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Abstract Masking is the main countermeasure against side-channel attacks on embedded devices.
For cryptographic algorithms that combine Boolean and arithmetic masking, one must therefore
convert between the two types of masking, without leaking additional information to the attacker.
In this paper we describe a new high-order conversion algorithm between Boolean and arithmetic
masking, based on table recomputation, and provably secure in the ISW probing model. We show
that our technique is particularly efficient for masking structured LWE encryption schemes such as
Kyber and Saber. In particular, for Kyber IND-CPA decryption, we obtain an order of magnitude
improvement compared to existing techniques.

1 Introduction

Implementation of post-quantum cryptography. Most public-key cryptography deployed
today is based on RSA and ECC and will not withstand attacks by a quantum computer.
Consequently the National Institute of Standards and Technology (NIST) initiated in 2017 a
public effort to standardize post-quantum cryptography. The process has now entered its third
round, during which the implementation results of the remaining candidates must be evaluated.
For embedded devices, one must therefore devise countermeasures against side-channel attacks.
First introduced by Kocher [Koc96], a side-channel attack consists in recovering the secret-key
by analyzing the running time, power consumption or electromagnetic emanation, during several
executions of a cryptographic algorithm. Several works have demonstrated the effectiveness of
side-channel attacks against post-quantum cryptography [TE15], for example against the BLISS
signature scheme [BHLY16,EFGT17] and lattice-based encryption [PPM17,HCY20,XPRO20].
Consequently the NIST requested the scientific community to assist in the evaluation of the final
round-3 submissions against side-channel attacks, as an important criterion for standardization
[MAA+20]. In this paper we consider side-channel countermeasures for public-key encryption
schemes based on the ring-learning with errors (ring-LWE) problem, such as two of the finalists
Kyber [BDK+18,ABD+21] and Saber [BMD+21].

The masking countermeasure. Masking is an effective countermeasure against side-channel
attacks. For security against first-order attacks, every variable x in the circuit can be masked
by a random r into x′ = x⊕ r. In that case the two shares x′ and r are manipulated separately,
which prevents first-order attacks since all intermediate variables considered separately have
a uniform distribution [CJRR99]. However it is still possible to perform a second-order attack
combining information leakage about the two shares x′ and r; this usually requires a much larger
amount of side-channel traces, see for example [OMHT06].



To prevent such higher-order attacks, a generalization of the masking countermeasure consists
in splitting any variable x into n shares with x = x1 ⊕ · · · ⊕ xn. The shares xi must then be
processed separately in order to avoid any leakage of information about the original variable x.
To formally argue about the security provided by the masking countermeasure, Ishai, Sahai and
Wagner introduced in [ISW03] the probing model, by considering an adversary who can probe
at most t wires in a circuit. Using the masking countermeasure with n = 2t + 1 shares, they
showed how to transform any boolean circuit C into a circuit of size O(|C| · t2) that is perfectly
secure against such adversary. Moreover, in [DDF14], it was shown that security in the probing
model implies security against noisy leakage, under the assumption that every variable leaks
independently.

Security in the probing model is usually proven by simulation: one must show that any
set of t probes can be perfectly simulated without knowing the original variables of C. To
facilitate the writing of security proofs, Barthe et al. introduced the notions of (Strong) Non-
Interference (NI/SNI), to allow easy composition of gadgets [BBD+16]. The authors proved the
t-SNI property for the original ISW multiplication gadget. They also showed that with some
additional mask refreshing, a circuit C can be made secure against t probes with n = t+1 shares
only, instead of n = 2t+ 1 shares in [ISW03].

While block-ciphers such as AES are typically protected using Boolean masking as above
[RP10], lattice-based schemes often require a combination of arithmetic and Boolean masking.
This implies that conversions between arithmetic and Boolean masking play an essential role
in masked implementations of lattice-based schemes. Such conversions were previously used in
block-ciphers and hash functions combining Boolean and arithmetic operations (such as SHA-1).
However, they were based solely on power-of-two moduli, while many lattice-based schemes use
a prime modulus (as in Kyber). The conversions must therefore be adapted in the context of
post-quantum cryptography.

First-order conversion algorithms. The first conversion algorithms were proposed by Goubin
in [Gou01], with security against first-order attacks. The Boolean to arithmetic conversion is ef-
ficient and has an optimal complexity O(1). The conversion from arithmetic to Boolean masking
is less efficient as its complexity is O(k) for conversion from arithmetic masking modulo 2k. This
was later improved to O(log k) in [CGTV15]; however in practice for k = 32 the number of
operations was similar.

A table-based conversion from arithmetic to Boolean masking was described in [CT03], for
first-order security only. For a small value of k, the conversion can be done by a simple table
look-up, using a pre-computed table. This is similar to the classical first-order randomized SBox
table countermeasure [CJRR99]. More precisely, the algorithm uses a randomized pre-computed
table T : Z2k → {0, 1}k which is initialized as follows. First, one generates a random mask
r ← Z2k . As a second step, one computes T [v] = (v + r) ⊕ r for all v ∈ Z2k . Then, given an
arithmetically masked value A = x − r (mod 2k), one obtains a Boolean masking x′ of x by
simply reading the table T at index A, i.e. x′ = T [A]; this gives x′ = (A + r) ⊕ r = x ⊕ r as
required. The same randomized table can be used multiple times; therefore once the table has
been initialized for all possible values in Z2k , each conversion is a simple table look-up.

The authors also showed how to extend the technique to convert variables of k = δ · ` bits,
by propagating the carry by blocks of ` bits. However there was a flaw in their algorithm: they
computed the carry table modulo 2` only, instead of modulo 2k−`; therefore the algorithm is
incorrect for δ > 2; this mistake was identified and corrected by Debraize in [Deb12]. In [Deb12],
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the author described multiple first-order conversion algorithms, but one of them was recently
found insecure in [BDV21], who described two corrected algorithms.

High-order conversion algorithms. The first conversion algorithms secure against high-order
attacks were described in [CGV14], with complexity O(n2 · k) for n shares and k-bit variables.
The authors described conversions algorithms in both directions, with a security proof in the
ISW probing model. Using the technique from [CGTV15], the complexity can be improved to
O(n2 · log k) as in the first-order case, however in practice the number of operations for k = 32 is
also similar. The technique described in [CGV14,CGTV15] considers arithmetic masking modulo
2k. This was later extended in [BBE+18] to arithmetic masking modulo any integer q, in the
context of masking the GLP lattice-based signature scheme; the complexity is also O(n2 · k)
or O(n2 · log k) for a k-bit integer q. More precisely, the authors provided the extension of
[CGV14,CGTV15] to arbitrary modulus with cubic complexity in n; the extension with quadratic
complexity in n is provided in [SPOG19].

The approach used in [CGV14] to perform the Boolean to arithmetic conversion requires
to first perform an arithmetic to Boolean conversion. An alternative, more direct approach is
described in [SPOG19], also with complexity O(n2 · k). It also works with arithmetic masking
modulo an arbitrary q. The technique is based on a 1-bit Boolean to arithmetic masking con-
version with complexity O(n2). Such 1-bit Boolean to arithmetic conversion is interesting in
the context of lattice-based cryptography, for masking the re-encryption of the message, and for
masking the binomial sampling.

Finally, a high-order Boolean to arithmetic conversion algorithm was described in [Cor17],
and later simplified in [BCZ18], with complexity O(2n); that is, the complexity is independent
from the size of the k-bit variable that must be converted. The technique can be seen as a
high-order extension of the original first-order Boolean to arithmetic algorithm from [Gou01].
Although the complexity is exponential in n, for small values of n the algorithm is at least one
order of magnitude faster than [CGV14,CGTV15]. However for algorithms in [Cor17,BCZ18],
the arithmetic masking is modulo 2k only; we do not know how to extend the technique to any
modulus q. We summarize in Table 1 the complexities of the conversions in both directions, for
first-order attacks, and high-order attacks.

The randomized table countermeasure. For protecting the computation of an SBox against
side-channel attacks, the classical first-order randomized table countermeasure from [CJRR99]
was extended to high-order in [Cor14]. The high-order table recomputation countermeasure
works as follows. Given a k-bit SBox S, one generates a table T with 2k rows, where each row
consists of n shares. Given as input n shares xi such that x = x1 ⊕ · · · ⊕ xn, the goal is to
compute an n-sharing of y = S(x), without leaking information about x. The rows of T are
initialized with T (u) = (S(u), 0, . . . , 0) for all u ∈ {0, 1}k, and one maintains the invariant such
that after Step i the rows of T are n-encodings of the rows of S, but shifted by x1⊕· · ·⊕xi. For
this one incrementally shifts the rows of the table by the successive input shares x1, . . . , xn−1;
the n-encodings on each row are refreshed between every shift. In the end, the rows of the table
have been shifted by x1 ⊕ · · · ⊕ xn−1, so it suffices to read the table T at the row u = xn to get
the n output shares yi corresponding to y = S(x).

The countermeasure was proven secure against t probes in the ISW model with n = 2t + 1
shares, and later proven SNI in [CRZ18], so that it can work with n = t + 1 shares only. The
authors also described a variant where the number of output shares in the randomized table T
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is progressively increased from 1 to n, which saves a factor 2 in running time. For a k-bit SBOX
and n shares, the countermeasure has complexity O(2k · n2).

Direction Mod q
First-order High-order Memory

complexity complexity complexity

[Gou01]
B → A X O(1) - O(1)

A → B X O(k) - O(1)

[Cor17,BCZ18] B → A X - O(2n) O(2n)

[CGV14,CGTV15,
B → A, A → B X -

O(n2 · k)
O(n)

BBE+18,SPOG19] O(n2 · log k)

[SPOG19] (1-bit) B → A X - O(n2) O(n)

Algorithm 5 B → A X - O(n2 · k) O(n)

Algorithm 3 (1-bit) B → A X - O(n2) O(n)

Algorithm 10 A → B X - O(n2 · k) O(n)

Algorithm 12 A → (1-bit) B X - O(n2) O(n)

Algorithm 13 A → (1-bit) B X - O(n2 · logn) O(n)

Table 1. Complexities of Boolean vs arithmetic conversions in both directions, for first-order
attacks, and for high-order attacks with n shares. For all algorithms the complexity is for k-bit
register, except for Algorithm 12 which uses 2k-bit registers. We indicate the Mod q property
when the arithmetic masking can be modulo any q, not only modulo 2k.

First contribution: high-order table-based conversion. Our first contribution is to extend
the table-based conversion algorithm between Boolean and arithmetic masking of [CT03] from
first-order to any order. For this we extend the high-order table recomputation countermeasure
from [Cor14] recalled above. Namely we observe that in [Cor14], the incremental shifting of the
rows of the table T can be performed according to any additive group G, not only for the xor
operation in {0, 1}k. For example we can work modulo 2k as input, which automatically gives
a high-order conversion from arithmetic to Boolean masking. Similarly, the n-encoding of the
rows of T as output can be according to any group law, not only for the xor in {0, 1}k. This
implies that we can easily convert from Boolean to arithmetic masking modulo any integer q,
which is useful in the context of lattice-based cryptography (see below).

More generally, our extended table recomputation countermeasure allows computing any
function f : G→ H, for any group G as input and any group H as output. Given as input an n-
sharing of x = x1+· · ·+xn ∈ G, we can compute n outputs shares yi ∈ H such that y1+· · ·+yn =
f(x1 + · · · + xn), while being secure in the ISW probing model against t = n − 1 probes.
By selecting the right groups G and H, we can therefore obtain high-order secure conversion
algorithms between Boolean and arithmetic masking. To convert from Boolean to arithmetic
masking modulo 2k, we take G = {0, 1}k and H = Z2k and we obtain y1+ · · ·+yn = x1⊕· · ·⊕xn
(mod 2k) as required. Similarly for arithmetic to Boolean conversion we take G = Z2k and
H = {0, 1}k, and we obtain y1 ⊕ · · · ⊕ yn = x1 + · · ·+ xn (mod 2k) as required.

The main advantage of the table-based approach for conversions is its flexibility, as we
can choose any groups G and H and any function f : G → H. However the running time
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complexity is O(n2 · |G|). This implies that for k-bit Boolean or arithmetic masking, the generic
complexity is O(n2 · 2k). Fortunately for specific groups G as input one can do much better.
When converting from Boolean masking with G = {0, 1}k, we describe a simple optimization
with complexity O(n2 · k) only, as in [CGV14]. For the other direction, we first describe a
technique to compute a shift by ` bits on some arithmetically masked value, with complexity
O(n2 · `). This is independently useful for the masking of Saber, which requires the computation
of logical shifts. Our technique is based on an extension of the carry propagation technique from
[CT03] to high-order security. From the arithmetic shift, it is then easy to obtain a conversion
from arithmetic masking modulo 2k to Boolean masking, again with complexity O(n2 · k) as in
[CGV14]. See Table 1 for a summary of our conversion algorithms.

Moreover we describe two optimizations for the specific case of 1-bit Boolean masking, which
is useful in the context of lattice-based cryptography. For converting from 1-bit Boolean masking
to arithmetic masking modulo any q, our complexity becomes O(n2) only, as in [SPOG19], in-
stead of O(n2 · log q) with [BBE+18]. In the other direction, we show how to efficiently compute
a threshold function th from arithmetic masking modulo 2k, whose result is a 1-bit Boolean
masking. This corresponds to the decryption function in lattice-based cryptosystems. In that
case, our optimization consists in putting each column of the table in a single register; the result-
ing complexity is O(n2) only, assuming that we have access to 2k-bit registers (see Algorithm
12 in Table 1). In practice, for both optimizations we obtain at least an order of magnitude
improvement compared to the techniques in [CGV14,BBE+18].

Second contribution: high-order masking of lattice-based encryption schemes. Our
second contribution is to apply our table-based conversion algorithms to the masking of lattice-
based encryption schemes such as Kyber and Saber. Recall that for the IND-CCA decryption,
one must perform the following operations according to the Fujisaki-Okamoto (FO) transform:

1. IND-CPA decryption of the ciphertext c to obtain a message m

2. Re-encryption of m into a ciphertext c′; this includes the binomial sampling of the error
polynomials computed from m

3. Polynomial comparison between c and c′.

We first consider the IND-CPA decryption of the ciphertext c (Step 1). For ring-LWE en-
cryption the ciphertext c = (c1, c2) is decrypted with the private-key s using m = th(c1− s · c2),
where th is the threshold function th : Zq → {0, 1} where th(x) = 1 if x ∈ (q/4, 3q/4) and
th(x) = 0 otherwise. The threshold function is actually applied independently on each coef-
ficient of the polynomial u = c1 − s · c2 modulo q. When the private-key s is arithmetically
masked modulo q with n shares, we obtain n shares for u = u1 + · · · + un (mod q), and we
must therefore convert from an arithmetically masked u modulo q into a 1-bit Boolean masked
m = m1 ⊕ · · · ⊕mn = th(u). For this one could use our generic table-based approach with the
function f = th and f : Zq → {0, 1}. However the complexity would be O(n2 · q), which is pro-
hibitive for large q. Therefore we describe an optimization in which we first perform a modulus
switching from masking modulo q to masking modulo 2k (for a small k), while maintaining a
negligible probability of decryption error, as required to achieve CCA-security [DNR04]. We can
then convert from arithmetic masking modulo 2k into 1-bit Boolean masking, which recovers the
Boolean masked message m. This optimization has complexity O(n2 · log n) (see Algorithm 13
in Table 1), instead of O(n2 log q) with [BBE+18]. In practice we obtain an order of magnitude
improvement in the IND-CPA decryption of Kyber.
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We also consider the masking of re-encryption of m into a ciphertext c′, and the masking of
the binomial sampling (Step 2). To encrypt a Boolean masked message m ∈ {0, 1}, we can use
our generic table-based Boolean to arithmetic modulo q conversion algorithm. In that case the
complexity is O(n2) as in [SPOG19]. The same holds for the masking of the binomial sampling,
which is easily computed as the sum of independent 1-bit Boolean to arithmetic modulo q
conversions, as in [SPOG19]. In practice we obtain a similar level of efficiency as in [SPOG19],
and an order of magnitude improvement compared to [BBE+18].

In summary, our table-based approach for conversion between Boolean and arithmetic mask-
ing provides significant efficiency improvement in the context of lattice-based cryptography, es-
pecially for IND-CPA decryption (Step 1), while being relatively easy to implement. We provide
a detailed comparison with existing conversion algorithms. We leave the high-order masking of
the polynomial comparison (Step 3) for future work.

Prime vs power-of-two modulus. The main difference between Kyber and Saber is that Kyber
uses a prime modulus while Saber uses a power-of-two modulus. In practice, the implementa-
tions in [MGTF19] and [GR19] observed a significant performance overhead for prime moduli
compared to power-of-two moduli with regards to masking. Our work shows that the difference
is not so significant. Firstly, when converting into an arithmetic masking, with our table-based
technique the value of the arithmetic modulus q is irrelevant. Secondly, when converting from
an arithmetic masking, in case of decryption we can easily perform a modulus switching to a
power-of-two modulus, at the cost of a negligible increase in the decryption error. Such modulus
switching has complexity O(n) for n shares, so for large n its complexity is negligible com-
pared to the rest of the algorithm. In sections 8.5 and 10.4, we provide a detailed comparison of
the computational cost of masking for prime moduli vs power-of-two moduli, in the context of
ring-LWE encryption.

Practical implementation. We have benchmarked a plain C implementation of our tech-
niques, and the conversion algorithms in [CGV14,BBE+18] and [SPOG19] for comparison. We
describe the results in Section 10. The code is publicly available at

https://github.com/fragerar/HOTableConv

1.1 Related work on masking ring-LWE encryption scheme

First-order masking. In [RRVV15], the authors described a first-order masking of IND-CPA
decryption with n = 2 shares. They describe a relatively complex masked decoder to compute
m1 ⊕m2 = th(u1 + u2). The decoder only works for half of the inputs, so it must be restarted
up to 16 times with a certain shift δ ∈ [0, q − 1].

In [OSPG18], the authors describe a first-order masking of the full IND-CCA decryption.
The IND-CPA decryption part is based on first converting the arithmetic masking modulo q into
an arithmetic sharing modulo 2k, and then converting from arithmetic to Boolean masking. The
re-encryption and binomial sampling are also masked to first-order. The polynomial comparison
between x and y = y1 +y2 (mod q) is done by checking that H(x−y1) = H(y2). While efficient,
the techniques seem relatively difficult to generalize to high-order.

In [BDK+20], the authors describe a first-order masked implementation of Saber, with only
a 2.5x overhead factor. They introduce an optimized arithmetic to arithmetic conversion algo-
rithm (A2A) for performing logical shifts. Their algorithm is based on securely propagating the
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carry with a pre-computed table, by adapting the techniques from [CT03,Deb12]. Their A2A
conversion only applies to first-order masking. In this paper, we describe in Section 5 a gen-
eralization to high-order masking of the A2A computation of the logical shift, based on table
recomputation. In [FBR+21], the authors describe a first-order masking of Kyber and Saber,
for both software and hardware implementations. For the masking of the Compress function in
Kyber, they describe a technique based on modulus switching. They show that the error induced
by the modulus switching can be eliminated by using more precision and then truncating, using
an arithmetic to Boolean conversion. We use a similar modulus switching technique in Section
8.2, but extended to high-order masking.

High-order masking. In [SPOG19], the authors describe a very interesting technique to con-
vert from 1-bit Boolean masking to arithmetic masking modulo q, with complexity O(n2), for
security against t = n− 1 probes. As an application, they obtain a high-order k-bit Boolean to
arithmetic conversion algorithm with complexity O(k · n2), and also a high-order masked bino-
mial sampling algorithm with complexity O(k ·n2), where k is the length of the bit-vectors. The
1-bit Boolean to arithmetic masking modulo q is based on the following equation for x, y ∈ {0, 1}:

x⊕ y = x+ y − 2 · x · y

which was already considered in [OSPG18] for first-order conversion. From the above equation,
if we already have an arithmetic sharing of both x and y, we can obtain an arithmetic sharing of
x⊕ y. Such arithmetic sharing can be modulo any integer q, as long as it encodes an element in
{0, 1}. Namely the product x · y can be computed with n arithmetic shares modulo q, as in the
And gate in [ISW03], with complexity O(n2). Using a recursive approach similar to [CGV14],
one obtains a 1-bit Boolean to arithmetic masking modulo q conversion, with complexity O(n2).
The authors of [SPOG19] actually describe an iterative approach, still with complexity O(n2).

In [BDH+21], the authors describe an attack against the first-order masked ciphertext com-
parison in [OSPG18]. The attack is based on the fact that the ciphertext comparison in [OSPG18]
is performed iteratively on different parts of the ciphertext, and the output of the first compari-
son leaks sensitive information to the attacker. The attack does not apply against the ciphertext
comparison used for the protection of Saber in [BDK+20], which implements only a single check.
The authors of [BDH+21] also describe a similar attack against the high-order polynomial com-
parison from [BPO+20], which proceeds in sets of ` coefficients and the pass/fail bit is unmasked
for every set. They also describe a clever variant attack that does not use any side-channel in-
formation. To prevent these attacks, the polynomial comparison should be an atomic operation
that does not reveal partial comparison results on a subset of the coefficients.

In [BGR+21], the authors describe the first completely masked implementation of Kyber,
secure against first-order and higher-order attacks. For the IND-CPA decryption, the authors
consider the Compresssq(x) function that outputs 0 if x < q/2 and 1 otherwise; this is a shifted
function of the Compressq(x, 1) from Kyber. They show that Compresssq(x) = x11 ⊕ (¬x11 · x10 ·
x9 · (x8 ⊕ (¬x8 · x7))), where xi is the i-th bit of x. Therefore they proceed by first convert-
ing from arithmetic masking modulo q to Boolean masking, using [BBE+18]. Then the above
function can be computed with high-order secure implementations of the And and Xor gadgets.
In Appendix D.2 we describe a slightly simpler approach, still based on the arithmetic modulo
q to Boolean masking conversion from [BBE+18], with asymptotic complexity O(n2 · log log q)
instead of O(n2 · log q) in [BBE+18]. The authors also describe a high-order secure polynomial
comparison algorithm, which compares uncompressed masked polynomials with compressed pub-
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lic polynomials, so that the ciphertext compression from Kyber does not need to be explicitly
masked.

2 Security definitions

We recall below the t-NI and t-SNI security notions introduced in [BBD+16]. We consider a
gadget taking as input a single n-tuple (xi)1≤i≤n of shares, and outputting a single n-tuple
(yi)1≤i≤n. Given a subset I ⊂ [1, n], we denote by x|I all elements xi such that i ∈ I.

Definition 1 (t-NI security [BBD+16]). Let G be a gadget taking as input (xi)1≤i≤n and
outputting the vector (yi)1≤i≤n. The gadget G is said t-NI secure if for any set of t1 ≤ t interme-
diate variables, there exists a subset I of input indices with |I| ≤ t1, such that the t1 intermediate
variables can be perfectly simulated from x|I .

Definition 2 (t-SNI security [BBD+16]). Let G be a gadget taking as input the n shares
(xi)1≤i≤n, and outputting n shares (zi)1≤i≤n. The gadget G is said to be t-SNI secure if for any set
of t1 probed intermediate variables and any subset O of output indices, such that t1 + |O| ≤ t,
there exists a subset I of input indices that satisfies |I| ≤ t1, such that the t1 intermediate
variables and the output variables z|O can be perfectly simulated from x|I .

The main benefit of the t-SNI security definition is that it allows easy composition of gadgets
[BBD+16]. By proving the t-SNI property of individual gadgets, we obtain that the full circuit is
secure against t probes, using n = t+1 shares. In this paper we prove the t-NI or t-SNI property
of all our gadgets. Note that a t-NI gadget is easily converted into t-SNI by applying a t-SNI mask
refreshing as output (see [BBD+16]), making it suitable for composition with other gadgets in a
larger circuit. For our generic high-order table-based conversion algorithm (Section 3), the t-SNI
security proof is essentially the same as in [CRZ18]. For our more specialized gadgets, the t-NI
or t-SNI properties follow almost directly from the t-SNI of our generic conversion algorithm.

3 Generic high-order table-based conversion algorithm

In this section we introduce our generic high-order table-based conversion algorithm, as an
extension of the table recomputation countermeasure from [Cor14]. We consider two additive
groups G and H and a function f : G→ H. Our algorithm takes as input n shares x1, . . . , xn ∈ G
and outputs n shares y1, . . . , yn ∈ H such that:

y1 + · · ·+ yn = f(x1 + · · ·+ xn)

We stress that the function f does not need to have any special property, except being efficiently
computable. In particular it need not be a group homomorphism, as in general the groups G
and H will not be homomorphic. Note that the high-order SBox computation algorithm from
[Cor14] is a particular case with G = H = {0, 1}k and f(x) = S(x).

The algorithm consists in progressively shifting a randomized table T , using the input shares
x1, . . . , xn−1 for the successive shifts. The randomized table T has |G| rows, and each row is
a vector of n shares, which encodes over H the function f(x), but progressively shifted by
x1, . . . , xn−1 ∈ G. Eventually one reads the table at index xn, which gives an n-sharing (yi) over
H of f(x1 + · · ·+ xn) as required. Between every shift, the n shares of every row are refreshed
using the same mask refreshing as in [RP10], but over the group H.
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As we will see in more details in Section 4, for a Boolean to arithmetic conversion algorithm,
one will take G = {0, 1}k and H = Z2k . Then by identifying k-bit strings and integers modulo
2k and taking f the identity function, we obtain y1 + · · ·+yn mod 2k = x1⊕· · ·⊕xn as required.
Similarly, for an arithmetic to Boolean conversion, one takes G = Z2k and H = {0, 1}k and
obtains y1 ⊕ · · · ⊕ yn = x1 + · · ·+ xn mod 2k as required; see Section 6 for more details.

Algorithm 1 ConvertG,H,f
Input: x1, . . . , xn ∈ G
Output: y1, . . . , yn ∈ H such that y1 + · · ·+ yn = f(x1 + · · ·+ xn)

1: for all u ∈ G do T (u)←
(
f(u), 0, . . . , 0

)
∈ Hn

2: for i = 1 to n− 1 do
3: for all u ∈ G do T ′(u)← T (u+ xi)
4: for all u ∈ G do T (u)← RefreshH

(
T ′(u)

)
5: end for
6: (y1, . . . , yn)← RefreshH

(
T (xn)

)
7: return y1, . . . , yn

Algorithm 2 RefreshH
Input: x1, . . . , xn ∈ H
Output: y1, . . . , yn ∈ H such that y1 + · · ·+ yn = x1 + · · ·+ xn
1: yn ← xn
2: for j = 1 to n− 1 do
3: rj ← H
4: yj ← xj + rj
5: yn ← yn − rj
6: end for
7: return y1, . . . , yn

We provide a pseudocode description in Algorithm 1 above. The algorithm uses two tempo-
rary tables T and T ′ in RAM, with |G| rows, where each row contains a vector of n elements in
H. The table T is initialized at Line 1 with T (u) ←

(
f(u), 0, . . . , 0) ∈ Hn. Given an encoding

v = (v1, . . . , vn) with n shares in H, we denote by∑
(v) = v1 + · · ·+ vn

the encoded element in H. This implies that initially we have
∑

(T (u)) = f(u) for all rows u ∈ G.
For the first index i = 1, the table is shifted at Line 3 by x1 into T ′, which gives

∑
(T ′(u)) =

f(u+ x1) for all u ∈ G. Note that the shift is performed according to the group law in G. The
rows are then refreshed at Line 4 using Algorithm 2, and we still have

∑
(T (u)) = f(u + x1).

More generally, after the shift by x1, . . . , xi we obtain at Line 4:∑
(T (u)) = f(u+ x1 + · · ·+ xi)

for all u ∈ G, and after all the input shares x1, . . . , xn−1 have been processed we have:∑
(T (u)) = f(u+ x1 + · · ·+ xn−1)

9



Therefore from the final look-up table (y1, . . . , yn)← RefreshH
(
T (xn)

)
, we obtain that

∑
(y) =∑

(T (xn)) = f(xn + x1 + · · ·+ xn−1). This gives y1 + · · ·+ yn = f(x1 + · · ·+ xn), which proves
the correctness of the algorithm.

The RefreshH is the same as in [RP10] and [Cor14], except that we work in the group H
instead of {0, 1}k. Note that the RefreshH algorithm is not SNI; the only required property is
that any subset of n − 1 shares is uniformly and independently distributed (see Lemma 2 in
Appendix A).

Complexity. We assume that a group operation in G and H takes unit time, as well as
randomness generation and table transfer. For n shares, the number of operations of RefreshH
is 3n− 3. The time complexity of Algorithm 1 is therefore:

Nconvert = |G| · (n+ (n− 1) · (1 + n+ 3n− 3)) + 3n− 3

= |G| · (4n2 − 5n+ 2) + 3n− 3 ' 4 · |G| · n2

The asymptotic complexity is therefore O(|G| · n2). The memory complexity is O(|G| · n). The
algorithm requires (n− 1) · (|G| · (n− 1) + 1) random elements.

Security. We prove that our algorithm achieves the t-SNI definition (Definition 2). One can
therefore use our algorithm inside a more complex construction and achieve security against t
probes with n = t+ 1 shares. The proof is essentially the same as in [CRZ18] and is provided in
Appendix A.

Theorem 1 ((n− 1)-SNI of ConvertG,H,f). For any subset O ⊂ [1, n] and any t1 intermediate
variables with |O| + t1 < n, the output variables y|O and the t1 intermediate variables can be
perfectly simulated from the input variables x|I , with |I| ≤ t1.

4 Table-based high-order Boolean to arithmetic conversion

In this section we consider the case of Boolean to arithmetic conversion. We first describe the
straightforward application of the generic table-based conversion algorithm from G to H from
Section 3. However the main drawback is that its complexity is O(|G|·n2), where |G| is the group
order. With k-bit Boolean masking as input we have G = {0, 1}k, and the complexity is therefore
O(2k ·n2). Fortunately for specific groups G this complexity can be reduced to O(k ·n2). In this
section we consider the easiest case with the conversion from Boolean to arithmetic masking.
We consider the other direction in Section 6.

4.1 Direct approach

We consider the straightforward application of Algorithm 1 to high-order Boolean to arithmetic
conversion, which can be used for small values of k. We consider an integer q. We identify
k-bit strings with integers in the interval [0, 2k[. Algorithm 3 below describes a Boolean to
arithmetic masking conversion algorithm such that given x1, . . . , xn ∈ {0, 1}k as input, we obtain
y1, . . . , yn ∈ Zq as output, with, x1⊕ · · · ⊕ xn = y1 + · · ·+ yn (mod q). The (n− 1)-SNI security
follows directly from Theorem 1.

10



Algorithm 3 BooleanToArithmetic

Input: k ∈ Z and x1, . . . , xn ∈ {0, 1}k
Output: y1, . . . , yn ∈ Zq such that y1 + · · ·+ yn mod q = x1 ⊕ · · · ⊕ xn
1: for all u ∈ {0, 1}k do T (u)←

(
u mod q, 0, . . . , 0

)
2: for i = 1 to n− 1 do
3: for all u ∈ {0, 1}k do T ′(u)← T (u⊕ xi)
4: for all u ∈ {0, 1}k do T (u)← RefreshZq

(
T ′(u)

)
5: end for
6: (y1, . . . , yn)← RefreshZq

(
T (xn)

)
7: return y1, . . . , yn

Algorithm 4 RefreshZq
Input: x1, . . . , xn ∈ Zq
Output: y1, . . . , yn ∈ Zq such that y1 + · · ·+ yn = x1 + · · ·+ xn (mod q)
1: yn ← xn
2: for j = 1 to n− 1 do
3: rj ← Zq
4: yj ← xj + rj mod q
5: yn ← yn − rj mod q
6: end for
7: return y1, . . . , yn

Complexity. We do not take into account the reductions modulo q. The operation count is the
same as for Algorithm 1, with |G| = 2k, which gives:

NBA(k, n) = 2k · (4n2 − 5n+ 2) + 3n− 3 ' 2k+2 · n2

The memory complexity is O(2k · n). The algorithm requires (n− 1) · (2k · (n− 1) + 1) random
elements in Zq.

4.2 Optimization of high-order Boolean to arithmetic conversion

The main drawback of the previous generic algorithm is that its complexity is O(2k · n2), which
is prohibitive for large k, for example k = 32 in HMAC-SHA1. In this section we describe a
simple optimization with complexity O(k · n2). It consists in converting each bit of the k-bit
input separately and adding the result.

Assume that we must convert a Boolean masking x = x1 ⊕ · · · ⊕ xn ∈ {0, 1}k to arithmetic
masking x = y1 + · · ·+ yn (mod q). We write the binary decomposition of each xi as

xi =

k−1⊕
j=0

2j · x(j)i

where x
(j)
i is the j-th bit of xi. We have:

x =
n⊕
i=1

xi =
n⊕
i=1

k−1⊕
j=0

2j · x(j)i =
k−1⊕
j=0

2j ·
n⊕
i=1

x
(j)
i =

k−1∑
j=0

2j ·
n⊕
i=1

x
(j)
i

11



Note that x(j) :=
⊕n

i=1 x
(j)
i is the j-th bit of x. We now perform an independent table-based

Boolean to arithmetic conversion for each of the k variables x(j). More precisely, applying Algo-

rithm 3 on the Boolean shares x
(j)
i , we obtain n arithmetic shares y

(j)
i for each 0 ≤ j < k:

x(j) =

n⊕
i=1

x
(j)
i =

n∑
i=1

y
(j)
i (mod q)

This gives:

x =

k−1∑
j=0

2j ·
n⊕
i=1

x
(j)
i =

k−1∑
j=0

2j ·
n∑
i=1

y
(j)
i =

n∑
i=1

k−1∑
j=0

2j · y(j)i (mod q)

and therefore letting yi :=
∑k−1

j=0 2j · y(j)i for all 1 ≤ i ≤ n, we obtain x = y1 + · · ·+ yn (mod q)
as required. The algorithm is formally described in Algorithm 5 below.

Algorithm 5 Optimized BooleanToArithmetic (BAopti)

Input: x1, . . . , xn ∈ {0, 1}k
Output: y1, . . . , yn ∈ Zq such that x1 ⊕ · · · ⊕ xn = y1 + · · ·+ yn mod q

1: for i = 1 to n do yi ← 0
2: for j = 0 to k − 1 do
3: for i = 1 to n do zi ← (xi � j) & 1

4: (y
(j)
1 , . . . , y

(j)
n )← BooleanToArithmetic(1, z1, . . . , zn)

5: for i = 1 to n do yi ← yi + (y
(j)
i � j) mod q

6: end for
7: return y1, . . . , yn

Complexity. Algorithm 5 computes the sum of k applications of Algorithm 3 with 1-bit input.
More generally, one can group the conversions by ` bits. The number of operations is then:

NBAopti(k, n) = n+ dk/`e · (4 · n+NBA(`, n))

One can see that it is a bit more advantageous to group by ` = 2 bits. In that case, we have
NBAopti(k, n) ' 8k · n2. The memory complexity is O(n). Namely Algorithm 5 uses a table with
only 2 rows (` = 1) or 4 rows (` = 2) of n-shared encodings, therefore our table-based approach
has a small memory consumption. The algorithm requires ' 2k · n2 random elements.

Theorem 2 ((n − 1)-SNI of BAopti). For any subset O ⊂ [1, n] and any t1 intermediate
variables with |O| + t1 < n, the output variables y|O and the t1 intermediate variables can be
perfectly simulated from the input variables x|I , with |I| ≤ t1.

Proof. The (n − 1)-SNI property follows from the (n − 1)-SNI of each of the k independent

table-based conversions (Theorem 1). Namely the corresponding output shares y
(j)
i are combined

independently for each share index 1 ≤ i ≤ n. Therefore we can use the same output subset O

for each intermediate output shares (y
(j)
i )1≤i≤n for 0 ≤ j < k. ut
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4.3 Comparison with existing techniques

k-bit Boolean to arithmetic modulo 2k conversion. The k-bit Boolean to arithmetic
modulo 2k conversion is the classical case. We use k = 32, as for example in HMAC-SHA1. As
shown in Table 2, our operation count is comparable to [CGV14] and [SPOG19]. For small orders
t, it is, as for [CGV14] and [SPOG19], much less efficient than [BCZ18]. We refer to appendices
C for the operation count of [Gou01,BCZ18,CGV14,SPOG19].

B → A mod 232 Security order t

1 2 3 4 5 6 8 10 12

Goubin [Gou01] 7

[BCZ18] 49 123 277 591 1 225 5 053 20 401 81 829

[CGV14] 32→ 32 2 119 3 847 6 827 10 265 14 124 24 230 37 402 52 809

[SPOG19] 32→ 32 1 434 2 520 3 894 5 556 7 506 12 270 18 186 25 254

Algorithm 5, 32→ 32 1 763 3 348 5 445 8 054 11 175 18 953 28 779 40 653

Table 2. Operation count for k-bit Boolean to arithmetic modulo 2k conversion algorithms, up
to security order t = 12, with n = t+ 1 shares, for k = 32.

1-bit Boolean to arithmetic modulo 2k conversion. The 1-bit Boolean to arithmetic
conversion is useful in the context of ring-LWE encryption. Here we use k = 13, since this
corresponds to the binomial sampling for Saber, which can be written as a sum modulo 2k of
1-bit Boolean to arithmetic modulo 2k conversions, as in [SPOG19]. We see in Table 3 that
our operation count is comparable to [SPOG19], both methods having complexity O(n2). Our
operation count is an order of magnitude faster than [CGV14], which has complexity O(k · n2).
Namely the approach in [CGV14] requires to perform an arithmetic to Boolean conversion first,
which has complexity O(k ·n2), so one cannot really take advantage of the 1-bit Boolean masking
as input.

B → A mod 213 Security order t

1 2 3 4 5 6 8 10 12

Goubin [Gou01] 7

[BCZ18] 49 123 277 591 1 225 5 053 20 401 81 829

[CGV14] 1→ 13 884 1 605 2 837 4 261 5 859 10 037 15 476 21 839

[SPOG19] 1→ 13 39 71 112 162 221 366 547 764

Algorithm 3, 1→ 13 52 101 166 247 344 586 892 1 262

Table 3. Operation count for 1-bit Boolean to arithmetic modulo 2k conversion algorithms, up
to security order t = 12, with n = t+ 1 shares, for k = 13.

1-bit Boolean to arithmetic modulo q conversion. We use q = 3329, as this corresponds
to the encryption of Kyber, and to the binomial sampling of Kyber. For [BBE+18], we must use
a word size k such that 2q < 2k, so we take k = 13. As previously, our complexity is comparable
to [SPOG19], and more than an order of magnitude faster than [BBE+18].
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B → A mod q
Security order t

1 2 3 4 5 6 8 10 12

[BBE+18] 1→ mod q 755 2 111 3 875 6 522 9 577 13 235 22 445 34 152 48 076

[SPOG19] 1→ mod q 16 39 71 112 162 221 366 547 764

Algorithm 3, 1→ mod q 19 52 101 166 247 344 586 892 1 262

Table 4. Operation count for 1-bit Boolean to arithmetic modulo q conversion algorithms, up
to security order t = 12, with n = t+ 1 shares, for prime q = 3329.

5 Table-based shift of arithmetic masking

In this section we consider the table-based computation of a right shift over arithmetic shares.
This can be used directly in Saber, and this will be used as a subroutine for the arithmetic to
Boolean masking conversion (Section 6).

We consider a parameter 1 ≤ ` < k. We consider the function f(x) performing a right shift
of a k-bit integer x by ` bits, more precisely f : Z2k → Z2k−` with:

f(x) =
⌊ x

2`

⌋
mod 2k−`

Our goal is to compute this right shift with arithmetic shares. More precisely, given as input
z = z1 + · · ·+ zn (mod 2k), we want to obtain arithmetic shares a1, . . . , an ∈ Z2k−` such that

a1 + · · ·+ an =

⌊
z1 + · · ·+ zn

2`

⌋
(mod 2k−`)

This right shift will be used for our table-based conversion from arithmetic to Boolean
masking with complexity O(k · n2). Namely we will perform a sequence of k/` right shifts by `
bits, each time converting a block of ` bits from arithmetic to Boolean masking. The goal of the
right shift is to propagate the carry from one block to the next; this is a natural generalization
of the carry propagation technique used in [CT03] for first-order table-based conversion.

If we are only interested in doing a right shift by ` bits (as in Saber), a basic approach using
[CGV14] consists in first performing an arithmetic to Boolean conversion, then in doing an easy
logical right shift by ` bits of the Boolean shares, and eventually in converting back the result
to arithmetic modulo 2k−`. The complexity is then O(k ·n2), and therefore independent from `.

In the following, we describe a table-based approach with complexity O(` · n2). Therefore
we expect the approach to be more efficient than [CGV14] for small values of `. We actually
describe a first technique with complexity O(2` · n3), and a second technique with complexity
O(22` · n2). To obtain a linear complexity in `, in both cases we can perform a sequence of `
shifts by `′ = 1 bit each. The first technique has then complexity O(` · 2`′ ·n3) = O(` ·n3), while
the second technique has complexity O(` · 22`′ ·n2) = O(` ·n2). Because of a smaller constant in
the O, we expect the first technique to be more efficient for small n.

5.1 First approach with complexity O(2` · n3)

We consider the function f : Z2k → Z2k−` defined previously with f(x) =
⌊
x/2`

⌋
mod 2k−`,

which corresponds to the k − ` most significant bits of x. We consider an arithmetic masking
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z = z1 + · · ·+ zn (mod 2k) as input. Our goal is to obtain an arithmetic sharing of f(z) modulo
2k−`. For all 1 ≤ i ≤ n, we write zi = yi · 2` + xi with 0 ≤ xi < 2`. This gives:

z = 2` ·
n∑
i=1

yi +
n∑
i=1

xi (mod 2k)

and therefore:

f(z) =

n∑
i=1

yi + f

(
n∑
i=1

xi mod 2k

)
(mod 2k−`) (1)

The previous equation shows that to compute f(z) (which corresponds to the k − ` most
significant bits of z), we must compute the carry resulting from the addition of the `-bit shares
xi, i.e. f

(∑n
i=1 xi mod 2k

)
. For this we apply our generic Algorithm 1 with inputs x1, · · · , xn,

G = Z2k , H = Z2k−` and f , and we obtain an arithmetic masking of the resulting carry:

c1 + · · ·+ cn = f(x1 + · · ·+ xn mod 2k) (mod 2k−`) (2)

Combining (1) and (2), this gives:

f(z) =

n∑
i=1

(yi + ci) (mod 2k−`)

Therefore we have obtained an arithmetic sharing of the k − ` high-order bits of z.
For a naive implementation of Algorithm 1, the complexity of this step would be O(|G| ·

n2) = O(2k · n2). Therefore there would be no advantage compared to a generic table-based
computation of the function f . However we note that since 0 ≤ xi < 2` for all i, we actually
have 0 ≤

∑n
i=1 xi ≤ n · (2` − 1) in (2). Therefore, when applying Algorithm 1, we do not

need to store and randomize a full table with 2k rows, as we can work with a much smaller
table with B = n · (2` − 1) + 1 rows only. Thanks to this optimization the complexity becomes
O(B ·n2) = O(2` ·n3). Moreover the table does not have to be cyclically shifted, only translated
by xi for each 1 ≤ i ≤ n−1; this implies that a single table in memory is sufficient. Our method
is described below in Algorithm 6.

Algorithm 6 Shift1

Input: k ∈ N+, 1 ≤ ` < k and z1, . . . , zn ∈ Z2k

Output: a1, . . . , an ∈ Z2k−` such that a1 + · · ·+ an = f(z1 + · · ·+ zn) (mod 2k−`)

1: for i = 1 to n do xi ← zi mod 2`

2: for u = 0 to n · (2` − 1) do T (u)←
(
u� `, 0, . . . , 0

)
3: for i = 1 to n− 1 do
4: for u = 0 to (n− i) · (2` − 1) do
5: T (u)← T (u+ xi)
6: T (u)← RefreshZ

2k−`

(
T (u)

)
7: end for
8: end for
9: (c1, . . . , cn)← RefreshZ

2k−`

(
T (xn)

)
10: for i = 1 to n do ai ← (zi � `) + ci mod 2k−`

11: return a1, . . . , an
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Complexity. The operation count is as follows:

Ns1(`, n) = n+ n · (2` − 1) + 1 +
n−1∑
i=1

((2` − 1)(n− i) + 1) · (n+ 1 + 3(n− 1))

+ 3(n− 1) + 2n

= 5n− 2 + n · 2` + (4n− 2) ·
(

(2` − 1) · (n− 1) · n/2 + n− 1
)

= 2` · n · (2n2 − 3n+ 2)− 2n3 + 7n2 − 2n

The algorithm therefore requires 2`+1·n3 operations, neglecting low-order terms. By performing a
sequence of ` shifts of 1-bit each, the number of operations is `·Ns1(1, n) ' 2`·n3, neglecting low-
order terms. The memory complexity is O(n2), since the table has O(n) rows. More precisely,
with ` = 1, the table has n rows of n-shared encodings, which corresponds to n2 values in
memory. In the next section we describe an alternative technique with memory complexity O(n)
only. The number of random elements is (n− 1) · n · (n+ 1)/2.

Security. The algorithm only achieves the (n−1)-NI property. To achieve the stronger (n−1)-
SNI property, one can apply a (n−1)-SNI mask refreshing algorithm as output (see [BBD+16]).
Such mask refreshing has complexity O(n2) only, so this does not change the asymptotic com-
plexity O(` · n3).

Theorem 3 ((n−1)-NI of Shift1). Any set of t1 ≤ n−1 intermediate variables can be perfectly
simulated from the input variables z|I , with |I| ≤ t1.

Proof. The table-based conversion algorithm up to Line 9 is the same as the (n− 1)-SNI Algo-
rithm 1, except that we are only performing a fraction of the computation. This implies that
the adversary can only probe a subset of the variables, and therefore the algorithm remains
(n − 1)-SNI, and therefore (n − 1)-NI. The global algorithm combines at Line 10 those output
shares with a right shift of the input shares. Therefore the algorithm is (n− 1)-NI. ut

5.2 Second approach with complexity O(22` · n2)

We consider again the function f : Z2k → Z2k−` defined previously with f(x) =
⌊
x/2`

⌋
mod 2k−`,

for some parameter 1 ≤ ` < k. We consider two integers z1, z2 ∈ Z2k , and we write:

z1 = y1 · 2` + x1

z2 = y2 · 2` + x2

where 0 ≤ x1, x2 < 2`. To compute the carry in the sum of x1 and x2, we consider the function
g : (Z2`)

2 → Z2k−` , with:

g(u, v) =

{
0 if u+ v < 2`

1 if u+ v ≥ 2`

By propagating the carry from the sum of x1 and x2, we get:

f(z1 + z2) = y1 + y2 + g(x1, x2) (mod 2k−`) (3)
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We consider an arithmetic masking z = z1 + · · ·+ zn (mod 2k). For all 1 ≤ i ≤ n, we write
as previously zi = yi · 2` + xi with 0 ≤ xi < 2`. Equation (3) can be generalized to:

f(z1 + · · ·+ zn) =

n∑
i=1

yi +

n−1∑
j=1

g

(
j∑
i=1

xi mod 2`, xj+1

)
(mod 2k−`) (4)

Now applying Algorithm 1 with G = (Z2`)
2, H = Z2k−` and g, we can obtain the following

arithmetic masking for all 1 ≤ j ≤ n− 1:

cj,1 + · · ·+ cj,n = g

(
j∑
i=1

xi, xj+1

)
(mod 2k−`)

Namely the input of g can be computed as a sum over the additive group Z2` × Z2` :

cj,1 + · · ·+ cj,n = g

(
j∑
i=1

(xi, 0) + (0, xj+1)

)
(mod 2k−`) (5)

Eventually by combining (4) and (5) we obtain:

f(z) =
n∑
i=1

yi +
n−1∑
j=1

cj,i

 (mod 2k−`)

Therefore as previously we have obtained an arithmetic sharing of the k − ` high-order bits of
z, which means that we can perform a shift by ` bits over the arithmetic shares of z.

For each 1 ≤ j < n, Equation (5) can be evaluated using Algorithm 1 with complexity
O(|G| · j ·n) = O(22` · j ·n); namely there are j+ 1 input shares instead of n. Therefore the total
complexity of the first step would be O(22` ·n3), which is still cubic in n as previously. However
it is possible to evaluate (5) in a more clever way. Namely we can keep the table randomization
obtained up to

∑j
i=1(xi, 0) when computing the new table randomization up to

∑j+1
i=1 (xi, 0). The

complexity then becomes O(22` ·n2). The algorithm is described formally below in Algorithm 7.

Algorithm 7 Shift2

Input: k ∈ N+, 1 ≤ ` < k and z1, . . . , zn ∈ Z2k

Output: a1, . . . , an ∈ Z2k−` such that a1 + · · ·+ an = f(z1 + · · ·+ zn) (mod 2k−`)

1: for i = 1 to n do (ai, xi)← (zi � `, zi mod 2`)
2: for all (u, v) ∈ Z2` × Z2` do T ((u, v))←

(
(u+ v)� `, 0, . . . , 0

)
∈ (Z2k−`)n

3: for i = 1 to n− 1 do
4: for all (u, v) ∈ Z2` × Z2` do T ′((u, v))← T ((u+ xi, v))
5: for all (u, v) ∈ Z2` × Z2` do T ((u, v))← RefreshZ

2k−`

(
T ′((u, v))

)
6: (c1, . . . , cn)← RefreshZ

2k−`

(
T ((0, xi+1))

)
7: for j = 1 to n do aj ← aj + cj mod 2k−`

8: end for
9: return a1, . . . , an
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Complexity. The number of operations is given by:

Ns2(`, n) = 2n+ 22`+1 + (n− 1) ·
(

22` · (n+ 1 + 3(n− 1)) + 3(n− 1) + n
)

= 2n+ 22` (2 + (n− 1)(4n− 2)) + (n− 1)(4n− 3)

= 22`(4n2 − 6n+ 4) + 4n2 − 5n+ 3

The algorithm therefore requires 22`+2 ·n2 operations, neglecting low-order terms. By performing
a sequence of ` shifts of 1-bit each, the number of operations is therefore ` ·Ns2(1, n) ' 20` · n2,
neglecting low-order terms. The memory complexity is O(n), instead of O(n2) for Shift1. More
precisely, with ` = 1, the tables T and T ′ have 4 rows of n-shared encoding, so a total of 8n
values. The number of random elements is 5(n− 1)2.

Security. The Shift2 algorithm only achieves the (n− 1)-NI property. To achieve the stronger
(n − 1)-SNI property, as previously one can apply a (n − 1)-SNI mask refreshing algorithm as
output, without changing the asymptotic complexity.

Theorem 4 ((n−1)-NI of Shift2). Any set of t1 ≤ n−1 intermediate variables can be perfectly
simulated from the input variables z|I , with |I| ≤ t1.

Proof. The security proof is very similar to the security proof of Theorem 1. It is easy to see
that the computation of the shares ci at Line 6 achieves the (n−1)-SNI property. Namely either
a variable is probed between lines 4 and 5 and we include i ∈ I to get the knowledge of xi from
zi, or no variable is probed and we can perfectly simulate any proper subset of shares at Line 5,
thanks to the mask refreshing. The same holds at Line 6 with the knowledge of xi+1.

Therefore the computation of the shares ci at Line 6 also achieves the weaker (n − 1)-NI
property, and as in the proof of Theorem 3, the combination of shares computed at Line 7
remains (n− 1)-NI. ut

5.3 Comparison with existing technique

For the shift by ` bits of an arithmetic masking modulo 2k, we perform a concrete comparison
between the O(k · n2) method using [CGV14] and our O(` · n2) method; see Table 5 below.
As explained previously, when using [CGV14] (or [Gou01] at first-order), we first perform an
arithmetic to Boolean conversion, then a right shift by ` bits of the Boolean shares, and eventually
a Boolean to arithmetic conversion modulo 2k−`. We use k = 13 and ` = 3 as in Saber. We see
that our table-based algorithm is more efficient. In particular, Algorithm 6 with complexity
O(` · n3) is more efficient for small orders (up to t = 6), while Algorithm 7 with complexity
O(` · n2) is more efficient for high orders.
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Shift
Security order t

1 2 3 4 5 6 8 10 12

Shift with [Gou01] 79

Shift with [CGV14] 1 159 2 109 3 867 5 870 8 085 13 966 21 696 30 679

Shift1 (Algorithm 6) 72 207 456 855 1 440 2 247 4 671 8 415 13 767

Shift2 (Algorithm 7) 123 336 669 1 122 1 695 2 388 4 134 6 360 9 066

Table 5. Operation count for arithmetic shift with k = 13 bit input and a shift by ` = 3 bits,
computed as a sequence of ` shifts of 1 bit for our table-based countermeasure, with n = t + 1
shares.

6 Table-based high-order arithmetic to Boolean conversion

6.1 Direct approach for arithmetic modulo q

We consider the direct application of Algorithm 1 to high-order arithmetic to Boolean conversion.
Given x1, . . . , xn ∈ Zq as input, we obtain y1, . . . , yn ∈ {0, 1}k as output, with x1 + · · · +
xn mod q = y1⊕· · ·⊕yn. For this we have to assume that q ≤ 2k, since the sum x1+· · ·+xn mod q
needs at least dlog2 qe bits for its representation. We provide the pseudocode description below.

Algorithm 8 ArithmeticToBoolean
Input: q ∈ Z and x1, . . . , xn ∈ Zq
Output: y1, . . . , yn ∈ {0, 1}k such that y1 ⊕ · · · ⊕ yn = x1 + · · ·+ xn mod q

1: for all u ∈ Zq do T (u)←
(
u, 0, . . . , 0

)
2: for i = 1 to n− 1 do
3: for all u ∈ Zq do T ′(u)← T (u+ xi mod q)
4: for all u ∈ Zq do T (u)← Refresh{0,1}k

(
T ′(u)

)
5: end for
6: (y1, . . . , yn)← Refresh{0,1}k

(
T (xn)

)
7: return y1, . . . , yn

Algorithm 9 Refresh{0,1}k

Input: x1, . . . , xn ∈ {0, 1}k
Output: y1, . . . , yn ∈ {0, 1}k such that y1 ⊕ · · · ⊕ yn = x1 ⊕ · · · ⊕ xn
1: yn ← xn
2: for j = 1 to n− 1 do
3: rj ← {0, 1}k
4: yj ← xj ⊕ rj
5: yn ← yn ⊕ rj
6: end for
7: return y1, . . . , yn

The operation count is the same as for Algorithm 1, with |G| = q, which gives:

NAB(q, n) = q · (4n2 − 5n+ 2) + 3n− 3 ' 4q · n2

The memory complexity is O(q ·n). The number of random elements is (n− 1) · (q · (n− 1) + 1).
The t-SNI security follows directly from Theorem 1.
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6.2 Optimization for arithmetic modulo 2k with secure shift

The main drawback of the previous generic algorithm is that its complexity is O(q · n2), which
is prohibitive for large q. In this section we describe an optimization for q = 2k with complexity
O(k · n2) instead of O(2k · n2). The technique is based on the secure computation of the right
shift from Section 5. We can use either Shift1 (Algorithm 6), with complexity O(k ·n3), or Shift2
(Algorithm 7), with complexity O(k · n2).

Assume that we are given as input z = z1 + · · · + zn (mod 2k) and we must compute
s1, . . . , sn ∈ {0, 1}k such that s1 ⊕ · · · ⊕ sn = z1 + · · · + zn (mod 2k). For this we define a
parameter 1 ≤ ` < k, and using one of the two Shift algorithms from Section 5, given as input
the shares z1, . . . , zn ∈ Z2k , we obtain arithmetic shares a1, . . . , an ∈ Z2k−` such that:⌊ z

2`

⌋
=

n∑
i=1

ai (mod 2k−`)

By definition we have z = bz/2`c · 2` + (z mod 2`). Therefore letting xi = zi mod 2` for all
1 ≤ i ≤ n we can write:

z = 2` ·
n∑
i=1

ai +

(
n∑
i=1

xi mod 2`

)
(mod 2k) (6)

Equation (6) shows that we have actually obtained two independent arithmetic sharing: an
arithmetic sharing (ai)1≤i≤n of the k−` high-order bits of z, and an arithmetic sharing (xi)1≤i≤n
of the ` low-order bits of z. One can then directly convert the arithmetic sharing (xi)1≤i≤n into
Boolean masking using Algorithm 8 from Section 6.1, with complexity O(2` · n2). This gives a
Boolean masking of the ` low-order bits of z. The process can be applied recursively with the
k − ` high-order bits of z, starting now from the arithmetic sharing (ai)1≤i≤n. Eventually one
obtains a full Boolean masking of z. The algorithm is formally described in Algorithm 10 below.

Algorithm 10 Optimized ArithmeticToBoolean (ABopti)

Input: k, ` ∈ N+ and z1, . . . , zn ∈ Z2k

Output: s1, . . . , sn ∈ {0, 1}k such that s1 ⊕ · · · ⊕ sn = z1 + · · ·+ zn mod 2k

1: if k ≤ ` then
2: (s1, . . . , sn)← ArithmeticToBoolean(2k, (z1, . . . , zn))
3: else
4: for i = 1 to n do xi ← zi mod 2`

5: (a1, . . . , an)← Shift(k, `, (z1, . . . , zn))
6: (h1, . . . , hn)← ABopti(k − `, `, (a1, . . . , an))
7: (l1, . . . , ln)← ArithmeticToBoolean(2`, (x1, . . . , xn))
8: for i = 1 to n do si ← ((hi � `) + li) mod 2k

9: end if
10: return s1, . . . , sn

Operation count. The number of operations is given by:

NABo = dk/`e · (n+Ns(`, n) +NAB(2`, n) + 2n)

where Ns(`, n) is the number of operations for the shift algorithm, using either Shift1 or Shift2.
Taking ` = 1, we obtain NABo ' 2k · n3 using Shift1, neglecting low-order terms, and NABo '
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28k ·n2 using Shift2. In summary, the complexity of our arithmetic to Boolean conversion using
Shift2 is O(k · n2). The memory complexity using Shift2 is O(n). In particular, the table-based
arithmetic to Boolean conversion at Line 7 uses 2 rows of n-shared encoding. The number of
random elements with ` = 1 is k · (n− 1) · (7n− 6).

Theorem 5 ((n − 1)-SNI of ABopti). For any subset O ⊂ [1, n] and any t1 intermediate
variables with |O| + t1 < n, the output variables s|O and the t1 intermediate variables can be
perfectly simulated from the input variables z|I , with |I| ≤ t1.

Proof. The (n − 1)-SNI property is proven recursively for the number of blocks j = dk/`e. For
j = 1 this follows from the (n − 1)-SNI of the generic Algorithm 8. Assuming the (n − 1)-SNI
property for j blocks, the conversion for j + 1 blocks combines at Line 8 the output hi of the
(n−1)-SNI conversion with j blocks and the output li of the (n−1)-SNI conversion of Algorithm
8. Moreover the (n − 1)-SNI conversion with j blocks uses as input the shares (ai)1≤i≤n from
the (n−1)-NI algorithms Shift1 or Shift2, and therefore the composition starting from the input
shares zi remains (n − 1)-SNI. Therefore the conversion with j + 1 blocks is also (n − 1)-SNI.
This proves the property. ut

Variant for ` = 1. When taking ` = 1 in Algorithm ABopti above, the ArithmeticToBoolean
algorithm at Line 7 becomes a simple SNI mask refreshing, as arithmetic masking modulo
2` = 2 is equivalent to Boolean masking. We can therefore remove this step. In that case, the
conversion algorithm becomes NI only, instead of SNI. More precisely, we obtain the following
iterative algorithm.

Algorithm 11 Optimized ArithmeticToBoolean (ABoptiNI)

Input: k, ` ∈ N+ and z1, . . . , zn ∈ Z2k

Output: s1, . . . , sn ∈ {0, 1}k such that s1 ⊕ · · · ⊕ sn = z1 + · · ·+ zn mod 2k

1: for i = 1 to n do si ← 0
2: for j = 0 to k − 1 do
3: for i = 1 to n do si ← si + ((zi & 1)� j)
4: (z1, . . . , zn)← Shift(k − j, 1, (z1, . . . , zn))
5: end for
6: return s1, . . . , sn

Operation count. The number of operations is given by:

NABoNI = k · (3n+Ns(1, n))

where Ns(`, n) is the number of operations for the shift algorithm, using either Shift1 or Shift2.
We obtain NABoNI ' 2k·n3 using Shift1, neglecting low-order terms (as in ABOpti), and NABoNI '
20k ·n2 using Shift2 (instead of 28k ·n2 in ABOpti). The memory complexity using Shift2 is still
O(n).

The proof of the following theorem is similar to the proof of Theorem 5 and is therefore
omitted.

Theorem 6 ((n−1)-NI of ABoptiNI). Any t1 intermediate variables can be perfectly simulated
from the input variables z|I , with |I| ≤ t1.
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6.3 Optimization with table in registers

We describe an optimization of Algorithm 8, where the j-th column of the table is stored in a
single register Rj for 1 ≤ j ≤ n. The cyclic shift of the rows of the table by input share xi then
corresponds to a simple rotation of each register Rj . In the following we consider the arithmetic
to Boolean conversion with k bits as input and 1 bit as output, as will be used in Section 8.2
for the IND-CPA decryption of lattice-based encryption.

More precisely we consider the computation of a function f : Z2k → {0, 1}. One can con-
sider for example the threshold function f(x) = bx/2k−1c. Given as input n arithmetic shares
x1, . . . , xn ∈ Z2k , our goal is to compute 1-bit Boolean shares y1, . . . , yn ∈ {0, 1} such that
y1 ⊕ · · · ⊕ yn = f(x1 + · · ·+ xn mod 2k).

Since we must store every column of the table with 2k rows in a single register, each register
must have 2k bits. We denote by Rj [u] the u-th bit of register Rj , for 0 ≤ u < 2k and 1 ≤ j ≤ n.
Then Line 1 of Algorithm 8 becomes R1[u] = f(u) for 0 ≤ u < 2k, and Rj = 0 for 2 ≤ j ≤ n.
The rotation of the table at Line 3 becomes a rotation of all registers Rj by xi positions to the
right. The refreshing of the rows of the table at Line 4 becomes a mask refreshing of the shares
(R1, . . . , Rn) with 2k-bit random elements. Eventually we must read and refresh the row xn of
the table (Line 6 of Algorithm 8), so we simply read the xn-th bit of each register Rj . We refer
to Algorithm 12 for a formal description. We denote by ROR[a](R) the cyclic rotation of a 2k-bit
register R by a bits to the right.

Algorithm 12 ArithmeticToBoolean, register optimization (ABreg)
Input: x1, . . . , xn ∈ Z2k

Output: y1, . . . , yn ∈ {0, 1} such that y1 ⊕ · · · ⊕ yn = f(x1 + · · ·+ xn mod 2k)

1: for all u ∈ Z2k do R1[u]← f(u)
2: for all 2 ≤ j ≤ n do Rj ← 0.
3: for i = 1 to n− 1 do
4: for j = 1 to n do Rj ← ROR[xi](Rj)
5: for j = 1 to n− 1 do

6: r ← {0, 1}2
k

, Rj ← Rj ⊕ r, Rn ← Rn ⊕ r
7: end for
8: end for
9: (y1, . . . , yn)← Refresh{0,1}(R1[xn], . . . , Rn[xn])

10: return y1, . . . , yn

Operation count. We do not count the 2k operations of Line 1, since the value eventually
stored in the register R1 can be pre-computed. The number of operations is given by:

NABreg(n) = (n− 1)(n+ 3(n− 1)) + n+ 3(n− 1)

= 4n2 − 3 · n ' 4 · n2

Using 2k-bit registers, the complexity of the countermeasure is therefore O(n2), assuming that
generating a 2k-bit random also takes unit time1. The memory complexity is n+ 1 registers of
2k bits.

1 Obviously, one must be careful when expressing complexities with registers of exponential size. For example,
Shamir described in [Sha79] an algorithm for factoring a k-bit RSA modulus in time O(k) only, but with
exponentially large registers.
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Obviously this optimization can only work for small values of k. In the comparison with
existing techniques (sections 6.4 and 8.5), we use the following more realistic estimate of op-
eration count, assuming a 32-bit processor. We assume that a register operation (or random
generation) takes 1 operation for 32-bit (k = 5), and more generally 2k−5 operations for 2k bits,
for k ≥ 5. The time complexity then becomes N ′ABreg(n, k) = 2k−5 · (4n2 − 3n). The number of

32-bit random elements is 2k−5 · (n− 1)2 + n− 1 for k ≥ 5.

For k = 5, the implementation only requires n + 1 registers of 32-bits. More generally, for
k ≥ 5, the memory complexity is (n+ 1) · 2k−5 registers of 32 bits.

Security. We prove below the (n− 1)-SNI property of Algorithm 12. We stress that we do not
put two shares from the same encoding into the same register. Otherwise the attacker could
obtain information from multiple shares of the same encoding using a single probe on a given
register, which would break the (n− 1)-SNI property.

Theorem 7 ((n− 1)-SNI of ABreg). For any subset O ⊂ [1, n] and any t1 intermediate vari-
ables with |O|+t1 < n, the output variables y|O and the t1 intermediate variables can be perfectly
simulated from the input variables x|I , with |I| ≤ t1.

Proof. The proof is essentially the same as the proof of Theorem 1. The only difference is that
by probing a register Rj , the adversary gets the full j-th column of the table, instead of a single
cell only. Such probe is simulated in the same way by putting the index j in J for every such
probe. ut

Extensions. The technique is easily extended to arithmetic masking modulo any q as input,
not only q = 2k. In that case, one must perform two shifts for each register, instead of a single
rotation for q = 2k. Moreover, the technique is easily extended to k-bit Boolean masking as
output, instead of 1-bit. In that case, one must use registers of size k · 2k bits instead of 2k.

6.4 Comparison with existing techniques

Arithmetic modulo 2k to k-bit Boolean conversion. As in Section 4.3, we consider the
classical case of arithmetic modulo 2k to k-bit Boolean conversion, and we use k = 32 as in
HMAC-SHA1. We see in Table 6 that in that case our table-based technique is less efficient than
[CGV14], by a factor between 2 and 3.

A mod 232 → B
Security order t

1 2 3 4 5 6 8 10 12

Goubin [Gou01] 165

[CGV14] 32→ 32 1 132 2 070 4 030 6 218 8 597 15 053 23 655 33 572

Alg. 11 with Shift1 2 496 5 248 9 600 15 936 24 640 50 688 90 816 148 096

Alg. 11 with Shift2 3 872 7 520 12 448 18 656 26 144 44 960 68 896 97 952

Table 6. Operation count for arithmetic modulo 2k to k-bit Boolean conversion algorithms, up
to security order t = 12, with n = t+ 1 shares and k = 32.
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Arithmetic modulo 2k to 1-bit Boolean conversion, for small k. As we will see in
Section 8.2, arithmetic modulo 2k to 1-bit Boolean conversion is interesting in the context of
ring-LWE IND-CPA decryption, in order to compute the threshold function th : Z2k → {0, 1},
with th(x) = 1 if x ∈ [2k−2, 3 · 2k−2) and th(x) = 0 otherwise.

Such threshold function th can be computed directly using our Algorithm 12 from the pre-
vious section, since the algorithm works for any function f . Alternatively, to compute th with
[CGV14], we write th(x) = th′(x−2k−2) where th′(x) = 1 if x ∈ [0, 2k−1) and 0 otherwise. Thus,
th′(x) is the complement of the most significant bit of x. Therefore we first subtract 2k−2 to the
first arithmetic share of x, and perform the arithmetic to Boolean conversion from [CGV14].
Finally we extract the most significant bit of each Boolean share, and complement the first
share; see Appendix D.1 for more details. We see in Table 7 that for k = 6 (see Section 8 for a
motivation of this choice of k), we obtain a significant improvement compared to [CGV14].

A mod 26 → B
Security order t

1 2 3 4 5 6 8 10 12

Goubin [Gou01] 38

[CGV14] 6→ 1 226 411 786 1 207 1 663 2 895 4 531 6 416

Algorithm 12 20 54 104 170 252 350 594 902 1 274

Table 7. Operation count for arithmetic modulo 2k to 1-bit Boolean conversion algorithms, up
to security order t = 12, with n = t+ 1 shares and k = 6.

7 Ring-LWE encryption and the masking countermeasure

7.1 Ring-LWE encryption

We first recall the principle of ring-LWE encryption [LPR10]. We then consider Module-LWE
(M-LWE) encryption and two finalists of the NIST PQC standardization: Kyber and Saber. The
two independent candidates share a lot of similarities as they are both M-LWE-based encryption
schemes.

For any positive integer q, we define r′ = r mod q to be the unique element r′ in the range
[0, q[ such that r′ = r (mod q). For an even (resp. odd) positive integer q, we define r′ = r mod± q
to be the unique element r′ in the range −q/2 < r′ ≤ q/2 (resp. −(q − 1)/2 ≤ r′ ≤ (q − 1)/2)
such that r′ = r (mod q). For x ∈ Q, we denote by bxe the rounding of x to the nearest integer,
with ties being rounded up.

Ring-LWE IND-CPA encryption. Let R and Rq denote the rings Z[X]/(Xd + 1) and
Zq[X]/(Xd + 1) respectively, for some d ∈ Z and an integer q. Let a ∈ Rq be a public random
polynomial. Let χ be a distribution outputting “small” elements in R, and let s, e ← χ. The
public-key is t = as+ e ∈ Rq, while the secret-key is s. To CPA-encrypt a message m ∈ R with
binary coefficients, one computes the ciphertext (c1, c2) where

c1 = a · e1 + e2

c2 = t · e1 + e3 + bq/2e ·m
(7)
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with e1, e2, e3 ← χ. To decrypt a ciphertext (c1, c2), one first computes u = c2 − s · c1, which
gives:

u = (a · s+ e) · e1 + e3 + bq/2e ·m− s · a · e1 − s · e2
= bq/2e ·m+ e · e1 + e3 − s · e2

Since the ring elements e, e1, e2, e3 and s are small, and the message m ∈ R has binary
coefficients, we can recover m by rounding. Namely, for each coefficient of the above polynomial
u, we decode to 0 if the coefficient is closer to 0 than bq/2e, and to 1 otherwise. More precisely,
we decode the message m as m = th(c2 − s · c1), where th applies coefficient-wise the threshold
function:

th(x) =

{
0 if x ∈ (0, q/4) ∪ (3q/4, q)
1 if x ∈ (q/4, 3q/4)

The distribution χ can be based on binomial sampling, which is easier to implement than
the discrete Gaussian distribution [ADPS16]. More precisely, one can compute each polynomial
coefficient as the difference between the Hamming weights of two random κ-bit strings, for some
parameter κ.

Module-LWE IND-CPA encryption. A public-key encryption scheme based on the module
learning-with-errors problem (M-LWE) in module lattices [LS15] is parameterized by a ring Rq,
a module rank l and a distribution χ outputting “small” elements in R. In Kyber and Saber, we
useR = Z[X]/(Xd+1) andRq = Zq[X]/(Xd+1), and χ is a distribution outputting polynomials
with coefficients independently drawn from a centered binomial distribution of fixed parameter.
We denote vectors and matrices by boldfaced variables. Let s and e be elements of Rl sampled
from χl and A a uniformly random element of Rl×lq . The public key is t = A · s + e ∈ Rlq and
the secret key is s. To CPA-encrypt a message m ∈ R with binary coefficients, one computes
(c1, c2) ∈ Rlq ×Rq such that

c1 = AT · r + e1

c2 = tT · r + e2 + bq/2e ·m

where r and e1 are sampled from χl and e2 from χ. To decrypt a ciphertext (c1, c2), one computes:

u = c2 − sT · c1 = eT · r + e2 − sT · e1 + bq/2e ·m ≈ bq/2e ·m

The last approximation holds because elements sampled from χ are small. To recover the original
message m, as previously one applies coefficient-wise the threshold function th.

CCA-secure KEM. Both Kyber and Saber aim to actually construct a CCA-secure key en-
capsulation mechanism from their IND-CPA encryption. They both use a variant of the FO
transform [FO99]. Since the details do not matter for masking, we describe a simplified version.
To encrypt a random session key K, one first generates a random message m; this message is
then encrypted with the IND-CPA encryption scheme using a random tape r = H1(m) derived
from the message itself. The ciphertext is still c = (c1, c2), while the session-key is K = H2(m, c).
To decrypt, one first recovers m from (c1, c2); one can then re-encrypt m using the same ran-
domness r = H1(m) to get a new ciphertext c′; one then checks that c = c′; in that case one
outputs K = H2(m, c), and ⊥ otherwise.
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Specificities of Kyber. Kyber instantiates the M-LWE-based encryption scheme described
above with d = 256, a prime q = 3329 and a centered binomial distribution of parameters
2 or 3 [ABD+21]. The designers also introduced a compression function for reducing the size
of the ciphertext. Indeed, since the decryption has to tolerate a certain amount of error to
properly recover the message, a trade-off between correctness and ciphertext size can be made
by purposefully dropping some low-order bits of (c1, c2). The compression function is defined as
Compressq(x, a) = d(2a/q) · xc mod 2a and inverted by Decompressq(x, a) = d(q/2a) · xc. Those
functions are defined on scalars, and extended to polynomials and vectors of polynomials by
applying them separately on each coefficient. We also note that the compression function with
a = 1 is used to recover the message at the end of the IND-CPA decryption. Eventually, since q
is a prime such that q−1 is divisible by d, for efficiency reasons, the number theoretic transform
(NTT) can be used for polynomial multiplication [PG13]. Thus, the public-key, private-key and
some part of the ciphertext are transmitted in the NTT domain. The NTT transform being
a linear operation, it is usually not relevant for the definition of the masking scheme, so for
simplicity we ignore it for the rest of the paper.

Specificities of Saber. Saber is based on the hardness on the Module Learning With Rounding
(M-LWR) problem [BMD+21]. In a nutshell, instead of explicitly adding error terms (e, e1, e2)
sampled from the distribution χ, errors are deterministically added by applying a rounding to
the value. For example, if the public-key is of the form t = A · s + e in an LWE-based scheme,
the LWR equivalent will use t = bA · sep, with b·ep a rounding function mapping Zq to Zp with
p < q. In the case of Saber, both p and q are powers of two and the rounding function is basically
a shift extracting the log2(p) most significant bits of its input. This modulus switch from a power
of two modulus to another one is also used to compress the ciphertext, and eventually to decode
the noisy message.

7.2 Masking lattice-based encryption scheme

Masking IND-CPA decryption. We consider the masking of ring-LWE decryption against
side-channel attacks. The secret-key s ∈ R is initially masked with n shares using s = s1+· · ·+sn
(mod q) where si ∈ Rq for all 1 ≤ i ≤ n. Given as input a ciphertext (c1, c2), instead of computing
u = c2 − s · c1 and then m = th(u) coefficient-wise, in the first step we can write:

u = c2 − (s1 + · · ·+ sn) · c1 (mod q)

= u1 + · · ·+ un (mod q)

where u1 = c2 − s1 · c1 and ui = −si · c1 for all 2 ≤ i ≤ n. Therefore we have obtained an
arithmetic sharing of u modulo q. In the second step, one must compute n Boolean shares mi

of the message m = m1 ⊕ · · · ⊕mn such that

m1 ⊕ · · · ⊕mn = th(u1 + · · ·+ un) (8)

without leaking information about u = c2 − s · c1 in the process. Otherwise knowing u the
adversary could recover the secret-key as s = (c2 − u)/c1 mod q. Computing the threshold
function th securely over the shares ui as in (8) is non-trivial, because th is a non-linear function
from Zq to {0, 1}. Moreover, as observed in [OSPG18], one should not eventually recombine
the shares mi into m, since otherwise knowing m the adversary can launch a CCA attack and
recover the private-key s.
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Masking IND-CCA decryption. As recalled previously, the IND-CCA decryption of a ring-
LWE scheme (such as Kyber and Saber) performs the following operations according to the
Fujisaki-Okamoto (FO) transform:

1. IND-CPA decryption of the ciphertext c to obtain a message m
2. Re-encryption of m into a ciphertext c′; this includes the binomial sampling of the errors

from m
3. Polynomial comparison between c and c′

More precisely, under a simplified version of the FO transform and with ring-LWE encryption
as in (7), in the second step the message m is re-encrypted using error polynomials (e1, e2, e3) =
H1(m) to get a new ciphertext c′, and one then checks that c = c′ before outputting the key
K = H2(m, c).

We have considered the masked implementation of Step 1 (IND-CPA decryption) in the
previous paragraph. As observed previously, the message m recovered at Step 1 must be kept in
shared form with the shares mi obtained from (8), otherwise knowing m = m1 ⊕ · · · ⊕mn the
adversary could launch a CCA attack. Therefore at Step 2 the hash-function H1(m) should be
masked, and the binomial sampling for generating (e1, e2, e3) = H1(m) should also be masked,
which gives a masked re-encrypted ciphertext c′. Eventually the polynomial comparison between
c and c′ should be masked, and if c = c′ one must return a masked session key K = H2(m, c).

Since the IND-CCA decryption algorithm combines arithmetically masked values (such as s,
e1, e2, e3 and c′) and Boolean masked values (such as m and K), this requires conversions be-
tween Boolean and arithmetic masking. In this paper, for the masking of ring-LWE encryption,
we only consider the high-order masking of IND-CPA decryption (Step 1), and the re-encryption
of m with the binomial sampling (Step 2). Namely our goal is to show that our table recompu-
tation technique for high-order conversions is particularly effective in the context of ring-LWE
encryption. We leave for further work the masking of the polynomial comparison (Step 3), and
the description of a fully masked IND-CCA ring-LWE scheme secure against high-order attacks.

Finally, for simplicity we will focus on the high-order masking of operations performed on
single elements in Zq, as for example the computation of the threshold function th : Zq → {0, 1}.
Namely when dealing with polynomials as in ring-LWE scheme, and additionally with vectors
and matrices of polynomials as in M-LWE and M-LWR schemes (as with Kyber and Saber),
these operations are performed coefficient-wise and component-wise. Therefore the corresponding
algebraic structure is irrelevant for the description of the masking scheme.

8 Masking ring-LWE IND-CPA decryption

8.1 Overview

As explained in Section 7.2, for masking the ring-LWE IND-CPA decryption, we must compute
a threshold function th over arithmetic shares modulo q, with 1-bit Boolean shares as output.
Namely for Kyber we must compute the threshold function th : Zq → {0, 1} with

th(x) =

{
0 if (x mod± q) ∈ [−q/4, q/4[
1 otherwise.

(9)

More precisely, given as input arithmetic shares x1, . . . , xn ∈ Zq, we must compute 1-bit Boolean
shares y1, . . . , yn ∈ {0, 1} such that

y1 ⊕ · · · ⊕ yn = th(x1 + · · ·+ xn mod q)
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The computation of the threshold function for Saber is similar (see Appendix D.1).

For computing the threshold function th, we could apply our generic conversion algorithm
from Section 3 with G = Zq, H = {0, 1} and the function f : Zq → {0, 1} with f = th. In that
case, the time complexity is O(q · n2), and the memory consumption is O(q · n). Both can be
prohibitive for large q, for example with q = 3329 in Kyber, or with q = 210 in Saber.

We describe in the following an optimized technique based on modulus switching to a smaller
modulus 2`, which enables to apply the fast table-based variant from Section 6.3. For this we
slightly modify the decryption algorithms of Kyber, with a negligible increase in the decryption
failure probability. We explain in Section 8.4 why the security proof for Kyber remains perfectly
valid. Namely the IND-CCA security proof only depends on the decryption failure probability,
and not on the specific decryption algorithm used. In other words, one can use any decryption
algorithm, as long as the decryption failure probability remains negligible. We maintain a total
decryption failure probability δ ≤ 2−128 to guarantee the same level of security as in the original
scheme, against both classical attacks and quantum attacks.

8.2 Threshold arithmetic modulo q to 1-bit Boolean

Our goal is to compute the function th : Zq → {0, 1} given by (9) but this time we require
a correct computation of th(x) only for a large subset of Zq, not necessarily for the full Zq.
More precisely, we require correct computation only for values of x which are not too close to
the thresholds ±q/4, by a relative factor ∆. More precisely we require correct decryption for
x ∈ Rq,∆ with:

Rq,∆ =

{
x ∈ Zq, |x mod± q| < q ·

(
1

4
−∆

)
or |x mod± q| > q ·

(
1

4
+∆

)}
(10)

This means that there will be a small subset of Zq for which the computation of the function
th can be incorrect. We will see that for lattice-based schemes such as Kyber and Saber, the
probability that x /∈ Rq,∆ is negligible for small enough ∆, and therefore the decryption error
will remain negligible for these two schemes.

Our goal is therefore to compute output shares b1, . . . , bn ∈ {0, 1}, such that when given
input shares x1, . . . , xn ∈ Zq such that x = x1 + · · ·+ xn ∈ Rq,∆, we are guaranteed to obtain a
correct result, that is:

b1 ⊕ · · · ⊕ bn = th(x1 + · · ·+ xn)

For this our strategy is to first perform a modulus switching into an arithmetic masking modulo
a smaller 2`, and then to perform the (easier) conversion from arithmetic masking modulo 2` to
Boolean masking via a threshold function f over Z2` . More precisely, we first perform a modulus
switching of all input shares xi, by computing yi = bxi · 2`/qe for all 1 ≤ i ≤ n. Note that this
modulus switching can be computed by writing

yi =

⌊
xi · 2`

q
+

1

2

⌋
=

⌊
xi · 2`+1 + q

2q

⌋
and therefore yi is the quotient of the Euclidean division of xi · 2`+1 + q by 2q. We obtain:

n∑
i=1

yi =

n∑
i=1

⌊
2` · xi
q

⌉
=

n∑
i=1

2` · xi
q

+ εi
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where |εi| ≤ 1/2 for all 1 ≤ i ≤ n. This gives:

y =

n∑
i=1

yi =
2` · x
q

+ ε (mod 2`), where |ε| ≤ n/2 (11)

Therefore we have obtained an arithmetic masking of y ∈ Z2` where y = 2` · x/q + ε (mod 2`)
and the error ε ∈ R is such that |ε| ≤ n/2. In the second step, we apply the generic conversion
algorithm from Section 3 with G = Z2` , H = {0, 1} and the function f : Z2` → {0, 1} where

f(y) =

{
0 if (y mod± 2`) ∈ (−2`−2, 2`−2)
1 otherwise.

Our algorithm is formally described in Algorithm 13 below.

Algorithm 13 Arithmetic modulo q to 1-bit Boolean conversion (ThresholdAtoB)
Input: x1, . . . , xn ∈ Zq
Output: b1, . . . , bn ∈ {0, 1} such that b1 ⊕ · · · ⊕ bn = th(x) for x = x1 + · · ·+ xn ∈ Rq,∆
1: for i = 1 to n do yi ←

⌊
xi · 2`/q

⌉
2: (b1, . . . , bn)← ConvertZ

2`
,{0,1},f(y1, . . . , yn)

3: return b1, . . . , bn

Correctness and complexity. The following lemma proves the correctness of Algorithm 13
when the threshold function th(x) is computed on x ∈ Rq,∆, under the condition n ≤ 2`+1 ·∆.

Lemma 1. Assume that n ≤ 2`+1 ·∆. The output of Algorithm 13 is correct if x1 + · · ·+ xn ∈
Rq,∆.

Proof. Assume that x ∈ Rq,∆ and let represent x in (−q/2, q/2). Assume that |x| < q ·(1/4−∆).
This implies: ∣∣∣∣2`q · x

∣∣∣∣ < 2`−2 −∆ · 2` ≤ 2`−2 − n

2

From (11), this implies that |y mod± 2`| < 2`−2 and therefore f(y) = th(x) = 0 as required.

Similarly, if |x| ≥ q · (1/4 + ∆), then |x · 2`/q| > 2`−2 + ∆ · 2` ≥ 2`−2 + n/2 and therefore
|y mod± 2`| > 2`−2, which implies f(y) = th(x) = 1 as required. This proves the correctness of
Algorithm 13. ut

From Lemma 1, it suffices to select an intermediate modulus 2` with

` = dlog2(n/∆)e − 1 (12)

to ensure correct computation of th(x) for x ∈ Rq,∆. The complexity of the arithmetic to Boolean
conversion at Line 2 is therefore O(2` · n2) = O(n3) using the generic conversion (Algorithm 8).
Using the optimized arithmetic to Boolean conversion (Algorithm 10), the complexity becomes
O(` ·n2) = O(n2 · log n). The memory complexity remains O(n). Finally, using the optimization
with table in registers from Section 6.3, the complexity is O(n2) only, assuming that operations
on registers of size 2` take unit time.
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Security. The previous algorithm achieves the (n− 1)-SNI property, thanks to the (n− 1)-SNI
property of the Convert algorithm.

8.3 Application to ring-LWE IND-CPA decryption

In this section we show how to efficiently mask the IND-CPA decryption of ring-LWE schemes.
We explain how to tune the value ∆ used in the definition of Rq,∆ in (10) so that the decryption
error remains negligible for Kyber.

As explained in Section 7.2, for masking the ring-LWE IND-CPA decryption, the secret-key
s ∈ R is initially masked with n shares using s = s1 + · · · + sn (mod q) where si ∈ Rq for all
1 ≤ i ≤ n. Given as input a ciphertext (c1, c2), instead of computing u = c2 − s · c1 and then
m = th(u) coefficient-wise, in the first step we compute u1 = c2 − s1 · c1 and ui = −si · c1 for all
2 ≤ i ≤ n, which gives an arithmetic sharing of u = u1 + · · ·+ un ∈ Rq.

Therefore, in the second step, by applying Algorithm 13 coefficient-wise on the polynomial
shares ui ∈ Rq, we obtain n boolean shares mi of the message m = m1 ⊕ · · · ⊕mn such that
m1 ⊕ · · · ⊕ mn = th(u1 + · · · + un), as required. To ensure a negligible decryption error, we
must therefore ensure that all coefficients of u belong to the set Rq,∆ considered in the previous
section, except with negligible probability.

Application to Kyber. The authors of the Kyber submission provide a Python script comput-
ing a tight upper bound on the decryption error probability δ. Following [HHK17], we say that
PKE = (KeyGen,Enc,Dec) is (1− δ) correct if E[maxm∈M Pr[Dec(sk,Enc(pk,m)) = m]] ≥ 1− δ,
where the probability is over the randomness of Enc, and the expectation is over (pk, sk) ←
KeyGen(). More precisely, for an encryption of 0, the authors compute an upper-bound on the
probability that any coefficient of u = c2 − sT · c1 is greater than q/4 in absolute value. From
the definition of the set Rq,∆ in (10), it suffices to rerun the script with the bound q · (1/4−∆)
instead, in order to obtain the new decryption failure probability. We refer to Appendix B for
more details.

For our implementations, we choose to take ∆ = 0.02 for the recommended parameters of
Kyber; this gives a decryption failure probability δ′ = 2−137, instead of 2−164 originally (see
Table 9). We argue in Section 8.4 that Kyber remains secure with this increased decryption
failure probability. We provide in Table 8 the value of the register size ` as a function of the
number of shares n for ∆ = 0.02, according to Condition (12).

n 2 3 4 5 6 7 8 9 10

` 6 7 7 7 8 8 8 8 8

Table 8. Value of ` as a function of n with ∆ = 0.02 for Kyber and Saber.

Moreover, we show in Table 9 that the decryption failure probability is easily decreased
by modifying the compression parameters (du, dv), which does not affect the security analysis
of Kyber2. More precisely, by using the same compression parameters (du, dv) = (11, 5) as for

2 Namely, the classical and quantum core-SVP-hardness computed in the analysis script Kyber.py available at
https://github.com/pq-crystals/kyber/tree/master/scripts/, do not depend on the compression param-
eters (du, dv).
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Kyber1024, we obtain for ∆ = 0.02 a decryption error probability δ′ = 2−192, that is smaller
than originally in Kyber768.

n k q η1 η2 (du, dv) δ δ′

Kyber768 256 3 3329 2 2 (10,4) 2−164 2−137

Kyber768’ 256 3 3329 2 2 (11,5) 2−228 2−192

Table 9. Parameter set for Kyber, with the original failure probability δ, and the failure prob-
ability δ′ for ∆ = 0.020.

Application to Saber. For Saber, the original decryption failure probability is 2−136, and with
∆ = 0.02 the failure probability becomes 2−112. We can reach δ′ = 2−128 with ∆ = 0.007, but
in that case there is no performance improvement. However, we can slightly modify the scheme
parameters to reach a decryption failure probability δ′ ≤ 2−128, still with ∆ = 0.02. More
precisely, we can increase the parameter T = 24 to T = 26 as in the more secure FireSaber3. This
enables to reach a decryption failure probability δ′ = 2−138 for ∆ = 0.02; see Table 10. In that
case, we can use the same values as in Kyber for the register size ` as a function of the number
of shares n (see Table 8).

n l q p T µ δ δ′

Saber 256 3 213 210 24 8 2−136 2−112

Saber’ 256 3 213 210 26 8 2−164 2−138

Table 10. Parameter sets for Saber, with the original failure probability δ, and the failure
probability δ′ for ∆ = 0.02.

8.4 Security impact for ring-LWE IND-CCA encryption

In this section we consider the security impact of increasing the decryption failure probability δ.
Namely, as illustrated in Table 9, for the Kyber768 parameters the decryption failure probability
becomes δ′ = 2−137 instead of δ = 2−164, so we must explain why the Kyber scheme remains
secure. For this we follow closely the analysis from [ABD+21, Section 5.5].

Classical security. We recall the CCA security of Kyber against classical adversaries, based
on the Fujisaki-Okamoto transform, with a security bound that includes the decryption failure
probability δ.

Theorem 8 (CCA security of Kyber [ABD+21]). Suppose XOF, H, and G are random
oracles. For any classical adversary A that makes at most qRO many queries to random oracles
XOF, H and G, there exist adversaries B and C of roughly the same running time as that of A
such that AdvccaKyber.CCAKEM ≤ 2Advmlwe

k+1,k,η(B) + AdvprfPRF(C) + 4qRO · δ

3 As for Kyber, the security level computed by the Python script provided in the submission package, does not
depend on the parameter T .
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We note that the above security bound does not depend on the specific decryption algorithm
used. This means that modifying the decryption algorithm (as we did in the previous section)
does not invalidate the security proof of Kyber, as long as the decryption failure probability δ
remains negligible. From the above security bound, with δ = 2−137, the best strategy to generate
a decryption failure is to make ' 2137 decryption or random oracle queries. This makes a classical
attack completely unpractical.

Quantum security and failure boosting. In the quantum random oracle model, the security
bound is non-tight and includes a term q2RO ·δ; see [ABD+21, Theorem 3]. Namely in the quantum
setting the search for a m provoking a decryption failure can be quadratically accelerated using
Grover’s algorithm. In [ABD+21], the authors consider a failure boosting attack strategy that
uses Grover’s algorithm in an offline phase to search for a polynomial pair (e1, r) with a larger
norm, so that it is more likely to produce a decryption error. Below we use the same reasoning
to estimate the quantum complexity of the attack, with decryption failure probability δ = 2−137

instead of 2−164.
The polynomial pair (e1, r) is seen as a vector in Z1536 distributed as a discrete Gaussian

with standard deviation σ =
√
η1/2 = 1. We have that a m-dimensional vector v under such

distribution satisfies for any κ > 1:

Pr[‖v‖ > κ · σ
√
m] < κm · exp(m(1− κ2)/2)

Grover’s algorithm is used to search this space with a quadratic speed-up, so with complexity
κ−m/2 · exp(m(κ2−1)/4). In the second step, a decryption failure occurs if 〈z,v〉 is large enough
for the secret vector z. If z is distributed as a Gaussian with standard deviation σ′, then for any
λ, we have Pr[〈z,v〉 > λσ′‖v‖] ≤ 2 exp(−λ2/2). For a vector v without the failure boosting,
we therefore have δ ' 2 exp(−λ2/2), which gives λ ' 13.8 for δ = 2−137. Thanks to the failure
boosting, we get a v whose norm is larger by a factor κ, so we can use λ′ = λ/κ instead of λ. The
improved decryption failure probability after Grover’s search then becomes 2 exp(−(λ/κ)2/2),
which gives a total complexity κ−m/2 · exp(m(κ2 − 1)/4 + (λ/κ)2/2). For δ = 2−137, this is
minimized for κ = 1.1, with total complexity 2124 (instead of 2150 for δ = 2−164). Therefore the
attack remains completely unpractical. We refer to [ABD+21] for a discussion on the more recent
attacks based on decryption failure [BS20,DRV20]; their overall running time for Kyber are no
better than the above attack. In particular, the multi-target attack considered in [DGJ+19] is
prevented in Kyber by hashing the public key pk into r and e1.

8.5 Comparison with existing techniques

We consider the computation of the threshold function th used in IND-CPA decryption for
Saber and Kyber, and we provide a comparison of the operation count of our new technique
(Algorithm 13) with existing techniques [BBE+18,BGR+21]. For Saber, we explain in Appendix
D.1 how to compute the threshold function modulo 2k based on the arithmetic to Boolean
conversion algorithm from [CGV14]. For Kyber, we explain in Appendix D.2 how to compute
the threshold function modulo q, based on the arithmetic modulo q to Boolean conversion from
[BBE+18]. For our Algorithm 13, we use the register optimization (Algorithm 12) to perform
the arithmetic modulo 2` to 1-bit Boolean conversion, according to the values of ` from Table
8. As in Section 6.3, we assume that a register operation takes 1 operation for 32-bit (` = 5),
and 2`−5 operations for 2`-bit, for ` ≥ 5. We see in Table 11 that for Kyber, we obtain more
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than an order of magnitude improvement in IND-CPA decryption compared to [BBE+18] and
[BGR+21] (see Appendix D.2).

A mod q → 1-bit B
Security order t

1 2 3 4 5 6 8 9

Saber

[Gou01] 58

[CGV14] 366 667 1 286 1 979 2 731 4 767 6 051

Algorithm 13 (Saber’) 26 117 220 355 1 026 1 421 2 403 2 990

Kyber
[BBE+18] 511 1 515 2 792 4 783 7 047 9 765 16 642 20 801

[BGR+21] 395 1 267 2 362 4 121 6 103 8 489 14 552 18 229

Algorithm 13 26 117 220 355 1 026 1 421 2 403 2 990

Table 11. Operation count for arithmetic modulo q to 1-bit Boolean conversion algorithms, up
to security order t = 10, with n = t + 1 shares, for Kyber and Saber, with q = 3329 for Kyber
and q = 210 for Saber. For Algorithm 13, we use the values of ` from Table 8 corresponding to
∆ = 0.02.

9 Binomial sampling and masked ring-LWE re-encryption

In this section, we show that our techniques enable to efficiently mask the re-encryption of
ring-LWE encryption schemes. As recalled in Section 7.2, under a simplified version of the FO
transform for IND-CCA decryption, in the second step the message m is re-encrypted using
error polynomials (e1, e2, e3) = H1(m) to get a new ciphertext c′. To encode a Boolean masked
message m ∈ {0, 1} as in (7), we can use our generic table-based conversion algorithm, with the
function f : {0, 1} → Zq with f(x) = bq/2e · x mod q. In that case the complexity is O(n2) as in
[SPOG19].

Consider a single error e, which we write e = H(m) for some hash function H; for simplicity
we focus on a single component e ∈ Z. The error e is actually computed using binomial sampling,
with (α, β) = H(m) and then e = h(α) − h(β), where α, β ∈ {0, 1}k and h is the Hamming
weight function. The message m is Boolean masked, and therefore the variables α and β are
Boolean masked, while the error e must be arithmetically masked modulo q.

For masking the binomial sampling we must therefore mask the Hamming weight computa-
tion, with Boolean masking as input and arithmetic masking modulo q as output. Our approach
is similar to [SPOG19]: we start from our 1-bit Boolean to arithmetic masking modulo q algo-
rithm from Section 4.1 (with k = 1), and for α ∈ {0, 1}k, the Hamming weight of α is computed
as the sum of k independent 1-bit Boolean to arithmetic masking modulo q conversions. Start-
ing from a Boolean masked message m = m1 ⊕ · · · ⊕ mn, we then obtain an arithmetically
masked ciphertext with n shares modulo q. Since our table-based approach has a similar level
of efficiency as the technique from [SPOG19] (see Table 4 in Section 4.3 for a comparison), for
the binomial sampling we obtain a similar level of efficiency as in [SPOG19], and an order of
magnitude improvement compared to [BBE+18].

In the following, we describe in more details the technique to securely compute the Hamming
weight and the binomial sampling, and we show how to perform masked IND-CPA encryption.
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9.1 Masked Hamming weight computation

We consider the Hamming weight function h : {0, 1}k → Z where h(x) is the sum over Z of
the bits of x, and the function hq : {0, 1}k → Zq where this sum is computed modulo q, that
is hq(x) = h(x) mod q. Given as input x1, . . . , xn ∈ {0, 1}k, our goal is to compute arithmetic
shares a1, . . . , an ∈ Zq such that:

a1 + · · ·+ an = hq(x1 ⊕ · · · ⊕ xn) (mod q)

The technique is similar to the optimized Boolean to arithmetic conversion algorithm from
Section 4.2. We let x = x1 ⊕ · · · ⊕ xn and we write x(j) the j-th bit of x for 0 ≤ j < k, which

gives hq(x) =
∑k−1

j=0 x
(j). We also denote by x

(j)
i the j-th bit of each share xi. We obtain:

hq(x) =
k−1∑
j=0

n⊕
i=1

x
(j)
i mod q

We now perform an independent table-based Boolean to arithmetic conversion for each of the k
variables x(j), namely we write for each 0 ≤ j < k:

x(j) =

n⊕
i=1

x
(j)
i =

n∑
i=1

y
(j)
i (mod q)

This gives:

hq(x) =
k−1∑
j=0

n∑
i=1

y
(j)
i =

n∑
i=1

k−1∑
j=0

y
(j)
i (mod q)

and therefore letting ai :=
∑k−1

j=0 y
(j)
i for all 1 ≤ i ≤ n, we obtain hq(x1⊕· · ·⊕xn) = a1+ · · ·+an

(mod q) as required. The algorithm is formally described in Algorithm 14 below. The complexity
of the algorithm is O(k · n2). As for Algorithm 5, the (n − 1)-SNI property of the algorithm
follows from the (n− 1)-SNI of each of the k independent table-based conversions.

Algorithm 14 Hamming weight

Input: x1, . . . , xn ∈ {0, 1}k
Output: a1, . . . , an ∈ Zq such that a1 + · · ·+ an = h(x1 ⊕ · · · ⊕ xn) (mod q)

1: for i = 1 to n do ai ← 0
2: for j = 0 to k − 1 do
3: for i = 1 to n do zi ← (xi � j) & 1

4: (y
(j)
1 , . . . , y

(j)
n )← BooleanToArithmetic(1, z1, . . . , zn)

5: for i = 1 to n do ai ← ai + y
(j)
i mod q

6: end for
7: return a1, . . . , an

9.2 Application to binomial sampling and masked IND-CPA encryption

We consider the high-order masking of ring-LWE IND-CPA encryption, using error polynomials
(e1, e2, e3) = H1(m) from a message m ∈ R with binary coefficients:

c1 = a · e1 + e2

c2 = t · e1 + e3 + bq/2e ·m
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We are given as input a Boolean masked message m = m1 ⊕ · · · ⊕mn ∈ R and we must output
an arithmetically masked ciphertext modulo q. Applying our generic conversion algorithm with
the function f : {0, 1} → Zq with f(x) = bq/2e·x mod q on each coefficient separately, we obtain
arithmetic shares M1, . . . ,Mn ∈ Rq such that:

m · bq/2e =
n∑
i=1

Mi (mod q)

Similarly, each component e ∈ Z of the error polynomials e1, e2, e3 is equal to e = hq(α) −
hq(β) mod q, where α, β ∈ {0, 1}k and hq is the Hamming weight function modulo q. Starting
from n-shared Boolean masking of α and β, we can therefore apply Algorithm 14 to generate n
arithmetic shares for e modulo q. Eventually, we obtain arithmetically masked error polynomials
Eji ∈ Rq for j = 1, 2, 3 such that

ej =

n∑
i=1

Eji (mod q)

Finally, we can compute the n shares of the ciphertext:

c1,i = a · E1,i + E2,i

c2,i = t · E1,i + E3,i +Mi

and we have
∑n

i=1 c1,i = c1 (mod q) and
∑n

i=1 c2,i = c2 (mod q) as required. Therefore we have
obtained a masked ciphertext with n shares modulo q. The complexity is O(n2) for n shares.

10 Practical implementation

We have performed a plain C implementation of our techniques, and of [CGV14,BBE+18] and
[SPOG19] for comparison. In the following, we provide tables containing the average cycle
count for each gadget over 1 000 000 executions, running on an Intel(R) Core(TM) i7-1065G7

CPU @ 1.30GHz processor of a laptop, for security orders 1 ≤ t ≤ 9. Randomness generation
has been performed using a simple xorshift PRNG. Still we provide in Table 16 the number
of random elements needed for all considered techniques to fairly highlight and compare the
randomness usage.

10.1 Conversion from 1-bit Boolean to arithmetic modulo q

The conversion from 1-bit Boolean to arithmetic modulo q is a core component of the IND-CPA
encryption since it is used to both encode the message m and to protect the binomial sampling
(see Section 9.2). Table 12 shows a comparison between our technique depicted in Algorithm
3 (BooleanToArithmetic) and [SPOG19], without bitslicing. We only compare with [SPOG19]
since according to Table 4, [BBE+18] is much less efficient. We see that we get a similar level of
efficiency, as it was also the case in the operation count from Table 4.
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1-bit B → A
Security order t

1 2 3 4 5 6 7 8 9

[SPOG19] 61 142 250 408 520 687 882 1 133 1 354

BooleanToArithmetic 59 98 207 347 524 749 962 1 241 1 618

Table 12. Number of cycles to perform a 1-bit Boolean to arithmetic modulo q conversion for
q = 3329.

10.2 Arithmetic shift by ` bits

We have implemented the Shift1 algorithm (Algorithm 6), which requires a table of size B =
n · (2` − 1) + 1 rows for securely computing the carry value 0 ≤ c ≤ cmax with cmax = bn ·
(2` − 1)/2`c. Recall that in Algorithm 6 the carry is arithmetically masked modulo 2k−`, see
Equation (2). Therefore, in principle one cannot apply the register optimization from Section
6.3, since such optimization requires a Boolean masked output. However we used the following
trick. Instead of storing the carry c directly in arithmetic masking as in Algorithm 6, we first
use a Boolean masking for storing c. This requires n Boolean masks as output, with dlog2 cmaxe
bits each to represent the carry. With a Boolean masking as output, we can now apply the
arithmetic to Boolean conversion with register optimization from Section 6.3, with registers of
size B · dlog2 cmaxe bits. Eventually we convert the carry from Boolean to arithmetic masking
modulo 2k−`, using the BAopti algorithm (Algorithm 5). Therefore, in Algorithm 6 the arithmetic
refreshes are replaced by Boolean refreshes (using the register optimization from Section 6.3),
and a Boolean to arithmetic conversion is performed before Line 10. With ` = 1, we can use
8-bit registers for n = 2, 16-bit registers for n ≤ 7, and 64-bit registers for n ≤ 15. We also
considered ` = 3 as in Saber, with 16-bit registers for n = 2, and 64-bit registers for n = 3, 4.
For other values of `, we can iterate multiple Shift1 with ` = 1.

We provide the implementation results in Table 13 with input arithmetic values modulo 2k,
with k = 13 as in Saber. Recall that the [CGV14] technique is not sensitive to the number of
shifts `. We see that for ` = 1 and ` = 3 our technique outperforms [CGV14], especially for small
security orders. For ` = 3, we see a significant gap in performances between order 3 and order 4.
Namely for order 3 (n = 4) we can store the carry in 64-bit registers as explained above, while
for higher order we simply use 3 iterations with ` = 1.

A → A shift, k = 13
Security order t

1 2 3 4 5 6 7 8 9

[CGV14] 270 1183 1 743 3 176 4 819 6 107 7 610 10 108 12 661

Shift1 (` = 1) 15 223 429 686 1104 1 567 2 967 3 822 4 879

Shift1 (` = 3) 16 230 443 2 087 3 339 4 689 9 006 11 613 15 053

Table 13. Number of cycles to perform an arithmetic to arithmetic shift by ` positions where
` = 1 and ` = 3, with input arithmetic values modulo 2k where k = 13.

10.3 Arithmetic modulo 2k to k-bit Boolean conversion

We consider the classical arithmetic modulo 2k to k-bit Boolean conversion, for small k, which
is depicted in Algorithm 8 (ArithmeticToBoolean). This conversion is a building block of the
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optimized arithmetic to Boolean conversion of arbitrary size of Section 6.2. Indeed, Algorithm
10 relies on a smaller conversion for each block of ` bits. For small values of k, as previously we
can use the register optimization from Section 6.3 with a register size of k ·2k bits. We can work
with the conversion Z16 → {0, 1}4, i.e. with k = 4 since the table fits in a 64-bit register. Indeed,
using an uint64 t to store each share of the table, the conversion simply consists in cyclically
shifting those integers and XORing them with random 64-bit values. Table 14 shows that this
technique for small k is more efficient than the conversion of [CGV14]. We recall that for large
k, it will however not scale well since the size of the table is exponential in the number of bits
converted. Namely, for large k, one should use our optimized algorithm from Section 6.2.

A → B from Z16 to {0, 1}4 Security order t

1 2 3 4 5 6 7 8 9

[CGV14] 9 158 228 460 688 850 1 066 1 392 1 777

ArithmeticToBoolean 10 32 71 108 159 226 295 390 511

Table 14. Number of cycles to perform an arithmetic modulo 2k to k-bit Boolean conversion
with k = 4.

10.4 Threshold decryption for Kyber and Saber

We have implemented the threshold decryption function th for Kyber and Saber, which is a
core component of the IND-CPA decryption. For Kyber we have used the approach described in
Section 8.2 with Algorithm 13, where we first perform a modulus switching to a smaller modulus
2`, and then compute the threshold function f : 2` → {0, 1} from arithmetic to Boolean masking.
We see in Table 8 that the function must be computed for ` = 6, 7, 8 for a number of shares ≤ 11.
For ` = 6, we can therefore use the register optimization from Section 6.3, and the table with
2` = 64 rows can fit in a physical register or at least be smoothly managed by the compiler using
the appropriate data type. The cases ` = 7, 8 are somewhat trickier. Even if some architecture
might support 128-bit or 256-bit integers, these widths are less common. In those cases, we use
two or four 64-bit registers and simulate the shift on 128 or 256 bits with 64-bit instructions. The
results in Table 15 shows that for both Saber and Kyber our approach significantly outperforms
[CGV14] and [BBE+18].

A mod q → Security order t

1-bit B 1 2 3 4 5 6 7 8 9

Saber
[CGV14] 24 330 529 997 1 565 1 999 2 498 3 460 4 648

ThresholdAtoB (Saber’) 15 59 120 210 827 1 240 1 485 1 957 2 634

Kyber
[BBE+18] 819 2 062 3 298 5 560 8 168 11 137 14 033 17 912 21 752

ThresholdAtoB 15 69 138 225 852 1 260 1 563 2 007 2 649

Table 15. Number of cycles to perform a threshold decryption including a conversion from
arithmetic modulo q to 1-bit Boolean, for Kyber (with q = 3329) and Saber (with q = 210). For
our TresholdAtoB algorithm (Algorithm 13), this is according to the values of ` from Table 8.
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10.5 Randomness usage

Due to the refresh gadgets, the practical performance of masking schemes is strongly impacted
by the speed of the RNG. Table 16 shows the number of RNG calls outputting 32-bit values
for each execution of the gadgets considered in the previous sections. We assume that the RNG
always outputs exactly 32 bits, which means that a fresh 16-bit value also counts for one call
whereas a fresh 64-bit value counts for two.

Security order t

1 2 3 4 5 6 7 8 9

1-bit B. to A. [SPOG19] 3 8 16 25 37 51 68 85 105

1-bit B. to A. 3 10 21 36 55 78 105 136 171

Shift of 1 position [CGV14] 17 125 249 485 764 1 080 1 439 1 931 2 466

Shift of 1 position 3 26 54 92 140 198 427 552 693

Shift of 3 positions [CGV14] 15 113 225 439 692 978 1 303 1 749 2 234

Shift of 3 positions 3 32 66 276 420 594 1 281 1 656 2 079

Z16 → {0, 1}4 [CGV14] 1 15 30 60 96 135 180 242 310

Z16 → {0, 1}4 3 10 21 36 55 78 105 136 171

Saber decrypt [CGV14] 1 33 66 138 222 315 420 572 736

Saber’ decrypt 4 18 39 68 205 294 399 520 657

Kyber decrypt [BBE+18] 49 179 358 650 991 1 413 1 884 2 500 3 165

Kyber decrypt 4 18 39 68 205 294 399 520 657

Table 16. Number of 32-bit random elements needed for one execution of each gadget.

11 Conclusion

We have described a new high-order conversion algorithm between Boolean and arithmetic
masking, based on a generalization of the table recomputation countermeasure from [Cor14].
For classical k-bit to k-bit conversions, the new algorithm offers a similar level of efficiency as
in [CGV14]. For 1-bit Boolean to arithmetic modulo q conversion, the new algorithm offers a
similar level of efficiency as in [SPOG19]. For the computation of a threshold function from
arithmetic to 1-bit Boolean masking (as used in the IND-CPA decryption), we have obtained
for Kyber at least an order of magnitude improvement compared to the state of the art, thanks
to a new modulus switching technique over arithmetic shares, and an optimization of the table
recomputation in registers. This was confirmed by the results of a practical implementation.

We think that the main advantage of our high-order table-based conversion algorithm is its
flexibility: we can start from any masking as input (either Boolean, or arithmetic modulo 2k

or any q), compute any function f (for example threshold or shift), and obtain any masking as
output, with a good level of efficiency, and with a simpler implementation than with existing
techniques.
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sampling at arbitrary orders for lattice-based crypto. In Public-Key Cryptography - PKC 2019 - 22nd
IACR International Conference on Practice and Theory of Public-Key Cryptography, Beijing, China,
April 14-17, 2019, Proceedings, Part II, pages 534–564, 2019.

TE15. Mostafa Taha and Thomas Eisenbarth. Implementation attacks on post-quantum cryptographic
schemes. IACR Cryptol. ePrint Arch., 2015:1083, 2015.

XPRO20. Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, and David F. Oswald. Magnifying side-channel leakage
of lattice-based cryptosystems with chosen ciphertexts: The case study of Kyber. IACR Cryptol. ePrint
Arch., 2020:912, 2020.

A Proof of Theorem 1

We use the following Lemma, whose proof is straightforward and therefore omitted.

Lemma 2. Let (yi)1≤i≤n be the input and let (zi)1≤i≤n be the output of RefreshH. Any subset of
n− 1 output variables zi is uniformly and independently distributed in H.

The proof of Theorem 1 is relatively similar to the proof of the table-based countermeasure
in [Cor14]. Given u ∈ G, we denote by T (u)[j] and T ′(u)[j] the j-th component of the vectors
T (u) and T ′(u) respectively, for 1 ≤ j ≤ n. We denote by Part i the computation performed
within the main for loop, that is between lines 2 and 5 of Algorithm 1, and by Part n the
computation performed at line 6. We describe hereafter the construction of two index sets I and
J , both initially empty.

– For every probed input variable xi or any intermediate variable u + xi (for any 1 ≤ i ≤ n),
we add i to I.

– For every probed intermediate variable T ′(u)[j] = T (u + xi)[j], or rj or yj in RefreshH (for
any 1 ≤ i ≤ n) in Part i, or T (u)[j] in line 4 of Part i, we add i to I and j to J .

– For every output yj such that j ∈ O, we add j to J .
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Since for every probed variable we added at most one index in I, we have |I| ≤ t1 as required.
Similarly for J we must have |J | ≤ |O|+ t1 < n.

We now show that any set of t1 variables and the output shares y|O can be perfectly simulated
from x|I . This is clear for the probed input variables xi and intermediate variables u + xi (for
any 1 ≤ i ≤ n and all u ∈ G), since by construction i ∈ I. It remains to perfectly simulate all
probed variables of the form T (u)[j], T ′(u)[j] and T (u + xi)[j], including the output variables
y|O. We proceed by induction on i. Namely we show that at the beginning of each part i, we
can perfectly simulate all variables T (u)[j] for all j ∈ J and all u ∈ G. This holds for the case
i = 1, since at the beginning of Part 1, the vector T (u) =

(
f(u), 0, . . . , 0

)
is publicly known. At

the beginning of Part i, we distinguish two cases:

Case i ∈ I. If i ∈ I then knowing xi we can perfectly simulate all intermediate variables with
column index j ∈ J in Part i, as knowing xi we can propagate the simulation for all variables
with column index j and perfectly simulate T (u + xi)[j], T

′(u)[j] and the resulting T (u)[j] at
Line 4, and similarly the variables yj at Line 6 if i = n; in particular the rj variables within
RefreshH are simulated exactly as in the RefreshH procedure.

Case i /∈ I. If i /∈ I then no variable in Part i has been probed, including variables in RefreshH .
Since |J | < n, using Lemma 2 we can therefore perfectly simulate all intermediate variables
T (u)[j] for j ∈ J and u ∈ G at the output of RefreshH at Line 4, or similarly all yj for j ∈ J
at the output of RefreshH at Line 6 when i = n, simply by generating uniform and independent
values.

As a conclusion, we have shown that for all i the induction step is verified, which means that
all T (u)[j], T ′(u)[j] and T ′(u + xi)[j] for j ∈ J can be perfectly simulated from x|I , including
the output variables y|O. Therefore all probes can also be perfectly simulated. This terminates
the proof of Theorem 1.

B Decryption failure probability in Kyber

For Kyber, the decryption failure probability is computed by the following lines in the Python
file Kyber failure.py, which is publicly available in:

https://github.com/pq-crystals/security-estimates/

def p 2 c y c l o t o m i c e r r o r p r o b a b i l i t y ( ps ) :
F = p 2 c y c l o t o m i c f i n a l e r r o r d i s t r i b u t i o n ( ps )
proba = t a i l p r o b a b i l i t y (F , ps . q/4)
return F, ps . n∗proba

Therefore to compute our new decryption error probability, it suffices to replace the q/4 bound
by q · (1/4−∆):

proba = t a i l p r o b a b i l i t y (F , ps . q∗(1/4− Delta ) )

For Kyber with the recommended parameters, the original decryption failure with ∆ = 0 is
2−164. By running the script with ∆ = 0.02, we obtain a failure probability of 2−137.
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C Operation count in previous work

[Gou01]. The first-order Boolean to arithmetic conversion from [Gou01] requires 7 operations.
The first-order arithmetic to Boolean conversion from [Gou01] requires 5k + 5 operations. The
high-order Boolean to arithmetic conversion from [BCZ18] requires 10 ·2n−6 ·n−13 operations.

[SPOG19]. The k-bit Boolean to arithmetic conversion from [SPOG19] has number of opera-
tions TSecB2Aq(n, k) = 9kn2/2 + 5kn/2− 2n− 3k.

Arithmetic modulo 2k to Boolean conversion [CGV14]. The complexity of SecAnd al-
gorithm in [CGV14, Algorithm 1] is the same as for the And gadget in [ISW03], and is given
by:

TSecAnd(n) = 5 · n(n− 1)

2
+ n2 =

7n2

2
− 5n

2

For the SecAdd algorithm in [CGV14], this gives:

TSecAdd(k, n) = TSecAnd(n) + n+ (k − 1) · (TSecAnd(n) + 2n) + 2n = k · (TSecAnd(n) + 2n) + n

The complexity of the Expand algorithm is 2bn/2c. For the arithmetic modulo 2k to k-bit Boolean
conversion, we have the recursion:

TAB(n, k) = TAB(bn/2c, k) + TAB(dn/2e, k) + 4bn/2c+ TSecAdd(n, k)

and TAB(1, k) = 0. For n = 2 we can use the first-order secure conversion algorithm from [Gou01],
with 5k + 5 operations, so we take TAB(2, k) = 5k + 5.

Arithmetic modulo p to Boolean conversion [BBE+18]. For the secure addition modulo
p, we have:

TSecAddModp(n, k) = (2k + 2)(TSecAnd(n) + 2n) +
3n2

2
− n

2
+ 2

For the Arithmetic mod p to Boolean conversion, we have the same recursion as previously:

TABModp(n, k) = TABmodp(bn/2c, k) + TABmodp(dn/2e, k) + 4bn/2c+ TSecAddModp(n, k)

and TABModp(1, k) = 0.

Boolean to arithmetic modulo 2k conversion [CGV14]. We have:

TBA(n, k) = TAB(n, k) + TSecAdd(n, k) + 3n2 − 3

High-order Boolean to arithmetic modulo p conversion [BBE+18]. We have as previ-
ously:

TBAModp(n, k) = TABModp(n, k) + TSecAddModp(n, k) + 3n2 − 3
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D Computing the threshold function

D.1 The mod 2k case

We show how to compute a threshold function th : Z2k → {0, 1} where th(x) = 0 if x ∈
[0, 2k−1 − 1] and th(x) = 1 otherwise, as used in Saber with k = 10. Note that th(x) is equal to
the most significant bit of the k-bit representation of x. Starting from x = x1+· · ·+xn (mod 2k),
we perform an arithmetic to Boolean conversion of (xi)1≤i≤n ∈ Z2k into (zi)1≤i≤n ∈ {0, 1}k. We
then let bi ∈ {0, 1} be the most significant bit of zi for 1 ≤ i ≤ n. We obtain b1 ⊕ · · · ⊕ bn =
th(x1 + · · ·+ xn) as required. The operation count is therefore:

Tth(n, k) = TAB(n, k) + n

D.2 The mod q case

We consider an integer q such that q ≡ 1 (mod 4), as in Kyber with q = 3329. We show
how to compute the threshold function th : Zq → {0, 1} where th(x) = 0 if x ∈ (−q/4, q/4)
and th(x) = 1 otherwise, where x is represented in [−(q + 1)/2, (q − 1)/2]. We first compute
y = x + (q − 1)/4 ∈ Zq and we consider the function th′(y) = th(x). We obtain th′(y) = 0 if
y ∈ [0, (q − 1)/2] and th′(y) = 1 otherwise, where y is represented in [0, q − 1].

We consider k such that q < 2k. We now consider y over Z with 0 ≤ y < q < 2k. We let
z = y − (q + 1)/2 mod 2k. If 0 ≤ y ≤ (q − 1)/2, then −2k−1 ≤ −(q + 1)/2 ≤ y − (q + 1)/2 < 0.
In this case we have z = y − (q + 1)/2 + 2k, which gives 2k−1 ≤ z < 2k, and therefore the most
significant bit of z is 1. Otherwise, if (q+1)/2 ≤ y < q, then 0 ≤ y−(q+1)/2 < (q−1)/2 ≤ 2k−1,
and therefore z = y− (q+ 1)/2, which gives 0 ≤ z < 2k−1 and therefore the most significant bit
of z is 0. Letting b be the most significant bit of z, we have th(x) = ¬b.

Starting from x = x1 + · · · + xn (mod q), we compute y1 = x1 + (q − 1)/4 ∈ Zq and
yi = xi for 2 ≤ i ≤ n. We then perform an arithmetic modulo q to Boolean conversion of
(yi)1≤i≤n ∈ Zq into (ui)1≤i≤n ∈ {0, 1}k. We then perform a SecAdd between (ui)1≤i≤n and
(vi)1≤i≤n with v1 = 2k − (q + 1)/2 and vi = 0 for 2 ≤ i ≤ n. We obtain (zi)1≤i≤n and we
let bi be the most significant bit of zi for 1 ≤ i ≤ n. We let b1 ← ¬b1. Eventually we obtain
b1 ⊕ · · · ⊕ bn = th(x1 + · · ·+ xn) as required. The operation count is therefore:

TthModp(n, k) = TABModp(n, k) + TSecAdd(n, k) + n+ 2

The high-order threshold decryption technique from [BGR+21] for q = 3329 is based on
computing:

Compresssq(x) = x11 ⊕ (¬x11 · x10 · x9 · (x8 ⊕ (¬x8 · x7)))

where xi is the i-th bit of x. The number of operations is therefore.

TComp1(n) = TABModp(n, 12) + 4 · TSecAnd(n) + 2 · Trefresh(n) + 2n
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