
High-order Polynomial Comparison and Masking Lattice-based
Encryption

Jean-Sébastien Coron1, François Gérard1, Simon Montoya2,3, and Rina Zeitoun2

1 University of Luxembourg, Esch-sur-Alzette, Luxembourg
jean-sebastien.coron@uni.lu, francois.gerard@uni.lu

2 IDEMIA, Cryptography & Security Labs, Courbevoie, France
simon.montoya@idemia.com, rina.zeitoun@idemia.com
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Abstract The main protection against side-channel attacks consists in computing every function
with multiple shares via the masking countermeasure. For IND-CCA secure lattice-based encryp-
tion schemes, the masking of the decryption algorithm requires the high-order computation of a
polynomial comparison. In this paper, we describe and evaluate a number of different techniques
for such high-order comparison, always with a security proof in the ISW probing model. As an
application, we describe the full high-order masking of the NIST standard Kyber, with a concrete
implementation on ARM Cortex M architecture, and a t-test evaluation.

1 Introduction

Post-quantum cryptography. The most widely used public-key cryptosystems today are
based on RSA and ECC, but they are breakable in polynomial time using a quantum computer.
While it is currently unknown whether building a scalable quantum computer is feasible or
not, the goal of post-quantum cryptography is to design alternatives to RSA and ECC with
resistance against quantum attacks. Initiated in 2016, the NIST post-quantum standardization
has now entered its final round, with the selection of the Kyber algorithm [BDK+18,ABD+21] for
general encryption. The security of Kyber is based on the hardness of the module learning-with-
errors (M-LWE) problem, which is conjectured to remain hard even with a full-scale quantum
computer.

Side-channel attacks and the masking countermeasure. Lattice-based public-key encryp-
tion schemes are vulnerable to side-channel attacks as any other cryptosystems, see for example
[PPM17,HCY20,XPRO20]. The main countermeasure against side-channel attacks is masking
[CJRR99]. It consists in splitting every variable x into n shares with x = x1 + · · · + xn, and
processing the shares separately. Then, an adversary with a limited number of probes cannot
learn more than an adversary without probes. The study of protecting circuits against high-order
attacks was initiated by Ishai, Sahai and Wagner in [ISW03]. They considered an adversary who
can probe at most t wires in a circuit. They showed how to transform any Boolean circuit C
into a circuit of size O(|C| · t2) secure against such adversary, using n = 2t + 1 shares. This
was later improved by Barthe et al. to n = t + 1 shares only [BBD+16], who introduced the
notions of (Strong) Non-Interference (NI/SNI) to facilitate the writing of security proofs with
the composition of gadgets.

The masking countermeasure was initially developed for securing block-ciphers against side-
channel attacks, for example AES in [RP10]. It appears that securing lattice-based schemes
against high-order attacks offers quite new and interesting challenges, thanks to the rich algo-
rithmic diversity of post-quantum cryptography. While in principle any algorithm can be written



as a Boolean circuit C and then secured by applying [ISW03] with complexity O(|C| · n2) for n
shares, very often that would be too inefficient. For example, lattice-based schemes usually com-
bine Boolean and arithmetic operations, so for efficiency reasons one must repeatedly convert
between arithmetic and Boolean masking. Such high-order conversions were previously consid-
ered modulo 2k in [CGV14], with complexity O(n2 ·k) in both directions.1 This has been recently
extended to prime moduli in [BBE+18] for the high-order masking of the GLP lattice-based sig-
nature scheme. Therefore post-quantum cryptography is an opportunity to enrich the tool set
of high-order masking.

High-order masking of lattice-based schemes. In this paper, we consider the high-order
masking of the IND-CCA decryption of lattice-based schemes, and more specifically the Kyber
scheme selected by NIST for standardization. The Fujisaki-Okamoto (FO) transformation [FO99]
starts from an IND-CPA secure public-key encryption scheme, and transforms it into an IND-
CCA secure PKE generically. Informally, for IND-CCA encryption, a hash of the message m
is used to generate the random coins in the basic IND-CPA encrypt procedure. During IND-
CCA decryption, this is verified via re-encryption. More precisely, the IND-CCA decryption of
lattice-based schemes such as Kyber and Saber comprises the following steps:

1. IND-CPA decryption of the ciphertext c to obtain a message m
2. Re-encryption of m into a ciphertext c′; this includes the binomial sampling of the error

polynomials computed from the hash of m
3. Polynomial comparison between c and c′.

In the following, we recall the state of the art for high-order masking those three steps.
In [SPOG19], the authors described an efficient technique for high-order masking the binomial
sampling in the re-encryption of m at Step 2 above, based on a 1-bit Boolean to arithmetic
conversion modulo q with complexity O(n2); their technique is an extension of a first-order al-
gorithm from [OSPG18]. In [CGMZ22], the authors described high-order table-based conversion
algorithms between arithmetic and Boolean masking, based on the randomized table counter-
measure from [Cor14]. For high-order masking the binomial sampling in the re-encryption of
Kyber and Saber (Step 2), this provides a slightly simpler alternative to [SPOG19], but with
the same O(n2) complexity. For the high-order masking of IND-CPA decryption (Step 1), the
authors also described a modulus switching technique combined with a fast table-based arith-
metic to Boolean conversion, that offers significant efficiency improvement compared to previous
techniques.

Note that to obtain a fully masked implementation, all three steps must be masked, otherwise
this can lead to a CCA attack. For example, if the plaintextm is not masked at Step 2, an attacker
could submit closely related ciphertexts c′ and detect when it decrypts into some m′ 6= m, which
would reveal information about the secret key. Similarly, the polynomial comparison at Step
3 should be correctly masked, otherwise this can also lead to a CCA attack. For example,
in [BDH+21] the authors show that the first-order ciphertext comparison from [OSPG18] is
insecure, because the comparison is performed iteratively on different parts of the ciphertext:
the result of the first comparison leaks information to the attacker and leads to a CCA attack.
The authors of [BDH+21] also considered a similar attack against the high-order polynomial
comparison from [BPO+20], which processed successive blocks of coefficients, and the pass/fail
bit was computed in the clear for each block, which also led to a CCA attack.

1 This complexity can be improved to O(n2 · log k) using [CGTV15], however for usual modulus size (say k ≤ 32)
the number of operations is similar, so in this paper for simplicity we use the O(n2 · k) complexity.
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High-order polynomial comparison. The above attacks show that the polynomial compar-
ison (Step 3) must be an atomic operation that does not leak partial comparison results on a
subset of the coefficients. This is actually required to get any hope of a security proof: namely
in the simulation-based approach, the simulator only gets the final bit b of the ciphertext com-
parison (since the attacker eventually learns the result of the comparison, this bit b can be given
for free to the simulator), but cannot possibly simulate intermediate pass/fail bits, since that
would require the knowledge of the secret key.

When the coefficients of the ciphertexts are Boolean masked, ciphertext comparison is rel-
atively straightforward via a high-order Boolean circuit. Firstly, for each coefficient in {0, 1}k,
one performs a xor between the two ciphertexts (over the Boolean shares), secondly a high-order
And of the complement in {0, 1}k, followed by a final zero-testing of the result to get a single
bit. The complexity is O(`n2 +n2 log k) for ` coefficients and n shares, since one must perform `
secure And’s, each of complexity O(n2), followed by a final zero-test of complexity O(n2 log k).
We recall this procedure in Appendix D.1, with the PolyZeroTestBool algorithm.

Comparing two coefficients x, y in some additive group G is equivalent to zero-testing x−y ∈
G, so in the following we focus on zero-testing. When the coefficients of the ciphertexts are
masked modulo 2k or a k-bit prime q, a straightforward approach is to first perform an arithmetic
to Boolean conversion of each coefficient, so that the zero-testing can be performed over Boolean
shares as previously. We describe the corresponding PolyZeroTestAB algorithm in Appendix D.2.
The complexity is then O(`n2k), because for ` coefficients one must perform ` arithmetic to
Boolean conversions, each with complexity O(n2k); see Table 1 for a summary.

When working with arithmetic shares modulo a prime q as in Kyber, it is actually advanta-
geous to first reduce the zero-testing of the ` coefficients to the zero-testing of κ� ` coefficients
[BDH+21]. This is done via computing κ linear combinations over all coefficients of the polyno-
mial.2 If at least one coefficient is non-zero, such linear combination will be non-zero, except with
probability 1/q. For κ linear combinations, the error probability decreases exponentially to q−κ.
To get an error probability lower than 2−λ, one can therefore take κ = dλ/ log2 qe linear combi-
nations, where λ is the security parameter. This approach is quite efficient as it has complexity
O(`κ ·n) only, which is linear in n (as opposed to quadratic for most high-order gadgets). This is
because the coefficients of the linear sums need not be masked, and therefore each multiplication
has linear complexity in n. We recall the algorithm in Appendix D.3. The authors of [BDH+21]
only described the reduction of zero-testing from ` coefficients to κ� ` coefficients, and did not
describe a full zero-testing procedure. To obtain a full zero-testing procedure, one can use the
PolyZeroTestAB algorithm above for the zero-testing of the remaining κ coefficients.

In [BGR+21], the authors described the first completely masked implementation of Kyber,
secure against first-order and higher-order attacks. For the IND-CPA decryption (Step 1), the
authors consider the threshold function th(x) outputting 0 if x < q/2 and 1 otherwise. They
show that th(x) = x11 ⊕ (¬x11 · x10 · x9 · (x8 ⊕ (¬x8 · x7))), where xi is the i-th bit of x;
namely this corresponds to a binary comparison with the threshold bq/2c. This implies that the
high-order computation of th(x) can be performed by first converting the masking of x from
arithmetic modulo q to Boolean, using [BBE+18]; then th(x) can be computed with high-order
secure implementations of the And and Xor gadgets. For the high-order polynomial comparison
(Step 3), the technique of [BGR+21] consists in performing the comparison with uncompressed
ciphertexts. The advantage of this approach is that the ciphertext compression from Kyber does
not need to be explicitly masked. Given the masked uncompressed polynomials obtained from

2 instead of partial subsets of the coefficients as in [BPO+20], which lead to a CCA attack [BDH+21]
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re-encryption, the ciphertext comparison requires checking that every coefficient belongs to a
certain public range modulo q. Such a range test is performed via two high-order comparisons,
based on arithmetic to Boolean conversions.

Recently, a high-order algorithm for performing the comparison between two ciphertexts
was described in [DHP+22], based on computing linear sums as in [BDH+21], but by switching
to a larger modulus, so that the probability of an incorrect result with a single equality check
becomes negligible. As opposed to [BDH+21], the technique works for both prime and power-
of-two moduli q. More precisely, it converts into a larger modulus 2αp+λ where λ is the security
parameter, so that the false positive probability is at most 2−λ, with αp = 10 for Kyber and Saber.
The final zero-testing is performed using arithmetic to Boolean conversion. The complexity is
dominated by the cost of the conversion of each coefficient into the larger modulus, which
comprises an arithmetic to Boolean conversion (with complexity O(n2 · k) where k = dlog2 qe is
the modulus size), and a Boolean to arithmetic conversion to the larger modulus (with complexity
O(n2·λ) for security parameter λ). Asymptotically, the final complexity is then O(`·n2(k+λ)) for
` coefficients, which is similar to the PolyZeroTestAB approach recalled above (see Table 1 below
for a comparison). The authors also described an efficient implementation of their technique,
faster in practice than [BGR+21], and also a verification of the side-channel security of their
implementation using concrete leakages.

Our contributions. Our first contribution is to describe two new techniques for performing the
high-order ciphertext comparison for a prime modulus q, more efficient than with arithmetic to
Boolean conversion. Our first technique is based on converting from arithmetic masking modulo
q to multiplicative masking, which enables us to perform a zero-test of x without revealing more
information about x. More precisely, starting from the arithmetic shares xi of x = x1 + · · ·+ xn
(mod q), we first convert into a multiplicative sharing u1 · · ·un ·x = B (mod q). With invertible
masks ui ∈ Z∗q , we must have B 6= 0 if x 6= 0, and B = 0 if x = 0, which gives a zero-test of x.
We prove that an adversary with at most n−1 probes does not learn more information about x.
For a single coefficient, the complexity is O(n2), instead of O(n2 · k) with previous approaches.
For zero-testing ` coefficients, we first apply the technique from [BDH+21] to reduce to the zero-
testing of κ � ` coefficients, for κ = dλ/ log2 qe. For zero-testing the remaining κ coefficients
all at once, we again use κ linear combinations, but this time with masked coefficients, so that
we can eventually zero-test each linear combination separately, using the above method. We
describe the corresponding PolyZeroTestMult algorithm in Section 4.1.

Our second algorithm is based on masked exponentiation modulo a prime q, using Fermat’s
little theorem. For zero-testing a single arithmetically masked coefficient x, we high-order com-
pute b = 1 − xq−1 mod q, which gives b = 1 if x = 0, and b = 0 if x 6= 0, as required. With a
square-and-multiply, the complexity is O(n2 · log q). For zero-testing ` coefficients, as previously
we first reduce to the zero-testing of κ � ` coefficients y(j). For zero-testing the remaining κ
coefficients y(j) all at once, we high-order compute the product modulo q of the corresponding
bits b(j) = 1− (y(j))q−1 mod q, which gives b = 1 if all coefficients are zero, and b = 0 otherwise,
as required. We describe the corresponding PolyZeroTestExpo algorithm in Section 4.2. We refer
to Table 1 below for a summary. We show that in practice, both techniques are more efficient
than arithmetic to Boolean conversion (see Section 3.3).

As an application, our second contribution is to improve the efficiency of the high-order
polynomial comparison in Kyber for IND-CCA decryption (Step 3). Recall that in Kyber the
ciphertext coefficients are compressed from modulo q to d bits by computing the function
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Technique Multi coef. Masking Complexity

PolyZeroTestBool Secure And SecAnd Boolean O(`n2 + n2 log k)

PolyZeroTestAB A → B conv. SecAnd mod q, 2k O(`n2k)

[DHP+22] A → B conv. Linear comb. mod q, 2k O(`n2(k + λ))

PolyZeroTestMult Mult. masking Linear comb. mod q O(`κn+ κ2n2)

PolyZeroTestExpo Exponentiation SecMult mod q O(`κn+ κn2 log q)

Table 1: Complexities of polynomial comparison, with ` coefficients and n shares, and a modulus
2k or a k-bit prime q. We write κ = dλ/ log2 qe, where λ is the security parameter.

Compressq,d(x) :=
⌊
(2d/q) · x

⌉
mod 2d. We first consider an alternative approach to [BGR+21],

where we explicitly high-order mask the Compress function during the encryption process. For
this we extend the modulus switching technique from [FBR+21] which was first-order only. To
our knowledge, this is the first proposal for high-order masking the Compress function of Ky-
ber3. We also consider the high-order ciphertext comparison without the Compress function as
in [BGR+21], and we provide an alternative, faster technique when the output size of Compress
is close to the bitsize of q, which is the case for 3/4 of the ciphertext coefficients in Kyber.
Finally, we show that the best strategy for polynomial comparison in Kyber is hybrid: for the
first part of the ciphertext, we do not apply the Compress function and perform the comparison
over uncompressed ciphertexts (as in [BGR+21], but with our faster algorithm), while for the
second part of the ciphertext, we high-order compute the Compress function and perform the
comparison over Boolean shares.

Finally, we provide a detailed description of the masking of the full IND-CCA decryption of
the Kyber scheme at any order. We also describe the practical results of a C implementation of
the full high-order masking of Kyber and Saber. The source code is public and can be found at

https://github.com/fragerar/HOTableConv/tree/main/Masked_KEMs

Finally, we have also performed a t-test evaluation using the ChipWhisperer platform for power
traces.

Follow-up works. Very recently, [DBV22] described a variant of our hybrid method for the
ciphertext comparison in Kyber, in which for the first part of the ciphertext, the results of the
comparison over uncompressed coefficients are converted from arithmetic to Boolean masking.
While the asymptotic complexity remains the same, for a bitsliced implementation, the authors
obtain a 25% speed-up factor compared to our hybrid method. Very recently, the authors of
[BC22] also described a bitsliced implementation of Kyber and Saber, starting from our imple-
mentation of the hybrid method, and achieved significant performance improvement.

2 Notations and security definitions

For any positive integer q, we define r′ = r mod q to be the unique element r′ in the range [0, q[
such that r′ = r (mod q). For an even (resp. odd) positive integer q, we define r′ = r mod± q to

3 In [BGR+21] and [CGMZ22], the masking of the Compress function was considered only for d = 1 bit as output,
as used in IND-CPA decryption.
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be the unique element r′ in the range −q/2 < r′ ≤ q/2 (resp. −(q − 1)/2 ≤ r′ ≤ (q − 1)/2) such
that r′ = r (mod q). For x ∈ Q, we denote by bxe the rounding of x to the nearest integer, with
ties being rounded up. We denote by x� k the shifting of an integer x with k positions to the
right, that is bx/2kc.

We recall below the NI/SNI definitions introduced in [BBD+16]. Those definitions are quite
convenient as they allow the easy composition of gadgets. One can then focus on proving the
NI/SNI property for individual gadgets, and the security of the full circuit will follow by com-
position. The SNI definition is stronger than NI in that the number of input shares required for
the simulation only depends on the number of internal probes, and not on the number of output
shares that must be simulated. If a gadget only satisfies the NI definition, usually this is not a
problem as we can apply some SNI mask refreshing as output and the resulting gadget becomes
SNI (see [BBD+16]). In this paper all our gadgets will be proven either NI or SNI.

Definition 1 (t-NI security). Let G be a gadget taking as input (xi)1≤i≤n and outputting the
vector (yi)1≤i≤n. The gadget G is said t-NI secure if for any set of t1 ≤ t intermediate variables,
there exists a subset I of input indices with |I| ≤ t1, such that the t1 intermediate variables can
be perfectly simulated from x|I .

Definition 2 (t-SNI security). Let G be a gadget taking as input n shares (xi)1≤i≤n, and
outputting n shares (zi)1≤i≤n. The gadget G is said to be t-SNI secure if for any set of t1 probed
intermediate variables and any subset O of output indices, such that t1 + |O| ≤ t, there exists a
subset I of input indices that satisfies |I| ≤ t1, such that the t1 intermediate variables and the
output variables z|O can be perfectly simulated from x|I .

Note that for masking the IND-CCA decryption, when performing the comparison between
two ciphertexts c and c′, the output bit b of the comparison must eventually be computed in
the clear, which means that the n shares bi of b must eventually be recombined. For this we use
the extended notion of NI security from [BBE+18, Definition 7], in which the output b of the
gadget is given to the simulator.

Definition 3 (t-NIo security [BBE+18]). Let G be a gadget taking as input (xi)1≤i≤n and
outputting b. The gadget G is said t-NIo secure if for any set of t1 ≤ t intermediate variables,
there exists a subset I of input indices with |I| ≤ t1, such that the t1 intermediate variables can
be perfectly simulated from x|I and b.

To satisfy this definition, one can use the same approach as in [Cor14] for recombining the
output shares of a block-cipher to output the ciphertext: one performs a sequence of n mask
refreshing, each of complexity O(n), so that the share recombination can be perfectly simulated,
knowing the output bit b. Namely, this output bit b of the comparison can be given for free
to the simulator, since that bit b is eventually known by the adversary. Following [Cor14], this
enables to prove the (n − 1)-NIo property of the share recombination algorithm; see Appendix
B.1 for more details.

In Appendix B.2, we describe a slightly more efficient approach, still with complexity O(n2),
but using only half the randomness.

3 High-order zero testing

In the IND-CCA decryption of lattice-based schemes such as Kyber, according to the Fujisaki-
Okamoto transform, we must perform a comparison between the input ciphertext c̃, and the
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re-encrypted ciphertext c. In the context of the masking countermeasure, the re-encrypted ci-
phertext c is masked with n shares, so we must perform this comparison over arithmetic or
Boolean shares. Moreover, the coefficients of the polynomials c̃ and c must be compared all at
once. Otherwise the leaking of partial comparison results can leak information about the secret
key, as demonstrated in [BDH+21].

In this section, for simplicity, we consider the zero-testing of a single coefficient. We will then
show in Section 4 how to test multiple coefficients at once. With arithmetic shares, comparing
two individual coefficients x and y in Zq is equivalent to zero testing x− y ∈ Zq. Similarly, with
Boolean shares, comparing two coefficients x, y ∈ {0, 1}k is equivalent to zero testing x ⊕ y.
Therefore, in the rest of this section, we focus on zero-testing.

For a single coefficient x, we are therefore given as input the n Boolean shares of x =
x1 ⊕ · · · ⊕ xn ∈ {0, 1}k, or the n arithmetic shares of x = x1 + · · · + xn mod q, and we must
output a bit b, with b = 1 if x = 0 and b = 0 if x 6= 0, without revealing more information
about x. This means that an adversary with at most t = n− 1 probes will learn nothing about
x, except if x = 0 or not. For the security proof, the simulation technique is the same as for
security proofs in the ISW probing model, except that the output bit b is additionally given to
the simulator (see Section 2).

From Boolean shares over {0, 1}k, one can perform a zero-test with complexity O(n2 · log k);
we recall the technique in Appendix C.3 (ZeroTestBoolLog algorithm). From arithmetic shares
modulo q, the simplest technique is to first perform an arithmetic to Boolean conversion, and
then apply the zero-testing on the Boolean shares. The complexity is O(n2k) for a k-bit modu-
lus. We recall the technique in Appendix C.5 (ZeroTestAB algorithm). In Appendix C.6, we also
describe an alternative zero-testing for arithmetic masking based on the generic table recomputa-
tion approach from [CGMZ22], with the register optimization. In that case the countermeasure
has complexity O(n2) only, assuming that we have access to 2k-bit registers. Therefore this
optimization can only work for small k, say up to k = 8.

New zero-testing gadgets. For arithmetic shares modulo a prime q, we describe two new
zero-testing algorithms, more efficient than the state of the art. The first technique (ZeroTestMult
in Section 3.1) is based on converting from arithmetic masking to multiplicative masking, so that
one can distinguish between x = 0 and x 6= 0, without revealing more information about x. The
second technique (ZeroTestExpo in Section 3.2) is based on Fermat’s theorem and consists in
high-order computing b = 1 − xq−1 mod q, which gives b = 1 if x = 0, and b = 0 if x 6= 0, as
required. We will see in Section 4 that for zero-testing ` coefficients at once, these two techniques
are more efficient than arithmetic to Boolean conversion. We refer to Table 2 for a summary.

Technique Masking Complexity

ZeroTestBoolLog Secure And Boolean O(n2 · log k)

ZeroTestAB A → B conversion mod q, 2k O(n2 · k)

ZeroTestMult Mult. masking mod q O(n2)

ZeroTestExpo Exponentiation mod q O(n2 · log q)

Table 2: Complexities of zero testing a single value with n arithmetic shares, and a modulus 2k

or a k-bit prime q.
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For the ciphertext comparison in Kyber, we will describe in Section 5 a hybrid approach
in which the first part of the re-encrypted ciphertext is arithmetically masked modulo q, while
the remaining part is Boolean masked. Therefore, we will use the ZeroTestBoolLog algorithm
for the second part, and for the first part either ZeroTestMult or ZeroTestExpo, which offer
similar performances on Kyber. For Saber, the re-encrypted ciphertext is completely Boolean
shared, so we will use ZeroTestBoolLog. Finally, the ZeroTestAB algorithm will not be used in
our constructions, but we keep this algorithm anyway for comparison.

3.1 Zero testing modulo a prime q via multiplicative masking

Our technique works for prime q only. It is based on converting from arithmetic masking modulo
q to multiplicative masking. When the secret value x is 0, the multiplicatively masked value
remains 0, whereas for x 6= 0, we obtain a random non-zero masked value. This enables us to
distinguish the two cases, without leaking more information about x.

More precisely, given as input the shares xi of x = x1 + · · · + xn (mod q), we convert the
arithmetic masking into a multiplicative masking. For this we generate a random u1 ∈ Z∗q and
we compute:

u1 · x = u1 · x1 + · · ·+ u1 · xn (mod q)

by computing the corresponding shares x′i = u1 · xi mod q for all 1 ≤ i ≤ n. We then perform
a linear mask refreshing of the arithmetic shares x′i. Such linear mask refreshing is not SNI
but it is NI. Moreover, its property is that any subset of n − 1 output shares is uniformly and
independently distributed, as in the mask refreshing from [RP10].

We proceed similarly with the multiplicative shares u2, . . . , un ∈ Z∗q . Eventually we obtain
an arithmetic sharing (Bi)1≤i≤n satisfying:

u1 · · ·un · x = B1 + · · ·+Bn (mod q)

Thanks to the n multiplicative shares ui, we can now safely decode the arithmetic sharing
(Bi)1≤i≤n without revealing more information about x. More precisely, we compute B = B1 +
. . .+Bn (mod q), and we obtain:

u1 · · ·un · x = B (mod q)

Recall that ui ∈ Z∗q for all 1 ≤ i ≤ n. Therefore if x 6= 0, we must have B 6= 0, and if x = 0,
we have B = 0. This gives a zero-test of x. We provide below a pseudocode description of the
corresponding ZeroTestMult algorithm. We recall the LinearRefreshMasks algorithm in Appendix
B.1.

Note that we obtain a bit b directly in the clear. This means that when zero testing multiple
coefficients at once, we cannot keep an n-shared bit b and high-order combine the results of
individual zero-testing. Therefore, to test multiple coefficients at once, we will have to proceed
differently (see Section 4).

Complexity. For simplicity we ignore the reductions modulo q in the operation count. The
complexity of LinearRefreshMask is 3(n− 1) operations. We obtain:

TZeroTestMult(n) = n · (1 + n+ 3(n− 1)) + n = n · (4n− 1) ' 4n2

The technique has therefore complexity O(n2) for a single coefficient. That is, as opposed to the
ZeroTestAB algorithm, the complexity is independent from the size of the modulus q, assuming
that arithmetic operations in Zq take unit time. We will see in Section 3.3 that for zero testing
a single coefficient, the technique is much faster.
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Algorithm 1 ZeroTestMult

Input: x1, . . . , xn ∈ Zq for prime q.
Output: b ∈ {0, 1} with b = 1 if

∑
i xi = 0 (mod q) and b = 0 otherwise

1: (B1, . . . , Bn)← (x1, . . . , xn)
2: for j = 1 to n do
3: uj ← Z∗q
4: (B1, . . . , Bn)← (uj ·B1 mod q, . . . , uj ·Bn mod q)
5: (B1, . . . , Bn)← LinearRefreshMasks(B1, . . . , Bn)
6: end for
7: B ← B1 + · · ·+Bn mod q
8: if B = 0 then return 1
9: else return 0

Security. The following theorem shows that the adversary does not get more information than
whether x = 0 or not. The argument is as follows: if the adversary has at most n − 1 probes,
then at least one multiplication by ui ∈ Z∗q and subsequent mask refreshing has not been probed.
In that case, all output shares of the corresponding mask refreshing can be perfectly simulated,
knowing the output bit b. Namely if x 6= 0, the output shares must encode a random element
in Z∗q (thanks to the multiplication by the random ui ∈ Z∗q which has not been probed), and
if x = 0, the output shares are an encoding of 0. In both cases, since by assumption the mask
refreshing has not been probed, we can provide a perfect simulation of all output shares of the
mask refreshing, which is easily propagated to the end of the algorithm, and eventually the
recombination of the shares and the bit b. We provide the proof in Appendix C.9.

Theorem 1 ((n−1)-NIo of ZeroTestMult). The ZeroTestMult takes as input n arithmetic shares
xi for 1 ≤ i ≤ n and outputs a bit b with b = 1 if

∑n
i=1 xi = 0 (mod q) and b = 0 otherwise.

Any t probes can be perfectly simulated from x|I and b, with |I| ≤ t.

3.2 Zero testing modulo a prime q via exponentiation

Our second technique also works for prime q only. It consists in computing

b = 1− xq−1 (mod q) (1)

By Fermat’s little theorem, we obtain b = 1 if x = 0 (mod q) and b = 0 otherwise, as required.
Given as input the shares xi of x = x1 + · · · + xn (mod q), the exponentiation xq−1 mod q in
(1) can be computed with a square-and-multiply, using a sequence of high-order multiplications
modulo q. Eventually we obtain an arithmetic sharing of b = b1 + · · · + bn (mod q), and we
recombine the shares to get the bit b. The complexity of each high-order multiplication modulo
q is O(n2) for n shares. Hence the complexity is O(n2 ·log q), assuming that arithmetic operations
modulo q take unit time.

We recall in Appendix C.7 the secure multiplication algorithm SecMult, already considered
in [SPOG19]. We then provide in Appendix C.8 the pseudo-code of the ZeroTestExpo algorithm
computing the bit b as in (1). We provide the proof of the following theorem in Appendix C.10.

Theorem 2 ((n− 1)-NIo of ZeroTestExpo). The ZeroTestExpo algorithm is (n− 1)-NIo.
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3.3 Comparison of zero-test algorithms

We provide below a comparison of the 3 zero-test algorithms that work modulo q, with q = 3329
as in Kyber. We see in Table 3 that for testing a single value, ZeroTestMult is more than one
order of magnitude faster than ZeroTestAB and ZeroTestExpo.

Security order t

1 2 3 4 5 6 8 10 12

ZeroTestAB 439 1 393 2 593 4 514 6 681 9 289 15 913 24 386 34 428

ZeroTestExpo 182 474 900 1 460 2 154 2 982 5 040 7 634 10 764

ZeroTestMult 14 33 60 95 138 189 315 473 663

Table 3: Operation count for zero testing with arithmetic masking modulo q, with n = t + 1
shares and q = 3329.

4 High-order polynomial comparison

In this section we extend the zero-testing techniques from Section 3 to multiple coefficients all
at once. We refer to Table 1 in Section 1 for a summary of the resulting algorithms and their
complexity.

To zero-test a set of Boolean masked coefficients (PolyZeroTestBool), we simply perform a
sequence of high-order Ands of the complement in {0, 1}k, followed by a final zero-testing to
get a single bit. The approach is the same for zero testing multiple coefficients arithmetically
masked modulo 2k or a prime q, thanks to arithmetic to Boolean conversion (PolyZeroTestAB).
We describe the two algorithms in appendices D.1 and D.2.

When working modulo a prime q, it is very advantageous to first apply the technique from
[BDH+21] that reduces the zero-testing of ` coefficients to the zero-testing of κ� ` coefficients.
If all coefficients are 0, each linear combination will be 0. If at least one of the coefficients is non-
zero, the linear combination will be non-zero, except with probability 1/q. Therefore, by using
κ linear combinations, we can decrease the error probability to q−κ. To get error probability
lower than 2−λ, we can therefore take κ = dλ/ log2 qe for security parameter λ. We recall the
technique in Appendix D.3. The main advantage is that coefficients of the linear combinations
can be computed in the clear, which implies that the complexity of this first step is only O(n).

The remaining κ coefficients must then be zero tested all at once. For this one can use
the zero-testing based on multiplicative masking (ZeroTestMult), or the zero-testing based on
exponentiation (ZeroTestExpo). When using the ZeroTestExpo algorithm, we keep the resulting
bit of each individual zero-test in shared form, so that we can combine them by high-order
multiplication using the SecMult algorithm. Eventually we recombine the shares to get the result
of the global zero-test.

However, when the zero-testing is based on multiplicative masking (ZeroTestMult), we obtain
the bit b of an individual zero-testing in the clear, so we must proceed differently. Before applying
the zero-testing, we first compute random linear combinations as in [BDH+21], but this time the
coefficients of the linear combination must be masked with n shares. For each linear combination,
we perform a zero-test of the result. As previously, by repeating the procedure κ times, we can
decrease the error probability to 2−λ with κ = dλ/ log2 qe.
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These last two methods (PolyZeroTestExpo and PolyZeroTestMult) both work modulo a prime
q only, so it is interesting to compare their complexities (see Table 1). We see that the exponen-
tiation method is faster for small q, when log2 q �

√
λ. Otherwise, the multiplicative masking

method is faster. For the Kyber scheme, with q = 3329 and targeting λ = 128 bits of security,
we expect the two methods to have a similar level of efficiency, and in practice their running
time is surprisingly close.

4.1 Polynomial comparison modulo q via multiplicative masking

As explained previously, when zero testing a value x modulo q using the multiplicative masking
technique (Section 3.1), we obtain the resulting bit b in the clear, so we cannot zero-test the
coefficients iteratively. Instead, we first compute a random linear combination of the individual
coefficients modulo q, and we then perform a zero-test of the result. This approach is similar
to [BDH+21], except that we must compute the coefficients a(j) in the linear combination in
n-shared form, as otherwise this can leak information on the input coefficients and then cause a
CCA attack.

As previously, we consider as input an arithmetic masking of ` coefficients x(j), that is

x(j) = x
(j)
1 + · · ·+ x

(j)
n (mod q) for all 1 ≤ j ≤ `. We first apply the reduction algorithm from `

to κ coefficients (see Appendix D.3). In the second step, we must therefore zero-test the set of

coefficients y(j) with arithmetic shares y
(j)
i modulo q, that is y(j) = y

(j)
1 + · · ·+ y

(j)
n (mod q) for

all 1 ≤ j ≤ κ.

For this, we generate random coefficients a(j) ∈ Zq, and we high-order compute the linear
combination:

z =
κ∑
j=1

a(j) · y(j) mod q (2)

If y(j) = 0 for all 1 ≤ j ≤ κ, then z = 0. If y(j) 6= 0 for some 1 ≤ j ≤ κ, then we have
z 6= 0, except with probability 1/q. We can therefore perform a zero-test of z. The procedure
can be repeated a small number of times to have a negligible probability of error. Namely, for κ
repetitions with randomly generated a(j), the error probability becomes q−κ.

Equation (2) is high-order computed using the arithmetic shares y
(j)
i of the coefficients y(j).

Similarly the random coefficients a(j) are generated via n random shares a
(j)
i in Zq. This is the

main difference with the linear combination used in Appendix D.3 for the reduction step, in
which the coefficients are computed in the clear. We stress that this time, the coefficients a(j)

must be computed in n-shared form, and the multiplication a(j) · y(j) computed with SecMult.
Namely, the zero-testing is applied on each linear sum, so without masking the a(j)’s, an equation
over the y(j)’s could be leaked with fewer than n probes.

From the high-order computation of (2), we obtain the n shares zi of a linear combination
z. We then apply the zero-test procedure from Section 3.1 on the shares zi, which outputs a
bit b such that b = 1 if z = 0 and b = 0 otherwise. The procedure is repeated κ times, and if
we always obtain b = 1 from the zero-test, we output 1, otherwise we output 0. We provide in
Appendix D.4 a pseudocode description of the corresponding algorithm PolyZeroTestMult.

For security level λ, the error probability must satisfy q−κ ≤ 2−λ, so we can take κ =
dλ/ log2 qe repetitions. In the second step, taking as input κ coefficients, each linear sum compu-
tation and final zero-test has complexity O(κn2). Therefore, the complexity of the second step
is O(κ2n2). The total complexity is therefore O(κ`n + κ2n2). We refer to Appendix D.4 for a
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more precise operation count. Theorems 3 and 4 below prove the soundness and security of the
algorithm respectively; we refer to Appendix D.5 and D.6 for the proofs.

Theorem 3 (Soundness). The PolyZeroTestMult outputs the correct answer, except with prob-
ability at most q−κ.

Theorem 4 ((n−1)-NIo of PolyZeroTestMult). The PolyZeroTestMult algorithm is (n−1)-NIo.

4.2 Polynomial comparison modulo q via exponentiation

In this section, we extend the technique from Section 3.2 to zero test multiple coefficients at once
with the exponentiation method. As previously, we are given as input ` coefficients x(j) ∈ Zq
with arithmetic shares x

(j)
i modulo a prime q, and we must output a bit b = 1 if x(j) = 0 for

all 1 ≤ j ≤ `, and b = 0 otherwise. We first apply the reduction algorithm, so there remains

only κ coefficients y(j) to be zero-tested, from their arithmetic shares y
(j)
i modulo q, that is

y(j) = y
(j)
1 + · · ·+ y

(j)
n (mod q) for all 1 ≤ j ≤ κ.

To perform a zero test of all coefficients y(j) at once, we high-order compute:

b =
∏̀
j=1

(
1− (y(j))q−1

)
(mod q) (3)

and we obtain b = 1 if y(j) = 0 for all 1 ≤ j ≤ `, and b = 0 otherwise, as required. As previously,
Equation (3) can be securely computed by a sequence of high-order multiplication SecMult, using

as input the arithmetic shares y
(j)
i modulo q. The shares of b are only recombined at the end, so

that an adversary with at most t = n− 1 probes does not learn more than the bit b. Since the
complexity of a single SecMult is O(n2), the complexity for κ coefficients is O(κn2 log q), and
the total complexity is therefore O(`κn+ κn2 log q).

We provide in Appendix D.7 a pseudocode description of the corresponding PolyZeroTestExpo
algorithm. The proof of the following theorem is straightforward and is therefore omitted.

Theorem 5 ((n−1)-NIo of PolyZeroTestExpo). The PolyZeroTestExpo algorithm is (n−1)-NIo.

4.3 Comparison of polynomial zero-testing

We compare in Table 4 below the operation count between three polynomial comparison tech-
niques. For PolyZeroTestAB we work modulo 2k with k = 13, while for PolyZeroTestExpo and
PolyZeroTestMult we work modulo q = 3329. We see that both PolyZeroTestExpo and PolyZe-
roTestMult are much faster than PolyZeroTestAB. This is because for a large number of coefficients
`, the asymptotic complexity of PolyZeroTestExpo and PolyZeroTestMult is O(` · n), instead of
O(` ·n2) for PolyZeroTestAB. Namely, the reduction to zero testing κ� ` coefficients with com-
plexity O(n) only works for a prime modulus q. We have also performed a C implementation
that confirms these results, see Table 5 below.
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zero-testing mod q
Security order t

1 2 3 4 5 6 7 8 9

PolyZeroTestAB 61 378 692 1 329 2 045 2 826 3 685 4 934 6 262

PolyZeroTestExpo 44 64 86 109 134 160 188 217 248

PolyZeroTestMult 43 63 83 104 126 149 172 197 223

Table 4: Operation count for polynomial zero testing with arithmetic masking modulo q, with
n = t+1 shares, ` = 768 coefficients, in thousands of operation, with q = 213 for PolyZeroTestAB
and q = 3329 for PolyZeroTestExpo and PolyZeroTestMult. We use κ = 11, in order to reach 128
bits of security.

zero-testing mod q
Security order t

1 2 3 4 5 6 7 8 9

PolyZeroTestAB 221 358 503 991 1 517 1 972 2 425 3 211 4 125

PolyZeroTestMult 83 97 121 164 194 242 268 317 403

PolyZeroTestExpo 79 96 116 153 185 224 254 280 345

Table 5: Running time in thousands of cycles for a C implementation on Intel(R) Core(TM)
i7-1065G7, for the same parameters as in Table 4.

zero-testing Security order t

mod q 1 2 3 4 5 6 7 8 9

PolyZeroTestAB 12 297 34 587 69 174 143 706 230 535 327 357 436 476 593 988 763 797

PolyZeroTestMult 8 734 9 020 9 310 9 881 10 739 11 599 12 461 13 601 15 033

PolyZeroTestExpo 8 856 9 119 9 429 9 826 10 408 10 936 11 555 12 215 13 601

Table 6: Number of calls to the rand() function (outputting a 32-bit value), for the same pa-
rameters as in Table 4.

5 Polynomial comparison for Kyber

In this section, we focus on the polynomial comparison in Kyber [BDK+18]. We will recall in
Section 6 the full Kyber algorithm, and then describe a complete high-order masking of Kyber.

Recall that computations in Kyber are performed in Rq = Zq[X]/(XN + 1) with N = 256
and q = 3329. To reduce the ciphertext size, the coefficients of the ciphertext are compressed
from modulo q to d bits using the function:

Compressq,d(x) :=
⌊
(2d/q) · x

⌉
mod 2d

and are decompressed using the function Decompressq,d(c) :=
⌊
(q/2d) · c

⌉
, with d = du = 10 for

the first part of the ciphertext, and d = dv = 4 for the second part, according to the Kyber768
parameters (see Table 7 below).
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N k q η1 η2 (du, dv) δ

Kyber512 256 2 3329 3 2 (10,4) 2−139

Kyber768 256 3 3329 2 2 (10,4) 2−164

Kyber1024 256 4 3329 2 2 (11,5) 2−174

Table 7: Parameter sets for Kyber.

In the IND-CCA decryption algorithm based on the Fujisaki-Okamoto transform [FO99], we
must perform a polynomial comparison between two compressed ciphertexts: the input cipher-
text c̃, and the re-encrypted ciphertext c. The Compressq,d function is applied coefficient-wise, so
for simplicity we first consider a single coefficient. Let x be the re-encrypted coefficient modulo q
before compression, and let c be the resulting compressed coefficient, that is c = Compressq,d(x).

We must therefore perform the comparison with the input ciphertext c̃ modulo 2d:

c̃
?
= Compressq,d(x) (mod 2d) (4)

There are two possible approaches to perform this comparison. The first approach consists in
performing the comparison as in (4). Since the re-encrypted coefficient x is arithmetically masked
modulo q, we show how to high-order compute Compressq,d(x) with arithmetically masked input

modulo q, and Boolean masked output in {0, 1}d. We can then perform the high-order polynomial
comparison over Boolean shares, using the PolyZeroTestBool algorithm (see Appendix D.1). We
describe in Section 5.1 such high-order computation of the Compress function.

A second approach is to avoid the computation of the Compress function, as in [BGR+21].
Namely instead of performing the comparison over {0, 1}d as in (4), one can equivalently compute
the set of possible candidates x̃i such that c̃ = Compressq,d(x̃i). One must then determine whether
the re-encrypted coefficient x is equal to one of the (public) candidates x̃i, using the n arithmetic
shares of x modulo q. Our contribution compared to [BGR+21] is to describe an alternative,
faster technique when the number of candidates x̃i is small, which is the case for d = du = 10
(see Section 5.2).

Finally, we argue that the best approach is hybrid: for the first `1 = 768 coefficients of
the ciphertext with du = 10, we do not compute the Compress function and apply our faster
technique for the small number of candidates x̃i, and for the remaining `2 = 256 coefficients
with dv = 4, we high-order compute the Compress function. We describe this hybrid approach
in Section 5.3.

5.1 High-order computation of the Compress function

We provide the first description of the high-order computation of the Compress function of Kyber.
Our technique can be seen as a generalization of the first-order technique of [FBR+21], based
on modulus switching: it consists in first using more precision, so that the error induced by the
modulus switching can be completely eliminated, after a logical shift.

The Compress function is defined as:

Compressq,d(x) =

⌊
2d · x
q

⌉
mod 2d

We are given as input an arithmetic sharing of x = x1+. . .+xn (mod q) and we want to compute
a Boolean sharing of y = Compressq,d(x) = y1 ⊕ · · · ⊕ yn ∈ {0, 1}d. Note that in [BGR+21], the
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authors only described the high-order masking of the Compress function with 1-bit output, which
corresponds to the IND-CPA decryption function of Kyber. Here we high-order mask Compress
for any number of output bits d (for example d = du = 10 or d = dv = 4 in Kyber768). For the
special case d = 1 there are more efficient techniques, see for example [BGR+21] and [CGMZ22].

We proceed as follows. We first perform a modulus switching of the input coefficients xi but
with more precision; that is we work modulo 2d+α for some parameter α > 0 and compute:

z1 =

⌊
x1 · 2d+α

q

⌉
+ 2α−1 mod 2d+α, zi =

⌊
xi · 2d+α

q

⌉
mod 2d+α for 2 ≤ i ≤ n

The rounding can be computed by writing:⌊
xi · 2d+α

q

⌉
=

⌊
xi · 2d+α

q
+

1

2

⌋
=

⌊
xi · 2d+α+1 + q

2q

⌋
which is the quotient of the Euclidean division of xi · 2d+α+1 + q by 2q.

We then perform an arithmetic to Boolean conversion of the arithmetic shares z1, . . . , zn,
followed by a logical shift by α bits. This can be done with complexity O((d + α) · n2) using
[CGV14]. By definition we obtain:

y1 ⊕ · · · ⊕ yn =

⌊(
n∑
i=1

zi

)
/2α

⌋
(mod 2d) (5)

and eventually we output the Boolean shares y1, . . . , yn. We show below that we indeed have
Compressq,d(x) = y1 ⊕ · · · ⊕ yn as required, under the condition 2α > q · n. This condition
determines the number α of bits of precision as a function of the number of shares n. We
provide the pseudocode in Algorithm 2 below.

Algorithm 2 HOCompress

Input: x1, . . . , xn ∈ Zq
Output: y1, . . . , yn ∈ {0, 1}d such that y1 ⊕ · · · ⊕ yn = Compressq,d(x1 + · · ·+ xn)
1: α← dlog2 (q · n)e
2: z1 ← b(x1 · 2d+α+1 + q)/(2q)c+ 2α−1 mod 2d+α

3: for i = 2 to n do zi ← b(xi · 2d+α+1 + q)/(2q)c mod 2d+α

4: (c1, . . . , cn)← ArithmeticToBoolean(d+ α, (z1, . . . , zn))
5: for i = 1 to n do yi ← ci � α
6: return y1, . . . , yn

Theorem 6 (Soundness). Given x1, . . . , xn ∈ Zq as input for odd q ∈ N, the algorithm
HOCompress computes y1, . . . , yn ∈ {0, 1}d such that y1 ⊕ · · · ⊕ yn = f(x1 + · · · + xn) where
f(x) = bx · 2d/qe mod 2d.

Proof. Given x ∈ Zq, we have:

f(x) =

⌊
x · 2d

q

⌉
mod 2d =

⌊
x · 2d

q
+

1

2

⌋
mod 2d =

⌊
x · 2d+1 + q

2q

⌋
mod 2d
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We write the Euclidean division x ·2d+1+q = y ·(2q)+δ with y, δ ∈ Z and 0 ≤ δ < 2q. Therefore
f(x) = y (mod 2d). Moreover we must have δ 6= 0, since otherwise x = 0 (mod q), which gives
y = 1/2, a contradiction. Therefore 0 < δ < 2q.

In the following we compute the modular reduction over Q. We have for some |e| ≤ n/2:

n∑
i=1

zi =
n∑
i=1

⌊
xi · 2d+α

q

⌉
+ 2α−1 =

n∑
i=1

xi · 2d+α

q
+ 2α−1 + e (mod 2d+α)

=
x · 2d+α

q
+ 2α−1 + e = 2α · x · 2

d+1 + q

2q
+ e (mod 2d+α)

= 2α ·
(
y +

δ

2q

)
+ e = 2α · y + 2α

(
δ

2q
+ e · 2−α

)
(mod 2d+α)

From (5), if we ensure that 0 ≤ δ/(2q) + e · 2−α < 1, then we must have y = f(x) = y1⊕· · ·⊕ yn
as required. Since 0 < δ < 2q, it is sufficient to ensure that e · 2−α < 1/(2q), and therefore a
sufficient condition is n · 2−α < 1/q. Therefore it is sufficient to ensure 2α > q · n. ut

Complexity of HOCompress. The number of operations of the HOCompress algorithm above
is THOComp(n, d, q) = 5n + 1 + TAB(d + α, n). We refer to [CGV14] for the operation count of
arithmetic to Boolean conversion, with TAB(d + α, n) = O((d + α) · n2). With d < log2 q and
α = dlog2(q · n)e, the total complexity of HOCompress is therefore O(n2 · (log q + log n)).

Security. The following theorem shows that the HOCompress achieves the (n− 1)-NI property.
The proof follows from the (n − 1)-NI property of the ArithmeticToBoolean algorithm, and the
fact that the perfect simulation of zi requires the knowledge of the input xi only.

Theorem 7 ((n− 1)-NI security). The HOCompress algorithm achieves the (n− 1)-NI prop-
erty.

Polynomial comparison with Compress. Recall that we must perform the comparison c̃
?
=

Compressq,d(x), where for simplicity we consider a single coefficient c̃. By applying the HOCom-
press algorithm, we obtain n Boolean shares such that c = c1 ⊕ · · · ⊕ cn. We must therefore
zero-test the value (c1 ⊕ c̃)⊕ c2 ⊕ · · · ⊕ cn, which can be done using the ZeroTestBool algorithm
from Appendix C.3.

For multiple coefficients, we apply the HOCompress algorithm separately on each coefficient
x(j) of the re-encrypted uncompressed ciphertext. We obtain the compressed ciphertext c masked
with n Boolean shares. As previously, we xor each coefficient of the input ciphertext c̃ with the
first share of the corresponding coefficient in c, and we apply the PolyZeroTestBool algorithm
from Appendix D.1 to perform the comparison.

5.2 Polynomial comparison for Kyber without Compress

In this section we consider an alternative approach for ciphertext comparison, already used
in [BGR+21], that performs the comparison on uncompressed ciphertexts, in order to avoid
the high-order computation of the Compressq,d(x) function as above. Under this approach, we
describe a more efficient technique for ciphertext comparison for d = du = 10, which is the case
for 3/4 of the polynomial coefficients in Kyber.
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For simplicity, we first consider a single polynomial coefficient. Given a compressed in-
put ciphertext c̃ and an uncompressed re-encrypted ciphertext x, we must check that c̃ =
Compressq,d(x), where x is arithmetically masked with n shares modulo q. For this we use the
equivalence:

c̃ = Compressq,d(x)⇐⇒ x ∈ Compress−1q,d(c̃)

Given c̃ as input, we must therefore compute the (public) list of candidates Compress−1q,d(c̃), which
corresponds to a certain interval in Zq, and check whether x belongs to this interval. For this, the
authors of [BGR+21] describe a high-order algorithm that performs two high-order comparisons
with the interval bounds. We recall the corresponding RangeTestShares algorithm in Appendix
E.3, with the pseudo-code and the operation count.

However, we observe that when the number of candidates is small (which is the case for
d = du = 10), it is more efficient to perform individual comparisons. More precisely, letting
{x̃1, . . . , x̃m} = Compress−1q,d(c̃) be the list of candidates, we must test that x = x̃i for some
1 ≤ i ≤ m. Recall that x is arithmetically masked with n shares modulo q. Therefore we can
high-order compute z =

∏m
i=1(x− x̃i) mod q and then apply a high-order zero-test of z modulo

q. We describe the technique below.

Computing the set of candidates. Given a compressed coefficient c̃, we must compute the
list of candidates Compress−1q,d(c̃). While such preimage can be easily tabulated for all its 2d

possible inputs (as done in [BGR+21]), in the following we describe a concrete algorithm. This
can be useful for embedded applications with limited memory.

From [BDK+18], we know that for any x ∈ Zq such that c̃ = Compressq,d(x), letting y =

Decompressq,d(c̃) =
⌊
(q/2d) · c̃

⌉
we must have:

|y − x mod± q| ≤ Bq,d :=
⌊ q

2d+1

⌉
Therefore the number of candidates is upper-bounded by 2Bq,d + 1; see Table 8 for the value of
the upper-bound, and the maximum number of candidates, for q = 3329.

d = 4 d = 5 d = 10 d = 11

2 ·Bq,d + 1 209 105 5 3

Nmax 209 105 4 2

Table 8: Upper-bound on the number of candidates, and maximum number of candidates Nmax,
for q = 3329.

The following lemma shows that there are always at least 2Bq,d − 1 candidates around the
decompressed value y, with possibly 2 additional candidates. We can then test these 2 candidates
by applying the Compress function. Given 0 ≤ a < b < q, we denote by [a, b]q the discrete
interval {a, a+ 1, . . . , b}; similarly given 0 ≤ b < a < q, we denote by [a, b]q the discrete interval
{a, a+ 1, . . . , q − 1, 0, 1, . . . , b}. In Appendix E.1, we provide the proof of the following Lemma,
from which we derive a concrete algorithm.

Lemma 1. Assume d < dlog2 qe. Let c̃ ∈ Z2d and let y = Decompressq,d(c̃). We have [y−Bq,d+

1, y +Bq,d − 1]q ⊂ Compress−1q,d(c̃) ⊂ [y −Bq,d, y +Bq,d]q.
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Individual comparisons. We see in Table 8 that the number of candidates is small for d =
10, 11, so we describe an alternative algorithm to the range test performed in [BGR+21], based
on individual comparisons. Letting {x̃1, . . . , x̃m} = Compress−1q,d(c̃) be the list of candidates, we
must test whether x = x̃i for some 1 ≤ i ≤ m. For this, given an arithmetically masked x with
n shares with x = x1 + · · ·+ xn (mod q), we high-order compute the value

z =
m∏
i=1

(x− x̃i) mod q (6)

and we have that z = 0 (mod q) if and only if x = x̃i for some 1 ≤ i ≤ m. We provide in
Appendix E.2 the pseudocode description of the corresponding SecMultList algorithm, and its
proof of security against t = n − 1 probes. As a second step, one can then apply a high-order
zero-test of z modulo q, either the ZeroTestMult algorithm from Section 3.1, or the ZeroTestExpo
algorithm from Section 3.2.

The above applies for a single coefficient x. In reality we must compare ` coefficients, so for
each coefficient x(j) whose compressed value must be compared to the coefficient c̃j of the input
ciphertext c̃, we compute the corresponding list of candidates from c̃j , and then the corresponding
arithmetically masked z(j), which must all be equal to 0. Therefore a polynomial zero-test is
applied to the set of arithmetically masked z(j)’s modulo q, either the PolyZeroTestMult algorithm
from Section 4.1, or the PolyZeroTestExpo algorithm from Section 4.2.

5.3 Ciphertext comparison in Kyber: hybrid approach

We first compare in Table 9 the efficiency of the approaches with and without Compress. Since
the number of candidates is small for the coefficients with compression parameter du = 10
bits, without using the Compress function we can use either the RangeTestShares algorithm from
[BGR+21], or our SecMultList algorithm. We see in Table 9 that the latter is significantly faster. It
is also faster than applying the Compress function with our HOCompress algorithm. On the other
hand, for the coefficients with compression to dv = 4 bits, without using the Compress function,
one must use the RangeTestShares algorithm from [BGR+21]. But we see that our HOCompress is
nevertheless faster. The reason is that it uses only a single arithmetic to Boolean conversion with
a power-of-two modulus, whereas RangeTestShares uses two arithmetic to Boolean conversions,
moreover modulo q, which is more costly than with power-of-two moduli.

In summary, from Table 9, we deduce that for d = du = 10, our SecMultList approach
without Compress is faster, while for d = dv = 4, our HOCompress algorithm is faster. Therefore,
to perform the ciphertext comparison in Kyber, we use a hybrid approach, applying the Compress
function only for the last `2 = 256 coefficients of the ciphertext, for which d = dv = 4.

Security order t

1 2 3 4 5 6 7

du = 10

RangeTestShares [BGR+21] 707 2 318 4 314 7 577 11 225 15 620 20 400

SecMultList 45 120 230 375 555 770 1 020

HOCompress 131 868 1 579 3 181 4 898 6 764 8 809

dv = 4
RangeTestShares [BGR+21] 707 2 318 4 314 7 577 11 225 15 620 20 400

HOCompress 101 658 1 195 2 431 3 740 5 162 6 721

Table 9: Comparison of the RangeTestShares, SecMultList and HOCompress algorithms, in number
of operations, for q = 3329 and d = du = 10 or d = dv = 4.
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Procedure for ciphertext comparison. We summarize our hybrid approach below. Recall
that for masking the IND-CCA decryption of Kyber, we must perform a comparison between
the unmasked input ciphertext c̃, and the masked re-encrypted ciphertext c. Moreover, with the
Kyber768 parameters, a ciphertext consists of 4 polynomials with 256 coefficients each. The co-
efficients of the first 3 polynomials are compressed with du = 10 bits, while the coefficients of the
last polynomial are compressed with dv = 4 bits. Starting from the re-encrypted uncompressed
ciphertext cu which is masked modulo q, and given the input ciphertext c̃, we proceed as follows:

1. For each of the first `1 = 768 coefficients of cu, with compression parameter du = 10, we use
the individual comparison technique from Section 5.2 (Algorithm SecMultList). We obtain a
set of values z(j) arithmetically masked modulo q, that must all be equal to 0, for 1 ≤ j ≤ `1.

2. For each of the last `2 = 256 coefficients of cu, we apply the HOCompress algorithm with
dv = 4 bits. We obtain a set of `2 coefficients c(j) for 1 ≤ j ≤ `2, which are Boolean masked
with n shares.

3. We xor each of the last `2 coefficients of the input ciphertext c̃ to the first Boolean share
of each of the corresponding `2 coefficients c(j). This gives a vector of `2 coefficients x(j) for
1 ≤ j ≤ `, which are Boolean masked with n shares, and that must all be equal to 0.

4. We apply the PolyZeroTestBool algorithm (Alg. 21) to the set of `2 coefficients x(j), but
without recombining the shares at the end of the ZeroTestBoolLog algorithm. More precisely,
we obtain Boolean shares bi for 1 ≤ i ≤ n, with b′ = b1 ⊕ · · · ⊕ bn and b′ = 1 if the `2
coefficients x(j) are zero, and b′ = 0 otherwise.

5. We take the complement of b′ by taking the complement of b1, and convert the result from
Boolean to arithmetic masking modulo q, using the table-based algorithm from [CGMZ22].
We obtain an additional coefficient z(`1+1) arithmetically masked modulo q, and that must
be equal to 0.

6. Finally, we perform a zero-test of the `1 + 1 coefficients z(i) for 1 ≤ i ≤ `1 + 1, using either
the PolyZeroTestExpo or the PolyZeroTestMult algorithm. We obtain a bit b = 1 if the two
ciphertexts are equal, and b = 0 otherwise, as required.

5.4 Operation count and concrete running time

We provide in Table 10 a comparison of the operation count for the ciphertext comparison in
Kyber, first using the approach from [BGR+21] without Compress, and then our hybrid approach
described in the previous section, with either the PolyZeroTestExpo or the PolyZeroTestMult
methods. We see that the hybrid approach is significantly faster, especially for high security
orders. We have also performed a C implementation that confirms these results, see Table 11
below.

Polynomial comparison Security order t

in Kyber 1 2 3 4 5 6 7 8

Without Compress [BGR+21] 786 2 574 4 792 8 413 12 465 17 346 22 657 29 770

Hybrid, with PolyZeroTestExpo 121 351 606 1 071 1 584 2 156 2 794 3 650

Hybrid, with PolyZeroTestMult 121 350 603 1 065 1 575 2 144 2 778 3 629

Table 10: Operation count for the three proposed methods to perform ciphertext comparison
(with Compress and without Compress using PolyZeroTestExpo or PolyZeroTestMult), in thou-
sands of operations.
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Polynomial comparison Security order t

in Kyber 1 2 3 4 5 6 7 8

Without Compress [BGR+21] 1 395 3 722 6 230 9 619 14 517 19 206 24 783 33 675

Hybrid, with PolyZeroTestExpo 191 415 563 914 1 641 2 249 2 745 3 758

Hybrid, with PolyZeroTestMult 185 410 562 966 1 731 2 046 2 829 3 842

Table 11: Running time in thousands of cycles for a C implementation on Intel(R) Core(TM)
i7-1065G7, for the three methods considered in Table 10.

6 Fully masked implementation of Kyber

Kyber is the lattice-based encryption scheme selected for standardization by the NIST competi-
tion [BDK+18,ABD+21]. Its security is based on the hardness of the module learning-with-errors
(M-LWE) problem. The IND-CCA secure key establishment mechanism (KEM) is obtained by
applying the Fujisaki-Okamoto transform [FO99,HHK17]. The Kyber submission provides three
parameters sets Kyber512, Kyber768 and Kyber1024, with claimed security levels equivalent to
AES-128, AES-192 and AES-256 respectively. The three parameter sets share the common pa-
rameters N = 256, q = 3329 and η2 = 2, while the security level is defined by setting the module
rank k = 2, 3, 4, and the parameters η1, dt, du and dv (see Table 7).

We refer to Appendix F for an overview of ring-LWE encryption [LPR10]. In the following,
we first recall the definition of the Kyber scheme. We then describe the evaluation of the Kyber
decapsulation mechanism, secure at any order, using the techniques from the previous sections.

6.1 The Kyber Key Encapsulation Mechanism (KEM)

The Kyber IND-CPA encryption. The Kyber scheme is based on the module learning-with-
errors problem (M-LWE) in module lattices [LS15]. For a modulo rank k, we use a public random
k × k matrix A with elements in Rq. We set χη as the centered binomial distribution with
support {−η, . . . , η}, and extended to the distribution of polynomials of degree N with entries
independently sampled from χη. The public-key is t = A·s+e ∈ Rkq and the secret key is s, where

s, e ← χkη1 for some parameter η1. To CPA-encrypt a message m ∈ R with binary coefficients,

one computes (c1, c2) ∈ Rkq × Rq such that c1 = AT · r + e1 and c2 = tT · r + e2 + bq/2e ·m,

where r← χkη1 , e1 ← χkη2 and e2 ← χη2 , for some parameter η2. To decrypt a ciphertext (c1, c2),
one computes:

u = c2 − sT · c1 = eT · r + e2 − sT · e1 + bq/2e ·m ≈ bq/2e ·m

Kyber instantiates the M-LWE-based encryption scheme above with N = 256 and a prime
q = 3329; see Table 7 for the other parameters. We recall the pseudo-code from [BDK+18]
below. For simplicity we omit the NTT transform for fast polynomial multiplication. The NTT
is indeed a linear operation, so it is easily masked with arithmetic masking modulo q.

Algorithm 3 Kyber.CPA.KeyGen()

1: ρ, σ ← {0, 1}256
2: A← Rk×kq := Sam(ρ)

3: s, e← χkη1 × χ
k
η1 := Sam(σ)

4: t := Compressq,dt(As + e)
5: return pk := (t, ρ), sk := s
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Algorithm 4 Kyber.CPA.Dec(sk, c = (u, v))

1: u := Decompressq,du(u)
2: v := Decompressq,dv(v)

3: return Compressq,1(v − sTu)

Algorithm 5 Kyber.CPA.Enc(pk,m)

1: r ← {0, 1}256
2: t := Decompressq,dt(t)

3: A← Rk×kq := Sam(ρ)

4: r, e1, e2 ← χkη1 × χ
k
η2 × χη2 := Sam(r)

5: u := Compressq,du(AT r + e1)

6: v := Compressq,dv(tT r + e2 + bq/2e ·m)
7: return c := (u, v)

The Kyber CCA-secure KEM. The Kyber scheme provides a CCA-secure key encapsulation
mechanism, based on the Fujisaki-Okamoto transform [FO99]. We recall the pseudo-code from
[BDK+18] below. It requires two different hash functions H and G. The main principle of the
Fujisaki-Okamoto transform is to check the validity of a ciphertext by performing a re-encryption
with the same randomness (see the variable r′ at Line 3 of Algorithm 7 below), and a comparison
with the original ciphertext.

Note that the Kyber.Decaps algorithm does not output ⊥ for invalid ciphertexts, as originally
in the FO transform. Instead, it outputs a pseudo-random value from the hash of a secret seed z
and the ciphertext c. This variant of the FO transform was proven secure in [HHK17]. However,
the variant remains secure even if the adversary is given the result of the ciphertext compari-
son, under the condition that the IND-CPA scheme is γ-spread, which essentially means that
ciphertexts have sufficiently large entropy (see [HHK17]), which is the case in Kyber. Therefore,
in the high-order masking of Kyber, the bit b of the comparison can be computed in the clear
(as in [BGR+21]), because for the simulation of the probes the bit b can be given for free to the
simulator.

Algorithm 6 Kyber.Encaps(pk)

1: m← {0, 1}256
2: (K̂, r) := G(H(pk),m)
3: c := Kyber.CPA.Enc(pk,m; r)
4: K = H(K̂,H(c))
5: return c,K

Algorithm 7 Kyber.Decaps(sk = (s, z, t, ρ), c =
(u, v))

1: m′ := Kyber.CPA.Dec(s, c)
2: (K̂ ′, r′) := G(H(pk),m′)
3: (u′, v′) := Kyber.CPA.Enc((t, ρ),m′; r′)
4: if (u′, v′) = (u, v) then

return K := H(K̂ ′, H(c))
5: else return K := H(z,H(c))

6.2 High-order masking of Kyber

We describe the high-order masking of the Kyber.Decaps algorithm recalled above (Algorithm
7), using the techniques from the previous sections.

1. We consider Line 1 of Algorithm 7, with the IND-CPA decryption as the first step. We assume
that the secret key s ∈ Rk is initially masked with n shares, with s = s1 + · · ·+ sn (mod q),
where si ∈ (Rq)k for all 1 ≤ i ≤ n. Therefore, at Line 3 of the Kyber.CPA.Dec algorithm,
we obtain a value v − sTu that is arithmetically n-shared modulo q. We must therefore
compute the Compressq,1 function on this value. For this we use the modulus switching and
table recomputation technique from [CGMZ22], which outputs a Boolean masked message
m′ = m1 ⊕ · · · ⊕mn = th(v − sTu).
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2. At Line 2 of Algorithm 7, starting from the Boolean masked m′, we use an n-shared Boolean
implementation of the hash function G, and obtain as output the Boolean n-shared values
K̂ ′ and r′.

3. At Line 3 of Algorithm 7, we start with Line 4 of Algorithm 5 which is the masked bino-
mial sampling. Starting from the Boolean n-shared r′, we must obtain values r, e1 and e2
which are arithmetically n-shared modulo q. For this we use the n-shared binomial sam-
pling from [CGMZ22], based on Boolean to arithmetic modulo q conversion (based on table
recomputation). We use the random generation modulo q described in Appendix A.

4. We proceed with lines 5 and 6 of Algorithm 5. We obtain the values AT · r + e1 and tT · r +
e2 +bq/2e ·m arithmetically n-shared modulo q. In particular, the n-shared value bq/2e ·m is
obtained using the table-based Boolean to arithmetic modulo q conversion from [CGMZ22].

5. At Line 6 of Algorithm 5, the n-shared value tT · r + e2 + bq/2e ·m is high-order compressed
into v′ using the HOCompress algorithm from Section 5.1. The value v′ is therefore Boolean
n-shared in {0, 1}dv . On the other hand, the vector u′ at Line 5 is left uncompressed.

6. For the ciphertext comparison at Line 4 of Algorithm 7, we use the hybrid technique from Sec-
tion 5.3 with the arithmetically masked modulo q uncompressed vector u′, and the Boolean
masked compressed value v′. We obtain a bit b in the clear.

7. Finally, if b = 1, we use the Boolean n-shared K̂ ′ to obtain a Boolean n-shared session key
K, using an n-shared implementation of H. Similarly, if b = 0, we use the Boolean n-shared
secret z to obtain the Boolean n-shared session key K.

7 Fully masked implementation of Saber

Saber [BMD+21] is based on the hardness on the module learning-with-rounding (M-LWR)
problem. The difference with Kyber is that instead of explicitly adding error terms e, e1, e2 from
a “small” distribution, the errors are deterministically added by applying a rounding function
mapping Zq to Zp with p < q. For Saber, both p and q are powers of two; therefore the rounding
function is a shift extracting the log2(p) most significant bits of its input. We provide in Appendix
G the description of a fully masked implementation of Saber, as we did for Kyber in the previous
section.

8 Practical implementation and leakage evaluation

8.1 Implementation of Kyber and Saber

We have implemented in C a high-order version of the algorithm Kyber.Decaps, following the
description of Section 6.2. For comparison, we have also performed a high-order implementation
of the Saber algorithm. We refer to Appendix G.2 for a description. For both schemes, we have
targeted the parameter set corresponding to NIST security category 3 (parameter Kyber768 for
Kyber, see Table 7). We have run our implementation on a laptop and an embedded component.
We provide the source code of the laptop implementation at:

https://github.com/fragerar/HOTableConv/tree/main/Masked_KEMs

For the embedded component, we have used a 100 MHz ARM Cortex-M3 architecture with
48k of RAM, which also includes a hardware accelerator for secure 32-bit random generation.
Such component is used in real-life products like bank cards, passports, secure elements, etc.4

4 Due to intellectual properties reasons, the component name or detailed description cannot be given.
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The embedded code is almost the same as for the laptop implementation, except for the random
generation which uses the hardware accelerator. We have also performed some RAM optimization
in order to reduce the number of temporary variables without changing the number of operations.

Kyber. Our high-order implementation of Kyber.Decaps follows the description from Section
6.2. To generate random integers modulo q, we use the technique described in Algorithm 8 (see
Appendix A), starting from a 32-bit random number generator. The timings are summarized in
Table 12. For the embedded implementation, we can reach at most a security order of 3, due to
RAM limitation.

Security order t

0 1 2 3 4 5 6 7

Intel i7 133 1 164 2 225 4 723 6 613 11 177 14 174 19 806

ARM Cortex-M3 3 173 21 492 39 539 69 348 - - - -

Table 12: Kyber.Decaps cycles counts on Intel(R) Core(TM) i7-1065G7 and ARM Cortex-M3, in
thousands of cycles.

Saber. Our high-order implementation of Saber.Decaps follows the description from Appendix
G.2. As for Kyber, the embedded implementation can reach at most a security order 3, due to
RAM limitation. The timings are summarized in Table 13.

Security order t

0 1 2 3 4 5 6 7

Intel i7 100 352 933 1 585 2 828 4 208 5 621 7 251

ARM Cortex-M3 5 682 17 805 42 662 67 389 - - - -

Table 13: Saber.Decaps cycles counts on Intel(R) Core(TM) i7-1065G7, in thousands of cycles.

We see that for both Kyber and Saber the performance gap between the unmasked and
the order 1 versions is fairly large. This is because we have used generic gadgets only, with
no optimization at order 1. In practice, for first-order security, a significantly lower penalty
factor could be obtained via some optimizations. In particular, all techniques based on table
recomputation are much more efficient at order 1, since in that case the table can be randomized
once and read multiple times.

8.2 Side-channel resistance evaluation

In order to validate our masking scheme beyond the theoretical framework, we have used the
popular ChipWhisperer-Lite platform to get power traces of the execution on a Cortex-M4
core (STM32F303) of the basic zero-test gadgets from Section 3. The reason for performing
benchmarks and experiments on different platforms (Intel, Cortex-M3, and Cortex-M4) is the
following. Performing benchmarks on x86 enables to reach much higher security orders than
for embedded implementations due to RAM limitation. For the embedded component, we have
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used a Cortex-M3 component since it is widely used in real-life products (bank cards, passports,
etc). For the side-channel evaluation we have used the ChipWhisperer-Lite which includes a
Cortex-M4 by default.

For the leakage assessment on the ChipWhisperer-Lite platform, we have rewritten the gad-
gets specifically at order 1 in ARM assembly, in order to limit potential side-channel unsafe
modifications from the compiler. We have conducted a fixed versus random t-test using the
methodology described in [SM15]. The idea is to perform several measurement of the power
consumption while the device under attack is executing the targeted gadget either with a fixed
secret value chosen beforehand or with a random value sampled before each measurement. One
keeps track of which measurement is using the fixed value, and thus one creates two sets of traces
corresponding to the fixed and the random values respectively. The t-test will then be used as
a distinguisher between the two sets at each point in the power traces. If the values output by
the t-test are high, it means that the two sets seems statistically different and that an adversary
can potentially use this information to learn something about the secret value. In practice, we
have used a set of 10 000 traces for each gadget. For each trace, a coin was flipped to determine
whether the random or the fixed secret value should be used.

The results of the t-test can be found in figures 1, 2 and 3. We see that when the RNG
is switched off, the random and fixed inputs are distinguishable as the t-values are well above
the usual threshold |t| > 4.5. When the random number generator is switched on, values are
properly masked and the test is successful on all the zero-test gadgets.

In practice, obtaining these results was not trivial. Our first attempt was to directly take
measurements using the C code used for the benchmarks in the previous section. Unfortunately,
the traces were not leakage-free. We suspected that the compiler was generating assembly code
that handled shares in an unsecured manner. To solve this issue, we decided to rewrite the
gadgets directly in ARM assembly to obtain a full control over the instructions executed by the
device. This greatly improved the situation, but in some cases, we still had some unexplained
leakage due to the micro-architecture. More specifically, it appeared that manipulating the shares
one after the other was a bad practice and would create leakage between instructions. This can
be fixed by either rethinking the code in order to create some space or adding some dummy
instructions.

(a) RNG off (b) RNG on

Figure 1: t-test ZT-Bool.
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(a) RNG off (b) RNG on

Figure 2: t-test ZT-Mul.

(a) RNG off (b) RNG on

Figure 3: t-test ZT-Expo.

9 Conclusion

In this paper, we have described efficient techniques for high-order polynomial comparison, as
used in lattice-based schemes with the Fujisaki-Okamoto transform. As an application, we have
considered the high-order polynomial comparison in the NIST encryption standard Kyber. We
have provided the first high-order description of the Compress function in Kyber, in order to
perform the comparison on compressed ciphertexts. We have shown that the best approach is
actually hybrid, with the Compress function being applied only on the last part of the ciphertext,
while the rest is left uncompressed for the comparison. Finally, we have provided a complete
description of the high-order masking of the IND-CCA decryption of the Kyber scheme at any
order, with the practical results of a C implementation, and a t-test evaluation.
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mission to round 3 of the NIST post-quantum project. Specification document (update from August
2021). 2021-08-04., 2021.
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BC22. Olivier Bronchain and Gaëtan Cassiers. Bitslicing arithmetic/boolean masking conversions for fun
and profit with application to lattice-based kems. Cryptology ePrint Archive, Report 2022/158, 2022.
https://ia.cr/2022/158.

BDH+21. Shivam Bhasin, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöppelmann, and Michiel Van Beiren-
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A Random generation modulo q

To generate a random integer in Zq, one can generate a random k-bit integer where the gap
2k− i ·q is small for some i. By rejection sampling, one obtains a uniformly distributed integer in
[0, i·q[, from which we obtain a uniformly distributed integer modulo q, with rejection probability
1−i·q/2k. For example, with q = 3329, one can take k = 16 and i = 19, with rejection probability
0.035.

We can also use the trick described in [Lum13, Section 3]. It consists in generating a random
integer modulo q2, which enables to extract two random integers modulo q; we can of course use
higher powers of q. As previously, we generate a random k-bit integer such that the gap 2k− i ·q2
is small. The rejection probability is then 1− i · q2/2k. For example, with q = 3329, we can use
k = 25 and i = 3, and the rejection probability is 0.009, so we are using 12.5 bits per random
integer modulo q, with rejection probability 0.0046 per random integer. We can also use k = 32
and i = 387, which gives 16 bits per random integer as previously, but with rejection probability
0.0007 per random integer (instead of 0.035, so a factor 50 improvement in rejection rate). We
describe the pseudo-code below, to be run with parameters (i, k, q) = (387, 32, 3329).
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Algorithm 8 randomModq

Input: Parameters i, k, q such that i · q2 < 2k.
Output: r1, r2 uniformly distributed in Zq.
1: r := 2k

2: while r ≥ i · q2 do
3: r ← {0, 1}k
4: end while
5: r := r mod q2

6: return (r mod q, br/qc)

B Share recombination

B.1 Share recombination with n linear mask refreshing

When performing the comparison between two ciphertexts c and c′, the output bit b of the
comparison must eventually be computed in the clear, which means that the n shares bi of b
must eventually be recombined. We first recall the approach used in [Cor14] for recombining
the shares when outputting the AES ciphertext. It consists in performing a sequence of n mask
refreshing, each of complexity O(n), so that the share recombination can be perfectly simulated,
knowing the output bit b. Namely, this output bit b of the comparison can be given for free
to the simulator, since that bit b is eventually known by the adversary. Following [Cor14], this
enables to prove the (n − 1)-NIo property of the share recombination algorithm, according to
Definition 3 from [BBE+18]. In Appendix B.2, we describe a slightly more efficient approach,
still with complexity O(n2), but using only half the randomness.

We first recall the LinearRefreshMasks algorithm from [RP10], working in any finite field F.

Algorithm 9 LinearRefreshMasks

Input: x1, . . . , xn ∈ F
Output: y1, . . . , yn ∈ F such that y1 + · · ·+ yn = x1 + · · ·+ xn
1: yn ← xn
2: for j = 1 to n− 1 do
3: rj ← F
4: yj ← xj + rj mod q
5: yn ← yn − rj mod q
6: end for
7: return y1, . . . , yn
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Algorithm 10 RecombineShares [Cor14]

Input: y1, . . . , yn
Output: y such that y = y1 + · · ·+ yn
1: for i = 1 to n do (y1, . . . , yn)← LinearRefreshMasks(y1, . . . , yn)
2: c← y1
3: for i = 2 to n do c← c+ yi
4: return c

Following the same approach as in [Cor14], we prove the following lemma.

Lemma 2. The RecombineShares algorithm is (n− 1)-NIo, when y is given to the simulator.

Proof. Since the adversary has at most t < n probes, at least one of the LinearRefreshMasks
has not been probed. Let 1 ≤ i? ≤ n be the corresponding index. Any probe for i < i? can be
simulated by including some index j in a set I, initially empty. Given the knowledge of y, the n
outputs of the LinearRefreshMasks at index i? can be perfectly simulated, simply by generating
random y1, . . . , yn such that y = y1 + · · · + yn. Therefore, any probe after the index i? can be
perfectly simulated. Finally, any probe can be perfectly simulated from the knowledge of y and
the input y|I , with |I| ≤ t. ut

B.2 Share recombination: a more efficient approach

In the following, we describe a variant of the above share recombination technique, using only
half the randomness. For this, we use the following extension of the t-SNI security notion recently
introduced in [CS21], which was used to prove the security of the ISW construction in the stateful
model. Under this definition called free-SNI, all output variables except one can always be
perfectly simulated (which is not necessarily the case in the original SNI definition). Moreover it
was shown in [CS21] that the RefreshMasks algorithm (which we recall in Appendix C.2) satisfies
the extended notion.

Definition 4 (Free-t-SNI security). Let G be a gadget taking as input n shares (ai)1≤i≤n and
outputting n shares (bi)1≤i≤n. The gadget G is said to be free t-SNI secure if for any set of t1 ≤ t
probed intermediate variables, there exists a subset I of input indices with |I| ≤ t1, such that the
t1 intermediate variables and the output variables b|I can be perfectly simulated from a|I , while
for any O ( [1, n] \ I the output variables in b|O are uniformly and independently distributed,
conditioned on the probed variables and b|I .

Lemma 3 ([CS21]). The RefreshMasks algorithm is free-(n− 1)-SNI.

Thanks to the free-SNI definition, we can now simulate all output variables, if the simulator
is given the value encoded by those output variables, that is b = b1 + · · · + bn. We can then
recombine the output shares of the gadget, and all intermediate variables in the recombination
can be perfectly simulated.

In particular, assume that we must recombine the shares a1, . . . , an. For this, we first compute

(b1, . . . , bn)← RefreshMasks(a1, . . . , an)

and eventually compute b = b1+· · ·+bn, which gives b = a1+· · ·+an as required. The advantage
of using RefreshMasks instead of n LinearRefreshMasks as in the previous section, is that we use
n(n− 1)/2 random values instead of n(n− 1).
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Lemma 4. Let G be a gadget taking as input n shares (ai)1≤i≤n and outputting n shares
(bi)1≤i≤n. Assume that G satisfies the free-t-SNI property. Then for any set of t1 ≤ t inter-
mediate variables, there exists a subset I of input indices with |I| ≤ t1, such that the t1 in-
termediate variables and all output variables (bi)1≤i≤n can be perfectly simulated from a|I and
b = b1 + · · ·+ bn.

Proof. We use the set I obtained from Definition 4. If |I| = n, we can simulate all output
variables. Otherwise, let i? /∈ I. We let O such that I ∪ O = [1, n] \ {i?}. From the free-t-SNI
definition, we can simulate all variables in bI∪O. The remaining variable bi? is simulated from
the knowledge of b as bi? = b−

∑
i 6=i? bi. ut

From Lemma 4, all output variables of a free-SNI gadget can be simulated using the knowl-
edge of the encoded value b. Therefore, all intermediate variables in the subsequent recombination
can be perfectly simulated. This shows that the resulting gadget satisfies the NI property.5 This
enables to prove the probing security of the full circuit by composition.

Corollary 1 (NI security). Let G be a gadget taking as input a sequence of n shares (ai)1≤i≤n
and outputting n shares (bi)1≤i≤n, and let G′ be the same as G but outputting b = b1 + · · ·+ bn.
Assume that G satisfies the free-t-SNI property. Then for any set of t1 ≤ t intermediate variables
of gadget G′, there exists a subset I of input indices with |I| ≤ t1, such that the t1 intermediate
variables can be perfectly simulated from a|I and b.

We stress that in Lemma 4, even if t1 = n − 1 of the output variables are probed and the
output bit b is known, only t1 = n − 1 input variables ai of the gadget must be known, which
means that only n− 1 output variables of the preceding gadget are required for the simulation.
Whereas, without a free-SNI gadget such as RefreshMasks, all n input shares must be known for
the recombination, which prevents to prove the probing security of the full circuit.

C Zero testing a single value

C.1 The SecAnd algorithm

We first recall the SecAnd algorithm that enables to compute the And between two Boolean
masked values with n shares. The algorithm is a variant with k-bit words of the original ISW
algorithm. The algorithm has complexity O(n2), with a number of operations :

TSecAnd(n) = n(7n− 5)/2

Lemma 5 ([BBD+16]). The SecAnd algorithm is (n− 1)-SNI.

C.2 Mask refreshing

We recall the RefreshMasks algorithm, where the operations are performed in any group G, for
example the additive group Zq for any integer q.

5 The SNI property would not really be applicable in that case, since by assumption the gadget outputs a single
bit b and not a n-sharing of b.
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Algorithm 11 SecAnd

Input: k ∈ N, x1, . . . , xn ∈ {0, 1}k, y1, . . . , yn ∈ {0, 1}k

Output: z1, . . . , zn ∈ {0, 1}k, with
n⊕
i=1

zi = (
n⊕
i=1

xi) ∧ (
n⊕
i=1

yi)

1: for i = 1 to n do zi ← xi ∧ yi
2: for i = 1 to n do
3: for j = i+ 1 to n do
4: r ← {0, 1}k
5: r′ ← (r ⊕ (xi ∧ yj))⊕ (xj ∧ yi)
6: zi ← zi ⊕ r
7: zj ← zj ⊕ r′
8: end for
9: end for

10: return z1, . . . , zn

Algorithm 12 RefreshMasks

Input: a1, . . . , an
Output: c1, . . . , cn such that

∑n
i=1 ci =

∑n
i=1 ai

1: For i = 1 to n do ci ← ai
2: for i = 1 to n do
3: for j = i+ 1 to n do
4: r ← G, ci ← ci + r, cj ← cj − r
5: end for
6: end for
7: return c1, . . . , cn

The algorithm has complexity O(n2), with a number of operations

Trefresh(n) = 3n(n− 1)/2

Lemma 6 ([BBD+16]). The RefreshMasks algorithm is (n− 1)-SNI.

C.3 Boolean zero testing in {0, 1}k

We consider the zero-testing of x ∈ {0, 1}k from its Boolean shares. We consider the k bits
of x = x(k−1) · · ·x(0). The zero-testing of x computes a bit b with b = 1 if x = 0, and b = 0
otherwise; therefore:

b = x(k−1) ∨ · · · ∨ x(0) = x(k−1) ∧ · · · ∧ x(0)

Starting from the n Boolean shares of x = x1 ⊕ · · · ⊕ xn, the right-hand side of the above
equation can be computed by a sequence of k− 1 secure And (see Appendix C.1). For simplicity
we actually perform k iterations of SecAnd, the first one being a SecAnd with encoded input
1, to avoid an explicit mask refreshing at the beginning. The shares b1, . . . , bn are eventually
recombined using the RecombineShares algorithm (see Appendix B.1). We obtain Algorithm 13
below.
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Algorithm 13 ZeroTestBool

Input: k ∈ N and x1, . . . , xn ∈ {0, 1}k
Output: b ∈ {0, 1} such that b = 1 if ⊕xi = 0, and b = 0 otherwise.
1: (y1, . . . , yn)← (x1, x2, . . . , xn)
2: (b1, . . . , bn)← (1, 0, . . . , 0)
3: for j = 0 to k − 1 do
4: (b1, . . . , bn)← SecAnd(1, (b1, . . . , bn), ((y1 � j) & 1, . . . , (yn � j) & 1))
5: end for
6: return RecombineShares(b1, . . . , bn)

Theorem 8. The ZeroTestBool is (n− 1)-NIo.

Proof. The ZeroTestBool algorithm up to Line 5 is (n − 1)-SNI since it is the composition of
SecAnd operations, which are (n− 1)-SNI. Thanks to the final RecombineShares and Lemma 2,
the ZeroTestBool algorithm is (n− 1)-NI, when b is given to the simulator.

Alternatively, at Line 6 one can replace the RecombineShares algorithm by the RefreshMasks
algorithm, followed by the computation of b = b1 ⊕ · · · ⊕ bn. In that case, the ZeroTestBool
algorithm up to RefreshMasks is free-(n − 1)-SNI. From Corollary 1, this implies that the full
ZeroTestBool is (n− 1)-NI, when b is given to the simulator. ut

The advantage of using RefreshMasks instead of RecombineShares is that we use n(n − 1)/2
random values instead of n(n − 1). Therefore, in the rest of the paper, we will use this later
approach.

C.4 Boolean zero-test with complexity O(n2 · log k)

For a k-bit input x, the previous algorithm has complexity O(n2 ·k). In the following, we describe
an improved algorithm ZeroTestBoolLog with complexity O(n2 · log k), by taking advantage of
the And operations on k-bit registers, instead of single bits. We also provide a more precise
operation count.

Let x ∈ {0, 1}k and let x = x1⊕ · · · ⊕xn a Boolean sharing of x. We describe a procedure to
zero-test x in O(n2 · log k) operations on k-bit registers, instead of O(n2 · k) with the previous
approach. The technique is as follows. We write

x = x(k−1) · · ·x(0)

the k bits of x. Let m = dlog2 ke. If k is not a power of two, then we set the most significant bits
of x to 1 until the next power of two, which is 2m. Let fi(x) = x ∧ (x � 2i). We prove below
that we have:

x(k−1) ∧ · · · ∧ x(0) = LSB ((fm−1 ◦ · · · ◦ f0)(x)) (7)

Therefore to zero-test x, we can compute:

x(k−1) ∨ · · · ∨ x(0) = LSB ((fm−1 ◦ · · · ◦ f0)(x̄))

We describe in Algorithm 14 below the high-order computation of the previous equation with n
shares, using the SecAnd and RefreshMasks algorithms from sections C.1 and C.2.
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Algorithm 14 ZeroTestBoolLog

Input: k ∈ Z and x1, . . . , xn ∈ {0, 1}k
Output: b ∈ {0, 1} with b = 1 if ⊕ni=1xi = 0 and b = 0 otherwise
1: m← dlog2 ke
2: y1 ← x1 or (22

m − 2k)
3: for i = 2 to n do yi ← xi
4: for i = 0 to m− 1 do
5: (z1, . . . , zn)← RefreshMasks(y1 � 2i, . . . , yn � 2i)
6: (y1, . . . , yn)← SecAnd(m, (y1, . . . , yn), (z1, . . . , zn))
7: end for
8: return RecombineShares(y1 & 1, . . . , yn & 1)

Theorem 9 (Soundness). Given as input x1, . . . , xn ∈ {0, 1}k, the algorithm ZeroTestBoolLog
outputs b = 1 if ⊕ni=1xi = 0 and b = 0 otherwise.

Proof. We first consider the case where n = 1, that is x = x1 and y = y1 = x. For simplicity,
we first assume that k is a power of two, that is k = 2m. At Step 6 of the ZeroTestBoolLog
algorithm, we compute (fm−1 ◦ · · · ◦ f0)(y) where fi(y) = y ∧ (y � 2i). To ease reading, we
denote by Fi(y) the value (fi ◦ · · · ◦ f0)(y). In the following we prove by induction on i for i < m
that the j-th bit of Fi(y) is

(Fi(y))(j) = y(j+2i+1−1) ∧ · · · ∧ y(j) , (8)

for j ≤ 2m − 2i+1. For the base case i = 0, we have

(F0(y))(j) = (f0(y))(j) = ((y � 1) ∧ y)(j) = (y � 1)(j) ∧ y(j) = y(j+1) ∧ y(j)

which satisfies the recurrence hypothesis. Now we show that

(Fi+1(y))(j) = y(j+2i+2−1) ∧ · · · ∧ y(j) .

Indeed, we have

(Fi+1(y))(j) = (fi+1(Fi(y)))(j) = (Fi(y) ∧ ((Fi(y)� 2i+1)))(j)

= (Fi(y))(j) ∧ (Fi(y))(j+2i+1)

By using the recurrence hypothesis in Equation (8), we get

(Fi+1(y))(j) = (y(j+2i+1−1) ∧ · · · ∧ y(j)) ∧ (y((j+2i+1)+2i+1−1) ∧ · · · ∧ y(j+2i+1))

= y(j+2i+2−1) ∧ · · · ∧ y(j)

which terminates the recursive proof.
In particular, for i = m−1, we can use Equation (8) for j ≤ 2m−2i+1 = 0. Thus, by keeping

only the LSB part (that is j = 0) as done in Step 8 of Algorithm ZeroTestBoolLog, we have:

(Fm−1(y))(0) = LSB ((fm−1 ◦ · · · ◦ f0)(y))

= y(2
m−1) ∧ · · · ∧ y(0) = y(k−1) ∧ · · · ∧ y(0) ,
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as specified in equation (7). Note that this is also true in the case where k is not a power of two
since in this case, the most significant bits of y are initially set to 1. From y = x, we obtain as
required:

LSB ((fm−1 ◦ · · · ◦ f0)(x̄)) = y(k−1) ∨ · · · ∨ y(0) = x(k−1) ∨ · · · ∨ x(0) .

Eventually, the result also holds for x = x1 ⊕ · · · ⊕ xn with n > 1, since the same operations
are performed on all shares, which proves the theorem. ut

Complexity. We have using Trefresh(n) = 3n(n− 1)/2 and TSecAnd(n) = n(7n− 5)/2:

TZeroTestBoolLog(k, n) =2 + dlog2 ke · (n+ Trefresh(n) + TSecAnd(n))

+ n+ Trefresh(n) + n− 1

'5n2dlog2 ke

Theorem 10. The ZeroTestBoolLog algorithm is (n− 1)-NIo.

Proof. It is easy to see that the composition of steps 5 and 6 is (n − 1)-SNI secure, from the
(n− 1)-SNI security of SecAnd and RefreshMasks. Therefore, the ZeroTestBoolLog algorithm up
to Line 7 satisfies the (n− 1)-SNI property, and therefore the full algorithm is (n− 1)-NIo when
b is given to the simulator.

ut

C.5 Zero testing modulo q via arithmetic to Boolean conversion

We now consider the zero-testing of an element x ∈ Zq from its arithmetic shares. Given as input
the n arithmetic shares of x = x1 + · · ·+ xn mod q, we must output a bit b, with b = 1 if x = 0
and b = 0 if x 6= 0, without revealing more information about x. For q ≤ 2k, we first perform
an arithmetic to Boolean conversion, which gives the Boolean shares y1, . . . , yn ∈ {0, 1}k, with
x = y1 ⊕ · · · ⊕ yn. We then apply the Boolean zero-testing algorithm from the previous section.
We obtain the pseudo-code below.

Algorithm 15 ZeroTestAB

Input: q ∈ Z, k ∈ Z with q ≤ 2k, and x1, . . . , xn ∈ Zq
Output: b ∈ {0, 1} with b = 1 if

∑
i xi = 0 (mod q) and b = 0 otherwise

1: (y1, . . . , yn)← ArithmeticToBoolean(q, (x1, . . . , xn))
2: return ZeroTestBoolLog(k, (y1, . . . , yn))

The arithmetic to Boolean conversion step has complexity O(n2 ·k) for q = 2k, using [CGV14]
or the table recomputation approach from [CGMZ22]. The technique actually works for arith-
metic masking modulo any integer q, since we can use [BBE+18,SPOG19] to convert from
arithmetic modulo q to Boolean masking, with complexity O(n2 · k) for a k-bit modulus q. In
the second step, one can use the improved algorithm ZeroTestBoolLog from Appendix C.4 with
complexity O(n2 · log k). Therefore the overall complexity is O(n2 · k), where k = dlog2 qe, with
a number of operations:

TZeroTestAB(k, n) = TAB(k, n) + TZeroTestBoolLog(k, n)
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where TAB(k, n) is the complexity of the arithmetic to Boolean conversion for a k-bit modulus
q.

Theorem 11. The ZeroTestAB algorithm is (n− 1)-NIo.

Proof. The result follows from Theorem 8, with the ArithmeticToBoolean algorithm which is
assumed to be (n− 1)-NI. ut

C.6 Zero testing modulo 2k for small k via table recomputation

The technique is a direct application of the table-based conversion algorithm from [CGMZ22].
Namely the table recomputation from [CGMZ22] can high-order compute any function f : G→
H, for any groups G and H. So it suffices to take G = Zq and H = {0, 1}, with f(x) = 1 if
x = 0 (mod q) and f(x) = 0 otherwise. The technique has complexity O(q · n2), which can
be prohibitive for large q. For q = 2k and small k, we can use the register optimization from
[CGMZ22]. In that case the countermeasure has complexity O(n2) only, assuming that we have
access to 2k-bit registers. Therefore this optimization can only work for small k, say up to k = 8.

More precisely, the technique first initializes a table T with q rows, where for 0 ≤ i < q the
i-th row contains a n-shared Boolean encoding of 1 for i = 0, and 0 otherwise:

T (0) = (1, 0, . . . , 0)

T (1) = (0, 0, . . . , 0)

...

T (q − 1) = (0, 0, . . . , 0)

Given as input the shares xi with x = x1 + · · ·+ xn (mod q), one progressively shifts the rows
of the table by successive shares xi, up to the xn−1 share. The encodings are refreshed between
each successive shift. Eventually the table has been shifted by x1+ · · ·+xn−1 mod q, so it suffices
to read the table at row xn to obtain an encoding of 1 if x = 0, and 0 otherwise. The register
optimization consists in putting each column of the table in a register, so that the shifting of
the table by each xi corresponds to a rotation by xi of each of the n registers, which is much
faster. We provide the pseudocode below. We denote by Rj [u] the u-th bit of register Rj and we
denote by ROR[a](R) the cyclic rotation of a register R by a bits to the right.
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Algorithm 16 ZeroTestTable

Input: x1, . . . , xn ∈ Z2k

Output: b ∈ {0, 1}, with b = 1 if x1 + · · ·+ xn = 0 (mod 2k), and 0 otherwise.

1: R1[0]← 1
2: for all 1 ≤ u < 2k do R1[u]← 0
3: for all 2 ≤ j ≤ n do Rj ← 0.
4: for i = 1 to n− 1 do
5: for j = 1 to n do Rj ← ROR[xi](Rj)
6: for j = 1 to n− 1 do
7: r ← {0, 1}2k , Rj ← Rj ⊕ r, Rn ← Rn ⊕ r
8: end for
9: end for

10: (b1, . . . , bn)← RefreshMasks{0,1}(R1[xn], . . . , Rn[xn])
11: return b1 ⊕ · · · ⊕ bn

Theorem 12. The ZeroTestTable algorithm is (n− 1)-NIo.

Proof. From [CGMZ22], the ZeroTestTable algorithm up to Line 10 is (n− 1)− SNI. Thanks to
the last RefreshMasks, it is actually free-(n−1)−SNI. Therefore the full algorithm is (n−1)−NIo
when the output b is given to the simulator. ut

C.7 Secure Multiplication modulo q

We recall hereafter the SecMult algorithm as already considered in [SPOG19]. Note that the
number of operations of SecMult is n · (7n − 5)/2 by considering random generation in Zq,
addition and multiplication modulo q as a single operation.

Algorithm 17 SecMult

Input: x1, . . . , xn ∈ Zq, y1, . . . , yn ∈ Zq
Output: z1, . . . , zn ∈ Zq such that

∑
i zi = (

∑
i xi) · (

∑
i yi) mod q.

1: for i = 1 to n do zi ← xi · yi mod q
2: for i = 1 to n do
3: for j = i+ 1 to n do
4: r ← Zq
5: r′ ← (r + xi · yj mod q) + xj · yi mod q
6: zi ← zi − r mod q
7: zj ← zj + r′ mod q
8: end for
9: end for
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C.8 Zero testing modulo a prime q via exponentiation

Algorithm 18 SecExpo

Input: A1, . . . , An ∈ Zq with
∑

iAi = x (mod q) for prime q, an exponent e.
Output: B1, . . . , Bn ∈ Zq with

∑
iBi = xe (mod q)

1: (B1, . . . , Bn)← (1, 0, . . . , 0)
2: for i = dlog2 ee to 0 do
3: (C1, . . . , Cn)← RefreshMasks(B1, . . . , Bn)
4: (B1, . . . , Bn)← SecMult((B1, . . . , Bn), (C1, . . . , Cn))
5: if (e& 2i) = 2i then (B1, . . . , Bn)← SecMult((B1, . . . , Bn), (A1, . . . , An))
6: end for
7: return (B1, . . . , Bn)

Algorithm 19 ZeroTestExpoShares

Input: A1, . . . , An ∈ Zq for prime q.
Output: B1, . . . , Bn with

∑
iBi = 1 (mod q) if

∑
iAi = 0 (mod q) and

∑
iBi = 0 (mod q)

otherwise
1: (B1, . . . , Bn)← SecExpo((A1, . . . , An), q − 1)
2: (B1, . . . , Bn)← (1−B1 mod q,−B2 mod q, . . . ,−Bn mod q)
3: return (B1, . . . , Bn)

Algorithm 20 ZeroTestExpo

Input: A1, . . . , An ∈ Zq for prime q.
Output: b ∈ {0, 1} with b = 1 if

∑
iAi = 0 (mod q) and b = 0 otherwise

1: (B1, . . . , Bn)← ZeroTestExpoShares(A1, . . . , An)
2: return RecombineShares(B1, . . . , Bn)

Complexity. The complexity of the SecExpo algorithm with e = q−1 is O(n2 · log q), assuming
that a multiplication modulo q takes unit time. More precisely, the number of operations of
SecMult is n ·(7n−5)/2. The number of operation of RefreshMasks is n ·(3n−1)/2. For q = 3329,
the algorithm requires 13 squares and 4 multiplies. This means 4 RefreshMasks and 17 SecMult.
The total number of operations for SecExpo is therefore n·(131n−89)/2. Eventually, the number
of operations for ZeroTestExpoShares is:

TZeroTestExpoShares(n) = n · (131n− 87)/2

and is finally n · (67n− 43) for ZeroTestExpo.
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C.9 Proof of Theorem 1

We describe hereafter the construction of the set I ⊂ [1, n] of indices. Initially, I is empty. For
every probed input variable xi and for any probed intermediate variable Bi at Loop j between
Steps 3 and 5, for 1 ≤ i ≤ n, we add index i to I. By construction of the set I, we have |I| ≤ t
as required.

We now show that any t probes of Algorithm ZeroTestMult can be perfectly simulated from
x|I and b. Since the number of probes t is such that t < n, we deduce that at least one entire loop
(Steps 3 to 5) has not been probed. Let j? be the index of this non-probed loop. For all probed
variables Bi between Steps 3 and 5 in loop indices j < j?, we have i ∈ I and the simulation is
straightforward from the input shares x|I .

It remains to simulate all probed variables between Steps 3 and 5 in loop indices j ≥ j?, and
all probed variables at Step 7. To this aim, we consider two cases whether the output b = 0 or
b = 1 (recall that b is given to the simulator).

If b = 1, then we know that
∑n

i=1Bi = 0 (mod q) at the end of each for loop. At the end of
loop j?, since LinearRefreshMasks has not been probed, we can perfectly simulate all variables
Bi, by generating random Bi’s for 1 ≤ i ≤ n such that

∑n
i=1Bi = 0 (mod q).

Similarly, if b = 0, we use the fact that uj? has not been probed and acts as a multiplicative
one-time pad in Z∗q . This implies that the value encoded by the Bi’s is randomly distributed in
Z∗q . We can therefore perfectly simulate all shares Bi for 1 ≤ i ≤ n at the end of loop j? by
generating random Bi’s under the condition

∑n
i=1Bi 6= 0 (mod q).

In both cases, one can propagate the simulation until the end of the for loop, that is until
j = n, and from the knowledge of the Bi shares at the end of the for loop, one can compute all
probed intermediate variables at Step 7 as in the real algorithm. We therefore conclude that the
ZeroTestMult algorithm is (n− 1)-NIo, when the output b is given to the simulator.

C.10 Proof of Theorem 2

The SecExpo algorithm is (n − 1)-SNI since it is the composition of several iterations of the
SecMult algorithm which is (n − 1)-SNI, with some RefreshMasks operations which are also
(n − 1)-SNI. The ZeroTestExpoShares algorithm is (n − 1)-SNI since it is essentially composed
by the SecExpo algorithm which is (n− 1)-SNI, where the output variables are simply modified
with some known constants. This implies that the ZeroTestExpo algorithm is (n− 1)-NIo.

D Polynomial comparison

D.1 Polynomial comparison of Boolean masked coefficients

We are given as input a set of ` · n shares (x(j))i ∈ {0, 1}k for 1 ≤ j ≤ ` and 1 ≤ i ≤ n,
corresponding to ` coefficients:

x(j) = x
(j)
1 ⊕ · · · ⊕ x

(j)
n

and we must output a single bit b such that b = 1 if x(j) = 0 for all 1 ≤ j ≤ `, and b = 0 otherwise.
The simplest approach is to perform a Boolean zero-test of each x(j) as in Section C.3, keeping
each resulting bit b(j) in Boolean n-shared form, and then to perform a sequence of SecAnds
between the bits b(j), and to eventually recombine the shares into a bit b. The complexity of this
approach is then O(` · n2 · log k). A slightly better approach is to high-order compute:

y =
∧`

j=1
x(j) ∈ {0, 1}k
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Then y = 0 iff x(j) = 0 for all 1 ≤ j ≤ `, so we eventually perform a single zero-test of y. In this
approach we take advantage of computing the SecAnds over k bits instead of a single bit. The
complexity is then O(` · n2 + n2 · log k). We obtain the pseudo-code below.

Algorithm 21 PolyZeroTestBool

Input: k ∈ Z, and (x
(j)
i ) ∈ {0, 1}k for 1 ≤ i ≤ n and 1 ≤ j ≤ `.

Output: b ∈ {0, 1} with b = 1 if ⊕ix(j)i = 0 for all 1 ≤ j ≤ `, and b = 0 otherwise

1: for j = 1 to ` do x
(j)
1 ← x

(j)
1

2: (y1, . . . , yn)← (1, 0, . . . , 0)
3: for j = 1 to ` do (y1, . . . , yn)← SecAnd(k, (y1, . . . , yn), (x1, . . . , xn))
4: y1 ← y1
5: Return ZeroTestBoolLog(k, y1, . . . , yn)

The number of operations is:

TPolyZeroTestBool(k, `, n) = ` · (1 + TSecAnd(n)) + 1 + TZeroTestBoolLog(k, n)

The following theorem shows that the adversary does not learn more than the output bit b of
the comparison. The proof is straightforward and therefore omitted.

Theorem 13. The PolyZeroTestBool algorithm is (n− 1)-NIo.

D.2 Polynomial comparison modulo 2k via arithmetic to Boolean conversion

We are given as input a set of ` · n shares (x(j))i for 1 ≤ j ≤ ` and 1 ≤ i ≤ n, corresponding to
` coefficients:

x(j) = x
(j)
1 + · · ·+ x(j)n (mod q)

and we must output a single bit b such that b = 1 if x(j) = 0 for all 1 ≤ j ≤ `, and b = 0
otherwise. For this we simply perform an arithmetic to Boolean conversion of each coefficient
x(j) separately and then apply the previous PolyZeroTestBool algorithm. The complexity of each
Boolean to arithmetic conversion is O(n2 · k) for k = dlog2 qe. Therefore the total complexity is
O(` · n2 · k). We provide the pseudocode of the corresponding algorithm PolyZeroTestAB below.

Algorithm 22 PolyZeroTestAB

Input: q ∈ Z, k ∈ Z with q ≤ 2k, and (x
(j)
i ) ∈ Zq for 1 ≤ i ≤ n and 1 ≤ j ≤ `.

Output: b ∈ {0, 1} with b = 1 if
∑

i x
(j)
i = 0 (mod q) for all 1 ≤ j ≤ `, and b = 0 otherwise

1: for j = 1 to ` do

2: (y
(j)
i )1≤i≤n ← ArithmeticToBoolean(q, (x

(j)
i )1≤i≤n)

3: end for
4: return PolyZeroTestBool(k, (y

(j)
i ))

The number of operations is

TPolyZeroTestAB(k, n) = ` · TAB(k, n) + TPolyZeroTestBool(k, n)
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The following theorem shows that the adversary does not learn more than the output bit b
of the comparison. The proof is straightforward and therefore omitted.

Theorem 14. The PolyZeroTestAB algorithm is (n− 1)-NIo.

D.3 Polynomial comparison modulo prime q: reduction step

When working modulo a prime q, we can apply the technique from [BDH+21] that efficiently
reduces the zero-testing of ` coefficients to the zero-testing of κ � ` coefficients, with κ =
dλ/ log2 qe, where λ is the security parameter. Given as input ` coefficients x(j) ∈ Zq with

arithmetic shares x
(j)
i , the technique consists in computing κ linear combinations:

y(k) =
∑̀
j=1

akj · x(j) mod q (9)

for 1 ≤ k ≤ κ, with randomly distributed coefficients akj ∈ Zq. The above equation is actually

high-order computed using the arithmetic shares x
(j)
i of each x(j), and we obtain the arithmetic

shares y
(k)
i of each coefficient y(k). We obtain the pseudo-code below.

Algorithm 23 PolyZeroTestRed [BDH+21]

Input: q ∈ Z, a parameter κ and (x
(j)
i ) ∈ Zq for 1 ≤ i ≤ n and 1 ≤ j ≤ `.

Output: (y
(k)
i ) ∈ Zq for 1 ≤ i ≤ n and 1 ≤ k ≤ κ.

1: for k = 1 to κ do
2: for i = 1 to n do y

(k)
i ← 0

3: for j = 1 to ` do
4: akj ← Zq
5: for i = 1 to n do y

(k)
i ← y

(k)
i + akj · x

(j)
i

6: end for
7: end for
8: return (y

(k)
i )1≤k≤κ, 1≤i≤n

Now if x(j) = 0 for all 1 ≤ j ≤ `, then y(k) = 0 for all 1 ≤ k ≤ κ. If x(j) 6= 0 for some
1 ≤ j ≤ `, then for each 1 ≤ k ≤ κ, we have y(k) 6= 0, except with probability 1/q. Therefore we
must have y(k) 6= 0 for some 1 ≤ k ≤ κ, except with error probability q−κ. We have therefore
reduced the zero-testing of ` coefficients to the zero-testing of κ � ` coefficients. To reach an
error probability ≤ 2−λ for security parameter λ, one must take κ = dλ/ log2 qe.

We stress that after this reduction step we cannot zero-test the coefficients y(k) separately.
Otherwise, since the coefficients akj in (9) are computed in the clear, knowing that y(k) = 0 for
some k would leak an equation over the coefficients x(j), which would leak information about
the x(j) with fewer than n probes. Instead, the remaining κ coefficients y(k) must be zero-tested
all at once.

This reduction technique is quite efficient because the random coefficients akj in (9) are
non-masked, which implies that each multiplication akj · x(j) can be computed in time O(n) for
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n shares, instead of O(n2) for a fully masked multiplication. The total complexity of this first
step is therefore O(` · κ · n), with a number of operations:

TPolyZeroTestRed(κ, `, n) = κ · ` · (2n+ 1)

Theorem 15 ([BDH+21]). The PolyZeroTestRed algorithm is (n− 1)-NI.

D.4 Polynomial comparison modulo q via multiplicative masking

Algorithm 24 PolyZeroTestMult

Input: q ∈ Z, a parameter κ and (x
(j)
i ) ∈ Zq for 1 ≤ i ≤ n and 1 ≤ j ≤ `.

Output: b ∈ {0, 1} with b = 1 if
∑

i x
(j)
i = 0 (mod q) for all 1 ≤ j ≤ ` and b = 0 otherwise

1: (y
(k)
i )1≤k≤κ, 1≤i≤n ← PolyZeroTestRed((x

(j)
i )1≤j≤`, 1≤i≤n)

2: b← 0
3: for k = 1 to κ do
4: for i = 1 to n do zi ← 0
5: for j = 1 to ` do

6: for i = 1 to n do a
(j)
i ← Zq

7: (z
(j)
1 , . . . , z

(j)
n )← SecMult((a

(j)
1 , . . . , a

(j)
n ), (y

(j)
1 , . . . , y

(j)
n ))

8: for i = 1 to n do zi ← zi + z
(j)
i mod q

9: end for
10: bk ← ZeroTestMult(z1, . . . , zn)
11: b← b+ bk
12: end for
13: if b = κ then b← 1 else b← 0
14: return b

The complexity of the PolyZeroTestMult algorithm is

TPolyZeroTestMult(q, κ, `, n) = TPolyZeroTestRed(κ, `, n)+

κ · (κ · (TSecMult(n) + 2n) + TZeroTestMult(n)))

D.5 Proof of Theorem 3 (soundness of PolyZeroTestMult)

We denote by PolyZeroTestMultLoop, one loop iteration on k of the PolyZeroTestMult algorithm,
namely, going from line 4 to 11. We start by showing that PolyZeroTestMultLoop computes the
correct answer bk, except with probability at most 1/q. Indeed, in PolyZeroTestMultLoop, one
securely computes the value z =

∑`
j=1 a

(j) · y(j) (mod q) where the random values a(j) are

uniformly distributed in Zq. Thus, if z 6= 0, then at least one coefficient y(j) is not zero and the
output bk = 0 is always correct.

However, if z = 0, two cases arise: either all coefficients y(j) are null in which case the
algorithm outputs bk = 1 which is correct, or at least one coefficient y(j) is such that y(j) 6= 0
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but with
∑`

j=1 a
(j) · y(j) = 0 (mod q) and the output bk = 1 in this case is incorrect. Since the

a(j) values are uniformly distributed in Zq, the result of the linear combination of the y(j) 6= 0

with the values a(j) is also uniform in Zq. Therefore the probability that
∑`

j=1 a
(j) · y(j) = 0

(mod q) is 1/q for each iteration of PolyZeroTestMultLoop.

Hence by iterating PolyZeroTestMultLoop κ times with fresh random values a
(j)
κ as done in

PolyZeroTestMult, the probability that
∑κ

j=1 a
(j)
κ · y(j) (mod q) = 0 for all κ iterations, with at

least one coefficient y(j) 6= 0, is (1/q)κ = q−κ.

D.6 Proof of Theorem 4 (security of PolyZeroTestMult)

As before, we denote by PolyZeroTestMultLoop, one loop iteration on k of the PolyZeroTestMult

algorithm (line 4 to 11). We write y(j) =
∑n

i=1 y
(j)
i mod q. We distinguish two cases: either

y(j) = 0 for all 1 ≤ j ≤ `, or y(j) 6= 0 for some j. We show that the simulator can perform a
perfect simulation in both cases. Moreover, by assumption the simulator eventually receives the
bit b. This means that the simulator can distinguish the two cases, except with error probability
at most q−κ. Therefore the error probability of the simulator will be at most q−κ.

y(j) = 0 for all 1 ≤ j ≤ `. This is the easy case. Namely in that case, we know that bk = 1
for all k. The computation of the shares zi at Line 8 is (n− 1)-SNI. Knowing bk, the algorithm
ZeroTestMult at Step 10 is (n−1)-NI from Theorem 1. Therefore the global PolyZeroTestMultLoop
algorithm remains (n− 1)-NI.

y(j) 6= 0 for some 1 ≤ j ≤ `. We consider a sequence of games.

Game0: we generate all variables as in the algorithm. We assume that we know all input shares

y
(j)
i . We can therefore perform a perfect simulation of all probes. Moreover, we have that Pr[bk =

1] = 1/q for all 1 ≤ k ≤ κ, and the variables bk are independently distributed.

Game1: we modify the way the variables are generated. Instead of generating all variables a
(j)
i

uniformly and independently, we first generate the bits bk independently with Pr[bk = 1] = 1/q.

Then for each 1 ≤ k ≤ κ, if bk = 1 then we generate the shares a
(j)
i such that

∑`
j=1 a

(j)y(j) =

0 (mod q), where a(j) =
∑n

i=1 a
(j)
i mod q. Otherwise, we generate the shares a

(j)
i such that∑`

j=1 a
(j)y(j) 6= 0 (mod q). The distribution of the variables is the same as in the previous

game. Therefore, we can still perform a perfect simulation of all probed variables.

Game2: we show that we can still perform a perfect simulation as in Game1, but only with the

input shares y
(j)
|I for a subset |I| ≤ t. This will prove that the algorithm is (n− 1)-NI.

Firstly, from the (n−1)-SNI property of SecMult and the (n−1)-NI property of ZeroTestMult

knowing bk, the simulation of all probes can be performed from the knowledge of a subset y
(j)
|I of

the input shares for |I| ≤ t, and a subset a
(j)
|J of the shares of the values a(j), for |J | ≤ t ≤ n− 1.

Secondly, the constraints on
∑`

j=1 a
(j)y(j) from Game2 can be satisfied by generating all shares

a
(j)
i for i 6= i? uniformly at random, and by fixing a

(j)
i? , without changing the distribution of the

shares a
(j)
i , for some i? /∈ J . Finally, since the knowledge of a

(j)
i? is not needed for the simulation,

we can perform a perfect simulation of all probes from y
(j)
|I . This concludes the proof.
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Note that a n-sharing of the coefficients a(j) is required for the simulation. If the coefficients
a(j) were computed in the clear, one could not satisfy the constraints on the linear sums, without
knowing the coefficients y(j).

D.7 Polynomial comparison modulo q via exponentiation

Algorithm 25 PolyZeroTestExpo

Input: q ∈ Z, κ ∈ Z, and (x
(j)
i ) ∈ Zq for 1 ≤ i ≤ n and 1 ≤ j ≤ `.

Output: b ∈ {0, 1} with b = 1 if
∑

i x
(j)
i = 0 (mod q) for all 1 ≤ j ≤ ` and b = 0 otherwise

1: (y
(k)
i )1≤k≤κ, 1≤i≤n ← PolyZeroTestRed((x

(j)
i )1≤j≤`, 1≤i≤n)

2: (B1, . . . , Bn)← ZeroTestExpoShares(y
(1)
1 , . . . , y

(1)
n )

3: for j = 2 to κ do

4: (C1, . . . , Cn)← ZeroTestExpoShares(y
(j)
1 , . . . , y

(j)
n )

5: (B1, . . . , Bn)← SecMult((B1, . . . , Bn), (C1, . . . , Cn))
6: end for
7: (C1, . . . , Cn)← RefreshMasks(B1, . . . , Bn)
8: B ← C1 + · · ·+ Cn mod q
9: if B = 1 then return 1

10: else return 0

The number of operations is:

TPolyZeroTestExpo(q, κ, `, n) = TPolyZeroTestRed(κ, `, n) + κ · TZeroTestExpoShares(q, n)+

(κ− 1) · TSecMult(n) + TRefreshMasks(n) + n

E Polynomial comparison for Kyber

E.1 Proof of Lemma 1

We first show that if x ∈ Compress−1q,d(c̃), then we must have |x − y mod± q| ≤ Bq,d, where
y = Decompressq,d(c̃). This will imply:

Compress−1q,d(c̃) ⊂ [y −Bq, . . . , y +Bq]q

Namely in this case we have c̃ = Compressq,d(x), and therefore we have

y = Decompressq,d(Compressq,d(x)) =

⌊
q

2d
·
(⌊

2d

q
· x
⌉

mod 2d
)⌉

We write
⌊
(2d/q) · x

⌉
= (2d/q) · x+ ε for some |ε| ≤ 1/2. We obtain:∣∣x− y mod± q

∣∣ =

∣∣∣∣x− ⌊ q2d ·
(⌊

2d

q
· x
⌉

mod 2d
)⌉

mod± q

∣∣∣∣
=

∣∣∣∣x− ⌊ q2d ·
(

2d

q
· x+ ε mod 2d

)⌉
mod± q

∣∣∣∣
=
∣∣∣x− ⌊x+

q

2d
· ε mod q

⌉
mod± q

∣∣∣ =
∣∣∣⌊ q

2d
· ε
⌉∣∣∣ ≤ Bq,d
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Conversely, we show that if |x−y mod± q| ≤ Bq,d−1, then we must have x ∈ Compress−1q,d(c̃).

This will imply [y−Bq+1, . . . , y+Bq−1]q ⊂ Compress−1q,d(c̃). Namely we write again
⌊
(2d/q) · x

⌉
=

(2d/q) · x+ ε for some |ε| ≤ 1/2, and we can write:

∣∣∣c̃− Compressq,d(x) mod± 2d
∣∣∣ =

∣∣∣∣c̃− (⌊2d

q
· x
⌉

mod 2d
)

mod± 2d
∣∣∣∣

=

∣∣∣∣c̃− (2d

q
· x+ ε

)
mod± 2d

∣∣∣∣
=

2d

q
·
∣∣∣ q
2d
· c̃− x− q

2d
· ε mod± q

∣∣∣

We write y =
⌊
(q/2d) · c̃

⌉
= (q/2d) · c̃+ ε′ for some |ε′| ≤ 1/2, which gives:

∣∣∣c̃− Compressq,d(x) mod± 2d
∣∣∣ =

2d

q
·
∣∣∣y − ε′ − x− q

2d
· ε mod± q

∣∣∣
≤ 2d

q
·
(
Bq,d − 1 +

q

2d+1
+

1

2

)
< 1

For the last inequality we use Bq,d < q/(2d+1) + 1/2 for odd q. This implies c̃ = Compressq,d(x),
which proves the lemma.

Generating the list of candidates. From Lemma 1, to generate the list of candidates
Compress−1q,d(c̃), it suffices to consider the set [a, b]q with a = y − Bq,d and b = y + Bq,d and
to test whether the two elements at the border belong to the set, that is we check whether
Compressq,d(a) = c and Compressq,d(b) = c. We provide the pseudocode in Algorithm 26 below.

Algorithm 26 CompressInv

Input: c̃ ∈ Z2k

Output: a, b ∈ Z such that Compress−1q,d(c̃) = [a, b]q.

1: Bq,d ←
⌊ q
2d+1

⌉
2: y ← Decompressq,d(c̃)
3: a← y −Bq,d mod q, b← y +Bq,d mod q
4: if Compressq,d(a) 6= c̃ then a← a+ 1 mod q
5: if Compressq,d(b) 6= c̃ then b← b− 1 mod q
6: return a, b
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E.2 The SecMultList algorithm

Algorithm 27 SecMultList

Input: x1, . . . , xn ∈ Zq s.t.
∑

i xi (mod q) = x, a prime q, an index m and a1, . . . am ∈ Zq
Output: z1, . . . , zn ∈ Zq such that

∑n
i=1 zi =

∏m
i=1(x− ai) (mod q)

1: (z1, z2, . . . , zn)← (1, 0, . . . 0)
2: for i = 1 to m do
3: (z1, z2, . . . , zn)← SecMult((z1, . . . , zn), (x1 − ai mod q, x2, . . . , xn))
4: end for
5: return (z1, . . . , zn)

For m candidates, the number of operations for high-order computing z is therefore at most:

TSecMultList(d, n) = (2 ·Bq,d + 1) · TSecMult(n)

Theorem 16. The SecMultList algorithm is (n− 1)-SNI.

Proof. The SecMultList algorithm is (n−1)-SNI since it is the composition of m iterations of the
(n− 1)-SNI secMult algorithm. We stress that the first multiplication by 1 (initialized in line 1)
is here on purpose since it is equivalent to an (n − 1)-SNI masks refreshing, which ensures the
independence between both subsequent inputs. ut

E.3 Polynomial comparison with range test

We recall the technique from [BGR+21] for testing whether x ∈ [a, b]q, where [a, b]q = Compress−1q,d(c̃),
by performing two high-order comparisons with the interval bounds a and b.

We let k = blog2 qc, so that 2k < q < 2k+1. We write ∆ := q − 2k − 1. For Kyber with
q = 3329, we get k = 11 and ∆ = 1280. We assume that the bounds of the interval [a, b]q
satisfy b − a mod± q ≤ ∆. Recall that we have the upper-bound b − a mod± q ≤ 2 · Bq,d + 1 =
2 ·
⌊
q/2d+1

⌉
+ 1. Therefore the assumption is satisfied for Kyber for d ≥ 2.

Taking as input the shares xi of x = x1 + · · · + xn (mod q), we want to output a n-shared
bit u such that u = 1 if x ∈ [a, b]q and u = 0 otherwise. For this we use:

x ∈ [a, b]q ⇐⇒ ((2k + x− a mod q) ≥ 2k) ∧ ((x− b− 1 mod q) ≥ 2k) (10)

Namely we have using ∆ = q − 2k − 1:

((2k + x− a mod q) ≥ 2k)⇐⇒ x ∈ [a, a+∆]q

((x− b− 1 mod q) ≥ 2k)⇐⇒ x ∈ [b−∆, b]q

Since by assumption b − a mod± q ≤ ∆, we have [a, b]q ⊂ [a, a + ∆]q and similarly [a, b]q ⊂
[b − ∆, b]q. Moreover from 2∆ < q we must have [b, a + ∆]q ∩ [b − ∆, a]q = ∅. This implies
[a, b]q = [a, a+∆]q ∩ [b−∆, b]q, which proves (10).

From (10), we perform a high-order arithmetic modulo q to Boolean conversion of the two
values 2k+x−a and x−b−1 modulo q using [BBE+18], and we perform a high-order And (with
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SecAnd) of the most significant bit of the two results (using the Boolean shares). The number
of operations is therefore:

Trange(k, n) = 2 · TAB(k + 1, n) + TSecAnd(n)

Algorithm 28 RangeTestShares

Input: x1, . . . , xn ∈ Zq for prime q with
∑

i xi = x (mod q), k = blog2 qc, bounds a and b s.t.
b− a mod± q ≤ q − 2k − 1.

Output: u1, . . . , un ∈ Zq with
∑

i ui = 1 (mod q) if x ∈ [a, b]q and
∑

i ui = 0 (mod q) otherwise
1: (A1, . . . , An)← (x1 + 2k − a mod q, x2, . . . , xn)
2: (B1, . . . , Bn)← (x1 − b− 1 mod q, x2, . . . , xn)
3: (y1, . . . , yn)← ArithmeticToBoolean(q, (A1, . . . , An))
4: (z1, . . . , zn)← ArithmeticToBoolean(q, (B1, . . . , Bn))
5: (u1, . . . , un)← SecAnd(1, (MSB(y1), . . . ,MSB(yn)), (MSB(z1), . . . ,MSB(zn)))
6: return (u1, . . . , un)

E.4 Number of operations for hybrid approach in polynomial comparison

The number of operations of the polynomial comparison in Kyber is then:

T = `1 · TSecMultList(du, n) + `2 · THOComp(dv, n) + `2 + TPolyZeroTestBool(13, `2, n)+

TBA(1, n) + TpolyZT(q, `1 + 1, n)

F Ring-LWE IND-CPA encryption

We provide an overview of ring-LWE encryption [LPR10]. For N ∈ Z and q ∈ Z, let R and
Rq denote the rings Z[X]/(XN + 1) and Zq[X]/(XN + 1) respectively. Let a ∈ Rq be a public
random polynomial. Let χ be a distribution outputting “small” elements in R, and let s, e← χ.
The public-key is t = as+ e ∈ Rq, while the secret key is s. To CPA-encrypt a message m ∈ R
with binary coefficients, one computes the ciphertext (c1, c2) where

c1 = a · e1 + e2

c2 = t · e1 + e3 + bq/2e ·m
(11)

with e1, e2, e3 ← χ. To decrypt a ciphertext (c1, c2), one first computes u = c2 − s · c1, which
gives:

u = (a · s+ e) · e1 + e3 + bq/2e ·m− s · a · e1 − s · e2
= bq/2e ·m+ e · e1 + e3 − s · e2

Since the ring elements e, e1, e2, e3 and s are small, and the message m ∈ R has binary
coefficients, we can recover m by rounding. Namely, for each coefficient of the above polynomial
u, we decode to 0 if the coefficient is closer to 0 than bq/2e, and to 1 otherwise. More precisely,
we decode the message m as m = th(c2 − s · c1), where th applies coefficient-wise the threshold
function th : Zq → {0, 1}:

th(x) =

{
0 if x ∈ (0, q/4) ∪ (3q/4, q)
1 if x ∈ (q/4, 3q/4)

(12)
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G Fully masked implementation of Saber

G.1 The Saber Key Encapsulation Mechanism (KEM)

Saber [BMD+21] is based on the hardness on the module learning-with-rounding (M-LWR)
problem. The difference with Kyber is that instead of explicitly adding error terms e, e1, e2 from
a “small” distribution, the errors are deterministically added by applying a rounding function
mapping Zq to Zp with p < q. For Saber, both p and q are powers of two; therefore the rounding
function is a shift extracting the log2(p) most significant bits of its input.

The Saber submission provides three parameters sets LightSaber, Saber and FireSaber with
claimed security level equivalent to AES-128, AES-192 and AES-256 respectively; see Table 14.
We recall the pseudocode below. The constants h1, h2 and h are needed to center the errors
introduced by rounding around 0. We write q = 2εq and p = 2εp .

Algorithm 29 Saber.CPA.KeyGen()

1: ρ, σ ← {0, 1}256
2: A← Rk×kq := Sam(ρ)

3: s← χkµ := Sam(σ)

4: t := (AT s + h mod q)� (εq − εp) ∈ Rkp
5: return pk := (t, ρ), sk := s

N k q p T µ

LightSaber 256 2 213 210 23 5

Saber 256 3 213 210 24 4

FireSaber 256 4 213 210 26 3

Table 14: Parameter set for Saber.

Algorithm 30 Saber.CPA.Enc(pk,m)

1: r ← {0, 1}256
2: A← Rk×kq := Sam(ρ)

3: r← χkµ := Sam(r)

4: u := (Ar + h mod q)� (εq − εp) ∈ Rkp
5: v′ := tT (r mod p) ∈ Rp
6: cm := (v′ + h1 − 2εp−1m mod p) � (εp −
εT ) ∈ RT

7: return c := (u, cm)

Algorithm 31 Saber.CPA.Dec(sk, c = (u, cm))

1: v := uT (s mod p) ∈ Rp
2: m := (v−2εp−εT cm+h2 mod p)� (εp−1) ∈
R2

3: return m

The Saber CCA-secure key encapsulation mechanism is similar to that of Kyber. We recall
the pseudocode below.

Algorithm 32 Saber.Encaps(pk)

1: m← {0, 1}256
2: (K̂, r) := G(H(pk),m)
3: c := Saber.CPA.Enc(pk,m; r)
4: K = H(K̂, c)
5: return c,K

Alg. 33 Saber.Decaps(sk = (s, z, t, ρ), c)

1: m′ := Saber.CPA.Dec(s, c)
2: (K̂ ′, r′) := G(H(pk),m′)
3: c′ :=Saber.CPA.Enc((t, ρ),m′; r′)
4: if c = c′ then return K := H(K̂ ′, c)
5: else return K := H(z, c)
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G.2 High-order masking of Saber

The high-order masking of Saber is quite similar to that of Kyber. The main difference is that
we work with power-of-two moduli. We describe the high-order masking of the Saber.Decaps
algorithm recalled above (Algorithm 33), using the techniques from the previous sections.

1. We consider Line 1 of Algorithm 33. As previously, we assume that the secret key s ∈ Rkq
is initially arithmetically masked with n shares. By modular reduction, we obtain n shares
in Rkp. Therefore, at Line 1 of the Saber.CPA.Dec algorithm, we obtain a value v that is
arithmetically n-shared modulo p. At Line 2, we obtain n Boolean shares of the message m
by arithmetic to Boolean conversion modulo p = 2εp using [CGV14], and taking the MSB of
each share.

2. At Line 2 of Algorithm 33, starting from the Boolean masked m′, we use an n-shared Boolean
implementation of the hash function G, and obtain as output the Boolean n-shared values
K̂ ′ and r′.

3. At Line 3 of Algorithm 33, we start with Line 3 of Algorithm 30 which is the masked binomial
sampling. Starting from the Boolean n-shared r′, we must obtain a value r which is arithmeti-
cally n-shared modulo q. For this we use the n-masked binomial sampling from [CGMZ22],
based on Boolean to arithmetic modulo q conversion (based on table recomputation).

4. We proceed with Line 4 of Algorithm 30. The vector Ar + h mod q is n-shared modulo q.
We convert from arithmetic to Boolean masking using [CGV14], and then perform a right
shift of all Boolean shares by εq − εp. The vector u′ as output of Line 4 of Algorithm 30 is
therefore Boolean masked with n shares.

5. At Line 5, the value r is arithmetically masked modulo p by modular reduction modulo
p of the shares modulo q. The value v′ is therefore arithmetically masked modulo p. This
enables to compute the value v′ + h1 − 2εp−1m mod p at Line 6 with n shares modulo p. As
previously the shift by εp − εT bits is computed via arithmetic to Boolean conversion. At
Line 3 of Algorithm 33, the vector u′ and the value c′m of the ciphertext c′ = (u′, c′m) are
therefore both in Boolean masked form.

6. For the ciphertext comparison at Line 4, we use the same technique as in Section 5.3 for
the ciphertext comparison of Kyber, for the second part of the ciphertext with the Compress
function (lines 3 and 4). Eventually we recombine the shares and we obtain a bit b in the
clear, with b = 1 if the two ciphertexts match.

7. Finally, as in Kyber, if b = 1, we use the Boolean n-shared K̂ ′ to obtain a Boolean n-shared
session key K, using an n-shared implementation of H. Similarly, if b = 0, we use the Boolean
n-shared secret z to obtain the Boolean n-shared session key K.
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