
PhD-FSTM-2023-05
The Faculty of Sciences, Technology and Medicine

DISSERTATION
Defence held on 03/05/2023 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

by

Hazem MOHAMED FAHMY FARGHALY MOHAMED
Born on 17 November 1992 in Cairo (Egypt)

SUPPORTING SAFETY ANALYSIS OF DEEP NEURAL
NETWORKS WITH AUTOMATED DEBUGGING AND REPAIR

DISSERTATION DEFENSE COMMITTEE
Dr. Fabrizio Pastore, Dissertation Supervisor
Professor, Université du Luxembourg, Luxembourg

Dr. Lionel C. Briand, Chairman
Professor, Université du Luxembourg, Luxembourg

Dr. Thomas Stifter, Vice Chairman
Head of Department, Basics and Mathematical Models, IEE S.A., Luxembourg

Dr. Andrea Stocco, Member
Professor, Technische Universität München, Germany

Dr. Vincenzo Riccio, Member
Professor, Universitá di Udine, Italy

Acknowledgement

I would like to dedicate this dissertation to the loving memory of my dear mother, Dr. Hanan Mahmoud

Abd El-Azeem. Her unconditional love, and sacrifices have been the guiding light throughout my life and

educational pursuits that enabled me to embark on this endeavor. This dissertation is a testament to your

profound impact on my life, and I dedicate its completion to you. May your soul find eternal peace.

Lastly, I extend my gratitude to my advisors, professors, and mentors who have shared their expertise,

guidance, and wisdom. Your mentorship and insights have shaped my academic growth and enriched my

understanding of the subject matter.

Hazem Fahmy

University of Luxembourg

May 14, 2023

Abstract

Deep Neural Networks (DNNs) are increasingly adopted in a variety of safety-critical systems, including

Advanced Driver-Assistance Systems (ADAS), Automated Driving Systems (ADS), medical devices, and

industrial control systems. DNNs are particularly useful in the perception layer of these systems, where

they are used to analyze images and other sensor data to make decisions. However, ensuring the functional

safety of DNN-based components remains a challenge because performance metrics for machine learning

algorithms, such as accuracy evaluation, do not enable distinguishing the different scenarios leading to

DNN failures (i.e., the unsafe execution scenarios of a DNN under test).

To address these challenges, we propose four approaches which leverage the intuition that unsafe

scenarios might be cost-effectively identified by automatically clustering images that lead to DNN failures

and present commonalities. We call such image clusters root cause clusters (RCCs). The proposed

approaches are:

• Heatmap-based Unsupervised Debugging of DNNs (HUDD), a white-box approach that identifies

RCCs by applying a clustering algorithm to heatmaps capturing the relevance of every DNN neuron

on the DNN outcome. HUDD also composes a dataset for retraining and improving DNNs by

selecting images from an improvement set based on their closeness to the generated RCCs.

• Simulator-based Explanation for DNN failurEs (SEDE), a search-based approach that automatically

generates explicit descriptions for hazard-triggering events from real-world images. SEDE provides

such descriptions in terms of logical expressions constraining the configuration parameters of the

simulator used to train the DNN.

• Safety Analysis using Feature Extraction (SAFE), a black-box approach that generates RCCs without

relying on DNN internal information. SAFE combines transfer-learning models with dimensionality

reduction techniques to extract important features from failure-inducing inputs.

• A pipeline for the generation of RCCs that can integrate different machine learning components.

We rely on such a pipeline to assess the effectiveness of composing transfer-learning models,

autoencoders, heatmaps of neuron relevance, dimensionality reduction techniques, and various

clustering algorithms to derive RCCs.

The proposed approaches have been successfully evaluated on seven case study DNNs from the

automotive domain defined in collaboration with our industry partner IEE.

i

Contents

Abstract i

Contents iii

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Context and Motivation . 1

1.2 Research Contributions . 3

1.3 Dissemination . 3

1.4 Dissertation Outline . 4

2 Background and Related Work 5
2.1 Machine Learning (ML) . 5

2.1.1 Deep Neural Networks (DNNs) . 5

2.1.2 Rule-based Systems . 6

2.1.3 Unsupervised Learning Algorithms . 7

2.2 Testing and Debugging of DNNs in Safety-critical Contexts 11

2.2.1 DNN-based Automotive Systems . 12

2.2.2 Debugging of DNN-based Systems . 12

2.2.3 Functional Safety Analysis . 13

2.3 Evolutionary Algorithms (EA) . 14

2.3.1 Multi-objective Algorithms . 14

2.3.2 Many-objective Algorithms . 14

2.4 eXplainable Artificial Intelligence (XAI) . 15

2.4.1 Heatmap-based DNN Explanations . 16

2.4.2 Model-agnostic DNN Explanations . 18

2.4.3 Explanations for DNN Testing Approaches . 19

iii

3 Heatmap-based Unsupervised Debugging of DNNs 21
3.1 Introduction . 21

3.2 The HUDD Approach . 22

3.2.1 Step 1. Heatmap-based Clustering . 24

3.2.2 Step 2. Root Causes Inspection . 27

3.2.3 Step 4. Identification of Unsafe Images . 29

3.2.4 Steps 6-7. DNN Retraining . 31

3.3 Evaluation . 32

3.3.1 Subject Systems . 32

3.3.2 Measurements and Results . 35

3.3.3 Threats to Validity . 42

3.4 Conclusion . 43

4 Simulator-based Explanations for DNN failurEs 45
4.1 Introduction . 45

4.2 Background on Evolutionary Algorithms for Diversity Optimization 47

4.3 The SEDE Approach . 49

4.3.1 Step 2. Automated Generation of Unsafe and Safe Images 51

4.3.2 Step 3. Characterize Unsafe Images . 58

4.3.3 Step 4. Generate Unsafe Images for Retraining 60

4.4 Evaluation . 61

4.4.1 Subject Systems . 62

4.4.2 Measurements and Results . 65

4.4.3 Threats to Validity . 83

4.5 Conclusion . 84

5 Safety Analysis based on Feature Extraction 85
5.1 Introduction . 85

5.2 The SAFE Approach . 86

5.2.1 Step 1: Generation of Root-Cause Clusters (RCCs) 87

5.2.2 Step 2: Functional Safety Analysis . 90

5.2.3 Step 4: Identification of Unsafe Images . 92

5.2.4 SAFE Running Example . 95

5.3 Evaluation . 96

5.3.1 Subject Systems . 96

5.3.2 Measurements and Results . 97

5.3.3 Threats to Validity . 111

5.4 Conclusion . 113

6 Pipelines for Clustering-based DNN Explanation: an Empirical Assessment. 115
6.1 Introduction . 115

6.2 The Proposed Pipelines . 116

6.2.1 Feature Extraction . 117

6.2.2 Dimensionality Reduction Techniques . 119

6.2.3 Clustering Algorithms . 119

6.3 Evaluation . 121

6.3.1 Subject Systems . 122

6.3.2 Injected Failure Scenarios . 123

6.3.3 Measurements and Results . 125

6.3.4 Improvements to the white-box pipeline (extended-HUDD) 137

6.3.5 Threats to Validity . 140

6.4 Conclusion . 141

7 Conclusion & Future Prospects 143

A Chapter 6 147
A.1 Additional material for RQ1 . 147

A.2 Additional material for RQ2 . 150

A.3 Additional material for RQ3 . 153

Bibliography 155

List of Figures

2.1 An example of the clusters selected by HDBSCAN. 9

2.2 Autoencoder Architecture . 11

2.3 DNN-based system for gaze detection. 11

2.4 Gaze directions. 11

2.5 Training and debugging DNNs. 13

2.6 NSGA-II . 15

2.7 Layer-Wise Relevance Propagation. 18

2.8 An example image of head-pose detection subject (on the left) and applied LRP (on the right)

showing that the mouth had a large influence on the DNN behavior. 18

3.1 Overview of HUDD. 22

3.2 Heatmap-based Clustering . 24

3.3 Slope of ICD and WICD for GazeDNN . 27

3.4 Gradient and knee-point (in red) for Figure 3.3-b . 27

3.5 Clustering results for GD. 28

3.6 Algorithm for the identification of unsafe images . 30

3.7 DNN-based system for gaze detection. 32

3.8 Gaze directions. 32

3.9 Example of distinct head poses of the same person generated with the simulator based on

MakeHuman/Blender. 34

3.10 RCCs with at least one parameter showing a reduction . 38

3.11 Baseline 2 (B2). 40

4.1 DNN training and testing . 46

4.2 The SEDE workflow . 50

4.3 PaiR, the Genetic Algorithm integrated into SEDE . 53

4.4 Crowding-distance-assignment function for NSGA-II. Red part indicates the instruction

commented out in NSGA-II′ to ensure that, for each objective, the best individual is preserved. 56

4.5 Example PART output . 59

4.6 Example image generated with IEE-Humans . 59

vi

4.7 Evolution of diversity achieved by PaiR . 67

4.8 Percentage of individuals belonging to a cluster generated by PaiR 73

4.9 Percentage of clusters covered by PaiR, NSGA-II and DeepNSGA-II 74

4.10 Heatmap distances of SEDE images from the medoid . 76

4.11 Variance reduction for all simulator parameters associated with generated images in RCCs . 77

4.12 Percentage of correctly classified images observed on SEDE images 78

4.13 DNN accuracy on real-world test set images after retraining by SEDE 82

5.1 Overview of SAFE . 87

5.2 Generation of RCCs with SAFE . 88

5.3 Example of a RCC with rare cases . 91

5.4 Examples of RCCs for Head-Pose Detection case study . 92

5.5 Examples of RCCs for Gaze Detection case study . 93

5.6 The selection of Unsafe Set . 94

5.7 Median percentage of RCCs with at least one parameter showing a reduction 100

5.8 Example question appearing in our questionnaire. 106

5.9 Process of the two baselines used to compare with SAFE 108

6.1 Pipelines evaluated in our experiments. 117

6.2 Approximating the optimal number of clusters K using the Knee-point method. In this case

the optimal K is equal to six. 120

6.3 Injected failure scenarios in our study. 125

6.4 Decision Tree illustrating how the different features of a pipeline determine the average purity

of root-cause clusters. 127

6.5 Decision Tree illustrating how the different features of a pipeline determine the coverage of

the failure scenarios. 129

6.6 Purity of the clusters associated with frequent and infrequent failure scenarios. The x-axis

captures the frequency of a failure scenario (i.e., proportion of failure-inducing images for a

failure scenario). Each data point is the average of all the RCCs associated to one distinct

failure scenario. The red vertical line represents the median frequency of failure scenarios. . 134

6.7 Comparing the percentage of coverage across different ranges of proportions of failure

scenarios in each set. 134

6.8 Examples of clusters generated by Pipeline 26 for the HPD case study subject. 135

6.9 The eHUDD workflow. 137

6.10 Purity of the clusters (left) and the coverage (right) associated with frequent and infrequent

failure scenarios. The x-axis captures the frequency of a failure scenario (i.e., proportion of

failure-inducing images for a failure scenario). Each data point is the average of all the RCCs

associated to one distinct failure scenario. The red vertical line (left) represents the median

frequency of failure scenarios. 139

List of Tables

3.1 Case Study Systems . 34

3.2 Root cause clusters generated by HUDD. 35

3.3 Image parameters considered to address RQ1.1 . 37

3.4 Safety parameters considered to address RQ1.3 . 39

3.5 RQ2. Size of Images Set used for Retaining and Accuracy Improvement 41

3.6 Experiments Execution Time . 42

4.1 IEE-Faces simulator parameters . 63

4.2 IEE-Humans simulator parameters . 63

4.3 Case Study Systems . 64

4.4 SEDE Configuration . 65

4.5 RQ1: Average diversity across RCCs for HPD-F . 68

4.6 RQ1: Average diversity across RCCs for HPD-H . 68

4.7 RQ1: Average diversity across RCCs for FLD . 68

4.8 RQ1: Percentage of individuals belonging to RCCs for HPD-F 70

4.9 RQ1: Percentage of individuals belonging to RCCs for HPD-H 70

4.10 RQ1: Percentage of individuals belonging to RCCs for FLD 70

4.11 RQ1: Percentage of covered RCCs for HPD-F . 72

4.12 RQ1: Percentage of covered RCCs for HPD-H . 72

4.13 RQ1: Percentage of covered RCCs for FLD . 72

4.14 RQ2: Average distance from RCC’s medoid for HPD-F (RCCs 1 to 7), HPD-H (RCCs 8 to

17) and FLD (RCCs 18 to 26). 75

4.15 RQ4: HPD-F (RCCs 1 to 7), HPD-H (RCCs 8 to 17), and FLD (RCCs 18 to 26) accuracy

within the unsafe space identified by SEDE compared to the whole input space. 79

4.16 RQ5: Unsafe set size and the accuracy improvement of SEDE compared to HUDD and

random baseline (RBL). 81

5.1 Root cause clusters generated by SAFE. 98

viii

5.2 Minimum, Maximum and Median percentage of clusters with at least one parameter showing

a reduction rate above a threshold in the range [10% - 90%], with the percentage obtained by

HUDD and the p-value when comparing SAFE to HUDD. 99

5.3 Number of core-points and number of clusters for each case study subject 100

5.4 Minimum, Maximum and Median percentage of root cause clusters that present at least

one explanatory parameter with the percentage obtained by HUDD and the p-value when

comparing SAFE to HUDD. 102

5.5 Minimum, Maximum and Median percentage of the unsafe values covered by the root cause

clusters with the p-value when comparing SAFE to HUDD. 103

5.6 Coverage of the unsafe values by the root cause clusters (OC and GD case study subjects) . 104

5.7 Coverage of the unsafe values by the root cause clusters (HPD case study subject) 104

5.8 The descriptive sentence used in the survey for each unsafe value 105

5.9 Percentage of correct responses by inspecting 5, 10 and 15 images for each case study subject,

based on the questionnaire study. 107

5.10 RQ2: Unsafe set size and the accuracy improvement of SAFE compared to HUDD 109

5.11 RQ2: p-values and VDA values when comparing SAFE to HUDD and the baselines 109

5.12 Execution time of the feature extraction of the improvement sets and the memory allocations

of these features for SAFE compared to the execution time of the generation of the heatmaps

and their memory allocation. 111

6.1 Case Study Systems . 123

6.3 RQ1: Pipelines with a purity greater than 90%. The last column represents the average of

averages. 128

6.2 RQ1: p-values and and effect size values when comparing the results of the pipelines with the

best purity of clusters (according to the decision tree) to the other pipelines. 128

6.5 RQ2: Pipelines with a coverage greater than 90%. The last column represents the average of

averages. 130

6.4 RQ2: p-values and and effect size values when comparing the results of the pipelines with the

best coverage of the faulty scenarios (according to the decision tree) to the other pipelines. . 130

6.6 RQ3: p-values and effect size values when comparing the purity of the best pipelines with the

frequent and infrequent failure scenarios. 132

6.7 RQ3: p-values and effect size values when comparing the best pipeline in Table 6.6 (i.e.,

Pipeline 26, VGG16/Dbscan/UMAP/NoFT) to the other pipelines based on the average purity

of the clusters associated to infrequent failure scenarios. 132

6.8 RQ3: Fisher exact test values when comparing the coverage of the lowly represented and

highly represented faulty scenarios by the clusters generated by the best pipelines. 133

6.9 RQ3: Fisher exact test values when comparing the best pipeline "VGG16/Dbscan/UMAP/NoFT"

to the other pipelines based on the coverage of the infrequent failure scenarios. 133

6.10 The number of redundant clusters generated by the best pipelines for each case study subject

and across all of them. The last columns represent the number and the percentage of failure

scenarios covered by the pipelines, the redundancy ratio, and the savings. 136

6.11 Purity and Coverage obtained by the clusters of the white-box approach (eHUDD). The last

column represents the average of averages. 138

6.12 The number of redundant clusters generated by the white-box approach (eHUDD) for each

case study subject and across all of them. The last columns represent the number and the

percentage of failure scenarios covered by the pipelines, the redundancy ratio, and the savings.140

A.1 Comparing the clusters generated by the different pipelines based on the average of the purity

across root cause clusters. The last column represents the average of averages. 147

A.2 Percentage of faulty scenarios covered by the root cause clusters generated for each pipeline.

The last column represents the average of averages. 150

A.3 Distribution of faults for the different failure inducing sets for each case study subject. . . . 153

Chapter 1

Introduction

1.1 Context and Motivation

RECENTLY in 2022, the World Health Organization (WHO) has stated a critical fact that, annually,

1.3 million people die as a result of road traffic crashes. Additionally, road traffic injuries are the

foremost cause of death among children and teenagers between the ages of 5 and 29 [1]. Moreover, the

European Road Safety Observatory estimated, in their annual report in 2021 [2], that 18, 800 fatalities are

caused by 757, 566 road accidents each year within the European Union only (42 fatalities per million

inhabitants), leaving more than 0.5 million people injured.

The high number of annual road traffic fatalities emphasizes the need for safety and reliability in

automotive systems. To address these issues, DNN-based systems are increasingly proposed as technical

solutions to replace humans in various domains, including autonomous driving [3, 4], computer vision [5],

and natural language processing [6, 7]. However, although DNNs are powerful tools for solving complex

problems, their complex structure can make it challenging for engineers to understand how they make

predictions, especially in the context of automotive systems and medical diagnosis [8] where human lives

are at stake. Therefore, the use of DNNs also poses safety problems and ensuring the safety and reliability

of DNN-based systems is crucial for their successful integration into automotive systems and many other

fields such as finance [9], and industrial control [10].

In safety-critical contexts, DNNs need to be trustworthy and their predictions, especially erroneous

ones, should be explainable in order to build trust and credibility among users, especially in contexts that

require certification.

To increase trust in DNN models, we must understand why they behave the way they do [11].

Explanation methods aim at making Neural Network (NN) decisions trustworthy [12], and several

methods have been proposed in the literature (see Section 2.4). However, there is often a trade-off between

the performance of machine learning methods and their explainability. For example, deep learning

methods tend to be highly accurate but are often less explainable compared to decision tree methods,

which are typically less accurate but more explainable [13].

Standards such as ISO 26262 [14] and ISO/PAS 21448 [15] regulate the functional safety analysis

1

CHAPTER 1. INTRODUCTION

practices that should be put in place for safety-critical automotive systems; similar standards exists for

other sectors [16]. They require the identification of situations in which a system may be unsafe (e.g.

providing erroneous and unsafe outputs), the identification of countermeasures (e.g. using multiple

sensors or removing redundant components), and demonstrating that unsafe conditions are unlikely to

occur. Unfortunately, traditional safety analysis methods rely on code inspection or program analysis to

demonstrate the absence of unsafe conditions in software [14] and are thus applicable only to traditional

software components whose decisions are encoded in their source code, not to DNNs whose decisions

derive from hundred mathematical operations performed in multiple DNN layers. Further, performance

metrics for machine learning algorithms such as accuracy evaluation are not sufficient to address safety

standards requirements. Indeed, according to ISO/PAS 21448, engineers can set a quantitative target for

accuracy evaluation to demonstrate that unsafe situations are unlikely; however, ISO/PAS 21448 also

points out that engineers remain liable for potentially hazardous scenarios missing from the data set used

to assess the DNN (i.e., the test set). Moreover, relying only on accuracy evaluation does not enable

identifying the different scenarios leading to DNN failures (i.e., wrong predictions) nor their frequency;

underrepresented scenarios in the test set could let serious safety risks go unnoticed.

In practice, in safety-critical systems, engineers should not only assess accuracy but also assess

the safety risks related to the DNN failures observed during DNN testing. A straightforward process

consists of visually inspecting all the images leading to DNN failures (failure-inducing images) and

identifying commonalities across them. Such commonalities should enable an engineer to identify the

unsafe scenarios in which the DNN is likely to fail. Identifying the unsafe scenarios for a DNN should

enable engineers to determine risks and take actions to improve the system (e.g., retraining the DNN on

more inputs belonging to such unsafe scenarios). Unfortunately, when test sets are large, relying on visual

inspection is expensive and prone to errors.

Demonstrating the functional safety of DNN-based components remains a critical issue for companies

developing safety-critical systems. This is the case for IEE [17], a supplier of sensing solutions active

in the automotive market and our partner in this research work. Specifically, the collaboration with IEE

helped us identifying the open problems in safety analysis for DNN-based systems, particularly in relation

to the safety standards ISO 26262 and ISO/PAS 21448, which IEE has to comply with, like many other

organizations in the automotive domain.

To support the safety analysis of DNN-based systems and address issues of trustworthiness, we propose

four different techniques. They all leverage the intuition that unsafe scenarios might be cost-effectively

identified by automatically clustering images that lead to DNN failures and present commonalities either

in their visual content or in the way they trigger responses from DNN neurons. We call such image

clusters root cause clusters (RCCs). RCCs can be quickly inspected by an engineer who can then easily

determine what the commonalities in the clustered images are and, consequently, determine what the

unsafe scenarios are. Based on domain knowledge, engineers can determine the frequency of the identified

unsafe scenarios and therefore take appropriate measures to address them (e.g., determine if the risk is

acceptable or if the DNN should be improved). Further, RCCs can be utilized to select additional images

to be used to retrain the DNN. Finally, simulators can be used to generate additional images belonging to

RCCs and rely on the commonalities across the simulators parameters associated to images in a same

RCC to generate explicit descriptions of the RCCs.

The proposed approaches have been successfully evaluated on seven case study DNNs from the

2

1.2. RESEARCH CONTRIBUTIONS

automotive domain defined in collaboration with our IEE; they include driver’s head pose, eye gaze, and

drowsiness detection, traffic sign detection, vehicle position estimation, unattended child detection, and

steering angle prediction DNNs. Our results demonstrate that the proposed techniques can support safety

analysis of DNN-based systems and outperform state-of-the-art alternatives.

1.2 Research Contributions

We developed Heatmap-based Unsupervised Debugging of DNNs (HUDD), a white-box technique that

automatically identifies RCCs by applying an unsupervised clustering algorithm to heatmaps that capture

the relevance of each DNN neuron on the DNN outcome. HUDD also retrains DNNs with images

automatically selected based on their belonging to the identified clusters.

We developed a search-based technique, Simulator-based Explanation for DNN failurEs (SEDE),

which generates readable descriptions of RCCs and improves the DNN through retraining based on such

descriptions. It requires the availability of real-world scene simulators to generate images to be processed

by the DNN under analysis, commonly used to train DNNs for cyber-physical systems. It relies on genetic

algorithms to drive such simulators towards generating images belonging to the RCCs generated by

HUDD. It then uses rule-learning algorithms to derive expressions that capture commonalities in terms of

simulator parameter values. These expressions are later used to generate additional images for debugging

the DNN.

Moreover, we developed a black-box approach, Safety Analysis using Feature Extraction (SAFE), to

characterize the root causes of DNN failures automatically. It relies on a transfer learning model to extract

features from failure-inducing images. Then it applies a clustering algorithm to detect arbitrary-shaped

clusters of images that model plausible causes of failure, which are then used for retraining and debugging

the DNN using images that belong to such RCCs.

Finally, we propose a generic pipeline for the generation of RCCs that derives from the work on

HUDD and SAFE and can integrate different machine learning components. We rely on such a pipeline to

assess the effectiveness of RCC generation when different clustering algorithms, dimensionality reduction

techniques, and feature extraction methods are used. The evaluation approach for the instantiated pipelines

entails controlling the causes of failures by artificially creating scenarios including realistic causes of

DNN failures (e.g., poor lighting conditions); it enabled us to objectively assess the performance of these

pipelines.

1.3 Dissemination

HUDD was published in IEEE Transactions on Reliability [18]; also, it was presented at the Journal

First track of the IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE).

Further, the toolset implementing HUDD has been presented in the tool demo track of the 44th ACM/IEEE

International Conference on Software Engineering (ICSE 2022) [19]. Our implementation of HUDD,

the generated root-cause clusters, the DNN models, the datasets and the data generated to address our

research questions are available online [20].

SEDE was published in the ACM Transactions on Software Engineering & Methodology [21]. Our

implementation of SEDE, the IEE simulators, and the data generated to address our research questions are

3

CHAPTER 1. INTRODUCTION

available online [22, 23]. We cannot share the real-world images used for FLD experiments because they

were collected by IEE and protected by privacy agreements.

SAFE has been published in ACM Transactions on Software Engineering & Methodology [24]. The

first author of the SAFE paper provided the idea of extending the HUDD pipeline with black-box analysis

components, the second author provided the expertise concerning their integration in a HUDD-like

pipeline and their assessment with the case study subjects used with HUDD. Our implementation of SAFE,

and the data generated to address our research questions are available online [25].

Our generic pipeline derived from HUDD and SAFE and the empirical evaluation of its different

variations has been submitted to ACM Transactions on Software Engineering & Methodology and is

currently under review [26]. All our implementations, the failure-inducing sets, the generated root-cause

clusters and the data generated to address our research questions are available online [27].

1.4 Dissertation Outline

In Chapter 2, we explore the background of our work in addition to the related work undertaken in the

context of software engineering research, with the aim of identifying the causes of inaccurate predictions

made by DNNs and implementing measures for debugging and retraining. We discuss testing and

debugging of DNNs in safety-critical contexts. Then, we discuss DNNs and rule-based systems in

addition to different supervised and unsupervised machine learning algorithms. Finally, we discuss

explainable artificial intelligence methods, including heatmap-based approaches, and present state-of-the-

art evolutionary algorithms.

In Chapter 3, we present the HUDD technique. Additionally, we present the evaluation results

answering two main research questions; (1) Does HUDD enable engineers to identify the root causes of

DNN failures? and (2) How does HUDD compare with traditional DNN accuracy improvement practices?.

In Chapter 4, we present the SEDE technique, which includes a dedicated evolutionary algorithm

Pairwise Replacement (PaiR). We demonstrate our empirical evaluation results which address five main

research questions; (1) How does PaiR fare, compared to state-of-the-art evolutionary algorithms?, (2)

Does SEDE generate simulator images that are close to RCCs of real-world images?, (3) Does SEDE

generate, for each RCC, a set of images sharing simmilar characteristics?, (4) Do the expressions

generated by SEDE delimit an unsafe space? and (5) How does SEDE compare to state-of-the-art DNN

accuracy improvement practices?.

In Chapter 5, we present the SAFE technique. We demonstrate our evaluation results to answer three

research questions; (1) Does SAFE enable engineers to identify root causes of DNN failures?, (2) Does

SAFE enable engineers to more effectively and efficiently retrain a DNN when compared with HUDD and

baseline approaches?, and (3) Does SAFE provide time and memory savings compared to HUDD?.

In Chapter 6, we present our empirical evaluation of 100 different pipelines to answer three research

questions; (1) Which pipeline generates RCCs with the highest purity?, (2) Which pipelines generate RCCs

covering more failure scenarios?, and (3) How is the quality of RCCs generated affected by infrequent

failure scenarios?.

Finally, in Chapter 7, we summarise our contributions, their limitations, and future prospects.

4

Chapter 2

Background and Related Work

IN this chapter, we provide a brief and concise overview of machine learning (ML) algorithms, testing

and debugging of DNNs in safety-critical contexts, search-based evolutionary algorithms (EA), and

explainable artificial intelligence (XAI) approaches used to perform the work presented in this dissertation.

Additionally, we provide an overview of the work developed in the context of software engineering

research, which aims at determining the reasons for wrong predictions and debug or retrain the DNN.

2.1 Machine Learning (ML)

Machine learning techniques rely on algorithms and statistical models to enable computers to learn from

data and improve their performance on a specific task without being explicitly programmed. It involves

the use of large datasets to train models, which can then make predictions based on new input data.

ML has a wide range of applications, including image recognition, natural language processing, and

autonomous driving tasks. ML techniques can be either supervised (i.e., learn from datasets annotated with

the information to be learned) or unsupervised (i.e., do not require an annotated dataset). In the following

sections, we will delve into the details of two supervised machine learning techniques: neural networks

and rule-based systems. Additionally, we will describe unsupervised machine learning techniques referred

in the next chapters: clustering algorithms, and dimensionality reduction techniques.

2.1.1 Deep Neural Networks (DNNs)

DNNs are a type of artificial neural network that has revolutionized the field of machine learning. DNNs are

composed of multiple layers of interconnected nodes, which are designed to learn and extract increasingly

complex features from input data. The depth of these networks allows for the representation of highly

nonlinear relationships between inputs and outputs, making them well-suited for a wide range of complex

tasks, such as image recognition, natural language processing, and speech recognition. The training of

DNNs typically involves the use of large amounts of labeled data, and optimization algorithms that adjust

5

CHAPTER 2. BACKGROUND AND RELATED WORK

the weights and biases of the network to minimize a loss function. With their ability to learn from large

and diverse datasets, DNNs have become a key technology in the development of advanced AI systems.

Among various types of DNNs, Convolutional Neural Networks (CNNs) have emerged as a popular

architecture for processing visual data, such as images and videos.The standard CNN architecture

[28, 29, 30] comprises three types of layers: convolutional layers, pooling layers, and fully connected

layers. The convolutional layer is considered the primary building block of a CNN. This layer extracts

relevant features from input images during training. Convolutional and pooling layers are stacked to

form a hierarchical feature extraction module. The model captures the resulting feature map from the last

pooling layer as a 3D matrix of size (N , N , Nc), where N is its width and height, and Nc is its depth. For

feature extraction, this feature map is flattened to form a vector of size (1, N ×N). In summary, the CNN

model receives an input image of size (224, 224, 3). This image is then passed through the network’s

layers to generate a vector of features. The feature extraction process from all images generates raw data

represented by a 2D matrix (denoted as X) formalized below:

X =


x11 x12 ... x1m l2

x21 x22 ... x2m lc

...

xk1 xk2 ... xkm l1

 , li ∈ {l1, l2, ..., lc} (2.1)

where li represent the class labels, c is the number of categories, m = N ×N is the number of features,

and k is the size of the dataset. The class categories are useful if the user is working on a supervised

problem or if fine-tuning is required.

A well-known example of NNs is VGGNet [31], which is a CNN characterized by a high number of

layers (11 to 19 layers). The purpose of this architecture is to minimize the number of trainable parameters.

Controlling the number of parameters helps to reduce overfitting issues. To this end, VGGNet proposes

to increase the network’s depth and to decrease the size of filters from 7 × 7 and 5 × 5 to 3 × 3. The

comparative study between the number of parameters in 3 stacked convolutional layers associated with

3× 3 filters and a single convolutional layer associated with 7× 7 filters demonstrated that small filters

reduce the total number of parameters. Also, it enhances non-linearity through ReLu activation functions

in intermediate layers. VGGNet proposes six different configurations: A, A− LRN , B, C, D, and E,

where the depth varies from 11 to 19 layers.

2.1.2 Rule-based Systems

Rule-based algorithms are a type of machine learning model that focuses on the creation of decision

rules that can be easily understood and interpreted by humans. These models are particularly useful in

scenarios where the ability to explain the decision-making process is critical. The main goal of rule-based

algorithms is to provide a transparent and interpretable method for making predictions or classifications,

which can help build trust and confidence in the decision-making process.

A decision rule [32] is an IF-THEN statement consisting of a condition and a prediction. For example,

a decision rule may indicate that if the horizontal angle used to generate an image is above 50 degrees (i.e.,

the head of the person is so turned that her left eye is barely visible), then the image is failure-inducing.

Decision rules are machine learning models that can be easily interpreted by humans [32].

6

2.1. MACHINE LEARNING (ML)

The support of a rule indicates the percentage of instances to which the condition of a rule applies,

while its accuracy measures the proportion of classes correctly predicted for the instances to which the

condition of the rule applies.

To combine multiple rules, rule learning algorithms derive either decision lists or decision sets. A

decision list is ordered, and we should rely on the prediction of the first rule whose condition evaluates to

true. In a decision set, predictions are based on some strategy (e.g., majority voting).

Rule-based Approaches

Kim et al. [33] process images generated with simulators and rely on rule extraction algorithms to

characterize correctly and incorrectly classified images in terms of simulator parameters. However, the

approach of Kim et al. cannot be applied to real-world images, which are instead necessary to ensure the

applicability of the DNN in the field.

Further, recent work studies the effectiveness of decision trees in characterizing the input space of the

simulator-based testing process [34, 35].

In particular, the PART algorithm [36] which combines the approach of RIPPER [37], a rule learning

algorithm, with decision trees, have been successfully applied in related work to characterize DNN

inputs [34].

PART, similarly to RIPPER, relies on a separate-and-conquer approach. It relies on a partial C4.5

decision tree to derive each rule. It starts by deriving a rule that provides accurate predictions for some of

the data points. Such result is achieved by building a pruned C4.5 decision tree from all the data points,

and then selecting the leaf with the largest support to transform it into a rule. The decision tree is then

discarded and all the data points that are covered by the rule are excluded from the training set. This rule

learning procedure is repeated until the whole data set is processed.

2.1.3 Unsupervised Learning Algorithms

Unsupervised learning is a type of machine learning that involves finding patterns and relationships in a

dataset without any prior knowledge of its structure or labels. There are various categories of unsupervised

learning algorithms, including clustering, dimensionality reduction, density estimation, anomaly detection,

and association rule learning, among others. While there are many types of unsupervised learning

algorithms, clustering and dimensionality reduction are two of the most commonly used.

On one hand, a clustering algorithm tries to group data points that are similar to each other; on the

other hand, a dimensionality reduction algorithm tries to reduce the number of features in the data set by

eliminating useless information and only retaining important ones.

Clustering Algorithms

Clustering is a data analysis method that mines essential information from a dataset by grouping data

into several groups called clusters. In clustering, similar data points are grouped into the same cluster,

while non-similar data points are put into different clusters. There are two main objectives in data

clustering; the first objective is to minimize the dissimilarity within the cluster, and the second objective

is to maximize the inter-cluster dissimilarity. In the following paragraphs, we will describe some of

the well-known, state-of-the-art, clustering algorithms, including Hierarchical Agglomerative Clustering

7

CHAPTER 2. BACKGROUND AND RELATED WORK

(HAC) [38], K-Means [39], Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [40],

and Hierarchial Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) [41]

HAC is a bottom up approach in which each observation starts in its own cluster and pairs of clusters

are iteratively merged into a sequence of nested partitions. The input of HAC is a matrix capturing the

distance between every observation pair. The grouping that occurs at each step aims to minimize an

objective function.

In HAC, widely adopted objective functions are (1) the error sum of squares within clusters (i.e.,

Ward’s linkage method [42]), to help minimize within-cluster variance, (2) the average of distances

between all pairs of elements belonging to distinct clusters (i.e., average linkage [43]), to help maximize

diversity among clusters, and (3) the shortest distance between a pair of elements in two clusters (i.e.,

single linkage [44]), to merge clusters that are closer for at least one element.

K-Means is a well-known clustering algorithm. It receives a number K as input and divides the data

into K clusters based on the distance calculated from the data points to the center of the cluster. This

algorithm’s main function is to minimize the distance between the data points and their cluster center as

much as possible. In the original K-means algorithm, the number of clusters (K) is set manually, which

can affect the quality of the clusters since we do not have any prior knowledge of the data.

DBSCAN is an algorithm that defines clusters using local density estimation. It can be divided into four

steps:

1. The ϵ-neighborhood of a data point is determined as the set of data points that are at most ϵ distant

from it.

2. If a data point has a number of neighbors, including itself, above a configurable threshold (called

MinPts), it is then considered a core point, and a high-density area has been detected.

3. Since core points can be in each other’s neighborhoods, a cluster consists of the set of corepoints

that can be reached through their ϵ-neighborhoods and all the data points in these ϵ-neighborhoods.

4. Any data point that is not a core point and does not have a core point in its neighborhood is

considered noise.

To obtain clusters using DBSCAN, the selection of two configuration parameters is needed: (1) The

distance threshold, ϵ, to determine the ϵ-neighborhood of each data point, and (2) the minimum number of

neighbors, MinPts, needed for a data point to be considered a core point. In Section 6.2.3, we introduce a

method to automatically derive and select these two configuration parameters, ϵ and MinPts.

HDBSCAN is an extension of DBSCAN to solve its main limitation: selecting a global ϵ. DBSCAN

uses a single global ϵ value to determine the clusters. When the clusters have varying densities, using

one global value can lead to a suboptimal partitioning of the data. Instead, HDBSCAN overcomes such a

limitation by relying on different ϵ values for each cluster, thus finding clusters of varying densities.

HDBSCAN first builds a hierarchy using varying ϵ to figure out which clusters end up merging

together and in which order. Based on the hierarchy of the clusters, HDBSCAN selects the most persisting

8

2.1. MACHINE LEARNING (ML)

clusters as final clusters. Cluster persistence represents how long a cluster stays without splitting when

decreasing the value of ϵ. After selecting a cluster, all its descendants are omitted.

Figure 2.1 shows an example of the clusters’ hierarchy found by HDBSCAN. The y-axis represents

the values of ϵ. Vertical bars represent clusters; the color and width of each vertical bar captures the size

of the cluster. We can notice that certain clusters split after the value of ϵ is increased, while some other

persist. HDBSCAN decides which subclusters to select based on their persistence, which is represented by

different color regions in the plot. Precisely, HDBSCAN selects the clusters having the highest persistence.

The unselected data points are considered noise.

In our example, only six clusters are selected (circled bars); they are the most persisting groups in the

hierarchy.

Figure 2.1: An example of the clusters selected by HDBSCAN.

Dimensionality Reduction Techniques

Several dimensionality reduction techniques exist in the literature. In this section, we focus on two state-

of-the-art techniques: Principal Component Analysis (PCA) [45], and Uniform Manifold Approximation

and Projection (UMAP) [46]. PCA is used for its simplicity of implementation and because it does

not require much time and memory resources. UMAP is used for its effectiveness when applied before

clustering. UMAP groups data points based on relative proximities, which optimizes the clustering results.

PCA and UMAP are described below.

PCA To reduce dimensionality, PCA creates a 2-dimensional matrix of variables and observations.

Then, for this matrix, it constructs a variable space with a dimension corresponding to the number of

variables available. Finally, it projects each data point onto the first few maximum variance directions in

the variable space. This procedure allows PCA to obtain a lower-dimensional data representation while

9

CHAPTER 2. BACKGROUND AND RELATED WORK

maximizing data variation. The first principal component can equivalently be defined as the direction that

maximizes the variance of the projected data [47].

UMAP is a dimension reduction technique that can be used for visualization but also for general

non-linear dimension reduction. UMAP is fast, and scaling well in terms of both dataset size and

dimensionality. The main limitation of UMAP is that it doesn’t preserve the density of the data, which is,

instead, better preserved by PCA.

First, UMAP forms a weighted graph representation between each pair of data points, where the

edge weights are the probability of two data points being connected to each other. This graph is obtained

by extending a radius outward each data point such that two data points are connected if their radii

overlap. However, since an underestimation of such a radius can lead to the generation of small, isolated

clusters, and its overestimation can lead to connecting all data points together, UMAP selects such a

radius locally. The radius selection is performed based on the distance from each data point to its ’n− th’

neighbor. Finally, UMAP decreases the likelihood of two data points getting connected past the first

neighbor (as the radius grows larger), which preserves the balance between the high-dimensional and

low-dimensional representations. Once the high-dimensional graph is constructed, UMAP optimizes the

layout of a low-dimensional representation to be as similar as possible. The general idea is to initialize

the low-dimensional data points and then move them around until they form clusters that have the same

structure as the high-dimensional data, preserving the connectedness of the data points. UMAP calculates

Similarity Scores (distances) in the high dimensional graph to help identify the clustered points and tries

to preserve that clustering in the low dimensional graph.

Autoencoders (AE)

AEs are unsupervised artificial neural networks that learn how to compress and encode the data before

reconstructing it from the compressed encoded version to a representation that resembles the original

input as much as possible. AEs can extract features that can be used to improve downstream tasks, such as

clustering or supervised learning, that benefit from dimensionality reduction and higher-level features. In

other words, AEs try to learn an approximation to the identity function and, by placing various constraints

on the network’s architecture and activation functions, they extract useful representations [48].

Figure 2.2 illustrates the neural network architecture of a simple AE. It consist of four components:

• Encoder: compresses the input data and reduces its dimensions into an encoded representation.

• Bottleneck: contains the encoded representation of the input data (i.e., extracted features vector).

• Decoder: reconstructs the input data from the encoded version (retrieved from the Bottleneck) such

that it resembles the original input data as much as possible.

• Reconstruction Loss: the difference between the Encoder’s input and the reconstructed version

(the Decoder’s output). The objective is to minimize such loss during training.

The objective of an AE’s training process is to minimize its reconstruction loss, measured as either the

mean-squared error or the cross-entropy loss between original inputs and its constructed inputs.

10

2.2. TESTING AND DEBUGGING OF DNNS IN SAFETY-CRITICAL CONTEXTS

x

Encoder Decoder

x’

Bottleneck

Figure 2.2: Autoencoder Architecture

2.2 Testing and Debugging of DNNs in Safety-critical Contexts

In this section, we introduce the practical context of our research, which in short is the safety analysis

and debugging of DNN-based automotive systems. We explain why automated root cause analysis is

necessary to enable functional safety analysis. Also, we show how DNN accuracy improvement can be

facilitated by the automated characterization and identification of failure-inducing inputs (i.e., inputs that

make the DNN generate erroneous results). Though the issues raised below and many of our insights are

not specific to automotive systems, but also relevant to many cyber-physical systems in general, this is the

practical domain and context in which this work took place.

GazeDNN_R

CropDNN

GazeDNN_L

LeftEye RightEye

CameraImage

EyeGaze
Direc4on

EyeGaze
Direction

Figure 2.3: DNN-based system for gaze detection.

Figure 2.4: Gaze directions.

11

CHAPTER 2. BACKGROUND AND RELATED WORK

2.2.1 DNN-based Automotive Systems

Our work is motivated by the challenges encountered in industry sectors developing safety-critical, cyber-

physical systems, such as the automotive sector. In particular, IEE has investigated the development of

a Gaze Detection System (GDS) which uses DNNs to determine the gaze direction of the driver, from

images captured by a camera on the instrument panel of the car.

Figure 2.3 shows a possible architecture for the GDS architecture consisting of three DNNs (i.e.,

CropDNN, GazeDNN_L, GazeDNN_R). CropDNN identifies face landmarks that enable the cropping of

images containing the eyes only. GazeDNN_L and GazeDNN_R classify the gaze direction into eight

classes (i.e., TopLeft, TopCenter, TopRight, MiddleLeft, MiddleRight, BottomLeft, BottomCenter, and

BottomRight).

To reduce training costs, IEE relies on training sets containing images that are collected from driving

scenes and images generated by simulation software. Simulators are used to reduce the costs related to

data collection and data labeling. Indeed, models of the dynamics of real-world elements (e.g., eyeballs)

are used to generate, in a controlled way through the selection of parameter values, hundreds of images in

a few hours [49]. Further, and this is important in terms of cost saving, simulation enables the automated

labeling of images by analyzing model parameters. However, while simulator images alleviate the costs

of training, testing ultimately requires real-world images as well, since simulators do not exhibit perfect

fidelity.

Additional DNN-based systems under development at IEE, which we used as cases studies, are

presented in Sections 3.3, 5.3, 4.4, and 6.3.

2.2.2 Debugging of DNN-based Systems

IEE engineers train the DNNs that compose their systems by following the standard machine learning

process depicted in Figure 2.5-a. They first train the DNN using a training set with labeled images (Step

A) and then execute the DNN against a labeled test set (Step B). This process enables engineers to evaluate

the DNN accuracy (e.g., the percentage of images leading to correct results).

When the accuracy of the system is not adequate, engineers can improve the DNN by augmenting

the training set with failure-inducing images. This process is depicted in Figure 2.5-b. First, engineers

generate a set of new images to be used to retrain the DNN (Step C). We call this set of images improvement

set. The improvement set generally consists of images collected from the field since these tend to be

failure-inducing when DNNs have been trained using simulator images. Real-world images must be

manually labelled (Step D). The DNN model is tested with the improvement set and images that lead to

DNN failures are identified (Step E). This set of failure-inducing (unsafe) images is considered to retrain

the DNN (Step G), using as initial configuration for DNN weights the ones in the previously trained

model.

To improve the DNN, it is necessary to process a sufficiently large number of unsafe images. For

this reason, the number of unsafe images can be augmented by applying bootstrap resampling (i.e., by

replicating samples in the unsafe set [50]) till a target is achieved (Step F). Finally, the improved DNN

can be assessed on the test set (Step H).

In general, generating a sufficiently diverse set of failure-inducing inputs that include all possible

causes of DNN failures is very difficult. Further, when the labeling of such images is manual, the costs

of labeling becomes prohibitive and DNN improvement is hampered. For this reason, automatically

12

2.2. TESTING AND DEBUGGING OF DNNS IN SAFETY-CRITICAL CONTEXTS

Step D.
Manually label

Improvement Set:
new images
(unlabeled)

Step A. DNN
Training

DNN
model

Step B. DNN
Testing

Error-inducing
test set images

(a) DNN training and testing

(fewer)
Error-inducing
test set images

Simulator execution

Step C. Generate
new images

Collection of field data

Step E. DNN
Testing

Labeled Unsafe
Set images

Step G. DNN
Retraining

Improved
DNN
model

Step H. DNN
Testing

(b) DNN improvement

Labeled
Improvement

Set

Training set
images

Training set
images

Test set
images

Test set
images

Legend:
Manual

Step
Automated

Step Data flow

Augmented
Labeled Unsafe

Set images

Step F.
Bootstrap

DNN
model

Figure 2.5: Training and debugging DNNs.

characterizing images that are likely to lead to DNN failures would allow the image generation or

selection process to target specific types of images and increase the efficiency of the DNN retraining

process.

2.2.3 Functional Safety Analysis

Like many other organizations in the automotive domain, IEE products must comply with the functional

safety standards ISO 26262 and ISO/PAS 21448. Functional safety is addressed by identifying, for each

component of the product (e.g., the DNNs of the GDS), the unsafe conditions that could lead to hazards,

by identifying countermeasures (e.g., redundant components), and by demonstrating that these unsafe

conditions are unlikely to occur.

ISO/PAS 21448, specifically targeting autonomous systems, recommends to determine unsafe condi-

tions by following the traditional DNN testing process depicted in Figure 2.5-a and by manually inspecting

the failure-inducing images to look for root causes of DNN failures. In a DNN context, unsafe conditions

thus correspond to root causes of DNN failures.

In addition, the manual identification of unsafe conditions is error-prone. For example, engineers

may overlook unsafe conditions that are underrepresented in the test set. Also, such conditions may

lead to a biased estimate of the accuracy of the DNN. For example, UnityEyes generates eye images

where the horizontal angle of the head is determined based on a uniform distribution, between 160 (head

turned right) and 220 degrees (head turned left). As a result, very few images with an angle of 160 or 220

13

CHAPTER 2. BACKGROUND AND RELATED WORK

degrees are generated and, though it may be an unsafe condition (i.e., one eye is barely visible and the

gaze direction prediction may be inaccurate), experiments based on test sets generated with UnityEyes

may suggest that the DNN is on average very accurate. It is, however, important for engineers to know

that such a DNN, in some rarely occurring cases in the test set, is unsafe when the driver turns his head

while driving.

In summary, accuracy estimation results depend on the test set, which may not include all unsafe

conditions in a representative or balanced manner. Automated root cause analysis helps making sure,

through clustering, that even rare, unsafe conditions are made visible to the analyst, especially when safety

analysis time is limited. In other words, clustering based on heatmaps makes safety analysis robust, to

some extent, to imperfect test sets.

2.3 Evolutionary Algorithms (EA)

Evolutionary algorithms are state-of-the-art solutions to find a set of nondominated solutions in multi-

objective optimization problems. In software engineering, they are widely adopted to identify test inputs

that maximize some coverage criterion [51]. Also, evolutionary algorithms have been successfully used to

test autonomous driving systems [52, 53, 54, 55].

2.3.1 Multi-objective Algorithms

Multi-objective algorithms are optimization methods that are designed to find a set of solutions that

simultaneously optimize multiple conflicting objectives. These algorithms are used in a wide range of

applications, including engineering design, resource allocation, and machine learning.

One popular multi-objective optimization algorithm is the Non-dominated Sorting Genetic Algorithm

II (NSGA-II) [56, 54, 53, 55]. NSGA-II is a state-of-the-art solution for optimization problems with up to

three objectives. It is shown in Fig. 2.6. NSGA-II works by first generating a random population (Line 2),

which is evolved in a number of iterations (Lines 3 to 16). A new offspring (Qt) is generated by applying

mutation and crossover operators (Line 4). The algorithm preserves elitism since the new population

(Pt+1) is generated by selecting the best individuals in the union of the current population (Pt) and the

offspring (Line 5). The best individuals are selected by first ranking individuals based on their belonging

to the l-th nondominated fronts (Line 6), which is efficiently performed by the fast-nondominated-sorting

procedure [56]. Then, the algorithm adds individuals to the population according to their rank (Line 9), till

it finds a ranked subset that cannot be fully added (Line 8). Finally, to preserve diversity in the population,

NSGA-II selects the items belonging to the last ranked subset according to a crowding distance function

that prioritizes individuals being more distant from others along with individuals at the boundaries of the

objective space (Lines 11 to 15).

2.3.2 Many-objective Algorithms

Many-objective algorithms are optimization methods that are designed to find a set of solutions that

simultaneously optimize a large number of objectives. These algorithms are used in cases where the

number of objectives is so high that traditional multi-objective optimization algorithms are not effective.

The term many-objective is used for algorithms that tackle problems with more than three objec-

tives [57]. A popular many-objective algorithm used in software testing is Many-Objective Simulated

14

2.4. EXPLAINABLE ARTIFICIAL INTELLIGENCE (XAI)

Require: O = o1, o2, ... the objectives
Require: M, population size
Require: T, search budget (i.e., number of iterations to perform)
Ensure: a population whose Pareto front includes the best found solutions

1: t← 0 //current generation
2: Pt ← CREATE RANDOM POPULATION WITH SIZE M
3: while t < T do
4: Qt ← GENERATE OFFSPRING FROM Pt

5: Rt ← Pt ∪Qt

6: (F1, F2, ..., Fl)← APPLY fast-nondominated-sorting TO Rt

7: r ← 0 //counter for the Pareto front rank
8: while |Pt+1|+ |Fr| ≤M do //iterate over all the Pareto fronts till they fit into the population
9: Pt+1 ← Pt+1 ∪ Fr

10: r ← r + 1

11: ASSIGN CROWDING DISTANCE TO INDIVIDUALS IN Fr //see Fig. 4.4; Fr is the front that does not fully fit into
Pt+1

12: SORT Fr BASED ON CROWDING DISTANCE
13: while |Pt+1| ≤M do //till Pt+1 is not full, add the individuals in the sorted Fr

14: ind ← EXTRACT FIRST INDIVIDUAL IN Fr

15: Pt+1 ← Pt+1 ∪ ind

16: t← t+ 1

17: Return Pt

Figure 2.6: NSGA-II

Annealing (MOSA) [51]. Given test cases (i.e., sequences of inputs for program APIs) as individuals,

MOSA models branch coverage as a search objective but does not account for the length of individuals.

Shorter test cases are, however, easier to read than longer ones and should be prioritized. Therefore,

MOSA extends NSGA-II by relying on an archive that is used to keep track of the shortest test cases

accidentally identified during the search. In addition, since MOSA aims to fulfil all the objectives and not

only a subset of them, instead of relying only on the nondominance relation to select elitist individuals (i.e.,

Line 6 in Fig. 2.6), it makes use of the preference criterion, a strategy that ensures preserving individuals

that minimize the objective score for uncovered objectives (i.e., objectives without an individual already

in the archive). To generate inputs for DNN-based systems with MOSA [58], it is necessary to specify a

fitness threshold to determine objective coverage (e.g., a safety violation occurs if the ego vehicle gets too

close to the vehicle in front). At every iteration, the archive is updated to keep the best individual found

during the search; however, the probability of replacing an individual already in the archive is low. Indeed,

thanks to the preference criterion, the population includes only the best individuals for the objectives not

covered yet. When it is not possible to specify a threshold to determine when an objective is covered, the

main benefit of MOSA is to ensure that the best individual for each objective is preserved; indeed, the

archive becomes useless because the best individuals are preserved directly in the population. However, a

simple modification of NSGA-II can achieve the same purpose (see Section 4.3.1).

2.4 eXplainable Artificial Intelligence (XAI)

Approaches that aim to explain DNN results have been developed in recent years [59]. Most of these

concern the generation of heatmaps that capture the importance of pixels in image predictions. They

include black-box (Model-agnostic) [60, 61] and white-box (heatmap-based) approaches [62, 63, 64,

65, 66]. In this section, we explore approaches developed by the ML and computer vision community

that can be used to explain either correct or wrong predictions and are partially reused in the rest of this

dissertation.

15

CHAPTER 2. BACKGROUND AND RELATED WORK

2.4.1 Heatmap-based DNN Explanations

Heatmap-based approaches [60, 61, 62, 63, 64, 65, 66] explain the DNN’s prediction of an image by

highlighting which region of an image influenced the DNN output most. For example, Grad-CAM

generates a heatmap from the gradient flowing into the last layer. The heatmap is then superposed

on the original image to highlight the regions of the image that activated the DNN and influenced the

decision [63]. The main limitation of these approaches is that they require the inspection of all the

heatmaps generated for each image processed by the DNN (e.g., failure-inducing images) and do not

provide engineers with guidance for their inspection (i.e., one cluster for each failure root cause).

Heatmap-based Approaches

Under-approximation boxes [67] consist of the minimal set of neurons, belonging to a specific layer,

that ensure a postcondition (e.g., the generation of a specific DNN output). When applied to explain

misclassifications, they lead to heatmap-like images showing the minimal set of input pixels leading to

the same DNN result. Similarly, Ribeiro et al., identify the image chunks that are sufficient to generate a

certain DNN result [68]. Like heatmap generation techniques, these two approaches cannot automatically

identify the root cause for a group of error-inducing images but require manual inspection for every

error-inducing image.

MODE automatically identifies the images to be used to retrain a DNN [69]. However, it cannot

identify the root causes of DNN errors, which is a major limitation in our context. The selection of images

to be used for retraining, in the case of MODE, is not based on heatmaps but on training additional DNN

layers that capture commonalities among neuron activations leading to DNN errors. MODE, therefore,

entails repeated modification and retraining of the DNN under test, just to select the improvement set,

which is a very expensive endeavor.

Surprise adequacy measures the degree of variation in neuron activations between a new image and

the training images belonging to the same class [70]. Empirical results show that a retraining set with a

varying degree of surprise adequacy improves DNN robustness against adversarial examples. However, it

has never been adopted to improve accuracy for non-adversarial inputs. Also, like previous techniques, it

cannot be used to identify root causes of DNN errors.

DeepFault [71] identifies a set of suspicious neurons to synthesize new, adversarial images and

improve DNN adversarial robustness. Since it relies on synthesized adversarial inputs, it cannot improve

accuracy for unsafe, non-adversarial inputs. Once again, it does not distinguish different root causes.

INNvestigate [72] and TorchRay [73] are well known tools supporting DNN explanation. However, for

explanations concerning DNNs that process images, they generate one heatmap for every failure-inducing

input image; each heatmap must be visually inspected by engineers, which makes the investigation of

many DNN failures highly expensive.

AI-Lancet [74] optimizes deep learning models by locating the error-inducing (EI) neurons and fixing

them using either neuron-flip or neuron-fine-tuning methods. It starts by revealing the EI regions in the

input sample and then extracts the EI features activated by the EI regions of the input. Finally, the EI

neurons can be located with the guidance of the EI features. AI-Lancet requires the modification and the

retraining of the DNN to find the erroneous neurons. Another limitation is that it does not explain the root

causes of errors. Instead, it attempts to fix them by fine-tuning or flipping neurons.

16

2.4. EXPLAINABLE ARTIFICIAL INTELLIGENCE (XAI)

SHAP (SHapley Additive exPlanation) [75] generates explanations by calculating the contribution of

each feature to the prediction, thus explaining what features are the most important for a prediction. In the

case of an image CNN, SHAP considers a group of pixels as a feature and calculates their contribution to

the decision made by the DNN. Like heatmap-based approaches, SHAP does not provide guidance for the

investigation of multiple failure-inducing images.

Finally, solutions [66] backpropagating only the difference in activations between the different

classes may compromise clustering since they do not account for information about all available neurons

but only the ones related to the predicted output class. Deconvolutional networks [64] and guided

backpropagation [65] lead to sparse heatmaps that do not fully explain the DNN result [76]. Grad-

CAM [63] does not work with convolutional DNN layers. In contrast, Layer-Wise Relevance Propagation

(LRP) [62] generates precise, non-sparse heatmaps for all the DNN layers because it takes into account all

the different factors affecting the relevance of a neuron, which include the DNN structure and the neuron

activations. In the following, we detail LRP because selected as building block for HUDD (see Chapter 3).

Layer-Wise Relevance Propagation (LRP) LRP redistributes the relevance scores of neurons in a

higher layer to those of the lower layer. Assuming j and k to be two consecutive layers of the DNN, LRP

propagates the relevance scores computed for a given layer k into a neuron of the lower layer j. It has

been theoretically justified as a form of Taylor decomposition [77].

Figure 2.7 illustrates the execution of LRP on a fully connected network used to classify inputs. LRP

analyzes the data processed by a DNN and can be applied to any DNN architecture. In the forward pass,

the DNN receives an input and generates an output (e.g., classifies the gaze direction as TopLeft) while

keeping trace of the activations of each neuron. The heatmap is generated in a backward pass. The

heatmap in Figure 2.7 shows that the pupil and part of the eyelid, which are the non-white parts in the

heatmap, had a significant effect on the DNN output. Furthermore, the heatmap in Figure 2.8 shows that

the mouth and part of the nose are the input pixels that mostly impacted on the DNN output.

In Figure 2.7, blue lines show that the DNN score of the selected class is backpropagated to lower

layers. Plain lines show the connections concerned by the propagation formula used to compute the

relevance (Rji) of neuron i at layer j from all the connected neurons in layer k. Rji =
∑

l(
zji_kl∑
i zji_kl

∗Rkl),

where zji_kl captures the extent to which neuron ji has contributed to make neuron kl relevant, and Rkl

captures the relevance of neuron l at layer k. For example, for linear layers, zji_kl = aji ∗ w+
ji_kl, where

aji is the activation of neuron i at layer j and w+
ji_kl is the value of the weight on the connection between

neuron ji and neuron ki, considering positive weights only. The denominator is used to redistribute the

relevance received by a neuron to the lower layer proportionally to relative contributions.

The heatmap in Figure 2.7 shows that the result computed by the DNN was mostly influenced by the

pupil and part of the eyelid, which are the non-white parts in the heatmap.

An additional key benefit of LRP is that it enables the computation of internal heatmaps, i.e., heatmaps

for the internal layers of the DNN, based on the relevance score computed for every neuron in every layer.

An internal heatmap for a layer k consists of a matrix with the relevance scores computed for all the

neurons of layer k.

17

CHAPTER 2. BACKGROUND AND RELATED WORK

TopRight

Input
Layer

Output
Layer

DNN with LRP

Layer k

DNN
output:

Top
Right

TopCenter

TopLeft

Layer j

wj1k1

wj1k2

wj1k3

I

O

I Input of DNN

Output of LRPO

Legend:

Neuron connections

Image to Classify

Heatmap of Input Layer
Heatmaps

of Internal Layers

7,5

5,3

2,3

O

Figure 2.7: Layer-Wise Relevance Propagation.

Figure 2.8: An example image of head-pose detection subject (on the left) and applied LRP (on the right)
showing that the mouth had a large influence on the DNN behavior.

2.4.2 Model-agnostic DNN Explanations

Model-agnostic explanation approaches for DNNs are methods that aim to provide explanations for the

predictions made by DNNs, without requiring access to the internal structure or training details of the

model. These approaches are designed to be independent of the specific architecture or training procedure

used to create the DNN, and can be applied to a wide range of different models.

One popular model-agnostic explanation method is called perturbation-based feature importance,

which measures the contribution of each input feature to the model’s output. This can be done through

techniques such as permutation importance, which involves randomly shuffling the values of a single

18

2.4. EXPLAINABLE ARTIFICIAL INTELLIGENCE (XAI)

feature and measuring the resulting change in the model’s predictions. One example of such approaches

is Anchors. Anchors are if-then rules that constrain a subset of the input features so that changes to

the unconstrained features do not influence the output of the model to be explained [68]. The Anchors

algorithm constructs an explanation rule iteratively, by interacting with the model. At each iteration it

alters the values associated to one input feature, till it identifies a range within which the accuracy is above

a given threshold. The Anchors algorithm works with the test dataset, not simulators; also, when applied

to DNN processing images, it does not generate expressions but identifies the image chunks influencing

the DNN output, similarly to heatmap-based approaches.

Though designed for textual datasets, the Anchors algorithm may provide decision rules that can be

easily generalized to multiple inputs (e.g., the ones that match the same rule and lead to the same result);

for image inputs, Anchor simply emphasizes the image chunk that is sufficient for the classifier to make

the prediction. Therefore, Anchors do not help engineers in analyzing large input datasets because it

requires all the chunks belonging to each input image to be visualized.

Finally, Randomized Input Sampling for Explanation (RISE) [78] allows researchers to gain insights

into the decision-making process of a NN without accessing its internal structure. It achieves this by

sub-sampling input images using random masks and recording the network’s response to each masked

image. The paper also proposes causal metrics as an evaluation method for the generated explanations,

aiming to assess the true cause of the model’s decision rather than solely relying on human-annotated

importance regions. However, such approach does not support the automated debugging and retraining of

DNNs.

2.4.3 Explanations for DNN Testing Approaches

Some DNN testing approaches can provide explanations for portions of the input space in which DNN

failures are observed [79, 34, 35, 80].

For instance, Abdessalem et al. [79] rely on evolutionary algorithms to search for test inputs using

simulators and, to maximize test effectiveness, decision trees are used during the search process to learn

the regions of the input space that are likely unsafe and, hence, should be targeted by testing. Finally,

engineers are presented with decision tree leaves that characterize such portions.

Furthermore, DeepHyperion [80] configures a generative model using a metaheuristic search algorithm

directed towards generating test inputs in a specific dimension of the inputs space and provides a set of

feature maps which visualize the degree of accuracy obtained for different values of dimensions pairs.

Finally, DeepJanus characterizes the frontier of DNN misbehaviours by identifying pairs of inputs

that are close to each other, with one input leading to a correct DNN output and the other to a DNN

failure [81]. It relies on the popular Non-dominated Sorting Genetic Algorithm II NSGA-II algorithm

extended with an archive (to keep the best individuals found in the search) and with repopulation (to

escape from stagnation by replacing the most dominated individuals with random ones). DeepJanus relies

on a fitness function that includes a measure of sparseness of the solutions; sparseness is measured as the

distance from the closest input in the archive, which is populated with inputs having a distance above a

given threshold. Finally, DeepJanus cannot relate failures observed with images generated by a simulator

to failures observed with real-world data.

19

Chapter 3

Heatmap-based Unsupervised Debugging
of DNNs

WE propose Heatmap-based Unsupervised Debugging of DNNs (HUDD), an approach that automat-

ically supports the identification of root causes of DNN failures. HUDD identifies root causes

by applying a clustering algorithm to heatmaps capturing the relevance of every DNN neuron on the

DNN outcome. Automated root cause analysis ensures that even uncommon and hazardous scenarios

are brought to the attention of analysts, particularly when time is limited for safety analysis. Through

clustering, this technique utilizes heatmaps to make safety analysis more robust and less dependent on

perfect test sets. In essence, the clustering-based approach enhances the visibility of rare and unsafe

conditions, thereby improving the overall reliability of safety analysis. Also, HUDD retrains DNNs with

images that are automatically selected based on their relatedness to the identified image clusters.

3.1 Introduction

A root cause is a source of a defect such that if it is removed, the defect is decreased or removed [82].

With DNN-based systems, root cause analysis consists in characterizing system inputs that lead to failing

DNN results. For example, in image classification tasks, a root cause of DNN failures could be severe

gender imbalance in the training set leading the DNN to label most female doctors as nurses; it might

be detected after noticing that failure-inducing inputs are characterized by doctors with long hair [63].

The DNN can be efficiently retrained after including in the training set additional images featuring these

failure-inducing characteristics.

When DNN inputs are images, which is our focus here, existing solutions for root cause analysis

generate heatmaps that use colors to capture the importance of pixels in their contribution to a DNN

result [63, 62]. By inspecting the heatmaps generated for a set of erroneous results, a human operator

can determine that these heatmaps highlight the same objects, which may suggest the root cause of

the problem (e.g., long hair [63]). Based on the identified root cause, engineers can then retrain the

21

CHAPTER 3. HEATMAP-BASED UNSUPERVISED DEBUGGING OF DNNS

DNN using additional images with similar characteristics. Unfortunately, this process is expensive and

error-prone because it relies on the visual inspection of many generated heatmaps. MODE goes beyond

visual inspection and supports the automated debugging of DNNs through the identification of likely

failure-inducing images to be used for retraining [69]. However, MODE cannot support safety analysis

since it does not provide support to identify plausible and distinct root causes leading to DNN failures.

To address these problems in the context of DNNs analyzing images, we propose HUDD. HUDD relies

on hierarchical agglomerative clustering [38] combined with a specific heatmap-based distance function

to identify clusters of failure-inducing images with similar heatmaps for internal layers. Since heatmaps

capture the importance of neurons regarding their contribution to the DNN result, failure-inducing images

with similar heatmaps should share characteristics that drive the generation of erroneous DNN results.

Each cluster should thus characterize a distinct root cause for the observed DNN failures, even in cases

where such causes are infrequent. Images in such clusters should then help identify clear and distinct root

causes and can serve as a basis for efficient and effective retraining. We focus on internal DNN layers

because they act as an abstraction over the inputs (e.g., ignore image background). More precisely, HUDD

relies on the computed clusters to identify new images to be used to retrain the DNN.

Given a potentially large set of collected or generated unlabeled images, HUDD selects the subset

of images that are closer to the identified clusters according to a heatmap-based distance. These images

are then labeled by engineers and used to retrain the network. Labeling only a subset of images reduces

retraining cost.

3.2 The HUDD Approach

Figure 3.1 provides an overview of our approach, HUDD, which provides two main contributions: (1) it

automatically identifies the root causes of DNN failures, (2) it automatically identifies unsafe images for

retraining the DNN. HUDD consists of six steps, described below.

Step1.
Heatmap

based
clustering

Root cause clusters
C1

Step 5.
Label images

Step 4. Identify
Unsafe Images

Error-inducing
test set images

Unsafe Set:
improvement set

images
belonging

to the root cause
clusters

C2 C3

Simulator execution

Step 3. Generate
new images

Collection of field data

Improvement
set: new images

(unlabeled)
C1 C2 C3

Labeled
Unsafe Set

C1 C2 C3

Step 7. DNN
Retraining

Step 2. Functional
Safety Analysis

Training set
images

Balanced Labeled
Unsafe Set

C1 C2 C3

Improved
DNN
model

Step 6.
Bootstrap

DNN
model

Figure 3.1: Overview of HUDD.

In Step 1, HUDD performs heatmap-based clustering. This is a core contribution of this approach and

22

3.2. THE HUDD APPROACH

consists of three activities: (1) generate heatmaps for the failure-inducing test set images, (2) compute

distances between every pair of images using a distance function based on their heatmaps, and (3) execute

hierarchical agglomerative clustering to group images based on the computed distances. Step 1 leads to

the identification of root cause clusters, i.e., clusters of images with a common root cause for the observed

DNN failures.

In Step 2, engineers inspect the root cause clusters (typically a small number of representative images)

to identify unsafe conditions, as required by functional safety analysis. The inspection of root cause

clusters is an activity performed to gain a better understanding of the limitations of the DNN and thus

introduce countermeasures for safety purposes (see Section 2.2.3), if needed. However, the inspection of

root cause clusters has no bearing on the later steps of our approach, including retraining.

In Step 3, engineers rely on real-world data or simulation software to generate a new set of images to

retrain the DNN, referred to as the improvement set.

In Step 4, HUDD automatically identifies the subset of images belonging to the improvement set that

are likely to lead to DNN failures, referred to as the unsafe set. It is obtained by assigning the images of

the improvement set to the root cause clusters according to their heatmap-based distance.

In Step 5, engineers manually label the images belonging to the unsafe set, if needed (e.g., in the case

of real images). Different from traditional practice (see Figure 2.5-b), HUDD requires that engineers label

only a small subset of the improvement set.

In Step 6, to improve the accuracy of the DNN for every root cause observed, regardless of their

frequency of occurrence in the training set, HUDD balances the labeled unsafe set using a bootstrap

resampling approach.

In Step 7, the DNN model is retrained by relying on a training set that consists of the union of the

original training set and the balanced labeled unsafe set.

In general, generating a sufficiently diverse set of failure-inducing inputs that include all possible

causes of DNN failures is very difficult. Further, when the labeling of such images is manual, the costs

of labeling becomes prohibitive and DNN improvement is hampered. To enhance the efficiency of the

DNN retraining process, it would be beneficial to automatically identify images that are prone to causing

DNN failures. This would enable the image generation or selection process to focus on specific image

characteristics, allowing for a more targeted approach to retraining the DNN.

Three out of the seven steps are manual (Steps 2, 3, and 5). However, these steps are also part of

state-of-the-art solutions (see above). But in the case of HUDD the manual effort required in such steps is

much more limited than in existing approaches. With HUDD, in Step 2, engineers inspect a few images

per root cause clusters rather than the whole set of images, thus resulting in (a) significant cost savings

(see Section 3.3.2) and (b) effective guidance towards the identification of root causes. In Step 5, with

HUDD, engineers label only a subset of the improvement set that contains likely unsafe images identified

by HUDD. Such unsafe images can be effectively used for retraining. Without HUDD, engineers would

label a randomly selected subset of the improvements set, which would likely contain less unsafe images

and thus be less effective during retraining (see Figure 3.11).

Finally, Step 3 is common practice and entails limited effort (e.g., buying field images or configuring

a simulator).

The quality of HUDD results does not depend on the personal ability of engineers involved in manual

steps; indeed, manual steps either concern the inspection of HUDD results or involve simple activities.

23

CHAPTER 3. HEATMAP-BASED UNSUPERVISED DEBUGGING OF DNNS

The first contribution of HUDD (i.e., identify root causes of DNN failures) is provided by Step 1, which is

fully automated. Step 2, which is manual, concerns the visual inspection of the generated clusters, does

not require particular skills, and is part of state-of-the-art approaches. However, with HUDD, this step

is facilitated by the quality of the generated clusters; for example, in Section 3.3.2 we demonstrate that

HUDD generates root cause clusters presenting a common set of characteristics that are plausible causes

of DNN failures, thus facilitating the identification of these root causes. The other manual steps (i.e.,

Step 3 and Step 5) are simple. In Step 3, engineers simply generate additional images (their selection is

automated by HUDD in Step 4). In Step 5, engineers provide additional labels, which is an activity that,

despite being time-consuming, can be assumed to be correct most of the time and is unavoidable when

supervised learning (e.g., DNNs) is involved. The other steps leading to the second contribution of HUDD

(i.e., identification of unsafe images and DNN retraining), are fully automated.

The following sections describe in detail all the steps of the approach, except Steps 3 and 5, which

were introduced above.

3.2.1 Step 1. Heatmap-based Clustering

HUDD is based on the intuition that, since heatmaps capture the relevance of each neuron on DNN results,

failure-inducing inputs sharing the same root cause should show similar heatmaps. For this reason, to

identify the root causes of DNN failures, we rely on clustering based on heatmaps. Figure 3.2 provides an

overview of our clustering approach.

LRP
Agglomerative
Hierarchical
Clustering

... ...

Clusters for
Layer 1

Comparison
to identify
Best Layer

for Clustering

Heatmaps
at Layer 1 Layer 1

Layer N

...

Clusters for
Layer NDistance

Matrices

Error-inducing
test set images

Root Cause
Clusters

Heatmaps
at Layer N

Figure 3.2: Heatmap-based Clustering

In this chapter, we rely on LRP because of the limitations of other approaches (see Section 2.4).

In our experiments, we have applied LRP to Convolutional Neural Networks (CNNs [83]), for

classification tasks, and Hourglass Neural Networks [84], for regression tasks. We rely on the LRP

implementation provided by LRP authors [85].

For each failure-inducing image in the test set, HUDD relies on LRP to generate heatmaps of internal

DNN layers. Each heatmap captures the relevance score of each neuron in that layer.

A heatmap is a matrix with entries in R, i.e., it is a triple (N,M, f) where N,M ∈ N and f is a map

[N]× [M] → R. We use the syntax H[i, j]Lx to refer to an entry in row i (i.e., i < N) and column j (i.e.,

j < M) of a heatmap H computed on layer L from an image x. The size of the heatmap matrix (i.e.,

the number of entries) is N ·M , with N and M depending on the dimensions of the DNN layer L. For

convolution layers, N captures the number of neurons in the feature map, while M captures the number of

feature maps. For example, the heatmap for the eighth layer of AlexNet has size 169× 256 (convolution

layer), while the the heatmap for the tenth layer has size 4096× 1 (linear layer).

Since distinct DNN layers lead to entries defined on different value ranges [77], to enable the

comparison of clustering results across different layers, we generate normalized heatmaps by relying on

24

3.2. THE HUDD APPROACH

min-max normalization [86]. For a layer L, we identify minL as the minimum value observed for all the

heatmaps generated for a layer L, i.e.,

minL ≤ H[i, j]Lx ∀ i < N, j < M (3.1)

with x being an image belonging to the unsafe test set. The maximum value maxL is derived accordingly.

An entry H̃[i, j]Lx belonging to a normalized heatmap H̃T
x is derived as

H̃[i, j]Lx =
H[i, j]Lx −minL

maxL −minL
(3.2)

The generated normalized heatmaps are used to build, for each DNN layer, a distance matrix that

captures the distance between every pair of failure-inducing image in the test set. The distance between a

pair of images ⟨a, b⟩, at layer L, is computed as follows:

heatmapDistanceL(a, b) = EuclideanDistance(H̃L
a , H̃

L
b) (3.3)

where H̃L
x is the normalized heatmap computed for image x at layer L.

EuclideanDistance is a function that computes the euclidean distance between two N ×M matrices

according to the formula

EuclideanDistance(A,B) =

√√√√ N∑
i=1

M∑
j=1

(Ai,j −Bi,j)2 (3.4)

where Ai,j and Bi,j are the values in the cell at row i and column j of the matrix.

In this chapter, we rely on hierarchical agglomerative clustering (HAC) [38] to identify groups of

failure-inducing images with similar characteristics.

Since we aim to generate clusters including images with similar characteristics, for each layer, we

identify clusters of images by relying on the HAC algorithm with Ward linkage, which minimises within

cluster variance.

HAC leads to a hierarchy of clusters that can be represented as a dendrogram (see Section 2.1.3). To

identify the optimal number of clusters, we rely on the knee-point method [87], a recent approach that has

been applied in different contexts, including fault localization [88] and performance optimization [89].

It automates the elbow method heuristics [90], which is commonly used in cluster analysis and consists

of plotting the variance within a cluster as a function of the number of clusters, and picking the curve’s

elbow as the number of clusters to use. The knee-point method automates it by fitting a spline to raw data

through univariate interpolation and normalizing min/max values of the fitted data. The knee-points are

the points at which the curve differs most from the straight line segment connecting the first and last data

point.

More specifically, we select the optimal number of clusters for a layer using the knee-point method

applied to the weighted average intra-cluster distance.

We chose HAC over K-means [91] since the latter requires the number of clusters to be known

or predicted. In our case, K-means would thus need to be repeatedly executed in order to determine

the optimal number of clusters; in the case of HAC, instead, the generated dendrogram provides all

the required information in a single run. Further, HAC does not require the computation of cluster

centroids [92], which is particularly expensive when differences between observations are computed from

large matrices [93]. To more formally motivate our choice, we compare the worst case time complexity of

25

CHAPTER 3. HEATMAP-BASED UNSUPERVISED DEBUGGING OF DNNS

HAC and K-means. HAC’s running time is in O
(
d·n·(n−1)

2 + n2
)
≈ O

(
d · n2

)
, with n being the number

of instances to cluster, and d being number of features to consider during clustering (i.e., the entries of the

heatmap matrix). In other words, this complexity depends on the cost of computing the distance matrix,

which is equal to the number of features multiplied by the number of image pairs (first addend), and the

time complexity of HAC with Ward linkage (second addend [92]). The worst case time complexity of a

single iteration for K-means is O
(
nk·d

)
, with k being the number of clusters to consider [94, 95]. In our

experiments, n lies in the range [506-5371], the optimal number of clusters is between 11 and 20 (see

Section 3.3.2), and d is very large for DNN convolutional layers (e.g., 169× 256). These numbers show

that the worst case complexity of K-means is much larger than that of HAC, which further motivates our

choice. We leave to future work the empirical evaluation of K-means and other clustering solutions.

In our context, clustering results are informative if they group together images that are misclassified

for a same reason (i.e., if clusters are cohese) and if similar images belong to a same cluster (i.e., clusters

are not fragmented). We determine cluster cohesion based on the weighted average intra-cluster distance

(WICD), which we define according to the following formula:

WICD(Ll) =

∑|Ll|
j=1

(
ICD(Ll, Cj) ∗ |Cj |

|C|

)
|Ll|

(3.5)

where Ll is a specific layer of the DNN, |Ll| is the number of clusters in the layer Ll, ICD is the

intra-cluster distance for cluster Ci belonging to layer Ll, |Cj | is the number of elements in cluster Cj ,

while |C| is the number of images in all the clusters.

In Formula 3.5, ICD(Ll, Cj) is computed as follows:

ICD(Ll, Cj) =

∑Nj

i=0 heatmapDistanceLl
(pai , p

b
i)

Nj
(3.6)

where pi is a unique pair of images in cluster Cj , and Nj is the total number of pairs it contains. The

superscripts a and b refer to the two images of the pair to which the distance formula is applied.

In Formula 3.5, the factor |Cj |
|C| normalizes the average ICD with respect to the relative size of the

cluster. It helps determine the optimal number of clusters within a layer and enables the identification of

the best clustering result across layers, as explained in the following paragraphs.

Since Ward linkage groups together elements that minimize within-cluster variance, an increase in the

number of clusters (i.e., less elements per cluster) leads to a proportional decrease in the average ICD.

In other words, the ICD slope is mild and smooth, which complicates the identification of the optimal

number of clusters through the elbow method. By taking into account the relative size of the cluster,

WICD helps determine when a larger number of clusters leads to suboptimal results, which happens when

an increased number of cluster does not break down large clusters but rather divide small clusters into tiny

ones (i.e., they are fragmented).

Figure 3.3 shows the slope obtained for both ICD and WICD for a growing number of clusters; the

plot for WICD clearly helps identify the sub-range on the X-axis leading to a drastic change in the slope,

thus enabling the identification of an optimal number of clusters beyond which WICD barely decreases.

To determine when WICD stops decreasing significantly, we rely on its derivative that we approximate

by relying on the fourth order central difference method [96]. We then rely on the knee-point method

to identify the point with the maximum curvature in the derivative [87]. Figure 3.4 shows an example

knee-point automatically identified with our method.

26

3.2. THE HUDD APPROACH

(a) ICD (b) WICD

Figure 3.3: Slope of ICD and WICD for GazeDNN

Figure 3.4: Gradient and knee-point (in red) for Figure 3.3-b

HUDD selects the layer Lm with the minimal WICD . By definition, the clusters generated for layer

Lm are the ones that maximize cohesion and we therefore expect them to group together images that

present similar characteristics, suggesting root causes for DNN failures.

When comparing clusters for distinct layers, the normalization based on the relative size of the cluster

(i.e., the factor |Cj |
|C| in Equation 3.5) enables HUDD to penalize layers including large clusters with high

ICD . These clusters group together images with heatmaps that are different from each other and thus may

be associated with different root causes for DNN failures.

3.2.2 Step 2. Root Causes Inspection

Root cause clusters are then inspected by engineers to determine unsafe conditions. For example,

Figure 3.5 shows the clusters generated for the GD in Figure 3.7 on a test set with eye images generated

by UnityEyes. To simplify the understanding of root causes, we printed the gaze angle on each image.

Clusters C1 and C2 group together images that lead to DNN failures because the pupil is barely visible.

In contrast, clusters C3 and C4 group images that are misclassified because the gaze angle is close to the

27

CHAPTER 3. HEATMAP-BASED UNSUPERVISED DEBUGGING OF DNNS

classification threshold. Cluster C5, however, shows images that are misclassified because the training set

labels are incomplete and do not capture the case of an eye looking middle center.

C1 C2 C3 C4 C5

Figure 3.5: Clustering results for GD.

HUDD correctly handles both (1) the case in which erroneous DNN results with different output

labels share the same root cause and (2) the case in which erroneous DNN results with the same output

label are caused by distinct root causes. The first case is exemplified by cluster C5, which includes images

that lead to different erroneous results (e.g., TopCenter or TopLeft) due to the same root cause (i.e., the

eye is looking middle center but the DNN was not trained to detect it). The second case is exemplified

by clusters C5 and C3, both including images erroneously classified as TopCenter. In cluster C3, this

is due to the gaze angle close to the threshold with class TopRight whereas Cluster C5 includes images

erroneously classified as TopCenter that are actually middle center.

In addition, the clusters in Figure 3.5 show that HUDD identifies root causes that are associated
with an incomplete training set (e.g., borderline cases for gaze angle detected by C3 and C4) but also

with an incomplete definition of the predicted classes (i.e., the middle center gaze detected by cluster

C5 and the closed eyes detected by cluster C2) and limitations in our capacity to control the simulator
(i.e., unlikely face positions detected by cluster C1).

The first case is addressed by HUDD retraining procedures (i.e., Steps 4-7) whereas the other causes

require that engineers modify the DNN (e.g., to add an output class) or improve the simulator.

To further simplify the inspection of root cause clusters, our toolset also generates a set of animated

GIF images, one for each cluster [97]. Each generated GIF image shows all the images belonging to a

cluster one after the other. Animated GIFs enable engineers to inspect a large number of images in a few

seconds (e.g., we configure our tool to visualize 100 images in a minute) thus facilitating the detection of

the common characteristics among them.

28

3.2. THE HUDD APPROACH

3.2.3 Step 4. Identification of Unsafe Images

HUDD processes the improvement set to automatically identify potentially unsafe images. This is done

by assigning improvement set images to root cause clusters while limiting the number of assigned images.

To assign images to clusters, HUDD relies on the single linkage method (see Section 2.1.3). According

to the single linkage method, an image y belonging to the improvement set IS , is assigned to the cluster

containing the closest failure-inducing image from the test set. We rely on single linkage since it has

a desirable property: If applied to the failure-inducing test set images used to generate the clusters, it

ensures that every image is assigned to the cluster it belongs to. This is important since, in a realistic

scenario where test set and improvement set images are collected from the field, it ensures the selection of

unsafe images that are highly similar to failure-inducing ones.

Unfortunately, single linkage alone is not sufficient to identify unsafe images. Since the root cause

clusters capture only the unsafe portion of the input space, every image in the improvement set, including

the safe ones, will be assigned to a root cause cluster. In other words, a safe image might be assigned to a

cluster simply because it happens to be closer to an image belonging to this particular cluster.

To address this problem, we heuristically select, for every cluster, the images that are likely failure-

inducing by estimating the number of failure-inducing images for each failure-cause cluster in the

improvement set. Since the improvement set is generally derived from the same population as the test set

(e.g., real world images collected according to the same strategy as for the test set), we can assume that

(1) the improvement set is characterized by the same accuracy as the test set and (2) the causes of DNN

failures in the improvement set should follow the same distribution as the one observed in the test set (i.e.,

for every root cause cluster, we should observe a number of failure-inducing images proportional to what

observed in the test set).

We compute the number UCi of images to be selected for a root cause cluster Ci, as follows:

UCi = (|TestSet | ∗ sf) ∗ (1− TestSetAcc) ∗ |Ci|
|C |

(3.7)

The term (|TestSet | ∗ sf) ∗ (1− TestSetAcc) estimates the number of failure-inducing images that

should be selected from the improvement set. The term |Ci|
|C | indicates how to distribute these images across

root cause clusters in order to preserve the proportion of the test set across clusters in the improvement

set. The term (|TestSet | ∗ sf) provides an upper bound for the unsafe set size as a proportion of the

test set size, which is determined by the available budget for labelling. Indeed, |TestSet | is the size of

the test set, while sf is a selection factor in the range [0-1] (we use 0.3 in our experiments). The term

(1 − TestSetAcc) indicates the proportion of failure-inducing images that should be observed in the

improvement set, based on assumption (1) above. Multiplied by the unsafe set upper bound, it ensures

that we select a fraction of it. Finally, the term |Ci|
|C | indicates the fraction of unsafe set images that should

be assigned to the root cause cluster Ci. The term |Ci| is the size of the cluster Ci. The term |C | is

the number of failure-inducing images in the test set. Based on assumption (2) above, the fraction |Ci|
|C |

corresponds to the proportion of failure-inducing images from the test set belonging to the root cause

cluster Ci.

Figure 3.6 shows the pseudocode of our algorithm for identifying unsafe images. It requires the root

cause clusters R, the identifiers of the images belonging to the improvement set (IS), the selection factor

sf , the test set accuracy (accTS), the size of the test set (sizeTS), and a distance matrix DM IS with the

distances between the images in IS and the images in the failure-inducing test set, for the layer selected

29

CHAPTER 3. HEATMAP-BASED UNSUPERVISED DEBUGGING OF DNNS

Require: (1) R, root cause clusters. (2) IS , set with the identifiers of the images belonging to the improvement set. (3) sf , the selection factor
used in Equation 3.7. (4) sizeTS the size of the test set. (5) accTS the accuracy for the test set. (6) DM IS , distance matrix capturing the
distance between images in the improvement set and images in TS.

Ensure: an associative array with the unsafe images associated to each root cause cluster

//Initialize the array that will contain all the images to be processed
1: rankedClustersPerImage ← new associative array that will contain,

for every image, the IDs of clusters,
ranked based on their distance from the image

//Set the max number of images to be assigned to each cluster
2: for clusterID in R do
3: Uc[clusterID]← (sizeTS ∗ sf) ∗ (1− accTS) ∗ sizeOf (R[clusterID])

sizeOf (R)

//For each image, rank clusters, based on HeatmapDistance
4: for img in IS do

//Generate an associative array capturing, for every cluster,
the distance of img from the closest image of the cluster

5: for clusterID in R do
6: clusterDists ← new associative array to store the distance of img

from every cluster
7: closest ← use DMIS to identify the test set image that is closer to img
8: among the ones belonging to clusterID
9: clusterDists[clusterID]← distance between closest and img

//Put clusters in the correct rank for img
10: for rank in 1 .. |R| do
11: clusterID ← position in clusterDists containing the lowest value
12: rankedClustersPerImage[rank][img]←
13: < clusterID , clusterDists[clusterID] >
14: set clusterDists[clusterID] to undefined

//Assign images to clusters, trying to assign every image to the closer cluster first
15: for rank in 1 .. |R| do
16: img ← the index img, in rankedClustersPerImage[rank][img]

containing the lowest value, i.e., the image that is closer to any of
the clusters

//Save the ID of the cluster that is closer to img
17: clusterId ← rankedClustersPerImage[rank][img]
18: delete rankedClustersPerImage[rank][img]

//Add the image to the cluster, if this is not already full
19: if sizeOf (unsafeSet [clusterId]) < Uc[clusterId] then
20: add img to unsafeSet [clusterId]

//Remove the image from the array with the images to process
21: delete rankedClustersPerImage[rank][img] for all the ranks
22: Return unsafeSet

Figure 3.6: Algorithm for the identification of unsafe images

for the identification of root cause clusters. To speed up the identification of unsafe images, since we

focus on one specific layer, we compute the distance matrix based on the heatmaps returned by LRP, not

the normalized ones.

The algorithm works by assigning UCi improvement set images to each root cause clusters Ci. It

ensures that every image is assigned to the closest cluster Ci that has not been already filled with UCi

images. The algorithm also handles the presence of spurious clusters, that is, clusters that group together

diverse images for which a common root cause cannot be clearly identified. Spurious clusters may be

assigned with safe images or failure-inducing images that should belong to other clusters. By relying on

a ranking strategy for the assignment of images to clusters, we alleviate the effect of spurious clusters.

When spurious clusters are fully assigned, the algorithm correctly assigns to their respective clusters all

the remaining images, even if they are accidentally closer to the spurious cluster.

In Figure 3.6, Lines 2 to 3 compute, for every cluster, the value of UCi according to Equation 3.7.

Lines 4 to 14, for every image, rank clusters, based on single linkage distance. This is performed by

computing the distance of the image from each cluster (Lines 5 to 9) and then sorting clusters accordingly

(Lines 9 to 14), such that the cluster in rank 1 is the closest one.

30

3.2. THE HUDD APPROACH

In Lines 15 to 21, the algorithm assigns every image to the closer cluster that is not already full. It

iterates over the ranks (Line 15), and for each rank r, it loops over the improvement set images starting

from the ones that are closer to a cluster (Line 16). If the cluster (i.e., clusterId , Line 17) is not already

full (Line 19), it assigns the image to the cluster (Line 20). If the cluster is full (e.g., if it is a spurious

cluster), the image is processed in the next iteration, i.e., when the algorithm tries to assign images to

clusters ranked as r + 1. Note that, for each rank, every image is processed only once (Lines 18 and 21

delete processed images).

The algorithm returns an unsafe set with UCi images selected for each cluster Ci. The selected images

are labeled by engineers when required (Step 6 in Figure 3.1) and then used for retraining.

3.2.4 Steps 6-7. DNN Retraining

IEE engineers train the DNNs that compose their systems by following the standard machine learning

process depicted in Figure 2.5-a. They first train the DNN using a training set with labeled images (Step

A) and then execute the DNN against a labeled test set (Step B). This process enables engineers to

evaluate the DNN accuracy (e.g., the percentage of images leading to correct results).

When the accuracy of the system is not adequate, engineers typically improve the DNN by augmenting

the training set with failure-inducing images. This process is depicted in Figure 2.5-b. First, engineers

generate a set of new images to be used to retrain the DNN (Step C). We call this set of images

improvement set. The improvement set generally consists of images collected from the field since these

tend to be failure-inducing when DNNs have been trained using simulator images. Real-world images

must be manually labelled (Step D). The DNN model is tested with the improvement set and images that

lead to DNN failures are identified (Step E). This set of failure-inducing (unsafe) images is considered

to retrain the DNN (Step G), using as initial configuration for DNN weights the ones in the previously

trained model.

To improve the DNN, it is necessary to process a sufficiently large number of unsafe images. For

this reason, the number of unsafe images can be augmented by applying bootstrap resampling (i.e., by

replicating samples in the unsafe set [50]) till a target is achieved (Step F). Finally, the improved DNN

can be assessed on the test set (Step H).

Similarly, HUDD retrains the DNNs by executing the DNN training process against a data set that is

the union of the original training set and the labeled unsafe set. HUDD uses the available model to set

the initial configuration for the DNN weights. The original training set is retained to avoid reducing the

accuracy of the DNN for parts of the input space that are safe (i.e., showing no failure in the test set).

Furthermore, HUDD balances the unsafe set with bootstrap resampling [50], i.e., it randomly dupli-

cates the images belonging to the cluster until every cluster has the same size. This is done to maximize

the chances of eliminating every root cause of failure, even the ones that are rare (i.e., the ones for which

we identify less unsafe set images). More formally, assuming Max (|UCi |) being the size of the largest

root cause cluster, bootstrap resampling ensures that every cluster contains Max (|UCi |) members.

The retraining process is expected to lead to an improved DNN model compared to that based on the

original training set.

31

CHAPTER 3. HEATMAP-BASED UNSUPERVISED DEBUGGING OF DNNS

3.3 Evaluation

Our empirical evaluation aims to address the following research questions:

RQ1 Does HUDD enable engineers to identify the root causes of DNN failures? We aim to investigate

whether images belonging to a same cluster, as generated by HUDD, present a common set of

characteristics that are plausible causes of DNN failures.

RQ2 How does HUDD compare with traditional DNN accuracy improvement practices? We aim to

investigate whether HUDD enables engineers to efficiently drive the retraining of a DNN compared

with state-of-the-art approaches.

To perform our empirical evaluation, we have implemented HUDD as a toolset that relies on the

PyTorch [98] and SciPy [99] libraries. Our toolset, case studies, and results are available for download [20].

3.3.1 Subject Systems

To address RQ1, we need to objectively and systematically identify commonalities among images

belonging to the same cluster. To do so, we rely on images generated using simulators as it allows us

to associate each generated image to values of the configuration parameters of the simulator. These

parameters capture information about the characteristics of the elements in the image and can thus be

used to objectively identify the likely root causes of DNN failures.

GazeDNN_R

CropDNN

GazeDNN_L

LeftEye RightEye

CameraImage

EyeGaze
Direc4on

EyeGaze
Direction

Figure 3.7: DNN-based system
for gaze detection. Figure 3.8: Gaze directions.

We consider DNNs that implement the key features of gaze detection, drowsiness detection, headpose

detection, and face landmarks detection systems under development at IEE. In our experiments, for the

gaze detection system (hereafter referred as GD), we rely on the UnityEyes simulator to generate eye

images [49]. UnityEyes combines a generative 3D model of the human eye region with a real-time

rendering framework based on Blender [100]. We determine the gaze direction label from the gaze angle

parameter provided by UnityEyes, based on predefined gaze ranges depicted in Figure 3.8. For example,

we assign the label TopCenter when the gaze angle is between 67.5 and 112.5 degrees.

The drowsiness detection system (OC) features the same architecture as the gaze detection system,

except that the DNN predicts whether eyes are closed. The headpose detection system (HPD) receives as

32

3.3. EVALUATION

input the cropped image of the head of a person and determines its pose according to nine classes (straight,

turned bottom-left, turned left, turned top-left, turned bottom-right, turned right, turned top-right, reclined,

looking up). The face landmark detection system (FLD) receives as input the cropped image of the head

of a person and determines the location of the pixels corresponding to 27 face landmarks delimiting seven

face elements: nose ridge, left eye, right eye, left brow, right brow, nose, mouth. Each face element is

delimited by several face landmarks.

GD, OC, and HPD follow the AlexNet architecture [101] which is commonly used for image clas-

sification. FLD, which addresses a regression problem, relies on an Hourglass-like architecture [84].

It includes 27 output neurons, each one predicting the position (i.e., pixel) of a distinct face landmark.

Since a small degree of error in the detected landmarks is considered acceptable, the output of FLD is

considered erroneous if the average distance of the identified landmarks from the ground truth is above

four pixels. To apply HUDD to FLD, we generate heatmaps by backpropagating the relevance of the worst

output neuron, i.e., the output neuron with the highest distance from the ground truth. Since face elements

present very different characteristics, we apply the HUDD clustering algorithm seven times, once for each

face element, by selecting images whose worst output neuron corresponds to the considered face element.

The first four rows of Table 3.1 provide details about the four DNNs described above. Column Data

Source reports the name of the simulator generating the images used to train and test the network. GD and

OC have been trained and tested with images generated by UnityEyes. Since classes need to be balanced

in order to properly train the DNN, for OC, we selected a subset of images consisting of all the closed

eyes and the same number of open eyes. For GD, this is not needed since UnityEyes selects the gaze angle

according to a uniform distribution. HPD and FLD have been trained and tested with images generated

using a simulator developed in-house by IEE. The IEE simulator relies on 3D face models built with the

MakeHuman [102] plug-in for Blender [100]. To emulate car cameras, it generates grey images. HPD and

FLD share the same training and test sets. To generate images, we used six face models for the training set,

one for the test set. The use of different face models for training and testing emulates realistic scenarios in

which the images processed in the field belong to persons different than the ones considered for training

the DNN. Figure 3.9 shows examples of nine head poses generated with the same face model.

In Table 3.1, column Epochs reports the number of epochs considered to train the network. All the

DNNs have been trained for a number of epochs that was sufficient to achieve a training set accuracy

above 80%. Columns Training Set Size and Test Set Size report the size of the training and test sets.

Columns Accuracy Training and Accuracy Test indicate the accuracy obtained by the DNN when executed

against images in the training and test sets. Though training set accuracy is above 87% for all the four

DNNs, in the case of HPD and FLD, we observe a lower test set accuracy. This is due to the prediction

task being more complex for HPD and FLD than for GD and OC; indeed, the DNNs for HPD and FLD

are tested with images belonging to face models that are different than the ones used for training. This

was not the case for GD and OC since UnityEyes does not provide the means to control face features and

automatically selects them during simulation. In addition, in contrast to UnityEyes, the images generated

with the IEE simulator using different face models are likely to be more diverse. Indeed, the six face

models integrated in UnityEyes capture only the face area surrounding the eye (i.e., eyelid and a portion of

the nose) while the face models of the IEE simulator capture the entire face. Consequently, when testing

is based on new face models, it is more likely to lead to DNN failures in the case of HPD and FLD. The

number of face models considered for training HPD and FLD is limited to six since the definition of a

33

CHAPTER 3. HEATMAP-BASED UNSUPERVISED DEBUGGING OF DNNS

Figure 3.9: Example of distinct head poses of the same person generated with the simulator based on
MakeHuman/Blender.

Table 3.1: Case Study Systems

DNN Data Source Training Set Size Test Set Size Epochs Accuracy
Training Test

GD UnityEyes 61,063 132,630 10 96.84% 95.95%
OC UnityEyes 1,704 4,232 10 87.38% 88.03%

HPD Blender 16,013 2,825 10 94.45% 44.07%
FLD Blender 16,013 2,825 10 88.97% 44.99%
OD CelebA [103] 7916 5276 13 83.67% 84.11%
TS TrafficSigns [104] 29,416 12,631 12 92.64% 81.65%

face model is an expensive manual task.

Since HUDD can be applied to DNNs trained using simulator or real images, to address RQ2, which

concerns the improvement achieved after retraining the DNN, we also considered additional DNNs

trained using real-world images. We selected DNNs implementing traffic sign recognition (TS), and

object detection (OD), which are typical features of automotive, DNN-based systems. They are reported

in the last two rows of Table 3.1. TS recognizes traffic signs in pictures. OD determines if a person

wears eyeglasses. OD has been selected to compare results with MODE, a state-of-the-art retraining

approach whose implementation is not available (see Section 3.3.2), but which is close in objective to

HUDD. OD has been trained on the same dataset used for evaluating MODE but we selected a subset

of the available images to balance classes (common practice). Though the original trained model is not

available, we achieved the same accuracy as the one reported. The other two case studies considered in

34

3.3. EVALUATION

the MODE evaluation were discarded because they are either not representative (i.e., low accuracy) or

lack information for enabling replication (i.e., description of inputs and outputs). TS and OD follow the

AlexNet architecture [101].

3.3.2 Measurements and Results

RQ1. Does HUDD enable engineers to identify the root causes of DNN failures?

We refine RQ1 into three complementary subquestions (i.e., RQ1.1, RQ1.2, and RQ1.3), which are

described in the following, along with the results obtained.

RQ1.1: Is the visual inspection of root cause clusters practically feasible?

Design and measurements.

We discuss whether the number of clusters generated by HUDD is small enough to make visual

inspection feasible.

Since this research question does not concern the quality of the generated clusters, we considered all

the case studies, including the ones trained and tested with real-world images. For each case study system,

we thus report the number of root cause clusters generated by HUDD. Also, under the assumption that

engineers visually inspect five images for each root cause cluster, we discuss the ratio of failure-inducing

images that should be visually inspected when relying on HUDD. This ratio provides an indication of the

time saved with respect to current practice (i.e., manual inspection of all the failure-inducing images). A

user study concerning the time savings introduced by HUDD is part of our future work.

Experiment Results.

Table 3.2 shows, for each case study, the total number of failure-inducing images belonging to the test

set, the number of root cause clusters generated by HUDD, and the ratio of failure-inducing images that

should be visually inspected when using HUDD.

For the respective DNNs, HUDD identifies 16 (GD), 14 (OC), 17 (HPD), 71 (FLD), 14 (OD), and 20

(TS) root cause clusters. For all the case studies except FLD, the number of root cause clusters generated

is below or equal to 20. Assuming that engineers inspect few images (e.g., five) for each cluster in order to

determine plausible root causes, manual inspection based on HUDD appear to be practically feasible. In

the case of FLD, the larger number of clusters is due to the identification of distinct root cause clusters for

each face element; on average, we derive ten root cause clusters per element (within a [6 - 11] range). IEE

engineers agreed that the manual inspection of a larger number of clusters is justified given the complexity

of the case study.

Table 3.2: Root cause clusters generated by HUDD.

Case study # Error-inducing images # Root cause
clusters

Ratio of inspected
images

GD 5371 16 1.49%
OC 506 14 13.82%

HPD 1580 17 5.38%
FLD 1554 71 22.84%
OD 838 14 8.35%
TS 2317 20 4.31%

35

CHAPTER 3. HEATMAP-BASED UNSUPERVISED DEBUGGING OF DNNS

In general, the ratio of failure-inducing images that is inspected with HUDD is low, ranging from

1.49% (GD) to 22.84% (FLD), which shows that the analysis supported by HUDD saves a great deal of

effort with respect to current practice (i.e., manual inspection of all the failure-inducing images).

RQ1.2: Do the clusters generated by HUDD show a significant reduction in the variance of
simulator parameters?

Design and measurements.

This research question assesses if images belonging to the same cluster present similar characteristics.

To address this research question, we rely on case studies trained and tested with simulator images. When

images are generated with a simulator, images belonging to the same cluster should present similar values

for a subset of the simulator parameters. In turn, this should result in a reduction of variance for these

parameters in comparison to the entire failure-inducing test set. For a cluster Ci, the rate of reduction in

variance for a parameter p can be computed as follows:

RRp
Ci

= 1− variance of p for the images in Ci

variance of p for the entire failure − inducing set
(3.8)

Positive values for RRp
Ci

indicate reduced variance.

Table 3.3 provides the list of parameters considered in our evaluation. In the case of GD and OC, we

selected all the parameters provided by the simulator except the ones that capture coordinates of single

points used to draw the pictures (e.g., eye landmarks) since these coordinates alone are not informative

about the elements in the picture. However, we considered these coordinates to compute metrics that

capture information about the scene in the image. We refer to such metrics as derived parameters.

For example, we compute the distance between the bottom of the pupil and the bottom eyelid margin

(PupilToBottom in Table 3.3). It determines if the eye is in an unusual position, e.g., if the eye is at the

bottom of the orbit.

In the case of HPD, similarly to GD and OC, we considered the parameters provided by the simulator,

excluding once again landmark coordinates. For parameters expressed with X-Y -Z coordinates, we

considered the coordinate on each axis as a separate parameter. In the case of FLD, since a DNN failure

may depend on the specific shape and expression of the face being processed (i.e., on the specific position

of a landmark), we considered the coordinates of the 27 landmarks on the horizontal and vertical axes as

distinct parameters (54 parameters in total).

We compute the percentage of clusters showing reduction in variance for at least one of the parameters.

Since we do not know a priori the number of parameters that capture common failure causes, we consider

variance reduction in one parameter to be sufficient. More precisely, we compute the percentage of clusters

with a reduction in variance between 0.0 and 0.9, with incremental steps of 0.1. To answer positively our

research question, a high percentage of the clusters should show a reduction in variance for at least one of

the parameters.

Experiment Results.

Figure 3.10 shows the percentage of clusters with variance reduction for at least one of the simulator

parameters, at different reduction rates.

We can positively answer RQ1.2 since all the clusters present at least one parameter with a positive

reduction rate (> 0 in Figure 3.10). Also, a very high percentage of the clusters (i.e., 57% for OC, 96%

for FLD, and 100% for both GD and HPD) include at least one parameter with a reduction rate above

or equal to 0.5, i.e., 50% reduction in variance. Expectedly, as the threshold considered for variance

36

3.3. EVALUATION

Table 3.3: Image parameters considered to address RQ1.1

DNN Parameter Description

GD/OC

Gaze Angle Gaze angle in degrees.
Openness Distance between top and bottom eyelid in pixels.
H_Headpose Horizontal position of the head (degrees)
V_Headpose Vertical position of the head (degrees)
Iris Size Size of the iris.
Pupil Size Size of the pupil.
PupilToBottom Distance between the pupil bottom and the bottom eyelid margin.
PupilToTop Distance between the pupil top and the top eyelid margin.
DistToCenter Distance between the pupil center of the iris center. When the eye

is looking middle center, this distance is below 11.5 pixels.
Sky Exposure Captures the degree of exposure of the panoramic photographs

reflected in the eye cornea.
Sky Rotation Captures the degree of rotation of the panoramic photographs

reflected in the eye cornea.
Light Captures the degree of intensity of the main source of illumination.
Ambient Captures the degree of intensity of the ambient illumination.

HPD

Camera Location Location of the camera, in X-Y-Z coordinate system.
Camera Direction Direction of the camera (X-Y-Z coordinates).
Lamp Color RGB color of the light used to illuminate the scene.
Lamp Direction Direction of the illuminating light (X-Y-Z coordinates).
Lamp Location Location of the source of light (X-Y-Z coordinates).
Headpose Position of the head of the person (X-Y-Z coordinates). It is used

to derive the ground truth.

FLD
X coordinate of land-
mark

Value of the horizontal axis coordinate for the pixel corresponding
to the ith landmark.

Y coordinate of land-
mark

Value of the vertical axis coordinate for the pixel corresponding to
the ith landmark.

reduction increases, the percentage of clusters tends to decrease. However, a 0.9 threshold is still matched

by 29% (OC) to 93.33% (GD) of the clusters (69.48% on average), a very high proportion, thus showing

that most of the clusters should present a noticeable common characteristic.

37

CHAPTER 3. HEATMAP-BASED UNSUPERVISED DEBUGGING OF DNNS

Reduction Rate

%
 C

lu
st

er
s

0%

25%

50%

75%

100%

125%

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

GD OC HPD FLD

Figure 3.10: RQ1.1: Clusters with at least one parameter showing a reduction rate above thresholds in the
range (0.0 - 1.0).

RQ1.3: Do parameters with high reduction in variance identify the plausible cause for DNN
failures?

Design and measurements.

With RQ1.3, we ask whether the commonalities of the images belonging to the root cause clusters can

help engineers determine the root causes of the DNN failures.

We expect DNN failures to be triggered in specific parts of the input space, each one capturing

characteristics of the input images. To identify the input sub-spaces that are unsafe for our case studies,

based on domain knowledge, we have identified a set of parameters (hereafter, unsafe parameters) for

which it is possible to identify values (hereafter, unsafe values) around which, or below which, we are

likely to observe a DNN failure. However, for FLD, it was not possible to determine, a priori, a set of

unsafe parameters that might affect the results and we had to leave out that case study. Indeed, the position

of a landmark may depend on many factors including the shape of the face element (e.g., thick lips), the

element position (e.g., mouth being open), the headpose, and the camera position. Since the IEE simulator

does not export information about the shape and position of face elements, it was not possible to define a

set of metrics capturing plausible failure causes.

Table 3.4 provides the list of unsafe parameters, along with the unsafe values identified. For example,

for the Gaze Angle parameter, unsafe values consist of the boundary values used to label images with the

gaze direction.

Root cause clusters that are explanatory should present at least one characteristic that is noticeable by

the engineer, i.e., they should have at least one parameter with high (i.e., 50%) reduction in variance. In

addition, at least one of the parameters with high variance reduction should be an unsafe parameter. Finally,

the cluster average should be close to one unsafe value. For GazeAngle, Openness, H_Headpose,

38

3.3. EVALUATION

Table 3.4: Safety parameters considered to address RQ1.3

DNN Parameter Unsafe values

GD, OC

Gaze Angle Values used to label the gaze angle in eight classes (i.e., 22.5◦, 67.5◦,
112.5◦, 157.5◦, 202.5◦, 247.5◦, 292.5◦, 337.5◦).

Openness Value used to label the gaze openness in two classes (i.e., 20 pixels) or
an eye abnormally open (i.e., 64 pixels).

H_Headpose Values indicating a head turned completely left or right (i.e., 160◦, 220◦)
V_Headpose Values indicating a head looking at the very top/bottom (i.e., 20◦, 340◦)
DistToCenter Value below which the eye is looking middle center (i.e., 11.5 pixels).
PupilToBottom Value below which the pupil is mostly under the eyelid (i.e., -16 pixels).
PupilToTop Value below which the pupil is mostly above the eyelid (i.e., -16 pixels).

HPD
Headpose-X Boundary cases (i.e.,-28.88◦,21.35◦), values used to label the headpose

in nine classes (-10◦,10◦), and middle position (i.e., 0◦).
Headpose-Y Boundary cases (i.e.,-88.10◦,74.17◦), values used to label the headpose

in nine classes (-10◦,10◦), and middle position (i.e., 0◦).

V _Headpose, Headpose −X , and Headpose − Y , since unsafe values split the parameter domains

into subranges, we determine that the cluster average is close to one unsafe value if the difference between

them is below 25% of the subrange including the average value. For DistToCenter, PupilToBottom,

and PupilToTop, we simply check if the average is below or equal to the unsafe value. Finally, we

compute the percentage of clusters for which the conditions above hold. To answer positively to RQ1.3,

this percentage should be high.

Experiment Results.

In the case of GD, according to the conditions defined above, the percentage of clusters that identify

the likely root cause of DNN failures is very high: 86.66% (13 out of 15). The identified unsafe parameters

are Angle, Openness, and DistToCenter. For one cluster not meeting the conditions, the unsafe parameters

(i.e., DistToCenter) have a reduction in variance of 44%, below the 50% threshold. This threshold is,

however, arbitrary and a manual inspection of the cluster clearly shows that the commonality is the eye

being abnormally open. The other non-compliant cluster shows pupils being partially masked by the

eyelid; however, we could not define a measure to systematically capture this situation based on simulator

parameters.

For OC, we obtain 57.14% (8 out of 14), with Openness and X_Headpose being the unsafe parameters.

The remaining clusters are characterized either by thin almond eyes, an aspect of the simulation that is not

controllable with parameters, and pupils being partially masked by the eyelid.

In the case of HPD, we obtain 88.24% (15 out of 17). For the two remaining clusters, the common

characteristic is the presence of visible white teeth, which are not visible in training set images and may

confuse the DNN since they stand out in grey-scale images. Based on the above observations, we respond

positively to RQ1.3 since, in all cases, clusters are clearly associated with image characteristics that are

plausible causes of failures.

RQ2. How does HUDD compare to traditional DNN accuracy improvement practices?

Design and measurements.

This research question aims to compare the accuracy improvements achieved by HUDD with the

improvements achieved by baseline approaches, which do not rely on the automated selection of predicted

39

CHAPTER 3. HEATMAP-BASED UNSUPERVISED DEBUGGING OF DNNS

unsafe images.

We consider two baseline approaches, namely B1 and B2. B1 has been introduced in Section 3.2.4

and consists of selecting for retraining the misclassified images belonging to the labeled improvement set.

B2 is depicted in Figure 3.11. It follows the HUDD process except that it selects unsafe images randomly

(i.e., the Reduced improvement set) instead of relying on root cause clusters. B2 enables the evaluation of

the benefits of selection based on root cause clusters over random selection.

Step a.
Manually

label
Step c.
DNN

Retraining

Improved
DNN
model

Labeled
reduced

improvement set

Reduced
improvement

set (unlabeled)

Training set images

Step b.
Bootstrap

Augmented
labeled

improvement set

Figure 3.11: Baseline 2 (B2).

To not introduce bias in the results, we rely on the same experiment setting for all the approaches

(i.e., same configuration of the DNN training algorithm and same number of images to be labeled). In the

case of HUDD, only the images in the unsafe set need to labeled. In the other cases, all the images in the

improvement set must be labeled. For this reason, for the two baselines, we select an improvement set

that is a random subset of the improvement set used by HUDD (referred to as reduced improvement set)

and has the same size as the unsafe set generated by HUDD. To account for randomness, we repeat the

experiment 10 times.

With HUDD, retraining the DNN was done by applying the approach described in Section 3.2.4.

For B1 and B2, we configure bootstrap resampling to generate an augmented labeled unsafe set and an

augmented labeled improvement set with the same size as the balanced labeled unsafe set for HUDD.

To answer the research question, we compute the accuracy of the retrained models on the test set

and compare the accuracy improvement obtained by HUDD with that obtained by the baselines. We

considered all the case studies listed in Table 3.1. The improvement set for GD and OC has been generated

through additional executions of UnityEyes. To simulate a realistic scenario in which engineers collect

additional data from the field or construct additional simulator models to improve DNN accuracy, the

improvement sets for HPD and FLD have been generated with additional executions of the IEE simulator

configured to use two new face models, which were not used for generating the training and test sets. For

the other cases, we selected images of the original datasets which had not been used for the training and

test sets.

Experiment Results.

The first eight columns of Table 3.5 provide the number of images used to retrain the DNNs. The

remaining columns of Table 3.5 show the accuracy of the retrained models, the delta with respect to the

best baseline, and Â12 effect size [105]. For the accuracy, negative values indicate that the accuracy of

the retrained model is worse than that of the original model. HUDD always fares better than the baseline

approaches. Vargha and Delaney’s Â12 effect size is always equal or above 0.60, which indicates that, in

all cases, HUDD has higher chances of generating accurate DNNs than baselines [105, 106]. In the paper

by Vargha and Delaney [105], the authors specify the an effect size above 0.56 suggests a significant

difference, with higher thresholds for medium (0.64) and large (0.71) effects.

HUDD accuracy improvements range from 0.28% to 30.24%. In contrast, B1 and B2 improvements

range from −0.18% to 27.03% and −0.15% to 28.84%, respectively. For DNNs with an accuracy above

40

3.3. EVALUATION

Table 3.5: RQ2. Size of Images Set used for Retaining and Accuracy Improvement

Size of Images Sets for Retraining Accuracy Accuracy Delta Â12

HUDD B1 B2 Original (Accuracy Improvement) wrt best HUDD vs
DNN IS US BLUS IS LUS ALUSIS ALIS Model HUDD B1 B2 Baseline B1 B2
GD 72500 1615 4192 1615 156.4 4192 1615 4192 95.95% 96.23%

(+0.28)
95.77%
(-0.18)

95.80%
(-0.15)

+0.43% 0.72 0.71

OC 4103 160 336 160 43.4 336 160 336 88.03% 94.41%
(+6.38)

91.65%
(+3.62)

92.33%
(+4.30)

+2.08% 1.00 1.00

HPD 4700 481 697 481 12.7 697 481 697 44.07% 68.13%
(+24.06)

66.73%
(+22.66)

66.30%
(+22.23)

+1.40% 0.70 0.72

FLD 6864 502 970 502 34.9 970 502 970 44.99% 75.23%
(+30.24)

72.02%
(+27.03)

73.83%
(+28.84)

+1.40% 0.70 0.60

TS 9775 704 1860 704 53.2 1860 704 1860 81.65% 93.03%
(+11.38)

92.63%
(+10.98)

92.73%
(+11.08)

+0.30% 0.83 0.67

OD 13194 258 770 258 69.1 770 258 770 84.12% 97.04%
(+12.92)

96.63%
(+12.51)

96.67%
(+12.55)

+0.37% 0.79 0.60

IS: Improvement Set, US: Unsafe Set, BLUS: Balanced Labeled Unsafe Set; LUS: Labeled Unsafe Set (average over all the
runs); ALUS/ALIS: Augmented Labeled Unsafe/Improvement Set.

80%, we have the following ranges: from 0.28% to 12.92% (HUDD), from −0.18% to 12.51% (B1), and

−0.15% to 12.55% (B2). For HPD and FLD, which have lower initial accuracy, we have the following

ranges: from 12.92% to 24.06% (HUDD), from −0.18% to 12.51% (B1), and −0.15% to 12.55% (B2).

We can therefore conclude that HUDD is most useful when DNNs have lower accuracy and there is more

room for improvement. Those are also the cases where retraining is most particularly important. The

negative results obtained by the baselines for GD suggest that retraining the DNN without targeting the

DNN-failure root causes may lead to worse accuracy. The choice of an inadequate strategy for retraining

DNNs is therefore particularly detrimental since one could invest significant time and effort in labeling

improvement set images without getting any benefit.

The difference in accuracy improvement between HUDD and the best baseline ranges between 0.30

(TS) and 2.08 (OC). Given that all techniques cost the same according to our experiment design, it is

therefore recommended to use HUDD. In addition, there is a larger average difference (≥ 1.40) between

HUDD and baselines in the cases of OC, HPD, and FLD. There are three plausible reasons to explain

these differences. One is that, for HPD and FLD, there is significant room for accuracy improvement

in the original models. Second, to increase the accuracy of HPD and FLD, we require improvement set

images that are very different from the training set ones (i.e., pictures generated with new face models).

We deem this to be a realistic situation that generalizes beyond our case studies; for example, it might be

observed also in autonomous driving systems where certain types of vehicles (e.g., e-scooters) are missing

from the training set. Third, for the three DNNs above, the training set is missing unsafe situations where

the predictions are expected to be challenging (e.g., very dim light in the image). The type of retraining

described above is particularly important in our context since the reduction of the unsafe input space is a

key objective of safety engineering practices for the automotive industry [15].

Though the above accuracy differences may appear small, they may nevertheless be important in the

context of critical applications where every percentage point in improvement matters. Furthermore, one

should recall that, when we are dealing with highly accurate DNNs, room for improvement is limited.

Finally, results with OD show that HUDD achieves better accuracy than MODE (97.04% vs 89% [69]

after DNN retraining). Despite differences in the DNN architecture used by HUDD and MODE, both

models are trained on the same images. While MODE improves the model’s overall accuracy from 83%

to 89% (+6%), HUDD improves the model’s overall accuracy from 84% to 97% (+13%). These results

41

CHAPTER 3. HEATMAP-BASED UNSUPERVISED DEBUGGING OF DNNS

show the potential of HUDD which, in addition to a higher accuracy than MODE, also provides root cause

clusters.

Execution Time

Table 3.6 provides details about the time required to perform our experiments. It reports on the total

execution time and how it is distributed across the different steps of HUDD and the execution of the

baseline approaches.

Table 3.6: Experiments Execution Time

DNN Training Testing HUDD Step 1 HUDD Steps 4-7 BL1 BL2 Testing Improved DNNs Total
(hours)

GD 2.66% 2.00% 3.82% 26.91% 31.97% 26.64% 5.99% 375.3
OC 1.34% 8.93% 18.30% 15.63% 15.63% 13.39% 26.79% 3.7

HPD 2.01% 2.41% 21.16% 22.93% 24.14% 20.11% 7.24% 20.7
FLD 2.81% 1.41% 2.81% 28.43% 35.60% 28.10% 0.84% 177.9
OD 2.80% 0.73% 6.83% 29.13% 30.81% 28.01% 1.68% 29.8
TS 1.89% 1.94% 29.36% 20.47% 22.63% 18.86% 4.85% 30.9

In Table 3.6, columns 5 to 7 refer to the cumulative time over 10 repetitions, column 8 refers to the

cumulative time required for testing the retrained models for HUDD, B1, and B2. Our experiments took

between 3.7 (OC) and 375.3 hours (GD) across DNNs, which highlights the large endeavor entailed by

repeating experiments ten times in order to be able to draw statistical conclusions. Execution time is

driven by the size of the data sets (i.e., executions with DNNs trained and tested with larger data sets took

more time). The time required by HUDD to improve the DNN (i.e., Steps 4-7)— which includes also the

identification of unsafe images—is similar with the time required by baseline approaches (columns 6 and

7), thus showing that HUDD does not introduce delays in the retraining process. The time required to

perform HUDD Step 1 is significant (between 40 minutes and 14 hours); however, Step 1 can be executed

overnight and help reduce human effort to identify root cause clusters.

To be able to execute experiments for 638.3 hours, we parallelized the executions of experiments

using the HPC cluster of the University of Luxembourg [107]. We relied on Intel Xeon Gold 6132 nodes

(2.6 GHz with four Tesla V 100 16GB SXM2).

3.3.3 Threats to Validity

We target DNNs performing image analysis in the perception layer of safety-critical systems. To address

threats to external validity, for RQ2, we have considered DNNs performing classification of body parts

and road objects, which are typical features in automotive systems. Further, one regression DNN was also

analyzed, thus showing the applicability of the approach beyond classification; to this end, we considered

a DNN representative of the typical task of landmark detection. Though four subject DNNs out of six

implement tasks motivated by IEE business needs, they address problems that are quite common in the

automotive industry (i.e., angle determination and landmarks detection). To strengthen generalizability,

for two of these four case studies (i.e., GD and OC), we relied on a third-party simulator used in computer

vision research (i.e., UnityEyes). Further, we considered two case studies from related work (i.e., TS and

OD) that rely on real images. Our benchmark DNNs are therefore both diverse and representative.

For RQ1, we could only consider a subset of the case studies having high-resolution simulators

available. Simulation is based on Blender [100], a readily available and widely used technology, thus

42

3.4. CONCLUSION

making our results more representative. In our experiments, to objectively and systematically evaluate

the quality of the generated clusters, we relied on the analysis of simulator parameters rather than a user

study, which, however, should be undertaken in the future. Though the fidelity of simulator images is

always a question, our experimental results do not show different trends for real and simulated images

with respect to the number of clusters and accuracy improvements. Indeed, the number of root cause

clusters identified for the two DNNs working with real-world images (OD and TS), which are 14 and

20, are similar to the ones observed in DNNs with simulator images (ranging from 11 to 17). Also, the

accuracy improvement obtained for OD and TS, i.e., +11.38 and +11.92 (see Table 3.5), is within the

range observed with simulator images (i.e., +0.28 and +30.24).

In our work, we do not rely on the popular K-means algorithm because of its higher computational

cost in our context (see Section 3.2). However, more computation might be justified by better perfor-

mance results, which may include a higher variance reduction in root cause clusters, a larger number of

explanatory root cause clusters, and higher accuracy improvement. Since our experiments have shown

that (1) HUDD generates cohese and explanatory root cause clusters (RQ1), (2) the room for accuracy

improvement is small (RQ2 results show that, for four out of six DNNs, HUDD accuracy is above 93%),

and (3) our experiments already took 638.3 hours to complete, the empirical comparison of HAC with

K-means and other clustering algorithms has not been considered a priority in this work.

Though HUDD background technology (i.e., LRP and HAC) is context-independent, future work will

investigate the evaluation of the approach in different contexts (e.g., space industry).

3.4 Conclusion

In this chapter we introduced HUDD, an approach that automatically identifies the different situations in

which an image processing DNN is likely to produce erroneous results. HUDD generates clusters (i.e.,

root cause clusters) containing misclassified input images sharing a common set of characteristics that are

plausible causes for failures. This is achieved through an hierarchical agglomerative clustering algorithm

applied to heatmaps capturing the relevance of neurons across different DNN layers on the result.

In addition, HUDD minimizes the effort required to select and label additional images to be used to

augment the training set and improve the DNN.

This is done by automatically selecting images that are close to members of root cause clusters and

thus unsafe. Only these selected images then need to be labeled by engineers. Since DNN failures are

often due to an incomplete training set (e.g., lack of images with a gaze angle close to borderline), HUDD

alleviates the problem by augmenting the training set with unsafe images.

With respect to a recent taxonomy of DNN faults [108], HUDD can identify different types of training

and input faults, while automatically addressing problems due to training data quality (see Section 3.2.2).

A more extensive evaluation of HUDD based on this taxonomy is part of our future work.

To summarize, HUDD is the first approach that facilitates the scalable identification of distinct failure

root causes in DNNs, by applying clustering algorithms to heatmaps generated by DNN explanation

techniques. For the latter, we rely on Layer-Wise Relevance Propagation (LRP), which is based on

theoretical foundations that are generalizable to other DNN architectures. Further, HUDD relies on

standard retraining procedures based on back propagation and gradient analysis, that have been widely

applied and validated, and does not entail the direct modification of the learned DNN model.

43

CHAPTER 3. HEATMAP-BASED UNSUPERVISED DEBUGGING OF DNNS

As demonstrated in our empirical evaluation, HUDD can successfully support the debugging of DNNs

that implement either classification or regression tasks.

Empirical evaluation with simulator images show that HUDD generates clusters of images sharing

similar values for some of the simulation parameters driving the generation of images. We can conclude

that such clusters can then serve as a useful instrument for the identification of root causes of DNN

failures, as exemplified in our case studies. In turn, this information is important to safety analysis as it

helps clearly characterize unsafe inputs, a requirement in safety standards. Our results, on both simulated

and real images, also show how these clusters can be effectively used to select new images for retraining

in a way that is more efficient than existing practices and leading to better DNN accuracy.

44

Chapter 4

Simulator-based Explanations for DNN
failurEs

THE problem of automatically generating explicit descriptions for unsafe scenarios identifies by

clustering real-world images is addressed in this chapter. Such descriptions are provided in terms

of logical expressions constraining the configuration parameters of the simulator used to train the DNN

(e.g., rotation angle of the driver’s head and illumination angle). For example, we may report that the

hazard-triggering event that prevents the gaze angle from being correctly estimated is the driver’s head

turned by more than 60 degrees with an illumination angle above 45 degrees (i.e., both eyes are barely

visible and covered by a shadow). We name our approach Simulator-based Explanations for DNN failurEs

(SEDE).

4.1 Introduction

Most of DNNs used in autonomous systems are trained and tested using both images generated by

simulators and real-world images. Because of the labelling costs, real-world images are limited and

mostly used for testing. Training is mostly based on simulator images, while testing should include a

larger proportion of real-world images to ensure that the system is ready to be delivered.

The reference DNN training process is depicted in Fig. 4.1. It leverages simulators to reduce the

cost related to collecting and labelling a large number of images. In general, engineers tend to initially

train the DNN using images automatically generated with a high-fidelity simulator (e.g., a human body

simulator). When the DNN is deemed accurate, to enable the correct processing of real-world images,

engineers fine-tune the trained DNN using real-world images (e.g., images of real people seated in a car).

Fine-tuning consists of relying on the DNN training algorithm to update the weights of the DNN trained

with simulator images; retraining may concern the whole set or a subset of the DNN weights (e.g., the

fully connected layers in a CNN). The fine-tuned DNN is then tested with real-world images.

In the presence of DNN failures, the failure-inducing images in the test set can be inspected by

45

CHAPTER 4. SIMULATOR-BASED EXPLANATIONS FOR DNN FAILURES

engineers to improve the DNN. The visual inspection of such images may enable engineers to identify

scenarios that are unsafe (i.e., the DNN generates erroneous results), and collect additional related real-

world images or configure the simulator to generate them. Given that this is an expensive activity, in this

chapter, we propose a solution to automate the identification and characterization of unsafe scenarios

observed in real-world images to enable generating simulator images that present similar triggering events

and minimize retraining costs.

To overcome the cost and error-proneness of manual inspection of failure inducing images, the HUDD

technique, presented in Chapter 3, automatically groups images showing a same root cause by analyzing

heatmaps derived from DNN outputs and neuron activations — such groups of images are named root

cause clusters (RCCs). The rationale behind HUDD is that images sharing the same root causes (e.g., a

face turned left) should present similar neuron activations and, consequently, similar heatmaps. However,

with HUDD, root cause analysis still remains error-prone because it relies on the capability of the engineer

to interpret the generated outputs (e.g., she may not notice that DNN failures depend not only on a

face being turned left but also on a specific illumination angle). Further, it does not fully leverage the

availability of simulators to retrain DNNs; precisely, it does not guide the generation of images but simply

selects a subset of images available fro retraining.

In this chapter, we propose Simulator-based Explanations for DNN failurEs (SEDE), an approach

to characterize the root causes (events) leading to DNN failures; we call such events hazard-triggering

events. It targets contexts in which DNNs are partly trained using simulators, which is common practice

in safety-critical contexts with complex inputs [109, 110, 111]; for example, DNNs implementing vision-

based driving tasks or interpreting human postures. This is the case for our industry partner, which relies

on a simulator capable of generating images of human bodies, seated in a car environment, to train DNNs

that interpret human postures (e.g., determine gaze or drowsiness).

Training Set
Simulator

Images

DNN
Training

Test Set
Simulator

Images

DNN
Testing

DNN
Training

(fine-tuning)

Training Set
Real-world

Images

DNN
Testing

Trained
DNN

Fine-Tuned
DNN

Test Set
Real-world

Images

Real-world
images

leading to
correct DNN

output

Legend:
Activity Data flowData (i.e., images)

Real-world
images leading to

erroneous DNN output
(failure-inducing images)

Output DNN

DNN
considered

accurate

1 2 3 4 5

DNN
Accuracy

Figure 4.1: DNN training and testing

Given a set of failure-inducing real-world images (e.g., the failure-inducing images in the test set),

SEDE relies on HUDD to generate RCCs. We assume that all the images belonging to a RCC present

the same hazard-triggering events, as suggested by HUDD’s empirical results. For each RCC identified

by HUDD, SEDE relies on the simulator used for DNN training to generate more images that belong

to the RCC. Since a RCC characterizes a small portion of the input space, SEDE relies on evolutionary

46

4.2. BACKGROUND ON EVOLUTIONARY ALGORITHMS FOR DIVERSITY OPTIMIZATION

algorithms to efficiently generate RCC images; indeed, evolutionary algorithms explore the input space

guided by fitness functions measuring how close an input is to satisfying a given objective. To better

identify the commonalities among RCC images and avoid generating images that present characteristics

that are accidentally shared 1, we propose PaiR (Pairwise Replacement), a genetic algorithm that not only

generates images belonging to the RCC but also maximizes their diversity.

4.2 Background on Evolutionary Algorithms for Diversity
Optimization

In our work, we aim to rely on evolutionary algorithms to generate a set of diverse images belonging to a

RCC. As described in the related literature [52, 34, 35, 81], an image can be modelled as an individual (or

chromosome) of the population, represented as a vector whose components capture the values assigned to

simulator parameters used to generate the image.

Although, in principle, genetic algorithms can be used to evolve a population of individuals and

achieve our objectives (i.e., generate individuals belonging to the RCC and maximize the diversity between

them), the use of well-known algorithms for this purpose (e.g., NSGA-II) is not feasible because it is not

possible to define a fitness function for diversity, as explained next.

To maximize diversity, since it is the property of a set of images, it is not possible to define a fitness

function that assesses how much an offspring individual contributes to diversity prior to knowing what the

final set will be. Also, note that selection based on crowding distance, which is part of NSGA-II, does

not help because such distance is defined over the objective space, as opposed to the simulator parameter

space. Consequently, the NSGA-II algorithm cannot simply be adopted to address our problem.

We can represent a solution for one of our objectives (i.e., a set of n diverse images belonging to a

RCC) as an individual where each image is modelled with a subsequence of the chromosomes (e.g., the

first subsequence of m chromosomes are for the first images, the second for the second image, and so on).

This would enable whole test suite generation (i.e., the generation, within a same search run, of all

the solutions for our objectives) [112]. However, different from traditional software testing, individuals

achieving different objectives are unlikely to present dependencies. For example, in traditional software

testing, nested conditions lead to dependencies between search objectives, whereas two RCCs should

include images that are diverse (e.g., one picture of a person looking left and another picture with a person

looking right); therefore, in our context, generating an image that fulfills one objective should not help

with achieving another objective. Further, modelling multiple images as a single individual would lead to

many simulator runs to generate a single individual, which leads to an inefficient exploration of the search

space and, therefore, entails a large budget to generate the desired solutions. For these reasons we chose

to model a single image as an individual.

An alternative solution consists of relying on an archive where, at each iteration of the search algorithm,

we add the individuals in the first non-dominated front that contribute to increasing diversity. Related work

suggests adding to the archive the individuals with a sparseness value (i.e., the distance from the nearest

neighbour) that is above a set threshold (hereafter, sparseness threshold) [81, 113]. DeepJanus [81]

and DeepMetis [113] are two state-of-the-art solutions that rely on a sparseness threshold. They extend

1An evolutionary algorithm may get stuck in a local optimum and, for example, generate images of persons with blue eyes
whose head is turned 45 degrees, though the eye color does not affect the DNN outputs.

47

CHAPTER 4. SIMULATOR-BASED EXPLANATIONS FOR DNN FAILURES

the popular NSGA-II algorithm with an archive and with repopulation (to escape from stagnation by

replacing the most dominated individuals with random ones); we refer to such algorithm as DeepNSGA-II.

Unfortunately, in our context, the sparseness threshold may directly affect the quality of the results; indeed,

if the threshold is too low, most of the selected individuals will be similar to each other, thus making

the learning algorithm derive rules that do not characterize the whole RCC. Similarly, if the threshold

is too high, we end up selecting only a small number of individuals, which prevents the generation of

accurate rules. Unfortunately, identifying an appropriate threshold requires multiple executions of the

algorithm, which, in our context, shall be repeated for every RCC; indeed, since it may be easier for the

simulator to generate certain images than others, some portions of the input space may be denser than

others and, therefore, different thresholds might be needed for different RCCs. In practice, this would lead

to an expensive process, which is practically infeasible. One simple solution is to rely on a sparseness

threshold of zero (i.e., we add to the archive any image that differs from the ones already in it) [113].

However, such choice may render the algorithm less efficient as it leads to larger archives and the larger

the archive the more costly the distance is to compute. Further, in our context (Section 4.3), the best

individuals identified through the search (in the archive) are used as input for additional search iterations;

therefore, the DeepNSGA-II algorithm should be combined with a strategy to select the best individuals in

the archive (Section 4.4.2 provides details about the strategy adopted in our empirical evaluation).

In addition to the limitations indicated above, please note that DeepJanus and DeepMetis address

problems that are different than ours. They both rely on two fitness functions, namely F1 (to be maximized)

and F2 (to be minimized). In both DeepJanus and DeepMetis, at every search iteration, every individual

of the population is added to the archive if F1 is above the sparseness threshold and if F2 is below

a user-defined threshold capturing if the individual addresses the other objective of the search further

described below. DeepJanus characterizes the frontier of DNN misbehaviours by identifying pairs of

inputs that are close to each other, with one input leading to a correct DNN output and the other to a DNN

failure [81]. Function F1 focuses on sparseness and closeness of input pairs and is computed as follows:

F1 = {sparseness(i, A)− k ∗ distance(i .m1 , i .m2)}

with x.m1 and x.m2 being a pair of inputs, sparseness the function that computes the distance from

the nearest individual in the archive A, and distance the distance between two individuals. Function F2

focuses on the closeness to the frontier and is computed as

F2(i) =

{
eval(i.m1) · eval(i.m2) if > 0

−1 otherwise

with eval being the difference between (a) the confidence level associated with the expected label and

(b) the maximum confidence level associated to any other class. Based on the above, DeepJanus cannot be

directly applied in our context because we do not aim to generate pairs of individuals. DeepMetis aims to

identify inputs leading to DNN failures in mutated DNNs (i.e., DNN models trained or modified to be

less accurate than the DNN under test) [113]. Different from DeepJanus, in DeepMetis, an individual is a

single image. Function F1 focuses only on sparseness

F1 = {sparseness(i, A)}

48

4.3. THE SEDE APPROACH

Function F2 measures how well an individual triggers inaccurate outputs in mutated DNNs and is

computed as

F2 =
∑

mutant∈Mutant

evalmutant(i)

with evalmutant returning the difference between the confidence associated with the expected class and the

maximum confidence associated with any other class when the prediction is correct (-1 if the prediction is

wrong). Although F1 might also be used in our context to drive the generation of sparse solutions, F2

needs to be modified to capture our goals (i.e., the input belongs to a RCC and leads to a failure).

To address our problem, we thus defined an algorithm (i.e., the PaiR algorithm, described in Sec-

tion 4.3.1) that takes advantage of every image generated by the simulator in an iteration and does not

require a sparseness threshold. Further, we have separated the identification of images belonging to a RCC,

which is achieved by PaiR, from the identification of failing images, which is achieved with additional

search iterations performed through an extension of the NSGA-II algorithm. In Section 4.4.2, we compare

PaiR with a DeepNSGA-II solution with a sparseness threshold of zero and F2 matching the same fitness

function used by PaiR to identify individuals belonging to a RCC.

PaiR does not support whole test suite generation but it is executed once for each RCC.

Once PaiR has generated images belonging to the RCC, to ensure that these images include hazard-

triggering events, SEDE produces additional images that are mispredicted, in addition to belonging to

the RCC. This is achieved by relying on a modified version of the multi-objective algorithm NSGA-II

(hereafter, NSGA-II′). Different from recent extensions of NSGA-II [113, 81] that aim to maximize

diversity (hereafter, DeepNSGA-II), PaiR does not rely on an archive and does not require the definition

of thresholds for selecting the final set of images. Finally, to precisely characterize hazard-triggering

events (i.e., to distinguish between commonalities that cause DNN failures and accidental similarities),

SEDE relies on one additional execution of NSGA-II′ to generate additional images that are similar to

failure-inducing images but do not cause a DNN failure. The availability of failing and passing images

enables SEDE to derive, leveraging the PART decision rule learning algorithm [36], a set of expressions for

the simulator parameters that capture commonalities among failure-inducing images. These expressions

characterize hazard-triggering events and also delimit part of the input space that shall be considered

unsafe. The expressions generated by SEDE can be used to either estimate the probability of exposure to

the hazard-triggering events (based on domain knowledge) or improve the DNN. Improvements in DNN

accuracy can be achieved by retraining the model using additional images generated using a simulator,

configured with parameters that match the expressions generated by SEDE.

4.3 The SEDE Approach

SEDE works in four steps depicted in Fig. 4.2. In the first step, SEDE relies on a state-of-the-art solution

(HUDD, see Chapter 3), to automatically identify clusters of images (RCCs) leading to a DNN failure

because of common hazard-triggering events.

In the second step, SEDE relies on evolutionary search driven by the analysis of heatmaps and simulator

parameters to generate images that are associated to RCCs, enabling accurate learning to characterize

unsafe scenarios. To precisely derive constraints on simulator parameter values (configurations) for

distinct hazard-triggering events, while avoiding overfitting, for each RCC, we are interested in generating

many diverse images leading to correct and erroneous DNN outputs.

49

CHAPTER 4. SIMULATOR-BASED EXPLANATIONS FOR DNN FAILURES

IF-THEN rulesRules Extraction
Algorithm (PART)

Explanation
expression

RCCs

Real-world Error
Inducing
Images

HUDD

Safe images similar to unsafe
+ simulator parameters

Unsafe images in the RCC
+ simulator parameters

Configuration
Parameters

Simulator
Images

Evolutionary
Algorithm

Simulator

Simulator
Configuration

Parameters

Unsafe
Improvement

Set

RetrainingRetrained
DNN

Repeat * times

Best
DNN

Step 1. Identify root cause clusters (RCCs)

Step 2. Generate images associated to RCCs

Step 3. Generate expressions that characterize unsafe images

Step 4. Retrain the DNN

Step 2.1. Generate Representative Images

Step 2.2. Generate a set of unsafe images belonging to the cluster

Step 2.3. Generate one safe image for each unsafe image

Expressions
generator

Inputs
selection

Legend:
Activity Data flow

Implemented

workflow
Output

RCC
representative

images

Figure 4.2: The SEDE workflow

Addressing multiple hazard-triggering events entails multiple search runs, as justified in Section 4.3.1.

More precisely, for each RCC, our algorithm executes one search to generate a set of diverse images

belonging to that RCC, one search to generate a set of unsafe (i.e., failure-inducing) images that are

close to each of the diverse images and belonging to the RCC, and another search to identify a set of

safe images (i.e., not failure-inducing) that are close to the unsafe ones. For classifier DNNs, a failure is

triggered when the output class differs from the ground truth, where the latter is automatically derived

from the parameters of the simulator. In the case of regression DNNs, a DNN failure is triggered when

the difference between the DNN output and the reference value (ground truth) is above a set threshold,

which is defined by engineers based on domain knowledge.

In the third step, SEDE relies on the availability of a sufficiently large number of diverse safe and

unsafe images, generated in the previous step, to identify those parameter ranges that characterize unsafe

images. More precisely, SEDE relies on a machine-learning algorithm (i.e., PART) to extract such ranges,

under the form of logical expressions that accurately predict and therefore represent unsafe images.

In the fourth step, SEDE relies on the derived expressions to generate an additional set of images that

are used to retrain and improve the DNN.

Please note that SEDE can also be applied to test sets generated using simulators; however, compared

to test sets with real-world images, simulator-based failure-inducing test sets are less challenging to

characterize. Indeed, when test set images are generated using simulators, decision trees or any other rule

50

4.3. THE SEDE APPROACH

learning algorithm can be used to identify the commonalities among the failure-inducing images [79, 35].

For example, it is sufficient to generate RCCs with HUDD and then extract PART rules from them.

However, if the number of available failure-inducing images is limited, learning may not lead to accurate

results. In such cases, SEDE may be useful to generate additional failure-inducing images, thus enabling

the generation of more accurate explanatory rules.

Below, we describe Steps 2 to 4 since Step 1 simply involves the execution of HUDD to generate

RCCs.

4.3.1 Step 2. Automated Generation of Unsafe and Safe Images

In the second step of SEDE, for each RCC, we aim to automatically generate images that (goal 1) exhibit

the same hazard-triggering events observed in the RCC and (goal 2) enable a learning algorithm to extract

accurate rules predicting unsafe images. These rules shall ideally characterize parameter values that are

observed only with unsafe images belonging to a specific RCC.

To achieve goal 1, it is sufficient to explore the input space by generating diverse images that are

similar to the ones belonging to the RCC.

To achieve goal 2, instead, we need to generate both safe images and unsafe images. To be accurate,

the rules derived by SEDE shall provide ranges for parameter values that are observed only or mostly

with unsafe images and are as wide as possible.

To this end, the unsafe images used to generate the rules must be as diverse as possible and for each

unsafe image, we should identify a very similar safe image so that the algorithm learns to precisely

distinguish unsafe images from safe ones, i.e., precisely learn the boundary between them.

To achieve the above, we rely on a divide-and-conquer approach that consists in executing three

genetic algorithms for each RCC in a sequence. We make use of genetic algorithms because they have

been successfully used by related work to explore the input space of DNNs using simulators [81].

First (Step 2.1), we generate diverse images belonging to the RCC, safe or unsafe. The goal is to

cover the cluster with representative images.

Second (Step 2.2), we rely on the generated representative images to generate an additional set of

unsafe and diverse images belonging to the cluster; this is achieved by generating, for each representative

image, one unsafe image that is close to it and belongs to the RCC.

Third (Step 2.3), for each unsafe image derived by the second evolutionary search, we generate one

safe image that is as close to it as possible.

In summary, we aim to generate a sufficient number of diverse safe and unsafe images belonging to

each RCC to enable effective learning.

Step 2.1 - Generate Representative Images

We have two objectives: (1) generate a set of images that belong to a cluster and (2) minimize their

similarity (i.e., maximize their diversity); however, since RCCs tend to contain images that are similar, the

two objectives are unlikely to compete. Indeed, two dissimilar images are unlikely to belong to the same

cluster. Further, for our purpose, it is useless to generate a set of diverse images if they do not belong to

the RCC. Consequently, it is not desirable to rely on a multi-objective search algorithm to address them.

To drive the search process, we thus need a fitness function that enables an evolutionary search algorithm

to first generate images that belong to a cluster and then decrease their similarity.

51

CHAPTER 4. SIMULATOR-BASED EXPLANATIONS FOR DNN FAILURES

In Section 4.1, we have clarified why state-of-the-art approaches are inapplicable or ineffective when

applied to achieve our objectives; in this section, we propose a dedicated fitness function and algorithm.

In the presence of a function that measures the distance of an individual i from the center of the

RCC C (hereafter, RCC distance(C, i)) and a function that measures how an individual contributes to

minimizing the similarity across cluster members (hereafter, Fsimilarity(i)), to obtain a mathematically

adequate behavior, our fitness function FC
1 (i) can be defined as follows:

FC
1 (i) =

Fsimilarity(i) if RCC distance(C, i) ≤ 1

RCC distance(C, i) otherwise
(4.1)

Our goal is to minimize FC
1 (i) and given that (1) Fsimilarity(i) ≤ 1 (see Equation 4.7 below) and (2)

RCC distance ≤ 1 is only true when the image belongs to the RCC, we obtain the targeted property: fitness

is always lower in cases where an individual i belongs to the RCC. Below, we describe the functions

Fsimilarity and RCC distance(C, i).

To determine if an individual belongs to a RCC, we can measure its distance from the RCC centroid

and verify if it is shorter than the RCC radius (i.e., the max distance between the centroid and the farthest

image). For the distance metric, as in HUDD, we can use the Euclidean distance between two heatmaps

(hereafter, HeatmapDistance); however, to generate a heatmap we need a concrete image and, therefore,

instead of relying on the cluster centroid, we identify its medoid. The formula for the HeatmapDistance

function is:

HeatmapDistance(A,B) =

√√√√ M∑
m=1

N∑
n=1

(AL
m,n −BL

m,n)
2 (4.2)

where A and B are two heatmap matrices generated with LRP, and m,n indicate the row and column of

a cell in a matrix (M and N indicate the total number of rows and columns, respectively). Since LRP

generates one heatmap matrix for every neuron layer of the DNN, we rely on the heatmap generated for

layer L as selected by HUDD to generate the RCC.

Similar to related work [34, 58], within our evolutionary algorithms, we represent an individual using

a vector of simulator parameter values. For this reason, to compute the heatmap distance, our search

algorithm, for every offspring individual, first generates one image using the simulator, then processes the

generated image using the DNN under test, and finally generates its heatmap using the LRP algorithm.

The medoid of a RCC C is the image that minimizes the average pairwise distance from the other

images of the RCC; it is computed as follows:

Medoid(C) = argmin
y∈C

{ ∑
x∈C,x̸=y

HeatmapDistance(x, y)

|C| · (|C| − 1)

}
(4.3)

The radius of a RCC C is the maximum distance between its medoid and any other image in C:

Radius(C) = argmax
y∈C

{
HeatmapDistance(y, Medoid(C))

}
(4.4)

Since clusters may have different radiuses, we compute RCC distance(C, i) for a RCC C as the heatmap

distance between individual i and C’s medoid Medoid(C), normalized by C’s radius Radius(C):

RCC distance(C, i) =
HeatmapDistance(i,Medoid(C))

Radius(C)
(4.5)

52

4.3. THE SEDE APPROACH

Require: RCCC , the RCC under analysis
Require: s, population size
Require: r, number of random populations of images to generate initially
Require: b, search budget (i.e., number of iterations to perform)
Ensure: PC

1 , an optimal set of diverse images belonging to cluster RCCC

1: repeat
2: R← R ∪ {RANDOM POPULATION with size s}
3: until r random populations have been generated
4: t← 0
5: P ← selects the population in R with the best fitness
6: while t < b do
7: EVALUATE the FITNESS of P based on RCCi

8: O ← GENERATE the OFFSPRING population from P
9: EVALUATE the FITNESS of O based on P and RCCC

10: while SIZE(O) > 0 do
11: SORT O based on decreasing FITNESS
12: io ← extract and remove first individual in O
13: if there is at least one individual in P that is outside the RCC then
14: ip ← IDENTIFY the individual in P with the highest fitness
15: else
16: ip ← IDENTIFY the individual in P that is closer to io

17: if fitness of io < fitness of ip then
18: Within P , replace ip with io
19: EVALUATE the FITNESS of P based on RCCC

20: EVALUATE the FITNESS of O based on P and RCCC

21: t← t+ 1

22: P j
1 ← all the individuals in P that belong to RCCC

23: return PC
1

24: exit

Figure 4.3: PaiR, the Genetic Algorithm integrated into SEDE

To compute Fsimilarity(i), we follow related work [81] and measure how much an individual con-

tributes to the diversity of the population by measuring its distance from the closest individual in the

population. We can measure the distance between two individuals i and j based on their chromosome

vectors vi and vj (containing simulator parameter values), as follows:

ChromosomeDistance(i, j) = cos(i, j) (4.6)

=
vi · vj

∥vi∥∥vj∥

=

|i,j|∑
p=1

(vi[p] · vj [p])√
|vi|∑
p=1

vi[p]
2

√
|vj |∑
p=1

vj [p]
2

where cos(i, j) is the cosine similarity between vi and vj , whose range is [0, 1]; vi[p] and vi[p]

indicate the value of the p-th component in the vectors vi and vj , respectively.

FC
1 can be used to drive the search algorithm, described below.

The SEDE search algorithm: PaiR Pairwise Replacement (PaiR) is our algorithm to generate repre-

sentative RCC images; it is presented in Fig. 4.3 and described below.

PaiR aims to evolve a whole population of individuals to generate a population of individuals that

both belong to the RCC under analysis and are diverse. The size of the population is a parameter of the

algorithm. PaiR leverages all the images generated by the simulator at every search iteration by replacing

one or more images in the parent population with offspring individuals having a better fitness.

53

CHAPTER 4. SIMULATOR-BASED EXPLANATIONS FOR DNN FAILURES

PaiR works by looking for individuals that minimize FC
1 . At every iteration, PaiR creates a new

population P ′ obtained by replacing an individual ip with an individual io having a better fitness (i.e.,

FC
1 (io) < FC

1 (ip)), as described in the following.

The PaiR algorithm receives as input the RCC under analysis (hereafter, RCCC), the configuration

parameters s (population size) and r (number of random populations to generate initially), and the search

budget b indicating the number of iterations to perform.

To maximize the chances of finding an optimal solution, as in related work [114], the PaiR algorithm

starts by generating several random populations (Line 1 to 3) and selecting the population including the

individual with the lowest fitness value (P , Line 5).

In its main loop (Lines 6 to 21), PaiR computes the fitness values of individuals in the parent population

P and, from P , generates an offspring population O by relying on the same strategy commonly adopted

with NSGA-II in similar contexts (i.e., tournament selection, simulated binary crossover, crossover

probability pc, and mutation probability pm).

The offspring individuals are sorted to process first the ones with better fitness (Line 11). PaiR

considers each individual in O (io) as a replacement of an individual in P (ip), if the former has a better

fitness. PaiR distinguishes between the cases in which P only contains individuals belonging to the

RCC (Line 15) and when at least one individual does not (Line 13). Indeed, if we do not have enough

individuals belonging to the RCC, it is not important to maximize their diversity.

If P contains at least one individual not belonging to the RCC, PaiR simply looks for the individual in

P with the highest fitness (i.e., the one that is furthest from the cluster medoid). Such individual will be

replaced by io if the latter has a lower fitness (Line 17), which is always the case if io belongs to the RCC;

otherwise, it depends on the value of RCCdistance: io replaces ip if io is closer to the RCC medoid.

If all the individuals in P belong to the RCC, PaiR selects the individual in P that is closer to io (i.e.,

ip, Line 16). The offspring individual io replaces ip if io has a lower fitness than ip (Line 17). Since ip

belongs to the RCC, according to Equation 4.1, io has a lower fitness than ip when io belongs to the RCC

and has a lower Fsimilarity .

Fsimilarity(i) is computed differently for individuals in the parent and in the offspring population; the

reason is that we must decide if an individual io in the offspring population O, would lead to a population

P ′ with a larger diversity than P . P ′ is obtained by replacing an individual ip in the parent population P

with io; therefore, we obtain a different P ′ from a same P , depending on the selected individuals ip and

io. To help identify the most diverse P ′ and avoid computing the similarity for all possible P ′ obtained

from every individual in O, inspired by related work [81], we compare (a) the distance between ip and its

closest neighbour in P (i.e., the closest individual in P excluding ip itself) with (b) the distance between

io and the closest individual in P ′. Note that P ′ includes io and P \ {ip}. Therefore, for an individual ip
in the parent population P, we compute one minus its distance from closest ip , the closest neighbour to ip

Fsimilarity(ip) = 1− ChromosomeDistance(ip, closest ip) (4.7)

For an individual io in the offspring population O, we compute one minus its distance from closest io , the

individual in P \ {ip} that is closest to io:

Fsimilarity(io) = 1− ChromosomeDistance(io, closest io) (4.8)

Based on the above, given two individuals io and ip in the offspring and parent populations, respec-

tively, the individual io has a better fitness than ip if they both belong to the RCC and the similarity

54

4.3. THE SEDE APPROACH

between io and the closest individual in P \ {ip} is lower than the similarity between ip and its closest

individual in P . Since the distance from the closest individual should increase (lower similarity) when

replacing ip with io in the population, we can assume that a population P ′ will have higher diversity than

P, which we demonstrate in Section 4.4.2.

The process is repeated until O is empty (Lines 10 to 20); since FC
1 depends on the distance between

individuals being close to each other, given that both O and P vary over iterations, the fitness of the two

populations is recomputed after every replacement (Lines 19 and 20).

After b iterations, the algorithm has generated a population PC
1 of individuals that are diverse and

very likely to belong to RCCC .

Step 2.2 - Generate a set of unsafe images belonging to the cluster

For each RCCC , we aim to generate a set of diverse, unsafe images, belonging to the cluster. To preserve

the diversity of the images generated by PaiR in Step 2.1 (PC
1), we can identify, for each image in PC

1 , an

image that is close to it and makes the DNN fail. We can thus model our problem as a many-objective

optimization problem with q objectives, where q is the number of images in PC
1 .

We define q fitness functions, one for each individual in PC
1 . An individual is an image generated with

the simulator, modelled as described in Section 4.3.1. All fitness functions share the same parameterized

formula FC,t
2 , where t ∈ {1, ..., q} :

FC,t
2 (i) =



ChromosomeDistance(i, PC
1 [t]) if (RCC distance(RCCC , i) ≤ 1) ∧

(CLOSEST (i, PC
1) = PC

1 [t]) ∧ (DNNfailure(i))

1 + Funcertainty(i) if (RCC distance(RCCC , i) ≤ 1) ∧

(CLOSEST (i, PC
1) = PC

1 [t]) ∧ (DNNcorrect(i))

2 + ChromosomeDistance(i, PC
1 [t]) if (RCC distance(RCCC , i) ≤ 1) ∧

(CLOSEST (i, PC
1) ̸= PC

1 [t])

3 + RCC distance(RCCC , i) if RCC distance(RCCC , i) > 1

(4.9)

FC,t
2 is a piecewise-defined function implemented through four sub-functions that return a value in the

range [0, 1] incremented by a constant (from 0 for the first sub-function to 3 for the fourth sub-function).

The fourth sub-function of the equation drives the search towards generating an individual belonging

to RCCC ; indeed, when this is not the case, FC,t
2 measures how far the individual is from the RCC

medoid with RCC distance(RCCC , i). Since not belonging to RCCC is the worst case for an individual,

FC,t
2 must be higher than in other cases. This is achieved by returning 3 +RCC distance(RCCC , i), given

that the codomain of the first three sub-functions referred to in FC,t
2 lay in the range [0, 3].

The third sub-function of the equation ensures that we generate one image for each individual in PC
1 ;

indeed, if the individual i belongs to RCCC but the individual in PC
1 that is closest to i is not the t-th

individual (i.e., CLOSEST (i, PC
1) ̸= PC

1 [t]), FC,t
2 returns the cosine distance between i and the t-th

individual in PC
1 , incremented by 2.

The second sub-function helps generating an individual that makes the DNN fail. Indeed, if the

individual i belongs to RCCC , is the closest to the t-th individual targeted by FC,t
2 , but does not make the

DNN fail, then the fitness function returns a measure of DNN uncertainty increased by one.

55

CHAPTER 4. SIMULATOR-BASED EXPLANATIONS FOR DNN FAILURES

Require: I, vector whose components represent an individual
1: l = |I|
2: for i = 0; i < |I| do
3: I[i] = 0

4: for each objective o do
5: I ← sort I according to objective o
6: I[1]distance ←∞
7: I[l]distance ←∞
8: for i = 2 to (l − 1) do
9: I[i]distance ← I[i]distance +

(I[i+1]m−I[i−1]m)
(max fitness for o)−(min fitness for o)

Figure 4.4: Crowding-distance-assignment function for NSGA-II. Red part indicates the instruction
commented out in NSGA-II′ to ensure that, for each objective, the best individual is preserved.

To compute the uncertainty component of the fitness, we return one minus the cross-entropy loss

function, which is commonly used to measure uncertainty:

Funcertainty(i) = 1− entropy(i) (4.10)

Cross-entropy measures how uncertain is the DNN about the provided output where lower cross-

entropy values indicate higher certainty; therefore, by using one minus cross-entropy loss, we direct the

search (minimization) towards the identification of images for which the DNN is less certain about outputs

and, therefore, likely to produce an erroneous output.

The first sub-function of FC,t
2 , instead, for individuals that make the DNN fail, helps select the

individual that is closest to the individual targeted by FC,t
2 ; indeed, it returns the chromosome distance

between the individual i and the individual PC
1 [t].

Search Algorithm. To address our problem, we rely on a modified version of NSGA-II. NSGA-II

is known to underperform in the presence of a large number of objectives (>3), mainly because of the

exponential growth in the number of non-dominated solutions required for approximating the Pareto

front [115]. However, we do not aim to find, as a solution to our problem, one single individual (i.e.,

image) that finds the best balance among different objectives but a set of images, each optimizing one

independent objective (indeed, each image shall be close to a reference image in PC
1); therefore, we are

unlikely to find a set of nondominated solutions larger than |PC
1 | (i.e., we will find one solution for each

objective). Also, by definition, FC,t
2 is always different than zero, which renders ineffective algorithms

that look for an individual that covers an objective like MOSA. A solution to enable the adoption of

MOSA would be to set a threshold to determine when the objective has been covered; however, since

RCCs differ with respect to their radius, we choose not to introduce a threshold that may lead to varying

performance results across RCCs. Since we aim to optimize all the objectives, we rely on an extended

version of NSGA-II with a modified crowding-distance function that ensures we select the minimal value

for each objective, thus resembling the preference criterion of MOSA. Finally, we do not require an

archive because the population will always include the best individual found for each objective and we do

not need to evaluate an individual according to objectives not explicitly modeled (e.g., inputs’ length in

MOSA).

We propose a modified version of NSGA-II (hereafter, NSGA-II′) that includes a modified crowding-

distance-assignment which ensures preserving, for each objective, the individual with the lowest fitness

value.

Our modified crowding-distance-assignment is shown in Fig. 4.4; different from the original crowding-

distance-assignment used by NSGA-II, for each objective, we assign infinite crowding distance only to

56

4.3. THE SEDE APPROACH

the individual that minimizes the fitness for the objective. NSGA-II, instead, assigns infinite distance

also to the individual that maximizes the fitness for the objective (Line 7 in Fig. 4.4). Fig. 4.4 provides

the pseudocode for the function that computes the crowding-distance for a set of individuals. Lines 6

and 7 prioritize the individuals with the best and worst fitness, respectively, by assigning them infinite

distance. As in NSGA-II, if more than one individual has the same minimal fitness, NSGA-II′ assigns

infinite distance only to one, randomly selected individual. Our choice ensures that, when the Pareto front

includes a number of individuals larger than the population size s, for each objective, we preserve the

individual that minimizes the fitness value. When the Pareto front has a number of individuals lower than

the population size s, our crowding-distance assignment ensures the selection of individuals that minimize

the fitness and are likely unsafe, which is what we intend to preserve in the final population.

However, this situation is unlikely. Indeed, it may occur only when one individual has the same fitness

value for several (i.e., z, with z ≤ q) objectives, in one of the following unlikely scenarios:

• one image has the lowest RCC distance and no other individual falls in the cases covered by the first

three sub-functions in FC,t
2 , for the same z objectives;

• one image has the lowest ChromosomeDistance(i, PC
1 [t]) for z reference images and no other

individual falls in the cases covered by the first two sub-functions in FC,t
2 , for the same z objectives;

• one image has the lowest Funcertainty(i) and no other individual falls in the cases covered by the

first sub-function in FC,t
2 , for the same z objectives;

• one image is failure-inducing and has the lowest ChromosomeDistance(i, PC
1 [t]), for the same z

objectives.

We apply NSGA-II′ for k iterations. Please note that when PC
1 already includes unsafe images

belonging to the RCC C, NSGA-II′ simply retains such images at every iteration; indeed, their fitness is

already optimal according to FC,t
2 . After the k-th iteration of NSGA-II′, SEDE generates a population of

individuals that likely lead to a DNN failure, which we refer to as PC
2 ; at the end of the search, images

not leading to DNN failures are removed from PC
2 .

Step 2.3 - Generate one safe image for each unsafe image

We aim to generate a set of images that are similar to the unsafe images in PC
2 but do not lead to a DNN

failure. As for the previous case, we model our problem as a many-objective optimization problem with q

objectives, where q is the number of images in PC
2 ; for each image in PC

2 , we aim to generate an image

that is close to it and makes the DNN pass. We rely on the same NSGA-II′ configuration used for Step

2.2 except for the fitness function, which in this step needs to be adapted to drive the generation of safe

images; also, it is not necessary for these generated images to belong to RCCC (indeed, we may not have

any safe image within RCCC). In Step 2.3, NSGA-II′ evolves a population PC
3 that initially matches PC

2 .

As for Step 2.2, we define q fitness functions, one for each image in PC
2 ; these functions share the

same parameterized formula, for t ∈ {1, ..., q}:

57

CHAPTER 4. SIMULATOR-BASED EXPLANATIONS FOR DNN FAILURES

FC,t
3 (i) =



ChromosomeDistance(i, PC
2 [t]) if (CLOSEST (i, PC

2) = PC
2 [t]) ∧

(DNNcorrect(i))

1 + entropy(i) + |1− RCC distance(RCCC , i)| if (CLOSEST (i, PC
2) = PC

2 [t]) ∧

(DNNfailure(i))

2 + ChromosomeDistance(i, PC
2 [t]) if CLOSEST (i, P j

2) ̸= PC
2 [t]

(4.11)

The third sub-formula in FC,t
3 matches the third formula in FC,t

2 and aims to generate one image close

to each each unsafe image in P2.

The definition of the second sub-formula in FC,t
3 is motivated by the fact that, since the initial

population is PC
2 , all the images in the population initially cause a DNN failure and, therefore, the fitness

should drive the search algorithm to find a close image leading to a correct output. To do so, we should

look for images that either increase the confidence of the DNN output (i.e., leading to a lower entropy)

or are close to the border of the RCC. Concerning the latter, since a RCC characterizes unsafe images,

we expect that images next to its border are similar to the ones in the RCC but are less likely to be

failure-inducing. In addition, moving further away from the border is expected to lead to images that

are increasingly different from the images in the RCC. Such observations are captured by the absolute

difference between 1 and RCCdistance (i.e., how close the image is to the RCC border), which is added to

entropy(i) to help generate safe images.

The codomains of the second and the third sub-formula overlap as the former may return a fitness

value above 3; this choice reflects the fact that an image being far away from the RCC border (when

|1−RCCdistance(C, i)| > 1) is unlikely to provide useful information as it is not helpful to derive rules

that characterize safe images that are not similar to the ones in the RCC. Therefore, such image would

be as useless as an image that is not close to the target image (i.e., PC
2 [t]). Also, if the DNN is highly

uncertain about an image i (i.e., entropy(i) is close to 1), it is unlikely for that image to help driving the

algorithm towards a correct output. For the reasons above, the output of the second sub-formula falls into

the codomain of the third sub-formula when the sum entropy(i) + |1− RCC distance(RCCC , i)| > 2.

The first sub-formula in FC,t
3 , in the presence of images leading to correct DNN outputs, aims to

minimize the distance from the t-th image; therefore, it returns the chromosome distance between the

individual i and the target image PC
2 [t].

The algorithm NSGA-II′ terminates after k iterations with a population PC
3 including images that are

likely safe and close to the images in PC
2 ; though unlikely, images leading to DNN failures are removed

from PC
3 before SEDE’s Step 3.

4.3.2 Step 3. Characterize Unsafe Images

In Step 3, we aim to generate an expression that characterizes unsafe images by using PART, to learn

decision rules. For example, we could learn that images likely lead to a DNN failure when the parameters

HeadPoseX > 10 and HeadPoseY > 50.

PART generates as output a list of mutually exclusive rules (see Section 2.1.2) that predict the class of

a data point; in our context, these rules predict the DNN output generated for an image (i.e., wrong or

correct output) based on the values of the simulator parameters used to generate the image.

58

4.3. THE SEDE APPROACH

1: HeadPoseY > 50.34 : class = DNN − error
2: HeadPoseY < 13.34 : class = DNN − correct
3: HeadPoseZ > 60 &HeadPoseY > 30 : class = DNN − error
4: HeadPoseZ ≤ 60 : class = DNN − correct
5: (default) : class = DNN − error

Figure 4.5: Example PART output

Figure 4.6: Example image generated with IEE-Humans, one of the simulators used in our empirical
evaluation. It is labeled as looking top-right (i.e., towards the top-right corner of the picture).

Since, in our context, for each image under analysis we know (1) the DNN outcome (i.e., a DNN

failure or a correct output) and (2) the set of simulator parameter values used to generate it, we can

configure PART to consider the DNN outcome as the class to predict and the simulator parameter values

as the features to derive rules from.

Fig. 4.5 provides an example output generated by PART when processing images from our case study

subjects. Each image depicts a person’s head and is represented by a number of simulator parameters

configured to generate the image (an example is shown in Fig. 4.6). The considered parameters include,

among others, the orientation of the head (pitch, yaw, and roll captured by the parameters HeadPoseX ,

HeadPoseY , and HeadPoseZ).

In Fig. 4.5, Line 1 indicates that we observe a DNN failure if the value of the parameter HeadPoseY

is above 50.34 (i.e., the person is looking to the right of the viewer, with the head turned so much that her

left eye is barely visible). Line 2 indicates that, when the rule in Line 1 does not apply and the person

is looking center or to her right (i.e., if HeadPoseY is below 13.34), then the DNN produces a correct

output. Line 3 indicates that, when the two rules above do not hold, we observe a DNN failure if the value

of parameter HeadPoseZ is above 60 and the value of parameter HeadPoseY is above 30 (i.e., when

the head is tilted and the person is looking to her left then the DNN makes a mistake even if her left eye is

visible). Line 4 indicates that, when the three rules above do not hold, the DNN output is correct if the

value of parameter HeadPoseZ is below 60 (i.e., the head is not tilted). Finally, Line 5 is the default rule,

which indicates that, when all the rules above do not hold, the DNN output is incorrect.

Since in Step 2, for each RCC, SEDE generated a set of unsafe (PC
2) and safe (PC

3) images, associated

with simulator parameters, to learn decision rules with PART, SEDE selects from PC
2 all the images that

belong to the RCC and are failing, and all the images from PC
3 that are not failing.

To generate an expression from the PART output (hereafter, referred to as PART expression), we

implemented a procedure that, for all the rules leading to a DNN failure, generates a subexpression that

59

CHAPTER 4. SIMULATOR-BASED EXPLANATIONS FOR DNN FAILURES

joins the negation of all the preceding rules with the current rule. The generated subexpressions are

mutually exclusive. For the example in Fig. 4.5, it leads to the following expression:

(HeadPoseY > 50.34) ∥

(¬(HeadPoseY > 50.34)& ¬(HeadPoseY < 13.34)

&(HeadPoseZ > 60 & HeadPoseY > 30)) ∥

(¬(HeadPoseY > 50.34) & ¬(HeadPoseY < 13.34)

& ¬(HeadPoseZ > 60 & HeadPoseY > 30)

& ¬(HeadPoseZ <= 60))

(4.12)

Indeed, for Line 1 in Fig. 4.5, SEDE simply reports the expression generated by PART (there are no

preceding expressions), which leads to “HeadPoseY > 50.34”. For Line 2, SEDE does not generate

any subexpression because it concerns cases in which the DNN generates a correct output; the same

happens for Line 4. For Line 3, SEDE negates the preceding expressions (i.e., “HeadPoseY > 50.34”

and “HeadPoseY < 13.34”) and joins them with the PART expression of Line 3 (i.e., “HeadPoseZ >

60 & HeadPoseY > 30”). For Line 5, SEDE simply generates a subexpression joining the negation of

all the preceding expressions.

Unfortunately, PART does not generate expressions for parameters whose range is shared by the two

classes under consideration (i.e., DNN failure and DNN correct). This is an issue as SEDE generates

safe images that are similar to the unsafe ones. For example, the PART output in Fig. 4.5 does not

include an expression with “HeadPoseX > 10”, which indicates that the head is looking top because

this characteristic is observed in both safe and unsafe images. Such commonalities, however, might be

important to characterize unsafe inputs; indeed, in our example, if the RCC includes images with a person

looking top, safe images close to the generated unsafe images will likely be looking top. To address this

issue, SEDE joins the PART expression with an expression that constrains the parameters not appearing

in the PART expression. The additional expression is generated by identifying the min and max values

assigned to the parameters for all the unsafe images. For the example above, it joins the expression

“HeadPoseX > 10” with the PART expression in Equation 4.12, thus leading to:

HeadPoseX > 10 &

((HeadPoseY > 50.34) ∥

(¬(HeadPoseY > 50.34)&¬(HeadPoseY < 13.34)

&(HeadPoseZ > 60 & HeadPoseY > 30)) ∥

(¬(HeadPoseY > 50.34)&¬(HeadPoseY < 13.34)

&¬(HeadPoseZ > 60 & HeadPoseY > 30)

&¬(HeadPoseZ ≤ 60)))

(4.13)

4.3.3 Step 4. Generate Unsafe Images for Retraining

In Step 4, for each RCC, SEDE automatically generates a set U of unsafe images by relying on the

simulator. Thanks to the simulator, these images can indeed be automatically labeled and, consequently,

can be used to retrain the DNN. We refer to this set of images as the unsafe improvement set. More

precisely, we aim to train a new DNN model by relying on an extended training set that consists of part

of the training set used to train the DNN under analysis and the unsafe improvement set. The retraining

60

4.4. EVALUATION

process is configured as a fine-tuning process where the weights of the DNN to be trained are initially set

to be equal to the weights of the DNN under analysis. Our rationale is that by retraining the DNN with an

additional set of images belonging to the unsafe portion of the input space, we enable the DNN to better

learn how to provide correct outputs for such inputs.

To avoid losing information derived from the original training process, the extended training set

consists of S% of the simulator images and R% of the real-world images belonging to the original training

set. We suggest configuring S and R such that the number of simulator images is not overwhelmingly

larger than the number of real-world images (e.g., twice the number of real-world images, at most). More

precisely, we should limit the number of simulator images because they may overly influence the DNN

with characteristics that are not present in real-world images (e.g., faces with regular shapes); nevertheless,

we suggest keeping a representative set of simulator-based images (e.g., 5%) because they may include a

number of scenarios (in our case studies, head positions) not covered by real-world images. For real-world

images, since they are generally low in number, we suggest keeping most or all of them to prevent the risk

of losing any image that captures an under-represented scenario. For our experiments, we set S=5% and

R=100% (see Section 4.4.2). We leave to future work the identification of a solution for the automated

selection of the best configuration for S and R (e.g., by selecting the DNN with the best accuracy among

the ones generated by repeating the retraining process with different values for S and R). For example,

recent results suggest that the proportion of simulator (S%) and real-world (R%) images may also depend

on the degree of fidelity of the simulator: the more realistic simulator images are, the less real-world

images are required [116].

The accuracy of the DNN training process may depend on a wide range of factors, including the

specific simulator images selected from the original training set, the images belonging to the unsafe

improvement set, and other random factors (e.g., the order of images in the training batches). For this

reason, SEDE repeats the retraining process (i.e., generate unsafe images in U for each RCC and retrain

the DNN) multiple times and keeps the DNN that provides the best output. Though repeating the training

process obviously increases the training cost (e.g., buying additional GPU time in Cloud systems), for

safety-critical systems, such additional cost may be justified by improvements in accuracy.

4.4 Evaluation

Our empirical evaluation addresses the following research questions:

RQ1 How does PaiR fare, compared to NSGA-II and DeepNSGA-II, for the generation of diverse images

belonging to RCCs?

The generation of a sufficiently large and diverse set of images belonging to all the RCCs under

analysis is essential to enable the characterization of DNN failures. To that end, SEDE integrates

a dedicated genetic algorithm (PaiR) whose performance is evaluated by this RQ and compared

to NSGA-II and DeepNSGA-II in terms of percentage of RCCs for which an individual has been

generated, percentage of individuals belonging to each cluster, and image diversity within clusters.

RQ2 Does SEDE generate simulator images that are close to the center of each RCC?

The generation of images belonging to a RCC is a necessary step to generate expressions that

characterize the RCC. Since there is no guarantee of generating, using simulators, images that are

61

CHAPTER 4. SIMULATOR-BASED EXPLANATIONS FOR DNN FAILURES

similar to real-world images, this research question evaluates if the images generated by SEDE are

closer to the center (medoid) of a cluster than random simulated, unsafe images.

RQ3 Does SEDE generate, for each RCC, a set of images sharing similar characteristics?

To successfully characterize RCCs with PART, it is necessary, for each RCC, to rely on a set of

images presenting similar characteristics while preserving diversity regarding other aspects. In other

words, the generated images shall present similar values for a subset of the simulator parameters

while being diverse regarding the other parameters.

RQ4 Do the RCC expressions identified by SEDE delimit an unsafe space?

This research question aims to determine if the analyzed DNN underperforms when processing

images matching RCC expressions. In other words, is the DNN accuracy significantly lower for

such images, as expected, than for random images from the whole input space?

RQ5 How does SEDE compare to state-of-the-art DNN accuracy improvement practices?

This research question evaluates the effectiveness of SEDE (Step 4), in terms of accuracy improve-

ments, compared to HUDD and a baseline consisting of randomly generated images for each RCC

(namely, Random BaseLine (RBL)).

4.4.1 Subject Systems

We consider DNNs that implement head pose detection and face landmarks detection. They are building

blocks for in-car monitoring systems (e.g., driver’s drowsiness detection) under study at IEE Sensing, our

industry partner.

The head pose detection DNN (HPD) receives as input the cropped image of the head of a person

and determines its pose according to nine classes (straight, turned bottom-left, turned left, turned top-left,

turned bottom-right, turned right, turned top-right, reclined, looking up).

The facial landmarks detection DNN (FLD) determines the location of the pixels corresponding to 27

face landmarks delimiting seven face elements: nose ridge, left eye, right eye, left brow, right brow, nose,

and mouth. Several face landmarks match each face element (e.g., there are four landmarks to outline a

mouth). The accuracy of this regression DNN is computed as the percentage of images with landmarks

being accurately predicted. For each landmark, we compute the prediction error as the Euclidean distance

between the predicted and correct landmark pixel on the input image; an image is considered accurately

predicted if the average error is below 4 pixels, as suggested by IEE engineers.

Our DNNs have been trained with simulator images, fine-tuned with real-world images, and tested

with real-world images, following the process in Fig. 4.1. For our experiments we relied on two different

simulators developed by IEE and based on the 3D simulation of MakeHuman [102] and MBLab [117]

using the rendering engine Blender [100]. The first simulator is called IEE-Faces, it relies on seven preset

MakeHuman models of human faces developed by IEE; it provides 13 parameters that enable controlling

different characteristics of the image such as illumination angle and head orientation. Table 4.1 provides a

description of all the parameters of IEE-Faces, where the first three rows capture nine parameters, three

for each row. IEE-Faces generates one image in 20 seconds, on the hardware used for our experiments.

The second simulator is called IEE-Humans and it generates images that are more realistic (i.e., have

more details) than the ones generated by IEE-Faces. IEE-Humans provides 23 different configuration

62

4.4. EVALUATION

parameters, which are described in Table 4.2 where the first two rows capture six parameters, three for

each row. It takes 100 seconds to generate an image.

Table 4.1: IEE-Faces simulator parameters

Parameter Description
Camera Direction Direction of scenario camera (X, Y, Z)
Camera Location Location of scenario camera (X, Y, Z)
Lamp Location Location of scenario lamp source (X, Y, Z)
HeadPoseX Vertical position of the head (degrees)
HeadPoseY Horizontal position of the head (degrees)
HeadPoseZ Tilting position of the head (degrees)
Makehuman Model Preset makehuman face model (9 face models)

Table 4.2: IEE-Humans simulator parameters

Parameter Description
Lamp Location Location of scenario lamp source (X, Y, Z)
Lamp Direction Direction of scenario lamp source (X, Y, Z)
Lamp Color Color of scenario lamp source (R, G, B)
Camera Height Height of scenario camera (pixels)
HeadPoseX Vertical position of the head (degrees)
HeadPoseY Horizontal position of the head (degrees)
HeadPoseZ Tilting position of the head (degrees)
Age Age of the generated humanoid
Gender Gender of the generated humanoid
Iris Size Size of the humanoid iris
Pupil Size Size of the humanoid pupil
Eye Saturation Level of the humanoid eye saturation
Eye Color Color of the humanoid eye
Eye Value Controls the lightness level of iris
Skin Freckles Amount of procedural freckles added to the skin
Skin Oil Brightness of subtle oil effect on the skin
Skin Veins Amount of procedural veins added to the skin

We trained three DNNs in total, two HPD DNNs and one FLD DNN. One HPD DNN (hereafter,

HPD-F) has been trained using IEE-Faces and another one (hereafter, HPD-H) using IEE-Humans. The

FLD DNN has been trained using IEE-Faces; we could not train FLD with IEE-Humans because it does

not provide landmarks for the generated images.

To fine-tune and test the HPD DNNs we relied on the BIWI real-world dataset [118], which contains

over 15, 000 pictures of 20 people faces (6 females and 14 males) annotated with head pose angle. People

were recorded sitting in front of a Kinect [119], which is a motion sensor add-on for the Xbox 360 gaming

console, and were asked to turn their head around trying to span all possible yaw/pitch angles they could

perform. For each image, the head pose angle is computed using FaceShift [120].

For our experiments, we automatically labeled each image with a head pose class derived from the

provided angles; we considered 1,000 close-up pictures— similar to what can be obtained with in-car,

DNN-based sensors—belonging to two persons where one is used for training and the other one for

testing. To generate close-up pictures we performed face detection and image cropping with the Dlib

framework [121]. We could select only two persons from the BIWI dataset because the pictures belonging

63

CHAPTER 4. SIMULATOR-BASED EXPLANATIONS FOR DNN FAILURES

to other subjects were taken far from the camera and thus not useful to mimic a realistic situation with

an in-car camera shooting a driver. Further, to simulate a real-world scenario where the DNN processes

images of people never observed during training, we do not test the DNN using images belonging to

the person used for training. To fine-tune and test the FLD DNN, since we require accurately annotated

landmarks, we relied on a dataset provided by IEE.

Table 4.3 provides the number of images used to fine-tune the DNNs along with the obtained accuracy

(i.e., the percentage of images for which the DNN provides correct outputs).

Table 4.3: Case Study Systems

DNN
Data Source Simulator-based Training Fine-tuning

Simulator Real-
world

Training
Set Size

Test Set
Size

Epochs Training
Set Size

Simulator-
based Test
Set Size

Real-world
Test Set
Size

Epochs

(Accuracy) (Accuracy) (Accuracy) (Accuracy) (Accuracy)
FLD IEE-

Faces
IEE 16,000

(99.92%)
2,750
(44.41%)

10 9,000
(95.44%)

2,825
(43.22%)

1,000
(80.06%)

50

HPD-F IEE-
Faces

BIWI 21,500
(91.20%)

2,750
(85.43%)

18 21,976
(95.35%)

2,200
(87.10%)

500
(51.65%)

9

HPD-H IEE-
Humans

BIWI 15,400
(85.38%)

3,000
(80.21%)

25 18,476
(90.23%)

2,750
(85.23%)

500
(51.03%)

28

Column Data Source provides the names of both the simulator and the real-world dataset used to

train and fine-tune the DNNs. The columns under Simulator-based Training and Fine-tuning provide

details about the size (i.e., number of images) of the training and test sets used in those phases along with

the accuracy of the DNN. The data set used for training the fine-tuned DNNs (FLD, HPD-F, HPD-H)

consists of simulator images (3, 000 for FLD, 21, 500 for HPD-F, 18, 000 for HPD-H) and real-world

images (6, 000 for FLD, 476 for HPD-F, 476 for HPD-H); in Table 4.3, we report the size of the whole

fine-tuning training set, including both simulator and real-world images.

Columns Simulator-based Training – Epochs and Fine-tuning – Epochs report the number of epochs

considered to train and fine-tune the DNNs, respectively. All the DNNs have been fine-tuned for a number

of epochs sufficient to achieve an accuracy above 90% with a training set of simulator and real-world

images.

All the DNNs were implemented with PyTorch [98]. HPD follows the AlexNet architecture [101]

which is commonly used for image classification tasks, while FLD follows the Hourglass architecture [84],

which is optimized for landmarks detection (regression tasks).

In SEDE Step 1, for each case study DNN, we process all the failure-inducing images of the case

study with HUDD to generate RCCs. HUDD’s execution led to 10 RCCs for HPD-F DNN, 11 RCCs for

HPD-H DNN, and 10 RCCs for FLD DNN.

Table 4.4 provides further information about the configuration of SEDE. Since in Steps 2.2 and 2.3

each individual of the initial population matches the reference one (i.e., the individual that should be

similar to the one identified in the final population), we use low crossover and mutation probability to

mutate only a few chromosomes at a time (i.e., we depart from the initial individual slowly).

64

4.4. EVALUATION

Table 4.4: SEDE Configuration

Step Population Size # of iterations Crossover Mutation Avg. Execution Time (hrs.)
probability probability FLD HPD-F HPD-H

2.1 25 100 0.7 0.3 40 40 200
2.2 25 100 0.3 0.3 20 20 100
2.3 25 100 0.3 0.3 20 20 100

4.4.2 Measurements and Results

RQ1. How does PaiR fare, compared to NSGA-II and DeepNSGA-II, for the generation of
diverse images belonging to RCCs?

Design and measurements.

We aim to demonstrate that PaiR, our dedicated algorithm to derive a diverse image population

belonging to a RCC, performs better than NSGA-II and DeepNSGA-II. To this end, we measure the

diversity in the populations generated by the three algorithms over time, for all the RCCs under analysis.

We choose NSGA-II as a baseline for comparison since its crowding distance function is designed to

preserve and optimize the diversity between individuals by prioritizing individuals being more distant

from others, along with individuals at the boundaries of the objective space.

We configured NSGA-II with an objective function (Equation 4.14) that drives the generation of

individuals belonging to the RCC through their normalized distance from the cluster’s medoid, as for PaiR

(Equation 4.5).

FC(i) = RCC distance(C, i) (4.14)

Additionally, we compare PaiR with DeepNSGA-II because the latter is a state-of-the-art solution

to generate a population of individuals that are diverse. To this end, we extended the implementation

provided for DeepJanus [81]. For our experiments, we rely on the following fitness functions:

F1(i) = ChromosomeDistance(i, closest iA) (4.15)

FC
2 (i) = RCC distance(C, i) (4.16)

F1, consistent with DeepJanus and DeepMetis, is computed as the distance between individual i and

the closest individual in the archive (closest iA). FC
2 measures the distance between an individual i and the

medoid of the RCC C under analysis, thus enabling the algorithm to drive the search towards its objective:

generating individuals that belong to C. We execute four independent runs of DeepNSGA-II for each RCC

under analysis. At every search iteration, individuals are added to the archive if they belong to the RCC

under analysis (i.e., FC
2 (i) ≤ 1); we consider a sparseness threshold of zero (i.e., we add to the archive

any individual that differs from the ones already in the archive, which happens when F1(i) > 0). Since,

at the end of the search, the archive may contain a number of individuals larger than the one required

for the next steps of the algorithm (i.e., 25, in our experiments), consistent with PaiR, we select the 25

individuals with the highest F1.

For all three compared algorithms (NSGA-II, DeepNSGA-II, and PaiR), to measure the diversity

of the population, since every individual is represented by a vector with the simulator parameter values

65

CHAPTER 4. SIMULATOR-BASED EXPLANATIONS FOR DNN FAILURES

used to generate the image (chromosome), we compute the average of the chromosome distance across

pairs of individuals in the population. Individuals that do not belong to any cluster are ignored from the

computation of diversity; indeed, such an individual might increase diversity but it would not be useful for

SEDE.

We configured PaiR, NSGA-II, and DeepNSGA-II with the same time budget; precisely, we let

NSGA-II and DeepNSGA-II execute for the duration required by our algorithm to perform 100 iterations.

It amounts to 40 hours for HPD-F and FLD, 200 hours for HPD-H; differences are due to the time taken

by the simulators to generate a single image. We executed PaiR, NSGA-II and DeepNSGA-II for all the

31 RCCs identified for our case study DNNs. To account for randomness, we ran the experiment four

different times for each RCC. With a total of 31 RCCs, the four experiment runs led to the collection of

124 data points, thus enabling statistical analysis within practical execution time.

To compare the increase in diversity achieved over time by the three algorithms, for each RCC, we

recorded the diversity achieved by the three algorithms every hour. Also, we tracked the percentage of

individuals belonging to any RCC—a larger number of such individuals is expected to lead to better

results in later stages of SEDE— and the percentage of covered clusters (i.e., RCCs with at least one

individual belonging to them).

PaiR performs better than NSGA-II and DeepNSGA-II if, over time, the following conditions hold: (1)

the diversity achieved by PaiR is significantly higher than that achieved by NSGA-II and DeepNSGA-II,

which would indicate that PaiR fits better our purpose (i.e., generating a diverse population of individuals);

(2) PaiR generates a larger proportion of individuals belonging to any RCC, which is useful to characterize

RCCs since PART rules can be expected to be more accurate if a larger set of data points is considered; (3)

PaiR covers a larger number of RCCs (i.e., PaiR generates at least one image belonging to each cluster),

thus enabling the characterization of a larger number of RCCs in later SEDE steps.

Experiment Results.

Fig. 4.7 shows the evolution of diversity obtained with PaiR, DeepNSGA-II, and NSGA-II for our

case study DNNs. To simplify visual comparisons, we plot the average, minimum, and maximum diversity

observed at each timestamp (every hour); data points are diversity values observed across the four executed

runs for all RCCs.

In Fig. 4.7, we can observe that, after 13 hours of execution, both PaiR and DeepNSGA-II outperform

NSGA-II; also, with the largest test budget (i.e., 200 hours for HPD-H and 40 hours for HPD-F and

FLD) PaiR performs either similar to DeepNSGA-II (for HPD-F and HPD-H) or outperforms it (FLD).

However, the performance of PaiR and DeepNSGA-II differ, depending on the case study: PaiR has better

initial performance (i.e., within 10 hours) than DeepNSGA-II for the case study subjects relying on a

low-fidelity simulator (i.e., HPD-F and FLD), while DeepNSGA-II has better initial performance than

PaiR for the case study with a high-fidelity simulator (i.e., HPD-H). We believe that such result can be

explained by the fact that, since the low-fidelity simulator provides less configuration parameters, it is

more difficult to generate diverse images than with a high-fidelity simulator. Therefore, with a low-fidelity

simulator it might be easier to achieve higher diversity by continuously evolving the same population (as

done by PaiR) rather than by relying on repopulation (what is integrated into DeepNSGA-II). Indeed,

repopulation forces the algorithm to use the test budget to re-generate images belonging to the RCC rather

than diversifying images already belonging to a RCC.

Further, we can observe that, during the first 10 hours of execution, both PaiR and NSGA-II present

66

4.4. EVALUATION

0 5 10 15 20 25 30 35 40
execution time (hrs)

0.00

0.05

0.10

0.15

0.20

Pa
irw

ise
 C

hr
om

os
om

e
Di

st
an

ce
s

HPD-F
max(PaiR)
avg(PaiR)
min(PaiR)

max(DeepNSGA-II)
avg(DeepNSGA-II)
min(DeepNSGA-II)

max(NSGA-II)
avg(NSGA-II)
min(NSGA-II)

0 25 50 75 100 125 150 175 200
execution time (hrs)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pa
irw

ise
 C

hr
om

os
om

e
Di

st
an

ce
s

HPD-H
max(PaiR)
avg(PaiR)
min(PaiR)

max(DeepNSGA-II)
avg(DeepNSGA-II)
min(DeepNSGA-II)

max(NSGA-II)
avg(NSGA-II)
min(NSGA-II)

0 5 10 15 20 25 30 35 40
execution time (hrs)

0.0

0.1

0.2

0.3

0.4

Pa
irw

ise
 C

hr
om

os
om

e
Di

st
an

ce
s

FLD
max(PaiR)
avg(PaiR)
min(PaiR)

max(DeepNSGA-II)
avg(DeepNSGA-II)
min(DeepNSGA-II)

max(NSGA-II)
avg(NSGA-II)
min(NSGA-II)

Figure 4.7: Evolution of diversity achieved by PaiR compared to NSGA-II and DeepNSGA-II for HPD-F,
HPD-H, and FLD DNNs.

67

CHAPTER 4. SIMULATOR-BASED EXPLANATIONS FOR DNN FAILURES

Table 4.5: RQ1: Average diversity across RCCs for HPD-F

Time (hrs.) Avg. diversity (standard deviation) Statistical test
NSGA-II DeepNSGA-II

PaiR NSGA-II DeepNSGA-II p-value
(U-test)

Effect Size
(Â12)

p-value
(U-test)

Effect Size
(Â12)

5 0.001 (0.002) 0.000 (0.000) 0.003 (0.010) 3.18e-03 0.60 0.159 0.555
10 0.010 (0.017) 0.014 (0.020) 0.007 (0.011) 0.870 0.51 0.190 0.576
15 0.010 (0.013) 0.002 (0.003) 0.011 (0.012) 8.53e-03 0.66 0.843 0.512
20 0.010 (0.014) 0.002 (0.002) 0.011 (0.013) 5.53e-04 0.71 0.843 0.512
25 0.012 (0.013) 0.002 (0.002) 0.015 (0.014) 6.18e-06 0.78 0.711 0.476
30 0.013 (0.014) 0.002 (0.002) 0.015 (0.014) 5.45e-05 0.75 0.771 0.481
35 0.013 (0.014) 0.002 (0.002) 0.015 (0.014) 6.18e-06 0.78 0.741 0.479
40 0.014 (0.015) 0.002 (0.003) 0.016 (0.014) 1.31e-05 0.77 0.640 0.470

Table 4.6: RQ1: Average diversity across RCCs for HPD-H

Time (hrs.) Avg. diversity (standard deviation) Statistical test
NSGA-II DeepNSGA-II

PaiR NSGA-II DeepNSGA-II p-value
(U-test)

Effect Size
(Â12)

p-value
(U-test)

Effect Size
(Â12)

5 0.028 (0.039) 0.028 (0.056) 0.011 (0.045) 0.062 0.612 2.58e-08 0.805
10 0.028 (0.039) 0.005 (0.008) 0.109 (0.083) 5.43e-03 0.669 2.45e-03 0.314
15 0.029 (0.037) 0.002 (0.002) 0.113 (0.077) 5.45e-10 0.880 4.12e-04 0.282
20 0.028 (0.035) 0.002 (0.002) 0.125 (0.067) 5.66e-09 0.860 1.80e-06 0.205
25 0.029 (0.036) 0.010 (0.022) 0.146 (0.061) 4.06e-06 0.785 4.32e-10 0.114
50 0.056 (0.049) 0.003 (0.002) 0.156 (0.047) 2.30e-12 0.934 3.09e-11 0.089
75 0.072 (0.061) 0.003 (0.003) 0.135 (0.014) 1.20e-13 0.959 5.37e-10 0.115
100 0.088 (0.063) 0.004 (0.002) 0.149 (0.015) 1.89e-15 0.992 1.54e-06 0.202
125 0.102 (0.071) 0.004 (0.003) 0.159 (0.012) 6.37e-16 1.0 8.51e-04 0.293
150 0.120 (0.083) 0.004 (0.004) 0.155 (0.020) 6.37e-16 1.0 0.021 0.357
175 0.140 (0.095) 0.003 (0.003) 0.157 (0.017) 6.37e-16 1.0 0.049 0.378
200 0.151 (0.093) 0.004 (0.004) 0.153 (0.016) 6.37e-16 1.0 0.369 0.444

Table 4.7: RQ1: Average diversity across RCCs for FLD

Time (hrs.) Avg. diversity (standard deviation) Statistical test
NSGA-II DeepNSGA-II

PaiR NSGA-II DeepNSGA-II p-value
(U-test)

Effect Size
(Â12)

p-value
(U-test)

Effect Size
(Â12)

5 0.200 (0.077) 0.156 (0.073) 0.010 (0.045) 4.01e-03 0.685 6.06e-13 0.932
10 0.200 (0.077) 0.030 (0.044) 0.178 (0.061) 4.36e-10 0.905 0.015 0.657
15 0.202 (0.077) 0.013 (0.023) 0.181 (0.063) 4.36e-10 0.905 0.028 0.643
20 0.202 (0.077) 0.006 (0.004) 0.182 (0.063) 4.36e-10 0.905 0.013 0.660
25 0.203 (0.077) 0.005 (0.003) 0.183 (0.064) 4.36e-10 0.905 0.028 0.643
30 0.210 (0.080) 0.004 (0.003) 0.184 (0.064) 4.36e-10 0.905 2.08e-03 0.700
35 0.211 (0.080) 0.006 (0.005) 0.185 (0.065) 4.36e-10 0.905 1.60e-03 0.705
40 0.211 (0.080) 0.004 (0.002) 0.185 (0.065) 4.36e-10 0.905 1.60e-03 0.705

a sharp peak for both average and maximum diversity. This is mainly due to the fact that in the first

hours of execution the two algorithms generate a limited number of images belonging to each RCC

(see Fig. 4.8), thus leading to high diversity regardless of the generation strategy. After 10 hours of

execution and the initial peak, for PaiR, we can observe an up-trend in average diversity reaching 0.014,

0.151, and 0.211 for HPD-F, HPD-H, and FLD, respectively. In contrast, NSGA-II presents an average

diversity that keeps decreasing till 15 hours (HPD-F), 50 hours (HPD-H), and 20 hours (FLD), and

then stabilizes around 0.002, 0.004, and 0.004, at much lower levels than PaiR. Such initial peak is

not observed with DeepNSGA-II, likely because of repopulation. Indeed, repopulation slows down the

68

4.4. EVALUATION

identification of images belonging to a cluster: DeepNSGA-II requires between 10 and 75 hours to

generate the same number of RCC images generated by PaiR in five hours, as shown in Tables 4.5 to 4.7,

discussed below. However, repopulation leads to the identification of more diverse images since those

generated by DeepNSGA-II in later iterations are not similar to the ones generated in previous iterations,

as shown by the up-trending DeepNSGA-II curve. For DeepNSGA-II, we observe an average diversity

reaching 0.016 (HPD-F), 0.153 (HPD-H), and 0.185 (FLD), respectively.

Tables 4.5, 4.6, and 4.7 report statistics about the diversity obtained for all RCCs, for PaiR, NSGA-II,

and DeepNSGA-II along with the standard deviation. To compare the three techniques, we also provide

the Vargha and Delaney’s Â12 effect size and p-values resulting from a non-parametric Mann-Whitney

U-test, where each individual observation is the diversity for one RCC in one of the four runs. PaiR

achieves a significantly higher diversity (p-value < 0.05) compared to NSGA-II in all subjects and for all

but two timestamps. For HPD-F, PaiR performs similarly to NSGA-II up to 10 hours of execution but

then outperforms it with a large effect size (i.e., > 0.714)2. Given the safety-critical contexts in which

the DNN under analysis should be adopted, we believe a budget of 20 hours to be acceptable for DNN

analysis. PaiR performs similarly to DeepNSGA-II (i.e., p-value ≥ 0.05), with a higher average diversity

for PaiR up to 10 hours of execution.

For HPD-H, PaiR significantly outperforms NSGA-II at all timestamps except one (i.e., p-value ≥ 0.05

for 5-hour execution). However, DeepNSGA-II performs significantly better than PaiR for all the

timestamps except two. Indeed, at 5 hours of execution PaiR performs significantly better than DeepNSGA-

II with a large effect size and converges to a similar diversity after 200 hours.

For FLD, PaiR performs significantly better than both NSGA-II and DeepNSGA-II, with large and

medium effect sizes, respectively. Compared to HPD-F, which relies on the same simulator used by

FLD, the performance of PaiR could be attributed to the ease of generating images belonging to FLD

clusters; indeed, the radius of FLD clusters range between [27.33, 74.65] while this range for HPD-F is

[0.039, 0.145]. In such situation, PaiR can spend most of the test budget to maximize the diversity of the

generated images.

Fig. 4.8 shows the average, minimum, and maximum percentage of individuals belonging to one of

the RCCs under analysis, observed at each timestamp over the four executed runs. For PaiR, NSGA-II

and DeepNSGA-II, the number of individuals belonging to any RCC increases over time, though this

trend is much steeper for PaiR. Indeed, on average, a larger proportion of the individuals generated by

PaiR belongs to a RCC for a given execution time. This should result in better supporting the generation

of PART rules at later stages of SEDE.

Tables 4.8, 4.9, and 4.10 report statistics about the percentage of individuals belonging to any RCC,

for PaiR, NSGA-II and DeepNSGA-II along with the standard deviation. We report the Â12 statistics and

p-values resulting from a non-parametric Mann-Whitney U-test, where each observation is the percentage

of individuals belonging to one cluster in one of the four runs. PaiR achieves a significantly higher number

of individuals belonging to RCCs (p-value < 0.05) compared to NSGA-II, for all subjects and timestamps

except three. Compared to DeepNSGA-II, PaiR identifies a significantly higher number of individuals

belonging to RCCs for all the cases except FLD, where both techniques fare similarly.

For HPD-F, around 10 hours of execution, PaiR performs similarly to NSGA-II; both PaiR and

NSGA-II perform significantly better than DeepNSGA-II. However, with a time budget of 25 hours PaiR

2Please note that effect size is considered medium when 0.638 < Â12 < 0.714, large when Â12 ≥ 0.714 [122].

69

CHAPTER 4. SIMULATOR-BASED EXPLANATIONS FOR DNN FAILURES

Table 4.8: RQ1: Percentage of individuals belonging to RCCs for HPD-F

Time (hrs.) Avg. (standard deviation) % of individuals
belonging to RCCs Statistical test

NSGA-II DeepNSGA-II

PaiR NSGA-II DeepNSGA-II p-value
(U-test)

Effect Size
(Â12)

p-value
(U-test)

Effect Size
(Â12)

5 6.7% (14.162) 0.0% (0.0) 0.60% (2.134) 2.06e-04 0.65 8.72e-03 0.616
10 42.0% (47.27) 32.0% (44.36) 10.2% (22.72) 0.309 0.56 7.01e-03 0.656
15 60.0% (49.61) 40.0% (49.61) 25.7% (33.77) 0.076 0.60 7.48e-04 0.705
20 60.0% (49.61) 40.0% (49.61) 31.7% (37.10) 0.076 0.60 7.48e-04 0.705
25 60.7% (48.82) 40.0% (49.61) 38.9% (38.84) 0.024 0.63 9.77e-04 0.706
30 70.0% (46.41) 40.0% (49.61) 42.1% (40.36) 7.48e-03 0.65 2.10e-05 0.764
35 70.0% (46.41) 40.0% (49.61) 44.5% (40.98) 7.48e-03 0.65 2.09e-05 0.764
40 70.0% (46.41) 40.0% (49.61) 45.2% (41.17) 7.48e-03 0.65 2.88e-05 0.760

Table 4.9: RQ1: Percentage of individuals belonging to RCCs for HPD-H

Time (hrs.) Avg. (standard deviation) % of individuals
belonging to RCCs Statistical test

NSGA-II DeepNSGA-II

PaiR NSGA-II DeepNSGA-II p-value
(U-test)

Effect Size
(Â12)

p-value
(U-test)

Effect Size
(Â12)

5 50.91% (39.87) 27.27% (35.60) 0.91% (2.84) 1.24e-03 0.694 2.26e-12 0.909
10 70.91% (40.80) 41.09% (42.93) 8.55% (4.69) 3.75e-06 0.776 8.78e-08 0.824
15 85.45% (32.38) 45.45% (43.00) 9.45% (4.32) 1.24e-10 0.880 6.01e-12 0.909
20 90.91% (23.41) 49.09% (40.58) 10.27% (4.26) 6.38e-12 0.909 4.36e-17 1.0
25 92.73% (23.26) 59.27% (36.63) 10.91% (3.89) 2.71e-13 0.929 1.48e-17 1.0
50 98.18% (5.82) 66.18% (35.71) 20.64% (19.92) 1.87e-14 0.950 3.41e-17 1.0
75 100.0% (0.0) 66.18% (35.71) 61.09% (34.37) 5.02e-18 1.0 5.39e-18 1.0
100 100.0% (0.0) 68.00% (32.60) 71.36% (26.34) 5.14e-18 1.0 5.48e-18 1.0
125 100.0% (0.0) 74.55% (29.29) 73.36% (24.22) 4.44e-18 1.0 5.38e-18 1.0
150 100.0% (0.0) 74.55% (29.29) 77.91% (18.79) 4.44e-18 1.0 5.24e-18 1.0
175 100.0% (0.0) 74.55% (29.29) 82.55% (13.89) 4.44e-18 1.0 4.92e-18 1.0
200 100.0% (0.0) 74.55% (29.29) 84.36% (11.60) 4.44e-18 1.0 4.76e-18 1.0

Table 4.10: RQ1: Percentage of individuals belonging to RCCs for FLD

Time (hrs.) Avg. (standard deviation) % of individuals
belonging to RCCs Statistical test

NSGA-II DeepNSGA-II

PaiR NSGA-II DeepNSGA-II p-value
(U-test)

Effect Size
(Â12)

p-value
(U-test)

Effect Size
(Â12)

5 90.0% (30.38) 78.80% (28.13) 5.0% (22.07) 5.42e-11 0.905 4.06e-14 0.925
10 90.0% (30.38) 78.80% (28.13) 90.0% (30.38) 5.42e-11 0.905 1.0 0.5
15 90.0% (30.38) 78.80% (28.13) 90.0% (30.38) 5.42e-11 0.905 1.0 0.5
20 90.0% (30.38) 78.80% (28.13) 90.0% (30.38) 5.42e-11 0.905 1.0 0.5
25 90.0% (30.38) 78.80% (28.13) 90.0% (30.38) 5.42e-11 0.905 1.0 0.5
30 90.0% (30.38) 78.80% (28.13) 90.0% (30.38) 5.42e-11 0.905 1.0 0.5
35 90.0% (30.38) 78.80% (28.13) 90.0% (30.38) 5.42e-11 0.905 1.0 0.5
40 90.0% (30.38) 78.80% (28.13) 90.0% (30.38) 5.42e-11 0.905 1.0 0.5

performs significantly better than both NSGA-II and DeepNSGA-II, with an effect size above 0.60. For

HPD-H, PaiR significantly outperforms NSGA-II and DeepNSGA-II (p-value < 0.05); effect size is

always large (above 0.78 in our cases) except for one case (medium, for 5-hour execution with NSGA-II).

For HPD-F and HPD-H, we conjecture that DeepNSGA-II performs worse than PaiR because the

images in a RCC are very similar to each other and several mutations of the best images in a population

are needed to generate additional images belonging to a same RCC; such observation is supported by the

70

4.4. EVALUATION

plot for HPD-F, where PaiR lays in an intermediate plateau before reaching its best average result. The

repopulation operator adopted by DeepNSGA-II may prevent DeepNSGA-II from generating individuals

that belong to the RCC and are different from the already generated ones (e.g., after repopulation,

DeepNSGA-II end-ups with images that match the ones already generated because they are simpler to

generate).

For FLD, PaiR quickly reaches (in less than 5 hours) a plateau for the average (90%) and max (100%)

percentages of individuals per RCC. Though NSGA-II reaches its plateau in less than 5 hours, its plateau

is lower than PaiR’s (78.8% vs. 90.0%). Further, DeepNSGA-II reaches the same plateau values as PaiR

but requires more time (i.e., 8 hours for the peak of the average curve). These results are mainly due to the

ease of generating images belonging to most FLD clusters; indeed, all three algorithms quickly reach their

peaks. However, both PaiR and DeepNSGA-II do not improve over 90% because they do not cover one

RCC. In other words, for FLD, when PaiR and DeepNSGA-II analyse a cluster that they can cover, both

generate a population of images that fully belongs to the cluster. The same observation cannot be made

for NSGA-II; indeed, although all three algorithms cover the same FLD clusters, PaiR and DeepNSGA-II

achieve a higher percentage of individuals per cluster. NSGA-II probably gets stuck in local optima.

Fig. 4.9 shows the percentage of clusters covered by PaiR, NSGA-II and DeepNSGA-II, for all

subjects. PaiR is capable of covering (generating representative images of) a larger number of RCCs

(27, in total): 7 out of 10 RCCs (70.0%) for HPD-F, 11 out of 11 RCCs (100.0%) for HPD-H, and 9 out

of 10 RCCs (90.0%) for FLD. DeepNSGA-II covers a lower number of clusters (26, in total): 6 out of

10 RCCs (60.0%) for HPD-F, 11 out of 11 RCCs (100.0%) for HPD-H, and 9 out of 10 RCCs (90.0%)

for FLD. NSGA-II, instead, covers only 23 RCCs: 4 out of 10 RCCs (40.0%) for HPD-F, 10 out of

11 RCCs (90.9%) for HPD-H, and 9 out of 10 RCCs (90.0%) for FLD. Since the cases in which PaiR

does not cover all the clusters are the ones involving a simulator with a lower number of configuration

parameters (i.e., HPD-F and FLD), we believe that our imperfect results are due to our limited control of

the simulator in use. However, PaiR still performs better than NSGA-II and DeepNSGA-II, thus showing

that it can better leverage the capabilities of the simulator. We conclude that PaiR is a better choice than

both DeepNSGA-II and NSGA-II since it helps explain a larger number of RCCs, 27 (87.1%) compared

to 26 (83.8%) with DeepNSGA-II and 23 (74.1%) with NSGA-II.

Tables 4.11, 4.12, and 4.13 report the percentage of covered RCCs across the four runs, for PaiR,

NSGA-II and DeepNSGA-II. Further, we report the p-value computed with a non-parametric Fisher’s

exact test where we compare the number of clusters covered by PaiR and the competing approaches.

Unsurprisingly, there is no significant difference for FLD, where the three algorithms cover almost all the

clusters because of the easiness of the task (see discussion above). Differences with DeepNSGA-II tend to

be not significant, which indicates that covering a cluster is a simple task for both algorithms. However,

differences are always significant for small time budget; indeed, up to 5 hours, PaiR covers more clusters.

A higher number of significant differences is instead observed when comparing PaiR to NSGA-II.

To summarize, our results suggest that the adoption of PaiR is the best choice in our context; indeed,

PaiR can (1) generate images for a larger number of RCCs than NSGA-II and DeepNSGA-II, (2) generate

significantly more images belonging to each RCC, compared to both DeepNSGA-II and NSGA-II, and, (3)

achieve significantly higher image diversity than NSGA-II and similar diversity to that of DeepNSGA-II,

except for one case study, where PaiR outperforms DeepNSGA-II.

In the rest of our evaluation, we ignore the clusters for which PaiR was not able to identify representa-

71

CHAPTER 4. SIMULATOR-BASED EXPLANATIONS FOR DNN FAILURES

Table 4.11: RQ1: Percentage of covered RCCs for HPD-F

Time (hrs.) Avg. % of covered RCCs p-value (Fisher’s Exact)
PaiR NSGA-II DeepNSGA-II NSGA-II DeepNSGA-II

5 30.0% 0.0% 7.5% 1.85e-04 0.019
10 50.0% 40.0% 32.5% 0.5 0.172
15 60.0% 40.0% 47.5% 0.117 0.369
20 60.0% 40.0% 47.5% 0.117 0.369
25 70.0% 40.0% 57.5% 0.012 0.352
30 70.0% 40.0% 57.5% 0.012 0.352
35 70.0% 40.0% 57.5% 0.012 0.352
40 70.0% 40.0% 60.0% 0.012 0.482

Table 4.12: RQ1: Percentage of covered RCCs for HPD-H

Time (hrs.) Avg. % of covered RCCs p-value (Fisher’s Exact)
PaiR NSGA-II DeepNSGA-II NSGA-II DeepNSGA-II

5 81.82% 45.45% 11.36% 7.54e-04 1.84e-11
10 81.82% 54.55% 93.18% 0.011 0.195
15 90.91% 54.55% 100.0% 2.27e-04 0.116
20 100.0% 63.64% 100.0% 5.75e-06 1.0
25 100.0% 81.82% 100.0% 5.51e-03 1.0
50 100.0% 81.82% 100.0% 5.51e-03 1.0
75 100.0% 81.82% 100.0% 5.51e-03 1.0
100 100.0% 90.91% 100.0% 0.116 1.0
125 100.0% 90.91% 100.0% 0.116 1.0
150 100.0% 90.91% 100.0% 0.116 1.0
175 100.0% 90.91% 100.0% 0.116 1.0
200 100.0% 90.91% 100.0% 0.116 1.0

Table 4.13: RQ1: Percentage of covered RCCs for FLD

Time (hrs.) Avg. % of covered RCCs p-value (Fisher’s Exact)
PaiR NSGA-II DeepNSGA-II NSGA-II DeepNSGA-II

5 90.0% 90.0% 5.0% 1.0 1.47e-15
10 90.0% 90.0% 90.0% 1.0 1.0
15 90.0% 90.0% 90.0% 1.0 1.0
20 90.0% 90.0% 90.0% 1.0 1.0
25 90.0% 90.0% 90.0% 1.0 1.0
30 90.0% 90.0% 90.0% 1.0 1.0
35 90.0% 90.0% 90.0% 1.0 1.0
40 90.0% 90.0% 90.0% 1.0 1.0

tive images (Step 2.1), as described above. Also, we ignore one cluster for which SEDE did not identify

unsafe images (Step 2.2), possibly because the hazard-triggering event is the presence of jewelry, which is

not generated by our simulator. In total, we ignore three clusters in the case of HPD-F, and one cluster for

HPD-H and FLD.

72

4.4. EVALUATION

0 5 10 15 20 25 30 35 40
execution time (hrs)

0

20

40

60

80

100

%
 o

f i
nd

iv
id

ua
ls

be
lo

ng
in

g
to

 e
ac

h
RC

C

HPD-F
max(PaiR)
avg(PaiR)
min(PaiR)

max(DeepNSGA-II)
avg(DeepNSGA-II)
min(DeepNSGA-II)

max(NSGA-II)
avg(NSGA-II)
min(NSGA-II)

0 25 50 75 100 125 150 175 200
execution time (hrs)

0

20

40

60

80

100

%
 o

f i
nd

iv
id

ua
ls

be
lo

ng
in

g
to

 e
ac

h
RC

C

HPD-H
max(PaiR)
avg(PaiR)
min(PaiR)

max(DeepNSGA-II)
avg(DeepNSGA-II)
min(DeepNSGA-II)

max(NSGA-II)
avg(NSGA-II)
min(NSGA-II)

0 5 10 15 20 25 30 35 40
execution time (hrs)

0

20

40

60

80

100

%
 o

f i
nd

iv
id

ua
ls

be
lo

ng
in

g
to

 e
ac

h
RC

C

FLD
max(PaiR)
avg(PaiR)
min(PaiR)

max(DeepNSGA-II)
avg(DeepNSGA-II)
min(DeepNSGA-II)

max(NSGA-II)
avg(NSGA-II)
min(NSGA-II)

Figure 4.8: Percentage of individuals belonging to a cluster generated by PaiR compared to NSGA-II and
DeepNSGA-II for HPD-F, HPD-H, and FLD DNNs.

73

CHAPTER 4. SIMULATOR-BASED EXPLANATIONS FOR DNN FAILURES

0 5 10 15 20 25 30 35 40
execution time (hrs)

0

20

40

60

80

100

%
 o

f c
ov

er
ed

 c
lu

st
er

s

HPD-F
PaiR DeepNSGA-II NSGA-II

0 25 50 75 100 125 150 175 200
execution time (hrs)

0

20

40

60

80

100

%
 o

f c
ov

er
ed

 c
lu

st
er

s

HPD-H
PaiR DeepNSGA-II NSGA-II

0 5 10 15 20 25 30 35 40
execution time (hrs)

0

20

40

60

80

100

%
 o

f c
ov

er
ed

 c
lu

st
er

s

FLD
PaiR DeepNSGA-II NSGA-II

Figure 4.9: Percentage of clusters covered by PaiR, NSGA-II and DeepNSGA-II for HPD-F, HPD-H, and
FLD DNNs.

74

4.4. EVALUATION

RQ2. Does SEDE generate simulator images that are close to the center of each RCC?

Design and measurements.

This research question evaluates whether the images generated by SEDE for each RCC are closer to

the medoid of the RCC than random failing images. Otherwise, we cannot claim that SEDE contributes to

generating images that help characterize the RCC.

To measure the distance of an image from the RCC medoid we once again rely on the heatmap

distance between the RCC medoid and the image (Equation 4.2).

For each RCC, we compute the distance between the RCC medoid and every image generated by

SEDE to characterize the RCC in Step 2.1. Also, we compute the distance of the unsafe images in the

simulator-based test set (i.e., random failing images) from the RCC medoid. To positively answer our

research question, for each RCC, the average distance from the medoid to the images generated by SEDE

should be significantly smaller than the average distance obtained with random unsafe simulated images,

based on a non-parametric Mann-Whitney U-test.

Table 4.14: RQ2: Average distance from RCC’s medoid for HPD-F (RCCs 1 to 7), HPD-H (RCCs 8 to
17) and FLD (RCCs 18 to 26).

Case Study Subject RCC Avg. distance from medoid p-value
(U-test)

Effect Size
(Â12)

SEDE Images Unsafe Images

HPD-F

1 0.075 0.469 5.11e-17 1.0
2 0.118 0.480 4.52e-16 1.0
3 0.058 0.476 7.17e-17 1.0
4 0.072 0.459 2.12e-16 1.0
5 0.085 0.457 6.45e-16 1.0
6 0.128 0.470 1.48e-16 1.0
7 0.096 0.439 5.43e-17 1.0

HPD-H

8 0.057 0.135 1.52e-14 1.0
9 0.047 0.120 3.47e-14 1.0
10 0.067 0.134 1.43e-08 0.98
11 0.050 0.110 5.61e-12 1.0
12 0.098 0.183 4.81e-17 1.0
13 0.068 0.208 3.33e-17 1.0
14 0.101 0.214 1.13e-13 1.0
15 0.060 0.156 2.28e-17 1.0
16 0.067 0.159 7.11e-17 1.0
17 0.107 0.126 5.43e-03 0.91

FLD

18 25.66 46.28 1.79e-08 0.985
19 20.03 41.90 2.87e-10 1.0
20 45.17 56.84 4.12e-03 0.910
21 32.95 49.99 1.22e-05 0.965
22 49.99 57.64 0.037 0.845
23 35.63 48.03 3.84e-03 0.905
24 51.10 58.63 0.048 0.645
25 64.45 72.75 5.12e-04 0.940
26 42.11 53.30 4.32e-04 0.945

Experiment Results.

75

CHAPTER 4. SIMULATOR-BASED EXPLANATIONS FOR DNN FAILURES

Fig. 4.10 shows boxplots reporting, for all RCCs across DNNs, the heatmap distances from RCC

medoids, for images in the unsafe test set and those generated by SEDE for every RCC in Step 2.1.

Fig. 4.10 shows that the images generated by SEDE (i.e., boxplots with IDs 1 to 26) are much closer to

the RCC medoid than random unsafe images (i.e., boxplots with IDs UI-1 to UI-26). Indeed, with SEDE,

the median lays in the ranges [0.056, 0.125] for HPD-F, [0.048, 0.113] for HPD-H, and [18.6, 64.3] for

FLD. For random unsafe images, the median tends to be much higher and lays in the ranges [0.38, 0.48]

for HPD-F, [0.08, 0.24] for HPD-H, and [42.0, 73.6] for FLD.

UI
-1

1 UI
-2

2 UI
-3

3 UI
-4

4 UI
-5

5 UI
-6

6 UI
-7

7

RCC (HPD-F)

0.2

0.4

0.6

0.8

1.0

He
at

m
ap

 D
ist

an
ce

s f
ro

m
 R

CC
's

m
ed

oi
d

UI
-8

8 UI
-9

9 UI
-10

10 UI
-11

11 UI
-12

12 UI
-13

13 UI
-14

14 UI
-15

15 UI
-16

16 UI
-17

17

RCC (HPD-H)

0.05

0.10

0.15

0.20

0.25

0.30

He
at

m
ap

 D
ist

an
ce

s f
ro

m
 R

CC
's

m
ed

oi
d

UI
-18

18 UI
-19

19 UI
-20

20 UI
-21

21 UI
-22

22 UI
-23

23 UI
-24

24 UI
-25

25 UI
-26

26

RCC (FLD)

10

20

30

40

50

60

70

80

90

He
at

m
ap

 D
ist

an
ce

s f
ro

m
 R

CC
's

m
ed

oi
d

Figure 4.10: Heatmap distances of SEDE images from the medoid of HPD-F, HPD-H, and FLD RCCs
compared to unsafe test set images (UI).

Table 4.14 provide, for each RCC across DNNs, the average distance of SEDE images and random

unsafe images, along with p-values and effect size.

On average, SEDE images are closer to the medoid of the clusters by 80.7% for HPD-F, 54.6%

for HPD-H and 24.9% for FLD. These differences with unsafe test set images are always statistically

significant (p-value < 0.05) with a large effect size.

RQ3. Does SEDE generate, for each RCC, a set of images sharing similar characteristics?

Design and measurements.

This research question assesses if the images generated by SEDE for each RCC, present similar

characteristics (i.e., similar values for a subset of the simulator parameters). If this is true, for each RCC,

76

4.4. EVALUATION

we should observe a subset of parameters with a variance that is significantly lower than the variance

observed in randomly generated images.

For each RCC, instead of comparing the variance of each parameter p, which depends on the parameter

range, we can compare the variance reduction rate (VRR), which can be computed as the ratio of the

variance for a parameter p for a given RCC Ci over that of a set of randomly generated images:

VRRCi(p) = 1− variance of p for the images in Ci

variance of p for a set of random images
(4.17)

For a parameter, a positive VRR indicates that its values are likely to be constrained to a smaller

range than the one of the input domain. A 0.5 VRR means that the variance is reduced by 50%, which is

considered to be a high reduction rate [18].

For each RCC, we compute VRR for each parameter. We positively answer our research question if,

for a large number of RCCs, a subset of parameters presents a large VRR (> 0.5).

Experiment Results.

Fig. 4.11 provides boxplots capturing the distribution of the variance reduction for each of the 26

RCCs. Each data point in a boxplot captures the variance reduction of one parameter.

0.5

RCC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

V
ar

ia
n

ce
 R

ed
u

ct
io

n
 R

at
e

0.4

0.2

0.0

0.6

0.8

1.0

Figure 4.11: Variance reduction for all simulator parameters associated with generated images in the
RCCs of HPD-F (boxplots 1 to 7), HPD-H (boxplots 8 to 17), and FLD (boxplots 18 to 26) DNNs.

Fig. 4.11 shows that for all the RCCs except boxplot 17, the top whisker is above 0.8; since the top

whisker reports the max value (excluding outliers3) observed for a parameter, such result indicates that for

all RCCs except one, we can observe at least one parameter with a high variance reduction, thus enabling

us to positively answer our research question. Also, for 20 out of 26 clusters, the third quartile is above

0.5. Since it indicates the lowest value for the 25% data points having the highest variance reduction, it

means that in 20 RCCs, 25% of the parameters present a variance reduction rate above 0.5. Therefore, for

a large proportion of RCCs (77%), more than one parameter present a large variance reduction, which

3In our boxplots, upperwhisker = min(max(x), Q3 +1.5 ∗ IQR), lowerwhisker = max(min(x), Q1 − 1.5 ∗ IQR)),
with IQR being the Inter Quartile Range and Qx the x-th quantile.

77

CHAPTER 4. SIMULATOR-BASED EXPLANATIONS FOR DNN FAILURES

indicates that the hazard-triggering event is captured by several parameters (i.e., a specific combination of

parameter values is needed to make the DNN fail).

RQ4. Do the RCC expressions identified by SEDE delimit an unsafe space?

Design and measurements.

For each RCC, SEDE provides a set of expressions representing conjunctions of parameter ranges that

characterize the unsafe images in the RCC. This research question evaluates if these expressions actually

characterize an unsafe space, which implies that images whose parameters match such an expression are

more likely to trigger a DNN failure than those that do not.

To address this research question, for each RCC, we generated 500 images matching the RCC

expression and computed the DNN accuracy obtained with these images. To generate each image, for

each simulator parameter, we selected a random value in the range provided in the expression. Also, we

considered a random input set consisting of 500 images selected from the randomly generated simulator

images used to test the fine-tuned DNN (see column Simulator-based Test Set in Table 4.3).

TestSet images SEDE images
HPD-F DNN

10

20

30

40

50

60

70

80

90

DN
N

Ac
cu

ra
cy

 o
n

Si
m

ul
at

or
 Im

ag
es

 (%
)

TestSet images SEDE images
HPD-H DNN

40

50

60

70

80

DN
N

Ac
cu

ra
cy

 o
n

Si
m

ul
at

or
 Im

ag
es

 (%
)

TestSet images SEDE images
FLD DNN

0

10

20

30

40

DN
N

Ac
cu

ra
cy

 o
n

Si
m

ul
at

or
 Im

ag
es

 (%
)

Figure 4.12: Percentage of correctly classified images observed on SEDE images compared to the random
test set images for HPD-F, HPD-H, and FLD DNNs.

We can positively answer our research question if, for a large subset of RCCs, the images generated

from RCC expressions lead to a significantly lower DNN accuracy 4 than randomly generated images, for
4Recall that accuracy is 100% minus the percentage of inputs leading to DNN failures (i.e., if 90% of the inputs generated

by SEDE is failure-inducing, we will observe an accuracy of 10%).

78

4.4. EVALUATION

each RCC. Since, for each RCC, we compare two image groups (i.e., 500 random images and 500 images

generated by SEDE) labeled with a categorical variable (i.e., indicating if the DNN produces a correct

output), we rely on the Fisher’s exact test to assess differences in proportions of images leading to DNN

failures.

Experiment Results.

Fig. 4.12 provides boxplots capturing the accuracy obtained with the random test set images and those

generated according to RCC expressions. Each data point in the SEDE images boxplots corresponds to

the DNN accuracy of one of the 26 RCC expressions.

The accuracy observed with the random test sets for HPD-F, HPD-H, and FLD DNNs is 87.0%,

85.2%, and 43.2%, respectively. In contrast, the images generated according to RCC expressions lead

to much lower accuracy in the ranges [6.2%, 79.8%], [34.0%, 66.6%], and [2.0%, 39.2%], for HPD-F,

HPD-H and FLD, respectively. Moreover, for 25 out of 26 clusters, SEDE generates images leading to

an accuracy that, based on a Fisher’s exact test (see Table 4.15), significantly differs from the accuracy

obtained with random images. Since in 25 out of 26 RCCs (96.15%) the RCC expressions generated by

SEDE clearly delimit an unsafe space, we can positively answer RQ4.

Table 4.15: RQ4: HPD-F (RCCs 1 to 7), HPD-H (RCCs 8 to 17), and FLD (RCCs 18 to 26) accuracy
within the unsafe space identified by SEDE compared to the whole input space.

Case Study Subject RCC DNN Accuracy p-value
(Fisher’s Exact)

SEDE Unsafe Set Random Input Set

HPD-F

1 10.2%

87.0%

7.40e-73
2 67.4% 9.25e-04
3 6.2% 9.11e-88
4 79.8% 0.047
5 73.0% 0.019
6 59.8% 2.28e-06
7 53.6% 2.43e-09

HPD-H

8 39.4%

85.2%

1.26e-19
9 50.6% 1.19e-10
10 34.0% 4.84e-25
11 49.0% 1.31e-11
12 41.0% 7.47e-18
13 51.8% 5.66e-10
14 66.6% 1.73e-03
15 52.8% 2.19e-09
16 56.6% 2.32e-07
17 50.2% 7.14e-10

FLD

18 39.2%

43.2%

0.30
19 19.6% 4.77e-13
20 30.0% 9.19e-88
21 32.8% 4.88e-03
22 19.6% 4.39e-13
23 32.8% 4.12e-03
24 27.0% 2.82e-06
25 2.0% 2.49e-58
26 31.0% 6.31e-04

79

CHAPTER 4. SIMULATOR-BASED EXPLANATIONS FOR DNN FAILURES

RQ5. How does SEDE compare to state-of-the-art DNN accuracy improvement practices?

Design and measurements.

This research question aims to determine if SEDE performs better than state-of-the-art solutions. We

compare SEDE with HUDD since it is the only approach that works with real-world images and addresses

both root cause explanations and retraining (Chapter 3). Further, other retraining approaches [70, 123, 124,

71, 125, 126] generate retraining images through pixel value transformation (e.g., image contrast, image

brightness, image blur, and image noise), affine transformation (e.g., image translation, image scaling,

image shearing, and image rotation), or adversarial modification (e.g., Fast Gradient Signed Method

(FGSM) [127], Projected Gradient Descent (PGD) [128], Carlini & Wagner (C&W) [129]). None of these

approaches, however, aims to generate images similar to real-world, failure-inducing ones targeted by

SEDE. In addition, DNNs might be inaccurate because either trained for a limited number of epochs or

with a limited number of inputs; in such cases, retraining the DNN for additional epochs with a larger

set of randomly selected inputs would suffice. For this reason, we consider a baseline approach which

consists of retraining the DNN with an additional set of randomly generated images.

Regarding SEDE, we followed the procedure described in Section 4.3.3. The third column of

Table 4.16 provides the size of the training set considered to retrain each DNN; precisely, we report the

total number of simulator images generated according to SEDE expressions (Unsafe Set), the number of

simulator images retained from the simulator training set (Training Set Sim.) and the number of real-world

images retained from the set used for fine-tuning (Training Set Real). For each RCC, we have generated,

with SEDE, 50 images to be used for retraining. As anticipated in Section 4.3.3, we retained 5% of the

images in the original simulator-based training set, and all the real-world images used to fine-tune the

DNN.

In the case of HUDD, we applied its selection algorithm to sample, from an improvement set, 50

images for each RCC (HUDD selects the images that are closer to the RCC centroid). We generated an

improvement set with random face images (i.e., generated by randomly selecting simulator parameter

values). To avoid bias, we selected for each case study DNN the same number of images as that generated

by SEDE (i.e., 50 images for each RCC), which led to a total of 450 images for FLD, 350 for HPD-F, and

500 for HPD-H.

Concerning RBL, for each case study DNN, we generated a retraining set consisting of a number of

randomly generated simulator images and real-world images. To avoid unfair comparisons, the randomly

generated images match in number the images selected by SEDE.

Further, for all the three approaches described above (i.e., SEDE, HUDD, and random baseline),

we followed the SEDE retraining process, which consists of retraining the DNN for multiple times and

selecting the DNN yielding the best test set accuracy. In our experiments, since each retraining task takes

approximately three hours, we performed three retraining tasks since they can be performed overnight,

which is acceptable in practice. For all the approaches, we constructed the retraining data set in the same

way as SEDE. It consists of the images selected by the approach under analysis, a random selection of

images from the original simulator-based training set (5% of the whole set), and all the real-world images

used to fine-tune the DNN. To account for randomness, for each approach, we repeated the experiment

ten times (i.e., for ten times, we selected the best DNN generated out of three runs). For each approach,

we generate ten DNNs.

To positively answer our research questions, SEDE should lead to retrained DNNs with an accuracy

80

4.4. EVALUATION

that is significantly higher than the one observed when retraining the DNN using either HUDD or the

random baseline.

Experiment Results.

Columns five to seven (i.e., RBL, HUDD, and SEDE) in Table 4.16 show the average accuracy of the

three approaches across ten runs along with the delta with respect to the original DNN model. Also, for

SEDE, we report the delta with respect to the best competing approach (i.e., HUDD or random baseline).

Finally, we report p-values using a non-parametric Mann–Whitney U-test, for statistical significance, and

the Â12 statistics, for effect size.

SEDE, on average, improves the DNN for FLD, HPD-F and HPD-H by +6.07%, +4.50% and

+18.65%; the other two approaches, instead, do not improve the HPD-F and FLD DNNs but decrease

their performance. For HPD-H, HUDD and the random baseline led to an improvement that is lower

than SEDE’s, +9.62% and +4.54%, respectively. We believe that in the case of HPD-F and FLD, the

retraining based on HUDD and random decrease the DNN performance because the simulator being

used generates images that are less realistic; such characteristic leads to the generation of images that are

unlikely to include hazard-triggering events and, in turn, the retraining set selected by HUDD and random

is not likely to include unsafe images. Since the retraining is performed using (1) the images selected by

the approach under analysis, (2) a subset of the original training set, and (3) the real-world training set,

safe cases will be over-represented in the training set. In general, unsafe images that are present in the

original training set may not be retained for retraining.

Similar to the above, we believe that, since it is complicated for IEE-Faces to generate unsafe images,

in the case of HPD-F and FLD, SEDE led to a more limited improvement in accuracy than in the case of

HPD-H: +4.50% and +6.07% vs +18.65%.

Finally, SEDE, on average, improves the DNN results by 9 percentage points over the best competing

approach (i.e., +6.19% for FLD, +10.35% for HPD-F, and +9.03% for HPD-H). The difference is always

statistically significant (p-value < 0.05) with a large effect size.

Table 4.16: RQ5: Unsafe set size and the accuracy improvement of SEDE compared to HUDD and
random baseline (RBL).

DNN
Original
Model

Accuracy
Retraining Set Size

RBL
Accuracy

(Gain)

HUDD
Accu-
racy

(Gain)

SEDE Stat. Sig.

Training Set
(Sim. + Real)

Unsafe
Set

Accuracy
(Gain)

Gain over
best baseline p-value Â12

FLD 80.06% 150 + 6,000 450
77.41%

(-2.65%)

79.94%
(-

0.11%)

86.14%
(+6.07%)

+6.19% 1.8e-04 1.0

HPD-F 51.65% 1,075 + 476 350
44.33%

(-7.32%)

45.80%
(-

5.85%)

56.15%
(+4.50%)

+10.35% 4.4e-04 0.94

HPD-H 51.03% 900 + 476 500
55.57%

(+4.54%)
60.65%

(+9.62%)
69.68%

(+18.65%)
+9.03% 1.1e-04 1.0

Figure 4.13 shows boxplots with the accuracy of the DNNs retrained using SEDE, HUDD, and the

random baseline. Each data point captures the accuracy obtained in one of the ten retraining runs.

The boxplots of SEDE overlap with the boxplot of a competing approach only in one case (i.e., the

max value for the random baseline), thus suggesting that SEDE performs significantly better with a strong

81

CHAPTER 4. SIMULATOR-BASED EXPLANATIONS FOR DNN FAILURES

Original
HPD-F DNN

Random Baseline
DNN

HUDD
DNN

SEDE
DNN

35

40

45

50

55

60

DN
N

Ac
cu

ra
cy

 o
n

Re
al

-w
or

ld
 Im

ag
es

 (%
)

Original
HPD-H DNN

Random Baseline
DNN

HUDD
DNN

SEDE
DNN

50

55

60

65

70

DN
N

Ac
cu

ra
cy

 o
n

Re
al

-w
or

ld
 Im

ag
es

 (%
)

Original
FLD DNN

Random Baseline
DNN

HUDD
DNN

SEDE
DNN

76

78

80

82

84

86

88

DN
N

Ac
cu

ra
cy

 o
n

Re
al

-w
or

ld
 Im

ag
es

 (%
)

Figure 4.13: DNN accuracy on real-world test set images after retraining by SEDE compared to HUDD
and random baseline for HPD-F, HPD-H and FLD case study DNNs.

effect size; indeed, competing approaches never lead to a better DNN than SEDE.

82

4.4. EVALUATION

4.4.3 Threats to Validity

Internal Validity: In our work, we rely on clusters to capture different root causes of a DNN failure

where the quality of clusters largely affects the characterization of an unsafe space. This threat is mitigated

by empirical results demonstrating that HUDD clusters include images with similar characteristics [18].

External Validity: The selection of the case study DNNs and simulators may affect the generalizability

of results. We alleviate this issue by selecting subject DNNs that implement classification and regressions

tasks motivated by IEE business needs and addressing problems that are quite common in the automotive

industry.

Moreover, we rely on two simulators that differ in their fidelity and number of configuration parameters.

As we have seen, these characteristics affect the effectiveness of retraining and SEDE’s capacity to identify

hazard-triggering events. We focus on DNNs processing human faces because they are the focus of our

project partners at IEE; we did not consider DNNs performing other tasks (e.g., processing road images)

because an industrial case study on that topic was not available for our project.

Conclusion Validity: To avoid violating parametric assumptions in our statistical analysis, we rely on a

non-parametric test and effect size measure (i.e., Mann Whitney U-test and the Vargha and Delaney’s Â12

statistics, respectively) to evaluate the statistical and practical significance of differences in results. When

comparing classification results (i.e., RQ4) we applied the Fisher’s exact test, which is commonly used in

similar contexts.

Further, for RQ1, we executed the competing approaches for four runs, for each of the 31 RCCs

under analysis, to account for randomness and eliminate bias. For RQ2 to RQ4, we compared the results

obtained with a large number of images. For RQ2, we considered 25 SEDE images for each RCC and

5, 470 unsafe test set images. For RQ3, we considered 650 SEDE images and 1, 500 randomly generated

images. For RQ4, we considered 500 SEDE images for each RCC and 1, 500 random test set images. For

RQ5, because of the stochastic nature of SEDE (e.g., DNN retraining), the experiments were executed

over thirty runs.

Construct Validity: In RQ1 we aim to evaluate if our approach achieves a higher diversity than a state-

of-the-art approach. We rely on the chromosome distance computed for each pair of images generated for

a RCC, which is based on the parameter values used to generate images with a simulator. By relying on

simulator parameter values we can objectively measure diversity.

In RQ2 we evaluate if the images generated by SEDE are close to the medoid of the RCC under

analysis. We rely on the heatmap distance since it is the distance metric adopted to generate RCCs.

For RQ3, since simulator parameters drive the selection of specific image characteristics (e.g., head

direction), we rely on the variance reduction rate for parameter values to objectively assess the similarity

across images belonging to a RCC; variance reduction has also been used to evaluate HUDD [18].

RQ4 evaluates if SEDE expressions are useful for delimiting an unsafe space. RQ5 evaluates the

ability of SEDE to improve a DNN. For both, we relied on the accuracy metric (i.e., the percentage of

correctly classified images), which is also suggested by safety standards as a mean to evaluate if DNNs

can be used for safety-related tasks [15].

83

CHAPTER 4. SIMULATOR-BASED EXPLANATIONS FOR DNN FAILURES

4.5 Conclusion

The identification of hazard-triggering events is a safety engineering practice that enables engineers to

evaluate the risk associated to potentially hazardous behaviors of a system. In this chapter, we address

the problem of characterizing hazard-triggering events affecting the correct execution of DNN-based

systems. We introduced SEDE, a novel approach based on evolutionary algorithms, which generates

expressions that characterize hazard-triggering events observed in real-world images processed by DNNs.

Such expressions constrain the configuration parameters of a simulator capable of generating images

similar to the real-world images under analysis. In turn, they characterize the unsafe portions of the input

space.

To identify the unsafe portions of the input space from real-world images, SEDE relies on a state-of-

the-art approach, HUDD, that generates clusters (i.e. RCCs) containing images sharing a common set of

characteristics. Such commonalities capture the hazard-triggering events to be investigated by engineers.

For each RCC, SEDE performs three distinct executions of evolutionary algorithms; as a result, it generates

two sets of images belonging to the RCC, one leading to DNN failures while the other leading to correct

DNN outputs. The two sets are then processed by PART, a rule extraction algorithm, to automatically

derive SEDE expressions. The evolutionary algorithms employed by SEDE are a modified version of

NSGA-II and PaiR, an algorithm introduced in this work to efficiently generate, using a simulator, images

that belong to a RCC and are diverse.

Additionally, SEDE improves the DNN under analysis by retraining it with images that match the

generated expressions.

Empirical results conducted with representative case studies in the automotive domain show that (a)

our genetic algorithm, PaiR, can generate images for a larger number (87.1%) of RCCs, it generates a

larger number of images for each RCC, and the generated images have a significantly higher diversity

than those generated by NSGA-II (for all case studies) and DeepNSGA-II (for one case study), (b) the

evolutionary searches employed by SEDE lead to images belonging to the RCCs and having similar

characteristics, (c) the expressions generated by SEDE successfully characterize the unsafe input space

(i.e., they lead to images showing a DNN accuracy decreased by at least 30% points, on average), and, (d)

the retraining process employed by SEDE increases the DNN accuracy up to 18 percentage points with a

gain over the best baseline of at least 6 percentage points.

84

Chapter 5

Safety Analysis based on Feature
Extraction

IN this chapter, we propose Safety Analysis based on Feature Extraction (SAFE), the first black-box

approach to support safety analysis. The foremost objective is to not rely on internal information

about the DNN or its modification, thus facilitating its adoption in practice. Indeed, engineers do not have

access to such information in many contexts or are not sufficiently skilled to modify the DNN, whose

development is often outsourced. Our approach targets DNNs that process images since they are the most

common form of inputs for many DNN-based components in the automotive and other safety-critical

domains (e.g., manufacturing robots).

5.1 Introduction

Although effective, HUDD presents a number of limitations. First, it can only analyze DNN imple-

mentations extended to compute LRP. Although LRP implementations for multiple DNN architectures

relying on the TensorFlow framework are available [72], it might be particularly complex for engineers to

integrate LRP into a different DNN architecture. Indeed, the relevance computation formula to be adopted

for each layer depends on the layer type (e.g., input, normalization, spatial pooling, internal layer) and the

presence of recursion [62].

Also, companies often acquire off-the-shelf DNNs which cannot be modified, thus preventing the

computation of LRP and the application of HUDD. Moreover, computing a heatmap-based euclidean

distance might become particularly expensive when layers are made of thousands of neurons and hundreds

of failure-inducing images need to be processed. Finally, given that the neurons relevant for a specific

DNN failure (i.e., the neurons with high relevance scores) might represent a small proportion of the

neurons in a DNN layer, computing the euclidean distance considering all the items in a heatmap may

potentially lead to imprecise clusters caused by noise (i.e., the sum of many differences that are almost

zero).

85

CHAPTER 5. SAFETY ANALYSIS BASED ON FEATURE EXTRACTION

For all the reasons above, although the safety analysis and improvement of DNNs through the

automated identification of root cause clusters has demonstrated to be effective, achieving a wider

adoption requires a black-box substitute for HUDD.

SAFE makes use of transfer learning-based feature extraction, dimensionality reduction, and unsu-

pervised learning. This approach is an improvement over HUDD to avoid reliance on heatmap-based

distance, which requires access to the DNN’s internal information, and to improve the quality of the root

cause clusters’ identification. Transfer Learning transfers the knowledge from a generic domain to another

specific domain using a pre-trained model. Besides a large amount of time saved by using these methods,

it has been shown that starting from a pre-trained model may perform better than training from scratch

even on a different problem [130, 131]. SAFE extracts the features from failure-inducing images based on

convolutional layers in a pre-trained model instead of relying on heatmaps.

Further, compared to HUDD, SAFE also allows the detection of non-convex clusters [132]. A cluster

is convex if, for every pair of points within this cluster, every point on the straight line segment that joins

them is also within the cluster [132]. This kind of clusters is usually represented by its centroid. But in

many practical cases, the data leads to clusters with arbitrary, non-convex shapes. Such clusters, however,

cannot be properly detected by a centroid-based algorithm or even a hierarchical clustering algorithm, as

they are not designed for arbitrary-shaped clusters.

To summarize, SAFE has the following merits compared to HUDD:

• It avoids the need for extending the DNN under analysis to compute LRP, which is achieved by

relying on a transfer learning model that extracts features from the images.

• It applies a feature-based distance instead of a heatmap-based distance, thus saving training time

and memory.

• It applies a density-based clustering algorithm to detect non-convex clusters, modeling the DNN

failures’ root causes.

• It relies on the non-convex root cause clusters to select an unsafe set for the retraining of the DNN.

5.2 The SAFE Approach

Figure 5.1 presents an overview of SAFE. It consists of six steps. In Step 1, root cause clusters are

identified by relying on feature extraction-based clustering. Step 2 involves a visual inspection performed

by engineers as required by functional safety analysis [82, 14]. In Step 3, a new set of images, referred to

as the improvement set, is provided by the engineers to retrain the model. In Step 4, SAFE automatically

selects a subset of images from the improvement set called the unsafe set. The engineers label the images

in the unsafe set in Step 5. Finally, in Step 6, SAFE automatically retrains the model to enhance its

prediction accuracy.

The main contributions of SAFE, when compared to HUDD, are in Step 1 and Step 4. Step 1 consists

of four stages, namely (i) data acquisition and preprocessing, (ii) features extraction, (iii) dimensionality

reduction, and (iv) clustering. Step 4 relies on a new method for the identification of the unsafe set that

fits the clustering solution integrated in SAFE.

Similar to HUDD, SAFE includes some manual activities: Step 2 (visual inspection of images for

functional safety analysis), Step 3 (generate new images), and Step 5 (label images). Such activities

86

5.2. THE SAFE APPROACH

Step1.
Feature Extraction

Dimensionality Reduction
Clustering

Root cause clusters
C1

Step 5.
Label images

Step 4. Identify
Unsafe Images

Error-inducing
test set images

Unsafe Set:
improvement set

images
belonging

to the root cause
clusters

C2 C3

Simulator execution

Step 3. Generate
new images

Collection of field data

Improvement
set: new images

(unlabeled)
C1 C2 C3

Labeled
Unsafe Set

C1 C2 C3

Step 6. DNN
Retraining

Step 2. Functional
Safety Analysis

Training set
images

Improved
DNN
model

DNN
model

Figure 5.1: Overview of SAFE

are, however, required also by state-of-the-practice approaches. Indeed, to debug and improve DNNs,

engineers usually visually inspect all failure-inducing images, select an improvement set, and manually

label the images to be reused for retraining the DNN.

However, both HUDD and SAFE significantly reduce the costs associated with these activities.

Indeed, by inspecting a few representative images for each root cause clusters, instead of the whole set

of failure-inducing images, engineers can save substantial effort; further, since clusters group similar

images together and each cluster is considered, it is less likely for engineers to overlook characteristics and

associated causes appearing in a small subset of the images. Also, Step 2 is required only for functional

safety analysis (e.g., to determine the unsafe cases to be discussed in safety analysis documents); it is not

necessary if engineers aim at automated DNN improvement only.

The effort required for the acquisition of the improvement set is the same for both HUDD, SAFE,

and common practice (e.g., purchase an additional stock of real-world pictures); however, HUDD and

SAFE require only the unsafe images to be labelled, thus reducing development costs. Finally, by relying

on feature-extraction rather than heatmaps, SAFE eliminates the effort required to integrate LRP-based

heatmap generation into the DNN under analysis, which is required by HUDD.

Figure 5.2 depicts the stages composing Step 1. We provide further details about each stage in the

following subsections. Steps 2 and 4 are described last. Steps 3 and 5 are not further described because

they are standard practice.

5.2.1 Step 1: Generation of Root-Cause Clusters (RCCs)

Step 1.1: Data Preprocessing

This step aims to downsample the image sizes to the size required by the transfer learning models. Since

we rely on a VGG-16 model, which requires an input size of 224 × 224 pixels, the images have to be

resampled to match this requirement. To downsample the size of each image we rely on the Python

87

CHAPTER 5. SAFETY ANALYSIS BASED ON FEATURE EXTRACTION

Features Extraction Detection of root causes

Error inducing
images

Step1.1. Data
Preprocessing

Step1.2.
Features

Extraction

Step1.4.
Clustering

Step1.5.
Root cause

clusters

Step1.3.
Dimensionality

Reduction

Figure 5.2: Generation of root cause clusters with SAFE

Numpy reshape function1, which changes the shape of an array so that it has a new, compatible shape2. In

our experiments, we downsampled images from (640× 480) to (224× 224). In this chapter, we exploited

the configurations D and E, which are composed of 16 and 19 layers (see Section 2.1.3), respectively.

Step 1.2: Feature Extraction

Feature extraction aims to transform unstructured data into structured data for their exploitation by

clustering algorithms [133].

To maximize the accuracy of DNNs in a cost-effective way, engineers often rely on the transfer learning

approach, which consists of transferring knowledge from a generic domain, usually ImageNet [134], to

another specific domain, (e.g., Safety Analysis, in our case). In other terms, we try to exploit what has

been learned in one task and improve generalization in another task. Researchers have demonstrated

the efficiency of transfer learning from ImageNet to other domains [135]. The hierarchical nature of

convolutional neural networks (CNNs) encouraged the computer vision community to use this technique

with distant datasets due to the similarities between the features extracted by the first CNN layers. Transfer

learning saves training time, gives better performance in most cases, and reduces the need for a large

dataset.

Transfer learning-based Feature Extraction is an efficient method to transform unstructured data into

structured raw data to be exploited by any machine learning algorithm. In this method, the features are

extracted based on a pre-trained CNN model [136].

Step 1.3: Dimensionality Reduction

Dimensionality reduction aims at approximating data in high-dimensional vector spaces [137].

This can be achieved using projections on hyperplanes. These methods, referred to as linear di-

mensionality reduction, include the well-known Principal Component Analysis (PCA) [45, 47] (see

Section 2.1.3.

1https://sparrow.dev/numpy-reshape/
2The reshape function just changes the shape of the array containing the data (not the image itself) to match the VGG

requirement. The new shape must include the same total number of elements as the original shape.

88

5.2. THE SAFE APPROACH

Step 1.4: Clustering

Clustering is an unsupervised learning technique that divides a set of objects into clusters: (a) objects in

the same cluster must be as similar as possible, (b) objects in different clusters must be as different as

possible.

Since the root cause clusters of images may have any shape and their number K cannot be determined

a priori, we rely on an automatic K-determination clustering algorithm that can find clusters of arbitrary

shapes. We use DBSCAN (density-based spatial clustering of applications with noise) [40], which is

the most used density-based clustering algorithm [132, 41]. Intuitively, regions with high density are

considered clusters and points with the most neighbors are referred to as the "core" of the clusters. The

points with fewer neighbors are considered noise. The DBSCAN algorithm relies on two concepts:

Reachability and Connectivity.

• Reachability: A point is reachable from another if the distance between them is inferior to a

threshold ϵ.

• Connectivity: If two points p and q are connected (i.e., p is in the neighborhood of q based on ϵ)

they belong to the same cluster.

DBSCAN introduces two parameters to apply these concepts: MinPts and ϵ.

• MinPts: The minimum number of points that a region (a hypersphere with a diameter equal to ϵ)

should have to be considered dense.

• Threshold ϵ: A threshold to determine if a point belongs to another point’s neighborhood.

SAFE uses a common technique to choose optimal values of ϵ and MinPts. To select ϵ, SAFE relies on

the elbow method [138]. For this step, unlike that to find an optimal MinPts, SAFE does not require the

execution of DBSCAN.

More specifically, the optimal value for ϵ is selected as follows:

• First, we calculate the euclidean distance from each point to its closest neighbor.

• Then, we compute the average distance of every point to its closest neighbor and plot these distances

in ascending order.

• Finally, we find the plot’s elbow point [139], which is a point where there is a sharp change in the

distance plot, which serves as a threshold. This point corresponds to the optimal ϵ value.

To find the optimal value for MinPts, we run DBSCAN with ϵ equal to the optimal value found

above, and with different values for MinPts. We then select the clustering configuration with the highest

Silhouette Index value [140]. The Silhouette index computes the compactness and the separateness of

clusters. For a data point xi assigned to cluster Ci, the Silhouette index is calculated as follow:

SI(i) =
(b(i)− a(i))

Max(b(i)− a(i))
(5.1)

where a(i) is the average distance between xi and all the data points assigned to cluster Ci. b(i) is the

minimum average distance between xi and the data points assigned to one of the other clusters Cj where

j = 1, ..,K; j ̸= i. Based on the concepts described above, DBSCAN defines three types of points:

89

CHAPTER 5. SAFETY ANALYSIS BASED ON FEATURE EXTRACTION

• Core point: It has at least MinPts points within a distance of ϵ.

• Border point: It is not a core point, but it belongs to at least one cluster. That means that it lies

within a distance ϵ from a core point.

• Noise point: It is a point that is neither a core point nor a border point.

The DBSCAN algorithm proceeds by sampling points randomly from the dataset until all points are

selected. For each point, it determines if it is a Core, Border or Noise point based on the parameters ϵ

and MinPts. The core points are considered representative of clusters. The clusters are then expanded

by recursively repeating the neighborhood calculation for each point within the region. In DBSCAN,

randomness affects only the selection of the point to be treated next; however, since each point ends up

being assigned to the cluster containing the closest core point, randomness affects results only when

border points are reachable from more than one cluster, which is unlikely [141]. If we run the algorithm

several times with the same parameter settings, the same clusters will likely be obtained each time.

DBSCAN also helps identifying rare cases in the set of failure-inducing images. Indeed, if there are

enough rare cases to form a cluster (i.e., there are at least MinPts data points within a hypersphere with

a diameter equal to ϵ), they are grouped together. If rare cases cannot form a cluster, most of them are

considered noise and excluded from the set of clusters returned to the end-user. Since we select MinPts

and ϵ based on the analysis of the distribution of the failure-inducing images, rare cases are considered

noise only if they occur in regions of low density (i.e., the region contain less images than MinPts).

Figure 5.3 shows an example of a cluster containing images representing a rare case (the eye is in an

unusual position). In this case, there are ten failure-inducing images with such characteristic. When

MinPts <= 10, then all the ten images form a cluster. However, if MinPts > 10, the images will

be considered noise. In practice, MinPts is unlikely to be above 10 because its value is automatically

derived considering all the dense regions, including the area with these rare cases. Further, if rare cases

that are considered noise share similarities with images in other clusters, they will be assigned to the

cluster with the most similar features. However, this case is unlikely to happen since such rare cases

appear in sparse areas while clusters only appear in dense areas. In practice, a rare case assigned to a

cluster might actually share the same root cause of the other images belonging to the cluster.

5.2.2 Step 2: Functional Safety Analysis

To analyze the clusters, safety engineers can use the same approach as in HUDD (see Chapter 3). For

each cluster, a subset of elements is visually inspected to determine the associated unsafe conditions, as

functional safety analysis requires. Similarities among images within each cluster may suggest the cause

of failures of the DNN. In other words, engineers attempt to identify the root cause of each cluster to gain

a better understanding of the DNN behavior.

Figure 5.4 shows examples of root cause clusters identified by SAFE for the Head Pose Detection

case study subject considered in our empirical evaluation (see Section 5.3.2). We notice that in Cluster 1

the hidden eye seems to confuse the DNN and is a plausible reason for failure. The same observation can

be made for Cluster 2, where, because the head is turned to the right, the right eye is not visible. Clusters

3 and 4 identify common causes of failure due to an incomplete training set, i.e., the absence of images

with a head pose close to a borderline.

90

5.2. THE SAFE APPROACH

Figure 5.3: Example of a root cause cluster with rare cases

In general, SAFE generates clusters that differ for at least one common characteristic in the images.

For example, the root causes presented by Cluster 1 and Cluster 2 are not the same. Indeed, Cluster 1

concerns the right eye while Cluster 2 concerns the the left eye. Engineers might be interested in knowing

if the training set is lacking images with only the left eye being hidden or both; for this reason, we believe

that separating such clusters is beneficial. Empirical results are reported in Section 5.3.2.

Similar to HUDD, SAFE can identify different root causes of failures, including (1) borderline cases

(e.g., the gaze and head pose angle detected by Cluster 1 in Figure 5.4), (2) an incomplete training set

(e.g., Clusters 3 and 4 in Figure 5.4), (3) an incomplete definition of the predicted classes (e.g., Cluster

1 in Figure 5.5 shows a cluster generated from our GD case study in Section 5.3.2, with eyes looking

middle center, a class missing from our configuration) and (4) limitations in our capacity to control the

simulator (e.g., unlikely face positions detected by Cluster 2 in Figure 5.5). In general, SAFE identifies

commonalities (i.e., root causes) across images leading to failures. Based on a recent taxonomy [108],

the cases described above concern training data quality; in general, SAFE can help engineers to discover

any fault that affects the correctness of the DNN output (e.g., a missing model layer). However, we

do not integrate mechanisms to automatically determine the underlying cause for the observed failures.

In general, we suggest engineers to first inspect root cause clusters to determine major pitfalls (e.g.,

missing output class) then proceed with automated retraining (i.e., Steps 3-6); if the DNN accuracy is not

sufficiently improved then it is necessary to modify the DNN (e.g., add layers or change architecture).

91

CHAPTER 5. SAFETY ANALYSIS BASED ON FEATURE EXTRACTION

Figure 5.4: Examples of root cause clusters for Head Pose detection

5.2.3 Step 4: Identification of Unsafe Images

Since the manual labeling of images is expensive, it is necessary to automatically identify an unsafe set of

reduced size containing images that can improve the DNN accuracy to achieve a cost-effective retraining

process. An unsafe set is a subset of unlabelled images from the improvement set, to be labeled and

used for retraining the model. Unlike HUDD, SAFE relies on a new clustering-based selection method

to automatically select this unsafe set. We identify images from the improvement set that belong to a

root cause cluster and select images that, within the same cluster, are representative of the different types

of images in the cluster (e.g., different face shapes with a gaze angle that confuses a gaze classifier).

Therefore, we assume that the selected images are representative of a cluster in the sense that they contain

sufficient information to replace the other cluster members [142] and can be effectively used for retraining.

The key difference between SAFE and HUDD, in this step, is that the latter relies on a Hierarchical

Clustering Algorithm. This method only finds spherical clusters. In addition, HUDD depends on the

cluster medoids and the cluster ratio to determine if improvement set images belong to the root cause

clusters. Unfortunately, such a method might be suboptimal if clusters are not spherical. With DBSCAN,

92

5.2. THE SAFE APPROACH

Cluster 2Cluster 1

Figure 5.5: Examples of root cause clusters for Gaze detection

the identification of core points enables the determination of representative cluster members even in

non-spherical clusters. It does not rely on cluster centroids but core points in each cluster, assuming that,

taken together, these points represent the entire cluster. A point close to any core point will be assigned to

the cluster represented by this core point.

In SAFE, the selection is performed according to Algorithm 1, which is detailed below. After selecting

the unsafe set, we follow the same retraining process as HUDD. We retrain the DNN model by relying on

a training set consisting of the union of the original training set and the manually labeled unsafe set. The

original training set is reused to prevent reducing the accuracy of the DNN for parts of the input space that

are safe. The retraining process is thus expected to lead to an improved DNN model.

Algorithm 1 SAFE Unsafe Set Selection Algorithm
Input: improvement set images X , core points detected for each cluster, a set of clusters C.
Output: unsafe set

1: for x in X do
2: Assign x to the cluster corresponding to the closest core point.
3: Compute N , the number of selected images for the unsafe set based on Equation 5.2.
4: Compute the number of selected images ri from each cluster ci, computed as N over the proportion

of images in the cluster.
5: for ci in K do
6: Sort the images in ascending distance to their respective closest core point.
7: From the sorted images, take the ri first images and add them to the unsafe set.

To minimize the retraining effort, and most particularly that related to labeling, we look for repre-

sentatives images in each cluster. For that, we rely on the core points (see Section 5.2.1). The choice of

the core points is motivated by the fact that they represent better the shape of a particular cluster than a

centroid. As described in Section 5.2.1, a root cause cluster is typically represented by several core points.

The border points that define the cluster’s shape are localized around the core points. We assume that the

points close to the core points contain enough information to replace the other border points. These points

93

CHAPTER 5. SAFETY ANALYSIS BASED ON FEATURE EXTRACTION

Figure 5.6: The selection of Unsafe Set

usually take approximately the same shape as the cluster [132]. Recall that core points, unlike centroids,

can represent a non-convex cluster with arbitrary shapes.

Algorithm 1 show the steps for the selection of the unsafe set for retraining. The algorithm requires

the root cause clusters and their core points. It also requires an improvement set.

The algorithm starts by assigning every image in the improvement set to the closest core point in

terms of euclidean distance (line 1, Algorithm 1).

In lines 2 and 3, SAFE computes N , the number of images to be selected for the unsafe set and the

number of images to be selected from each root cause cluster i, denoted as ri, where ri = N × Ci
C . C is

the number of images in the improvement set and Ci is the number of such images assigned to cluster i.

Unsafe set images across root cause clusters therefore preserve the distribution of the improvement set

across such clusters.

As in HUDD, we assume that the distribution of failure-inducing images across clusters is similar in

the improvement and test sets. We determine the number of images N selected from the improvement set

to include in the unsafe set as follows:

N = (|TestSet | × sf)× (1− TestSetAcc) (5.2)

|TestSet | is the size of the test set, while sf is a selection factor in the range [0− 1] (we use 0.3 in our

experiments, same as HUDD to make the comparison fair). TestSetAcc represent the accuracy of the

original model on the test set of the case study subject. The term (1−TestSetAcc) indicates the proportion

of failure-inducing images that are observed in the improvement set. (|TestSet |× sf)× (1−TestSetAcc)

estimates the number of failure-inducing images that should be selected from the improvement set. The

term (|TestSet | × sf) provides an upper bound for the unsafe set size as a proportion of the test set size.

In line 4, the images are sorted according to ascending distance to their respective closest core point.

Finally, in line 5, for each cluster i, we select the first ri sorted images to include in the unsafe set.

We also illustrate the algorithm steps in Figure 5.6. The first image represents the core points obtained

from the clustering of the failure-inducing images (the dots represent the core points). In the second

step, we assign the images in the improvement set to their closest core point, respectively. Then, we

select a subset of points from the neighborhood of each core point based on Algorithm 1. The last image

represents the selected unsafe set.

Our algorithm excludes from the unsafe set the images leading to DNN failures due to root causes

not observed in the test set; indeed, such images will be distant from clusters’ core points. Furthermore,

94

5.2. THE SAFE APPROACH

such images will not help improve the DNN performance on the test set, which is our objective since

the test set is assumed to be representative of real-world scenarios. Finally, when the improvement set

does not include any image belonging to a root cause cluster then SAFE does not assign any image to

the cluster; this is not the case for HUDD which, different from SAFE, will not prevent engineers from

labeling useless images.

5.2.4 SAFE Running Example

This section presents an example of SAFE usage. It is based on the headpose detection DNN (HPD)

considered in our empirical evaluation. HPD receives as input a picture taken from a camera positioned

inside a car; the picture is automatically cropped to a size of 640× 640 pixels.

To reduce development costs, HPD has been trained and tested using images generated by a simulator

capable of generating pictures of human heads. The training and test sets consists of 16013 and 2825

images, respectively, both generated by randomly selecting simulator parameters’ values. The training

and the test set could also have included real-world images. After 30 epochs, we obtained an accuracy of

88.03%. From the test set, 1580 images were misclassified, they represent the failure-inducing images

that should be investigated to determine the root causes of failures.

We implemented the SAFE pipeline as a Jupyter Notebook3.

The SAFE pipeline starts by pre-processing the failure-inducing images to match our model’s input

requirement (SAFE Step 1.1, in Figure 5.2). It automatically converts the images into a NumPy4 array

and downsample them as explained in Section 5.2.1.

After preprocessing, the images are ready for feature extraction (SAFE Step 1.2, in Figure 5.2). The

SAFE pipeline automatically extracts the features by relying on a pre-trained VGG model loaded by the

Notebook. Precisely, for each image, SAFE stores the output of the second-last fully connected layer of

the VGG model, which leads to an array of 512 features for each image.

The pipeline continues by applying the PCA dimensionality reduction method to reduce the number of

features from 512 to 256 (SAFE Step 1.3, in Figure 5.2). The output of the PCA method is an 1580× 256

array, where 1508 is the number of failure-inducing images and 256 is the number of features. The number

of features (i.e., 256) has been empirically determined in preliminary experiments (see Section 5.2.1) and

is not supposed to be further modified by end-users. This array is passed to DBSCAN as an input. We use

DBSCAN from the SciKitLearn library5.

Before performing clustering (SAFE Step 1.4), we first need to choose the optimal parameter settings.

We apply the method explained in Section 5.2.2 to obtain ϵ = 0.9 and minPts = 9. Using these

parameters, we run our algorithm to generate the final root cause clusters, which are 20 in this case. The

next step of the pipeline (i.e., SAFE Step 2) includes a procedure that, from the clusters generated by

DBSCAN, generates several folders, each containing the images belonging to the cluster. It also generates

an animated gif image (similar to a video) with the images belonging to each cluster, to help the user

visualize it. The end-user is then expected to visualize a portion of the images appearing in each cluster

(e.g., five according to our experimental results in Section 5.3.2) to perform the functional safety analysis

step of SAFE (i.e., Step 2 in Figure 5.1). Example images are reported in Figure 5.4..

3http://jupyter-notebook.readthedocs.io
4http://numpy.org
5http://scikit-learn.org

95

CHAPTER 5. SAFETY ANALYSIS BASED ON FEATURE EXTRACTION

Next, the end-user should provide an improvement set (SAFE Step 3). For our experiments with HPD,

we rely on an improvement set of 4, 103 images generated with additional executions of the simulator. We

could have also included real-world images collected by our industry partner in the field but they might

have prevented replicability (e.g., they cannot be publicly shared because of privacy agreements).

In our execution, SAFE selected 154 images as an unsafe set for retraining. The number of selected

images is computed automatically based on the selection factor (sf) configured by the end-user (see

Section 5.2.3) These images need to be labelled by the end-user (SAFE Step 5) but for our case study

subject, labels are automatically derived from simulator parameters. In case the improvement set includes

real-world images, labelling is performed manually.

After obtaining the unsafe set, the end-user simply combines it with the training set and retrains the

model according to the specific procedure of the DNN under analysis.

5.3 Evaluation

In this section, we aim to evaluate our approach. SAFE is expected to perform better than HUDD in terms

of the quality of the clustering and DNN accuracy after retraining. We choose HUDD for comparison not

only because SAFE aims to improve over it but because they are the only approaches in the literature that

aim to support safety analysis, which is achieved through the identification of root cause clusters and the

selection of images for retraining based on these clusters. To investigate whether if such expectations hold

and SAFE is useful, we compare these two approaches following the experimental procedures described

below addressing the following research questions.

RQ1 Does SAFE enable engineers to identify the root causes of DNN failures?

The clusters produced by SAFE should provide useful information to identify plausible causes of

DNN failures in a form that is amenable to practical analysis.

RQ2 Does SAFE enable engineers to more effectively and efficiently retrain a DNN when compared

with HUDD and baselines approaches? We expect SAFE to lead to a higher model accuracy after

retraining

RQ3 Does SAFE provides time and memory savings compared to HUDD? SAFE’s black-box nature

should provide significant time and memory savings, compared to HUDD, which is a white-box

approach.

To perform our empirical evaluation, we have implemented SAFE as a toolset that relies on the

PyTorch [98] and SciPy [99] libraries. Our toolset, case study subjects, and results are available for

download [25]. In our experiments, steps 1 to 5 were carried out on an Intel Core i9 processor running

macOS with 32 GB RAM. Step 6 (retraining) was conducted on the HPC facilities of the University of

Luxembourg (see http://hpc.uni.lu). We relied on a Dual Intel Xeon Skylake CPU (28 cores) and 128 GB

of RAM.

5.3.1 Subject Systems

We rely on images generated using simulators as it allows us to associate each generated image to

values of the simulator’s configuration parameters. These parameters capture information about the

96

5.3. EVALUATION

characteristics of the elements in the image and can thus be used to objectively identify the likely root

causes of DNN failures. Such simulators are increasingly common, and of higher fidelity in many domains

[143], including automotive and aerospace.

We consider the same DNNs as the HUDD approach (see Section 3.3.1), which support gaze detection,

drowsiness detection, headpose detection, and face landmarks detection systems under development at

IEE Sensing, our industry partner.

Since DNN failures and, consequently, clustering results, depend on the initial training of the DNN

under analysis, to deal with such randomness we repeated the initial training ten times for the case study

subjects GD, OC, and HPD; each training execution relies on a different split of the training and the test

data sets. Unfortunately, we could not repeat the training for the FLD DNN because it was provided by

our industry partner along with the failure-inducing images. Further, we could not repeat the execution

of HUDD ten times for each case study DNN because of the large amount of time required to compute

distance matrices based on heatmaps (see Section 3.3.2). However, to discuss the statistical significance

of the differences between HUDD and SAFE, for each of the metrics selected to address our research

questions, we relied on a one-sample Wilcoxon signed rank test. The one-sample Wilcoxon signed rank

test is a non-parametric statistical hypothesis test used to determine whether the median of a population

(here, the SAFE median) is greater than a reference value (here, the HUDD result). It enables us to test

the null hypothesis: the SAFE median is equal to the HUDD result.

Finally, to determine the number of components to be selected by PCA, which is an input parameter

for SAFE, we conducted a set of experiments. Precisely, we considered a number of features between two

and 256, considering all powers of two; then we applied DBSCAN and measured the quality of its result

based on the Silhouette Index [140]. We performed the analysis on all the case studies and concluded that

256 is the number of features that provides the best results.

5.3.2 Measurements and Results

RQ1. Does SAFE enable engineers to identify the root causes of DNN failures?

We refine RQ1 into five complementary subquestions (RQ1.1, RQ1.2, RQ1.3, RQ1.4, and RQ1.5), which

are described in the following, along with their corresponding experiment design and results.

RQ1.1: Is the number of generated clusters small enough for enabling visual inspection? Design

and measurements.

Though this is to some extent subjective and context-dependent, we discuss whether SAFE finds

a number of root cause clusters that is amenable to inspection by experts. To respond to this research

question, we assume that experts visually inspect five images per root cause cluster to be able to make

a decision. This assumption is supported by an experiment we conducted, as presented in later in this

Section (RQ1.5). Under this assumption, we compare SAFE and HUDD in terms of the number of

generated clusters and based on the ratio of failure-inducing images that should be visually inspected

when relying on each method. This ratio is calculated as follows:

ratio =
(k × 5)× 100

n
(5.3)

where k is the number of root cause clusters, and n is the number of failure-inducing images.

Experiment Results.

97

CHAPTER 5. SAFETY ANALYSIS BASED ON FEATURE EXTRACTION

Table 5.1: Root cause clusters generated by SAFE.

Subject
SAFE HUDD

error inducing
images

of clusters
% of inspected

images
error

inducing
images

of
clusters

% of
inspected
images

min/max/med min/max/med p-value min/max/med p-value
GD 4967/6290/5602 14/31/25 0.004 1.41/2.46/2.24 0.004 5371 16 1.49
OC 409/557/492 21/33/26 0.002 25.67/29.62/26.15 0.002 506 14 13.83

HPD 1371/2089/1519 20/30/24 0.002 7.29/7.18/7.99 0.002 1580 17 5.38
FLD 1554 64 / 20.5 / 1554 71 22.84
OD 758/933/822 2/2/2 0.002 1.07/1.32/1.22 0.004 838 14 8.35
TS 2239/2698/2450 7/12/9 0.004 1.45/2.63/1.93 0.004 2317 20 4.31

Table 5.1 shows, for each case study subject, the total number of failure-inducing images belonging

to the test set, the number of root cause clusters generated by SAFE and HUDD, and the ratio of

failure-inducing images that should be visually inspected when using SAFE or HUDD.

For the respective DNNs, SAFE identifies 25 (GD), 26 (OC), 24 (HPD), 64 (FLD), 2 (OD), 9 (TS)

root cause clusters (for GD, OC, HPD, OD, and TS we refer to median of the ten runs executed). In

contrast, HUDD identifies 16 (GD), 14 (OC), 17 (HPD), 71 (FLD), 14 (OD), and 20 (TS) root cause

clusters.

We notice that in 50% of the case study subjects, SAFE yields a lower number of clusters. This

experiment shows both SAFE and HUDD find an acceptable number of clusters for visual inspection.

Indeed, the ratios of failure-inducing images to be inspected are low (between 1.07 and 26.15, with a

median of 5.12). These results suggest that using SAFE can save significant effort compared to the manual

inspection of the entire set of images.

RQ1.2: Does SAFE generate root cause clusters with a significant reduction in variance for
simulator parameters?

Design and measurements.

This research question investigates if SAFE achieves high within-cluster similarity concerning at least

one simulator parameter. Indeed, since we rely on DNNs that are trained and tested with simulators,

images assigned to the same cluster should present similar values for a subset of the simulator parameters.

Within each cluster, the variance of these parameters should be significantly smaller than that computed

on the entire test set.

Similarly to HUDD, for a cluster Ci, the rate of reduction in variance for a parameter p can be

computed as in Equation 3.8. Table 3.3 provides the list of parameters considered in our evaluation.

Note that simulator parameters are only used to objectively evaluate the approach; they are not

involved in the practical application of the approach. Section 5.3.2 addresses the application of SAFE to

case study subjects for which a simulator is not available (i.e., TS and OD).

Since the number of parameters that capture common failure causes is not known a priori, we consider

a significant variance reduction in at least one parameter to be enough for the cluster to be indicative of

root causes. Therefore, we compute the percentage of clusters showing such a variance reduction for at

least one of the parameters.

Consistent with HUDD, we compute the percentage of clusters with a variance reduction between 0%

and 90%, with incremental steps of 10%. To answer our research question positively, a high percentage of

the clusters should reduce variance for at least one of the parameters. We compare our results to those of

98

5.3. EVALUATION

HUDD.

Experiment Results.

We report in Table 5.2 the maximum, minimum, and median percentage of clusters having at least

one parameter showing a reduction rate above a threshold in the range [0% − 90%], compared to the

percentage obtained by HUDD. We also report the p-values resulting from performing a one-sample

Wilcoxon signed rank test (see Section 5.3.1). We notice that, when the median obtained with SAFE is

higher than the value obtained with HUDD (i.e., SAFE performs better), the p-values are always below

0.05. This implies that, in these cases, the median percentage of clusters with a reduced variance obtained

with SAFE is significantly larger than the one obtained with HUDD.

Table 5.2: Minimum, Maximum and Median percentage of clusters with at least one parameter showing a
reduction rate above a threshold in the range [10% - 90%], with the percentage obtained by HUDD and
the p-value when comparing SAFE to HUDD.

Threshold GD OC HPD FLD

90%
SAFE (min/max/median) 100%/100%/100% 100%/100%/100% 85%/100%/90% 90%

HUDD 93% 29% 82% 85%
p-value 0.001 0.001 0.004 -

80%
SAFE (min/max/median) 100%/100%/100% 100%/100%/100% 85%/100%/92% 94%

HUDD 93% 43% 100% 90%
p-value 0.001 0.001 0.99 -

70%
SAFE (min/max/median) 100%/100%/100% 100%/100%/100% 87%/100%/94% 97%

HUDD 93% 50% 100% 94%
p-value 0.001 0.001 0.99 -

60%
SAFE (min/max/median) 100%/100%/100% 100%/100%/100% 100%/100%/100% 99%

HUDD 100% 57% 100% 94%
p-value 1.0 0.001 1.0 -

50%
SAFE (min/max/median) 100%/100%/100% 100%/100%/100% 100%/100%/100% 100%

HUDD 100% 57% 100% 96%
p-value 1.0 0.001 1.0 -

40%
SAFE (min/max/median) 100%/100%/100% 100%/100%/100% 100%/100%/100% 100%

HUDD 100% 64% 100% 99%
p-value 1.0 0.001 1.0 -

30%
SAFE (min/max/median) 100%/100%/100% 100%/100%/100% 100%/100%/100% 100%

HUDD 100% 71% 100% 99%
p-value 1.0 0.001 1.0 -

20%
SAFE (min/max/median) 100%/100%/100% 100%/100%/100% 100%/100%/100% 100%

HUDD 100% 79% 100% 100%
p-value 1.0 0.001 1.0 -

10%
SAFE (min/max/median) 100%/100%/100% 100%/100%/100% 100%/100%/100% 100%

HUDD 100% 100% 100% 100%
p-value 1.0 1.0 1.0 -

To enable visual comparison, Figure 5.7 plots the median percentage of clusters with variance

reduction for at least one of the simulator parameters, with different reduction rates, for both SAFE and

HUDD.

Results show that SAFE yields a higher percentage for three out of the four case study subjects (i.e.,

GD, OC, FLD). For HPD, based on the p-values reported in Table 5.2, the differences between HUDD

and SAFE are not significant (i.e., HUDD does not perform better than SAFE).

We report in Table 5.3 the minimum, maximum and median number of core points found by the

clustering algorithm for each case study subject and the ratio of failure-inducing images being considered

as core points. We recall that a cluster consists of several core points and that the core points determine

the cluster shape. The ratio of failure-inducing images being considered as core points is therefore an

99

CHAPTER 5. SAFETY ANALYSIS BASED ON FEATURE EXTRACTION

Table 5.3: Number of core-points and number of clusters for each case study subject

Case Study
Subject

of core points
(min/max/median)

of clusters
(min/max/median)

% of images considered as core points
(min/max/median)

GD 2389/5808/5080 14/31/26 46%/92%/88%
OC 366/495/441 21/33/26 89%/97%/90%

HPD 259/623/316 20/30/24 18%/30%/22%
FLD 622 64 40%

indicator of the complexity of the cluster shape. The larger this ratio, the more complex the cluster shape

and the less likely it is to be convex.

Since non-convex clusters cannot be properly modeled by a centroid-based algorithm or even a

hierarchical clustering algorithm (see Section 5.2), this partly explains the results presented in Figure 5.7.

For GD and FLD, SAFE performs slightly better than HUDD. With GD, out of ten executions, SAFE

yields a median of 100% of the clusters with a variance reduction above 90% compared to 93% for HUDD.

As for FLD, it obtained 90% of the clusters with variance reduction above 90%, compared to 85% for

HUDD. These values are close because the number of clusters detected by both methods is similar for GD

and FLD. Detecting the optimal number of clusters is crucial as it leads to root cause clusters grouping

very similar images with less noise. Consequently, identifying the right root cause clusters will result in

higher variance reduction. Nevertheless, the slight superiority shown by SAFE is explained by the fact

that the latter finds root cause clusters with arbitrary shapes, compared to convex shapes found by HUDD.

This is important since arbitrary-shaped clusters can find more homogeneous clusters (i.e., clusters with

higher within-cluster similarity) with very similar images. In contrast, a convex cluster tends to be less

dense and can group rather dissimilar images.

Figure 5.7: RQ1.2: median percentage of clusters with at least one parameter showing a reduction rate
above a threshold in the range [0%− 90%].

100

5.3. EVALUATION

In the case of OC, the percentage of clusters with a given variance reduction obtained by SAFE is

much higher than that obtained by HUDD. SAFE yielded 100% of the clusters (median of ten executions)

with variance reduction above 90%, in contrast to 29% for HUDD. This is explained by the fact that

SAFE found a much higher number of clusters than HUDD (26 for SAFE compared to 14 for HUDD).

Also, 90% of the failure-inducing images are considered core points by SAFE (median), thus indicating

complex cluster shapes, which may, in turn, explain the detection of more clusters. A larger number of

clusters leads to root cause clusters with a lower number of images (15 images per cluster on average for

SAFE with OC), which have higher chances to contain similar images.

For the HPD case study subject, HUDD and SAFE results are very close. SAFE yields 90% of the

clusters (median of ten runs) with variance reduction above 90% compared to 82% for HUDD. At the

same time, HUDD shows 100% of the clusters with variance reduction above 80%. Both methods yield

100% of the clusters with variance reduction above 60%. We notice that the number of clusters detected by

both methods is pretty close (24 for SAFE compared to 17 for HUDD), thus explaining these results. Also,

we observe that only 22% of the failure-inducing images are considered core points, hence indicating that

clusters do not have complex shapes and are closer to being convex than in the OC case, for example.

In general, when the cluster shapes obtained by SAFE are relatively simple, the results of the two

approaches can be expected to be similar.

In contrast, when clusters have arbitrarily complex shapes, there is a clear advantage in using SAFE,

as illustrated by the OC results and to a lesser extent the GD results.

In general, in spite of being a black-box approach, SAFE tends to find a high percentage of clusters

with at least one reduced parameter. For GD and OC, 100% of the clusters show parameters with a

variance reduction above 90%. HPD and FLD yield both 90%. Based on these results, we can positively

answer RQ1.2 since all clusters present at least one parameter with a positive, significant reduction rate

(> 50% in Figure 5.7).

RQ1.3: Do parameters with high variance reduction represent a plausible cause for DNN failures?

Design and measurements.

This research question investigates whether SAFE helps engineers understand root causes of an failure.

We assume that DNN failures occur in specific areas of the simulator parameter space. Under this

assumption, we identify a set of unsafe parameters and corresponding unsafe values around which a DNN

failure is susceptible to occur. Table 3.4 provides the list of unsafe parameters (similarly to what is used

by HUDD in Section 3.3.2, along with the unsafe values identified. For example, for the Gaze Angle

parameter, unsafe values consist of the boundary values distinguishing labels pertaining to different gaze

directions. These unsafe parameters were selected in a systematic manner for all the case study subjects.

Precisely, we report as unsafe values all the values used to label different classes (e.g., eyes openness

above/below 20 pixels) and values for borderline cases (i.e., cases in which portions of the face are hidden).

Also, we have identified additional unsafe parameters that can cause a DNN failure because they lead to

masked elements in images (e.g., distance between the pupil center and the iris center, distance between

the pupil bottom and the bottom eyelid margin). Note that determining unsafe parameters and values is

only required for experimental purposes here, as detailed below, and not for applying SAFE in practice.

Face images generated with such unsafe values may lead to DNN failures because the DNN either

cannot distinguish two classes or because part of the human face is not present in the image. Therefore,

we expect all the failure-inducing images having such characteristics to belong to an appropriate cluster;

101

CHAPTER 5. SAFETY ANALYSIS BASED ON FEATURE EXTRACTION

precisely, they should belong to a cluster having (a) high variance reduction for the unsafe parameter and

(b) an average value close to the identified unsafe value.

For our experiment, we consider that a root cause cluster is explanatory in terms of root causes if

it satisfies two requirements: (1) It should have at least one unsafe parameter with a variance reduction

above 50%, (2) the cluster average should be close to one unsafe value. For Gaze Angle, Openness,

Headpose-X, and Headpose-Y, an average value is considered close to an unsafe value if the difference

between them is below 25% of the length of the subrange including the average value. For DistToCenter,

PupilToBottom, and PupilToTop, an average value is considered close to an unsafe value if it is below or

equal to it. For the FLD case study subject, since the reason for not detecting a landmark cannot be related

to a single simulator parameter but often depends on combinations of parameters (e.g., the position of the

head and the illumination angle lead to shadows on the face), it is impossible to determine unsafe values

and therefore such a set of explanatory parameters; as a result, FLD is omitted from this experiment.

Based on the above, we address this research question by computing the percentage of clusters that

are explanatory according to our definition. The higher this percentage, the more evidence we have that

clustering is useful for identifying causes of DNN failures.

Experiment Results.

Table 5.4 shows the percentage of the root cause clusters that are explanatory for both SAFE and

HUDD. Since we repeat the execution SAFE with ten different DNN instances for each case study subject,

we report the minimum, maximum and median of the percentages obtained. Across all three case study

subjects, SAFE shows a higher percentage of explanatory root cause clusters than HUDD. The median

results with GD, OC, and HPD are 86%, 100%, and 90%, respectively, compared to 86%, 57%, and 88%,

respectively, with HUDD. Table 5.4 also reports the p-values resulting from performing a one-sample

Wilcoxon signed rank test (see Section 5.3.1). The p-values are below 0.05 for OC and HPD, which

indicates that the percentage of SAFE’s root cause clusters that present at least one explanatory parameter

is significantly larger than the one obtained with HUDD for OC and HPD. As for GD, the results are

similar.

Table 5.4: Minimum, Maximum and Median percentage of root cause clusters that present at least one
explanatory parameter with the percentage obtained by HUDD and the p-value when comparing SAFE to
HUDD.

Case Study Subject SAFE HUDD p-valueMin. Max. Median
GD 83% 100% 86% 86% 0.99
OC 93% 100% 100% 57% 0.002

HPD 84% 96% 90% 88% 0.02

These results show a large difference in the percentage of clusters that can be explained between

SAFE or HUDD for the OC case study subject (43% difference). Indeed, for SAFE, all the clusters have a

high reduction in variance, while this is only the case for 57% of the clusters for HUDD. As explained in

the previous Section, this can be explained by the fact that OC clusters have a complex shape, more so

than in other case study subjects.

As for GD and HPD, the SAFE median is close to the result obtained with HUDD (although for HPD

the difference is significant with a significance level of 0.05). For the median, we observe a 2% difference

for HPD and no difference for GD. These results confirm the results obtained in RQ1.2. For GD and HPD,

102

5.3. EVALUATION

both methods show 100% of the clusters with a parameter presenting a variance reduction above 50%.

These results are however still slightly in favor of SAFE.

Once again, the above results are explained by the fact that the root cause clusters found by SAFE can

take arbitrary shapes. Such clusters, as previously explained and in the general case, have better chances

to group similar images than clusters with convex shapes.

RQ1.4: Does SAFE identify more distinct failure root causes than HUDD?

Design and measurements.

This research question investigates if SAFE identifies a larger number of possible causes of failures

than HUDD. Specifically, we compare the two approaches in terms of the number of unsafe values being

covered by at least one cluster. We say that an unsafe value v is covered by a cluster c, when c presents a

parameter p with a high variance reduction and the parameter p has an average value close to the unsafe

value v.

Since our simulators generate images having parameter values that are uniformly sampled within

the input domain, every unsafe value has the same likelihood of being observed in the test set images.

Therefore, ideally, we aim for the root cause clusters to cover all such values.

Experiment Results.

In Table 5.5, we report the minimum, maximum and median percentage of the unsafe values covered

by the root cause clusters obtained when applying SAFE to our case study subjects. The clusters generated

by SAFE with GD, OC, and HPD cover (median) 92%, 64%, and 80% of the unsafe values, respectively.

The clusters generated by HUDD, instead, cover 71%, 50%, and 60% of the unsafe values, respectively.

The p-values resulting from performing the one-tailed, one-sample Wilcoxon signed-rank test are always

below 0.05, which implies that the median obtained with SAFE is significantly higher than the result

obtained with HUDD.

Table 5.5: Minimum, Maximum and Median percentage of the unsafe values covered by the root cause
clusters with the p-value when comparing SAFE to HUDD.

Case Study Subject SAFE HUDD p-valueMin. Max. Median
GD 85% 100% 92% 71% 0.002
OC 64% 71% 64% 50% 0.002

HPD 60% 80% 80% 60% 0.004

Below, we discuss, more in detail, the differences between SAFE and HUDD. To exemplify our

discussion, we report in Table 5.6 (GD, OC) and Table 5.7 (HPD) examples of unsafe values covered by

the clusters generated in one of the runs of SAFE and HUDD.

Based on Table 5.5, for GD, SAFE identifies root cause clusters covering 92% unsafe values (median

out of ten runs), compared to 71% for HUDD.

This is because SAFE relies on images represented with features extracted from convolutional layers,

which provide a better representation than heatmaps and show aspects that are not captured by heatmaps,

such as eye shape, edges, and corners.

For OC, SAFE covers a median of 65% unsafe values compared to 50% for HUDD. The uncovered

unsafe values concern the parameter Angle. However, in the OC case study subject, we mainly focus on

eye openness (Distance parameter) and the distance between the pupil and eyelid (StrangeDist Top/Bot

parameter). All of the unsafe values for these two relevant parameters were covered by SAFE and HUDD.

103

CHAPTER 5. SAFETY ANALYSIS BASED ON FEATURE EXTRACTION

Table 5.6: Coverage of the unsafe values by the root cause clusters (OC and GD case study subjects)

Parameter Unsafe value GD OC

Angle

SAFE HUDD SAFE HUDD
337.5 ✓ ✓ ✓ ✗

22.5 ✓ ✓ ✗ ✗

67.5 ✓ ✓ ✗ ✗

112.5 ✓ ✓ ✗ ✗

157.5 ✓ ✓ ✗ ✗

202.5 ✓ ✓ ✓ ✗

247.5 ✓ ✓ ✓ ✓

292,5 ✓ ✓ ✓ ✓

Headpose-X 220 ✓ ✗ ✓ ✓

160 ✓ ✓ ✓ ✓

Headpose-Y 20 ✓ ✗ ✓ ✓

340 ✓ ✗ ✓ ✗

StrangeDist Top/Bot -14 ✓ ✗ ✓ ✓

Distance 25 ✓ ✓ ✓ ✓

TOTAL Coverage 14 10 10 7

Table 5.7: Coverage of the unsafe values by the root cause clusters (HPD case study subject)

Parameter Unsafe value HPD
SAFE HUDD

Headpose-X

-28 ✓ ✓

-10 ✓ ✓

0 ✓ ✓

10 ✓ ✗

21 ✗ ✗

HeadPose-Y

-88 ✗ ✗

-10 ✓ ✓

0 ✓ ✓

10 ✓ ✓

77 ✓ ✗

TOTAL Coverage 8 6

For the HPD case study subject, SAFE covers a median of 80% unsafe values compared to 60% for

HUDD. None of the techniques covers values 21 for H-Headpose and −88 for V-Headpose. However,

such values can be observed if we also consider parameters with a variance below 50% (which is an

arbitrary threshold). These two values represent boundary values that we believe confuse SAFE as they

correspond to situations where it is hard to see the eyes and the shape of the head. As a result, such images

are sometimes clustered erroneously. Thus, these clusters show a lower variance reduction.

In addition, we report that 90% of the clusters cover a unique set of unsafe values (e.g., Angle=337.5,

H-Headpose=220, V-Headpose=340, Distance=25). Concerning the remaining 10%, we observe that

they are still unique but differ with respect to a parameter that is not unsafe. Therefore, we conclude that

all the clusters generated by SAFE cover a unique set of parameter values that are useful to determine

distinct failure causes.

RQ1.5: How many images are required to identify commonalities in a cluster?

Design and measurements.

104

5.3. EVALUATION

We aim to determine how many images from a root cause cluster an engineer should inspect to

correctly identify the root cause captured by the cluster. Recall that in our previous analysis (i.e., RQ1.1),

we made an assumption regarding this point to estimate cost savings that can be expected from SAFE.

To this end we conducted an online questionnaire-based experiment, following best practices [144]. Our

population of participants consists of 19 PhD students at the University of Luxembourg and University of

Ottawa.

All the selected students hold a master’s degree in computer science or a corresponding engineering

degree; further, most have acquired fundamentals in machine learning and a few work on safety-related

topics. Therefore, all the selected participants are competent to perform the experimental task, which does

not require background knowledge, though they are less familiar with the problem domain than engineers

would be in practice and therefore can be expected to make more mistakes.

In our experiment, we asked participants to identify the commonalities in a randomly selected subset

of images belonging to randomly selected root cause clusters generated by SAFE for our case study

subjects. Such task emulates what should be done by an engineer to understand the root causes for an

failure. We asked each participant to perform the task three times, on different clusters of images. Each

cluster of images included respectively 5, 10, and 15 images randomly selected from a root cause cluster

belonging to a different case study subject. Also, for the same subject, each participant received a different

random set of images, belonging to a randomly selected cluster. In short, each participant therefore

received three questions with 5 images, 10 images, and 15 images, respectively, belonging to different

clusters from different case study subjects.

We provided closed-ended questions to objectively compare the obtained answers with the ground

truth (i.e., likely root causes for DNN failures). Similarly to RQ1.4, we considered only case study

subjects performing classification tasks because, for these cases, the availability of the ground truth makes

it possible to determine the reasons for DNN failure objectively.

Table 5.8: The descriptive sentence used in the survey for each unsafe value

Parameter Descriptive sentence Unsafe value

Headpose-Y

The face is straight forward 0◦

The face is partially not visible because it is inclined to the top 74.17◦

The face is partially not visible because it is inclined to the bottom -88.10◦

The face is turned between the centre and the top of the image 10◦

The face is looking between the centre and the bottom of the image -10◦

Headpose-X

The face is partially not visible because it is turned to the left side of the image -28.88◦

The face is partially not visible because it is turned to the right side of the image 21.35◦

The face is turned between the middle and the left side of the image -10◦

The face is turned between the middle and the right side of the image 10◦

Eye Gaze Angle

The eyes are looking between the top left and the middle left of the image 22.5◦

The eyes are looking between the top centre and the top left of the image 67.5◦

The eyes are looking between top right and top centre 112.5◦

The eyes are looking between the middle right and the top right of the image 157.5◦

The eyes are looking between the bottom right and the middle right of the image 202.5◦

The eyes are looking between the bottom centre and the bottom right of the image 247.5◦

The eyes are looking between bottom left and bottom centre 292.5◦

The eyes are looking between the middle left and the bottom left of the image 337.5◦

Openness The eyes are abnormally open >64◦

DistToCenter The eyes are looking middle centre <11.5◦

PupilToTop The pupil is mostly above the eyelid <-16◦

PupilToBot-
tom The pupil is mostly under the eyelid >-16◦

105

CHAPTER 5. SAFETY ANALYSIS BASED ON FEATURE EXTRACTION

Figure 5.8: Example question appearing in our questionnaire.

As commonalities to be identified by the participants, we considered all the unsafe values described in

RQ1.4. For each unsafe value, we provided a descriptive sentence (see Table 5.8) to be selected by the

participants from a checkbox list. Participants could select more than one option and we provided the

option None of the above, for participants who did not find the set of provided answers to be satisfactory.

Each questionnaire was introduced by a short description of SAFE and a detailed description of the

task to perform. Further, we provided an example answer from a different case that is simple to understand

(classification of animal pictures).

Data collection was automated using Lime Survey6 and its link was sent to the participants by email.

Figure 5.8 shows an example question provided to the participants (in this case, the images belong to one

root cause cluster generated for the GD DNN). An example of a questionnaire sent to the participants can

be found in our replicability package.

6https://ulsurvey.uni.lu/

106

5.3. EVALUATION

For each set of answers (i.e., the ones provided with 5, 10, or 15 images), we counted the number of

answers that matched our ground truth. The number of images required to determine the root causes of a

DNN failure is the minimal number leading to a high percentage of correct answers.

To summarize, based on the experimental design above, we prevented learning effects from one

question to the next. We ensured that, for the same case study, the selected cluster and images were

different for each participant and selected randomly, to avoid any form of systematic bias.

Experiment Results.

Table 5.9 presents the results obtained from analyzing the questionnaire data. Overall, we notice

that when looking at 5, 10, and 15 images, 89%, 84%, and 74% of the participants found the correct

commonality in a cluster, respectively. Given that participants performed that type of task for the first

time, with limited initial training, we can consider 89% to be a good result and a lower bound of what

experienced practitioners would achieve.

Table 5.9: Percentage of correct responses by inspecting 5, 10 and 15 images for each case study subject,
based on the questionnaire study.

Correct responses
Case Study Subjects 5 inspected images 10 inspected images 15 inspected images

GD 80% 88% 67%
OC 83% 83% 86%

HPD 100% 83% 67%
Overall 89% 84% 74%

However, surprisingly, a larger number of inspected images does not improve results. On the contrary,

with a larger number of images being inspected (e.g., 15 images), the percentage of correct answers tends

to drop. This result may be due to the fact that a larger set of images leads to a higher cognitive load and is

also more likely to include noisy images (i.e., images that do not present the same commonalities as most

of the other images in the cluster). In the presence of noisy images, a user who looks for a commonality

across all the images may identify characteristics that are not a correct explanation for the DNN failure.

Since we are dealing with proportions, we performed a Fisher exact test to determine if the differences

observed between the pairs 5 images vs 10 images and 5 images vs 15 images are significant. The obtained

p-values (i.e., 1 for ’5 vs 10’ and 0.4 for ‘5 vs 15’) indicate that differences are not significant, which

may be due in part to the small number of participants (19). However, our results clearly show that the

inspection of five images does not lead to worse results than the inspection of a higher number of images,

thus justifying our assumption in RQ1.1 (i.e., engineers inspect five images per cluster).

GD and OC lead to similar results, with 80% (GD) and 83% (OC) of the participants who inspected

five images providing a correct answer. HPD leads to better results; indeed, 100% of the participants

found the correct commonality by inspecting five images. Such difference between HPD and the other

two cases is likely due to the fact that the simulator used to generate HPD images is more realistic (i.e.,

generates a whole face), while the simulator used for GD and OC simply generates eye bulbs and part of

the forehead (see Figure 5.5), thus resulting in images that are more complicated to quickly understand

by participants who are not familiar with the application domain. Despite such differences, which are

to be expected across case studies, the generic trend is consistent: five images seem to be sufficient and

not worse than larger sets of images. Therefore, we conclude that inspecting five images per cluster is an

acceptable choice regardless of the case study DNN.

107

CHAPTER 5. SAFETY ANALYSIS BASED ON FEATURE EXTRACTION

RQ2. Does SAFE enable engineers to more effectively and efficiently retrain a DNN when
compared with HUDD and baselines approaches?

Design and measurements.

In this experiment, we investigate whether SAFE significantly improves the accuracy due to retraining

the DNN, thanks to its selection method accounting for the shape of clusters. We compare these

improvements to HUDD and two baselines, namely B1 and B2, which are depicted in Figure 5.9

and explained in the following:

B1: In this baseline, we use the failure-inducing images in the improvement set as an unsafe set.

Precisely, we label7 a random subset of the improvement set and execute the DNN to identify failure-

inducing images. As for HUDD, this selected unsafe set

is augmented by applying bootstrap resampling (i.e., replicating samples in the unsafe set) in order to

have a sufficiently large number of unsafe images to improve the DNN.

Improvement
set

Labeled selected
improvement set

Augmented
labeled unsafe

set

Labeled unsafe
set

Training
set Retraining Improved DNN

Manual
labeling Bootstrap

Improvement
set

Randomly
selected

improvement set

Labeled selected
improvement set

Training
set Retraining Improved DNN

Random
selection

Manual
labeling

Augmented labeled
selected

improvement set

BL1

BL2

Select error
inducing images

Bootstrap

Figure 5.9: Process of the two baselines used to compare with SAFE

B2: This baseline consists of randomly selecting a set of images from the improvement set, labeling

them to obtain a labeled selected improvement set, and using them for retraining.

We rely on the same settings and environment to run the experiments for the four different retraining

strategies (i.e., SAFE, HUDD, B1, and B2). These experiments are repeated ten times to account for

randomness.

To retrain DNNs, we rely on the approach described in Section 5.2.

For fair comparisons with HUDD (see Chapter 3), B1, and B2, we configure bootstrap resampling to

generate an augmented labeled unsafe set and an augmented labeled selected improvement set with the

same size as the balanced labeled unsafe set for HUDD (see Figure 3.1).

7For our experiments, labeling comes for free because we either derive images using a simulator or we rely on available
datasets. However, labeling comes at a high cost in industrial practice, where new images are collected from the field.

108

5.3. EVALUATION

We compute the accuracy of the retrained models on the test sets and compare the accuracy improve-

ment obtained by SAFE with those obtained by HUDD and the baselines. For this experiment, we consider

all the case study subjects presented previously in Table 6.1.

The improvement sets for GD and OC have been generated through additional executions of UnityEyes.

For HPD and FLD, they have been generated with additional executions of the IEE simulator, configured

to use two new face models which were not used for generating the training and test sets. We selected

images of the original datasets not used for the training and test sets for the other cases.

Experiment Results.

Table 5.10 provides an accuracy comparison between SAFE, HUDD, and the two baselines on the

different case study DNNs. It also provides the size of the unsafe sets (number of images) selected by

each method. Additionally, we report the significance of these results in Table 5.11, including the values

of the Vargha and Delaney’s Â12 effect size and the p-values resulting from performing a Mann-Whitney

U-test between the accuracy of SAFE and other improvement strategies. Recall that we run each strategy

ten times. Typically, an Â12 effect size above 0.56 is considered significant with higher thresholds for

medium (0.64) and large (0.71) effects, thus suggesting the effect sizes between SAFE and other strategies

are large across case study DNNs, in all but one case.

Table 5.10: RQ2: Unsafe set size and the accuracy improvement of SAFE compared to HUDD

DNN Original
Model SAFE HUDD BL1 BL2

Accuracy
Unsafe
set size Accuracy

Improvement
over
original
model

Unsafe
set size Accuracy

Improvement
over
original
model

Accuracy Accuracy

GD 95.95% 1648 96.74% +0.79 1615 96.23% +0.28 95.23% 95.80%
OC 88.03% 153 96.29% +8.2 160 94.41% +6.38 91.65% 92.33%

HPD 44.07% 438 69.58% +25.51 481 68.13% +24.06 66.73% 66.30%
FLD 44.99% 659 79.17% +34.18 502 75.23% +30.24 72.02% 73.83%
TS 81.65% 597 93.47% +11.82 704 93.03% +11.38 92.63% 92.73%
OD 84.12% 212 97.14% +13.02 258 97.04% +12.92 97.04% 96.67%

Table 5.11: RQ2: p-values and VDA values when comparing SAFE to HUDD and the baselines

GD OC TS OD HPD FLD
p-value 3e-3 3e-3 1e-3 1e-4 1e-4 1e-4 7e-3 3e-3 1e-3 0.22 2e-3 0.04 3e-3 2e-4 1e-4 1e-4 1e-4 1e-4

VDA 0.88 0.88 0.9 1.0 1.0 1.0 0.85 0.96 1.0 0.66 0.9 0.77 0.85 1.0 1.0 1.0 1.0 1.0

For SAFE, improvements in accuracy over the original model varies from 0.79 to 34.18, compared

to lower ranges for HUDD (from 0.28% to 30.24%), B1 (from −0.18% to 27.03%) and B2 (−0.15%

to 28.84%). Across case study DNNs, SAFE clearly and systematically yields better accuracy results

compared to HUDD and the baselines, though to varying extents. Note that unsafe set sizes are comparable

across improvement strategies and that differences in accuracy are therefore due to the strategy adopted

for selecting unsafe images.

The lower improvement shown by the baselines can be explained by the fact they do not rely on root

cause clusters to select images for the unsafe set, a strategy that appears to be beneficial in our context.

SAFE always yields higher improvement than that of HUDD. This is because HUDD relies on the cluster’s

centroids to select images for the unsafe set without accounting for the cluster’s shape. In contrast, SAFE

109

CHAPTER 5. SAFETY ANALYSIS BASED ON FEATURE EXTRACTION

relies on core points to choose the images for the unsafe set. This enables the handling of clusters with

arbitrary shapes as the selected images take the shape of the cluster, as explained in Section 5.2.

Regarding SAFE results, we notice three types of improvement explained in the following:

For GD, the improvement is only +0.79. This is because the accuracy of the original model for this

case study subject was already very high (95.95%), with limited room for improvement.

For HPD and FLD, the improvement in accuracy is +26.16 and +34.18, respectively. The original

models for these two case study subjects had low accuracy and we therefore expected a large improvement.

In fact, HPD and FLD represent two cases where retraining was very much needed.

For OC, TS and OD, the improvement in accuracy is +8.2, +11.82 and +13.18, respectively. Though

this improvement is moderate compared to the previous case study DNNs, it is still significant given the

original models’ relatively high accuracy. After retraining, SAFE achieved high accuracy for these case

study subjects with 96.29%, 93.47%, and 97.30%, respectively.

We notice in Table 5.11 that the p-values when comparing SAFE to the baselines are always below

0.05. As for HUDD, the p-values are lower than 0.05 in five out of six case study subjects. This implies

that in most cases, the null hypothesis is rejected.

RQ3. Does SAFE provide time and memory savings compared to HUDD?

Design and measurements.

As mentioned in the previous Section, SAFE proved its effectiveness in retraining the different case

study subjects as it obtained significant improvements over the original models. SAFE not only performs

better than HUDD but also, and perhaps more significantly, provides very high time and memory savings.

This research question investigates whether SAFE, with its black-box nature, offers significant time and

memory saving.

We compare the time required by SAFE and HUDD to perform their most expensive tasks, which

are the time required to extract the features by SAFE and to generate the heatmaps by HUDD; we do

not report the time required to perform the other steps of the two approaches because these steps are

either shared or do not have any practical impact on performance (i.e., they took few seconds in our

experiments). We also compare the memory allocation of the features and the heatmaps, which are the

data types processed only by SAFE and HUDD, respectively.

Experiment Results.

Table 5.12 provide our results. We observe a large time and memory saving for SAFE compared

to HUDD. Such performance considerations have significant practical implications. For example, we

can observe that SAFE requires, in the worst case, only 3.5 minutes to generate RCCs and the unsafe

set to be used for retraining. HUDD, instead, requires 65 minutes to achieve the same objective. Such

difference has a huge impact on the practicality of the approach as, for SAFE, the analysis of RCCs can

be performed shortly after observing DNN failures. HUDD may require up to one hour to do the same.

Such execution time savings allow engineers to conduct DNN safety analysis and improvements in

a much shorter time. Memory savings also have significant implications since it prevents the need for

expensive hardware to perform such analysis.

The explanation for the above results is that SAFE is using extracted features to represent the images

instead of heatmaps. Feature extraction is less costly in time and memory than the computation of

110

5.3. EVALUATION

Table 5.12: Execution time of the feature extraction of the improvement sets and the memory allocations
of these features for SAFE compared to the execution time of the generation of the heatmaps and their
memory allocation.

Subject
Execution time (s) Memory allocation (Mb)
SAFE HUDD SAFE HUDD

GD 176 3,920 74.2 78,641
OC 160 958 4.1 3,551

HPD 161 1,294 1.6 8,839
FLD 210 1,883 0.82 11,981
OD 149 1,059 13.2 5,989
TS 152 2,335 1.6 16,744

heatmaps. Indeed, the distance computed on features is less computationally complex than the one

calculated on heatmaps.

Heatmaps also take a great deal of memory for storage. HUDD generates heatmaps for each layer.

For instance, the heatmap for the eighth layer of AlexNet has a size of 169 × 256 (convolution layer),

while the heatmap for the tenth layer has a size of 4096× C. With this architecture, HUDD will generate

eight heatmaps of size 169× 256 and one heatmap of size 4096× C for every image in the dataset. In

contrast, for SAFE, each image is represented by a 1× 256 matrix (256 features for each image).

5.3.3 Threats to Validity

We discuss internal, conclusion, construct, and external validity according to conventional practices [145].

Internal Validity: A possible internal threat is the use of the feature extraction method on which we rely,

which could negatively affect our results if inadequate. Indeed, clustering relies on the similarity computed

in terms of the extracted features. To mitigate this threat, we have checked that some of the features

extracted by our method are consistent within clusters, by visually inspecting them. Indeed, such features

contain enough information on the images if the clusters are visually consistent, thus demonstrating that

the features extraction method worked.

External validity: The selection of the case study DNNs could be a threat to validity. This work

alleviates this issue by using six datasets with diverse complexity. Four subject DNNs out of six implement

tasks motivated by IEE business needs that address problems that are quite common in the automotive

industry. Also, the simulators used in our experiments, though being related to IEE in-car sensing business

cases, vary in terms of characteristics; indeed, they range from high-fidelity simulation of specific body

parts (in our case, the human eye) to whole human body simulations (we crop the face) with lower fidelity.

In our experiments we test DNNs that process cropped images (e.g., human’s head, traffic signs). Cropping,

which a DNN can perform, limits the number of features appearing in the images to be processed, thus

potentially simplifying the task to be performed by SAFE. However, cropping was justified in our context

by the expected inputs of our subject DNNs. Finally, although we focus on data sets related to in-car

sensing, we believe that SAFE will perform well with other data sets since the VGG model used for the

feature extraction was pre-trained on Image-Net, which means that the model can capture features related

to 1, 000 classes, including humans, animals, and objects. In the future, we aim to extend our work to

111

CHAPTER 5. SAFETY ANALYSIS BASED ON FEATURE EXTRACTION

include subjects from different domains (e.g., different types of classification tasks with non-cropped

images).

Another threat to the generalizability of our results is the dependence on ImageNet. SAFE relies on

VGG16 to extract features from images. VGG16 was pre-trained on ImageNet, which is a large image

database. Therefore, SAFE is expected to work better with images containing objects recognized by

ImageNet. However, we believe that this characteristic does not affect the practical applicability of SAFE

in the automotive context since the ImageNet VGG recognizes 1, 000 different objects, including objects

belonging to the automotive scenery; these objects include cars, faces, and eyes, for example 8.

Conclusion validity: To avoid violating parametric assumptions in our statistical analysis, we rely

on a non-parametric test and effect size measure (i.e., Mann Whitney U-test, the Vargha and Delaney’s

Â12 statistics, and the one-sample Wilcoxon signed rank test, respectively) to evaluate the statistical and

practical significance of differences in results. We report both p-values and effect sizes.

Due to the stochastic nature of SAFE (e.g., DNN retraining), the experiments conducted with the

SAFE method were executed over ten runs. We reported the descriptive statistics of those runs and

discussed the statistical significance and effect size of differences across methods.

Construct validity: The constructs considered in our work are effectiveness and cost. Effectiveness

is measured through complementary indicators, which include (1) within-cluster variance reduction

for at least one parameter (for RQ1.2), (2) average values being close to unsafe values for parameters

with high within-cluster variance reduction (for RQ1.3), (3) coverage of plausible causes of failures

represented by unsafe values (for RQ1.4), (4) DNN accuracy improvement (for RQ2). Although the

effectiveness regarding the analysis of root causes (i.e., RQ1.2 to RQ1.4) might be evaluated with user

studies, such evaluation might be biased by the background and experience of the selected pool of users,

which shall also be sufficiently large in number. In our context, end-users are engineers with background

in safety analysis (e.g., to determine if an input is realistic or if a DNN failure may lead to a hazard) and

machine learning. However, since safety experts are generally not trained to use DNNs whereas DNN

experts (e.g., recently graduated students) are typically not safety experts, it would be difficult to select

a large enough set of users for the study. For this reason, we preferred to rely on reflective indicators

based on the information provided by simulators, thus enabling an objective evaluation. Moreover, the

quality and usefulness of our results have been confirmed by experts at our industry partner, IEE Sensing,

over multiple technical and management meetings. These experts included researchers with a Ph.D. in

mathematics and machine learning who develop safety-critical software components, safety engineers

integrating DNN-based components, and chief technology officers. To measure the effectiveness of DNN

retraining, we relied on improvements in accuracy, which is common practice.

Concerning cost, we discussed the feasibility of root cause analysis by reporting the number of clusters

generated by the approach and the number of images that are sufficient to determine commonalities across

images, based on our experience and that of our industry partners. We also discussed the cost of DNN

retraining by reporting the time required for retraining, which affects the feasibility of the approach in

practice, and memory allocation costs, which affect hardware requirements.

Another threat is with RQ1.3 (Section 5.3.2) where we systematically select unsafe parameters for

each case study to evaluate the clusters. This can prevent us from identifying other reasons for failures if,
8The full list of classes is available at https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a

112

https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a

5.4. CONCLUSION

for any reason, we miss some of these parameters. However, whether this is the case or not, this does not

prevent the identification of clusters and missing parameters would then lead to clusters without clear root

causes, something we have not observed in our experiments.

5.4 Conclusion

In this chapter, we presented SAFE, a new black-box approach that automatically identifies the different

situations in which a DNN is more likely to fail, without requiring any modification to the DNN or access

to its internal information. Similar to HUDD, SAFE characterizes such situations by generating clusters

of images that likely lead to a DNN failure because of the same underlying reason. We refer to these

clusters as root cause clusters. Different from HUDD, SAFE is based on a pre-trained model to extract

features from failure-inducing images. These features replace the heatmaps used by HUDD to generate

the root cause clusters. Also, SAFE uses a density-based clustering algorithm to generate arbitrary-shaped

clusters.

SAFE uses a new method to select an unsafe set for retraining based on the cluster’s core points. More

specifically, SAFE selects images close to each cluster’s core points. These images are manually labeled

and used to augment the training set to improve the DNN through retraining.

Empirical results show that SAFE derives root cause clusters that can effectively help engineers

determine the root causes for DNN failures. Indeed, the number of generated clusters is low, thus making

the visual inspection of a few representative images for each cluster feasible. They include images with

similar characteristics that are likely related to the cause of the failure. Further, for our case study subjects,

the generated clusters capture all the possible causes of failures. Compared to HUDD, SAFE generates

clusters with more similar characteristics covering a larger set of failure causes. Moreover, the DNNs

retrained by SAFE achieve a higher accuracy than that obtained with HUDD and baseline approaches.

Besides the benefits described above, SAFE also saves large amounts of execution time and memory

due to its black-box nature and the reliance on the extracted features instead of heatmaps, thus making it

more usable in practical contexts.

113

Chapter 6

Pipelines for Clustering-based DNN
Explanation: an Empirical Assessment.

In the previous chapters, we proposed a white-box approach (HUDD, see Chapter 3) and a black-box

approach (SAFE, see Chapter 5) to automatically characterize the root causes of DNN failures. Their

objective was to identify clusters of similar images from a potentially large set of images leading to

DNN failures. By visualizing the images in each cluster, the engineers can easily understand what

are their commonalities and, therefore, determine the scenarios in which the DNN may fail. This is

necessary in the context of safety analysis to enable the evaluation of risks associated with a DNN and

identify countermeasures. The analysis pipelines for HUDD and SAFE were instantiated in specific ways

according to best practices. However, several variants exist for each pipeline component.

In this chapter, we report on an empirical evaluation of 99 different pipelines for root cause analysis

of DNN failures. They combine transfer learning, autoencoders, heatmaps of neuron relevance, dimen-

sionality reduction techniques (PCA, UMAP), and different clustering algorithms (K-means, DBSCAN,

HDBSCAN).

6.1 Introduction

Our previous work is the first application of unsupervised learning to perform root cause analysis targeting

DNN failures. Precisely, we proposed two DNN explanation methods: SAFE (Safety Analysis based on

Feature Extraction) [24] and HUDD (Heatmap-based Unsupervised Debugging of DNNs) [18]. They both

process a set of failure-inducing images and generate clusters of similar images. Commonalities across

images in each cluster provide information about the root cause of the failure. For example, applying our

approaches to failure-inducing images for a DNN that classifies car seat occupancy may include a cluster

of images with child seats containing a bag; such cluster may help engineers determine that bags inside

child seat are likely to be misclassified and, therefore, the training set should be improved accordingly

(e.g., more child seats with objects should be considered). Both SAFE and HUDD also support the

115

CHAPTER 6. PIPELINES FOR CLUSTERING-BASED DNN EXPLANATION: AN EMPIRICAL
ASSESSMENT.

identification of additional images to be used to retrain the DNN.

HUDD and SAFE differ with respect to the kind of data used to perform clustering and the pipeline

of steps they rely on. HUDD applies clustering based on internal DNN information; precisely, for all

failure-inducing images, it generates heatmaps capturing the relevance of DNN neurons on the DNN

output. Finally, it applies a hierarchical clustering algorithm relying on a distance metric based on the

generated heatmaps. SAFE is black-box as it does not rely on internal DNN information. It generates

clusters based on the visual similarity across failure inducing images. To this end it relies on feature

extraction based on transfer learning, dimensionality reduction, and the DBSCAN clustering algorithm.

SAFE and HUDD rely on a pipeline that has been configured in specific ways according to best

practices. However, several variants exist for each component of both approaches (e.g., different transfer

learning models, different clustering algorithms).

In this chapter, we aim to evaluate these pipeline variants for both SAFE and HUDD. Therefore, we

propose an empirical evaluation of 99 alternative configurations for SAFE and HUDD (pipelines). These

pipelines were obtained using different combinations of feature extraction methods, clustering algorithms,

dimensionality reduction techniques, in addition, we assessed the effect of fine tuning the transfer learning

models used by feature extraction methods.

For our empirical evaluation we considered six case study subjects, two of which were provided by

our industry partner in the automotive domain, IEE Sensing [17]. Our subjects’ applications include head

pose classification, eye gaze detection, drowsiness detection, steering angle prediction, unattended child

detection, and car position detection.

We present a systematic and extensive evaluation scheme for these pipelines, which entails generating

failure causes that resemble realistic scenarios (e.g., poor lighting conditions or camera misconfiguration).

Since the reason of failure in these scenarios are known a priori, such an evaluation scheme enables us to

objectively analyze and evaluate the performance and robustness of these pipelines.

Our empirical results conclude that the best pipelines support and facilitate the process of functional

safety analysis such that they 1) can generate RCCs that group together a very high proportion of images

capturing a same root cause (94.2%, on average), 2) can capture most of the root causes of failures for all

case study subjects (100.0%, on average), and 3) are robust to the rarity of failure instances in a data set

(i.e., when some causes of failures affect less than 10% of the failure-inducing images).

6.2 The Proposed Pipelines

This section presents the different pipelines that can be used to implement variants of SAFE and HUDD.

The evaluated pipelines differ from the original SAFE and HUDD variants with respect to four com-

ponents: Feature Extraction, Dimensionality Reduction, Clustering, and Fine-Tuning. Each pipeline is

a combination of a feature extraction method (FE), a dimensionality reduction technique (DR), and a

clustering algorithm (CA). When feature extraction is based on transfer learning, we distinguish between

models that are fine-tuned and not fine-tuned (FT/NoFT); feature extraction approaches not based on

transfer learning cannot be fine-tuned.

We refer to each pipeline with the pattern FE/{FT,NoFT}/DR/CA, with each keyword being replaced

with the name of the selected method. We depict in Figure 6.1 all the pipelines evaluated in our study; the

different components are described in the following sections.

116

6.2. THE PROPOSED PIPELINES

PCA

UMAP

NONE

4x Transfer
Learning Models

LRP

HUDD

Fine-tuning

No Fine-tuning

DBSCAN

HDBSCAN

K-Means

99
Pipelines

Feature Extraction
Method

Fine-tuning Dimensionality Reduction
Technique

Clustering
Algorithm

AE

Figure 6.1: Pipelines evaluated in our experiments.

6.2.1 Feature Extraction

Feature Extraction based on Transfer Learning

Several DNN architectures to extract features based on transfer learning have been proposed: Inception-

V3 [146], VGGNet [31], ResNet-50 [147], and Xception [148]. These DNNs were trained on Ima-

geNet [149], which is a dataset with more than 14 millions annotated images. The number of extracted

features depends on the selected DNN architecture; Inception-V3, VGGNet-16, ResNet-50, and Xception

generate 2048, 512, 2048, and 2048 features, respectively. They are described in the following paragraphs.

• VGG-16: VGG-16 is a Convolution Neural Network (CNN) architecture and the winner of the

ILSVR (Imagenet) competition in 2014. VGG-16 focuses on convolution layers of 3×3 filters with a

stride of 1 and always uses the same padding and maxpooling layer of 2×2 with a stride of 2 instead

of having a large number of hyper-parameters. It follows this arrangement of convolution and max

pool layers consistently throughout the whole architecture. VGG-16 has two fully connected layers

followed by a softmax layer as an output. The network has an image input size of 224× 224.

• ResNet-50: ResNet [147] is a CNN based on residual blocks. This architecture aims to solve

vanishing gradient problems in deep neural networks. During the backpropagation process, the

gradient diminishes dramatically in deep networks. Small values of gradients prevent the weights

from changing their values, which slows the training process. To solve this issue, ResNet introduces

residual blocks. These building blocks present skip connections between the previous convolutional

layer’s input and the current convolutional layer’s output. Similar to VGG-16, the network has an

image input size of 224× 224.

• Inception-V3: Inception-V3 is a refined version of Inception [150]. This network proposes

additional variants of Inception blocks to reduce the number of multiplications in the convolution and

minimize computational complexity. These variants are based on two factorizations: factorization

into smaller convolutions and factorization into asymmetric convolutions. The network has an

image input size of 224× 224.

• Xception: Xception is a pre-trained CNN that is 71 layers deep and can classify images into 1, 000

different classes such as animals, objects, and humans. This allowed the model to learn various

feature representations for a wide range of images. The Xception’s input size is 299× 299.

117

CHAPTER 6. PIPELINES FOR CLUSTERING-BASED DNN EXPLANATION: AN EMPIRICAL
ASSESSMENT.

Fine-tuning

Fine-tuning is a typical strategy for extracting features using transfer learning. Specifically, fine-tuning

relies on taking a model that has already been trained for a particular task A as a starting point and then

removing, adding, freezing, or unfreezing some layers to improve the performance for a similar task B. It

aims to benefit from the knowledge gained from a source task and generalize it to a target task.

Fine-tuning consists of freezing the shallow layers (close to the input), which learn more generic

features (edges, shapes, and textures), and retraining the deeper layers (i.e., we let the DNN algorithm

update the weights of the layers close to the output), which learn more specific features from the input

data [151]. To fine-tune a pretrained DNN model, we follow four steps:

1. Create a new model whose layers (along with their weights) are cloned from the pre-trained model,

except for the output layer.

2. Add a new fully connected output layer with a number of outputs equal to the number of classes in

the target dataset, and initialize its weights with random values.

3. Freeze shallow layers in the network, which are responsible for the feature extraction process

(to guarantee that all the important features, previously learned by the pre-trained model, are not

eliminated).

4. Start training the new model on the target dataset, where the weights of all the non-frozen layers

will keep updating using the backpropagation process. For the termination criterion, we use 100

epochs or until the loss stops improving (whichever criterion is met first).

Feature Extraction based on Autoencoders

As explained in Section 2.1.3, an Encoder plus a Decoder make up an autoencoder (AE). The input is

compressed by the Encoder, and the Decoder reconstructs the input using the Encoder’s compressed

version (at the Bottleneck).

Since AEs extracts only the few input features necessary to aid the reconstruction of the output, the

encoder might ignore other features which are not prioritized. For example in case of face images, the AE

can discard the color of the skin because it is a non-prioritized feature to the AE.

However, the encoder often learns useful properties of the data [152]. The model can then receive

input data from any domain, and a fixed-length feature vector obtained at the Bottleneck can be used for

clustering. Such a vector offers a compressed version of the input data representation containing sufficient

information about this data.

Feature Extraction based on Heatmaps

In our work, we rely on heatmaps as an additional method for feature extraction. Since heatmaps represent

the relevance of each neuron on DNN outputs, failure-inducing inputs sharing the same underlying cause

should show similar heatmaps.

Precisely, we rely on two different methodologies for extracting features using heatmaps, we refer to

them as LRP and HUDD, according to the name of the technique driving feature extraction. LRP and

HUDD have been introduced in Chapters 2.4 and 3.2. Feature extraction based on LRP, which generates

118

6.2. THE PROPOSED PIPELINES

heatmaps for internal layers but does not integrate a mechanism to select the most informative layer,

considers the heatmap computed by the LRP technique for the input layer. Feature extraction based on

HUDD, instead, considers the heatmap generated for the DNN internal layer selected by HUDD as the

best for clustering.

6.2.2 Dimensionality Reduction Techniques

Several dimensionality reduction techniques exist in the literature. In this chapter, we rely on two state-of-

the-art techniques: Principal Component Analysis (PCA) [45] and Uniform Manifold Approximation and

Projection (UMAP) [46]. PCA is used for its simplicity of implementation and because it does not require

much time and memory resources. UMAP is used for its effectiveness when applied before clustering.

UMAP groups data points based on relative proximity, which optimizes the clustering results. PCA and

UMAP are described in detail in Chapter 2.1.3.

Principal Component Analysis (PCA)

In our context, we reduce the features for all our evaluated pipelines to 10 components. We empirically

obtained this number in a preliminary investigation conducted with one of our case study subjects (i.e.,

HPD). Precisely, we executed a clustering algorithm (K-means) multiple times; each execution was

performed with a set of features obtained by applying PCA with a different number of components. We

evaluated all the clustering solutions using the Silhouette Index [140] (see Section 6.2.3) and chose the

number of components yielding the highest index value.

Uniform Manifold Approximation and Projection (UMAP)

Since UMAP can keep the structure of the data, even in a 2-dimensional space, we reduce the number of

features to 2 components.

6.2.3 Clustering Algorithms

In this study, we rely on three well-known clustering algorithms, K-means [39], DBSCAN [40], and

HDBSCAN [41] described in Chapter 2.1.3. These three clustering algorithms were chosen after prelimi-

nary experiments including also the Hierarchical Agglomerative Clustering (HAC) [92] and the Mean

Shift algorithm [153]. When generating clusters for one of our subjects (i.e., HPD, see Section 6.3),

HAC and Mean Shift yielded much lower values of the Silhouette Index than the DBSCAN, HDBSCAN,

and K-means algorithms; therefore, we discarded HAC and Mean Shift from our selection. Since a

clustering algorithm may require the manual selection of parameters’ values, such as the number of

clusters (K-means) or the minimum distance between data points (DBSCAN), we rely on an internal

evaluation metric (the Silhouette Index [140]) and the knee-point method [87] to automate the selection of

such values.

The Silhouette Index is a standard practice in cluster analysis that maximizes cohesion (i.e., how

closely related objects are in a cluster) and separation (i.e., how well-separated a cluster is from other

clusters).

The knee-point method automates the elbow method heuristics [90] by fitting a spline to the raw data

using univariate interpolation, normalizing min/max values of the fitted data, and selecting the knee-points

119

CHAPTER 6. PIPELINES FOR CLUSTERING-BASED DNN EXPLANATION: AN EMPIRICAL
ASSESSMENT.

Figure 6.2: Approximating the optimal number of clusters K using the Knee-point method. In this case
the optimal K is equal to six.

at which the curve most significantly deviates from the straight line segment that connects the first and

last data point. We rely on the knee-point method to automatically select the optimal number of clusters

for the K-means algorithm.

K-means:

To select an optimal value of K, we rely on the knee-point method. Precisely, we cluster the data with

different values of K (in our evaluation, we consider the range [5− 35]). For each clustering result, we

compute the within-cluster sum of squared errors (SSD), which is the sum of the distances of each point

to its cluster center. We then apply the knee-point approach to these SSDs and their respective K.

Figure 6.2 shows an example of K-approximation using the knee-point method.

DBSCAN:

For the identification of the values for ϵ and MinPts, we rely on the same strategy integrated in SAFE,

described below.

We determine the optimal value for ϵ by first computing the Euclidean distance from each data point

to its closest neighbor. Then, we identify the optimal ϵ value as the knee-point of the curve obtained by

considering those distances in ascending order.

To select an optimal MinPts value, we execute DBSCAN multiple times with varying MinPts values

and with an ϵ equal to the optimal value determined above. We then select the clustering configuration

that corresponds to the highest Silhouette Index value.

120

6.3. EVALUATION

6.3 Evaluation

In this Section, we aim to evaluate the pipelines presented in Section 6.2. A pipeline leads to the generation

of clusters of images that are visually inspected by safety engineers to determine the root cause captured

by each. We assume that a root cause can be described in terms of the commonalities across the images

in a cluster; each root cause is thus a distinct scenario in which the DNN may fail (hereafter, failure

scenario). The pipeline that best support such process should be the one requiring minimal effort towards

accurate identification of root causes. Therefore, the best pipeline is the one that generates clusters having

a high proportion of similar images (to facilitate the identification of the root cause, based on analyzing

similarities across images in a cluster), enable the detection of all the root causes of failures, and be robust

to the rarity of a particular root cause (to avoid ignoring infrequent but unsafe failure causes). Based on

the above, we defined three research questions to drive our empirical evaluation:

RQ1 Which pipeline generates root cause clusters with the highest purity?

We define a pure cluster as one that contains only images representing the same failure scenario.

Such clusters are expected to be easier to interpret; indeed, the engineer should more easily

determine the root cause of failures if all the images share the same characteristics. Therefore, the

best pipeline is the one that leads to clusters with the highest degree of purity. The purity of a

cluster is computed as the maximum proportion of images belonging to a same failure scenario in

this cluster.

RQ2 Which pipelines generate root cause clusters covering more failure scenarios?

This research question investigates to which extent the different pipelines miss failure failure

scenarios. Ideally, all failure scenarios should be captured by one or more clusters. We say that

a failure scenario is covered by a cluster if a majority of the images in the cluster belong to the

scenario; indeed, commonalities shared by most of the images in a cluster should be noticed by

engineers during visual inspection. We aim to determine which pipeline maximizes such coverage.

RQ3 How is the quality of root cause clusters generated affected by infrequent failure scenarios?

Some failure scenarios may be infrequent but are nevertheless important to identify. Ideally, a

pipeline should be able to produce high-quality clusters even when a small number of images

belong to one or more failure scenarios. In this research question, we vary the number of images

belonging to failure scenariosand study how the effectiveness of pipelines (purity and coverage of

the generated clusters) is affected.

To perform our empirical evaluation, we have implemented the transfer learning models using

Tensorflow [154] and Keras [155]. The clustering algorithms and the dimensionality reduction methods

were implemented using the Scikit-Learn library [156]. All the experiments were carried out on an Intel

Core i9 processor running macOS with 32GB RAM. Additionally, in our experiments, we relied on the

LRP implementation provided by LRP authors [85] for well-known types of layers (i.e., MaxPooling,

AvgPooling, Linear, and Convolutional layers). Further, we extended the implementation of LRP to

include DNN models implemented in PyTorch [98], Tensorflow, and Keras libraries.

121

CHAPTER 6. PIPELINES FOR CLUSTERING-BASED DNN EXPLANATION: AN EMPIRICAL
ASSESSMENT.

6.3.1 Subject Systems

To evaluate our pipelines, we consider four different DNNs that process synthetic images in the automotive

domain. These DNNs support gaze detection, drowsiness detection, headpose detection, and unattended

child detection, which are subjects of ongoing innovation projects at IEE Sensing, our industry partner

developing sensing components for automotive. Additionally, we consider two DNNs that process

real-world images to support autonomous driving: steering angle prediction and car position detection.

The gaze detection DNN (GD) performs gaze tracking; it can be used to determine a driver’s focus

and attention. It divides gaze directions into eight categories: TopLeft, TopCenter, TopRight, MiddleLeft,

MiddleRight, BottomLeft, BottomCenter, and BottomRight. The drowsiness detection DNN (OC) has

the same architecture as the gaze detection DNN and relies on the same dataset, except that it predicts

whether the driver’s eyes are open or closed.

The head-pose detection DNN (HPD) is an important cue for scene interpretation and computer

remote control, such as in driver assistance systems. It determines the pose of a driver’s head in an image

based on nine categories: straight, rotated left, rotated left, rotated top left, rotated bottom right, rotated

right, rotated top right, tilted, and headed up.

The unattended child detection DNN is trained with the Synthetic dataset for Vehicle Interior Rear

seat Occupancy detection (SVIRO) [157]. SVIRO is a dataset generated by IEE that represents scenes in

the passenger compartment of ten different vehicles. The dataset has been used by IEE to train DNNs

performing rear seat occupancy detection using a camera system. We use it to train a DNN for unattended

child detection. We consider a seat empty when there is an object, an empty infant/child seat, or nothing.

We consider the presence of a child/infant as a class and the presence of an adult as another class. As a

result, we have labelled the dataset with three classes (i.e., empty seats, children/infants not accompanied

by adults, and presence of an adult).

For Steering Angle Prediction (SAP), we rely on the pre-trained Autumn DNN model [158], which

follows the DAVE-2 architecture [159] provided by NVIDIA. It is a DNN to automate steering commands

of self-driving vehicles [160]; it predicts the angle at which the wheel should be turned. It has been trained

on a dataset of road images captured by a dashboard camera mounted in the car.

Car Position Detection (CPD) DNNs are used by most Advanced-Driver Assistance Systems (ADAS)

to predict the positions of nearby cars. We rely on the CenterNet DNN [161], which is an accurate DNN

used by most competition-winning approaches for object detection [162]. It has been trained on images

from the ApolloScape dataset [163] collected using a dashboard camera to estimate the absolute position

of vehicles with respect to the ego-vehicle.

For each subject DNN, we apply our pipelines to a set of failure-inducing images. Such sets consist of

(1) images belonging to a provided test set and leading to a DNN failure and (2) test set images that were

not leading to a DNN failure but had been modified to cause a DNN failure; the latter are images with

injected root causes of failures and are described in Section 6.3.2.

In classifier DNNs (i.e., OC, GD, HPD, and SVIRO) a failure occurs in the presence of an image being

incorrectly classified. For SAP and CPD, which are regression DNNs, we set a threshold to determine

DNN failures. For SAP, we observe a DNN failure when the squared error between the predicted and the

true angle is above 0.18 radian (10.3◦), which is deemed to be an acceptable error in related work [3]. For

CPD, since it tackles a multi-object detection problem, we report a DNN failure when the result contains

at least one false positive (i.e., the distance between the predicted position of the car and the ground truth

122

6.3. EVALUATION

Table 6.1: Case Study Systems

DNN Data Training Test Failure # # # # # # # # # #
Source Set

Size
Set Size
(Accuracy)

inducing
images

M1 N2 H3 B5 SG6 EG7 EO8 S9 D10 NF11

GD UnityEyes 61,063 132,630
(96%)

5,371 - 80 - 80 - - - 80 80 80

OC UnityEyes 1,704 4,232
(88%)

506 - 20 - 20 - - - 20 20 20

HPD Blender 16,013 2,825
(44%)

1,580 90 90 90 90 90 90 - 90 90 90

SVIRO Blender 15,489 3,427
(74%)

884 - 30 - 30 - - 30 30 30 30

SAP Autopilot [165] 33,808 45,406
(84%)

7,169 - 90 - 90 - - - 90 90 90

CPD Apollo [163] 5,208 4,996
(91%)

444 - 90 - 90 - - - 90 90 90

1 Mask 2 Noise 3 Hand 5 Blurriness 6 SunGlasses 7 EyeGlasses 8 Everyday Object 9 Scaling 10 Darkness 11 No Injected Fault

is above 10 pixels [164]).

In Table 6.1, we provide details about the case study subjects used to evaluate our pipelines. For each

subject, we report the source of the data set (e.g., the simulator used to generate the data), the training and

test set sizes, the accuracy of the DNN on the original test set, the number of failure-inducing images and

the number of images for each injected root cause (they are detailed in Section 6.3.2).

We fine-tune the pipelines relying on transfer learning using the test sets of the respective case studies.

We use the resulting fine-tuned model to extract the features from the failure-inducing sets. We train on

the test sets because the number of images in each set is sufficient for the model to learn the features. Also,

we train the autoencoders on the training set, and use the test set of the respective case study to validate

the results. The termination criterion is 50 epochs unless we reach an early stopping point (the model

stops improving). After training, we use only the encoder part to extract the features from the images in

the failure inducing set.

6.3.2 Injected Failure Scenarios

To assess the ability of different pipelines to generate clusters that are pure and cover all the root causes of

failures, we need to know the root causes of failures in the test set. Since such root causes may vary (e.g.,

lack of sufficient illumination, presence of a shadow in a specific part of the image) and it is not possible

to objectively demonstrate that a failure cause has been correctly captured by a cluster (e.g., some readers

may not agree that certain images show lack of sufficient illumination), to avoid introducing bias and

subjectivity in our results, we modify a subset of the provided test set images so that they will fail because

of known root causes of failures. In total, we considered nine different root causes to be injected in our

test set images and refer to them as injected failure scenarios (i.e., failure scenarios with injected root

causes).

We derive an image belonging to an injected failure scenario by modifying a test set image according

to the specific root cause we aim to inject; for example, by covering the mouth of a person with a mask.

To ensure that a modified image leads to a DNN failure because of the injected root cause, we modify

only test set images that, before modification, lead to a correct DNN output.

Figure 6.3 illustrates the different injected failure scenarios. Below, we describe the nine root causes

considered in our study:

123

CHAPTER 6. PIPELINES FOR CLUSTERING-BASED DNN EXPLANATION: AN EMPIRICAL
ASSESSMENT.

• Hand: The presence of a hand blocking the full view of the driver’s face could affect the DNN

result, leading it to mispredict the driver’s head direction. We simulate a hand that is partially

covering the face appearing in the image.

• Mask: Similar to Hand, the presence of a mask covering the nose or the mouth may affect a DNN

that recognizes the driver’s head pose. Using image key points, we drew the shape of a white mask

to simulate a mask covering the nose and the mouth.

• Sunglasses: As for the Mask, we use the eyes’ key points to draw sunglasses covering the driver’s

eyes.

• Eyeglasses: Different from the Sunglasses, we draw glasses with the eyes being still visible.

• Noise: A noisy image is one that contains random perturbations of colors or brightness. This

failure scenario has been considered in related work to evaluate DNN robustness against adversarial

attacks [166]. In real-world automotive systems, such a failure scenario resembles a defective

camera or a high signal-to-noise ratio (SNR) in the communication channel between different

electronic control units (ECUs), resulting in a noisy input. We use the Scikit-Image library [167]

to add Gaussian Noise, a statistical noise with a probability density function equal to a normal

distribution, also known as Gaussian Distribution.

• Blurriness: As for Noise, this failure scenario was used to evaluate DNN robustness [3]. We use

the Pillow library [168] to add blurriness to images using a radius of 30 pixels.

• Darkness: Once again, this failure scenario was used in related work to evaluate DNN robust-

ness [169] . In practice, poor lighting conditions could make the DNN fail because it cannot clearly

recognize what is depicted in an image. We use the Pillow library [168] to decrease the brightness

of images by a factor of 0.3; we selected 0.3 because it is the lowest value introducing failures in

our subject results.

• Scaling: Such a failure scenario mimics the situation where a camera is misconfigured, leading

to rescaled images being fed to the DNN. We reduce the size of an image by a value based on

the image size (i.e., large 1200px × 1200px images are scaled by 400px, small 320px × 320px

images by 70px) and insert a black background using the Pillow library [168].

• Everyday Object: For the SVIRO dataset, we introduce, in the car’s rear seat, an object (e.g., a

washing machine or a handbag) never observed in the training set, thus simulating the effect of an

incomplete training dataset.

124

6.3. EVALUATION

Mask Noise Blurriness Darkness Hand

Sunglasses Eyeglasses Scaling No injected fault Everyday object

Figure 6.3: Injected failure scenarios in our study.

For regression DNNs (SAP and CPD), we randomly selected 90 images to be copied and modified for

each failure scenario. For classifier DNNs, for each failure scenario, we randomly selected 10 images for

each class label.

Please note that in addition to the injected failure scenarios explained above, our DNNs are affected

by other natural failure causes (e.g., borderline images that are misclassified because they are very similar

to the ones belonging to another class). Such cases are observed with any machine learning model since it

is usually not possible to achieve perfect accuracy through training. We refer to these images as belonging

to natural failure scenarios. In our analysis, we include a number of images belonging to natural failure

scenarios equal to those with injected failure scenarios. This is because natural failure scenarios are

usually observed with any DNN and, therefore, should be considered when generating RCCs.

6.3.3 Measurements and Results

RQ1. Which pipeline generates root cause clusters with the highest purity?

Design and measurements.

A pure cluster includes only images presenting the same root cause (i.e., common cause leading to a

DNN failure); for example, a hand covering a person’s mouth. Pure clusters simplify root cause analysis

because they should make it easier for an engineer to determine the commonality across images and

therefore the cause of failures.

Since the likely root cause of the failure in our injected failure scenarios is known, we focus on these

scenarios to respond to RQ1. For each RCC, we compute the proportion of images belonging to each

injected failure scenario. Therefore, we measure the purity P of a cluster C (hereafter, PC) as the highest

proportion of images belonging to one injected failure scenario f ∈ F assigned to cluster C, where F is

the set of all failure scenarios. PC is computed as follows:

PC = max
f∈F

(
Cf

|C|

)
(6.1)

125

CHAPTER 6. PIPELINES FOR CLUSTERING-BASED DNN EXPLANATION: AN EMPIRICAL
ASSESSMENT.

The proportion of a failure scenario f in a cluster C is computed as the number of images belonging

to f assigned to cluster C (Cf), divided by the size of cluster C.

Clusters that do not include any image belonging to an injected failure scenario are assumed to capture

root causes due to natural failure scenarios and, consequently, are excluded from our analysis.

We study the purity distribution across RCCs generated for the different case study subjects. Since,

ideally, we would like to obtain pure clusters, the best pipeline is the one that maximizes the average

purity across the generated RCCs.

Experiment Results.

Figure 6.4 depicts a regression tree illustrating how the different components of a pipeline (feature

extraction methods, fine-tuning, dimensionality reduction techniques and clustering algorithms) determine

the purity of the clusters generated by a pipeline. We use the Conditional Inference Tree (CTree)

algorithm [170] to generate this decision tree with a maximum depth set to 4 (we have four components

in a pipeline) and a minimum split set to 10 (i.e., the weight of a node to be considered for splitting). The

dataset used to build the tree consists of the components of each pipeline as attributes, and the purity of

the generated clusters as the predicted outcome. The dataset size is equal to 99, the number of pipelines.

Each node of the tree represents a feature of the pipeline. Leaves (terminal nodes) depict box plots

representing distributions of the average purity across RCCs generated by the pipelines belonging to each

leaf. Each point in the box plot is the average purity of one pipeline (i.e., the average of the purity of all

the RCCs generated across all case study subjects). To split a node, the CTree algorithm first identifies the

feature with the highest association (covariance) with the response variable (purity, in our case). Precisely,

it relies on a permutation test of independence (null hypothesis) between any of the features and the

response [171]; the feature with the lowest significant p-value is then selected (alpha = 0.05, in our case).

Once a feature has been selected, a binary split is then performed by identifying the value that maximizes

the test statistics across the two subsets. Since we are in the presence of multiple hypothesis (assume m,

for each node), to prevent a Type I error, for each feature j, CTree computes its Bonferroni-adjusted [172]

p-valuej as

adjusted p-valuej = 1− (1− p-valuej)m

In Figure 6.4, we notice that the pipelines with fine-tuned models (Node 3 and 4) generate lower-purity

clusters than those without any fine-tuning (Node 6 and 7). This is because these models were fine-tuned

on a test set that did not include any injected root cause (i.e., only natural failure scenarios); recall that

fine tuning is performed with labeled images (e.g., training set) and since our injected root causes capture

scenarios not foreseen at training time, it would be unrealistic to consider such scenarios for fine tuning.

Fine-tuning a model on a set of images means that it will learn all the features of those images. Therefore,

clustering based on fine-tuned models will generate clusters based on the features observed during training,

excluding injected features (i.e, the injected root causes). As a result, in our experiments, images are

clustered based only on their natural fault (e.g., borderline class) instead of the injected faults.

The pipelines using non-fine-tuned transfer learning models as a feature extraction method (Node 7)

generate purer clusters (min = 50%, median = 80%, max = 96%) than the pipelines using an autoencoder

model, HUDD, or LRP (Node 6) (min = 50%, median = 65%, max = 70%). The purpose of the

Autoencoder model is to provide a condensed representation of the image to be used for reconstruction.

This is done by ignoring the features that the model considers insignificant and only keeping the features

126

6.3. EVALUATION

that help the encoder reconstruct the image accurately. Therefore, since the autoencoder is trained on the

training set, the injected faults are ignored. Given that clustering is based on the condensed representation,

the generated clusters are less pure than the ones generated by the pipelines with transfer learning models.

As for HUDD and LRP, it seems that their main limitation is that heatmaps do not well capture the

presence of root causes affecting all the pixels in an image (i.e., the result of noise, blurriness, darkness,

scaling). Heatmaps mainly capture which pixels of the image drive the DNN output, thus leading clustering

to group images where the same pixels affected the output.

For instance, the DNN’s response to a blurred image with a shadow on the mouth could be different

from that of another blurred image with a shadow on the eyes, thus leading to different clusters for these

images although they represent the same injected failure scenario (blurriness).

Finally, we notice that the pipelines using HDBSCAN and DBSCAN (Node 3) as a clustering

algorithm yield purer clusters (min = 25%, median = 40%, max = 80%) than those using K-means (Node

4, min = 22%, median = 27%, max = 29%). This is because K-means faces difficulty dealing with

non-convex clusters. A cluster is convex if, for every pair of points belonging to it, it also includes

every point on the straight line segment between them [132], which gives the cluster a spherical form.

Nevertheless, in many practical cases, the data leads to clusters with arbitrary, non-convex shapes. Such

clusters, however, cannot be appropriately detected by a centroid-based algorithm (e.g., K-means), as they

are not designed for arbitrary-shaped clusters.

DBSCAN and HDBSCAN are density-based clustering algorithms. They consider high-density

regions as clusters (see Section 2.1.3). The root cause clusters generated by DBSCAN and HDBSCAN

are arbitrary-shaped and more homogeneous (i.e., clusters with higher within-cluster similarity) with very

similar images. In contrast, a convex cluster generated by K-means tends to be less dense and can group

rather dissimilar images. As a result, a convex cluster is less pure than a non-convex one.

Figure 6.4: Decision Tree illustrating how the different features of a pipeline determine the average purity
of root-cause clusters.

We report the significance of these results in Table 6.2, including the values of the Vargha and

Delaney’s Â12 effect size and the p-values resulting from performing a Mann-Whitney U-test to compare

the average purity of the pipelines using transfer learning models (Node 7 in the decision tree) and the

127

CHAPTER 6. PIPELINES FOR CLUSTERING-BASED DNN EXPLANATION: AN EMPIRICAL
ASSESSMENT.

Table 6.3: RQ1: Pipelines with a purity greater than 90%. The last column represents the average of
averages.

Pipelines Avg. purity across RCCs
FE FT DR CA GD OC HPD SVIRO SAP CPD Avg.
19 VGG-16 NO None K-Means 91.7% 92.1% 95.5% 82.5% 97.3% 99.7% 93.2%
25 VGG-16 NO UMAP K-Means 97.6% 84.4% 93.7% 82.4% 90.3% 97.8% 91.0%
26 VGG-16 NO UMAP DBSCAN 99.0% 93.0% 99.6% 79.7% 98.1% 96.6% 94.3%
39 ResNet-50 NO None HDBSCAN 96.4% 100.0% 100.0% 78.8% 87.5% 100.0% 93.8%
43 ResNet-50 NO UMAP K-Means 99.4% 93.0% 82.3% 79.6% 99.6% 97.7% 91.9%
44 ResNet-50 NO UMAP DBSCAN 100.0% 95.8% 95.8% 79.0% 99.7% 99.3% 94.9%
62 Inception-V3 NO UMAP DBSCAN 93.4% 95.2% 98.1% 76.6% 97.4% 83.1% 90.7%

100 eHUDD NO UMAP DBSCAN 97.4% 98.3% 99.7% 75.9% 96.8% 97.8% 94.2%
FE Feature Extraction FT Fine-tuning DR Dimensionality Reduction CA Clustering Algorithm

pipelines represented by the other nodes. Typically, an Â12 effect size above 0.56 is considered practically

significant with higher thresholds for medium (0.64) and large (0.71) effects [122], thus suggesting the

effect sizes between the pipelines using transfer learning models and other pipelines are large. Further,

p-values suggest these differences are statistically significant.

Table 6.2: RQ1: p-values and and effect size values when comparing the results of the pipelines with the

best purity of clusters (according to the decision tree) to the other pipelines.

Node 3 Node 4 Node 6

p-value 7e-11 2e-7 5e-6

Â12 1.00 1.00 0.80

Finally, in Table 6.3, we report the pipelines that generated clusters with an average purity above

90% across all case study subjects, along with the purity obtained for each subject; the complete results

obtained for all pipelines appear in Appendix A.1, Table A.1. An average purity of 100% means that

all the clusters generated by the pipeline are pure. Interestingly, all the pipelines in Table 6.3 belong to

Node 7 in Figure 6.4, thus confirming our main finding. Five of these seven best pipelines, rely on UMAP,

without fine-tuning but with a transfer learning model, which is therefore our suggestion to perform root

cause analysis. The best result is obtained with ResNet-50 combined with UMAP and DBSCAN.

RQ2. Which pipelines generate root cause clusters covering more failure scenarios?

Design and measurements.

This research question investigates the extent to which our pipelines identify all failure scenarios. We

compare pipelines in terms of the percentage of injected failure scenarios being covered by at least one

RCC. A failure scenario is covered by an RCC if it enables the engineer to determine the root cause of the

failure. Precisely, when images belonging to a failure scenario f represent a sufficiently large share of

images in a cluster C, it is easier for an engineer to notice that f is a likely root cause. Therefore, we

assume that an injected failure scenario f is covered by a cluster C if it contains at least 90% of images

with f . Since this threshold is relatively high, our results can be considered conservative.

Given that our injected failure scenarios are represented by the same number of images in the failure-

inducing test set, every failure scenario has the same likelihood of being observed. Therefore, we expect

to obtain RCCs corresponding to each failure scenario.

128

6.3. EVALUATION

Experiment Results.

Figure 6.5 shows a decision tree illustrating how the different components of a pipeline determine the

coverage of failure scenarios.

As for RQ1, we used the Conditional Inference Tree CTree algorithm to generate this decision tree

(with the same parameter settings).

Each leaf node depicts a box plot with the distribution of the percentages of failure scenarios covered

by the set of pipelines that include the components listed in the decision nodes.

For instance, Node 9 provides the distribution of the percentage of failure scenarios covered by the

RCCs generated by pipelines using UMAP as a dimensionality reduction technique and non-fine-tuned

transfer learning models as feature extraction methods (12 pipelines). Ideally, the root-cause clusters

generated by a pipeline should cover 100% of the failure scenarios.

The decision tree in Figure 6.5 confirms RQ1 results. The pipelines without fine-tuning (Nodes 6, 8

and 9) outperform the pipelines with fine-tuning (Nodes 3 and 4). The pipelines with transfer learning

models (Nodes 8 and 9) generate clusters that cover more failure scenarios than those generated by the

pipelines using HUDD, LRP, and AE (Node 6). Also, the pipelines using the DBSCAN and HDBSCAN

clustering algorithms (Node 3) yield better results than the ones using K-means (Node 4).

Further, the decision tree in Figure 6.5 gives us more insights into which dimensionality reduction

method is more effective. We notice that the root-cause clusters generated by the pipelines using UMAP

(Node 9) lead to a better distribution (min = 45%, median = 85%, max = 100%) than the pipelines using

PCA or not using any dimensionality reduction (Node 8, min = 25%, median = 55%, max = 90%). This is

because UMAP yields a better separation of the clusters (i.e., less clusters overlap) compared to PCA.

When using UMAP, all the data points converge towards their closest neighbor (the most similar data

point). Therefore, neighboring data points in higher dimensions end up in the same neighborhood in

lower dimensions, resulting in a compact and well-separated clusters where it is easier for the clustering

algorithms to distinguish them.

Figure 6.5: Decision Tree illustrating how the different features of a pipeline determine the coverage of
the failure scenarios.

We report the significance of these results in Table 6.4, including the values of the Vargha and

129

CHAPTER 6. PIPELINES FOR CLUSTERING-BASED DNN EXPLANATION: AN EMPIRICAL
ASSESSMENT.

Table 6.5: RQ2: Pipelines with a coverage greater than 90%. The last column represents the average of
averages.

Pipelines Percentage of covered faulty scenarios
FE FT DR CA GD OC HPD SVIRO SAP CPD Avg.

26 VGG-16 None UMAP DBSCAN 100.0% 100.0% 100.0% 80.0% 100.0% 100.0% 96.7%
44 ResNet-50 None UMAP DBSCAN 100.0% 100.0% 100.0% 60.0% 100.0% 100.0% 93.3%
62 Inception-V3 None UMAP DBSCAN 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
80 Xception None UMAP DBSCAN 100.0% 100.0% 100.0% 40.0% 100.0% 100.0% 90.0%
100 eHUDD None UMAP DBSCAN 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

FE Feature Extraction FT Fine-tuning DR Dimensionality Reduction CA Clustering Algorithm

Delaney’s Â12 effect size and the p-values resulting from performing a Mann-Whitney U-test to compare

the percentages of covered failure scenarios resulting from the pipelines using UMAP (Node 9 in the

decision tree in Figure 6.5), and the other pipelines. Table 6.4 shows that the p-values, when comparing

the pipelines using UMAP to the other pipelines, are always below 0.05. This implies that in all the cases,

differences are statistically significant with large effect sizes (above 0.77).

Table 6.4: RQ2: p-values and and effect size values when comparing the results of the pipelines with the

best coverage of the faulty scenarios (according to the decision tree) to the other pipelines.

Node 3 Node 4 Node 6 Node 8

p-value 1e-5 1e-5 4e-5 8e-3

Â12 0.95 1.00 0.91 0.77

In Table 6.5, we report the pipelines that generated clusters covering at least 90% of the failure

scenarios across all case study subjects, along with the coverage obtained for each case study subject

(complete results for all the pipelines are reported in Appendix A.2, Table A.2). If the coverage is equal to

100%, all the failure scenarios are covered by the RCCs. Unsurprisingly, the pipelines in Table 6.5 belong

to Node 7 in Figure 6.5: they rely on a non-fine-tuned transfer learning model for feature extraction,

and UMAP for dimensionality reduction. Further, they all use DBSCAN for clustering. These pipelines

consistently yielded the best results for all individual case studies (confirming the results obtained in

RQ1).

Such findings are further supported by the results in Table A.1 and Table A.2, where we notice that

the combination of UMAP with DBSCAN always achieves higher purity and coverage (in bold) than its

alternatives, regardless of the used feature extraction method.

RQ3. How is the quality of root cause clusters generated affected by infrequent failure
scenarios?

Design and measurements.

We study the effect of infrequent failure scenarios on the quality of the RCCs generated by the

pipelines. We consider a failure scenario infrequent when it is observed in a low proportion of the

images in the failure-inducing set. To be practically useful, a good pipeline should be able to generate

root-cause clusters even for infrequent failure scenarios; indeed, in safety-critical contexts, infrequent

failure scenarios may lead to hazards and thus should be detected when testing the system. For instance, if

only five out of hundred failure-inducing images belong to a failure scenario and we have three failure

130

6.3. EVALUATION

scenarios in total, a robust pipeline should still generate an RCC containing only the images of the

infrequent failure scenario.

We generate 10 different failure-inducing sets for each case study subject (a total of 60 failure-inducing

sets). To construct a failure-inducing set, for each root cause that might affect the case study (see Table

6.1, Page 123), we generate a number n of images affected by the injected root cause. We randomly select

a number n that is lower than the number of images selected for the same root cause in RQ1. Further, for

classifier DNNs, we select a value higher than the number of classes of the corresponding case study (we

enforce one root cause of failures for one image per class, at least); for regression DNNs, we select a value

above 2. Since n is randomly selected (uniform distribution), we obtained failure-inducing sets containing

failure scenarios whose number vary. In addition, we also include a randomly selected number of images

belonging to natural failure scenarios, to mimic what happens in practice (see RQ1). The number of

images belonging to natural failure scenarios varies between two and the total number of injected failure

scenario images.

In total, we generated 60 failure-inducing sets (10 × 6 subject DNNs). For each failure-inducing set,

we randomly selected the number of images representing a failure scenario (injected or natural scenario).

Such number should be higher than the number of classes (to ensure that there is at least one scenario for

each class) and lower than the total number of images representing a failure scenario generated in RQ1

(see Table 6.1). In the case of regression DNNs, the minimum number of images representing a failure

scenario is set to 2 since a cluster is formed by grouping at least two images. For instance, the number of

images representing a failure scenario for each failure-inducing set of the HPD case study (9 classes) is

randomly selected between 9 and 90 (see Table A.3, Appendix A.3).

Since we aim to study the effect of infrequent failure scenarios on the quality of the generated RCCs,

we categorize our 290 failure scenarios into infrequent and frequent. Infrequent failure scenarios are

the ones that include a proportion of injected images that is lower than the median proportion in all the

generated failure-inducing sets (equals to 18% in our study). For example, noise is frequent in the dataset

GD_1 (64 > 18) but infrequent in the dataset OC_2 (4 < 18).

We consider only the best pipelines resulting from the experiments in RQ1 and RQ2 (i.e., having

purity or coverage above 90% as shown in Tables 6.3 and 6.5); they are pipeline 26 (VGG16/DB-

SCAN/UMAP/NoFT), 44 (ResNet50/DBSCAN/UMAP/NoFT), 62 (InceptionV3/DBSCAN/UMAP/NoFT),

19 (VGG16/K-means/None/NoFT), 25 (VGG16/K-means/UMAP/NoFT), 39 (ResNet50/HDBSCAN/No-

ne/NoFT), 43 (ResNet50/K-means/UMAP/NoFT), and 80 (Xception/DBSCAN/UMAP/NoFT). The first

three pipelines (i.e., 26, 44, 62) were the best for both RQ1 and RQ2, the next four (i.e., 19, 25, 39, 43)

were selected based on RQ1 results while the latter (i.e., 80) based those of RQ2. We compute the purity

and coverage of the RCCs generated by each of these pipelines, following the same procedures adopted

for RQ1 and RQ2. We then compare the distribution of purity and coverage for infrequent and frequent

failure scenarios. The most robust pipelines are the ones being affected the least, in terms of purity and

coverage, by infrequent failure scenarios.

Experiment Results.

In Figure 6.6, for each selected pipeline, we report the average purity across all the RCCs1 with the

injected failure scenarios having a certain frequency. The x-axis reports the proportion of images for

1As discussed in Section 6.3.3. The red vertical line represents the median frequency of failure scenarios. We say that an
RCC is associated with (or captures) an injected failure scenario f when the majority of the images in the cluster belong to
scenario f .

131

CHAPTER 6. PIPELINES FOR CLUSTERING-BASED DNN EXPLANATION: AN EMPIRICAL
ASSESSMENT.

Table 6.6: RQ3: p-values and effect size values when comparing the purity of the best pipelines with the
frequent and infrequent failure scenarios.

Pipelines 26 44 62 39 80 19 25 43
Average Purity for infrequent
failure scenarios

94% 87% 91% 79% 87% 76% 70% 65%

Average Purity for frequent
failure scenarios

100% 100% 100% 92% 99% 96% 96% 93%

p-value 4e-6 2e-10 1e-6 2e-9 8e-9 8e-5 2e-10 3e-14
Â12 0.58 0.64 0.59 0.60 0.63 0.68 0.70 0.75

Table 6.7: RQ3: p-values and effect size values when comparing the best pipeline in Table 6.6 (i.e.,
Pipeline 26, VGG16/Dbscan/UMAP/NoFT) to the other pipelines based on the average purity of the
clusters associated to infrequent failure scenarios.

Pipelines 44 62 39 80 19 25 43
p-value 0.002 0.51 4e-5 0.006 3e-12 2e-14 4e-21
Â12 0.57 0.51 0.60 0.56 0.69 0.71 0.77

failure scenarios whereas the y-axis reports the average purity of the RCCs associated to each failure

scenario.

Figure 6.6 shows that when the frequency of the failure scenarios is below the median (infrequent

scenario), the cluster purity obtained by pipelines tends to significantly lower and decrease rapidly as

the frequency decreases. This is expected because when a failure scenario is infrequent, the clustering

algorithm tends to either cluster its images as noise or distribute them over the other clusters. For density-

based clustering algorithms, images belonging to infrequent scenarios may not become core points when

the identification of a core point requires more data points in their neighborhood. In such case, images

belonging to infrequent scenarios will be either labeled as noise points or border points (belonging to

other clusters). The same is true for K-means, where these points are usually spread across other clusters

because they cannot form a cluster.

To strengthen our findings, in Table 6.6, we report the results when comparing the purity of the selected

pipelines for frequent and infrequent failure scenarios; further, we report the Vargha and Delaney’s Â12

effect size and the p-values resulting from performing a Mann-Whitney U-test. We notice that for all

pipelines, the difference between frequent and infrequent scenarios are significant (p-value < 0.05).

However, the effect sizes for Pipelines 26, 62, 45, and 80 are small, while they are medium for Pipelines

19 and 44, which indicates that pipelines including DBSCAN (i.e., Pipelines 26, 62, 45, and 80) are

much more robust to infrequent scenarios than others (i.e., the difference between frequent and infrequent

scenarios is less pronounced). Actually, the pipelines using DBSCAN fare better than the rest also in the

general case. Indeed, almost all the injected failure scenarios with frequency above 18% have 100% purity

(see Figure 6.6); further for infrequent failure scenarios they include less data points below 100% than the

other pipelines. This is because DBSCAN tends to find clusters with different sizes if these clusters are

dense enough; K-means, instead, derives clusters that are of similar size.

Further, we notice that the purity of the clusters generated by Pipeline 26 (VGG16/Dbscan/UM-

AP/NoFT), for infrequent failure scenarios, is higher (average is 94%) than the purity of the clusters

generated by the other pipelines; differences are significant (see Table 6.7), thus suggesting Pipeline 26

might be the best choice.

132

6.3. EVALUATION

Table 6.8: RQ3: Fisher exact test values when comparing the coverage of the lowly represented and highly
represented faulty scenarios by the clusters generated by the best pipelines.

Pipelines 26 44 62 39 80 19 25 43
Average Coverage for infre-
quent failure scenarios

85% 71% 82% 66% 73% 51% 46% 34%

Average Coverage for frequent
failure scenarios

100% 98% 99% 86% 98% 86% 87% 77%

Fisher’s Exact test 1e-5 1e-5 1e-5 1e-5 1e-5 2e-4 1e-5 1e-5

Table 6.9: RQ3: Fisher exact test values when comparing the best pipeline
"VGG16/Dbscan/UMAP/NoFT" to the other pipelines based on the coverage of the infrequent
failure scenarios.

Pipelines 44 62 39 80 19 25 43
Fisher’s Exact test 4e-2 0.55 1e-5 2e-3 0.018 1e-5 1e-5

Concerning coverage, Figure 6.7 shows, for each pipeline, histograms with the average coverage

obtained for failure scenarios having proportions of failure inducing images within specific ranges. In

general, we observe that coverage is higher for frequent scenarios. This is due to the correlation between

pure clusters and coverage; the less pure the generated clusters, the fewer failure scenarios they cover.

When the failure scenarios are infrequent, their images are distributed over the other clusters, reducing

their purity and, thus, reducing the probability of these scenarios being covered. To demonstrate the

significance of the difference between coverage results obtained with frequent and infrequent scenarios,

we apply the Fisher’s Exact test2 to compare the coverage of frequent and infrequent scenarios for the

clusters generated by the selected pipelines. We report the p-values resulting from the Fisher’s Exact test

in Table 6.8 and observe that differences are statistically significant thus indicating that pipelines perform

better with frequent failure scenarios.

Further, Figure 6.7 shows that pipeline 62 (InceptionV3/DBSCAN/UMAP/NoFT) is the one performing

best with the least frequent scenarios (i.e., range 0− 5%) but no pipeline fares well in that range. Pipeline

26 (VGG16/DBSCAN/UMAP/NoFT) is the one performing best with infrequent scenarios in the range

5% to 20%; indeed, it is the only pipeline providing an average coverage above 90% for that range. To

further demonstrate the significance of the difference in performance between Pipeline 26 and the other

pipelines, we apply Fisher’s exact test to the coverage obtained for infrequent scenarios. We report the

p-values resulting from this test in Table 6.9. We notice that all the p-values are below 0.05 except when

Pipeline 26 is compared to Pipeline 62; indeed, the results of these two pipelines are similar as visible in

Figure 6.7), even though Pipeline 26 performs slightly better on average.

In conclusion, infrequent failure scenarios affect both purity and coverage; however, some pipelines

fare better than others. Our results suggest that the pipeline (26) relying on a non-fine-tuned VGG16

model, with UMAP and DBSCAN (Pipeline 26) is the best choice since it yields significantly higher

purity and coverage than the other pipelines. Pipeline 26 is also less negatively affected by infrequent

failure scenarios since coverage is above 90% when the frequency is above 5%, which is not the case for

all the other pipelines.

2The Fisher’s Exact test [173] is a statistical test used to determine if there is a non-random association between two
categorical variables [174].

133

CHAPTER 6. PIPELINES FOR CLUSTERING-BASED DNN EXPLANATION: AN EMPIRICAL
ASSESSMENT.

Figure 6.6: Purity of the clusters associated with frequent and infrequent failure scenarios. The x-axis
captures the frequency of a failure scenario (i.e., proportion of failure-inducing images for a failure
scenario). Each data point is the average of all the RCCs associated to one distinct failure scenario. The
red vertical line represents the median frequency of failure scenarios.

Figure 6.7: Comparing the percentage of coverage across different ranges of proportions of failure
scenarios in each set.

Discussion

The results of RQ1 and RQ2 show that there is a family of pipelines leading to higher purity (i.e., they

simplify the identification of root causes) and coverage (i.e., they enable the identification of all root

causes). Such pipelines rely on transfer learning, UMAP for dimensionality reduction, DBSCAN for

clustering, and are not using fine tuning. Among such pipelines, considering that it is reasonable to expect

unsafe scenarios to be infrequent, based on the results of RQ3, we suggest to use the pipeline relying on

134

6.3. EVALUATION

Figure 6.8: Examples of clusters generated by Pipeline 26 for the HPD case study subject.

VGG16 (Pipeline 26) as transfer learning model.

In our study, we focused on effectiveness, not cost; indeed, our main purpose is to identify the pipeline

that generates clusters that do not confuse the end-user (i.e., they are pure) and is likely to help identify

all the root causes of failures (i.e., they have high coverage). In contrast, cost is related to the number of

clusters being inspected. However, our root cause analysis toolset [19] includes the generation of animated

GIFs, one for each cluster, thus enabling the quick visualization of all the images in a cluster. With such

toolset we conjecture that the number of clusters’ images does not strongly impact cost as all the images

are, anyway, quickly visualized. What is important, instead, is the purity of clusters as with low purity the

end-user will not find it easy to determine commonalities among images.

Nevertheless, to further discuss cost, we measure the number of clusters to be inspected for each

pipeline considering the dataset used for RQ1 and RQ2. We count only clusters capturing the injected

failure scenarios since for the others we cannot precisely determine what is the expected number of

clusters. A lower number of clusters should indicate lower cost and, since a number of clusters higher than

the number of failure scenarios to be discovered implies the presence of redundant clusters, we compute

the degree of redundancy as:

redundancy ratio =
number of clusters

covered failure scenarios

Finally, to discuss how well each pipeline improves current practice in industry, we estimate the

degree of savings with respect to the such practice, which entails the visual inspection of all images. To

do so, we assume that inspecting a single cluster using animated gifs is as inexpensive as visualizing one

135

CHAPTER 6. PIPELINES FOR CLUSTERING-BASED DNN EXPLANATION: AN EMPIRICAL
ASSESSMENT.

Table 6.10: The number of redundant clusters generated by the best pipelines for each case study subject
and across all of them. The last columns represent the number and the percentage of failure scenarios
covered by the pipelines, the redundancy ratio, and the savings.

Pipelines Number of generated clusters Covered failure Redundancy Savings
GD HPD OC SVIRO CPD SAP TOTAL scenarios (percentage %) ratio

19 3 5 3 3 3 2 19 17 (59%) 1,12 0,99
25 4 8 2 4 3 3 24 20 (69%) 1,20 0,99
43 3 4 3 2 2 4 18 15 (52%) 1,20 0,99
26 26 77 13 8 13 37 174 28 (97%) 6,21 0,91
44 42 51 5 10 27 44 179 27 (93%) 6,63 0,91
62 28 60 7 9 15 42 161 29 (100%) 5,55 0,92
80 33 30 9 2 9 14 97 25 (86%) 3,88 0,95
39 14 171 15 7 74 3 284 24 (83%) 11,83 0,86

single image. Indeed, though clusters involve several images, through animation, they actually make it

easier to quickly identify commonalities rather than guessing root causes from a single image. Figure 6.8

shows four example clusters where all the images present a commonality (i.e., the root cause of the DNN

failure) that is easy to determine when visualizing all the images in a sequence. Therefore, we estimate

savings as:

savings = 1− number of clusters

number of images

Table 6.10 shows our results; it reports the number of RCCs generated for each case study DNN and

across all of them. Further, it reports the percentage and number of failure scenarios covered by each

pipeline (used to compute redundancy and providing information about the effectiveness of a pipeline),

along with redundancy ratio and savings. We report only the results for the best pipelines identified when

addressing RQ1 to RQ2 because there is no reason to select pipelines that do not achieve high purity and

coverage.

The number of clusters generated by the selected pipelines ranges between 18 and 284. The pipelines

leading to the lowest number of clusters are the ones including K-means: ResNet50/K-means/UMAP/NoFT

(18), VGG16/K-means/None/NoFT (19), and VGG16/K-means/UMAP/NoFT (24). Pipelines with DB-

SCAN and HDBSCAN lead to a much higher number of clusters. To discuss the practical impact

of such a high number of clusters, we focus on the redundancy ratio, which ranges between 1.12

and 11.8; the redundancy ratio indicates that the pipeline with the highest number of clusters (i.e.,

ResNet50/HDBSCAN/None/NoFT), on average, presents 11 redundant clusters for each identified failure

scenario. Given that, in the presence of pure clusters, understanding the scenario captured by one pipeline

is quick with animated gifs, we consider that inspecting 11 redundant clusters per fault has a limited

impact on cost. Finally, if we focus on savings, we can observe that respect to current practice, all the

pipelines except (ResNet50/HDBSCAN/None/NoFT) lead to savings above 90%, thus showing that their

adoption is highly beneficial.

Although the pipelines including K-means lead to the lowest cost, their coverage is particularly low

for infrequent scenarios (see Table 6.8, with coverage below 35% for the range [0− 5], and below 60%

for the range [5− 10]), which is bound to be a common situation in practice. Since pipelines leading to a

small number of clusters can be highly ineffective in realistic safety-critical contexts (i.e., when some

failure causes are infrequent), assuming that redundant clusters are easy to manage, we conclude that the

best choice are the pipelines that maximize purity and coverage, as discussed above (i.e., Pipeline 26,

136

6.3. EVALUATION

VGG16/DBSCAN/UMAP/NoFT). A possible tradeoff is Pipeline 80 (Xception/DBSCAN/UMAP/NoFT),

which is among the best performing for RQ3 (e.g., coverage above 40% for the range [0− 5], and above

70% for the range [5− 10]) and leads to 3.6 redundant clusters only, on average.

6.3.4 Improvements to the white-box pipeline (extended-HUDD)

Since the results discussed in the previous section show that white-box approaches, despite using internal

information about the DNN, perform worse than black-box approaches, we extended HUDD to fully

exploit the potential of a white-box analysis. We refer to such method as extended-HUDD (eHUDD).

HUDD’s extensions concern two aspects:

• RCC generation, which is based on additional information (i.e., neuron activations);

• Identification and removal of impure clusters, which is not present in HUDD.

Below, we provide an overview of eHUDD extensions and compare its results with the ones obtained by

the other pipelines. We extended the assessment of RQ1, RQ2, and RQ3 to include also eHUDD.

eHUDD extensions.

RCC generation eHUDD takes in consideration also (forward-propagated) neuron activations for each

layer, in addition to the back-propagated relevance generated by LRP. The extension concern Step 1 of

HUDD (see Section 3.2.1), as shown in Figure 6.9. It is worth noting that eHUDD does not introduce

additional cost because forward-propagated neuron activations are already stored to compute LRP.

Figure 6.9: The eHUDD workflow.

As shown in Figure 6.9, during DNN testing, for each failure-inducing input image the DNN should

store the neuron activations observed for each neuron of every layer; one activation matrix is generated

for each layer. Then, we normalize each matrix using min-max normalization and prune out the least 50%

neurons. By normalizing the matrices, we can ensure that each neuron’s activation value is represented

proportionally to its importance to the DNN’s output. Additionally, pruning out the least important

neurons can reduce the dimensions of the matrices, which can simplify the clustering process by reducing

the computational complexity. Moreover, it can also help remove any irrelevant or noisy information from

137

CHAPTER 6. PIPELINES FOR CLUSTERING-BASED DNN EXPLANATION: AN EMPIRICAL
ASSESSMENT.

the matrices, which can improve the overall performance of the clustering. Subsequently, the dimensions

of these activation matrices are reduced, and a distance matrix is computed for each layer. The provided

distance matrix for each layer is then used to generate clusters. Note that the same process is performed

for heatmaps, with the distance matrices generated from the reduced dimensions of the normalized pruned

heatmap, and clusters generated accordingly.

The best layer is then selected based on the clustering results obtained with both heatmaps and

activation matrices. Precisely, to select the best layer, we adopt the same strategy used by HUDD (see

Section 3.2.1), which is to compute the weighted intra-cluster distance of each layer. The layer with the

highest similarity score (lowest intra-cluster distance) is then selected for clustering.

Identification and removal of impure clusters. To further reduce the effort of inspection by engineers

during safety analysis process, eHUDD includes a solution to improve the purity of the generated clusters.

Although clusters’ purity can be correctly computed only when ground truth information is available,

which is what we do in empirical evaluations, we assume that internal evaluation metrics for clustering,

in particular the Silhouette score, can provide a useful estimate for the purity of a cluster. Indeed, the

Silhouette score measures how well each data point in a cluster fits with the other data points in the same

cluster as opposed to data points in other clusters. Therefore, if the Silhouette score for a set of clusters is

low, it is likely that the clusters are relatively impure, contain dissimilar data points or overlapping.

Precisely, we compute the average Silhouette index of the datapoints in each cluster (please refer to

Equation 5.2.1). Then we remove the clusters with an average Silhouette score below the 25th percentile

of the average Silhouette score across clusters. Note that the Silhouette index is computed based on the

distances between images pixels, rather than the internal information of the DNN used for clustering.

Removing impure clusters is particularly useful in the context of safety-critical systems, where even a

human error when performing safety analysis can have significant consequences. For this reason having

too many clusters to inspect can be overwhelming and increase the likelihood of a human error. By

filtering out clusters with lower quality, engineers can focus on clusters with a clear interpretation. If

the removal of clusters do not decrease the coverage of failure scenarios, which is demonstrated in our

experiments (see Section 6.3.4), the quality of safety analysis could be improved while reducing the

overall cost of inspection.

eHUDD assessment.

To assess eHUDD, we rely on UMAP as a dimensionality reduction technique and DBSCAN as a

clustering algorithm since such pipeline has been shown to outperform other alternatives with respect

to purity and coverage, regardless the used feature extraction method. We rely on the same experiment

design and metrics adopted for RQ1, RQ2, and RQ3.

Table 6.11: Purity and Coverage obtained by the clusters of the white-box approach (eHUDD). The last
column represents the average of averages.

Pipelines Avg. purity across RCCs
FE FT DR CA GD OC HPD SVIRO SAP CPD Avg.

100 eHUDD NO UMAP DBSCAN 97.4% 98.3% 99.7% 75.9% 96.8% 97.8% 94.2%
Pipelines Percentage of covered failure scenarios

100 eHUDD NO UMAP DBSCAN 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
FE Feature Extraction FT Fine-tuning DR Dimensionality Reduction CA Clustering Algorithm

138

6.3. EVALUATION

The results of the experimental evaluation of the extended version of HUDD (eHUDD) are highly

promising and demonstrate significant improvements over the previous white-box approach. In particular,

the combination of generating forward-propagation activations for each layer and filtering out redundant

clusters using the silhouette index represents a substantial improvement to the approach, resulting in

improved purity, coverage and robustness.

Table 6.11 reports the results for RQ1 and RQ2, they show that eHUDD achieves similar or even

better results than the best black-box approach (Pipeline 26). Specifically, the results show that eHUDD

achieves an average purity of 94.2% compared to Pipeline 26’s purity of 94.3% for RQ1 (p-value = 0.54),

and achieves a perfect coverage of 100.0% compared to Pipeline 26’s coverage of 96.7% for RQ2

(p-value = 0.042).

Concerning RQ3, we report in Figure 6.10 the purity of the clusters and the coverage associated

with frequent and infrequent failure scenarios. For infrequent failure scenarios, eHUDD performs better

than Pipeline 26 in terms of coverage, with 95% of the failures scenarios being covered versus 85% for

Pipeline 26 (p-value = 0.031). This is a relevant difference because, in safety contexts maximizing the

number of failure scenarios being identified is critical thus justifying the higher cost required by white-box

analysis. The higher coverage comes at the cost of a lower purity, with eHUDD having a purity of 92%

compared to Pipeline 26’s purity of 94% (p-value = 0.57); however, a few percentage points indicate that

a very limited number of images (around one image per cluster, given that the average cluster size is 13

images) inappropriately appear in each cluster, which should have a very limited impact on the cost of the

visual inspection of clusters.

Figure 6.10: Purity of the clusters (left) and the coverage (right) associated with frequent and infrequent
failure scenarios. The x-axis captures the frequency of a failure scenario (i.e., proportion of failure-
inducing images for a failure scenario). Each data point is the average of all the RCCs associated to one
distinct failure scenario. The red vertical line (left) represents the median frequency of failure scenarios.

139

CHAPTER 6. PIPELINES FOR CLUSTERING-BASED DNN EXPLANATION: AN EMPIRICAL
ASSESSMENT.

Table 6.12: The number of redundant clusters generated by the white-box approach (eHUDD) for each
case study subject and across all of them. The last columns represent the number and the percentage of
failure scenarios covered by the pipelines, the redundancy ratio, and the savings.

Pipeline Number of generated clusters Covered failure Redundancy Savings
GD HPD OC SVIRO CPD SAP TOTAL scenarios (percentage %) ratio

100 19 56 13 25 38 34 185 29 (100%) 6,37 0,91

Finally, we report in Table 6.12 the number of clusters generated by eHUDD for each case study. The

eHUDD pipeline generates, in total, across all the case study subjects, 11 more clusters than Pipeline 26

(185 vs 174); however, such difference is practically negligible. Indeed, assuming five images are needed

to inspect each cluster and one minute to inspect 100 images – given that our tool generates clusters in the

form of GIFs where many images can be quickly inspected (see Sections 5.3.2 and 3.2.2) – this lead to an

average difference of 20 seconds per case study subject.

Note that filtering redundant clusters out using the Silhouette index can be applied to both white-

box and black-box approaches. This strategy has been shown to significantly improve the purity of

the clustering results by removing clusters with lower similarity scores. By only retaining the most

representative and informative clusters, we can obtain a more accurate identification of failure scenarios.

Although the strategy improves the purity of clusters when applied to the black-box approach (from 94.3%

to 95.7%), it negatively affects the coverage (from 96.7% to 92.5%). This discrepancy in performance

could be attributed to the fact that, in Pipeline 26, the Silhouette index is calculated using the same

criterion as the clustering process, whereas eHUDD employs clustering based on the internal information

of the model. As a result, the Silhouette index may complement the clustering in eHUDD, leading to a

different outcome.

To conclude, eHUDD results show that the combination of generating forward-propagation activations

for each layer and filtering out redundant clusters using the Silhouette index represents a significant

improvement to the white-box approach, and the improvement in coverage may justify its adoption despite

higher execution costs mainly related to the generation and storage of heatmaps (see Section 3.3.2).

6.3.5 Threats to Validity

Internal validity Since 72 of our 100 pipelines use a Transfer Learning pre-trained model to extract the

features, a possible internal threat is that this model can negatively affect our results if inadequate. Indeed,

clustering relies on the similarity computed on the extracted features. To mitigate this threat, we visually

inspected the clusters to check their consistency. Having consistent clusters means the features extracted

by the models contain enough information to cluster the images based on their similarity.

Another potential threat might be that the dataset (with the injected faults) was created with the

proposed approach in mind. Therefore, there might be a risk of bias. To mitigate this risk, all the

methods used in our pipelines (feature extraction methods, clustering algorithms, dimensionality reduction

techniques) are independent of the data. These methods do not require any a priori knowledge on the data.

We also publish our data to further mitigate this risk. All the experiments can be reproduced with any

injected faulty scenario.

External validity To alleviate the threats related to the choice of the case study DNNs, we use six well-

studied datasets with diverse complexity. Four out of six subject DNNs implement tasks motivated by IEE

140

6.4. CONCLUSION

business needs. These DNNs address problems that are quite common in the automotive industry. The other

two DNNs are also related to the automotive industry and were used in many Kaggle challenges [162, 175].

Although our pipelines were only tested on case study DNNs related to the automotive industry,

we believe they will perform well with other data sets. This is because the models used for the feature

extraction were pre-trained on ImageNet, which means that the model can capture features related to 1, 000

classes, including humans, animals, and objects. As for AE, it can learn the aspects of any data set during

training and provide high-quality clusters. Finally, for HUDD and LRP, the extraction of heatmap-based

features is performed on well-known layer types that are part of any DNN model, regardless of the task at

hand (i.e., they can be extended to DNNs that were not studied in this work).

Construct validity The construct considered in our work is effectiveness. We measure the effectiveness

through complementary indicators as follows:

For RQ1, we evaluate the effectiveness of our pipelines by computing the purity of the generated

clusters. The purity of a cluster is measured as the maximum proportion of images representing one faulty

scenario in this cluster.

For RQ2, we evaluate the effectiveness of our pipelines based on the coverage of the injected faulty

scenarios by the root cause clusters. A faulty scenario is covered by a cluster if at least 90% of the images

in this cluster represent such faulty scenario.

Finally, for RQ3, we consider both the purity and the coverage to measure the robustness of the

top-performing pipelines to rare faulty scenarios.

Conclusion validity Conclusion validity addresses threats that impact the ability to conclude appropri-

ately. To mitigate such threats and to avoid violating parametric assumptions in our statistical analysis,

we rely on a non-parametric test and effect size measure (i.e., Mann Whitney U-test and the Vargha and

Delaney’s Â12 statistics, respectively) to assess the statistical significance of differences in our results.

Additionally, we applied the Fisher’s exact test when comparing coverage results related to different

distributions of faulty scenarios (i.e., RQ3), which is commonly used in similar contexts. All results

were reported based on both purity and coverage parameters, and six datasets were analyzed during our

experiments.

6.4 Conclusion

In this chapter, we presented an large-scale empirical evaluation of 99 different pipelines for root cause

analysis of DNN failures. Our pipelines receive as input a set of images leading to DNN failures and

generate as output cluster of images sharing similar characteristics. As demonstrated by our previous

work, by visualizing the images in each cluster, an engineer can notice commonalities across the images in

each cluster; such commonalities represent the root causes of failures, help characterize failure scenarios

and, thus, support engineers in improving the system (e.g., by selecting additional similar images to retrain

the DNN or by introducing countermeasures in the system).

We considered 99 pipelines resulting from the combination of five methods for feature extraction, two

techniques for dimensionality reduction and three clustering algorithms. Our methods for feature extraction

include white-box (i.e., heatmap generation techniques) and black-box approaches (i.e., fine-tuned and

141

CHAPTER 6. PIPELINES FOR CLUSTERING-BASED DNN EXPLANATION: AN EMPIRICAL
ASSESSMENT.

non-finetuned transfer learning models). Additionally, we rely on PCA and UMAP for dimensionality

reduction and K-means, DBSCAN, and HDBSCAN for clustering.

We evaluated our pipelines in terms of clusters’ purity and coverage of failures based on failure

scenarios widely varying in terms of frequency, thus analyzing the impact of rare scenarios on our best

pipelines. Based on six case study subjects in the automotive domain, our results show that the best

results are obtained with pipelines relying on eHUDD (extended version of HUDD) as a feature extraction

model, leveraging UMAP as a dimensionality reduction technique, and using DBSCAN as clustering

algorithm. When the failure scenarios are equally distributed, the best pipeline achieved a purity of 94.2%

(i.e., almost all the images in RCCs present the same failure scenario) and a coverage of 100.0%. The

same pipeline also performs well with rare failure scenarios; indeed, when images belonging to failure

scenarios represent between 5% and 10% of the total number of images, it still can cover 97% of the

failure scenarios with a cluster purity above 88%.

142

Chapter 7

Conclusion & Future Prospects

In this PhD Dissertation, we examined automated debugging and repair of AI-based automotive software

systems through a comprehensive study conducted in collaboration with our industrial partner in the auto-

motive domain, IEE Sensing. We introduced three tools that use white-box, black-box, and search-based

techniques to explain and debug the misbehaviors of DNN-based automotive systems. We also evaluated

various supervised and unsupervised learning techniques and developed interpretability experiments to

extract reasoning from DNNs.

Chapter 3 presented HUDD, an approach that automatically identifies situations where an image-

processing DNN is likely to produce erroneous results. HUDD generated clusters of misclassified input

images that shared a common set of characteristics that are plausible causes for errors. This was achieved

through a hierarchical agglomerative clustering algorithm applied to heatmaps capturing the relevance of

neurons across different DNN layers on the result. HUDD minimized the effort required to select and

label additional images to augment the training set and improved the DNN by automatically selecting

images that are close to members of root cause clusters and thus unsafe. Empirical evaluation with

simulator images showed that HUDD could generate clusters of images that share similar values for some

of the simulation parameters driving the generation of images. These clusters can then serve as a useful

instrument for the identification of root causes of DNN errors and can be effectively used to select new

images for retraining.

Chapter 4 presented SEDE, a novel approach based on evolutionary algorithms that generates ex-

pressions characterizing hazard-triggering events observed in real-world images processed by DNNs.

These expressions constrain a simulator’s configuration parameters that generate images similar to the

real-world images under analysis. Empirical results showed that the genetic algorithm employed by SEDE

could generate images for a larger number of clusters and with a higher diversity than other methods.

Additionally, the expressions generated by SEDE successfully characterized the unsafe input space, and

the retraining process increased the DNN accuracy by up to 18 percentage points.

Chapter 5 presented SAFE, a black-box approach that automatically identifies the situations where

a DNN is more likely to fail without requiring any modification to the DNN or access to its internal

information. SAFE characterized such situations by generating clusters of images that likely lead to a

143

CHAPTER 7. CONCLUSION & FUTURE PROSPECTS

DNN error due to the same underlying reason. SAFE uses a pre-trained model to extract features from

error-inducing images and a density-based clustering algorithm to generate arbitrary-shaped clusters.

Empirical results showed that SAFE generates clusters that can effectively help engineers determine the

root causes for DNN errors, and the DNNs retrained by SAFE achieved higher accuracy than alternatives.

Chapter 6 presented an empirical evaluation of the proposed methods. The study examined different

pipelines for identifying RCCs in automotive scenarios and showed that the best results were obtained

using an extended version of HUDD (eHUDD) as a feature extraction method, UMAP for dimensionality

reduction and DBSCAN for clustering. The best pipeline achieved a purity of 94.2% and a coverage of

100.0%, and also performed well with rare failure scenarios, covering 95% of them with a cluster purity

above 88%.

Future Prospects We have developed automated techniques for functional safety analysis that we

demonstrated being effective in identifying root causes of failures and improving accuracy. These

contributions are particularly relevant for the increasing use of DNNs in other sectors dealing with the

development of safety-critical systems. However, there are opportunities for further work to extend our

results.

For instance, extending the developed automated techniques for functional safety analysis to system-

level testing involves integrating the DNNs within the broader safety-critical system context, incorporating

realistic operational conditions, conducting fault injection testing, and engaging with domain experts.

By embracing these approaches, the reliability, robustness, and safety of DNN-based systems can be

effectively evaluated, leading to improved safety-critical applications across various sectors.

One potential direction is to evaluate the effectiveness and efficiency of the proposed techniques in a

broader range of applications and domains. This could involve using real-world and simulated datasets

to evaluate the performance of the techniques in healthcare and aviation applications. While this thesis

has focused on automotive applications, it is reasonable to believe that they perform similarly for other

vision-based tasks (e.g., controlling robots in factories) but there might be application scenarios that

may require further developments. Indeed, the level of detail in the images processed by DNNs can

impact the results of both black-box and white-box approaches. In our experiments, we used images

similar to those processed by IEE for in-car sensing, where the number of subjects in each image is

limited. However, other DNNs may present new challenges, particularly when processing images in

low-illumination environments such as mines or space. Further research in these areas is necessary to

fully evaluate the proposed techniques and their potential applicability across different domains.

Another potential direction for future work (which is also a part of an ongoing work) would be to

characterize clusters of error-inducing images using concepts generated through an extended Automatic

Concept-based Explanations (ACE) algorithm [176] (an algorithm that groups image segments without

the need for human intervention). Integrated to HUDD, such approach may help the engineer to focus

directly on the problematic concepts.

In addition to characterizing clusters of failure-inducing images, another promising avenue for future

work is to present heatmaps to engineers for inspection and utilize augmented images as useful guidance

for developers. By integrating these techniques into the existing system, engineers can gain valuable

insights into the specific regions or features of the input images that contribute to errors or failures in the

DNN predictions.

144

Finally, an intriguing prospect would be to investigate the potential for using the proposed techniques

to detect failures at run-time. This could involve the use of our proposed clustering approaches to detect

failures observed during testing in the field. By monitoring the distribution of images within the cluster,

we can check if the frequency of failures is higher than expected, which may indicate a distribution shift

and potential safety risks. This can serve as an early warning system to trigger appropriate responses and

mitigate risks before they become more severe. Such a framework could be a valuable contribution to the

field of DNNs and functional safety, as it could help to improve the reliability and safety of DNN-powered

systems in safety-critical applications by detecting and addressing failures at run-time.

Ultimately, it would be beneficial to engage regulatory bodies in discussions regarding the proposed

approaches to evaluate their feasibility for inclusion in safety guidelines. This would help to ensure that

the proposed approaches align with safety standards and best practices in the relevant domain.

145

Appendix A

Chapter 6

A.1 Additional material for RQ1

Table A.1: Comparing the clusters generated by the different pipelines based on the average of the purity

across root cause clusters. The last column represents the average of averages.

Pipelines Case Study Subjects
FE FT DR CA GD OC HPD SVIRO SAP CPD Avg.
1

HUDD NO

None K-Means 51.3% 36.6% 40.7% 62.4% 78.9% 39.9% 51.6%
2 None DBSCAN 56.2% 53.4% 43.1% 53.0% 80.6% 63.7% 58.3%
3 None HDBScan 68.5% 61.7% 43.7% 45.4% 51.2% 27.4% 49.6%
4 PCA K-Means 49.1% 56.4% 40.8% 74.8% 79.7% 27.4% 54.7%
5 PCA DBSCAN 43.4% 54.6% 48.7% 48.3% 80.6% 27.4% 50.5%
6 PCA HDBScan 68.5% 61.7% 35.5% 45.4% 74.1% 26.9% 52.0%
7 UMAP K-Means 56.7% 47.6% 42.3% 54.3% 61.1% 32.2% 49.0%
8 UMAP DBSCAN 69.6% 58.7% 68.3% 59.3% 68.7% 53.9% 63.1%
9 UMAP HDBScan 68.5% 61.7% 33.3% 45.4% 74.1% 27.4% 51.7%

10

LRP NO

None K-Means 42.9% 36.6% 56.5% 33.8% 82.8% 73.6% 54.4%
11 None DBSCAN 39.5% 28.7% 69.8% 50.7% 96.5% 35.4% 53.4%
12 None HDBScan 69.0% 58.3% 56.2% 47.8% 42.4% 27.3% 50.2%
13 PCA K-Means 54.2% 56.4% 54.9% 35.7% 82.9% 73.6% 59.6%
14 PCA DBSCAN 47.2% 20.6% 71.8% 48.9% 79.7% 35.4% 50.6%
15 PCA HDBScan 52.5% 58.3% 25.5% 47.8% 46.8% 26.2% 42.8%
16 UMAP K-Means 55.9% 47.6% 54.7% 31.8% 67.0% 32.2% 48.2%
17 UMAP DBSCAN 67.0% 62.8% 68.9% 49.7% 80.3% 33.5% 60.4%
18 UMAP HDBScan 69.0% 58.3% 56.2% 47.8% 51.6% 26.4% 51.5%

19

VGG-16 NO

None K-Means 91.7% 92.1% 95.5% 82.5% 97.3% 99.7% 93.2%
20 None DBSCAN 87.0% 85.9% 96.7% 57.3% 98.0% 100.0% 87.5%
21 None HDBSCAN 52.6% 99.0% 30.7% 73.4% 77.8% 54.5% 64.7%
22 PCA K-Means 90.5% 87.6% 58.3% 87.7% 94.2% 92.2% 85.1%
23 PCA DBSCAN 90.7% 94.9% 81.0% 71.6% 96.0% 91.8% 87.7%
24 PCA HDBSCAN 45.6% 95.1% 56.2% 93.5% 100.0% 76.0% 77.7%

147

APPENDIX A. CHAPTER 6

Pipelines Case Study Subjects
FE FT DR CA GD OC HPD SVIRO SAP CPD Avg.

25

VGG-16

NO
UMAP K-Means 97.6% 84.4% 93.7% 82.4% 90.3% 97.8% 91.0%

26 UMAP DBSCAN 99.0% 93.0% 99.6% 79.7% 98.1% 96.6% 94.3%
27 UMAP HDBSCAN 78.0% 96.7% 56.2% 88.9% 44.1% 79.9% 74.0%
28

YES

None K-Means 26.2% 33.9% 15.8% 24.3% 27.9% 25.5% 25.6%
29 None DBSCAN 26.4% 38.5% 18.2% 32.8% 29.6% 25.2% 28.4%
30 None HDBSCAN 23.4% 51.1% 14.3% 48.1% 25.7% 53.2% 36.0%
31 PCA K-Means 25.4% 37.7% 16.7% 24.5% 26.8% 25.8% 26.1%
32 PCA DBSCAN 29.2% 51.4% 23.4% 46.6% 32.3% 29.0% 35.3%
33 PCA HDBSCAN 22.7% 43.7% 13.8% 41.5% 25.3% 23.3% 28.4%
34 UMAP K-Means 26.3% 33.6% 18.0% 25.3% 26.2% 26.2% 25.9%
35 UMAP DBSCAN 45.4% 42.8% 27.0% 39.1% 43.8% 44.0% 40.4%
36 UMAP HDBSCAN 23.5% 40.4% 14.1% 36.6% 22.0% 24.2% 26.8%

37

ResNet-50

NO

None K-Means 84.2% 84.6% 74.0% 61.2% 86.0% 83.7% 78.9%
38 None DBSCAN 63.5% 84.6% 87.5% 72.6% 75.5% 72.0% 76.0%
39 None HDBSCAN 96.4% 100.0% 100.0% 78.8% 87.5% 100.0% 93.8%
40 PCA K-Means 67.4% 79.6% 61.3% 53.4% 85.8% 75.6% 70.5%
41 PCA DBSCAN 79.7% 72.9% 51.1% 45.0% 89.8% 80.3% 69.8%
42 PCA HDBSCAN 40.8% 79.6% 56.2% 32.0% 42.5% 49.7% 50.2%
43 UMAP K-Means 99.4% 93.0% 82.3% 79.6% 99.6% 97.7% 91.9%
44 UMAP DBSCAN 100.0% 95.8% 95.8% 79.0% 99.7% 99.3% 94.9%
45 UMAP HDBSCAN 82.6% 87.3% 38.8% 60.0% 30.5% 69.4% 61.4%
46

YES

None K-Means 26.7% 37.4% 19.3% 30.0% 26.2% 25.6% 27.5%
47 None DBSCAN 47.2% 40.9% 32.1% 33.7% 35.2% 39.4% 38.1%
48 None HDBSCAN 55.0% 46.7% 15.4% 45.2% 26.4% 24.9% 35.6%
49 PCA K-Means 29.5% 37.1% 17.8% 39.5% 26.6% 26.2% 29.5%
50 PCA DBSCAN 40.1% 45.6% 23.8% 41.5% 39.4% 39.4% 38.3%
51 PCA HDBSCAN 23.7% 50.7% 15.7% 48.2% 24.6% 23.3% 31.1%
52 UMAP K-Means 25.5% 34.6% 17.3% 25.7% 27.5% 25.6% 26.0%
53 UMAP DBSCAN 37.8% 54.8% 35.9% 48.4% 41.7% 50.6% 44.9%
54 UMAP HDBSCAN 23.9% 44.5% 15.1% 23.3% 23.7% 24.2% 25.8%

55

Inception-V3

NO

None K-Means 84.6% 86.0% 95.1% 69.2% 91.2% 87.8% 85.7%
56 None DBSCAN 100.0% 63.2% 80.9% 17.9% 98.4% 60.4% 70.1%
57 None HDBSCAN 62.6% 96.0% 99.8% 77.9% 62.6% 95.6% 82.4%
58 PCA K-Means 66.5% 74.5% 80.9% 68.6% 88.9% 75.7% 75.8%
59 PCA DBSCAN 97.9% 83.8% 86.0% 96.5% 92.0% 82.2% 89.7%
60 PCA HDBSCAN 92.5% 86.1% 53.4% 70.8% 69.4% 34.3% 67.8%
61 UMAP K-Means 94.1% 87.4% 95.0% 67.0% 90.1% 71.3% 84.2%
62 UMAP DBSCAN 93.4% 95.2% 98.1% 76.6% 97.4% 83.1% 90.7%
63 UMAP HDBSCAN 74.0% 83.3% 55.9% 80.1% 65.8% 70.0% 71.5%
64

YES

None K-Means 26.6% 34.4% 15.6% 23.6% 26.7% 25.2% 25.4%
65 None DBSCAN 50.0% 38.3% 24.7% 17.0% 51.0% 44.1% 37.5%
66 None HDBSCAN 49.9% 48.2% 15.4% 44.4% 53.0% 53.8% 44.1%
67 PCA K-Means 24.4% 31.5% 16.7% 25.6% 27.2% 25.2% 25.1%
68 PCA DBSCAN 32.1% 50.6% 29.1% 38.5% 35.1% 38.6% 37.3%
69 PCA HDBSCAN 46.7% 44.3% 15.1% 45.2% 25.0% 22.9% 33.2%
70 UMAP K-Means 26.1% 31.0% 17.1% 25.8% 25.2% 27.2% 25.4%
71 UMAP DBSCAN 45.7% 50.4% 23.4% 45.1% 44.4% 52.5% 43.6%
72 UMAP HDBSCAN 47.2% 26.2% 15.3% 37.8% 24.7% 25.0% 29.4%

73
Xception NO

None K-Means 85.2% 90.4% 88.8% 68.4% 95.2% 72.6% 83.4%
74 None DBSCAN 60.3% 35.2% 82.6% 34.7% 73.6% 57.0% 57.2%

148

A.1. ADDITIONAL MATERIAL FOR RQ1

Pipelines Case Study Subjects
FE FT DR CA GD OC HPD SVIRO SAP CPD Avg.

75

Xception

NO

None HDBSCAN 88.9% 91.7% 85.6% 71.5% 100.0% 92.2% 88.3%
76 PCA K-Means 75.5% 73.3% 67.2% 57.6% 83.6% 44.4% 66.9%
77 PCA DBSCAN 78.8% 87.7% 83.6% 71.2% 93.6% 35.2% 75.0%
78 PCA HDBSCAN 75.8% 84.5% 47.5% 75.5% 62.0% 32.7% 63.0%
79 UMAP K-Means 93.1% 90.2% 89.8% 66.3% 92.6% 66.7% 83.1%
80 UMAP DBSCAN 94.7% 92.7% 98.7% 62.4% 99.0% 85.4% 88.8%
81 UMAP HDBSCAN 77.9% 86.3% 36.7% 78.1% 99.4% 62.4% 73.5%
82

YES

None K-Means 25.0% 35.6% 17.1% 27.3% 25.4% 26.2% 26.1%
83 None DBSCAN 32.3% 34.9% 22.7% 17.8% 20.2% 55.2% 30.5%
84 None HDBSCAN 34.7% 46.2% 15.9% 33.4% 25.2% 54.0% 34.9%
85 PCA K-Means 27.0% 35.6% 17.0% 26.2% 25.4% 36.8% 28.0%
86 PCA DBSCAN 44.3% 31.1% 21.4% 28.2% 35.4% 35.2% 32.6%
87 PCA HDBSCAN 46.8% 56.3% 14.8% 37.6% 24.9% 26.6% 34.5%
88 UMAP K-Means 26.4% 32.8% 17.1% 28.7% 27.0% 24.6% 26.1%
89 UMAP DBSCAN 36.9% 42.8% 26.7% 50.4% 46.2% 45.5% 41.4%
90 UMAP HDBSCAN 23.1% 26.2% 14.9% 40.9% 24.7% 26.4% 26.1%

91

AE NO

None K-Means 40.9% 56.1% 47.0% 41.6% 72.5% 73.0% 55.2%
92 None DBSCAN 35.2% 60.8% 11.5% 16.9% 20.3% 21.1% 27.6%
93 None HDBSCAN 36.9% 67.8% 0.0% 67.5% 0.0% 63.0% 39.2%
94 PCA K-Means 62.5% 55.1% 51.7% 52.9% 60.9% 77.2% 60.0%
95 PCA DBSCAN 20.4% 73.3% 68.2% 63.6% 89.1% 76.7% 65.2%
96 PCA HDBSCAN 73.5% 60.8% 25.7% 68.1% 76.1% 27.8% 55.3%
97 UMAP K-Means 43.7% 46.2% 36.4% 37.6% 69.2% 66.0% 49.9%
98 UMAP DBSCAN 65.3% 61.8% 59.0% 51.9% 69.1% 70.6% 62.9%
99 UMAP HDBSCAN 28.4% 60.5% 45.4% 47.2% 41.6% 41.7% 44.1%

FE Feature Extraction FT Fine-tuning DR Dimensionality Reduction CA Clustering Algorithm

149

APPENDIX A. CHAPTER 6

A.2 Additional material for RQ2

Table A.2: Percentage of faulty scenarios covered by the root cause clusters generated for each pipeline.

The last column represents the average of averages.

Pipelines Case Study Subjects
FE FT DR CA GD OC HPD SVIRO SAP CPD Avg.
1

HUDD NO

None K-Means 0.0% 0.0% 0.0% 20.0% 25.0% 0.0% 7.5%
2 None DBSCAN 25.0% 25.0% 0.0% 80.0% 25.0% 25.0% 30.0%
3 None HDBScan 100.0% 25.0% 0.0% 0.0% 0.0% 0.0% 20.8%
4 PCA K-Means 0.0% 25.0% 0.0% 40.0% 50.0% 0.0% 19.2%
5 PCA DBSCAN 0.0% 25.0% 0.0% 20.0% 50.0% 0.0% 15.8%
6 PCA HDBScan 100.0% 25.0% 0.0% 0.0% 100.0% 0.0% 37.5%
7 UMAP K-Means 25.0% 0.0% 0.0% 0.0% 0.0% 0.0% 4.2%
8 UMAP DBSCAN 100.0% 50.0% 75.0% 60.0% 75.0% 100.0% 76.7%
9 UMAP HDBScan 100.0% 25.0% 0.0% 0.0% 100.0% 0.0% 37.5%

10

LRP NO

None K-Means 0.0% 0.0% 12.5% 0.0% 50.0% 25.0% 14.6%
11 None DBSCAN 0.0% 0.0% 37.5% 20.0% 50.0% 0.0% 17.9%
12 None HDBScan 100.0% 25.0% 12.5% 20.0% 0.0% 0.0% 26.2%
13 PCA K-Means 25.0% 25.0% 12.5% 0.0% 50.0% 25.0% 22.9%
14 PCA DBSCAN 0.0% 0.0% 12.5% 20.0% 50.0% 0.0% 13.8%
15 PCA HDBScan 0.0% 25.0% 0.0% 20.0% 0.0% 0.0% 7.5%
16 UMAP K-Means 25.0% 0.0% 25.0% 0.0% 50.0% 0.0% 16.7%
17 UMAP DBSCAN 75.0% 100.0% 75.0% 40.0% 100.0% 0.0% 65.0%
18 UMAP HDBScan 100.0% 25.0% 12.5% 20.0% 0.0% 0.0% 26.2%

19

VGG-16

NO

None K-Means 50.0% 50.0% 87.5% 80.0% 100.0% 100.0% 77.9%
20 None DBSCAN 50.0% 50.0% 75.0% 20.0% 100.0% 100.0% 65.8%
21 None HDBSCAN 0.0% 75.0% 0.0% 60.0% 50.0% 0.0% 30.8%
22 PCA K-Means 50.0% 50.0% 12.5% 60.0% 100.0% 75.0% 57.9%
23 PCA DBSCAN 50.0% 50.0% 37.5% 40.0% 75.0% 75.0% 54.6%
24 PCA HDBSCAN 0.0% 75.0% 12.5% 100.0% 75.0% 50.0% 52.1%
25 UMAP K-Means 75.0% 75.0% 87.5% 80.0% 75.0% 100.0% 82.1%
26 UMAP DBSCAN 100.0% 100.0% 100.0% 80.0% 100.0% 100.0% 96.7%
27 UMAP HDBSCAN 50.0% 75.0% 12.5% 60.0% 0.0% 50.0% 41.2%
28

YES

None K-Means 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
29 None DBSCAN 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
30 None HDBSCAN 0.0% 25.0% 0.0% 20.0% 0.0% 100.0% 24.2%
31 PCA K-Means 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
32 PCA DBSCAN 0.0% 25.0% 0.0% 20.0% 0.0% 0.0% 7.5%
33 PCA HDBSCAN 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
34 UMAP K-Means 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
35 UMAP DBSCAN 25.0% 0.0% 0.0% 0.0% 50.0% 25.0% 16.7%
36 UMAP HDBSCAN 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

37

ResNet-50 NO

None K-Means 50.0% 50.0% 25.0% 40.0% 50.0% 50.0% 44.2%
38 None DBSCAN 25.0% 50.0% 37.5% 40.0% 50.0% 25.0% 37.9%
39 None HDBSCAN 50.0% 100.0% 100.0% 60.0% 75.0% 100.0% 80.8%
40 PCA K-Means 25.0% 50.0% 12.5% 20.0% 50.0% 25.0% 30.4%
41 PCA DBSCAN 50.0% 50.0% 12.5% 0.0% 50.0% 25.0% 31.2%
42 PCA HDBSCAN 0.0% 100.0% 12.5% 0.0% 0.0% 0.0% 18.8%
43 UMAP K-Means 100.0% 75.0% 50.0% 40.0% 100.0% 100.0% 77.5%
44 UMAP DBSCAN 100.0% 100.0% 100.0% 60.0% 100.0% 100.0% 93.3%

150

A.2. ADDITIONAL MATERIAL FOR RQ2

Pipelines Case Study Subjects
FE FT DR CA GD OC HPD SVIRO SAP CPD Avg.

45

ResNet-50

NO UMAP HDBSCAN 50.0% 75.0% 0.0% 20.0% 0.0% 25.0% 28.3%
46

YES

None K-Means 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
47 None DBSCAN 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
48 None HDBSCAN 50.0% 0.0% 0.0% 0.0% 0.0% 0.0% 8.3%
49 PCA K-Means 0.0% 0.0% 0.0% 20.0% 0.0% 0.0% 3.3%
50 PCA DBSCAN 0.0% 0.0% 0.0% 20.0% 0.0% 0.0% 3.3%
51 PCA HDBSCAN 0.0% 0.0% 0.0% 40.0% 0.0% 0.0% 6.7%
52 UMAP K-Means 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
53 UMAP DBSCAN 0.0% 50.0% 0.0% 40.0% 25.0% 100.0% 35.8%
54 UMAP HDBSCAN 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

55

Inception-V3

NO

None K-Means 75.0% 75.0% 87.5% 40.0% 100.0% 50.0% 71.2%
56 None DBSCAN 75.0% 25.0% 50.0% 0.0% 100.0% 25.0% 45.8%
57 None HDBSCAN 25.0% 100.0% 87.5% 100.0% 25.0% 100.0% 72.9%
58 PCA K-Means 50.0% 50.0% 37.5% 40.0% 75.0% 25.0% 46.2%
59 PCA DBSCAN 50.0% 75.0% 62.5% 40.0% 75.0% 25.0% 54.6%
60 PCA HDBSCAN 25.0% 75.0% 12.5% 60.0% 25.0% 0.0% 32.9%
61 UMAP K-Means 75.0% 75.0% 87.5% 40.0% 75.0% 50.0% 67.1%
62 UMAP DBSCAN 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
63 UMAP HDBSCAN 25.0% 100.0% 12.5% 100.0% 25.0% 25.0% 47.9%
64

YES

None K-Means 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
65 None DBSCAN 0.0% 0.0% 0.0% 0.0% 25.0% 0.0% 4.2%
66 None HDBSCAN 75.0% 25.0% 0.0% 40.0% 75.0% 100.0% 52.5%
67 PCA K-Means 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
68 PCA DBSCAN 0.0% 25.0% 0.0% 0.0% 0.0% 0.0% 4.2%
69 PCA HDBSCAN 25.0% 0.0% 0.0% 20.0% 0.0% 0.0% 7.5%
70 UMAP K-Means 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
71 UMAP DBSCAN 25.0% 50.0% 0.0% 20.0% 25.0% 75.0% 32.5%
72 UMAP HDBSCAN 50.0% 0.0% 0.0% 0.0% 0.0% 0.0% 8.3%

73

Xception

NO

None K-Means 50.0% 75.0% 87.5% 40.0% 100.0% 75.0% 71.2%
74 None DBSCAN 25.0% 0.0% 37.5% 0.0% 25.0% 25.0% 18.8%
75 None HDBSCAN 100.0% 100.0% 62.5% 60.0% 50.0% 100.0% 78.8%
76 PCA K-Means 50.0% 50.0% 37.5% 0.0% 75.0% 0.0% 35.4%
77 PCA DBSCAN 50.0% 75.0% 50.0% 0.0% 75.0% 0.0% 41.7%
78 PCA HDBSCAN 100.0% 50.0% 0.0% 80.0% 25.0% 0.0% 42.5%
79 UMAP K-Means 75.0% 75.0% 62.5% 40.0% 100.0% 50.0% 67.1%
80 UMAP DBSCAN 100.0% 100.0% 100.0% 40.0% 100.0% 100.0% 90.0%
81 UMAP HDBSCAN 50.0% 75.0% 0.0% 60.0% 100.0% 25.0% 51.7%
82

YES

None K-Means 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
83 None DBSCAN 0.0% 0.0% 0.0% 0.0% 0.0% 25.0% 4.2%
84 None HDBSCAN 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 16.7%
85 PCA K-Means 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
86 PCA DBSCAN 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
87 PCA HDBSCAN 75.0% 50.0% 0.0% 0.0% 0.0% 0.0% 20.8%
88 UMAP K-Means 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
89 UMAP DBSCAN 0.0% 0.0% 0.0% 60.0% 50.0% 0.0% 18.3%
90 UMAP HDBSCAN 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

91

AE NO

None K-Means 0.0% 25.0% 12.5% 20.0% 50.0% 50.0% 26.2%
92 None DBSCAN 0.0% 25.0% 0.0% 0.0% 0.0% 0.0% 4.2%
93 None HDBSCAN 0.0% 25.0% 0.0% 40.0% 0.0% 25.0% 15.0%
94 PCA K-Means 0.0% 25.0% 12.5% 0.0% 50.0% 50.0% 22.9%

151

APPENDIX A. CHAPTER 6

Pipelines Case Study Subjects
FE FT DR CA GD OC HPD SVIRO SAP CPD Avg.

95

AE NO

PCA DBSCAN 0.0% 25.0% 0.0% 20.0% 50.0% 50.0% 24.2%
96 PCA HDBSCAN 100.0% 50.0% 0.0% 80.0% 50.0% 0.0% 46.7%
97 UMAP K-Means 0.0% 0.0% 0.0% 0.0% 25.0% 50.0% 12.5%
98 UMAP DBSCAN 50.0% 50.0% 37.5% 40.0% 50.0% 100.0% 54.6%
99 UMAP HDBSCAN 0.0% 25.0% 0.0% 20.0% 0.0% 0.0% 7.5%

FE Feature Extraction FT Fine-tuning DR Dimensionality Reduction CA Clustering Algorithm

152

A.3. ADDITIONAL MATERIAL FOR RQ3

A.3 Additional material for RQ3

Table A.3: Distribution of faults for the different failure inducing sets for each case study subject.

Case Study Dataset
Faulty Scenarios

N B S D M H SG EG EO NF

GD

GD_1 64 40 48 72 - - - - - 56
GD_2 48 32 24 16 - - - - - 64
GD_3 24 64 16 40 - - - - - 8
GD_4 72 16 24 48 - - - - - 40
GD_5 40 24 72 16 - - - - - 8
GD_6 56 32 48 16 - - - - - 24
GD_7 64 32 8 56 - - - - - 24
GD_8 72 24 16 8 - - - - - 64
GD_9 40 64 48 16 - - - - - 56
GD_10 56 8 64 24 - - - - - 48

OC

OC_1 18 6 10 4 - - - - - 8
OC_2 4 18 12 2 - - - - - 14
OC_3 2 14 10 6 - - - - - 16
OC_4 2 4 6 10 - - - - - 8
OC_5 6 4 16 18 - - - - - 10
OC_6 8 6 10 12 - - - - - 16
OC_7 18 8 16 6 - - - - - 2
OC_8 16 18 14 10 - - - - - 4
OC_9 14 16 4 10 - - - - - 2

OC_10 10 2 14 8 - - - - - 18

HPD

HPD_1 45 72 54 9 36 63 81 18 - 27
HPD_2 27 81 45 18 54 63 72 36 - 9
HPD_3 54 81 27 63 18 45 9 36 - 72
HPD_4 36 18 63 72 9 81 54 27 - 45
HPD_5 27 63 18 72 36 9 45 81 - 54
HPD_6 45 36 54 63 81 9 72 27 - 18
HPD_7 63 45 81 36 27 72 18 54 - 9
HPD_8 72 9 63 27 36 18 81 54 - 45
HPD_9 72 63 18 27 45 9 81 54 - 36

HPD_10 54 81 63 27 45 72 18 9 - 36

SVIRO

SVIRO_1 6 12 18 21 - - - - 24 15
SVIRO_2 9 24 6 12 - - - - 15 3
SVIRO_3 15 18 21 3 - - - - 27 9
SVIRO_4 21 9 12 24 - - - - 6 27
SVIRO_5 27 21 3 9 - - - - 18 24
SVIRO_6 3 27 24 6 - - - - 21 12
SVIRO_7 24 6 15 18 - - - - 3 21
SVIRO_8 15 3 27 24 - - - - 12 6
SVIRO_9 12 15 3 27 - - - - 9 18

SVIRO_10 18 21 9 15 - - - - 21 18

CPD

CPD_1 87 74 55 28 - - - - - 44
CPD_2 43 56 27 22 - - - - - 74
CPD_3 6 32 4 62 - - - - - 35
CPD_4 49 22 88 34 - - - - - 5
CPD_5 24 69 37 57 - - - - - 86

153

APPENDIX A. CHAPTER 6

Case Study Dataset
Faulty Scenarios

N B S D M H SG EG EO NF

CPD

CPD_6 13 69 58 54 - - - - - 25
CPD_7 3 32 51 9 - - - - - 59
CPD_8 77 62 12 53 - - - - - 4
CPD_9 85 27 78 30 - - - - - 62

CPD_10 65 46 66 89 - - - - - 40

SAP

SAP_1 22 33 54 48 - - - - - 72
SAP_2 75 22 48 17 - - - - - 57
SAP_3 22 4 57 42 - - - - - 81
SAP_4 74 21 40 36 - - - - - 42
SAP_5 15 14 86 74 - - - - - 51
SAP_6 73 60 2 83 - - - - - 72
SAP_7 58 57 47 83 - - - - - 43
SAP_8 6 75 26 16 - - - - - 70
SAP_9 89 86 66 32 - - - - - 68

SAP_10 67 77 14 4 - - - - - 55

N Noise B Blurriness S Scaling D Darkness M Masks H Hands SG SunGlasses EG EyeGlasses EO Everyday Objects
NF Non-injected Fault (−) Not Applicable

154

Bibliography

[1] World Health Organization. Road Traffic Injuries, 2022. http://www.who.int/mediacentre/factsheets/
fs358/en/.

[2] European Road Safety Observatory. Annual Statistical Report, 2021. https://road-safety.transport.ec.
europa.eu/statistics-and-analysis/data-and-analysis/annual-statistical-report_

en.

[3] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest: Automated testing of deep-neural-network-driven
autonomous cars. In Proceedings of the 40th international conference on software engineering, pages 303–314, 2018.

[4] Zhong Li, Minxue Pan, Tian Zhang, and Xuandong Li. Testing dnn-based autonomous driving systems under critical
environmental conditions. In International Conference on Machine Learning, pages 6471–6482. PMLR, 2021.

[5] Satti RG Reddy, GP Varma, and Rajya Lakshmi Davuluri. Deep neural network (dnn) mechanism for identification of
diseased and healthy plant leaf images using computer vision. Annals of Data Science, pages 1–30, 2022.

[6] A Kousar Nikhath, MD Abdul Rab, N Venkata Bharadwaja, L Goutham Reddy, K Saicharan, C Venkat Manas Reddy,
et al. An intelligent college enquiry bot using nlp and deep learning based techniques. In 2022 International Conference
for Advancement in Technology (ICONAT), pages 1–6. IEEE, 2022.

[7] Ekin EKİNCİ, Hidayet TAKCI, and Sultan ALAGÖZ. Poet classification using ann and dnn. Electronic Letters on
Science and Engineering, 18(1):10–20, 2018.

[8] Mihalj Bakator and Dragica Radosav. Deep Learning and Medical Diagnosis: A Review of Literature. Multimodal
Technologies and Interaction, 2(3), 2018.

[9] Jian Huang, Junyi Chai, and Stella Cho. Deep learning in finance and banking: A literature review and classification.
Frontiers of Business Research in China, 14(1):13, 2020.

[10] S Ribu Hassini, T Gireesh Kumar, and S Kowshik Hurshan. A Machine Learning and Deep Neural Network Approach in
Industrial Control Systems. In Simon Fong, Nilanjan Dey, and Amit Joshi, editors, ICT Analysis and Applications, pages
525–536, Singapore, 2022. Springer Nature Singapore.

[11] Diogo V Carvalho, Eduardo M Pereira, and Jaime S Cardoso. Machine learning interpretability: A survey on methods
and metrics. Electronics, 8(8):832, 2019.

[12] Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter, and Lalana Kagal. Explaining explanations:
An overview of interpretability of machine learning. In 2018 IEEE 5th International Conference on data science and
advanced analytics (DSAA), pages 80–89. IEEE, 2018.

[13] David Gunning and David Aha. Darpa’s explainable artificial intelligence (xai) program. AI magazine, 40(2):44–58,
2019.

[14] International Organization for Standardization. ISO, ISO26262-1:2018, Road vehicles: Functional safety, 2020.

155

http://www.who.int/mediacentre/factsheets/fs358/en/
http://www.who.int/mediacentre/factsheets/fs358/en/
https://road-safety.transport.ec.europa.eu/statistics-and-analysis/data-and-analysis/annual-statistical-report_en
https://road-safety.transport.ec.europa.eu/statistics-and-analysis/data-and-analysis/annual-statistical-report_en
https://road-safety.transport.ec.europa.eu/statistics-and-analysis/data-and-analysis/annual-statistical-report_en

BIBLIOGRAPHY

[15] International Organization for Standardization. ISO/PAS 21448:2019, Road vehicles: Safety of the intended functionality,
2020.

[16] International Organization for Standardization. ISO, ISO-14971-2019, Application of risk management to medical
devices, the European Forward, 2019.

[17] IEE. IEE sensing solutions. www.iee.lu, 2020.

[18] Hazem Fahmy, Fabrizio Pastore, Mojtaba Bagherzadeh, and Lionel Briand. Supporting deep neural network safety
analysis and retraining through heatmap-based unsupervised learning. IEEE Transactions on Reliability, 70(4):1641–1657,
2021.

[19] Hazem Fahmy, Fabrizio Pastore, and Lionel Briand. Hudd: A tool to debug dnns for safety analysis. In Proceedings
of the ACM/IEEE 44th International Conference on Software Engineering: Companion Proceedings, ICSE ’22, page
100–104, New York, NY, USA, 2022. Association for Computing Machinery.

[20] Hazem Fahmy, Mojtaba Bagherzadeh, Fabrizio Pastore and Lionel Briand. HUDD: toolset and replicability package,
2020. https://github.com/SNTSVV/HUDD-toolset/.

[21] Hazem Fahmy, Fabrizio Pastore, Lionel Briand, and Thomas Stifter. Simulator-based explanation and debugging of
hazard-triggering events in dnn-based safety-critical systems. ACM Trans. Softw. Eng. Methodol., oct 2022.

[22] Hazem Fahmy, Fabrizio Pastore, Lionel Briand, and Thomas Stifter. SEDE: replicability package, 2022. https:

//figshare.com/s/a7fd8e713e038ee0d86c.

[23] Hazem Fahmy, Fabrizio Pastore, Lionel Briand, and Thomas Stifter. SEDE code repository, 2022. https://github.
com/SNTSVV/SEDE.

[24] Mohammed Oualid Attaoui, Hazem Fahmy, Fabrizio Pastore, and Lionel Briand. Black-box safety analysis and retraining
of dnns based on feature extraction and clustering. ACM Trans. Softw. Eng. Methodol., jul 2022. Just Accepted.

[25] Mohammed Oualid Attaoui, Hazem Fahmy, Fabrizio Pastore, and Lionel Briand. SAFE: toolset and replicability package.
https://zenodo.org/record/6619279, 2022.

[26] Mohammed Oualid Attaoui, Hazem Fahmy, Fabrizio Pastore, and Lionel Briand. Dnn explanation for safety analysis: an
empirical evaluation of clustering-based approaches, 2023.

[27] Mohammed Oualid Attaoui, Hazem Fahmy, Fabrizio Pastore, and Lionel Briand. DNN Explanation
for Safety Analysis: an Empirical Evaluation of Clustering-based Approaches - Replicability package.
https://figshare.com/projects/DNN_Explanation_for_Safety_Analysis_an_Empirical_

Evaluation_of_Clustering-based_Approaches/157973, 2023.

[28] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of a convolutional neural network. In 2017
international conference on engineering and technology (ICET), pages 1–6. Ieee, 2017.

[29] Yu-Dong Zhang, Suresh Chandra Satapathy, David S Guttery, Juan Manuel Górriz, and Shui-Hua Wang. Improved breast
cancer classification through combining graph convolutional network and convolutional neural network. Information
Processing & Management, 58(2):102439, 2021.

[30] Sandeep Sony, Kyle Dunphy, Ayan Sadhu, and Miriam Capretz. A systematic review of convolutional neural network-
based structural condition assessment techniques. Engineering Structures, 226:111347, 2021.

[31] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv:1409.1556, 2014.

[32] Christoph Molnar. Interpretable Machine Learning. LuLu, 2011. https://christophm.github.io/

interpretable-ml-book/.

[33] Edward Kim, Divya Gopinath, Corina Păsăreanu, and Sanjit A. Seshia. A programmatic and semantic approach to
explaining and debugging neural network based object detectors. In 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 11125–11134, 2020.

156

https://github.com/SNTSVV/HUDD-toolset/
https://figshare.com/s/a7fd8e713e038ee0d86c
https://figshare.com/s/a7fd8e713e038ee0d86c
https://github.com/SNTSVV/SEDE
https://github.com/SNTSVV/SEDE
https://zenodo.org/record/6619279
https://figshare.com/projects/DNN_Explanation_for_Safety_Analysis_an_Empirical_Evaluation_of_Clustering-based_Approaches/157973
https://figshare.com/projects/DNN_Explanation_for_Safety_Analysis_an_Empirical_Evaluation_of_Clustering-based_Approaches/157973
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

BIBLIOGRAPHY

[34] Fitash Ul Haq, Donghwan Shin, Lionel C. Briand, Thomas Stifter, and Jun Wang. Automatic test suite generation for
key-points detection dnns using many-objective search (experience paper). In Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2021, page 91–102, New York, NY, USA, 2021.
Association for Computing Machinery. https://doi.org/10.1145/3460319.3464802.

[35] Fitash Ul Haq, Donghwan Shin, Shiva Nejati, and Lionel Briand. Can offline testing of deep neural networks replace their
online testing? a case study of automated driving systems. Empirical Softw. Engg., 26(5), sep 2021.

[36] Eibe Frank and Ian H. Witten. Generating accurate rule sets without global optimization. In J. Shavlik, editor, Fifteenth
International Conference on Machine Learning, pages 144–151. Morgan Kaufmann, 1998.

[37] William W. Cohen. Fast effective rule induction. In Armand Prieditis and Stuart Russell, editors, Machine Learning
Proceedings 1995, pages 115–123. Morgan Kaufmann, San Francisco (CA), 1995.

[38] Ronald S. King. Cluster Analysis and Data Mining: An Introduction. Mercury Learning & Information, USA, 2014.

[39] J. MacQueen. Some methods for classification and analysis of multivariate observations. Proceedings of BSMSP, pages
281–297, 1967.

[40] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm for discovering clusters in
large spatial databases with noise. In Kdd, volume 96, pages 226–231, 1996.

[41] Leland McInnes, John Healy, and Steve Astels. hdbscan: Hierarchical density based clustering. Journal of Open Source
Software, 2(11):205, 2017.

[42] Jr. Ward, J. H. Hierarchical grouping to optimize an objective function. American Statistical Association Journal,
58:236–244, 1963.

[43] R. R. Sokal and C. D. Michener. A statistical method for evaluating systematic relationships. University of Kansas
Science Bulletin, 38:1409–1438, 1958.

[44] Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering: an overview. WIREs Data Mining and
Knowledge Discovery, 2(1):86–97, 2012.

[45] Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin
philosophical magazine and journal of science, 2(11):559–572, 1901.

[46] Leland McInnes, John Healy, Nathaniel Saul, and Lukas Grossberger. Umap: Uniform manifold approximation and
projection. The Journal of Open Source Software, 3(29):861, 2018.

[47] Jonathon Shlens. A tutorial on principal component analysis. arXiv:1404.1100, 2014.

[48] Florent Forest, Mustapha Lebbah, Hanene Azzag, and Jérôme Lacaille. Deep embedded self-organizing maps for joint
representation learning and topology-preserving clustering. Neural Computing and Applications, 33(24):17439–17469,
2021.

[49] Erroll Wood, Tadas Baltrušaitis, Louis-Philippe Morency, Peter Robinson, and Andreas Bulling. Learning an appearance-
based gaze estimator from one million synthesised images. In Proceedings of the Ninth Biennial ACM Symposium on Eye
Tracking Research & Applications, ETRA ’16, pages 131–138, New York, NY, USA, 2016. ACM.

[50] Hal Daumé III. A Course in Machine Learning. Available Online, 2020. http://ciml.info/.

[51] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Automated Test Case Generation as a Many-Objective
Optimisation Problem with Dynamic Selection of the Targets. IEEE Transactions on Software Engineering, 44(2):122–158,
2018.

[52] Fitash Ul Haq, Donghwan Shin, Shiva Nejati, and Lionel C. Briand. Comparing offline and online testing of deep neural
networks: An autonomous car case study. In 2020 IEEE 13th International Conference on Software Testing, Validation
and Verification (ICST), pages 85–95, 2020.

[53] Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, and Thomas Stifter. Testing advanced driver assistance systems
using multi-objective search and neural networks. In 2016 31st IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 63–74, 2016.

157

https://doi.org/10.1145/3460319.3464802
http://ciml.info/

BIBLIOGRAPHY

[54] Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, and Thomas Stifter. Testing vision-based control systems using
learnable evolutionary algorithms. In Proceedings of the 40th International Conference on Software Engineering, ICSE
’18, pages 1016–1026, New York, NY, USA, 2018. ACM.

[55] Mohamed El Mostadi, Hélène Waeselynck, and Jean-Marc Gabriel. Virtual test scenarios for adas: Distance to real
scenarios matters! In 2022 IEEE Intelligent Vehicles Symposium (IV), pages 836–841, 2022.

[56] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

[57] Bingdong Li, Jinlong Li, Ke Tang, and Xin Yao. Many-objective evolutionary algorithms: A survey. ACM Comput. Surv.,
48(1), sep 2015.

[58] Fitash Ul Haq, Donghwan Shin, and Lionel Briand. Efficient online testing for dnn-enabled systems using surrogate-
assisted and many-objective optimization. In 2022 IEEE/ACM 44th International Conference on Software Engineering
(ICSE), pages 811–822, 2022.

[59] Rafael Garcia, Alexandru C. Telea, Bruno Castro da Silva, Jim Torresen, and Joao Luiz Dihl Comba. A task-and-technique
centered survey on visual analytics for deep learning model engineering. Computers and Graphics, 77:30 – 49, 2018.

[60] Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling for explanation of black-box models. In
Proceedings of the British Machine Vision Conference (BMVC), 2018.

[61] Piotr Dabkowski and Yarin Gal. Real time image saliency for black box classifiers. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS?17, pages 6970–6979, Red Hook, NY, USA, 2017. Curran
Associates Inc.

[62] Grégoire Montavon, Alexander Binder, Sebastian Lapuschkin, Wojciech Samek, and Klaus Robert Müller. Layer-Wise
Relevance Propagation: An Overview, pages 193–209. Springer International Publishing, Cham, 2019.

[63] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-cam: Visual explanations from deep
networks via gradient-based localization. In 2017 IEEE International Conference on Computer Vision (ICCV), pages
618–626, Oct 2017.

[64] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In David Fleet, Tomas Pajdla,
Bernt Schiele, and Tinne Tuytelaars, editors, Computer Vision – ECCV 2014, pages 818–833, Cham, 2014. Springer
International Publishing.

[65] J.T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for simplicity: The all convolutional net. In ICLR
(workshop track), 2015.

[66] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning deep features for discriminative localization. In
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2921–2929, June 2016.

[67] D. Gopinath, H. Converse, C. Pasareanu, and A. Taly. Property inference for deep neural networks. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 797–809, 2019.

[68] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision model-agnostic explanations. In
Proceedings of the ’18 AAAI Conference on Artificial Intelligence, 2018.

[69] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama. Mode: Automated neural network model
debugging via state differential analysis and input selection. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE
2018, pages 175–186, New York, NY, USA, 2018. ACM.

[70] Jinhan Kim, Robert Feldt, and Shin Yoo. Guiding deep learning system testing using surprise adequacy. In Proceedings
of the 41st International Conference on Software Engineering, ICSE ’19, pages 1039–1049. IEEE Press, 2019.

[71] Hasan Ferit Eniser, Simos Gerasimou, and Alper Sen. Deepfault: Fault localization for deep neural networks. In Reiner
Hähnle and Wil van der Aalst, editors, Fundamental Approaches to Software Engineering, pages 171–191, Cham, 2019.
Springer International Publishing.

158

BIBLIOGRAPHY

[72] Maximilian Alber, Sebastian Lapuschkin, Philipp Seegerer, Miriam Hägele, Kristof T. Schütt, Grégoire Montavon,
Wojciech Samek, Klaus-Robert Müller, Sven Dähne, and Pieter-Jan Kindermans. innvestigate neural networks! Journal
of Machine Learning Research, 20(93):1–8, 2019. https://github.com/albermax/innvestigate.

[73] TorchRay. DNN Explanation, 2020. https://github.com/facebookresearch/TorchRay.

[74] Yue Zhao, Hong Zhu, Kai Chen, and Shengzhi Zhang. Ai-lancet: Locating error-inducing neurons to optimize neural
networks. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, pages
141–158, 2021.

[75] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances in neural information
processing systems, 30, 2017.

[76] W. Samek, A. Binder, G. Montavon, S. Lapuschkin, and K. Muller. Evaluating the visualization of what a deep neural
network has learned. IEEE Transactions on Neural Networks and Learning Systems, 28(11):2660–2673, Nov 2017.

[77] Gregoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek, and Klaus-Robert Muller. Explaining
nonlinear classification decisions with deep taylor decomposition. Pattern Recognition, 65:211 – 222, 2017.

[78] Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling for explanation of black-box models, 2018.

[79] Raja Ben Abdessalem, Shiva Nejati, Lionel C Briand, and Thomas Stifter. Testing vision-based control systems using
learnable evolutionary algorithms. In 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE),
pages 1016–1026. IEEE, 2018.

[80] Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, and Paolo Tonella. Deephyperion: exploring the feature space
of deep learning-based systems through illumination search. In Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 79–90, 2021.

[81] Vincenzo Riccio and Paolo Tonella. Model-based exploration of the frontier of behaviours for deep learning system
testing. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE 2020, page 876–888, New York, NY, USA, 2020. Association
for Computing Machinery.

[82] International Organization for Standardization. ISO, ISO-24765-2017, Systems and software engineering - Vocabulary,
2020.

[83] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http://www.

deeplearningbook.org.

[84] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hourglass networks for human pose estimation. In Bastian Leibe,
Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer Vision – ECCV 2016, pages 483–499, Cham, 2016. Springer
International Publishing.

[85] Gregoire Montavon. WIFS 2017 Tutorial on Methods for Understanding DNNs and their Predictions, 2019.

[86] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 3rd edition, 2011.

[87] V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan. Finding a "kneedle" in a haystack: Detecting knee points in system
behavior. In 2011 31st International Conference on Distributed Computing Systems Workshops, pages 166–171, 2011.

[88] Z. Li, C. Luo, Y. Zhao, Y. Sun, K. Sui, X. Wang, D. Liu, X. Jin, Q. Wang, and D. Pei. Generic and robust localization of
multi-dimensional root causes. In 2019 IEEE 30th International Symposium on Software Reliability Engineering (ISSRE),
pages 47–57, 2019.

[89] L. Jendele, M. Schwenk, D. Cremarenco, I. Janicijevic, and M. Rybalkin. Efficient automated decomposition of build
targets at large-scale. In 2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST), pages
457–464, 2019.

[90] Robert L Thorndike. Who belongs in the family? Psychometrika, 18(4):267–276, 1953.

159

https://github.com/albermax/innvestigate
https://github.com/facebookresearch/TorchRay
http://www.deeplearningbook.org
http://www.deeplearningbook.org

BIBLIOGRAPHY

[91] J. MacQueen. Some methods for classification and analysis of multivariate observations. In L. M. Le Cam and J. Neyman,
editors, Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability - Vol. 1, pages 281–297.
University of California Press, Berkeley, CA, USA, 1967.

[92] Fionn Murtagh and Pierre Legendre. Ward’s hierarchical agglomerative clustering method: Which algorithms implement
ward’s criterion? Journal of Classification, 31(3):274–295, Oct 2014.

[93] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Information Retrieval. Cambridge
University Press, Cambridge, UK, 2008.

[94] M. Inaba, N. Katoh, and H. Imai. Variance-based k-clustering algorithms by voronoi diagrams and randomization. IEICE
Transactions on Information and Systems, 83:1199–1206, 2000.

[95] Andrea Vattani. k-means Requires Exponentially Many Iterations Even in the Plane. Discrete & Computational Geometry,
45(4):596–616, 2011.

[96] Bengt Fornberg. Generation of finite difference formulas on arbitrarily spaced grids. Math. Comp., pages 699–706, 1988.

[97] Saeideh Bakhshi, David A. Shamma, Lyndon Kennedy, Yale Song, Paloma de Juan, and Joseph ’Jofish’ Kaye. Fast, cheap,
and good: Why animated gifs engage us. In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems, CHI ’16, page 575–586, New York, NY, USA, 2016. Association for Computing Machinery.

[98] PyTorch. PyTorch DNN framework, 2020. https://pytorch.org.

[99] SciPy. Pyton framework for mathematics, science, and engineering., 2020. https://scipy.org/.

[100] Blender. Blender 3D simulation and rendering engine, 2020. https://www.blender.org/.

[101] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks.
Commun. ACM, 60(6):84–90, May 2017.

[102] MakeHuman community. MakeHuman computer graphics middleware for the prototyping of humanoids. , 2020.
http://www.makehumancommunity.org.

[103] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In 2015 IEEE International Conference
on Computer Vision (ICCV), pages 3730–3738, 2015.

[104] INI. Traffic Sign Dataset, 2020. http://benchmark.ini.rub.de/?section=gtsrb&subsection=

dataset.

[105] András Vargha and Harold D. Delaney. A critique and improvement of the cl common language effect size statistics of
mcgraw and wong. Journal of Educational and Behavioral Statistics, 25(2):101–132, 2000.

[106] Andrea Arcuri and Lionel Briand. A practical guide for using statistical tests to assess randomized algorithms in software
engineering. In Proceedings of the 33rd International Conference on Software Engineering, ICSE ’11, pages 1–10, New
York, NY, USA, 2011. ACM.

[107] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos. Management of an academic hpc cluster: The ul experience. In
Proc. of the 2014 Intl. Conf. on High Performance Computing & Simulation (HPCS 2014), pages 959–967, Bologna, Italy,
July 2014. IEEE.

[108] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea Stocco, and Paolo Tonella. Taxonomy
of real faults in deep learning systems. In Proceedings of the 42nd International Conference on Software Engineering,
New York, NY, USA, 2020. Association for Computing Machinery.

[109] Jordan J. Bird, Diego R. Faria, Anikó Ekárt, and Pedro P. S. Ayrosa. From simulation to reality: Cnn transfer learning for
scene classification. In 2020 IEEE 10th International Conference on Intelligent Systems (IS), pages 619–625, 2020.

[110] Jiman Kim and Chanjong Park. End-to-end ego lane estimation based on sequential transfer learning for self-driving cars.
In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 1194–1202, 2017.

[111] Tadanobu Inoue, Subhajit Choudhury, Giovanni De Magistris, and Sakyasingha Dasgupta. Transfer learning from
synthetic to real images using variational autoencoders for precise position detection. In 2018 25th IEEE International
Conference on Image Processing (ICIP), pages 2725–2729, 2018.

160

https://pytorch.org
https://scipy.org/
https://www.blender.org/
http://www.makehumancommunity.org
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset

BIBLIOGRAPHY

[112] Gordon Fraser and Andrea Arcuri. Whole test suite generation. IEEE Transactions on Software Engineering, 39(2):276–
291, 2013.

[113] Vincenzo Riccio, Nargiz Humbatova, Gunel Jahangirova, and Paolo Tonella. Deepmetis: Augmenting a deep learning
test set to increase its mutation score. In Proceedings of the 36th IEEE/ACM International Conference on Automated
Software Engineering, ASE ’21, page 355–367. IEEE Press, 2021.

[114] Vedat Toğan and Ayşe T. Daloğlu. An improved genetic algorithm with initial population strategy and self-adaptive
member grouping. Computers & Structures, 86(11):1204–1218, 2008.

[115] Hisao Ishibuchi, Yuji Sakane, Noritaka Tsukamoto, and Yusuke Nojima. Evolutionary many-objective optimization by
nsga-ii and moea/d with large populations. In 2009 IEEE International Conference on Systems, Man and Cybernetics,
pages 1758–1763, 2009.

[116] Steve Dias Da Cruz, Bertram Taetz, Thomas Stifter, and Didier Stricker. Autoencoder attractors for uncertainty estimation.
In Proceedings of the IEEE International Conference on Pattern Recognition (ICPR), 2022.

[117] ManuelBastioniLAB. Character creation tool for Blender, 2016. https://github.com/animate1978/MB-Lab.

[118] Gabriele Fanelli, Matthias Dantone, Juergen Gall, Andrea Fossati, and Luc Van Gool. Random forests for real time 3d
face analysis. Int. J. Comput. Vision, 101(3):437–458, February 2013.

[119] Microsoft. Kinect, 2010. https://developer.microsoft.com/en-us/windows/kinect/.

[120] FaceShift GmbH. Online modeling for real-time facial animation, U.S. Patent 9378576, May 2016.

[121] DLIB Team. C++ toolkit containing machine learning algorithms and tools for creating complex software., 2022.
http://dlib.net/.

[122] Barbara Kitchenham, Lech Madeyski, David Budgen, Jacky Keung, Pearl Brereton, Stuart Charters, Shirley Gibbs, and
Amnart Pohthong. Robust Statistical Methods for Empirical Software Engineering. Empirical Software Engineering,
22(2):579–630, 2017.

[123] Xiang Gao, Ripon K. Saha, Mukul R. Prasad, and Abhik Roychoudhury. Fuzz testing based data augmentation to improve
robustness of deep neural networks. In Proceedings of the 42nd International Conference on Software Engineering, ICSE
’20, New York, NY, USA, 2020. ACM.

[124] Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. Exploring the landscape
of spatial robustness. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 1802–1811, Long
Beach, California, USA, 09–15 Jun 2019. PMLRG.

[125] Jingyi Wang, Jialuo Chen, Youcheng Sun, Xingjun Ma, Dongxia Wang, Jun Sun, and Peng Cheng. Robot: Robustness-
oriented testing for deep learning systems. In Proceedings of the 43rd International Conference on Software Engineering,
ICSE ’21, page 300–311. IEEE Press, 2021.

[126] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun Zhao, Bo Li, Jianxiong Yin, and
Simon See. Deephunter: A coverage-guided fuzz testing framework for deep neural networks. ISSTA 2019 - Proceedings
of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis, pages 158–168, 2019.

[127] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. 3rd
International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, pages 1–11, 2015.

[128] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. In 6th International Conference on Learning Representations, ICLR 2018 -
Conference Track Proceedings, pages 0–28, 2018.

[129] N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In 2017 IEEE Symposium on Security
and Privacy (SP), pages 39–57, Los Alamitos, CA, USA, may 2017. IEEE Computer Society.

[130] Mohamed Loey, Gunasekaran Manogaran, Mohamed Hamed N Taha, and Nour Eldeen M Khalifa. A hybrid deep transfer
learning model with machine learning methods for face mask detection in the era of the covid-19 pandemic. Measurement,
167:108288, 2021.

161

https://github.com/animate1978/MB-Lab
https://developer.microsoft.com/en-us/windows/kinect/
http://dlib.net/

BIBLIOGRAPHY

[131] Zitong Wan, Rui Yang, Mengjie Huang, Nianyin Zeng, and Xiaohui Liu. A review on transfer learning in eeg signal
analysis. Neurocomputing, 421:1–14, 2021.

[132] Hans-Peter Kriegel, Peer Kröger, Jörg Sander, and Arthur Zimek. Density-based clustering. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 1(3):231–240, 2011.

[133] Gábor Gosztolya, Róbert Busa-Fekete, Tamás Grósz, and László Tóth. Dnn-based feature extraction and classifier combi-
nation for child-directed speech, cold and snoring identification. In INTERSPEECH. International Speech Communication
Association (ISCA), 2017.

[134] Stanford Vision Lab. ImageNet, image database organized according to the wordnet hierarchy. https://www.

image-net.org. Accessed: 2021-12-07.

[135] Muhammed Talo. Automated classification of histopathology images using transfer learning. Artificial Intelligence in
Medicine, 101:101743, 2019.

[136] Nassima Dif, Mohammed Oualid Attaoui, Zakaria Elberrichi, Mustapha Lebbah, and Hanene Azzag. Transfer learning
from synthetic labels for histopathological images classification. Applied Intelligence, pages 1–20, 2021.

[137] Alexander N Gorban and Andrei Y Zinovyev. Principal graphs and manifolds. In Handbook of research on machine
learning applications and trends: algorithms, methods, and techniques, pages 28–59. IGI Global, 2010.

[138] Purnima Bholowalia and Arvind Kumar. Ebk-means: A clustering technique based on elbow method and k-means in wsn.
International Journal of Computer Applications, 105(9), 2014.

[139] Nadia Rahmah and Imas Sukaesih Sitanggang. Determination of optimal epsilon (eps) value on dbscan algorithm to
clustering data on peatland hotspots in sumatra. In IOP conference series: earth and environmental science, volume 31,
page 012012. IOP Publishing, 2016.

[140] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of
computational and applied mathematics, 20:53–65, 1987.

[141] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu. Dbscan revisited, revisited: Why and
how you should (still) use dbscan. ACM Trans. Database Syst., 42(3), jul 2017.

[142] Levoy Marc, Marc Levoy, Rusinkiewicz Szymon, Weyrich Tim, Pfister Hanspeter, Amenta Nina, Wu Jianhua, Barthe
Loïc, Zwicker Matthias, Kobbelt Leif, et al. 2-the early history of point-based graphics. In Point-Based Graphics, pages
8–16. Elsevier, 2007.

[143] Rajaditya Mukherjee, Qingyang Li, Zhili Chen, Shicheng Chu, and Huamin Wang. Neuraldrop: Dnn-based simulation of
small-scale liquid flows on solids. arXiv:1811.02517, 2018.

[144] Johan Linaker, Sardar Muhammad Sulaman, Martin Höst, and Rafael Maiani de Mello. Guidelines for conducting surveys
in software engineering v. 1.1. Lund University, 2015.

[145] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and Anders Wesslén. Experimentation in
software engineering, volume 9783642290. Springer Berlin, 2012.

[146] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1–9, 2015.

[147] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[148] François Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1251–1258, 2017.

[149] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009.

162

https://www.image-net.org
https://www.image-net.org

BIBLIOGRAPHY

[150] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the inception
architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 2818–2826, 2016.

[151] Raghav Bali Dipanjan Sarkar. Transfer Learning in Action. Manning Publications, 2021. https://livebook.

manning.com/book/transfer-learning-in-action/chapter-1/v-1/69 (visited 2022-02-19).

[152] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http://www.

deeplearningbook.org.

[153] Keinosuke Fukunaga and Larry Hostetler. The estimation of the gradient of a density function, with applications in pattern
recognition. IEEE Transactions on information theory, 21(1):32–40, 1975.

[154] Martín Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous systems. https://www.

tensorflow.org/, 2015.

[155] Francois Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[156] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[157] Steve Dias Da Cruz, Oliver Wasenmuller, Hans-Peter Beise, Thomas Stifter, and Didier Stricker. Sviro: Synthetic vehicle
interior rear seat occupancy dataset and benchmark. In Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pages 973–982, 2020.

[158] Autumn pre-trained model. Udacity self-driving car challenge 2. https://github.com/udacity/

self-driving-car/tree/master/steering-models/community-models/autumn, 2017.

[159] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D
Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.

[160] Udacity self-driving challenge 2. https://github.com/udacity/self-driving-car/tree/master/

challenges/challenge-2. Accessed: 2022-08-16.

[161] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, and Qi Tian. Centernet: Keypoint triplets for
object detection. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages 6568–6577. IEEE
Computer Society, 2019.

[162] Peking University/Baidu - autonomous driving. https://www.kaggle.com/c/pku-autonomous-driving.
Accessed: 2022-08-16.

[163] Xinyu Huang, Peng Wang, Xinjing Cheng, Dingfu Zhou, Qichuan Geng, and Ruigang Yang. The ApolloScape open
dataset for autonomous driving and its application. IEEE Transactions on Pattern Analysis and Machine Intelligence,
42(10):2702–2719, oct 2020.

[164] Xibin Song, Peng Wang, Dingfu Zhou, Rui Zhu, Chenye Guan, Yuchao Dai, Hao Su, Hongdong Li, and Ruigang Yang.
Apollocar3d: A large 3d car instance understanding benchmark for autonomous driving. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 5452–5462, 2019.

[165] Sully Chen. Autopilot-Tensorflow. https://github.com/SullyChen/Autopilot-TensorFlow, 2016.

[166] Bin Liang, Hongcheng Li, Miaoqiang Su, Xirong Li, Wenchang Shi, and Xiaofeng Wang. Detecting adversarial
image examples in deep neural networks with adaptive noise reduction. IEEE Transactions on Dependable and Secure
Computing, 18(1):72–85, jan 2021.

[167] Stéfan van der Walt, Johannes L. Schönberger, Juan Nunez-Iglesias, François Boulogne, Joshua D. Warner, Neil Yager,
Emmanuelle Gouillart, and Tony Yu. scikit-image: image processing in python. PeerJ, 2:e453, jun 2014.

[168] Alex Clark. Pillow (PIL Fork) Documentation. https://buildmedia.readthedocs.org/media/pdf/

pillow/latest/pillow.pdf, 2015.

163

https://livebook.manning.com/book/transfer-learning-in-action/chapter-1/v-1/69
https://livebook.manning.com/book/transfer-learning-in-action/chapter-1/v-1/69
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://www.tensorflow.org/
https://www.tensorflow.org/
https://github.com/fchollet/keras
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/autumn
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/autumn
https://github.com/udacity/self-driving-car/tree/master/challenges/challenge-2
https://github.com/udacity/self-driving-car/tree/master/challenges/challenge-2
https://www.kaggle.com/c/pku-autonomous-driving
https://github.com/SullyChen/Autopilot-TensorFlow
https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf
https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf

BIBLIOGRAPHY

[169] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore: Automated whitebox testing of deep learning
systems. In proceedings of the 26th Symposium on Operating Systems Principles, pages 1–18, 2017.

[170] Torsten Hothorn, Kurt Hornik, and Achim Zeileis. ctree: Conditional inference trees. The comprehensive R archive
network, 8, 2015.

[171] Helmut Strasser and Christian Weber. On the asymptotic theory of permutation statistics. WorkingPaper 27, SFB Adaptive
Information Systems and Modelling in Economics and Management Science, WU Vienna University of Economics and
Business, 1999.

[172] S Paul Wright. Adjusted p-values for simultaneous inference. Biometrics, pages 1005–1013, 1992.

[173] Graham JG Upton. Fisher’s exact test. Journal of the Royal Statistical Society: Series A (Statistics in Society), 155(3):395–
402, 1992.

[174] Eric W. Weisstein. Fisher’s exact test. https://mathworld.wolfram.com/FishersExactTest.html,
2022. Accessed: 2022-11-15.

[175] Advay Patil. Car Object Detection. https://www.kaggle.com/code/advaypatil/

car-object-detection, 2022.

[176] Amirata Ghorbani, James Wexler, James Zou, and Been Kim. Towards automatic concept-based explanations, 2019.

164

https://mathworld.wolfram.com/FishersExactTest.html
https://www.kaggle.com/code/advaypatil/car-object-detection
https://www.kaggle.com/code/advaypatil/car-object-detection

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Context and Motivation
	Research Contributions
	Dissemination
	Dissertation Outline

	Background and Related Work
	Machine Learning (ML)
	Deep Neural Networks (DNNs)
	Rule-based Systems
	Unsupervised Learning Algorithms

	Testing and Debugging of DNNs in Safety-critical Contexts
	DNN-based Automotive Systems
	Debugging of DNN-based Systems
	Functional Safety Analysis

	Evolutionary Algorithms (EA)
	Multi-objective Algorithms
	Many-objective Algorithms

	eXplainable Artificial Intelligence (XAI)
	Heatmap-based DNN Explanations
	Model-agnostic DNN Explanations
	Explanations for DNN Testing Approaches

	Heatmap-based Unsupervised Debugging of DNNs
	Introduction
	The HUDD Approach
	Step 1. Heatmap-based Clustering
	Step 2. Root Causes Inspection
	Step 4. Identification of Unsafe Images
	Steps 6-7. DNN Retraining

	Evaluation
	Subject Systems
	Measurements and Results
	Threats to Validity

	Conclusion

	Simulator-based Explanations for DNN failurEs
	Introduction
	Background on Evolutionary Algorithms for Diversity Optimization
	The SEDE Approach
	Step 2. Automated Generation of Unsafe and Safe Images
	Step 3. Characterize Unsafe Images
	Step 4. Generate Unsafe Images for Retraining

	Evaluation
	Subject Systems
	Measurements and Results
	Threats to Validity

	Conclusion

	Safety Analysis based on Feature Extraction
	Introduction
	The SAFE Approach
	Step 1: Generation of Root-Cause Clusters (RCCs)
	Step 2: Functional Safety Analysis
	Step 4: Identification of Unsafe Images
	SAFE Running Example

	Evaluation
	Subject Systems
	Measurements and Results
	Threats to Validity

	Conclusion

	Pipelines for Clustering-based DNN Explanation: an Empirical Assessment.
	Introduction
	The Proposed Pipelines
	Feature Extraction
	Dimensionality Reduction Techniques
	Clustering Algorithms

	Evaluation
	Subject Systems
	Injected Failure Scenarios
	Measurements and Results
	Improvements to the white-box pipeline (extended-HUDD)
	Threats to Validity

	Conclusion

	Conclusion & Future Prospects
	Chapter 6
	Additional material for RQ1
	Additional material for RQ2
	Additional material for RQ3

	Bibliography

