To tailor this method to the needs of mobility
analysis, we expanded these features as follows.

• To understand the Volume of the dataset, we took into account three key
factors: ease of collection, availability, and duration. By evaluating
the difficulty of obtaining the data, the level of accessibility of the data
and the duration for which the data can be collected, we can get an
overall insight into the scale and size of the dataset.

• The feature Value is directly related to the insights and knowledge
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that can be gained from the data, We translated such factor in direct
measure of mobility, which tells us which data directly measure the
movement patterns of individuals or groups.

• Variety looks at the different structures of data included in the dataset
and is formulated in terms of disaggregation level. This means evalu-
ating the dataset based on the level of detail it provides for different
aspects of mobility.

• Velocity covers the speed at which data is generated and is translated
into time dynamicity. This relates to the frequency at which the data
is updated, whether it is in real-time, daily, or weekly.

• Veracity addresses the quality and accuracy of the data and is translated
into sample size. This includes evaluating factors such as the represen-
tativeness of the data, the potential for bias, and the completeness of
the data.

For each aspect of the dataset, the scoring scheme assigns a score based
on how beneficial that aspect is for mobility research. The score is defined
on a scale from 1 to 3, where 1 indicates that the aspect is not useful for
mobility research, and 3 indicates that the aspect is extremely beneficial. By
applying this scoring scheme, we are able to identify and differentiate the
most appropriate datasets for a mobility study and understand how different
datasets may complement or substitute each other in order to provide a
comprehensive and accurate analysis of mobility patterns. In the remaining
part of the section, we will discuss the different aspects of the datasets that
we will analyze using the scoring scheme.

Ease to collect

Ease of collection is an important aspect of mobility datasets, as it refers
to the effort and resources required to collect the data. In the context of
mobility analysis, a dataset that is easy to collect is often preferred, as it
allows researchers to obtain the data more efficiently in terms of economic,
time, and human resources. For example, a dataset that can be collected
using automated or digital methods may be easier to collect than a dataset
that requires manual data entry or field collection.

On the other hand, a dataset that is difficult to collect may be less useful
for mobility analysis because it may require significant time and resources
to obtain. If the dataset requires more extensive resources to collect, it
may take longer to obtain, which may also influence the duration of the
data collection. This may be a concern for researchers with limited time or
resources. When evaluating the suitability of a dataset for a given mobility
project, it is important to consider the ease of collection of the data. Datasets
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that are easy to collect may be more efficient and cost-effective to obtain,
making them more suitable for mobility analysis.

Availability

Availability is an important aspect of mobility datasets, as it refers to the
ease with which the data can be accessed and used. A dataset that is widely
available is more likely to be used by researchers and analysts, as it is easier
to obtain and work with. On the other hand, a dataset that is not widely
available or that has strict access restrictions may be less useful for mobility
analysis, as it may be difficult or impossible for researchers to obtain and
work with the data. There are several factors that can impact the availability
of a mobility dataset. For example, the data may be made available through
a public portal or API, alternatively, the data may be proprietary and only
available to certain organizations or individuals, in which case access may be
more limited. In some cases, the data may be subject to legal or regulatory
restrictions, which can further impact its availability.

Disaggregation

The disaggregation aspect indicates the level of detail or granularity at which
the data is collected and presented. Disaggregation level is important for
mobillity analysis because it allows researchers to understand and analyze the
movement of individuals at a more detailed level. In case a dataset is highly
disaggregated, it may be possible to analyze the mobility patterns of specific
groups or categories of individuals, such as commuters or tourists, or to
examine the movement patterns within a specific geographic area. A dataset
that is not highly disaggregated may be less useful for mobility analysis, as
it may not provide sufficient detail to accurately understand and analyze
the movement patterns of specific groups or areas. For example, a dataset
that only provides aggregate data at the level of a city or region may not be
sufficient to understand the mobility patterns of specific neighborhoods or
groups within that city or region.

Time Dynamicity

The ability of a mobility dataset to track changes in movement patterns over
time is referred to as time dynamicity. This feature allows researchers to
observe the evolution of mobility patterns in different locations. A dataset
with high time dynamicity, which captures changes in mobility patterns within
a specific area over a longer period of time, can be useful for transportation
planning and infrastructure development. It can also provide a larger sample
size and be more robust for statistical tests and analyses. However, a dataset
with low time dynamicity, such as one that only provides snapshot data at a
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single point in time, may not have sufficient detail to accurately understand
the evolution of mobility patterns over time in different locations.

In summary, it is important to consider the level of time dynamicity
on mobility dataset and how it may impact the accuracy and reliability of
the analysis. Datasets with high time dynamicity offer more detailed and
granular data that can be used to better understand and analyze the evolution
of mobility patterns over time in different locations.

Direct Measure

Mobility datasets that directly measure the movement patterns of individuals
or groups, such as those using GPS traces or origin/destination matrices,
provide more accurate and reliable information about mobility flows. These
datasets are considered a direct measure of mobility and are useful for
understanding and analyzing mobility patterns. In case of no direct measure
of mobility a dataset may rely on indirect or inferred measures of mobility,
this could require an elaboration of the dataset that could lead to a loss of
accuracy.

Duration

The duration of a mobility dataset refers to the length of time over which
the data is collected and analyzed. In the field of mobility analysis, datasets
with longer durations are often preferred because they allow researchers
to examine longer-term trends and patterns. For instance, a dataset with a
duration of several years may provide insights into how mobility patterns
have changed over time and how they may continue to evolve in the future.
Consequently, datasets with shorter durations may be less useful for mobility
analysis because they may not contain enough data to accurately understand
and analyze mobility over different time periods. In general, it is important to
consider the duration of the data when evaluating the potential of a dataset
for mobility analysis. Datasets with longer durations provide more data that
can be used to better understand and analyze long-term trends in mobility.

Sample Size

The number of individuals or groups whose movement patterns are captured
in the data is known as the sample size, and it is a crucial aspect of mobility
datasets. When conducting mobility analysis, a dataset with a larger sample
size is generally preferred because it allows researchers to analyze the data
with greater statistical power and accuracy. For example, a dataset with
a large sample size may be able to provide insights into the movement
patterns of a diverse and representative group of people, making it more
representative of the overall population. Conversely, a dataset with a smaller
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sample size may not provide sufficient data to accurately understand and
analyze trends and patterns in mobility. Another property of small sample
size data is that are subjected to sampling bias, in which the data is not
representative of the overall population and may not accurately reflect the
true mobility of individuals or groups.

Figure 2.1: Scores traditional mobility data

2.2 Traditional mobility data

In this section, we will delve into the importance of understanding which are
the datasets in the field of mobility analysis. Understanding the strengths
and limitations of each datasets is fundamental to investigate the potential
of data for mobility analysis [23]. Therefore, it is crucial for researchers to
understand how to effectively analyze and utilize these datasets. Different
types of transport and mobility data can be gathered using a wide range
of techniques. To categorize the dataset that we include in our evaluation
analysis, we divide them according to the way they are collected. The
categories are as follows:

• Surveys: Data obtained from sources such as interviews, and adminis-
trative records fall under this category. An example of this is data from
travel surveys.

• Location-based Collection: Data that is collected from specific locations,
such as intersections, roads, and public transport stops, is classified
under this category. An example of this is data from traffic counters.
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• Paired Location Collection: Data collected from pairs of locations, such
as an origin and a destination, or two points along a route, fall under
this category. Examples of this include data from smart cards.

• In-Motion Collection: Data collected while in motion, using sources
such as GPS trackers and onboard sensors, is classified under this
category. An example of this is floating car data.

By analyzing this data, researchers can gain insights into mobility, and
identify potential areas for improvement in transportation systems. While
these traditional approaches have been successful in providing valuable
insights into mobility, it is important to recognize their limitations as well.
Figure 2.1 shows the scoring we associate to the different traditional mobility
data.

In this section we will provide a detailed overview of traditional ap-
proaches for collecting mobility data including the strengths and limitations
of these approaches, highlighting the unique insights they can provide as
well as their potential limitations.

Surveys: Travel Surveys

Travel surveys are a common method used to gather data on mobility patterns
and behaviors. These surveys are typically conducted through a variety of
methods, such as online questionnaires, phone interviews, or in-person
interviews, and are designed to collect information on how, when, and
why individuals travel. Travel surveys can provide valuable insights into
transportation patterns, such as mode choice, trip purposes, and travel
behavior [24]. As shown in Fig. 2.1, a low level of benefit for mobility
research is associated with the aspect of ease of collecting, this is due to
the fact that travel surveys are time-consuming and resource-intensive to
organize, especially if they are conducted over a long period of time. This
can be a challenge for researchers and organizations who are responsible
for collecting the data [25]. Consequently, travel surveys have a low score
for the availability aspect because the data is not easy to extract, making it
unavailable in many places. Additionally, even when the data is collected
for a specific area, it is often not made available by the collector. Travel
surveys tend to score highly on characteristics such as disaggregation, direct
measure, and time dynamicity because they provide detailed information at
the individual level with a very low level of disaggregation, direct information
about respondents’ trips, and information about the time when a particular
person made a trip. An interesting study that reviews the practice of capturing
and representing multimodal trips in travel surveys is [24], the authors
analyze the implications of common practices and make recommendations to
improve data collection. On the other hand, the lowest scores of this dataset
are associated with the aspects of duration and sample size. Gathering
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responses from a larger number of people may be more expensive and time-
consuming, but it can also result in more reliable results. A smaller sample
size may be easier to obtain, but it may also be less accurate. The same
trade-off can be seen with the duration of a travel survey: while a longer
duration may provide a more comprehensive and representative picture
of travel patterns and behaviors, it may also be more difficult to organize.
These two limitations, along with the possibility of incomplete reporting of
travel information by respondents, can all impact the reliability and accuracy
of this traditional mobility data [26]. Using GPS devices can enhance the
precision of travel surveys, as outlined in [27]. The authors present a
thorough examination of various techniques to exploit GPS Travel surveys for
identifying trips, determining modes of transportation, and determining the
purpose of travel. The article highlights the techniques utilized by researchers
in the field and evaluates their advantages and disadvantages.

Location-based Collection: Traffic Counters

Traffic counting devices are used to measure the number of vehicles that pass
a specific point on a road, and they are an important tool for traffic engineers
and planners. These devices come in many forms, with loop detectors being
the most widely used. Other types include pneumatic tubes, radar, infrared,
cameras, and acoustic sensors. ALl these types of devices are commonly
used in transportation planning and mobility analysis to gather data on
traffic volume, speed, and other characteristics of vehicle traffic. Traffic
counters are a commonly used tool in mobility research, in this section, we
will examine a few examples of mobility topics for which traffic counts can
be exploited. First, traffic counts can be used for transportation planning,
this data can be used to analyze traffic flow patterns, predict future traffic
demand, and develop transportation plans [28]. Another example of the
use of traffic counts is in the analysis of environmental impacts, traffic count
data can be used to understand the environmental impacts of transportation,
such as the contribution of transportation to greenhouse gas emissions [29].
Moreover, traffic counts have a high impact on land use, where it is used to
understand the relationship between land use and transportation, including
the impact of land use patterns on traffic flow and the accessibility of different
areas [30]. Overall, these examples demonstrate the utility of traffic counters
data in mobility research and transportation planning. By providing data
on traffic flow patterns and usage of transportation systems, traffic counters
can help researchers and planners understand the characteristics of mobility
and develop strategies to improve transportation systems and accessibility.
The scores of fig. 2.1 highlight how the strengths of this data are in the
aspects of duration and time dynamicity. Traffic counters, once installed,
can continuously collect information with a high time granularity without
any effort. Other positive scores are associated with ease of collection,
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direct measure, and sample size. Traffic counters require an initial cost for
installation, but once they are set up, the data collection process is usually
smooth. These devices provide information on the flow of vehicles passing
a specific location, which can be a valuable insight into mobility patterns.
However, traffic counters do not typically provide information on the origin
and destination of the vehicles. Additionally, while the sample size of traffic
data collected by these devices is often large, it is typically limited to main
roads, so it may not include data on traffic on secondary roads. However,
traffic counters are not without their limitations. The lower scores are linked
with the availability and disaggregation category. This data is not widely
available for all locations, as not all roads and highways are equipped with
traffic counters. This data is typically collected and analyzed by government
agencies and transportation departments, in some cases, this data may be
made available to the public but often may be available only for purchase
or through a special request. Regarding the disaggregation aspect, traffic
counters data is usually collected in an aggregated form, meaning that it
does not include detailed information about individual vehicles. However,
it is possible to obtain some level of disaggregation by dividing the data by
vehicle type.

Paired Location Collection: Smart Card data

Typical approaches infer mobility of public transport users’ from smartcard
data. These approaches look at a variety of topics e.g., to infer bus passengers
origin-destination [31], to extract information about passengers routines to
predict transportation usage [32], or to measure the impact of individual
characteristics on Public Transport (PT) accessibility [33]. The availability
score of this data is very low. One of the major challenges with this data is
that it is primarily controlled by public transportation authorities and only a
limited number make their datasets publicly accessible. As a result, research
utilizing smartcard data tends to be localized, with studies focusing on a
particular city where the researchers have been able to secure permission
to access and utilize the data. Smart card data has several strengths that
make it a valuable resource for researchers and analysts. One of the main
strengths is its time dynamicity, or the ability to track changes over time. By
collecting data on an hourly basis, researchers can see how usage patterns
and other factors change on a short-term basis. Another strength of smart
card data is its large sample size. Because it includes data from all users of
public transportation, it provides a comprehensive view of how the system is
being used. Other important characteristics include the ease of collection,
as the smart card system is already set up for the payment of tickets, so
there is no need for new infrastructure. The aspects of disaggregation and
direct measurement also score highly, as can be seen from Figure 2.1. This
is because smart card data often provides information at the user level and
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defines the entire trip of the user from the tap-in to the tap-out of the public
transportation system

In-Motion Collection: Floating car data

Floating car data (FCD) involves the collection of data from GPS devices in-
stalled in vehicles as they move around on the roads. This data can be used to
analyze various aspects of mobility, such as traffic patterns, road conditions,
and travel times. Floating car data (FCD) has been used to improve trans-
portation planning and operations by providing more accurate and up-to-date
information about traffic conditions. For example, transportation planners
can use FCD to identify bottlenecks or congestion on certain roads and make
adjustments to the transportation network to improve efficiency [34]. Simi-
larly, FCD can be used by transportation operators to optimize routes and
schedules, reducing fuel consumption and emissions [35].

In addition, FCD has been used to inform the development of new trans-
portation technologies and services, such as intelligent transportation systems
or ride-sharing platforms, and determine the demand that may be able to be
redirected from cars [36]. One of the main benefits of FCD is its ability to
provide real-time data about the movement of vehicles on the roads. This is
in contrast to traffic counters, which rely on fixed sensors or manual obser-
vations and may not be as up-to-date. FCD can also provide more detailed
and specific information about individual vehicles and their trips, as it is
able to collect data from individual vehicles. This allows FCD to provide
not only a snapshot of current traffic conditions but also direct information
about mobility patterns. The limitations of FCD are primarily related to the
data collection process. FCD is often collected using GPS sensors installed on
individual vehicles, which can be difficult to install on a large portion of the
vehicle population. This leads to a small sample size and can make the data
difficult to collect and potentially unavailable due to privacy concerns.

2.3 Crowdsourced data for mobility analysis

The pervasive adoption of mobile phones worldwide, with 91 percent of
people owning a mobile phone, 86 percent owning a smartphone 1, together
with the technological evolution of smartphones has provided unprecedented
opportunities for collecting data in motion out of different sensors, such as
GPS, accelerometers, sound recording, cameras, etc.

Mobile devices have become a concrete alternative to traditional mobility
datasets; the novel Mobile CrowdSensing (MCS) paradigm allows to collect
crowdsourced data from users, e.g. identifying their usual habits and infer-
ring special events [37]. As already specified in Chapter 1.3, crowdsourced

1mobspread
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Figure 2.2: Scores Crowdsourced data

data refers to data that is collected and aggregated from a large number
of people, typically through the use of mobile devices. Crowdsourced data
is collected through the process of MCS, which involves the use of mobile
devices, sensors, or other types of technology to gather data from a large
number of people. The data is then transmitted back to a central provider,
where it is aggregated, processed, and then often offered back to the public
as services or information.

Crowdsourced data can contribute to addressing the drawbacks of the
traditional mobility dataset detailed in section 2.2, One of the main advan-
tages of crowdsourced data is that it can be collected in real-time, which
means that it is more up-to-date and accurate than traditional datasets.
Additionally, crowdsourced data can be collected over a longer period of
time, and the information collected is characterized by a large sample size.
The use of crowdsourced data has become a win-win solution in different
domains of transportation, such as monitoring traffic dynamics and demand
analysis on special events [38]. Crowdsourced-based approaches can be
applied to better tackle transit demand and understand citizens’ mobility.
For example, crowdsourced data from the web can help to detect origin
and destination of passengers in public transport [39]. Crowdsourced data
approaches can be applied to better tackle urbanization issues and under-
stand citizens mobility [40]. At the same time it allows to directly gather
data from users and infer their mobility patterns with high accuracy, e.g.,
classify residents and visitors and identify special events [41]. Crowdsourced
data have been introduced in transportation through different applications
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to identify special events and disruptions or to monitor travel behavior and
provide complementary information [42].

In this section, we will provide a detailed description of the main crowd-
sourced datasets used for mobility analysis. We will analyze the scores shown
in Figure 2.2 and describe the studies that have already exploited this novel
type of data for mobility analysis.

Mobile Phones

During the past few years, several researches have exploited cellular network
usage (i.e., LTE) for mobility analysis. Particularly data from loads at cell
towers or call detail records (call detail records (CDR)), can be used to track
the movements of individuals over time. This type of data can be useful for
mobility analysis because it can provide insights into how people move within
and between different areas, how long they stay in a particular location, and
how their movements may vary over time. There are multiple scopes that can
be addressed with such data. The authors of [43] provide a comprehensive
examination of research and projects that utilize mobile phone network data
for determining individuals’ locations and travel patterns.

One crucial objective of mobile phone data research for mobility is deter-
mining the mode of transportation used by individuals. The authors of [44]
provide a complete overview of different methods proposed for transport
mode detection that use mobile phone data. In addition, the authors in [45]
present a review of existing studies that have employed mobile phone data
for understanding and analyzing travel behavior. This review is important
because mobile phone data provides a wealth of information about an entire
population, with comprehensive temporal coverage, which can be leveraged
to gain insights into travel patterns and behaviors that traditional data collec-
tion methods may not reveal. Other interesting applications of mobile phones
data to mobility include [46], the authors created a new framework able to
exploit cellular data to measure passenger flows in subway stations in Paris,
France. Mobile and wireless network data analysis can also be applied to clas-
sify subway users, distinguishing subway residents from commuters [47]. In
[48] the authors created a methodology that leverages cell phone usage as a
proxy to extract passengers’ travel demand. Their findings help PTAs examine
their public transportation options and effectively develop new transit routes
or expand current routes to meet users’ requirements. Unfortunately, these
approaches carry significant drawbacks due to technical constraints, such as
lack of location accuracy, poor network coverage, and the unwillingness of
network operators to share their datasets [49]. Consequently, the availability
of such data is limited, and when it is available may be difficult to obtain due
to privacy concerns or legal restrictions. The scores in Fig. 2.2 indicate that,
aside from the availability and ease of collection aspects that we already dis-
cussed, all the other scores are high. The data provided by mobile phones is
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indeed disaggregated at the user level and varies over time. Additionally, this
data describes a real mobility pattern of the user that includes the locations
visited and the duration of the stay.

Wifi/Bluetooth

Similar to mobile phone data, WiFi and Bluetooth technology have emerged
in the literature to capture the mobility of users. WiFi technology can be
used to track the movement of users through the use of WiFi hotspots. When
a device connects to a WiFi hotspot, the hotspot can record the address of
the device, which can be used to identify it. By tracking the movement of
devices between different WiFi hotspots, it is possible to infer the movement
of the users associated with those devices. Similarly, Bluetooth technology
can also be used to track the movement of users. Bluetooth devices transmit
signals that can be detected by other Bluetooth devices within range. By
tracking the movement of Bluetooth devices, it is possible to detect mobility
patterns. Both WiFi and Bluetooth technology have been widely used for
mobility analysis. In particular, WiFi sensors have been exploited to identify
trajectories of metro passengers [50], to estimate real-time passengers’ peak
flow in order to avoid accidents [51], and to measure bus passengers’ loads
[52]. Although Bluetooth connections are explored more for proximity-based
studies, in [53] the authors leverage this technology to detect bus passengers’
origin and destination, while in [54] the authors analyze passenger dynamics
and connectivity in Beijing subway. Interesting results are obtained also
integrating information from WiFi with data from cameras. Several works
obtained interesting results studying the integration of video information with
WiFi connection especially for monitoring crowds[55][56][57]. Although
these approaches are considered accurate and obtain promising results,
they require every time new data collection campaigns for each specific
city. This problem raises the issue of comparing a developed methodology in
different cities since it would be challenging to carry multiple data collections.
Regarding the scores, WiFi and Bluetooth have similar results compared to
mobile phones. However, the main limitations of this data are the availability
and the complexity of setting up new data collection campaigns. The size
of the sample for this data is limited when compared to mobile phones, due
to the technical range of WiFi hotspots and Bluetooth devices affecting the
number of users that can be identified through these technologies.

Social media

In recent years, social media platforms have emerged as valuable tools for
mobility research. These platforms offer a wealth of data that can be used
to study human mobility patterns and understand how individuals move
through urban areas. A mapping of the use of social media in transportation
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is proposed in [58], the authors examine the state of social media in trans-
portation by reviewing key studies in the literature, categorizing popular
social media platforms based on their strengths and limitations.

One way that researchers have used social media data for mobility re-
search is by analyzing the geographic information associated with content
created by users, such as tweets or Instagram posts. Researchers can use the
location data embedded in tweets to track the movement patterns of Twitter
users [59][60]. This can provide insight into how people move through a
city, including the most popular routes and destinations.

Another important contribution of social media data for mobility research
is the analysis of hashtags [61]. Researchers used these hashtags to identify
specific events or activities that are happening in a particular location and
understand how they impact mobility patterns.

Additionally, Social Media such as Twitter or Facebook can be used to
understand the experience of travelers [62], for example by analyzing the
posts of travelers about their experiences with public transportation.

Social media data is attractive for various purposes due to its easy col-
lection, widespread accessibility, and prolonged duration of data collection.
This data has also big potential in addressing the limitations of traditional
mobility data such as travel surveys, in [63] the authors investigate the use
of social media data as a complement to travel demand survey data, and
present methods for extracting relevant travel information from social media.
Despite these strengths, the limitations are not negligible. First, social media
data is often incomplete, as not all users are active on social media or willing
to share their location data. As a result, the sample size is limited because
it includes only a portion of users and may be biased. Another limitation is
that data from users is not regularly distributed over time, making it difficult
to reconstruct the direct mobility pattern of a user. In order to gather the trip
of an individual, we would need a post for every location visited by the user.

2.4 Google Popular Times

In the context of MCS, this thesis focuses on a specific crowdsourced dataset,
the Google Popular Times (GPT), due to its characteristics of wide availability
and ease to collect it. In this section we introduce this type of data, and
dedicate the following chapters to analyse the opportunities offered by GPT in
mobility analysis. Google Popular Times (GPT) is a service within Google Map
queries that visualise the temporal profile of the number of people visiting
a place (points of interests such as retail shops, restaurants, public places)
as a vector of normalized per-hour weekly values in the range [0 : 100] (0:
closing hours, 1: lowest amount of visits per-hour in a week and 100: the
highest). The use of normalized values indicates the trend of an activity
during a week and inherently the factors that influence such behaviour (e.g.,
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a restaurant that has more success during weekends in touristic areas or at
lunchtime in business districts). However, the provision of a normalised score
hides the absolute quantity of the demand, i.e. the real number of customers,
hence it is a relatively qualitative indicator.

The GPT is generated from data sent anonymously by smartphones with
the google history location enabled, the location of these devices is tracked
in the background and sent to Google through WiFi or mobile networks. To
use the popular times feature, a user simply needs to search for a business or
location on Google Maps and click on the business to see more information.
The popular times information is displayed in a bar chart, with the horizontal
axis representing the days of the week and the vertical axis representing the
hours of the day. Fig. 2.3 shows how the GPT of a specific place is displayed
on Google maps. The blue bars represent the standard week profile, which
describes how usually busy is the place during different times of the day
and based on average popularity over the last several weeks. On the other
hand, the pink bar reveals the live GPT value, this value tells how busy is the
place at the time of requesting the information and it is updated every hour.
Together with the standard weekly profile, GPT provide a live value for the
current hour, which indicates the actual level of crowding at the place. In
addition to the temporal profile, GPT also displays the average duration of
the activity and an estimated process time for the current time (e.g. waiting
time, or typical duration of the activity performed in that place).

Fig. 2.2 indicates how GPT is associated with high scores also for the
aspects of sample size, duration, and time dynamicity. The sample size
for GPT represents a large and diverse dataset of individuals, based on the
location history of every Google Maps user who has enabled this feature
on their device, including Apple users who have installed Google Maps.
Regarding the duration, GPT is continuously updated every hour, with no
time limit. This has also a positive impact on the time dynamics of the data,
as it allows to have information on how the data evolves over different times
of the day. The disaggregation aspect of GPT is also interesting because it
is not at the user level, like mobile phones, but rather at the location level.
On one hand, this characteristic does not capture the entire trip of a user.
On the other hand, it allows for a more detailed analysis of how different
locations are being visited and used over time. This lack of a direct link
with the user brings us to the main limitation of this data. GPT does not
provide direct information about mobility, it does not directly measure the
movement of people to and from a location. Instead, it relies on the presence
of users with location tracking enabled at a given location at a particular
time. To overcome this limitation and gather more accurate information
about mobility, it is necessary to process and analyze the data.

The GPT can be helpful for a variety of reasons, it is a valuable tool for
both individuals and businesses. For example, a tourist that is planning a
trip to a museum can use the feature to see the busiest times and try to
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visit during off-peak hours to avoid long lines and crowds. By analyzing the
data from GPT, businesses can get a better understanding of their busiest
times and use that information to better organize their activity and improve
customer service. Aside of the clear added value of this information for
customers and owners, GPT can be also a powerful source for mobility
research. This data can provide insights into patterns of human movement
and behavior. Researchers might use GPT to study how mobility patterns
change over time or how they differ between different types of locations
(e.g., retail stores versus restaurants). This information can be useful for
a variety of applications, such as understanding how people move around
a city or region, for assessing the demand of transportation infrastructure,
and analyzing the impact of events or policies on mobility patterns and
transportation services. In this thesis we will showcase examples of these
potential application opportunities. More specifically, the potential of GPT
for mobility analysis derives from the peculiar characteristics of this data.
These opportunities are the following:
Opportunity 1. Large availability: contrary to the majority of mobility dataset
GPT is available worldwide, at least where Google services are allowed.
Opportunity 2. Collected continuously: Google collects the information to
create GPT constantly, GPT data is accessible and does not require any new
data collection campaign.
Opportunity 3. Different purposes: thanks to the variety of places where
GPT is available this data can help mobility research for different objectives.

Together with these relevant aspects, there are various limitations that
make it challenging to analyze or manipulate this data in the context of
mobility research. In order to fully exploit the powerful features of GPT, we
need to overcome the following challenges:
Challenge 1. Data are normalized: as previously mentioned Google nor-
malizes the number of users who have shared their location history. This
normalization process means that the data may not reflect the actual number
of people at a location. The consequence of this process is that is challenging
to accurately compare the crowdedness of different places, particularly if
they have different capacities.
Challenge 2. No control on the data: Google does not provide any details on
how the real data of users are transformed into GPT of a location. As a result
of this issue, there is no information on how Google creates the Historical
and Live GPT.
Challenge 3. No direct mobility knowledge: GPT mainly provide insights
regarding location crowdedness, it is challenging to extract from such data
quantitative information of mobility, such as mobility flows and demand
patterns.

In this thesis, we aim at addressing these limitations of GPT and explore
its potential for mobility research.
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Figure 2.3: An example of GPT record

2.4.1 Related works

While there is potential for using GPT in the mobility domain, there have
been relatively few studies that have explored this possibility. In this section,
we describe the existing studies on GPT in the mobility domain and classify
them based on the purpose of the study.

Land use and Local businesses

Since GPT provides a direct insight into the crowdedness of locations, one
of the main research topics is the popularity of local businesses and their
connection with land use. In [64] the authors present a machine learning-
based approach for predicting venue popularity using GPT and passive sensor
data. They developed a WiFi microcontroller to measure the real number
of people in a place, the comparison of their data with the corresponding
GPT revealed promising results. In [65], the authors use data on park use,
GPT data, and land use diversity, as well as demographic and socioeconomic
characteristics, to identify the factors that influence park use in the city. The
results of the study indicate that land use diversity is positively correlated
with park use, and that this relationship is stronger in neighborhoods with
higher levels of socioeconomic disadvantage. [66] presents a method for
using GPT data to model the time spent at tourism destinations. The results
of the study show the value of using GPT and other online resources to
analyze and predict individual behavior at tourism destinations.

Charging Stations and Parking

An interesting analysis of GPT is [67], this study analyzes the temporal
variation of electric vehicle charging demand using the GPT of the activities
around the charging stations. A similar approach is taken by [68], this paper
investigates the demand for electric vehicle charging at popular amenities,
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such as shopping and fitness centers. the findings suggest that the proposed
method is a useful approach for characterizing electric vehicle charging
demand at popular amenities and can be applied to various categories of
businesses. GPT can be also useful for improving parking management in
urban areas as demonstrated in [69]. This paper discusses the challenges
of predicting parking availability and introduces a machine learning-based
approach that uses data from sensors, cameras, and GPT data to predict
parking availability in real-time.

Anomaly events

In the pursuit of achieving global efforts against the negative impacts of
the pandemic, GPT resulted a fundamental data source during Covid19
pandemic. Google, together with Apple, decided to share data to analyse
global mobility and activity trends. As result, many studies exploited the
GPT dataset to analyze citizens’ mobility during lockdown [70] [71], since
live GPT values can be an important source to make comparisons between
different time periods. In [72] the authors discuss various sources of data
that can be used for estimating tourism flows with a focus on the impact of
the COVID-19 pandemic. The data exploited include traditional survey data,
passive sensor data, and GPT data. The paper also discusses the limitations
and potential biases of these data sources and the need to carefully consider
these issues when using data to estimate tourism flows.

Mobility flows

Unlike the above studies, there have been relatively few studies that have
used GPT to estimate mobility flows. Notably, [73] is one of the few studies
that investigated the possibility of using GPT to predict traffic volumes
in a specific area. The paper discusses the challenges of using GPT for
traffic management and introduces a method for using this data to predict
traffic volumes in urban areas. The paper also discusses the evaluation and
performance of the method and the potential applications of the results
for improving traffic management and reducing traffic congestion. Overall,
the paper suggests that GPT has the potential to support sustainable traffic
management and can be used to improve traffic prediction and management
in urban areas.

2.5 Conclusions

The aim of this chapter was to give a detailed and technical overview of
the current state of mobility datasets, and to evaluate their strengths and
weaknesses. This was achieved by outlining the main characteristics and
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limitations of different mobility datasets, as well as by proposing a scoring
system to assess various aspects of these datasets. These aspects included
availability, or how easily the data can be accessed and used; temporal
dynamics, or how frequently the data is updated and reflects changes in
mobility patterns; and sample size, or the number of observations or data
points included in the dataset. In addition to traditional mobility datasets,
the use of crowdsourced data as a possible addition or alternative was also
introduced and discussed. Crowdsourced data was evaluated using the same
scoring system as traditional datasets, and it was explained how it could be
used to overcome some of the limitations or gaps in traditional datasets. In
summary, this chapter highlights that crowdsourced data has several desirable
attributes, such as wide availability and prolonged periods of collection,
making it a valuable resource for enhancing traditional datasets. In particular,
GPT, a specific type of crowdsourced data, is particularly promising for two
reasons. First, it is able to provide dynamic information about secondary
activities that traditional mobility data is unable to provide. Second, due to its
high availability, it can serve as a substitute for mobility data in areas where
it is lacking. In the following chapters, we will explore how we leveraged
these unique characteristics of GPT.
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Part II

GPT as a proxy of mobility
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Chapter 3

GPT as factor of local
businesses attractiveness

In this chapter, we address RQ2, "Can GPT be used to classify local businesses
to understand dynamic demand profiles?"

We introduce an analysis of GPT of local businesses (LBs) with a twofold
purpose. First, we investigate features that can influence the popularity of
LBs. Second, we feed ML techniques on such dataset to classify category and
attractiveness of LBs according to the considered features.

This chapter is based on work that has been published in the following
paper:

• Crowdsensed data learning-driven prediction of local businesses attrac-
tiveness in smart cities
A. Capponi, P. Vitello, C. Fiandrino, G. Cantelmo, D. Kliazovich, U.
Sorger, P. Bouvry
2019 IEEE Symposium on Computers and Communications (ISCC)
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Local businesses (LBs) require their owners (e.g., companies, individu-
als, and institutions) to take decisions for profit maximization and to offer
competitive services to customers. The most crucial decisions include the
typology of a LB and its location when opening, but also setting prices, the
number of required employees per hour, and opening hours for proper man-
agement. Effective strategies to boost LBs require knowledge of the complex
dynamics of urban environments, which depend on the spatial distribution
of citizens and locations [74]. For instance, understanding real-time citizens’
mobility as well as forecasting significant flows of citizens moving to a specific
urban area for a special event helps municipalities to manage crowds and
entrepreneurs in deciding suitable locations and required staff.

Traditional approaches to investigate LBs popularity rely either on sur-
veys that capture users’ preferences or cellular traces that infer urban mobil-
ity [75]. However, such approaches are prone to users misbehavior, technical
limitations (e.g., poor network coverage), and datasets available only from
network operators [49]. Crowdsensed data-driven approaches may provide
novel solutions in this direction by exploiting MCS systems and services like
GPT that make available accurate information on travel times and popularity
of LBs.

This work aims to bring one step further the research on urban computing
and to boost LBs popularity by overcoming the limitations of historically
experience-driven approaches. We leverage GPT data to enforce highly-
accurate classification of LBs category and attractiveness with ML techniques
that are powerful to handle massive data volumes and widely employed
from a variety of applications, such as to infer and predict human mobility
in an urban context [76]. In this work, we show that typical urban metrics
(e.g., the centrality of places in street networks) fail to properly classify LBs,
while combining GPT information (e.g., peak hours in LBs) with basic ML
techniques supports and improves typical experience-driven approaches. To
illustrate with few representative examples, restaurants and pubs usually
concentrate in close areas and influence one with each other, while LBs like
pharmacies are uniformly distributed over a city. Also, reachability by public
transport significantly impacts on LBs popularity.

3.1 Preliminary Analysis

This Section grounds the roots of our work by showing why traditional urban
metrics fail to classify and predict LBs attractiveness properly.

Weekly popularity:
To analyze the popularity trend over time of a LB, we use GPT data.

This enables us to examine the trends of LBs throughout a week. However,
because the GPT data is normalized, it hides the level of success of a single
LB (such as if it has more customers than others).
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Figure 3.1: Data aggregated from different Luxembourg districts for restau-
rants

Fig. 3.1(a) presents Popular Times of nine restaurants and their average
from Monday to Saturday in Luxembourg city (Ville Haute), a district with of-
fices (banks, public institutions), shops, tourists spots and places for nightlife
(bars, pubs). Sunday is excluded because no information was available in
the dataset. The peaks of popularity approximately at 12, 20, 36, 44, etc.,
correspond to lunch (12 PM) and dinner (8 PM) times of each day. Analyzing
the peaks in pairs, we can compare the trend of restaurants day by day
and understand the lifestyle of the district. During weekdays the peaks are
around lunch time or equally spread at lunch-dinner time (restaurants full of
workers) while on Saturday at dinner time because most offices are closed.
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Friday is the most popular day at both lunch and dinner times because both
workers, tourists, and citizens populate restaurants.
Centrality and similarity: We can observe that the popularity of LBs de-
pends on their proximity with other LBs and accessibility through public
transportation. The centrality metric, which defines the importance of indi-
vidual nodes in a network, can quantify popularity. Specifically, we consider
the closeness centrality, defined as the sum of the length of the shortest paths
between a node and all other nodes within the street network. We measure
global-centrality and transport-centrality. The global-centrality defines the
proximity of a LB with all other LBs:

𝐶𝐵(𝑘) =
𝑁𝐵 − 1∑
𝑖≠𝑘 𝑑𝑘𝑖

, (3.1)

where 𝑘 is the 𝑘-th node, 𝑁𝐵 is the total number of LBs and 𝑑𝑘𝑖 is the distance
between a couple of nodes. The transport-centrality measures the proximity
of a LB with respect to transport facilities:

𝐶𝑇(𝑘) =
𝑁𝑇∑
𝑖≠𝑘 𝑑𝑘𝑖

, (3.2)

where 𝑁𝑇 is the total number of transportation access points (e.g., bus
stops or metro stations) and 𝑑𝑘𝑖 is the distance between the considered LB
and a transport node. Considering the Earth as an oblate ellipsoid, the
distance is computed with the shortest geodesic path [77]. While popularity
measured with centrality identifies time-invariant characteristics of a LB,
the similarity compares two LBs temporal profiles. The similarity aims
to correlate LB weekly popularity to the average of all LBs in the same
district. To measure similarity, we exploit the symmetric index of Jensen-
Shannon divergence (Jensen-Shannon divergence (JSD)) that outperforms
the asymmetric Kullback-Leibler divergence (KLD) [78]. The similarity of
two LBs 𝑖 and 𝑗 is:

𝐽(𝐷𝑖 , 𝐷𝑗) = 𝐻
(𝐷𝑖 + 𝐷𝑗

2

)
−

𝐻(𝐷𝑖) + 𝐻(𝐷𝑗)
2

, (3.3)

where 𝐻 is the Shannon entropy, 𝐷 is the temporal profile of a LB, and 𝐽

represents the divergence of two temporal profiles, The similarity can assume
values in the range [0 − 1]. 0 represents the maximum similarity (e.g.,
the temporal pattern of a shop with itself) and 1 represents the maximum
divergence.

Fig. 3.1(b) links centrality and similarity metrics in Luxembourg city. The
clusters represent four districts, in line with global- and transport-centrality
of restaurants. The red dots represent LBs whose weekly temporal demand
is closer to the average of other districts (outliers). On the contrary, dots
of the same dominant color have a weekly pattern more similar to their
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geographical district. With the sole exception of Kirchberg district, most
of the LBs are marked as outliers. Therefore, this analysis unveils that
centrality and similarity are not enough to assess the popularity of LBs and
their relationship with districts. The analysis correctly predicts the popularity
of LBs in Kirchberg because the district is geographically separated from
other districts of the city and it is home of European agencies, insurance and
financial companies making the LBs in the area to share peculiar popularity
trends.

The remainder of this chapter shows how to overcome this shortcoming
by enforcing a ML-based analysis of the same dataset.

3.2 ML-augmented Methodology

This Section describes the methodology for applying well-established ML
techniques to crowdsensed data. The GPT datasets undergo a procedure
to extract features and determine the most suitable inputs to train the ML
algorithms. We select only the features that augment the output accuracy
after the training phase, while the others are discarded. For space reasons,
we omit this preliminary selection. Next (§ 3.2.1), we introduce the ML
algorithms. Then (§ 3.2.2), we discuss the considered multi-classification
problems, extracted input features, and output classes. Each output is
classified by exploiting a one-vs-all approach. For each LB, the element
corresponding to the predicted class is set to one, all others to zero.

3.2.1 Machine Learning Techniques

This study considers Support Vector Machine (Support Vector Machine
(SVM)) with a Gaussian kernel and MultiLayer Perceptron (MultiLayer Per-
ceptron (MLP)) neural network techniques for multi-classification problems.
The choice is due to the characteristics of our study, which presents a small
number of features 𝑁 (e.g., 1 − 1 000), and an intermediate number of 𝑀
training samples (e.g., 1 − 50 000). The chosen ML approaches perfectly fit
this scenario. Similar ML techniques like logistic regression or SVM without
kernel (or linear kernel) have not been considered because they perform
better when 𝑁 is relatively large if compared to 𝑀 (e.g., 10 000 and 𝑀

between 1 and 1 000). In the following, we briefly analyze the considered
ML techniques.

Support Vector Machines (SVMs) aim to classify input samples into output
classes by dividing a hyperplane with an optimal boundary through kernel
methods. To this end, it is crucial to perform fine tuning of the regularization
parameter, typically named 𝐶. Furthermore, employing a kernel based on
a gaussian function, it is required to set the standard deviation, indicated
as 𝛾. Paramerer 𝐶 trade-offs the correct classification of training samples
and the smooth decision boundary. Small values lead to simple decision
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functions, which correspond to a higher tolerance to errors and smooth the
classification on the training dataset. On the contrary, high values correspond
to a classification with minimal error and a hyperplane with a small margin.
Intuitively, 𝛾 defines how a single training sample influences other points
according to its distance from the boundary.

Multilayer Perceptron (MLP) is a feedforward artificial neural network that
takes a vector as input and maps it into another vector as output. It is based
on different hidden layers that connect inputs to outputs. Each layer includes
a certain number of nodes and nodes of different layers are connected by
links with different weights. The output of a node at each layer is given by
the weighted sum of all inputs. Each node in the hidden layers is connected
to all nodes of next and previous layers for a fully connected topology.

3.2.2 Predicting LBs Category and Attractiveness

We formulate two multi-classification problems to predict LBs category and
attractiveness by feeding ML techniques with input features extracted from
crowdsensed data.

Extracted features: We select as input features from the large available
datasets those that performed better and we categorize them as intrinsic
and extrinsic. Intrinsic features are given by geo-location characteristics and
owners’ decisions, which do not present a high variability over time (e.g.,
opening hours and type of service offered). These properties are already
widely exploited in traditional approaches for urban analytics. Extrinsic
features depend on the temporal interactions of citizens with LBs, such as
waiting time and average time of staying. They change more rapidly than
the intrinsic ones and depend on several factors, e.g., special events, time of
day, day of the week, etc. The intrinsic features we consider are 1) global-
centrality, 2) transport-centrality, 3) opening hours, and 4) category. The
parameters that define centrality have already been discussed in Sec. 3.1.
Opening hours consists of an array of 144 binary values (Mon-Sat) that
shows when a LB opens. For each hour in a weekday, the value 0 indicates
closing time and 1 opening time. The category depends on the service
offered by LBs. The extrinsic features are popular times, average time of visit,
and average waiting time. Popular times were discussed in Sec. 3.1. The
average remaining time defines in minutes the duration of customers’ visits.
The average waiting time indicates the minutes while waiting to access the
service.

Output classes: LB categories depend on the service offered by a LB. Output
classes are public, store, health, restaurant, and bar. The class public indicates
generic services and offices for the community, such as institutions, post,
financial and insurance companies. Store includes each kind of shop or
seller for any goods, such as supermarkets, clothing, bakeries, etc. Health
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comprises public and private places related to healthcare, e.g., hospitals,
medical centers, dentists, and specialists. Restaurant includes all LBs that
prepare meals with seating places. Bar consists of LBs selling mainly drinks,
but can also include meals, e.g., pubs.

LB attractiveness is classified into working, nightlife, weekend, business
hours (Bus. H.), and shopping hours (Shop. H.). Working indicates LBs
with peak hours during break times of working areas, such as weekdays at
mid-morning and lunchtime. It comprises typically shopping malls, bars,
fast foods and some types of restaurants. The class nightlife shows peak
hours at dinner times during all week and overall on weekends, including
restaurants, pubs, and clubs. Weekend describes low popularity on weekdays
and peak hours at weekends, which is typical of shopping malls located far
from working areas and touristic places. Business hours indicates typical
opening times and consequent popular hours of public offices, from early
morning to mid-afternoon including lunch breaks. Shopping hours include
the typical popularity hours of shops for different goods, presenting a uniform
distribution on both weekdays and weekends during daytime.

3.3 Data-driven Evaluation

This Section first presents simulation set-up and performance metrics, then
the obtained results.

3.3.1 Setting

To conduct the evaluation, we employ publicly available Popular Times of
LBs for Luxembourg city and the city of Munich downloaded between July
21st and July 30th, 2018. These two cities present different characteristics
in terms of morphology, size, street topology, and lifestyles of residents and
visitors. This permits to conduct an effective analysis and discussion of the
obtained performance. The datasets include 1 084 and 3 784 LBs for Luxem-
bourg city and Munich respectively and are proportionally divided in 80%,
10%, and 10% for training, cross-validation, and test phases respectively.
The performance evaluation exploits Scikit-learn, which is a Python-based
open-source library.

To predict the LBs category, the input features are: average opening
hours, time spent, global-, and transport-centrality. In this case, we restrict
the datasets to the LBs for which information on time spent is available
(800 and 1 600 LBs for Luxembourg city and Munich respectively). The
hyperparameters in the SVM approach are set to 𝐶 = 28 and 𝛾 = 2−12.
We will further discuss the rationale about the selection of parameters (see
discussion Fig. 3.3a). In the MLP approach, an exhaustive search with a
grid-search algorithm leads to the choice of one hidden layer with 13 nodes.
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For LBs attractiveness, the considered features are opening hours, cate-
gory, district, popular times, global-, and transport-centrality. In this case,
the entire datasets were employed. The methodology followed to set the
hyperparameters is as for the LBs category. For SVM, the parameters are
𝐶 = 26 and 𝛾 = 2−10 (likewise above, the rational is discussed in Fig. 3.3b),
MLP consists of 8 nodes per layer with 2 hidden layers.

3.3.2 Performance Metrics

We consider precision, recall, F1 score, and accuracy indexes. While precision,
recall, and F1 score are per-class measures, the accuracy averages the mea-
sures of all the classes. For completeness of the analysis, we consider i) true
positive (𝑡𝑝) and true negative (𝑡𝑛) values to indicate respectively a correct
prediction of positive or negative class; (ii) false positive ( 𝑓 𝑝) and false nega-
tive ( 𝑓 𝑛) values to denote an incorrect prediction. In this context, a positive
observation indicates the class under analysis, while a negative observation
indicates all the other classes, according to the one-vs-all approach.

The precision indicates the ratio of correct positive predictions over the to-
tal predicted positive occurrences (𝑡𝑝/(𝑡𝑝 + 𝑓 𝑝)). In other words, it indicates
the capacity of the model to not predict another true class as the actual class.
The recall is the ratio of correct predictions on positive observations to all the
occurrences in class under analysis (𝑡𝑝/(𝑡𝑝 + 𝑓 𝑛)). It indicates the capability
of the model to catch all the samples of a class. The F1 score is the weighted
average of precision and recall indexes and analyzes incorrect predictions.
Typically, the F1 score is very useful to unveil insights from results when false
positives and false negatives have different costs. The accuracy is computed
as the ratio of correct predictions over the total occurrences and defines the
performance of a classifier. Specifically, accuracy is the optimal performance
indicator when the classes are symmetric, i.e., incorrect predictions have the
same weights.

3.3.3 Results

Table 3.1 presents detailed results on precision, recall, F1 score, and accuracy
for the predicted categories in both cities with MLP and SVM approaches.
The prediction on LB categories presents higher accuracy for Luxembourg
city with both ML techniques. Viceversa, Munich shows higher accuracy in
predicting LBs attractiveness. Regarding the ML techniques, SVM presents
an overall accuracy higher than MLP. The Table clearly shows that preci-
sion achieves high values for categories of restaurant, health, and store,
while it is low for bar and public because these categories share common
characteristics with other categories. The LBs prediction precision varies
in the two cities because it depends on specific characteristics of each city,
mainly type of visitors (e.g., tourists, workers, or residents) and city lifestyle
(e.g., commercial, touristic, or working areas). For example, restaurants
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present higher values of precision in Luxembourg city because the opening
hours are not as international as in a larger city like Munich, while bars are
predicted with higher precision in Munich. In Luxembourg city, bars and
restaurants share opening hours while in Munich pubs and clubs open until
late night, unlike restaurants. Regarding the attractiveness, on the one hand,
the class working is predicted with much higher precision in Luxembourg.
The reason is as follows: LBs with peak visits during job breaks are typically
not popular, i.e., receive lower visits during other moments of the day or
with another type of customers (e.g., tourists at the weekend). On the other
hand, the class working is not well predicted in Munich because LBs are
popular at different times during the day with no distinctive working areas.
Business and shopping hours present higher values in Munich because of
its urban plan characterized by LBs concentrated in specific districts with
easily recognizable peak hours (e.g., the city center and shopping malls). For
similar reasons, note that the model catches most samples of class (recall
index) for restaurants and stores with both cities and both techniques when
predicting the category, and business and shopping hours when predicting
the attractiveness. F1 score analyzes the incorrect predictions by presenting
a weighted average of recall and precision and the results are in line with
previous considerations.

To gain additional insight, Fig. 3.2 depicts confusion matrices to highlight
single occurrences for each true and predicted class and summarizes the
prediction results. Each cell contains a value that indicates the number of
occurrences of a predicted class when testing true inputs. The colors in
legend bars represent the percentage of correct predicted occurrences over
the total of true class values, which corresponds to the recall index between
0 and 1. The columns show predicted class values. The sum of all values in
each row indicates the total occurrences for such class. The occurrences of
correct predictions for each class are in the diagonal. The accuracy is the sum
of all elements on the diagonal on all elements of the matrix. The analysis
on the confusion matrices allows to i) discuss and compare behaviors of
different LBs and ii) extend the discussion in point i) to different cities. As
expected and already pointed out in Table 3.1, categories with distinctive
features present a better prediction. The results in the table, however, do
not show the wrong occurrences as confusion matrices allow. The categories
restaurant and store achieve higher recall for both ML techniques in both
cities because LBs in these categories share distinctive characteristics like
opening hours. On the opposite, public and bar have a lower recall, and
their wrong predictions occur respectively in store and restaurant. These
LBs offer services with similar daily patterns, e.g., stores - public offices,
and bars - restaurants. Fig. 3.2(a) and Fig. 3.2(b) clearly highlight these
considerations because in Luxembourg city 2 bars over 8 are predicted as
restaurants whereas for Munich this occurs for 14 LBs over 34. Note that the
health category achieves significantly different results in the two cities. The
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Figure 3.2: Confusion matrices for LBs category and attractiveness prediction
with SVM technique. The rows show true class values and the columns show
predicted class values.

motivation is the different number of LBs in the available datasets. In this
case, higher precision is attributed to a larger dataset.

When analyzing the attractiveness, Fig. 3.2(c) and Fig. 3.2(d) unveil that
the highest number of prediction errors occur for working and nightlife classes.
As previously discussed, the motivation is that restaurants and bars exhibit a
high popularity at lunch and dinner times, which are typical characteristics
shared between working and nightlife classes. For instance, Fig. 3.2(c) and
Fig. 3.2(d) respectively show that in 4 occurrences over 15 and in 4 over 16
working class true values are predicted as nightlife. The highest number of
correct predictions occur for business hours (51 over 53 in Luxembourg city,
156 over 160 in Munich), as the popularity is uniform during all weekdays.
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Figure 3.3: Analysis of F1 score to optimize the SVM parameter selection for
Munich. The values range between 0 and 1.

By comparing the two cities, Fig. 3.2(c) and Fig. 3.2(d) show that it is easier
to predict the weekend class in Luxembourg city (4 over 4) than in Munich
(10 over 15). While Luxembourg city is a destination popular for business
and not for tourism, the amount of visits in LBs varies consistently between
weekdays and weekends. On the opposite, in Munich it varies only a little.

Fig. 3.3 shows an analysis on the dataset of Munich for choosing the
best parameters fitting the SVM technique in predicting LB category and
attractiveness. Results are obtained by considering the F1 score to seek
a balance between Precision and Recall. Specifically, SVM optimization
parameters are 𝐶 = 28 and 𝛾 = 2−12 for LB category prediction, while they
are 𝐶 = 26 and 𝛾 = 2−10 for LB attractiveness prediction.

3.4 Conclusion

This chapter aimed to explore the potential of GPT as a valuable source
for dynamic information on trends in secondary activities in a city. Such
information is lacking in traditional mobility data. To this end, we applied
ML techniques on GPT to perform accurate predictions of LB category and
attractiveness. Specifically, the work shows that ML-driven analysis outper-
forms historical urban computing metrics. After a preliminary analysis, the
LB category and attractiveness are predicted using two different subsets
of features extracted from crowdsourced data. The conducted evaluation
shows that data-driven approaches outperform traditional urban metrics.
The results unveil that classes exhibiting similar behaviors present higher
errors when predicting their occurrences. For instance, the attractiveness of
nightlife and working in a large-scale city like Munich can be miscategorized
because they both include many restaurants and bars. The findings of this
study can result valuable to analyze the trends of activities in a city. This is
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because By quantifying and differentiating the level of attractiveness of LBs
in a zone, we can also extrapolate this information to the zonal level. The
attractiveness of zones of destination is a key determinant of the demand for
travel to those areas. This source can be a valuable input for mobility models,
for example on the generation and distribution of steps in the conventional
4-step model[79]. Attractiveness can be used to inform demand modeling in
several ways. It can be used to predict the likelihood of individuals choosing
to travel to a particular area for a specific activity at a specific time. It can
also be exploited to predict the likelihood of individuals choosing to live
or work in an area based on the presence of desirable LBs. Additionally, it
can be used to inform the development and management of transportation
infrastructure in a given area, such as the placement of bus stops or the
development of bike-sharing stations. In this chapter, we examined how GPT
can overcome the limitations of traditional mobility data and identify trends
in secondary activities. In the following chapters, we will investigate how
GPT can enhance the availability of mobility data in cases where it is lacking.
This is the other key advantage of GPT as a source to tackle the limitations
of traditional mobility data.
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Chapter 4

Transitcrowd, the transit
estimation tool

In this chapter, we address RQ3, “ Can GPT be used to estimate mobility
patterns such as transit demand information? “.

This chapter aims to investigate the possibility of using Google Popular Times
(GPT), to estimate the passenger flows of individual subway stations. Since GPT
only provide popularity trends of the stations in terms of crowding, we provide
a tool that leverages as input GPT, and it is able to estimate precisely both
entrances and exits profiles. Our methodology is applied in 185 stations from
two different cities: New York and Washington D.C. The results are validated
using two months of transit count data from the stations of the two cities.

The content of this chapter is based on a work that has been accepted for
presentation in the following paper:

• Exploring the Potential of Google Popular Times for Transit Demand
Estimation
P. Vitello, C. Fiandrino, R.D. Connors, F. Viti
Transportation Research Board 102nd Annual Meeting
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4.1 Introduction

In this chapter we want to investigate the potential of GPT as a source of
information for public transport demand. This dataset has the advantage of
being already provided by Google and not requiring new data collections.
Moreover, the worldwide availability of GPT opens up the possibility of esti-
mating public transport (PT) demand in areas where such information is not
collected. However, the main limitation of GPT is the lack of transparency in
the data processing, as Google only provides the processed data in an aggre-
gated and normalised way. This study aims at overcoming this shortcoming
by combining the GPT with real public transport data in order to leverage the
GPT data to estimate the in- and outflow of transit users at subway stations.

The literature on studies that explore the importance of GPT for the
transportation field is thin. In this chapter, we precisely aim at filling this gap,
focusing on PT. A main motivation for focusing on this transport service is
the general lack of data for such systems with respect to the other main mode
of transport, i.e. car transport. To achieve this goal, we need to overcome
the following challenges:
Challenge 1. Unavailability of transit data. Most mobility operators do not
provide any transit information. Since GPT is worldwide available, can it be
exploited to estimate this data where it is not accessible?
Challenge 2. Granularity of transit data, when available, differs city by city.
GPT has a value per hour, it can enrich transit data where the granularity is
low.
Challenge 3. Estimate two flows using a single value. Specifically, we are
employing one single dataset, the GPT, to estimate the in- and outflow of
transit users at subway stations.

To overcome these challenges, we design TransitCrowd, a framework
that is able to make live estimations of transit data exploiting only the GPT
of stations. In summary, the synopsis of contributions we make with this
chapter is as follows.
Contribution 1. TransitCrowd estimates live transit data regardless of the
granularity of the input transit data. Our tool is composed by two different
estimators.
Contribution 2. The first estimator (Reg estimator) is trained separately in
every single city, it requires an initial transit dataset and focuses on obtaining
the maximum accuracy in the trained area. This tool is suited for areas where
a transit dataset is available with low granularity or that is limited on time.
Contribution 3. The second estimator (Sig estimator) is more flexible. It
gives the possibility to transfer the methodology without requiring starting
transit data but at the cost of lower accuracy. This estimator can be leveraged
in case no transit data is available for the area under analysis.

In the remainder of the chapter, the next section presents the description
of the data exploited in the study, followed by the methodology behind
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(a) Washington DC stations (b) Manhattan (New York City (NYC)) sta-
tions

Figure 4.1: Maps of the cities considered in our study

the framework, and the evaluation of the results. Finally, the last section
concludes the work and highlights the final remarks.

4.2 Dataset and First Observations

In this section, we describe the dataset we exploit in our analysis of transit
stations demand.

4.2.1 Google Popular Times

In this work, we focus on analyzing GPT of the subway stations to investigate
if such information can be exploited to determine the inflow and outflow of
users at the station. Our dataset includes the GPT for 105 subway stations
from the Manhattan region, NYC, and 80 subway stations from Washington
DC, USA.

4.2.2 Turnstile Data

For analyzing the public transport demand we considered the data shared by
the Public Transit Authorities (PTAs) of the two cities in our dataset. For New
York the Metropolitan Transportation Authority (Metropolitan Transportation
Authority (MTA)) provides information for boarding and alighting passengers
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for all the subway stations1, while for Washington we exploited entrances and
exits data provided by the Washington Metropolitan Area Transit Authority
(Washington Metropolitan Area Transit Authority (WMATA))2. The data of
New York consists of the number of turnstile entries and exits for subway
stations aggregated in four hour intervals. The information we considered
includes 1.135 unique turnstile positions that are associated with 732 station
entrances or exits of 105 subway stations within the island of Manhattan.
The data of Washington include directly the information of entrances and
exits per hour for every subway station in the city, our dataset contains
the entrances/exits values for 80 subway stations in Washington area. We
collected two months of transit dataset for both cities.

In order to compare the transit data with GPT we needed a dataset of the
same length. To this end, we exploited the first month of transit to create a
typical weekly profile made by averaging the transit data of the same hours
and days of the week.

4.2.3 Preliminary Analysis

In this first phase, we want to detect which information from the transit
dataset of a station is the most similar to the GPT profile. The scope is to
understand how the increase or decrease of the GPT percentage is correlated
with the real amount of passengers entering or exiting from the stations. To
analyze the transit usage data and its correlation with the GPT we use the
following linear regression model:

𝐺ℎ,𝑠 = 𝛽𝑇ℎ,𝑠 + 𝜖, (4.1)

where 𝐺ℎ,𝑠 is the GPT value for station 𝑠 and hour of the week ℎ, 𝛽 represents
the regression coefficient, 𝜖 is the residual error, and 𝑇 is the transit data.

We tested the regression model for both transit information (entrances
and exits), the sum, and the difference between the two.

The performance of the regression models are evaluated using the coef-
ficient of determination, i.e., 𝑅2 score, which is the proportion of variation
explained by independent variables. We first start by analyzing the total
results obtained in the two cities in our dataset. We applied the linear re-
gression described in (4.1) to the standard GPT of all stations, together with
the data from entrances, exits, the sum entrances+exits, and the difference
entrances-exits. Fig. 4.3 shows the radial plots of the results of the regression
of all stations. Specifically, it shows the average 𝑅2 score between the GPT
standard of all stations of the two cities. Looking at the 𝑅2 it is clear that for

1Source: http://web.mta.info/developers/turnstile.html
2Source: https://www.wmata.com/initiatives/ridership-portal/

Rail-Data-Portal.cfm
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Figure 4.2: Correlation between GPT and transit data for 4 exemplifying
station, 2 in New York and 2 in Washington
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Figure 4.3: 𝑅2 of all stations between GPT and Transit data

both cities the entrances have a better correlation (𝑅2 = 0.91 New York and
𝑅2 = 0.81 Washington) than the exits (𝑅2 = 0.70 New York and 𝑅2 = 0.71
Washington), the sum entrances+exits does not improve on the entrances re-
sult (𝑅2 = 0.89 New York and 𝑅2 = 0.89 Washington), at the same time, the
difference entrances-exits obtains the lowest scores of correlation (𝑅2 = 0.29
New York and 𝑅2 = 0.16 Washington). This outcome could be explained
by the fact that passengers entering a station have to wait for the subway
to arrive, leaving a longer trace at the station as picked up by GPT, while
the process of exiting a station is generally faster. This may explain why
GPT information, which is related to presence of people in a station, is more
correlated to the flow of travellers arriving at a station rather than leaving
it. Despite the general trend suggesting that GPT is mainly driven by the
entrances profiles, at the single station level we notice the existence of a
minority of the stations where the relationship is the opposite and GPT is
more correlated with the exit flows. Fig. 4.2 shows this important aspect of
the GPT-Transit relationship, we selected 2 stations per city, the 𝑅2 values
and the regression lines reveal that certain stations have high correlation
with entrances (fig.4.2b,4.2c) and low correlation with exits (fig.4.2b, 4.2c)
and at the same time some stations reveal an opposite behavior; examples
are stations Greensboro (Washington) and 207st (New York). For both sta-
tions the GPT is more correlated with exits (fig.4.2e,4.2h) than entrances
(fig.4.2a,4.2d), but these remain a large minority of all analysed stations. This
characteristic of peculiar similarity to the exits of some stations leads us to
develop a specific profile for each station able to identify the interconnection
between the GPT and the transit data for a generic week.
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4.3 The TransitCrowd Estimation Framework

Fig. 4.4 shows the methodology behind the TransitCrowd framework de-
veloped by this study. The methodology aims at estimating the exit and
entrance profiles of every subway station in a city for a specific week. The
inputs are the standard GPT, the averaged transit data, and the live GPT. The
framework is composed by two different estimation tools, the Sig Estimator
and the Reg Estimator. Both tools estimate the flows of entrances and exits
at subway stations, but with different characteristics. The Reg estimator is
based on Machine Learning (Machine Learning (ML)) regression models,
and it prioritizes the accuracy of the results, while it focuses only on a single
city without allowing to transfer the methodology without a new training
process. The Sig Estimator is based on simpler statistics methods, at the
cost of a lower accuracy compared to the Reg estimator. The upside of Sig
estimator is that thanks to the concept of the signature, it has the potential
to be transferred to different cities without requiring a new training process
involving transit data. In the following, we describe the details of the two
estimation tools.

4.3.1 Reg Estimator

With the aim of estimating the entrances/exit flows from each subway station,
we selected as input the corresponding standard GPT and the averaged
entrances and exits to train the ML models. The whole estimation process is
separated for entrances and exits.

A set of ML models were trained among the most widely and successfully
used across literature dealing with regression problems [80]. The stratified
k-fold cross-validation method has been implemented to validate the trained
models. This method is commonly used to assess the performance of clas-
sification models performed, thanks to its capability of reducing any bias
produced by the models. Moreover, each ML model has a set of hyperpa-
rameters that need to be tuned in order to improve its performance. This
process, commonly known as “hyperparameter tuning”, is carried out by
implementing the random search method, which allows assessing the values
of the hyperparameter with a larger impact on model performance.

Using 𝑅 as performance parameter, we assessed that the best-trained
model for our approach is the Extra trees regressor. It is a model of ensemble
learning technique that aggregates the results of different de-correlated
decision trees. Once the training and the choice of the model are done, we
move to the real estimation step. In this phase, we replace the GPT standard
used for training with GPT live of a specific week that we want to estimate.

wMAPE =

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2∑𝑛
𝑗=1 𝑦𝑖

, (4.2)
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where 𝑦𝑖 are the estimated values, 𝑦𝑖 the observed values, or ground truth,
and 𝑛 is the length of these two series.

4.3.2 Sig Estimator

The Sig estimator is composed by two interconnected phases: Signature
extraction, and Live Estimation. The first phase is signature extraction, it
aims at extracting the signature that characterizes the relationship between
the GPT of a single station and corresponding entrances and exits profiles.
We exploit the standard GPT and the averaged entrances and exits as inputs.
First, we need to transform the entrances and the exits data from the transit
dataset in order to replicate the GPT scale (0-100).

We apply to both entrances and exits a mix-man normalization scaling
the dataset on the 0-1 interval and we then multiply by 100. The scaling
procedure is the following:

𝑡𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑡 − min(𝑇)

max(𝑇) − min(𝑇) · 100,∀𝑡 ∈ 𝑇, (4.3)

where 𝑇 represents the exits or the entrances dataset for a single station,
𝑚𝑖𝑛 and 𝑚𝑎𝑥 are the corresponding minimum and maximum values, these
two values are stored for each station and will be used in the live estimation
phase. Once scaled the transit data, we compute the signature of the stations.
The signature represents the scaling factor between the standard GPT and
the scaled exits and entrances. For each station we compute two signatures,
one for the entrances and one for the exits. The signature calculation is the
following:

𝑆𝑒𝑛,𝑠 = 𝐸𝑛𝑠𝑐𝑎𝑙𝑒𝑑 − 𝐺𝑠 , (4.4)

𝑆𝑒𝑥,𝑠 = 𝐸𝑥𝑠𝑐𝑎𝑙𝑒𝑑 − 𝐺𝑠 , (4.5)

where 𝑆 is the signature for the station 𝑠 corresponding to the transit
data of entrances 𝐸𝑛 or exits 𝐸𝑥.

In the second step, we try to estimate the real values of users exiting
and entering the subway stations for a specific week by leveraging the
corresponding GPT Live data. Specifically, we exploit as input the signatures
𝑆𝑒𝑥,𝑠 and 𝑆𝑒𝑛,𝑠 extracted in the previous phase using past information and we
combine them with the information of the current week from the Live GPT.
The estimation function for the Exits profile of a week 𝑤 is the following:

𝐸𝑥𝑤,𝑠 = (𝑆𝑒𝑥,𝑠 + 𝐺𝐿𝑠,𝑤) · (max
𝑒𝑥,𝑠

−min
𝑒𝑥,𝑠

) + min
𝑒𝑥,𝑠

, (4.6)

where max and min are the same stored from (4.3), 𝑆𝑒𝑥,𝑠 is the signature
of exits for station 𝑠, and 𝐺𝐿 is the GPT Live data extracted for station 𝑠
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Figure 4.4: TransitCrowd framework, blue symbols represent input data,
orange blocks are the Sig estimator, and green ones the Reg estimator

during week 𝑤. The same function applies also to the estimation of the
entrances profile and it is repeated for every station in the dataset for 12
different weeks after the signature extraction. Similarly to the Reg estima-
tor, the estimation error is computed using the weighted Mean Absolute
Percentage Error (wMAPE) described in (4.2).

4.4 Performance Evaluation

We evaluate the performance of TransitCrowd calculating the estimation
error at station level using the weighted Mean Absolute Percentage Error
(wMAPE) [81]. We start analyzing the results provided by the Sig Estimator.
As described in the previous section, the signature extraction is the first
step of Sig estimator. Fig. 4.5 presents the signatures of entrances and exits
for the subway station "50th" in New York, the first row of the plot reveals
the three datasets exploited for the signature extraction: standard GPT,
entrances, and exits (scaled 0-100). The second and the third row of the plot
show the signature for the entrances and the one for the exits obtained by
applying (4.4) and (4.5). It is interesting to note that the signatures for this
station are almost always negative for the full period; above all it is clear
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Figure 4.5: Extraction of signatures profiles for subway station named “50th”

that the biggest differences between the GPT and the transit arise during
morning peaks. GPT seems not to display the same high percentages of exits
and entrances during mornings, this information contained in the signatures
will be crucial for the estimation process.

Once the signatures for all stations are extracted from the reference
month, we are ready to leverage the GPT Live data for estimation of the
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real flows of entrances and exits. Fig. 4.6 shows the result of the estimation
process in a single station (Dupont Circle, Washington) for 1 week following
the signature extraction month. The upper part of the figure reveals the
profile of the GPT Live for the corresponding week, then the lower part
presents the real estimation for entrances and exits produced by applying the
matching signature. The figure depicts a good result for this single station,
most of the peaks reached by the ground-truth are replicated by the estimated
flows. It is interesting to notice that the estimation error for this station is
stable throughout the week, this is a first signal that our prediction results
are not deteriorating along different days.

We continue our analysis by looking at the results of Reg estimator.
Fig. 4.7 presents the entrances estimation errors (wMAPE) of Reg for New
York stations at different hours of the day. From the maps it is interesting
to notice that the stations in the center of Manhattan are characterized by
higher errors throughout the day. Moreover, Fig. 4.7c depicts how the errors
in the evening are larger than in other day periods.

Table 4.1: Estimation error for all stations New York

Week after training Error (wMAE) Error (wMAE)
Sig Reg Sig Reg

1 0.378 0.350 0.370 0.305
2 0.309 0.218 0.278 0.118

Validation set 0.309 0.218 0.278 0.118
1 0.306 0.236 0.278 0.150
2 0.308 0.263 0.271 0.178

Having illustrated the estimation results for single stations for Sig and Reg
estimator, Fig. 4.8 shows the performances of our framework on entrances
for every station in our dataset. The results are in form of a cumulative
distribution function (CDF), every station contributes to the plot with a value
of wMAPE that represents the estimation error made by the framework to
estimate the entrance flow.

As expected, the Reg estimator produces lower errors; it is clear that for
both plots the violet line representing Reg is always on the left of the Sig
line. The Reg estimator obtains errors lower than 0.2 for the 60% of the
estimations, while the errors of Sig estimator are less than 0.3 for the 60% of
dataset in both cities.

The difference between the two cities is more evident in the interval
[0.6 − 1], here we can notice that New York CDF shows higher errors, both
estimators reach values greater than 0.5 for a small portion of estimations
(10%). The main outcome of the CDFs is that Reg estimator obtains better
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Figure 4.6: The profiles of the predicted and true values of turnstile data for
week 1 after the signature extraction, for station Dupont Circle,Washington

estimation results than Sig tool. Therefore, the proposed idea of an estimator
prioritizing accuracy (Reg tool) is confirmed.

Once analyzed the estimation performances on the full dataset we want
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Figure 4.7: Estimation error for stations in New York at different hours of a
working day

to analyze the evolution throughout the weeks, the scope is to recognize if
our results are deteriorating along the weeks after the training suggesting
that GPT trends tend to evolve in time.
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Figure 4.8: Cumulative error for all stations in Washington using both Sig
and Reg estimator

Tab. 4.1 shows the performance of this estimation process on the New
York dataset period for the two estimators, it includes the average wMAPE
of the estimations in all stations for the entrances and the exits for all the
weeks in the data collection interval. The table shows that the estimation
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Figure 4.9: Distribution estimation error entrances

process is stable over the weeks, and the wMAPE is always contained in the
interval [0.2 − 0.3]. it is notable that for both estimators the error does not
appear to systematically increase along the different weeks, moreover the
week with the lower errors is the 5th after training. This means that for Sig
estimator the signatures extracted before week 1 are still valid also after the
2 months of the data collection, at the same time the Reg estimator does not
require new training process after several weeks of estimations. Continuing
with our analysis, We want to comprehend if the estimation errors of Tran-
sitCrowd are influenced by the amount of entrances/exits we are estimating.
Fig. 4.9 presents two density plots in order to visualize the distribution of the
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Figure 4.10: Distribution estimation error entrances

estimation errors over the values of entrances. The density plots are based
on Washington results and concern both the Sig estimator(fig.4.10a) and
the Reg estimator(fig.4.10b). Errors from Sig estimator are concentrated
around wMAPE values of 0.35. In contrast, as for the previous results, the
performances of Reg estimator are slightly better, and the errors focus on
the interval [0.25 − 0.3]. The significant outcome of Fig. 4.9 is that for both
estimators errors are not increasing with the rise of entrances values, it is
remarkable that for entrances around 200 − 250 the errors remain the same
that for entrances 0 − 50. Finally, Fig. 4.10 presents the relationship between
the prediction error of entrances and the variation of true values from the
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values of the reference week (i.e. the week of the signature extraction). The
y-axis indicates the accuracy of the estimations (wMAPE between prediction
and true values), while the x-axis depicts the deviation of the true values
from the reference week (Mean absolute error between reference week and
true values). These density plots reveal that the estimation error is not
influenced by the variation of each week, this means that TransitCrowd is
able to estimate with similar errors standard weeks and weeks different from
the reference one.

4.5 Conclusion

In this chapter, we investigated the potential to leverage GPT to estimate
public transport demand flows, specifically focusing on the subway. By
exploring this crowdsourced data, we identified that GPT can be correlated
with the entrance pattern of the majority of subway stations, while the
crowdedness of a subset of stations is linked with the exits flows.

We developed TransitCrowd, a framework that exploits GPT to make
live estimations of transit data at subways station level. Our framework is
flexible and composed of two distinct estimator tools. The first, Reg estimator,
prioritizes the accuracy of results focusing on a city level. The second, Sig
estimator, extracts signatures from stations revealing the temporal profile of
the correlation between GPT and entrances/exits. Through this fundamental
information, it is possible to apply the presented methodology to other
cities. Finally, we evaluated the performance of TransitCrowd, estimating
two months of entrance/exit flows using as input the GPT Live data from
each station.

The estimation process produced promising results whose accuracy ap-
pears to be stable over the different weeks. We observed that TransitCrowd
is able to estimate properly weeks different from the training one, and the
errors are not influenced by the high or low values of entrance/exit flows.

The next steps will focus on analyzing the signatures of different stations
to identify influential factors, such as activities around the stations. Once
such factors are detected, the final goal is to estimate signatures for stations
in another city in order to test the transferability of our estimation process to
a new environment.
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Chapter 5

GPT of catchment areas to
estimate transit flows

In this chapter, we address RQ4, "How to convert GPT data into transit
information automatically?".

In this chapter, we investigate the feasibility of utilizing GPT data to measure
the popularity of catchment areas surrounding transit stations, with the goal of
proving that this information can be employed to estimate the transit demand
for the station. This is an important problem because it can help transportation
planners and researchers who need to analyze transit flows in cities where
transit data is not available.
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5.1 Introduction

In this study, we have the goal to leverage the popularity of places around
stations as a determinant for estimating flows in and out of stations. .
Specifically, we want to exploit the information on the catchment areas
around stations to analyze the transferability of Transitcrowd tool to other
cities, without having to retrain the model using transit data.

This is an important question because it has the potential to help trans-
portation planners and researchers who need to analyze transit flows in cities
where transit data is not available.

In order to apply Transitcrowd in a city without transit data we need to
obtain the signatures of the stations, the concept of signature of station have
been described in Chapter 4 and represent a time series that characterizes
the relationship between the GPT of a single station and the corresponding
entrances and exits profiles. To this end, we developed a ML framework that
uses data on the activities around a station as a substitute for the training
transit data. Specifically, we exploit GPT data of the activities in catchment
areas around the station and exploit such data to estimate the signatures in
a city without the transit information. The rest of the chapter is organized as
follows: the following section presents the description of the data used in the
study, followed by the methodology of the framework. Then, the results are
discussed and evaluated. Finally, the last section provides the final remarks.

5.2 The Dataset

In this section, we present the types of data we used in our analysis for
transferring TransitCrowd to a new city. Our framework was trained using
data from New York City, which we refer to as the "training" city. The
framework was then evaluated using data from Washington D.C., which we
refer to as the "testing" city. For both cities, we collected the same data, which
we divided into input data and target data.

Input data

The input data in our framework consists of information about the local
businesses (LBs) providing GPT data around the stations. We collected this
data for both the training and testing cities because it will be used during
the training process and will be the primary source of information for the
estimation process. We divided the inputs into two types of categories:
Static data, we first exploit the static information on how many LBs are
located in the area surrounding each transit station. We extracted from
Google maps the information regarding their location and their category of
business. Based on the different types of LBs provided by Google we created
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11 categories to divide all the different LBs types. The categories we defined
in this study are: Financial, Public, Food, Transit, Stores, Attractions, Bar,
Health, Gas station, and Pharmacy. Our study includes information on the
type and location of 40, 000𝐿𝐵𝑠 in New York and 23, 000 LBs in Washington.
Dynamic data, We used the dynamic information on the popularity trends
of LBs in the areas around the stations. To do this, we used the popularity
trends from the standard GPT, which describes the normalized weekly trend
of visits at LBs based on the average of a few months. This information was
collected in New York and Washington for a subset of the static dataset on
LBs, as not all LBs in Google Maps provide GPT information. To divide the
different types of GPT of LBS , we used the same macro categories described
for the static data. Our dynamic dataset includes the GPTs for 16, 000 LBs in
New York and 9, 000 in Washington.

Target data

The primary aim of this study is to assess the transferability of TransitCrowd.
To do this, we have focused on the signatures of stations as our primary
target. These signatures are essential for estimating the transit flows at each
station using the Sig estimator method, which has been introdiced and tested
in Chapter 4. The signatures represent the scaling factors between the GPT
data for a station and the trends of exits and entrances of passenger flows.
As a result, our targets will be divided into two types: signatures of entrances
and signatures of exits, which will be analyzed independently of each other.
We have employed the TransitCrowd tool to extract the signatures for both
the training and testing cities. The signatures for the training city (New York)
will be used to train our framework, while the real signatures extracted from
transit data for the testing city (Washington) will be used to evaluate the
accuracy of our predicted signatures.

5.3 Methodology

The proposed methodology involves two steps: Data pre-processing and
Signature estimation. In the first step, we prepare the data from the area
surrounding the station using GPT data for both the training and testing cities.
The second step involves using machine learning techniques to generate
accurate estimates of the signatures of stations in the testing city. This section
provides the details of the two phases, which are also illustrated in Figure 5.1.
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5.3.1 Data pre-processing

In this phase, we focused on processing the data to create information that
describes the characteristics of the surrounding area around the stations.
This information will be crucial in the next step when we use it to estimate
the signature of each station. In order to extract the zone profile we exploit
GPT and the location of the stations.

Catchment area

To fully understand the demand profile of a station area, it is important to
define its boundaries, which can be defined by the catchment area. The
catchment area helps to clearly identify the geographical area that will be
analyzed and ensure that all relevant activity is included in the profile. This
area helps to identify the areas that are most closely tied to the station and the
businesses that are most likely used in connection with it. By defining these
catchment areas, we can accurately assess the characteristics of the station
area for the purpose of signature estimation. In this study, we proposed two
different methods to determine the station catchment areas: Voronoi and
Weighted distance.

The first approach is based on Voronoi diagram [82], this method is a
way of dividing a plane into regions based on the distances to a set of points,
known as seeds. Using this method, each point within a region is closer to
the seed of that region than any other seed. In the context of this study, the
plane represents the city area, and the seeds represent the stations. Using the
Voronoi diagram method, the city is divided into regions, with each region
corresponding to a catchment area for a specific station. In this way, the
catchment area of a station is defined as the region of the city that is closest
to that station, as determined by the Voronoi diagram. This method is widely
used in mobile network studies for visualizing and analyzing the coverage
areas of base stations [83]. In the context of this study, the Voronoi diagram
method was selected as our analysis has analogies with the study of coverage
areas of base stations. Despite this approach well defines the catchment areas
of a station, it does not consider the areas that are located between multiple
stations as the approach partitions the area in sub-areas that do not overlap.
However, these areas could have an influence on the behavior of different
stations since the travellers performing activities in some places may be well
accessing one or more stations. To address this, we developed a second
approach to identify catchment areas that can split the overlapping zones
between multiple stations. This method called Weighted distance, assigns
a weight to each point in the area based on the distance of the point from
each station. This way, the influence of each station on the overlapping area
would be proportional to its distance from that area. This method measures
the distance between two points by considering the actual street network,
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rather than a straight-line distance. This can produce more accurate results,
as it accounts for the geographical and network structures of the area. The
weight 𝑊𝑖 ,𝑠 assigned to a specific point 𝑖 for station 𝑠 is calculated using the
following formula:

𝑊𝑖 ,𝑠 =

{
𝑑𝑖 ,𝑠

𝑀𝑎𝑥𝑤
if 𝑑𝑖 ,𝑠 ≤ 𝑀𝑎𝑥𝑤

0 if 𝑑𝑖 ,𝑠 > 𝑀𝑎𝑥𝑤
(5.1)

Where 𝑑𝑖 ,𝑠 is the network distance of point 𝑖 from station 𝑠 and 𝑀𝑎𝑥𝑤 is
the maximum walking distance. This equation calculates the weight of each
point as the ratio of its distance from a particular station and the maximum
walking distance if the distance is less than or equal to 𝑀𝑎𝑥𝑤 . If the distance
is greater than 𝑀𝑎𝑥𝑤 , the weight is 0. This ensures that the weight is always
between 0 and 1, is proportional to the distance from the station, and is 0 if
the distance is larger than 𝑀𝑎𝑥𝑤. In order to compare the effectiveness of
both catchment identification methods, we used them in parallel, analyzing
both the training and testing cities. By doing this, we were able to assess
the performances of the two methods and determine which one was more
accurate.

Zone Profile

Once the catchment areas around the station have been defined, we need to
identify the characteristics of these areas. To this end, we exploit static and
dynamic data of the area, following a similar approach to our previous work
on Chapter. The dynamic data consists of the GPT of LBs, which give us an
indication of how popular these businesses are at different times of the day.
The static data includes the location and business category of each venue,
which do not change significantly over time. We combine this static and
dynamic data into a single "zone profile" for each station. The zone profile
includes the distribution of business categories in the catchment area, as
well as the popularity trends of those businesses over time. This information
allows us to understand the types of businesses and services available in
the catchment area, as well as how crowded they are. The zone profile of
each station consists of a value of popularity for each hour of the week and
it is repeated for each category of LBs, the categories of LBs are the ones
described in Section 5.2. The zone profile of station 𝑠 is represented by the
following equation:

𝑍𝑠,𝑐 =

𝑁𝑐∑
𝑖=1

(𝐺𝑖 ∗𝑊𝑖) (5.2)

where 𝑁𝑐 represents the number of local businesses in the catchment
area for category 𝑐. The term (𝐺𝑖 ∗𝑊𝑖) represents the contribution of the
LB 𝑖 to the overall zone profile, with 𝐺𝑖 being the GPT of the business for
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a standard week (168 values) and 𝑊𝑖 being the weight assigned to that
business. Note that the weight depends on the strategy of the catchment area.
For the Voronoi method, the weights are equal to 1 for all local businesses in
the catchment area, while for the weighted distance method, the weight is
described in Eq. 5.1.

(a) New York (b) Washington DC

Figure 5.2: Voronoi catchment areas

5.3.2 Signature Estimation

Once we developed a method for calculating the zone profile of a particular
transit station, we used this information to estimate the signatures for the
testing city, where we aimed to estimate the signature values without using
traditional transit data. To achieve this, we employed machine learning
regression algorithms on data from the training city. The algorithms were
trained to predict the signature of the stations based on the input of the zone
profiles. The signatures used as prediction targets in this phase were those
generated by the Transitcrowd tool. It is worth noting that we conducted sep-
arate training for both the exits and entrances signatures, as these quantities
may vary independently of one another.

The use of machine learning regression models allows us to analyze the
relationship between the zone profile and the signature of the station, and
to make predictions about the signature. By training the models on data
from the training city, we were able to evaluate the accuracy and reliability
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Figure 5.3: Comparison between Voronoi and Weighted distance catchment
area, for Dupont Circle Station, Washington DC

of these predictions and determine the efficacy of our method. Once trained
and validated we applied the ML models to the testing city.

ML models

We trained 12 ML models to predict the signature of stations. These models
were chosen because they belong to a category of models that have been
widely and successfully applied to various regression problems in previous
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research, indicating their suitability for use on datasets with similar sizes and
compositions. This made them well-suited for our purposes. The description
of the different models is shown in table5.1.

Model selection

In order to assess the performance of the different models, in this study, we
used several performance metrics to evaluate the accuracy of our machine
learning models for signature estimation. We also fine-tuned each model’s
parameters using a technique called random search, which helps identify the
values that have the greatest effect on the model’s performance [84]. The
performance metrics exploited are commonly-used techniques for evaluating
the performance of regression models. The metrics are mean absolute error
(mean absolute error (MAE)), root mean squared error (root mean squared
error (RMSE)), and coefficient of determination (coefficient of determination
(R2)).

Mean absolute error (MAE) is a measure of the average magnitude of
the errors in a set of predictions, without considering their direction. It is
calculated as the average of the absolute differences between the predicted
and actual values. It is defined as:

𝑀𝐴𝐸 =
1
𝑛

𝑛∑
𝑖=1

|𝑦𝑖 − 𝑦𝑖 | (5.3)

Root mean squared error (RMSE) is a measure of the average magnitude
of the error, taking into account the direction of the error. It is calculated as
the square root of the mean squared error (MSE). Can be calculated as:

𝑅𝑀𝑆𝐸 =

√√
1
𝑛

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 (5.4)

Coefficient of determination (R2) is a measure of how well the predictions
fit the actual data. It is calculated as the proportion of the variance in the
dependent variable that is explained by the independent variables. It is
formulated with the following equation:

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)2∑𝑛
𝑖=1(𝑦𝑖 − 𝑦)2 (5.5)

where 𝑦 is the mean of the true values.
After analyzing the ML models using the aforementioned evaluation

metrics on the training city, we selected the best model. Once we obtained
the predicted signatures from the selected model for the testing city, we
analyze the accuracy of these results.
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Important Feature analysis

To understand the factors that are driving the predictions of our chosen model,
we applied the SHapley Additive exPlanation (SHapley Additive exPlanation
(SHAP)) method. This method allows us to identify the importance and
impact of each feature in explaining the model’s results [85]. By analyzing
the SHAP values, we can see how each feature is contributing to the model’s
predictions, and whether certain features are having a larger or smaller
impact on the final output. Using SHAP also enables us to understand the
interactions between features, which can provide valuable insights into the
behavior of the model. For example, we might find that certain combinations
of features have a particularly strong influence on the model’s predictions,
or that certain features are only important in certain contexts. By analyzing
these patterns, we can get a better sense of the overall behavior of the model
and how it is making decisions.

5.3.3 Performance Evaluation and Discussion

As already mentioned in Section 5.2, we consider New York City as the
training city and Washington D.C. as the testing city. The goal is to estimate
the signature in the testing city without any dataset on transit. In order
to identify the catchment area of each station in both cities, we employ
the Voronoi and weighted distance methods described in Section 5.3.1. As
illustrated in Figure 5.2, the Voronoi method was applied to the structures of
both New York and Washington. The stations in the dataset are represented
by the stars, and the red lines outline the catchment areas surrounding each
station. This method ensures that every point within the catchment area is
closer to the corresponding station than to any other station in the city. When
comparing the catchment areas of New York and Washington, it becomes
evident that the distinct structures and quantities of stations in each city have
an impact on the size of the catchment areas. Specifically, the catchment
areas in New York tend to be small and condensed, while the catchment areas
in Washington tend to be larger in size. This difference in catchment area size
can be attributed to the layout of the city and the distribution of stations. A
city with a denser network of stations and a more compact structure may have
smaller catchment areas, as each station serves a smaller geographic area.
As outlined in Section 5.3.1, we also wanted to evaluate the performance of
a second catchment area detection method, the weighted distance approach,
which takes into account overlapping areas between stations. For every point
in the street network surrounding a station, a specific weight is assigned
according to Eq. 5.1. To determine the maximum distance parameter, we
based our assumption on previous studies [86], which suggest that the
maximum influence radius of a station is 1.3km. This distance is equivalent
to a 15-minute walking distance assuming an average walking speed of 5
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Table 5.1: ML models trained for signature estimation

Model Description
AdaBoost Regressor A boosting algorithm for regression that combines

the predictions of multiple weak models, typically
decision trees.

Bayesian Ridge A regularized linear regression method that uses
Bayesian techniques to find the optimal weights for
the model.

Decision Tree Regres-
sor

A decision tree model for regression that splits the
data based on features that maximize the variance
reduction.

Elastic Net A linear regression model that combines the L1 and
L2 norms of the weight vector as a regularization term
in the cost function.

Extra Trees Regressor An ensemble learning method for regression that uses
multiple decision trees and outputs the mean predic-
tion of the individual trees.

Gradient Boosting Re-
gressor

An ensemble learning method for regression that pro-
duces a prediction model in the form of an ensemble
of weak prediction models, typically decision trees.

Huber Regressor A regression method that is robust to outliers in the
data by using the Huber loss function.

K Neighbors Regressor A k-nearest neighbors regression model that makes
predictions based on the mean of the k nearest neigh-
bors.

Light Gradient Boost-
ing Machine

A machine learning library for gradient boosting on
decision trees. It is designed to be distributed and
efficient with the following advantages: faster training
speed and higher efficiency.

Linear Regression A statistical method for modeling the linear relation-
ship between a dependent variable and one or more
independent variables.

Passive Aggressive Re-
gressor

An online learning method for regression that updates
the model’s weights aggressively for misclassified in-
stances and passively for correctly classified instances.

Random Forest Regres-
sor

An ensemble learning method for regression that con-
structs a multitude of decision trees at training time
and outputs the mean prediction of the individual
trees.
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km/h. In Figure 5.3, the catchment area of the Dupont Circle station in
Washington is depicted using the weighted distance method. The colors in
the map represent the weight assigned to each location, with lighter colors
indicating locations that are closer to the station and have a higher weight,
and darker colors indicating locations that are farther from the station. White
zones in the map correspond to areas that are outside of the catchment area
for the station and have a weight of 0.

Figure 5.4: Example of zone profile for 42 St-Bryant Park Station

In the second phase, we focus on profiling the catchment areas that we
just defined. The zone profile is represented by a heatmap where the x-axis
indicates the hours of the week, while the y-axis expresses the different
categories of business. Each cell in the heatmap depicts how many LBs are
experiencing their popularity peak time along the day for the corresponding
category and hour of the week as described in Eq. 5.2. Fig. 5.4 shows an
example of a zone profile of the Voronoi catchment area for the subway
station of 42 St-Bryant Park Station, New York. The chosen metro station is
located close to Times Square and the surrounding area is characterized by a
wide variety of activities. The zone profile of this station clearly shows that
stores are the most popular category with a trend of uniformly distributed
popularity throughout the weekdays. On weekends, however, popularity
is more concentrated in the latter part of the day. This example demon-
strates the characterization made using the zone profile of a specific station’s
catchment area. We extract the same information for all stations in our
dataset for both the training and testing cities, using both the Voronoi and
weighted distance methods. Once we obtained the catchment areas and the
zone profiles, we can move to the final step of our work, which consists on
signature estimation. The idea of this phase is to analyze if it is possible to
predict the corresponding signature of a subway station given as input the
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zone profile.

Table 5.2: ML model performance on signature estimation

Model MAE RMSE R2
Extra Trees Regressor 5.4149 7.0969 0.7332

Light Gradient Boosting Machine 5.6416 7.3731 0.7114
Random Forest Regressor 5.7339 7.4837 0.7032

Gradient Boosting Regressor 5.7425 7.4384 0.7028
AdaBoost Regressor 6.2728 7.7249 0.6771
Linear Regression 6.0670 7.7864 0.6701
Bayesian Ridge 6.0632 7.7931 0.6699

Huber Regressor 6.0898 7.8856 0.6650
Passive Aggressive Regressor 8.2456 10.3111 0.4484

Decision Tree Regressor 7.5693 10.2300 0.4359
K Neighbors Regressor 8.9660 12.2478 0.2212

Elastic Net 9.7770 13.1909 0.1178

We initially trained the 12 ML models identified in Section 5.3.2 using
data from the training city to determine the most suitable model for signature
estimation. Table 5.2 shows the results of different ML models trained for
signature estimation. The models are ranked according to their MAE, with
the model with the lowest MAE being the best performer.

We can see that the Extra Trees Regressor, Light Gradient Boosting Ma-
chine, and Random Forest Regressor have the lowest MAE values, indicating
that they are the top performers among the models considered in this study.
These models are all learning methods that use multiple decision trees to
make predictions, with the Extra Trees Regressor and Light Gradient Boosting
Machine being more efficient and faster to train compared to the Random
Forest Regressor. The RMSE and R2 values also follow a similar trend as the
MAE values, with the top performers having the lowest RMSE and highest
R2 values. Overall, we selected the Extra Trees Regressor as the best model
due to its excellent performance based on the MAE, RMSE, and R2 values. It
is worth noting that the results shown in Table 5.2 are based on zone profiles
computed using the Voronoi method for signatures of entrances. We also
trained the ML models using the weighted distance method and the signa-
ture of exits consistently founding the Extra Trees Regressor to be the best
model. With the best model selected, we proceeded to test its performance
on the stations in the testing city of Washington DC. We used the previously
generated zone profiles as input and evaluated the accuracy of the model
using both catchment area methods for entrance and exit signatures.

An example of signature estimation for a single station in Washington DC
is shown in Figure 5.5. The green line represents the actual signature values,
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while the blue and red lines show the estimates made using the weighted
distance and Voronoi zone profiles, respectively. The figure illustrates that
the weighted distance method (2.92 MAE) performs better than the Voronoi
method (4.69 MAE) in terms of estimating signature entrances for this
particular station. However, for signature exits, the error of estimation is
higher for both catchment area methods, particularly for lower values of
the signatures where the estimation fails to predict accurately. The MAE
for signature exits is higher, with values of 7.65 for the weighted distance
method and 10.09 for the Voronoi method. In Figure 5.5, we showed
only the performnces on a single station. In Figure 5.6, we present the
errors for all stations in the testing city (Washington DC) in the form of a
cumulative distribution function (cumulative distribution function (CDF)) for
the signature estimation of entrances (Figure 5.6a) and exits (Figure 5.6b).
Each station is represented by a value of MAE that represents the error made
by the framework in estimating the signature. As expected, the Weighted
distance estimator produces lower errors than Voronoi. This is evident in
both plots, where the blue line representing Weighted distance is always
to the left of the Voronoi line, indicating lower errors. Specifically, for the
signature of entrances, the errors obtained by Weighted distance are lower
than 7 for 80% of stations, while for Voronoi they are lower than 9 for
80% of stations. The difference between the two catchment area methods
is less pronounced in the signature of exits estimation. In this case, the
CDF shows lower errors for the Weighted distance method, but the two
lines are relatively close to each other. This suggests that both methods
perform similarly for this estimation. It is worth noting that the estimation
of signature exits generally produces higher errors. This is evident in the
CDF, where errors are lower than 6 for 80% of stations for exits, while for
entrances they are lower than 6 for 80% of stations. This suggests that it
is more difficult for our model to accurately estimate the signature of exits
compared to entrances. The main conclusion drawn from the CDFs is that
it is more challenging for our model to accurately estimate the signature of
exits compared to entrances. Additionally, the Weighted distance catchment
areas method generally performs better than the Voronoi method. These
findings suggest that there may be particular characteristics of the signature
of exits that make them more difficult to accurately estimate. Finally, we
performed an analysis of feature importance in the signature estimation
process using SHAP values. The results are shown in Figure 5.7, which plots
the SHAP values on the x-axis and the value of the feature on the colormap.
Hour is the input feature with the highest impact, but it is surprising that
static information like the number of stores, food, and transit has a greater
impact than the dynamic data of GPT for the same categories. However, these
three categories appear to be the most influential in signature estimation.
The results of the feature importance analysis indicate that static data could
be important for estimating signatures. This data could include details about
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the city structure or the demographic information of the district surrounding
the station. Incorporating this information may help to improve the accuracy
of signature estimation.
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Figure 5.5: Signature Estimation for station "Columbia Heights" in Washing-
ton DC
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Figure 5.6: Cumulative error for all stations in Washington for signature
entrances and exits

Figure 5.7: SHAP feature importance

5.4 Outlook

The purpose of this study was to investigate the feasibility of utilizing GPT
data to measure the popularity of catchment areas surrounding transit sta-
tions, with the goal of proving that this information can be employed to
estimate the transit demand for the station.

To achieve this, we develop a framework that estimates the signatures
of a station. Signatures are the key concept that allows us to transfer the
Transitcrowd estimation tool to a city without transit data. Therefore, we
trained a ML model using signatures from one city together with the GPT
data of the catchment areas around the stations. The results showed that
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the model was effective at predicting the signature of transit stations in a
different city.

The Extra Trees Regressor was found to be the most effective model
for this task. We also experimented with various catchment area detection
methods and found that using weighted distance provided the best results.

In future research, it would be interesting to test the performance of
these models on a wider range of cities to see how well they generalize to
other locations. This could help to confirm the robustness and applicability
of the framework to different contexts. Additionally, incorporating more
data sources, such as demographic and land use data, may further improve
the accuracy of the predictions. This could provide a more comprehensive
view of the factors that influence the signature of a transit station. In
previous chapters and this one, we have examined how crowdsourced data,
particularly using GPT, can overcome the limitations of traditional mobility
data during normal circumstances. In the next chapter, we will continue
to investigate the potential of crowdsourced data for mobility by analyzing
the use of crowdsourced data in monitoring and responding to unexpected
events in mobility.
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Part III

Using crowdsourced data for
anomalous events
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Chapter 6

Mobility recover from Covid19

In this chapter, we address RQ5, ‘ Can Crowdsourced data be used to analyze
mobility during anomalous events? “

We perform an analysis for multiple cities through crowdsourced information
available from datasets such as Apple Maps, to shed light on the changes
undergone during both the outbreak and the recovery of SARS-COVID-19
pandemic. Specifically, we exploit data characterizing many mobility modes like
driving, walking, and transit. With the use of Gaussian Processes and clustering
techniques, we uncover patterns of similarity between the major European cities.
Further, we perform a prediction analysis that permits forecasting the trend of
the recovery process and exposes the deviation of each city from the trend of the
cluster.

This chapter is based on a work that has been published in the following
journal paper:

• The Impact of SARS-COVID-19 Outbreak on European Cities Urban
Mobility
P. Vitello, C. Fiandrino, A. Capponi, P. Klopp, R.D. Connors, F. Viti
Frontiers in Future Transportation
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6.1 Introduction

The Severe Acute Respiratory Syndrome Coronavirus 2 (Severe Acute Res-
piratory Syndrome Coronavirus 2 (SARS-COV-2)) [87] was declared as a
global emergency by the World Health Organisation (WHO) as of January 30,
2020. The global outbreak of the pandemic uncovered the unpreparedness of
the vast majority of healthcare systems [88] and led worldwide public insti-
tutions to take containing measures such as social distancing, cancellation of
public events, and closure of businesses, education, and recreational activities.
As a result, business and education systems moved to remote working and
teaching, which stressed the limits of fixed and mobile networks [89]–[91].

The pandemic outbreak caused an unprecedented change to daily habits,
including the way we move. Reducing and controlling human movement
has been of the utmost importance to contain the pandemic spread and
track infections. For example, by employing the DELPHI Epidemiological
Model developed at M.I.T. [92] to Manila’s metro transportation system, the
study of [93] unveiled that the confinement measurements adopted by the
authorities successfully prevented the rapid spread of infection.

In this chapter, we aim at drawing attention to two aspects. First, we aim
to gain insight into how has mobility changed in urban environments during
the first pandemic wave. Second, we study how such changes - driven by
a mix of confinement policies and self-isolation measures - have impacted
daily activities and, in turn, have contributed to limit the spread of the virus.
Our objective is to perform an analysis encompassing several cities from
different European countries and with different properties, to shed light on
commonalities between the contrasting mobility reactions to the pandemic.
These patterns can help cities to understand how they reacted to this first
pandemic wave in terms of mobility and can be useful to detect similar
cities helping to predict what will happen for future waves. The insights
coming from this work are very important for the concerned stakeholders,
e.g., government bodies, decision-makers, and city planners to re-think the
existing urban landscape and drive more sustainable city planning. For
instance, transportation authorities may monitor cities that reveal similar
mobility patterns, and eventually apply policies that were demonstrated
effective in those cities. For such a study, we rely on crowdsensed data that
providers such as Apple make available. Specifically, we analyze the Apple
Maps data that provide aggregated and anonymized information about the
variation of popularity in using different transportation systems. Employing
Gaussian Processes and clustering techniques, we combine the crowdsensed
dataset with information about the number of daily infections. This approach
allows identifying patterns of similarity between the cities considered and
performing a prediction analysis to forecast the trend of the recovery process.
In the remainder of the chapter, Section 6.3 illustrates the data employed in
the analysis, which is described in Section 6.4. Finally, Section 6.5 concludes
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the work and highlights the final remarks.

6.2 Related works

The studies that investigate the relation between Covid data and Mobility
can be divided into three main categories. The first category includes the
works analyzing the impacts of mobility on Covid trends, the authors of [94]
investigate the importance of governmental policies and human mobility
in the mitigation of the virus spread, their study draws attention to the
correlation between the variations of mobility and the pandemic burden
(measured in terms of deaths). The second category includes studies that
given the mobility data try to forecast the pandemic evolution, this subject
has been approached through different methodologies. In [95] the authors
exploited graph neural networks techniques, while for [96] has been devel-
oped a partial differential equation model. Finally, the last group of studies
deals with the influence of the pandemic severity on mobility, the authors
of [97] created an impact analysis platform able to compute the effects of
SARS-COVID-19 metrics on human mobility and social distancing.

Our analysis falls into the third category, whereas most of these works
focus on determining the factors that influenced mobility, we decided to
examine the similarities and the differences between citizens mobility for
distinct urban areas. To perform our analysis, we exploit a crowdsourced
dataset. Mobile CrowdSensing (MCS) has become a popular paradigm to
perform sensing campaigns using sensors embedded in mobile devices like
smartphones [17]. To combat the epidemic, many applications have been
developed to monitor and establish contact tracing systems [98]–[100].
Corona-Warn-App, Immuni, and Radar COVID are examples respectively
adopted by Germany, Italy, and Spain, and subscribers of the latter helped
identify that loss of smell and taste could indicate the presence of the infec-
tion [101]. This approach falls in the category of participatory MCS that
requires some efforts from the participants’ side. With these applications,
the users have to manually register and possibly declare themselves infected.
Then the system takes care of controlling whether the level of exposure is
high with the risk of contacting infected people. At the other extreme of the
MCS landscape is the opportunistic paradigm: here, participants make no
effort and the application takes care of sharing relevant information from
the mobile device to the system. The crowdsourced dataset exploited for
this study belongs to the opportunistic paradigm, many recent works used a
similar dataset for mobility analysis. In [102], the authors combined GPS
data and SARS-COVID-19 case data to understand how pandemic and re-
strictions affected the citizens’ mobility in the USA. In [103], the authors
exploited crowdsourced data from google to analyze the different impacts
of the pandemic in 88 countries. Recent studies exploited the popularity of
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Point of interest(Point of interest (POI)s) to quantify the mobility patterns
of a city, the information on Pois can be extracted from different sources,
the authors of [104] used data from Google popular times, while in [105]
the dataset of Pois is taken from SafeGraph Places data. While these studies
analyzed the general mobility of citizens our approach aims at investigating
more in deep the different modes of transport. Other studies focused on
the mobility of a specific country, the authors of [106] investigated how
mobility in France changed before and during lockdown using mobile phone
data, while in [107] the authors analyzed the reactions of citizens under
mild policies in Sweden. Another important characteristic of our work is the
focus on the European situation, in the closest to our work[108] the authors
perform a socio-demographic analysis nationwide in Europe. By contrast, we
work at a resolution of single cities.

6.3 Dataset

This Section explains the dataset we employ for the analysis. Specifically, we
highlight the cities for which we obtain real data from different sources, i.e.,
Apple Maps 1 and Joint Research Centre (JRC)2. Besides illustrating the types
of data considered for mobility and SARS-COVID-19 cases, we also delve
into analyzing the morphology of the cities, population, and other metrics
on the urban fabric. In such a way, the reader is provided with all the details
necessary to understand the analysis of Section 6.4.

6.3.1 The Apple Maps Data

Mobile users have at their disposal several ways to share data such as
location-based social networks (location-based social networks (LBSN)) (e.g.,
Facebook, Foursquare, and Twitter), and crowdsourced applications (e.g.,
OpenStreetMap, Waze) [17]. Such contributions have made available large
datasets that enable an analysis of citizens’ mobility, travel behaviors, and
accessibility of urban areas.

Apple Maps data provides information on transportation modalities
worldwide with zero privacy leakage, i.e., data is anonymized, and no infor-
mation about the single users is disclosed. This is in line with what other
popular crowdsensed providers like Google do (e.g., with Google Popular
Times [109]). Rather, the data comes in a way that shows the aggregate
requests for directions in Apple Maps for a given transportation mode, e.g.,
driving, walking, or site, e.g., transit, stations. Further, the data is provided
as a relative increase or decrease with respect to the average past request,
i.e. following pre-SARS-COVID-19 outbreak values, starting from January

1https://www.apple.com/covid19/mobility
2https://covid-statistics.jrc.ec.europa.eu/
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13th, 2020. Our study analyzes the Apple dataset from February 23rd 2020,
when the first lockdown measures were applied in Europe.

6.3.2 SARS-COVID-19 Cases

The JRC collects the numbers of contagious individuals and deaths at sub-
national levels (admin level 1) for all the European countries. The data are
imported directly from the National Authorities sources (National monitoring
websites, when available). Since our analysis is at the city level, we con-
sidered the trend of the corresponding region. We extracted the evolution
of the cumulative number of contagions normalized by the total number of
contagions for each area.

6.3.3 The Considered Cities

After having described the type of data that will be employed for the analysis,
we now describe the cities that have been selected. We began to collect data
for Milan first, being one of the earliest cities hit by the SARS-COVID-19
outbreak and, for comparison, Luxembourg City that during the same period
was not in the same situation. We started to pay attention to the possible
dynamics of the virus diffusion, and this led to the monitoring of Valencia,
where during 10/03/2020 a Champions League football match took place
with an Italian team from Bergamo, Lombardia (shortly reported as one
of the worst-hit areas in Italy). The study then was extended to consider
multiple cities within Europe.

Table 6.1 shows the list of considered cities. For each of them, we in-
clude the population (as of 2018 from Eurostat database3), its morphological
properties, and whether Apple data have also been recorded. Concern-
ing the morphological properties, we take into consideration properties
that define the urban network. Specifically, we resort to OpenStreetMaps
(OpenStreetMaps (OSM)), which defines the street network with a graph
𝐺OSM = (𝑉, 𝐸), where 𝑉 is the set of vertices or nodes and 𝐸 the set of edges.
Each node is characterized by a unique identifier called OSMID, the latitude
(𝑦), the longitude (𝑥). Further, each edge comes with a set of attributes: ac-
cess, bridge, highway, lanes, maximum speed, name, oneway, osmid, service,
tunnel, width, and the OSMIDs of the adjacent nodes of an edge.

Given that OSM is based on voluntary contributions, different cities might
have a different precision level. For a fair comparison, we provide in the table
the information given by the Augment-OSM Precision algorithm (AOP) [77].
Specifically, AOP augments the graph that OSM provides by adding through
additional interpolation edges so that the resulting street graph contains
nodes with a fixed distance, e.g., 1 m. A high density of nodes defines cities

3https://ec.europa.eu/eurostat/web/cities/data/database

99



Table 6.1: Comparison of population, number of edges, average initial edge
length of each edge, and nodes for different cities

CITY POPULATION NODES 𝐺 EDGES 𝐺 AVG_LEN EDGES (M)

London 9, 126, 366 127, 005 298, 959 97
Berlin 3, 748, 148 28, 073 73, 187 146
Madrid 3, 223, 334 30, 632 61, 588 99
Rome 2, 844, 750 42, 864 89, 709 125
Paris 2, 140, 526 10, 025 19, 535 96
Bucharest 2, 106, 144 16, 536 40, 343 100
Vienna 1, 911, 191 16, 083 36, 105 126
Hamburg 1, 899, 160 21, 490 51, 949 145
Warsaw 1, 790, 658 18, 823 43, 370 137
Budapest 1, 768, 073 23, 460 61, 959 128
Milan 1, 404, 239 13, 351 26, 468 97
Prague 1, 324, 277 20, 856 48, 449 119
Stockholm 974, 073 12, 752 29, 678 114
Amsterdam 873, 555 11, 520 26, 580 98
Marseille 862, 211 13, 206 27, 575 98
Copenhagen 794, 128 6, 990 17, 649 102
Valencia 791, 413 7, 899 14, 635 95
Krakow 779, 115 8, 925 19, 859 152
Athens 664, 046 8, 822 18, 302 64
Rotterdam 651, 870 11, 238 25, 377 95
Helsinki 648, 042 9, 618 20, 870 122
Glasgow 610, 271 15, 957 37, 617 97
Dublin 554, 554 11, 193 26, 030 95
Antwerp 525, 935 7, 990 17, 913 120
Lisbon 506, 654 9, 769 20, 571 91
Malmö 344, 166 5, 391 12, 878 118
Graz 294, 630 16, 083 36, 105 126
Brussels 176, 545 1, 437 2, 719 87
Luxembourg City 122, 326 2, 146 5, 000 126

with an extensive mobility network, e.g., streets and squares. Further to this
information, we also include the number of edges graph and the average
edge length in the city. In this case, we prune the street graph so that only
two nodes define a street. As a result, we get knowledge about the degree of
connectivity and regularity of the urban fabric.

6.4 Analysis

This Section presents the analysis of the dataset illustrated in Section 6.3.
Specifically, in Subsection 6.4.1, we show for Luxembourg City the trends
of infected individuals and fatalities, in relation to the lockdown measure-
ments taken by the country, and the impact of such measures on the cities’
mobility patterns (driving, walking, transit). In Subsection 6.4.2, we show
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the methodology employed to verify the similarity trends observed in the
mobility categories, group together those cities with similar patterns, and
derive a prediction method to forecasts future mobility trends per category.
In Subsection 6.4.3, we show the results for clustering and forecasting. Fi-
nally, in Subsection 6.4.5, we analyze the correlation between mobility and
the trend of SARS-COVID-19 infected cases. Practically, we verify whether
the mobility-based clusters of cities identified in Subsection 6.4.2 are still
applicable when looking at the evolution of the number of SARS-COVID-19
infected cases.

6.4.1 A Primer

Fig. 6.1 shows in a comprehensive graph for Luxembourg City, from bottom
to top, the evolution over time of infected cases and fatalities, the lockdown
measurements taken by the government, the percentage increase or decrease
of mobility modes usage, and the presence in activities. The time evolution
spans from February 23rd to July 3rd, and during such a time frame we have
data for both Apple Maps and SARS-COVID-19 trends.

The figure shows how the government started imposing hard lockdown
measures as from March 15th, aligning with what other EU countries did
despite a relatively low number of identified cases. However, in terms
of mobility, it is possible to notice that the population started to reduce
moving earlier, indicating an anticipation of actions following the announced
restrictive measures or self-adaptation of the population to the emergency
conditions. For example, were driving activities reduced already in a notable
way from March 10th to March 11th while the other categories from March
11th to March 12th. The rate of decrease is comparable for all categories,
revealing a pattern for all of them, reaching the lowest rate after a week
from the start of the lockdown. Then during the lockdown the rate slowly
increased, further increasing after the lockdown policy was stopped on May
11th. Transit experienced a substantial decrease, it started from 120% of
users before the Lockdown, and after March 15th, it reached the lowest
values (less than 20%) compared to Driving and Walking. Interestingly,
during the first phase of the lockdown (March 15th - April 20th) Walking
category experienced the highest values. This was due to good weather,
which prompted people to take the opportunity to enjoy being outdoors while
this was allowed. After lockdown, both walking and driving were observed to
restore to normal conditions and even exceeded the expected rates, whereas
transit did not. From this data there is clear evidence of a reduction in Transit
ridership and an increase for driving and walking mode, the reasons behind
this change could be different. A possible explanation could be a potential
mode shift from public transport to walking and driving as using public
transport was perceived as a more risky alternative in terms of potential
contacts with infected people. On the other hand, another explanation for
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Figure 6.1: Comprehensive timeline with SARS-COVID-19 cases, lockdown
measures, impact on mobility, and cities’ activities

transit reduction can be found on the working from home policy that caused
a drastic decrease in transit commuters. The case of Luxembourg City
exemplifies the evident correlations between the three collected data sets,
namely the mobility patterns via the Apple data, the lockdown policies, and
the COVID-19 data. Similar correlations were observed in the collected cities.
The aim of this study is to identify commonalities in how mobility trends
changed across Europe as a consequence of the epidemic spread and the
imposed restrictive measures. Capturing these commonalities may help in
understanding how specific reductions in mobility have contributed to limit
the spread of the virus, to better predict the evolution of future waves and
suggest which policies may be more indicated.
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6.4.2 City-level Analysis: Clustering and Forecasting Methodol-
ogy

The objective of this subsection is to identify similarity trends observed in the
mobility categories of Apple data for the cities considered (see Table 6.1). For
this, we resort to clustering techniques. The proposed methodology consists
of three interconnected components:

• regression with Gaussian processes;

• clustering with unsupervised machine learning models;

• prediction with again Gaussian processes.

We start from the raw Apple dataset at a city level, exploiting the full
dataset (February 23rd - July 3rd). In this phase (regression), we want to
obtain a mean function for each city that characterizes each category well
(namely, Driving, Walking, Transit). The scope of this function is to find the
general trend of the original data, avoiding outliers and peaks that could
influence the clustering process. We noted that the interpolation could be
affected by outliers due to data changes occurring in the presence of specific
events (e.g., the Catholic and Orthodox Easter days). To obtain the mean
function, we employ the Gaussian Processes (Gaussian Processes (GPs))
models that are one of the most commonly employed stochastic processes for
application to datasets with data evolving over space and time (time series are
a good example). When selecting the methodology to use, we explored both
GPs and neural networks (neural networks (NNs)) like Multi-layer Perceptron
and General Regression NNs. Unlike GPs, neural networks appear to be more
suitable for larger and more complex datasets than the one at our disposal.
Furthermore, GPs can be optimized exactly, i.e., there is no need for complex
training procedures to tune the hyper-parameters. The main characteristic
of GPs is that they are entirely determined by the mean and the covariance.
This aspect helps the model fitting because only the first- and second-order
moments should be specified. The covariance of the GPs is described by
a Kernel (covariance function), in this work we use a kernel based on the
combination by addition of a Matèrn component, an amplitude factor, and
observation noise. The hyperparameters of the GP model are optimized
by the limited memory Broyden–Fletcher–Goldfarb–Shanno algorithm (LM-
BFGS) [110]. To prevent the possibility of finding a local maximum in the
marginal likelihood, we run the optimization algorithm three times, using
randomly-chosen starting coordinates. Once we obtained the mean functions,
they are used to represent the city behavior for a specific category.

In the second phase, we first determine for each city a reference day that
represents the arrival in town of the SARS-COVID-19 pandemic. Since the
virus was observed to start spreading at different time periods in Europe, and
in order to align the data seeking for comparability, we defined a reference
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point as the moment in which the city (or the region containing it) reached
1% of total SARS-COVID-19 cases. Next, starting from these reference dates,
we create windows of time with a fixed duration given in the number of days
(e.g., 80 days). These windows are common in all cities. Once all the time
windows are defined, we extract the corresponding intervals of the mean
function obtained from the Apple Maps dataset for each city.

For the clustering technique, we use a hierarchical approach with a
well-known distance metric:

Distance Metric = 𝐽𝑆𝐷(𝑀𝐶𝑖𝑡𝑦1 , 𝑀𝐶𝑖𝑡𝑦2) (6.1)

where 𝑀 is the mean function from apple dataset and 𝐽𝑆𝐷 is the Jensen-
Shannon divergence function that measures the similarity between two
distributions. We choose the 𝐽𝑆𝐷 because it outperforms the asymmetric
Kullback-Leibler divergence (KLD) [78] and it always returns a finite value.
We preferred the hierarchical approach to other clustering techniques such
as K-means or Dbscan, because its output is relatively easier to understand.
The hierarchical algorithm produces dendrograms, which represent the sim-
ilarities and the distances between the different clusters and at the same
time highlight the distances between the objects in the same clusters. Such
a hierarchical approach creates clusters based on both information on the
mobility and evolution of SARS-COVID-19 cases. The distance between two
clusters is defined according to the complete linkage or farthest neighbor
method. The proximity between two clusters is the proximity between their
two most distant objects.

In the third step, we re-apply the same GP model applied in the first
step, but this time at the cluster level and for prediction. Indeed, GP can be
employed not only for regression but also for prediction, and we are now
interested in this feature. Specifically, we removed from the cluster dataset
the values of the last 10 days and use them as ground truth to evaluate the
prediction results. For the evaluation results, we compute the absolute error
for each day within the prediction interval and then average this value with
the ones obtained for the whole period. In such a way, we determine the
average prediction error.

The reason why we look at predictions for the cluster is in the application
of the method for early detection of future waves. Some city in the cluster
could be a few days earlier in the virus spread than others, hence our analysis
is of help to predict what will happen if the city in the cluster keep the same
policy in terms of confinement policy or deviate and use that of another
cluster if this may result to be more effective.

Fig. 6.2 shows an example of the application of the above procedure
obtained for Amsterdam and Milan, to identify the trend from the data of the
driving category. Note that Italy’s more rigid restrictions rules reduced the
variability of Milan’s weekly patterns significantly. By contrast, in Amsterdam
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(a) Amsterdam (b) Milan

Figure 6.2: Application of GP on two different cities for driving category

the recovery started earlier and the weekly patterns exhibit an increase in
variability magnitude that becomes higher with time since March 15th.

6.4.3 Results

This Section analyzes the results obtained with the methodology explained
above for both clustering and forecasting.

Clustering

We first start by analyzing the results obtained by the clustering operation
for each of the three categories, i.e., Driving, Walking, and Transit. For each
city, we extracted data concerning 20, 40, 60, and 80 days since when the
1% of total SARS-COVID-19 cases were reported. We applied the clustering
approach to these different intervals to investigate the mobility evolution
along the time. Fig. 6.3, 6.4, and 6.5 plot respectively the transition from
the cluster obtained at an interval and the next one, i.e., Fig. 6.3 shows
the difference between the clusters obtained using the first 20 days, and
the period between 20 and 40 days, respectively. Clusters are rendered in
the form of dendrograms that are a natural way of showing hierarchies and
exposing similarities. In Fig. 6.3, 6.4, and 6.5, the dashed lines highlight the
clusters while the red lines between the dendrograms indicate a change of
cluster. For space reasons, we only include the plots obtained for Driving.

We resort to using only six clusters that better balance the number of cities
per cluster for all the results. The x-axis represents the distance between each
cluster. Note that the similarity between the two dendrograms is very high,
and the only cities changing of cluster are Bucharest and Graz. Bucharest,
originally a one-city-only cluster, becomes part of the blue cluster (with Paris,
Luxembourg, etc.) while Graz does the opposite and transits from the purple
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Figure 6.3: Comparison of dendrograms obtained as result from 20 and 40
days intervals for Driving Category

Figure 6.4: Comparison of dendrograms obtained as result from 40 and 60
days intervals for Driving Category

cluster (Vienna, Rome, etc.) shift to a one-city-only cluster. Fig. 6.4 shows the
dendrograms of the clusters transiting from a window of 40 to 60 days. In
such a timeframe, we witness a more extensive transformation. For example,
the blue cluster splits into two smaller groups, one that comprises mostly
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Figure 6.5: Comparison of dendrograms obtained as result from 60 and 80
days intervals for Driving Category

the Scandinavian cities, while the other is a mix of different cities, including
French and Eastern European towns. The creation of a specific cluster for the
Scandinavian cities highlight the consequences of the specific public health
measures taken by these countries, which were notably different than other
European countries.

Some of the results obtained are easy to explain, others not. Specifically,
considering the 80 days dendrogram on the right of Fig. 6.5, the sets are as
follows:

• Cluster 1 comprises most of the cities from the central-north European
region (Berlin, Hamburg, London, Glasgow, Dublin, Vienna, Graz,
Antwerp, and Brussels);

• Cluster 2 comprises Scandinavian (Stockholm, Malmö, Copenhagen,
Helsinki) and Dutch (Amsterdam, Rotterdam) cities, plus Budapest and
Prague;

• Cluster 3 comprises French (Paris and Marseille) and Polish (Warsaw
and Krakow) cities, plus Luxembourg, Lisbon, and Bucharest;

• Cluster 4 comprises cities from the south European region (Rome,
Valencia, Athens);

• Cluster 5 comprises Madrid;

• Cluster 6 comprises Milan;
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Most clusters identify cities belonging to the same geographical region like
cluster 2 and cluster 4 representing Scandinavian and Southern European
regions. These two groups are an example of two radically different ap-
proaches to tackle the pandemic. The public institutions of cluster 4 applied
very strong lockdown policies, while Scandinavian countries applied soft
restrictions by encouraging citizens to follow government instructions at the
same time.

Concerning clusters that include cities from different geographical regions,
the explanation for being grouped is profound and has to be found in the
pandemic spread in the city, the specific measures taken by authorities, and
the citizens’ reaction. Cluster 3 is an example of such clusters as it combines
cities from eastern Europe (e.g., Bucharest, Warsaw, Krakow) with cities from
western Europe (e.g., Luxembourg, Paris, Marseille).

Looking at all the clusters, it is interesting to note how there is no strong
correlation between the clusters and the morphology of cities. With reference
to Tab 6.1, we can see how cities with similar average edge lengths (i.e.,
cities with roads of similar length) like Helsinki (122) and Antwerp (120)
or Milan (97) and Rotterdam (95) end up on different clusters. Another
important morphology parameter is the number of edges that together with
the population of the city provides a measure of urban density. We can see
how the clusterization is not influenced by this parameter. An example is
given by Cluster 3 which includes Paris and Bucharest that have the same
population (2,14 and 2,10 million residents - accounting only for the residents
in the municipality and not the neighboring areas), but while Paris has a
number of edges close to 20 thousand, Bucharest has a complete different
urban density with a number of edges that is double, i.e., more than 40
thousand.

It is also interesting to note how cities from the same country can belong
to different clusters. For example, the Italian cities (Rome in cluster 4 and
Milan in cluster 6) and Spanish cities (Valencia in cluster 4 and Madrid in
cluster 5), although they share similar mobility trends, differ in the evolution
of the number of SARS-COVID-19 infected people. Specifically, Madrid and
Milan had the earliest outbreak of the pandemic in their respective countries
and in general in the considered set of cities in this work.

Forecasting

Next, we perform a forecasting analysis per mobility category (Driving,
Walking, and Transit) using as history the time horizon of 80 days after the
1% of cases and we obtain forecasts for the subsequent 10 days. Please
note that the starting day from which we count the 80 days is different for
each city and that the 6 resulting clusters are different for each category.
For example, for the driving category (dendrogram on the right inside of
Fig. 6.5), there are two one-city-only clusters for Milan and Madrid, but
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this is not valid any longer for transit and walking categories. For sake of
completeness we decided to show all clusters including the one-city-only, in
this way we show the peculiarity of these cities that justifies being clusters of
their own.

We first show the prediction results, and later we show the error made
computed with the Root Mean Square Error (RMSE):

RMSE =

√√
𝑛∑

1=1

(𝑦𝑖 − 𝑦𝑖)2
𝑛

, (6.2)

where 𝑦𝑖 are the predicted values, 𝑦𝑖 the observed values, or ground truth,
and 𝑛 is the length of these two series. Please note that we obtain one
prediction per cluster.
Driving. Fig. 6.6 shows the results obtained for Driving. As mentioned above,
two of the six clusters are one-city-only clusters for Madrid and Milan. In
Fig. 6.6(a), these cities are included in cluster 4 and 6 respectively. Their
behavior is characterized by the fact that the municipalities had the earliest
cases of SARS-COVID-19 in Europe. The plots show how in the first 10 days
the level of driving activities follows standard trends in both cities and is
followed by a rapid decrease caused by the application of the confinement
policies. By contrast, cluster 1 shows cities that in their first 10 days are
already at a low level of driving activities. The reason is that cluster 1 includes
cities like Valencia and Rome for which the citizens learned the lesson from
Madrid and Milan, and they reduced their mobility before reaching a high
number of SARS-COVID-19 cases.

Fig. 6.6(b) shows that the predictions for cluster 5 are the worst of the
category (average error 18%), the highest error is attributed to Marseille
(68%). We observe a much earlier re-start for this city than in all the other
cities in the cluster. Note that Marseille never hit the low level of driving
activity possible to observe for the other cities of this cluster (i.e., a decrease
of around 20%).

Within cluster 2, cities of Sweden like Malmö, Stockholm have benefited
from mild lockdown restrictions, which explains why their driving activities
profile is high. The average forecasting error for the cluster is 15%.

As for the remaining cluster, Cluster 3, the predictions are reasonably
accurate (the prediction error is on average 17%). We observe the following
interesting fact. Compared to the other cities, the cities of the UK and
Ireland (e.g., London, Glasgow, and Dublin) did not apply strong lockdown
restrictions, but their driving activities profile is the lowest of the cluster. It
indicates that citizens reduced their driving activities themselves.
Walking. Fig. 6.7 shows the results obtained for Walking. First of all, please
note that compared to Driving, the different groups of cities in the clusters
are different. For example, the new Cluster 1 now includes some cities that
in the Driving category belong to Cluster 4 (e.g., Marseille and Bucharest).
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DRIVING CLUSTERS PROFILES
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Figure 6.6: Forecasting analysis for the different clusters on Driving category

The cities in Cluster 1 have in common the following characteristic: low
walking activities values during the first 40 days after having reached the
1% of SARS-COVID-19 cases and a high increase in the second 40 days.
The prediction accuracy for this cluster (see Fig. 6.7(b)) is high, except for
Marseille that shows the highest re-start compared to other cities (close to
200% ) and the corresponding highest error (77%). This confirms that the
response of Marseille in tackling the pandemic was unique as both driving and
walking activities differ significantly from those of the respective comparable
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WALKING CLUSTERS PROFILES

(a) Forecast

Amsterdam

Antwerp

Athens

Berlin
Brussels

Bucharest

Budapest

Copenhagen

Dublin

Glasgow

Graz
Hamburg

Helsinki

Krakow

Lisbon

London

Luxembourg

M
adrid

M
almo

M
arseille

M
ilan

Paris
Prague

Rome
Rotterdam

Stockholm

Valencia

Vienna

W
arsaw

0

0.2

0.4

0.6

0.8

1

Pr
ed

ic
tio

n
er

ro
rR

M
SE

(%
)

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

(b) RMSE
Figure 6.7: Forecasting analysis for the different clusters on Walking category

cities per-category. Low values characterize the profile of Cluster 5 in the
first half, likewise Cluster 1, but the recovery is slower during the second half
of the observation window. The prediction error of this cluster is reasonably
accurate, as it is always under 30%.

With respect to the Driving category, Cluster 2 does not contain anymore
Amsterdam, Budapest, and Prague that moved to Cluster 3 and 5. This
cluster now contains mainly cities from northern Europe, and the forecasting
error is low (i.e., %14). The forecasting error increases for Cluster 3, mainly
because of the presence of Hamburg that behaves differently from the cities
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of the cluster (with a prediction error of 46%).
Regarding cluster 4, the only difference with respect to the Driving

category is the addition of Rome. Madrid and Rome share a similar profile
for walking activities, and the reasons for this similarity can be found in
the analogous type of reactions enforced by the local authorities and the
comparable size and population of the two cities. Cluster 6 still includes only
Milan.
Transit. Finally, Fig. 6.8 shows the results for the Transit category for which
the Apple dataset does not provide data for 8 cities (Athens, Bucharest, Graz,
Krakow, Lisbon, Milan, Vienna, Warsaw). The reason is that not every city
allows Apple Maps to give indications on public transport, which forces users
to make use of alternative applications.

As a consequence, the clusters are very different from the ones obtained
for the other categories. It is worth noticing that 3 clusters include only a
pair of cities belonging to the same country, namely Malmö-Stockholm in
Cluster 2, Paris-Marseille in Cluster 5, and Brussels-Antwerp in Cluster 6. The
reason for this regional-based clusterization is indeed the lower dimension
of the dataset due to the missing cities, but we can observe in fig. 6.8(b) that
we obtained different forecasting results. While the forecasting precision
for the Belgian and the Swedish clusters is high (error of 2% and 1%), the
French cities differ significantly one with the other (forecasting error of
86% mainly because there are only two cities with Marseille being radically
different). This confirms that the response of the citizens of Marseille has
been unique in terms of mobility for all the transportation modalities. At
a lower scale, Hamburg has tackled as well the pandemic differently from
other cities of the clusters it belongs to. In this category, the error is 78%.
It is remarkable how the values for transit have reached lower percentages
than the other two categories and also the restart is slower. This can be
appreciated because most of the cities never reached 100% of transit users
even after 80 days from 1% of cases. It is interesting to notice that the
restriction policies on public transport do not have a strong influence on the
composition of clusters. Cluster 4 is a clear example, this group is composed
of Madrid and Rome. We analyzed the policies of the corresponding countries
through the Oxford COVID-19 Government Response Tracker dataset4, we
verified that Spain and Italy adopted a different strategy for public transport
in April. While Spain only recommended citizens to not use transit services,
in Italy public authorities enforced a policy of strict closure and reduction of
capacity. These different strategies reveal that clusters are not lead only by
governmental decisions, this is something we would like to study in deep in
future researches, in order to detect which are the factors that influenced the
most citizens behavior.

4https://www.bsg.ox.ac.uk/research/research-projects/covid-19-government-response-
tracker#data
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TRANSIT CLUSTERS PROFILES
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Figure 6.8: Forecasting analysis for the different clusters on Transit category

6.4.4 Assessing The Impact of Mobility on Activities

This Subsection analyzes the impact of mobility on cities activities. To this
end, we verify whether the clusters of cities identified in Subsection 6.4.2
are applicable to activity categories of the GPT dataset. We choose Transit
Stations that is category directly related to mobility and Stores.

Fig. 6.9 shows the results obtained. The GPT dataset contains a lower
subset of cities than the Apple Maps dataset, hence pick representative
clusters from the driving category:
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• Cluster a): Copenhagen, Stockholm and Malmö;

• Cluster b): Luxembourg;

• Cluster c): London;

• Cluster d): Milan, Madrid and Valencia.

The clusters are depicted in red in the graphs.
First of all, we observe that the overall similarity is higher for Transit

Stations than Stores, which was expected. Fig. 6.9a shows how Luxembourg
is an outlier in the matrix, the reason is that transit station category includes
the subway stations and Luxembourg is the only city in the matrix that
does not have a metro line. On the same figure we can see how inside the
clusters defined from Apple driving the similarity values are stronger than
outside, this means that the clusterization extracted from the Apple dataset is
reflected also on the Transit Stations data. In the specific, we have the highest
similarity values inside Cluster d while on Cluster a we have high values with
the only exception of the similarity between Stockholm and Copenhagen.
Looking at the Stores category on fig. 6.9b, please note that we are missing
the city of Valencia for this dataset. For this matrix it is clear that we have
misplaced Stockholm inside Cluster a, it is interesting to notice that for Stores
category the city of Stockholm is more similar to Madrid and Milan than to
other Scandinavian cities.

6.4.5 Assessing correlation of Mobility and SARS COVID-19

This Subsection analyzes the correlation between mobility and the evolution
of the number of SARS COVID-19 cases in various cities. To this end, we
verify whether the clusters of cities identified in Subsection 6.4.2 reflect the
same similarities also in terms of the number of infected cases. We choose the
clusters obtained from Driving category with a timeline of 80 days after the
1% of contagious, Driving is the category with the largest dataset and 80 days
is the longest available timeline in our dataset. To compute the SARS COVID-
19 similarity between cities, we extract the number of cases for each city for
the same timelines of Driving clusters (80 days) and then we normalize by
the total number of cases in the city. The SARS COVID-19 dataset contains a
lower subset of cities than the Apple Maps dataset. Compared to the driving
dataset, we excluded four cities, Bucharest, Budapest, Paris, and Marseille.

Fig. 6.10 shows the results obtained. The similarity matrix compares
the different SARS COVID-19 trends while the red lines display the Driving
clusters. The similarity is computed with the JSD metric that is explained in
Subsection 6.4.2. The cities are sorted by driving cluster and the order inside
the cluster is given from the similarity distance between the cities for driving
data.
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(a) Transit stations

(b) Stores
Figure 6.9: Similarity Matrix of popularity trend from GPT

We first observe the presence of different outliers, Malmö and Luxem-
bourg, because have the lowest values of similarities with respect to other
cities. As for Malmö, our mobility analysis highlighted that the city behaves
similarly to Stockholm for all the categories while in terms of the number
of infections it is interesting to note that the cities are profoundly different.
A possible reason could be that many residents in Malmö commute daily to
Copenhagen, Denmark, hence it has in terms of potential contacts a very
distinct behavior with respect to Sweden’s capital city. As for Luxembourg,
the difference can be justified by i) the peculiarity of the city (in terms
of population, number of workers commuting every day from neighboring
countries) and the large scale testing applied by the government.

Next, we observe that it is possible to identify strong intra-cluster similar-
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Figure 6.10: Similarity Matrix of contagious trends of SARS COVID-19

ity for Clusters 2, 3, and 5. For example, with regard to Cluster 2, we can
identify a sub-cluster of Amsterdam, Rotterdam, and Helsinki. With regard
to Cluster 3, we can identify two sub-clusters: London to Vienna and Dublin
to Antwerp. Further, by performing a clustering analysis solely based on the
number of SARS COVID-19 cases, the resulting clusters would be different.
For example, Amsterdam, Rotterdam, London, Berlin, Hamburg, and Vienna
would be assigned to a single cluster.

6.5 Concluding Remarks and Future Research Direc-
tions

In this paper, by using different crowdsensed datasets, we perform an analysis
to uncover the impact of the SARS COVID-19 outbreak on the changes in
mobility in urban environments. Specifically, we use Gaussian Processes and
clustering techniques on the Apple Maps data to uncover patterns of similarity
between the major European cities and perform a prediction analysis that
permits forecasting the trend of the recovery process.

We identify a range of interesting behaviors. For example, the repetition
of our clustering methods over different intervals highlighted an evolution
of the mobility trends of many cities along the days after the outbreak. We
detected a group of cities that defined a cluster only after many days after the
outbreak, such as the Scandinavian cities that became a proper cluster only
after 60 days from the outbreak. Apart from few changes, our methodology
produced stable clusters, most of them region-wise, from which we extracted
a common trend useful to understand the behaviors of different cities and
improve the forecasting of the next days.

Regarding the forecasting, we exploited the 80 days after the outbreak to
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predict the coming 10 days, we predicted the trend of each cluster obtaining
low prediction errors, on average we obtained prediction errors of 14%
for driving category, 19% for walking, and 24% for transit. We identified
outlier cities like Marseille and Hamburg, i.e., cities where citizens have used
transportation modes radically differently from the cities in the respective
clusters.

The results of this study are useful for municipalities and local authorities
to identify other towns with a similar reaction to the pandemic spread in
terms of mobility. The possible application of the mobility clusters and their
patterns is to help cities to perform a critical assessment of the efficacy of
confinement measures enforced and whether might be more convenient to
adopt a different policy used by cities in other clusters.

In our future research, We would like to exploit additional crowdsourced
datasets, the Apple maps data is based on Apple users who asked for direc-
tions while using multiple sources of data could help on representing the
true travel behaviors of all citizens.

117



Part IV

Conclusion
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Chapter 7

Summary and Future research
directions

The chapter concludes the thesis by presenting a summary and outlining
future research directions.
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7.1 Summary

Traditional data sources for mobility, such as traffic counts and public transit
ridership, can be limited in availability and granularity. A potential solution
to these limitations is the use of a crowdsourced dataset, which can provide
more updated and granular data on mobility. In this context, this thesis aims
to combine the latest data-driven methodologies with novel crowdsourced
datasets. The main goal of the studies presented in this dissertation was
to examine the potential of a crowdsourced dataset for mobility research.
The results of these studies will be useful for understanding the usefulness
of crowdsourced datasets to overcome the main limitations of traditional
mobility datasets. This thesis consists of several chapters, each addressing a
specific RQ and presenting a contribution and takeaway message. A flowchart
summarizing the RQs, related contributions, and corresponding takeaway
messages can be found in Figure 7.1. The first part of this thesis presented
the context, research questions, and contributions of this work. It began by
explaining the significance of data for mobility and how crowdsourced data
can be beneficial in this field. The research questions (RQs) addressed in this
thesis were then described, along with the various obstacles encountered in
achieving the results.

In Chapter 2, we addressed RQ1, " What are the key differences between
crowdsourced data and traditional transport data in terms of their potential
for mobility analysis?". The purpose of this chapter was to provide a more
in-depth and technical understanding of the current state of mobility datasets
and to assess their strengths and weaknesses. This was accomplished by
detailing the main features and limitations of different mobility datasets, as
well as by presenting a scoring scheme to evaluate various aspects of these
datasets. These aspects included availability, or how easily the data can be
accessed and used; time dynamicity, or how frequently the data is updated
and reflects changes in mobility patterns; and sample size, or the number
of observations or data points included in the dataset. Along with these
traditional mobility datasets, we also introduced and discussed the use of
crowdsourced data as a potential supplement or alternative. We evaluated
crowdsourced data using the same scoring scheme as for traditional datasets,
and discussed how it could be used to address some of the limitations or
gaps in traditional datasets.

Overall, the main message from this chapter tells us that Crowdsourced
data has several attractive characteristics, including wide availability and
long periods of collection, which make it a valuable resource for improving
traditional datasets. It is highlighted that crowdsourced data has several
advantageous attributes such as its wide availability and prolonged collection
periods, making it a valuable resource to enhance traditional datasets. The
chapter also focuses on the benefits of GPT, a specific type of crowdsourced
data. We outline the main characteristics and limitations of GPT. This tool
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Figure 7.1: Summary of RQs, Contributions, and takeaways messages
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offers users real-time information about the level of crowdedness at local
businesses level, but it is important to note that there are different challenges
associated with this data: first, the data is normalized, meaning that it does
not accurately reflect the actual number of people at a location. Additionally,
we have no control over how the data is collected or processed, and there is
limited information available about how GPT data is created. Finally, it can
be difficult to extract information about mobility patterns from GPT data, as it
primarily provides insights about crowdedness at activity locations. From this
chapter, it emerges that there are two main potential contributions of GPT
for mobility analysis. The first is that GPT can provide dynamic information
about secondary activities that traditional mobility data does not cover. The
second is that GPT can be a substitute for mobility data in areas where it is
lacking. Now that we have determined that GPT is a promising dataset for
mobility research, we want to focus on investigating these two potentialities.

In Chapter 3 we started by analyzing the potential of GPT for secondary
activities, we address RQ2, "Can GPT be used to classify local businesses to
understand dynamic demand profiles?". We conducted an analysis of GPT
and LBs. As GPT data is collected at the level of local businesses, we wanted
to examine the possibility of extracting dynamic demand information for
secondary activities. Such data is difficult to obtain with traditional mobility
data. Information on secondary activities is crucial for mobility models that
usually have to rely only on static information, such as the number of points
of interest in a certain area. To do this, we first investigated urban metrics
that may influence the popularity of LBs such as the centrality of places
in street networks. Then, we used machine learning techniques to classify
the category and attractiveness of LBs based on the considered features.
This analysis was conducted with the goal of better understanding how GPT
data can be used to analyze mobility patterns. To summarize, this chapter
teaches us that using GPT with data-driven approaches is more effective than
traditional urban metrics at estimating the attractiveness of LBs.

Having examined the key value of GPT for secondary activities, we are
now ready to move on to other potentialities and evaluate the possibility
of extracting mobility flows from this data. As we already mentioned, one
of the limitations of GPT is the lack of a direct connection to mobility. To
address this, we preprocessed GPT and combined it with other sources in
order to extract mobility insights.

This is what we did in Chapter 4, where we address RQ3, "Can GPT
be used to estimate mobility patterns such as transit demand information?".
This chapter focuses on the potential for extracting transit information from
GPT. Specifically, we explored the use of GPT to estimate passenger flows
at individual subway stations. Since GPT only provides crowding trends for
stations, We developed a framework called TransitCrowd that uses GPT data
to make real-time estimates of transit activity at the level of individual subway
stations. Our framework is flexible and consists of two separate estimator
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tools. The first, the Reg estimator, prioritizes the accuracy of results at the
city level. The second, the Sig estimator, extracts signatures from stations to
reveal the temporal patterns of the correlation between GPT data and actual
entrances and exits. This information allows the presented methodology
to be applied to other cities. Finally, we evaluated the performance of
TransitCrowd by using it to estimate two months of entrance and exit flows
at each station using GPT Live data as input. The results of this process
were promising, with the accuracy of the estimates appearing to be stable
across several consecutive weeks. We also found that TransitCrowd is able
to accurately estimate entrance and exit flows in weeks different from the
ones used for training, and that errors were not influenced by high or low
values of entrance and exit activity. The main takeaway from this chapter
is that GPT can be used to accurately estimate passenger flows at the level
of individual subway stations. This could be useful for a variety of research
purposes and opens up the possibility for various future research directions,
which we will discuss in Section 7.2.

However, the contribution of this chapter does not exhaustively explore
the potential of GPT to provide transit information in situations where
traditional transit data is completely absent. As mentioned, the Sig estimator
claims to be able to be applied to other cities than the one it was trained on,
which would allow for the prediction of transit flows in areas where there is
not enough traditional transit data to train our estimation tool.

In order to fully investigate this aspect, in Chapter 5 we addressed
RQ4, " How can we convert GPT data into transit demand information
automatically?". We focus on the possibility of estimating signatures in a
city without requiring any traditional transit data. Specifically, it uses GPT
data for activities around the station as a substitute for traditional transit
flows data. The goal is to enable the estimation of transit flows at a station
even in cases where traditional transit information is not available, providing
valuable insights for transportation planners and researchers in areas where
such data is not accessible or does not exist. To achieve this, we develop a
framework that estimates the signatures of a station. The results indicated
that the model was effective at predicting the signature of stations in a
different city, with the Extra Trees Regressor being the most effective model.
We also experimented with various catchment area detection methods and
found that using weighted distance provided the best results. Overall, this
chapter emphasizes the importance of considering the surrounding context
of transit stations as a valuable source for understanding the relationship
between GPT data and transit data. By analyzing the catchment areas around
the stations and utilizing GPT data, it is possible to obtain an estimation of
stations’ transit flows without requiring any traditional transit data.

We have previously examined the hypothesis of using crowdsourced data
to estimate mobility under normal conditions, but we have not yet considered
the possibility of using crowdsourced data to analyze mobility during unusual
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or unexpected conditions.
In Chapter 6 we addressed RQ5, " Can Crowdsourced data be used to

analyze mobility during anomalous events?". Our focus is particularly on
analyzing mobility during a specific unusual event, the first wave of the
COVID-19 pandemic. We perform an analysis by using different crowd-
sourced datasets to uncover the impact of the SARS COVID-19 outbreak
on the changes in mobility in urban environments. Specifically, we use
Gaussian Processes and clustering techniques on the Apple Maps data to
uncover patterns of similarity between the major European cities and per-
form a prediction analysis that permits forecasting the trend of the recovery
process. We found several intriguing patterns. For instance, repeating our
clustering techniques on various intervals revealed changes in mobility trends
in many cities over the days following the outbreak. We discovered a group
of cities that formed a cluster only after a significant number of days from
the outbreak, such as the Scandinavian cities that became a cluster only after
60 days from the outbreak. With a few exceptions, our method consistently
generated stable clusters, many of which were regional, which allowed us to
extract a common trend that helped us understand the behaviors of different
cities and improve forecasting for future days. Regarding the forecasting,
we exploited the 80 days after the outbreak to predict the coming 10 days,
we predicted the trend of each cluster obtaining low prediction errors. The
results of this study are useful for municipalities and local authorities to
identify other towns with similar responses to the pandemic in terms of
mobility. The potential use of these mobility clusters and their patterns is
to help cities evaluate the effectiveness of their confinement measures and
consider alternative policies implemented by cities in other clusters. One key
conclusion from this chapter is that crowdsourced data can be particularly
useful in analyzing mobility during unusual or anomalous events, such as
the first wave of the COVID-19 outbreak. By using crowdsourced data to
analyze mobility during these types of events, researchers and policymakers
can gain insights into how people are moving and potentially make informed
decisions about how to respond to such events.

7.2 Future research directions

This section discusses the potential for future research in the area of using
crowdsourced data for mobility analysis. This is a key finding of this thesis,
as there is currently limited research on the use of GPT for mobility analysis.
An important result of this work is to open new research directions that can
be explored using crowdsourced data for mobility, with a focus on GPT.

Each chapter in this thesis, along with its corresponding contribution,
creates new research directions that generate research questions that are not
addressed in this work but can be explored in future research. This means
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that while this thesis may provide answers to certain RQs, contributing to
augmenting the knowledge of exploiting crowdsourced for mobility, there
are still many areas that remain unexplored and could be the focus of future
studies. These new research directions may be related to the specific topics
addressed in each chapter or may be broader in scope. These new research
directions offer the potential for further exploration and the opportunity to
build on the insights gained from this thesis.

GPT as a queue process

In Chapter 3, we presented the main characteristics of GPT data and analyzed
its use for local businesses. One of the main limitations highlighted in the
chapter is the lack of direct information about mobility and the absence of
control of the raw data. To further understand these limitations and the
underlying mechanisms of GPT data, a potential future research direction is to
investigate the applicability of a queuing process model for representing GPT
data. This model can help to better understand the dynamics of the inflow
and outflow of people at local businesses, and how the GPT’s crowdedness
value reflects the length of this queue. Additionally, it is important to specify
how the duration of activity at the LB, provided by GPT in the form of the
mean duration of users’ stays at the LB, can be incorporated into this model
to understand the capacity and service rate. Therefore, a more specific
research question could be: "How can the queuing process model be applied
to represent GPT data for local businesses?"

Transitcrowd application to other scenarios

In Chapter 4, we introduced a method for utilizing GPT data to gain insights
into mobility patterns. We developed Transitcrowd specifically for the pur-
pose of analyzing the demand flows of transit service. While we have already
proposed evaluating Transitcrowd in various cities, and have conducted tests
in New York and Washington, there is still room for further exploration. One
potential direction for future research is to continue testing the effectiveness
of Transitcrowd in cities with different characteristics and transportation
systems. This will help to determine the generalizability of our approach
and whether we can identify the urban environments where this approach is
applicable. In addition to evaluating Transitcrowd in different cities, it would
also be valuable to consider the potential for expanding our analysis to other
types of mobility services. For example, we could use GPT data to analyze the
flow of traffic entering and leaving a specific district, or to study the usage of
car-sharing or bike-sharing services in a certain area. This would enable us
to create a more comprehensive tool that utilizes GPT to understand mobility
trends for different transportation services in a given area, and could lead to
the development of new strategies for optimizing transportation systems.
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Connection between signature, activities, and structure of the city

Chapter 5 examined the feasibility of applying the Transitcrowd methodology
to other cities. Specifically, we focused on estimating the signature values
of a station using GPT data on the activities in the surrounding area. While
we employed data-driven approaches, there is still much to be learned about
the relationship between the signature of a station and the activities in the
surrounding area.

One potential direction for future research is to delve deeper into the
connection between the signature of a station, the surrounding area, and
the structure of the city. This could involve analyzing the ways in which
the signature is influenced by factors such as the density of population and
personal incomes, the availability of transportation options, and the overall
layout of the city. By gaining a deeper understanding of these connections,
it may be possible to improve the accuracy and refinement of methods
for predicting the signature of a station and enhance the transferability of
Transitcrowd to other cities.

Merging Crowdsourced data for anomaly detection

In chapter 6, we explored the use of crowdsourced data to analyze mobility
during unexpected events. Specifically, we looked at how mobility patterns
changed for different cities during the COVID-19 pandemic. In this research
we knew of the presence of a specific event, in this case, a pandemic, a
potential direction from this study can be to use crowdsourced data to detect
the occurrence of anomalies and unexpected events in mobility.

Future research could use crowdsourced data from different sources to
identify and monitor unusual changes in mobility patterns, which could be
indicative of an unexpected event. By analyzing changes in mobility over
time, it may be possible to detect the early warning signs of such events
and respond accordingly. Identifying anomalies in mobility patterns can be
a challenging task, as it requires distinguishing between normal variations
in demand or mobility, and unusual or unexpected changes. To accurately
distinguish between the two, a deep understanding of the underlying patterns
and dynamics of mobility is necessary.

One powerful way to tackle this challenge is by utilizing advanced statis-
tical techniques to analyze continuous time-series data such as GPT. These
techniques, such as time series decomposition, can help in understanding
recurrent fluctuations and identifying random vs correlated variations in dif-
ferent indicators. Additionally, machine learning methods, such as anomaly
detection algorithms, can be applied to identify patterns and behaviors that
deviate significantly from the norm, thereby detecting anomalies and deter-
mining which factors are influencing the most variation.

In conclusion, by detecting changes in mobility patterns, it may be possi-
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ble to anticipate and prepare for unexpected events, potentially mitigating
their impact.
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List of Publications
A.1 Journals

• The Impact of SARS-COVID-19 Outbreak on European Cities Urban
Mobility
P. Vitello, C. Fiandrino, A. Capponi, P. Klopp, R.D. Connors, F. Viti
Frontiers in Future Transportation[111]

• Mobility-driven and energy-efficient deployment of edge data centers
in urban environments
P. Vitello, A. Capponi, C. Fiandrino, G. Cantelmo, D. Kliazovich
IEEE Transactions on Sustainable Computing[112]

• A mobility-based deployment strategy for edge data centers
M Girolami, P Vitello, A Capponi, C Fiandrino, L Foschini, P Bellavista
Journal of Parallel and Distributed Computing[113]

A.2 Conferences

• Crowdsensed data learning-driven prediction of local businesses attrac-
tiveness in smart cities
A. Capponi, P. Vitello, C. Fiandrino, G. Cantelmo, D. Kliazovich, U.
Sorger, P. Bouvry
2019 IEEE Symposium on Computers and Communications (ISCC)[114]

• The CORONA business in modern cities P Vitello, A Capponi, P Klopp,
RD Connors, F Viti, C Fiandrino
Proceedings of the 18th Conference on Embedded Networked Sensor
Systems[115]

• The impact of human mobility on edge data center deployment in
urban environments
P Vitello, A Capponi, C Fiandrino, G Cantelmo, D Kliazovich
2019 IEEE Global Communications Conference (GLOBECOM)[116]
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