
High-order masking of NTRU

Jean-Sébastien Coron1, François Gérard1, Matthias Trannoy1,2, and Rina Zeitoun2

1 University of Luxembourg
jean-sebastien.coron@uni.lu, francois.gerard@uni.lu

2 IDEMIA, Cryptography & Security Labs, Courbevoie, France
matthias.trannoy@idemia.com, rina.zeitoun@idemia.com

Abstract The main protection against side-channel attacks consists in computing every function with
multiple shares via the masking countermeasure. While the masking countermeasure was originally devel-
oped for securing block-ciphers such as AES, the protection of lattice-based cryptosystems is often more
challenging, because of the diversity of the underlying algorithms. In this paper, we introduce new gadgets
for the high-order masking of the NTRU cryptosystem, with security proofs in the classical ISW probing
model. We then describe the first fully masked implementation of the NTRU Key Encapsulation Mecha-
nism submitted to NIST, including the key generation. To assess the practicality of our countermeasures,
we provide a concrete implementation on ARM Cortex-M3 architecture, and eventually a t-test leakage
evaluation.

1 Introduction

Post-quantum cryptography. The RSA and ECC cryptosystems rely on the hardness of the integer
factorization and the discrete logarithm problems respectively. These problems, which we can assume
to be hard on a classical computer, are however vulnerable to a quantum one. Peter Shor in 1995
has indeed designed an algorithm running on a quantum computer that ensures a polynomial-time
solution. In light of these new threats, the National Institute of Standards and Technology (NIST)
initiated in 2016 a standardization process for post-quantum cryptography that has reached its last
round.

The NTRU cryptosystem. The NTRU cryptosystem was introduced in 1996 by Hoffstein, Pipher
and Silverman [HPS98] covering both encryption and signature. Its security relies on the problem
of finding small solutions to a system of linear equations over polynomial rings, which is assumed to
remain hard even in the presence of a quantum computer. Therefore, it is closely related to the Shortest
and Closest Vector Problems (SVP/CVP) in lattices. Despite not being equivalent neither to SVP nor
CVP, the NTRU cryptosystem nonetheless resisted more than two decades of cryptanalysis. Moreover
variants of NTRU were proven to be secure in the (Quantum) Random Oracle Model under the Ring
Learning With Error (R-LWE) hardness assumption [SS13]. In terms of performance, NTRU is known to
be currently one of the fastest public key cryptosystem altogether with moderate key-size, making it a
reasonable choice for embedded cryptography. Its performance granted it several standards, e.g., IEEE
Std 1363.1, X9.98 and PQCRYPTO. Recently NTRU was one of the finalists of the NIST post-quantum
cryptography standardization effort; the Kyber algorithm has finally been selected for standardization.

Side-channel attacks and the masking countermeasure. As for any other cryptosystem, an
NTRU implementation on embedded device is vulnerable to side-channel attacks. These attacks exploit
physical leakages happening during the execution of the algorithm to recover the key. We refer to
[PPM17,HCY20,XPRO20,EMVW22] for examples of such attacks. Side-channel attacks can be pre-
vented by using the masking countermeasure. It consists in splitting each secret variable into shares,
for x = x1⊕· · ·⊕xn with Boolean masking. Then by processing each share independently, any leakage
on at most n− 1 shares xi will not reveal information about the secret x. Formally, in this paper we

consider the classical probing model introduced in [ISW03], with an attacker being able to probe any
set of at most t variables in the circuit. The authors showed that using at least n = 2t + 1 shares,
one can transform any Boolean circuit C into a circuit C ′ of size O(|C| · t2), such that an adversary
with t probes on C ′ is no more powerful that an adversary with no probe at all. Later, finer notions
of security were formalized by Barthe et al. in [BBD+16], who introduced the notions of (Strong)
Non-Interference NI/SNI. This enables to reach t-probing security with n = t + 1 shares only, via a
composition theorem.

While any encryption scheme can be written as a Boolean circuit and then protected using the
above transform, in practice that would be quite inefficient. Indeed, lattice-based cryptography usually
requires to perform both Boolean and arithmetic operations, and moreover, the NTRU cryptosystem
combines arithmetic operations modulo q = 2k and modulo 3. It is therefore more efficient to mask
some intermediate variables with arithmetic masking modulo q or modulo 3, instead of with Boolean
masks only. One must therefore repeatedly convert between these masked representations.

The first conversions between Boolean and arithmetic masking were described in [Gou01] for first-
order security. It was then generalized to higher order in [CGV14], with complexity O(n2 · k) for n
shares and k-bit words. Recently, a generic conversion algorithm was described in [CGMZ22], based
on table-recomputation. It allows to high-order compute any function f : G→ H between two groups
G and H, with complexity O(|G| ·n2). For example, by taking G = Z3 and H = Zq, one can efficiently
convert from arithmetic masking modulo 3 to arithmetic masking modulo q, which will be useful in
the context of NTRU.

Masking lattice-based public-key encryption. We review the existing masked implementations of
lattice-based public-key encryption, including the NIST finalists Kyber, Saber and NTRU. To achieve
IND-CCA security, the Kyber and Saber schemes use the Fujisaki-Okamoto transformation [FO99],
based on the recomputation and comparison of the ciphertext during decryption. The first completely
masked implementation of Kyber secure against high-order attacks was described in [BGR+21]. For the
ciphertext comparison, the masked recomputed ciphertext remains in uncompressed form, so that the
compression function from Kyber need not be high-order masked. Alternative techniques for performing
the ciphertext comparison have also been recently described in [CGMZ21], for both Kyber and Saber.

However, the CCA security of NTRU in the NIST submission [CDH+19] does not rely on the FO
transform, but rather on the membership of the message to a specific space set. This is to ensure
the well-formedness of the ciphertext, based on the correctness of the underlying deterministic PKE
scheme [BP18]. Formally, the CCA security follows from the property that for (r,m) ∈ Lr ×Lm, where
Lr and Lm represent the plaintext space sets:

NTRU.Enc((r,m), pk) = c⇔ NTRU.Dec(c, sk) = (r,m)

Therefore, the well-formedness of c is ensured by membership the test (r,m)
?
∈ Lr × Lm.

So far in the literature the only masked implementation of NTRU is provided by [SMS19], for security
against CPA and first-order attacks only. The authors focus on protecting the polynomial product
c · f mod q, for the ciphertext c and the private-key f . Recently, [REB+21] introduced a generic side-
channel CCA against NTRU exploiting the leakage during the membership test (r,m) ∈ Lr × Lm. This
demonstrates that a masked implementation must include the masking of this membership test.

More recently, in a concurrent work [KLRBG22], the authors described a high-order masked algo-
rithm to perform the polynomial inversion in the key generation of NTRU, based on a conversion from
additive to multiplicative masking. The authors claimed that their high-order conversion algorithm
can achieve arbitrary-order security, but without a security proof. As a security evaluation, the au-
thors used a common fixed vs. random univariate first-order Test Vector Leakage Assessment (TVLA)
evaluation procedure, with 100 000 power traces. However, we show in this paper that their algorithm

2

is actually insecure: we exhibit a 3-rd order attack for any number of shares n in the countermeasure
(see Section 5.1). We then describe a repaired algorithm with a proof of security in the ISW probing
model.

Our contributions. In this paper we provide the first high-order masking of the NTRU KEM finalist.
More precisely, we provide a full high-order masking of both the Decapsulate algorithm (for IND-CCA

decryption), and the key generation algorithm. We consider the two HPS and HRSS variants of the
NTRU submission [CDH+19]. Our countermeasures are proven secure in the classical ISW probing
model, using the NI/SNI methodology.

We argue that key generation must also be protected against side-channel attacks, because in
practice, the key generation procedure can be performed directly in the embedded platform, and
template attacks can be quite effective against key generation. To prove the side-channel resistance of
KeyGen, we use the same ISW probing model as for other operations. That is, when using n = t + 1
shares, the KeyGen algorithm should be resistant against an adversary performing a t-th order probing
attack.

Our techniques are as follows. For decryption, the main challenge is to compute the reduction
modulo 3 of a polynomial a which is initially masked modulo q = 2k. For this we proceed coefficient-
wise by first converting the arithmetic sharing modulo q into Boolean shares, and then converting
back to arithmetic modulo 3. We also describe the high-order masking of the membership tests r ∈ Lr
and m ∈ Lm. For the later, in the HPS version, one needs to check that the polynomial m has exactly
d/2 coefficients equal to 1, and d/2 coefficients equal to −1, for d = q/8 − 2. For this, we high-order
compute the sum of the coefficients and check that it is equal to 0 modulo q, and we check that the
sum of the squares of the coefficients is equal to d modulo q.

For masking the key generation, we show how to mask the sampling of the private key, which
includes the sampling of an arithmetically masked polynomial with exactly d/2 coefficients equal to 1
and exactly d/2 equal to −1. To do so, we start with a fixed polynomial gI with the first d/2 coefficients
equal to 1, the next d/2 coefficients equal to −1, and the remaining coefficients equal to 0. We then
compute an arithmetic sharing g1, . . . , gn of gI . We then repeat n times the following procedure: we
generate a random permutation π of the coefficients and apply π to each share gi, and then linearly
refresh the shares gi. Eventually, we return the shared polynomial g1, . . . , gn. We show that we indeed
obtain an n-sharing of a random polynomial g with the right distribution, and moreover an adversary
with at most n− 1 probes learns nothing about the secret polynomial g.

For the key generation, we also show how to high-order compute the inverse of polynomials in
Zq[X]/(Φ`) and Z3[X]/(Φ`). In the NIST submission, these inverses are computed using the almost
inverse algorithm. However, such method would be quite challenging to mask, therefore we use expo-
nentiation algorithms instead. More precisely, we compute the inverse of an element x in Z2[X]/Φ`

by using the relation x−1 = x2
`−1−2. Thanks to the linearity of the square in characteristic 2, such

exponentiation only requires O(log `) multiplications, instead of O(`). One can then lift the inverse
from modulo 2 to modulo 2k. Both operations are easy to high-order mask with n shares, and as
previously, we prove that an adversary with at most n− 1 probes learns nothing about the secret-key.
We then provide a comparison with our repaired algorithm from [KLRBG22].

Finally, using the above gadgets, we describe a full high-order masking of both the Decapsulate
algorithm (for IND-CCA decryption), and of the key generation algorithm. For Decapsulate, this includes
the masking of the PackS3 algorithm for converting ternary polynomials into a sequence of bytes.
Namely, the PackS3 algorithm is used for computing the hash k1 = H1(r,m) when recovering the
session key k1, which must be output in masked Boolean form.

3

Implementation. In order to assess the practicality of our countermeasures, we have performed a
proof of concept implementation in C of the fully masked Decapsulate and KeyGen. We have run our
implementation on a laptop equipped with an Intel CPU, and also on a Cortex-M3 core mounted on
an Arduino Due board. We provide the performance analysis in Section 8. The source code can be
found at

https://github.com/fragerar/Masked_NTRU

Finally, we have performed a leakage evaluation with a fixed vs random t-test over 10 000 traces
for one of the main gadgets, namely the reduction modulo 3 used in Decapsulate. For this, we have
used the ChipWhisperer Lite board embedding a Cortex-M4 microcontroller (STM32F303) and a light
oscilloscope; we provide the results in Section 8.

2 Notations and security definitions

2.1 Notations

Integer ring. Let q be an integer, Zq will denote the ring of integers modulo q. Depending on
the context we will need to switch between two equivalent representations of the ring Zq: positive
representation Zq ' {0, 1, . . . , q− 1}, and centered representation, Zq ' {−q/2 + 1, . . . , 0, . . . , q/2} for
even q, and Zq ' {−(q − 1)/2, . . . , 0, . . . , (q − 1)/2} for odd q.

For any integer x, x mod q will denote the positive representative of x, and x mod± q the centered
one. We denote by x � k (resp. x � k) the right (resp. left) shifting of an integer x by k positions,
equivalently x� k = bx/2kc (resp. x� k = x · 2k).

Polynomial ring. Let q be an integer, we denote by Zq[X] the ring of polynomials with coefficient
in Zq. For a prime `, we let Φ1 and Φ` be the first and the `-th cyclotomic polynomials X − 1 and
1 +X + · · ·+X`−1 respectively.

We recall the notations from [CDH+19]. We denote by S/q the quotient ring Zq[X]/Φ`. A polyno-
mial in Z[X] is said to be ternary if its coefficients are in {−1, 0, 1}. We denote by T the set of non-zero
ternary polynomials of degree at most `− 2. Equivalently, T can be seen as the set of representatives
of non-zero polynomials from the quotient Z3[X]/Φ`. For an even positive integer d, we also denote by
T (d) the subset of T consisting of polynomials that have exactly d/2 coefficients equal to +1 and d/2
coefficients equal to −1. Finally, let T+ denote the set of positively correlated ternary polynomials, i.e
polynomials v ∈ T such that

∑
i vi · vi+1 ≥ 0.

2.2 Definitions

We recall the definitions of (strong) non-interference security (SNI/NI) introduced in [BBD+16].
Thanks to these definitions, a proof of security against an attacker with at most t probes can proceed
in two steps: firstly one proves that every gadget satisfies the SNI definition, secondly one applies a
composition theorem. The SNI definition is stronger than NI in that the number of input shares needed
for the simulation only depends on the number of internal probes and not on the number of output
variables to be simulated. Fortunately, the NI definition is not restrictive since composing a NI gadget
with an SNI one achieves SNI security. Hence, any NI gadget can be enhanced to SNI by applying an
SNI mask refreshing to its output. In this paper, we will prove that all our gadgets achieve at least NI
security.

Definition 1 (t-NI security). Let G be a gadget taking as input (xi)1≤i≤n and outputting the vector
(yi)1≤i≤n. The gadget G is said t-NI secure if for any set of t1 ≤ t intermediate variables, there exists a
subset I of input indexes with |I| ≤ t1, such that the t1 intermediate variables can be perfectly simulated
from x|I .

4

https://github.com/fragerar/Masked_NTRU

Definition 2 (t-SNI security). Let G be a gadget taking as input n shares (xi)1≤i≤n, and outputting
n shares (zi)1≤i≤n. The gadget G is said to be t-SNI secure if for any set of t1 probed intermediate
variables and any subset O of output indexes, such that t1 + |O| ≤ t, there exists a subset I of input
indexes that satisfies |I| ≤ t1, such that the t1 intermediate variables and the output variables z|O can
be perfectly simulated from x|I .

3 The NTRU cryptosystem

In this section, we recall the second round NTRU submission from [CDH+19]. It is based on a determinis-
tic public-key encryption scheme (DPKE) described in algorithms 1, 2 and 3. The Key Encapsulation
Mechanism (KEM) is depicted in algorithms 4, 5 and 6. For the two submitted versions of NTRU,
namely NTRU-HPS and NTRU-HRSS, we recall in Table 1 the definition of the sets of integer polynomials
Lf , Lg, Lr, Lm, and the embedding Lift. For simplicity, the algorithms are described according to the
NTRU-HPS version, for which Lift(m) = m. We also recall in Table 2 the values of the parameter ` and
modulus q for the four versions of NTRU.

Alg. 1 KeyGen(seed)

1: f ← Lf , g ← Lg
2: fq ← (1/f) mod (q, Φ`)
3: h← (3 · g · fq) mod (q, Φ1Φ`)
4: hq ← (1/h) mod (q, Φ`)
5: fp ← (1/f) mod (3, Φ`)
6: return ((f, fp, hq), h)

Alg. 2 Encrypt(h, (r,m))

1: c← r · h+m mod (q, Φ1Φ`)
2: return c

Alg. 3 Decrypt((f, fp, hq), c)

1: if c 6= 0 mod (q, Φ1) return (0, 0, 1)
2: a← (c · f) mod (q, Φ1Φ`)
3: m← (a · fp) mod (3, Φ`)
4: r ← ((c−m) · hq) mod (q, Φ`)
5: if (r,m) ∈ (Lr,Lm) return (r,m, 0)
6: else return (0, 0, 1)

Alg. 4 KeyGen′(seed)

1: ((f, fp, hq), h)← KeyGen(seed)
2: s← {0, 1}256
3: return ((f, fp, hq, s), h)

Alg. 5 Encapsulate(h)

1: coins← {0, 1}256
2: (r,m)← Samplerm(coins)
3: c← Encrypt(h, (r,m))
4: k ← H1(r,m)
5: return (c, k)

Alg. 6 Decapsulate((f, fp, hq, s), c)

1: (r,m, fail)← Decrypt((f, fp, hq), c)
2: k1 ← H1(r,m)
3: k2 ← H2(s, c)
4: if fail = 0 return k1
5: else return k2

The NTRU DPKE scheme. We briefly explain why the DPKE scheme works (alg. 1, 2, 3). Since ` is
a prime, and 2 is of order `−1 in Z∗` , we get that Φ` is an irreducible polynomial modulo 2. We deduce
that the set of polynomials modulo 2 and Φ` is a field, and therefore f ∈ Lf is invertible modulo 2 and
Φ`. One can then lift the inverse from modulo 2 to modulo q and Φ`. The same holds for the inverse
of f modulo 3. Note that from g ∈ Lg, we have g = 0 (mod q, Φ1), and therefore h = 0 (mod q, Φ1).

5

Lf Lg Lr Lm Lift

HPS T T (q/8− 2) T T (q/8− 2) m 7→ m

HRSS T+ Φ1 · T+ T T m 7→ Φ1 · (m/Φ1 mod± (3, Φ`))

Table 1: Definitions of polynomial sets and lifting application for NTRU-HPS and NTRU-HRSS.

ntruhps2048509 ntruhps2048677 ntruhps4096821 ntruhrss701

` 509 677 821 701

q 2048 2048 4096 8192

Table 2: Values of ` and q for the four versions of NTRU.

The encryption of m is given by:

c = r · h+m (mod (q, Φ1Φ`))

From Line 2 of Algorithm 3, we have:

a = c · f = (r · h+m) · f (mod (q, Φ1Φ`))

By definition we have h · f = 3 · g (mod q, Φ`). This gives a = 3 · g · r +m · f (mod q, Φ`). Moreover,
from m = 0 (mod Φ1), we have c = 0 (mod q, Φ1), and therefore a = 0 (mod q, Φ1). Besides we have
g = m = 0 (mod q, Φ1), therefore we deduce:

a = 3 · g · r +m · f (mod q, Φ1Φ`) (1)

One can show that the equation also holds over Z, not only modulo q. Namely, the polynomials g, r, m
and f have small coefficients, therefore the equality holds over Z when we represent the polynomials
modulo q with coefficients between −q/2 and q/2. This gives:

a = 3 · g · r +m · f (mod Φ1Φ`) (2)

We deduce that a = m · f (mod 3, Φ1Φ`), and therefore m ≡ a · fp (mod 3, Φ`). Since degm ≤ ` − 2
and m is ternary, we must have m = a ·fp (mod 3, Φ`), as computed in Line 3 of Algorithm 3. Finally,
we have:

(c−m) · hq ≡ (r · h) · hq ≡ r (mod (q, Φ`))

and since deg(r) ≤ `− 2, we can recover r at Line 4 with r = (c−m) · hq mod (q, Φ`).

CCA security of NTRU. The CCA security of NTRU is a consequence of its rigidity. The rigidity
expresses as follow, for (r,m) ∈ Lr × Lm:

Encrypt(h, (r,m)) = c⇔ Decrypt((f, fp, hq), c) = (r,m)

Therefore, the FO transformation can be avoided by using the membership check (r,m) ∈ Lr × Lm
since it ensures a correct ciphertext recomputation. Eventually, the rigidity is ensured by the choice
of parameters in Table 1, see [BP18,HRSS17].

6

The NTRU KEM. The KEM version of NTRU proceeds similarly to the NTRU DPKE scheme (alg. 4, 5,
6). It adds a seed s to the secret key. This seed is used for implicit rejection during the decapsulation
in order to preserve CCA security [BP18]. The Encapsulate algorithm samples r and m according to
their space set and encrypts them into c. Then it hashes (r,m) into the session key k. Eventually,
the Decapsulate algorithm decrypts the ciphertext c into (r′,m′, fail). When no decryption failure
occurs, the rigidity of the NTRU DPKE schemes ensures that r′ and m′ match the original r and m
from encryption, which enables to recover the session key k.

4 New gadgets for high-order masking NTRU

In this section, we describe the high-order masking of the main components of the NTRU cryptosystem.
We recall in Appendix A the main masking tools, such as arithmetic vs Boolean conversions, and
zero-testing with Boolean or arithmetic shares.

4.1 Decryption: masking the reduction modulo 3

The polynomial a at Step 2 of Decrypt (Algorithm 3) is arithmetically masked modulo q, because
the secret-key f is arithmetically masked modulo q. Namely, given as input the ciphertext c and the
masked secret-key f = f1 + · · ·+ fn (mod q), we obtain:

a = c · f = (c · f1) + · · ·+ (c · fn) (mod q, Φ1Φ`),

and letting ai = c · fi mod (q, Φ1Φ`), we obtain a = a1 + · · ·+ an (mod q) as required.

The main difficulty is then to compute the polynomial a modulo (3, Φ`), which corresponds to Step
3 of Decrypt. Namely the polynomial a satisfies

a = 3 · g · r +m · f (mod q, Φ1Φ`)

where the polynomials g, r, m and f have small coefficients, and therefore the equality

a = 3 · g · r +m · f (mod Φ1Φ`)

holds over the integers (not only modulo q). This enables to get rid of the 3 · g · r part by reduction
modulo 3. One must therefore perform this operation while the polynomial a is arithmetically masked
modulo q. Note that we cannot directly reduce each share ai modulo 3 when a is arithmetically masked
modulo q, as the reduction modulo 3 is not linear over the ring Zq.

1 This implies that a more complex
technique is required.

For this, the idea is to first convert each coefficient of a from arithmetic masking modulo q into
Boolean masking, and then perform a conversion from Boolean masking to arithmetic masking modulo
3. More precisely, we write q = 2k and we consider a coefficient −2k−1 ≤ x < 2k−1. We write x = 3·u+v
with 0 ≤ v < 3. Given as input an arithmetic sharing of x modulo 2k, we must output an arithmetic
sharing of v modulo 3. We write x(j) the j-th bit of x mod 2k, so we can write:

x = −2k−1x(k−1) +

k−2∑
j=0

2j · x(j) = 3 · u+ v

1 Consider for example a masking with two shares x1 and x2 with q = 256, and let x = x1 + x2 mod 256, with x1 = 222
and x2 = 57, which gives x = 23. If we reduce x1 and x2 directly modulo 3, we obtain (222 mod 3) + (57 mod 3) = 0
(mod 3), but on the other hand we have x mod 3 = 2. So reducing the shares modulo 3 directly would give an incorrect
result.

7

and therefore we obtain the value of v = x mod 3 as a function of the bits x(j) of x:

v = (−2k−1 mod 3) · x(k−1) +
k−2∑
j=0

(2j mod 3) · x(j) (mod 3) (3)

We now explain how to high-order compute v modulo 3 from an arithmetic masking of x modulo
q = 2k. Taking x = x1 + · · ·+xn (mod q) as input, we first perform an arithmetic to Boolean masking

conversion, so we obtain x = y1 ⊕ · · · ⊕ yn with yi ∈ {0, 1}k for all 1 ≤ i ≤ n. Letting y
(j)
i be the

j-th bit of yi, we have x(j) = y
(j)
1 ⊕ · · · ⊕ y

(j)
n for all 0 ≤ j < k. Therefore we perform a Boolean to

arithmetic modulo 3 conversion of each x(j), which gives for all 0 ≤ j < k:

x(j) = y
(j)
1 ⊕ · · · ⊕ y

(j)
n = z

(j)
1 + · · ·+ z(j)n (mod 3) (4)

Eventually, we obtain by combining (3) and (4):

v = (−2k−1 mod 3) ·
n∑

i=1

z
(k−1)
i +

k−2∑
j=0

(2j mod 3)
n∑

i=1

z
(j)
i (mod 3)

=

n∑
i=1

k−2∑
j=0

(2j mod 3)z
(j)
i − (2k−1 mod 3)z

(k−1)
i

 (mod 3)

which gives an n-sharing of v modulo 3, as required. We provide the corresponding algorithm below.
We refer to Appendix A.1 for an overview of the conversion algorithms AtoB2k and BtoA3, which are
assumed to satisfy the SNI property. Note that our algorithm can work for any modulus q, not only
2k, by using an algorithm for converting from arithmetic modulo q to Boolean masking at Line 1.

Algorithm 7 Mod3Red(v1, . . . , vn)

Input: An arithmetic sharing modulo 2k (x1, . . . , xn) of x ∈ [−2k−1, 2k−1 − 1]
Output: An arithmetic sharing modulo 3 (w1, . . . , wn) of (x mod 3).

1: y1, . . . , yn ← AtoB2k(x1, . . . , xn)
2: for j = 0 to k − 1 do

3: Let y
(j)
i be the j-th bit of yi for 1 ≤ i ≤ n

4: z
(j)
1 , . . . , z

(j)
n ← BtoA3(y

(j)
1 , . . . , y

(j)
n)

5: end for
6: for i = 1 to n do
7: wi ←

∑k−2
j=0 2jz

(j)
i − 2k−1z

(k−1)
i mod 3

8: end for
9: return w1, . . . , wn

Security. The following theorem shows that the Mod3Red algorithm achieves the t − SNI security
notion.

Theorem 1 (t − SNI security of Mod3Red). For any subset O ⊂ [1, n] and any t1 intermediate
variables with |O|+ t1 ≤ t, the output variables w|O and the t1 intermediate variables can be perfectly
simulated from the input variables x|I , with |I| ≤ t1.

8

Proof. The t−SNI property of the part from lines 2 to 9 follows from the t−SNI of each of the k inde-

pendent BtoA3 conversions. Namely the corresponding output shares z
(j)
i are combined independently

for each share index 1 ≤ i ≤ n. Therefore we can use the same output subset O for each intermediate

output shares (z
(j)
i)1≤i≤n for 0 ≤ j < k. The t− SNI property of the complete algorithm follows from

composition of two SNI gadgets. ut

Complexity. We assume that a group operation as well as randomness generation takes unit time.
The complexity of Algorithm 7 is therefore:

TMod3Red(k, n) = TAtoB(k, n) + k · TBtoA3(n) + 2 · k · n+ 1

= O(k · n2)

4.2 Key generation: masked generation of g ← Lg

In this section, we explain how to generate an arithmetically masked g ← Lg, which corresponds to
Line 1 of the KeyGen algorithm (Alg. 1). We consider only the HPS version, for which Lg = T (q/8−2),
see Table 1. We will consider the HRSS version in Section 7.2. Obviously, we cannot simply generate
an unmasked g ← Lg and later arithmetically mask it with n shares, as the attacker could directly
probe the unmasked g. Therefore, the key generation algorithm must be masked with n shares from
the beginning.

Recall that T (q/8− 2) is the set of ternary polynomials of degree at most `− 2 containing exactly
q/16−1 coefficients equal to 1, and q/16−1 coefficients equal to −1. In the NIST submission [CDH+19],
the authors apply a random permutation to the coefficients of an initially fixed polynomial gI with its
first q/16− 1 coefficients equal to 1, its q/16− 1 following coefficients equal to −1, and its remaining
coefficients equal to 0. Actually, the applied permutation is not perfectly random. Namely, in the
corresponding FixedType algorithm from [CDH+19], given a 30(` − 1)-bit seed, the permutation is
obtained by concatenating to each coefficient a 30-bit prefix, then sorting the list of 32-bit entries, and
eventually discarding the 30-bit prefix to keep the permuted coefficients. Obviously, such procedure
would be quite challenging to mask directly.

Alternatively, we use the following simple approach, which also provides a perfectly random per-
mutation. We start with the initial polynomial g = gI as previously, and we encode g over n = t + 1
shares with arithmetic masking modulo q, for security against t probes. We then repeat the following
procedure n = t+ 1 times: we randomly permute the `− 1 coefficients of g by generating an indepen-
dent random permutation π; for this, we actually apply π on each share of g; we then perform a linear
mask refreshing modulo q of each coefficients of g. Eventually, we output the arithmetically masked
polynomial g modulo q. We describe the algorithm below. We denote by P`−1 the set of permutation of
{0, . . . , `− 2}. We assume that we have an efficient algorithm for generating a permutation π ← P`−1
uniformly at random. We recall the LinearRefresh algorithm in Appendix A.5, applied on the quotient
ring S/q = Zq[X]/Φ`.

Security. The above algorithm is secure against an adversary with at most t = n− 1 probes, because
by definition, at least one of the n permutations and subsequent linear mask refreshing has not been
probed, after which the adversary’s probes can be perfectly simulated without knowing the secret key.
This is the same security argument as for proving the security of the table recomputation counter-
measure [Cor14]. Formally, the following theorem proves the security of the above algorithm. For a
key generation algorithm, there are no inputs, so we need to prove that for any generated secret-key
g, any t < n probe can be perfectly simulated without knowing g.

9

Algorithm 8 SecSampleT(d)

Output: (g1, . . . , gn), an arithmetic sharing modulo q of g ∈ T (d)

1: g1, . . . , gn ← ((1 + · · ·+Xd/2−1 −Xd/2 − · · · −Xd−1), 0 . . . , 0)
2: for j = 1 to n do
3: π ← P`−1
4: for i = 1 to n do gi ← π(gi)
5: g1, . . . , gn ← LinearRefreshS/q(g1, . . . , gn)
6: end for
7: return (g1, . . . , gn)

Theorem 2 (t-probing security of SecSampleT(d)). For any fixed secret-key g = g1 + · · · + gn
(mod q) output by SecSampleT(d), any set of t1 < n intermediate variables can be perfectly simulated
without knowing g.

Proof. We consider any fixed secret g ∈ T (d), and we consider a secret π ← P`−1 such that g = π(gI),
where gI = 1 + · · ·+Xd/2−1 −Xd/2 − · · · −Xd−1 is the initial polynomial.

We denote by Partj for 1 ≤ j ≤ n the execution steps of the algorithm during the for loop from
Line 2 to Line 6. Since there are t1 < n probed variables, at least one execution of the for loop has
not been probed. Let j? be the corresponding index, such that Partj? has not been probed.

We split the probed variables into 2 sets: S<j? and S>j? , which correspond to the variables probed
during execution of Partj for j < j? and j > j? respectively. The variables from Sj<j? can be perfectly
simulated without the knowledge of g. Indeed, for each index j < j?, it suffices to draw πj ← P`−1
uniformly at random, and simulate all variables from the initial sharing of gI at Step 1 and πj .

In order to simulate the variables from S>j? , we define a set of indexes I such that i ∈ I iff a
variable gi has been probed. By construction we have |I| ≤ t1 < n. Since Partj? has not been probed,
the corresponding LinearRefresh gadget has not been probed, hence any subset of at most n−1 output
shares is uniformly and independently distributed; hence the corresponding outputs g|I can be perfectly
simulated. One can then propagate the simulation for the Partj processes for j > j?, and simulate any
variable from the set S>j? from such g|I ; as previously we generate the permutations πj for j > j?

uniformly at random in P`−1.
Finally, for consistency we must have π = πn ◦ · · · ◦ πj? ◦ · · · ◦ π1, which is possible by fixing the

permutation πj? satisfying this equation. The knowledge of πj? is not required for the simulation,
since by assumption Partj? has not been probed. Hence the simulation can be performed without the
knowledge of π and the output secret-key g. ut

Complexity. The time complexity of the algorithm is

TSecSampleT(`, n) = n · (`− 1 + n · `+ TLinearRefresh(n))

= O(n2 · `)

Remark 1. Note that our security model assumes that the adversary can only probe at most n− 1 of
the n permutations, so in the security proof at least one permutation can be treated as a black-box.
However, for security against real side-channel leakages, it may be difficult to implement a permuta-
tion so that this assumption is satisfied in practice. More precisely, it may be possible to perform a
template attack against the permutations, so that using a single trace, the adversary could recover all
n permutations and eventually the secret-key. We refer to [KAA21] for an example of such attack.

10

4.3 Key generation: high-order computation of 1/f modulo q

In this section, we show how to high-order compute the secret fq = (1/f) mod (q, Φ`) at Step 2
of KeyGen (Alg. 1). We have that f is invertible in Z[X]/(q, Φ`) iff f is invertible in Z[X]/(2, Φ`).
Therefore, we first recall how to compute inverses in S/2 = Z2[X]/Φ`.

Computing inverse over S/2. Since Φ`(x) is irreducible modulo 2, the multiplicative group S/2 =
Z[X]/(2, Φ`) has order 2`−1 − 1. Therefore, we can first compute the inversion of f in Z[X]/(2, Φ`),
using a sequence of squares and multiplies as in [IT88], and then lift the result modulo q. Namely, such
exponentiation approach is much easier to mask than the extended-gcd approach. More precisely, we
must compute:

f−1 = f2
`−1−2 = f2·(2

`−2−1) mod (2, Φ`) (5)

To compute this exponentiation, we use the identity 2a+b − 1 = 2a · (2b − 1) + (2a − 1), which gives:

f2
a+b−1 =

(
f2

b−1
)2a
· f2a−1 mod (2, Φ`) (6)

where the exponentiation by 2a is a linear operation. In particular, we obtain:

f2
2b−1 =

(
f2

b−1
)2b
· f2b−1 mod (2, Φ`), f2

b+1−1 =
(
f2

b−1
)2
· f mod (2, Φ`)

which implies that we can perform the equivalent of a square-and-multiply. We provide the corre-
sponding FastExpo algorithm below, with the proof of correctness (Theorem 3) in Appendix B.1.

Algorithm 9 FastExpo(x,m)

Input: An integer m = (mk−1, . . . ,m0)2 and an element x ∈ Z2[X]/Φ`

Output: x2
m−1 in Z2[X]/Φ`

1: y ← 1
2: for i = k − 1 to 0 do
3: m′ ← m� (i+ 1)

4: y ← y × y2m
′

5: if mi = 1 then y ← y2 × x
6: end for
7: return y

Theorem 3 (Correctness). Given as input x ∈ Z2[X]/Φ`, Algorithm 9 outputs x2
m−1 in blog2mc+

Hw(m)− 1 ≤ 2blog2(m)c non-linear multiplications, where Hw(m) is the Hamming weight of m.

Computing inverse over S/q = Zq[X]/Φ`. We now recall how to compute inverses over S/q =
Zq[X]/Φ`. For this we recall the unmasked SqInverse algorithm from [CDH+19], which lifts the inverse

modulo 2 into an inverse modulo 22
i

at each step i of the while loop, until 22
i ≥ q. We provide the

proof of correctness in Appendix B.2.

11

Algorithm 10 SqInverse(a)

Input: An invertible polynomial a ∈ S/q
Output: A polynomial v such that a · v = 1 mod (q, Φ`)

1: v ← FastExpo(a mod 2, `− 2)
2: v ← v 2

3: t← 1
4: while t < log2 q do
5: v ← v(2− a · v) mod (q, Φ`)
6: t← 2t
7: end while
8: return v

Theorem 4 (Correctness). Algorithm SqInverse is correct.

High-order masking. The two previous algorithms are easy to mask. Namely, for the FastExpo
algorithm, it suffices to high-order mask the polynomial multiplications at lines 4 and 5. This can
be done via a SecMult algorithm, as a straightforward extension of the And gadget from [ISW03].
We provide in Appendix B.3 the high-order masking of the FastExpo algorithm, called SecFastExpo.
Similarly, we provide in Appendix B.4 an algorithmic description of the high-order masked version of
Algorithm 10 above, called SecSqInverse. Note that after Line 2 of Algorithm 10, the polynomial v must
be considered modulo q instead of modulo 2, so we consider each share of v as a share modulo q. The
final complexity of our polynomial inversion algorithm in S/q = Zq[X]/Φ` is O(n2 · (log `+ log log q))
operations in S/q. We provide the proof of the following theorem in Appendix B.4.

Theorem 5 (t − SNI security of SecSqInverse). For any subset O ⊂ [1, n] and any t1 intermediate
variables with |O|+ t1 ≤ t, the output variables v|O and the t1 intermediate variables can be perfectly
simulated from the input variables a|I , with |I| ≤ t1.

Addition chains. More generally, to compute the exponentiation given by (5), from (6) it suffices to
provide an addition chain for the integer `−2. The number of additions in the chain gives the number
of multiplications in Z[X]/(2, Φ`). From the square-and-multiply algorithm above, there always exists
an addition chain for m = ` − 2 with blog2mc + Hw(m) − 1 ≤ 2blog2(m)c additions. However, one
can often find better addition chains. For example, in [HRSS17], the authors compute the inversion in
F2700 with 12 multiplications only (instead of 15 with the square-and-multiply). We refer to Appendix
B.6 for more details.

5 The polynomial inversion algorithm from [KLRBG22]

Recently, the authors of [KLRBG22] described a high-order masked algorithm to perform the polyno-
mial inversion in the key generation of NTRU, based on a conversion from arithmetic to multiplicative
masking. The authors claimed that their high-order conversion algorithm can achieve arbitrary-order
security, but without a security proof. Below, we show that their algorithm is actually insecure: we ex-
hibit a 3-rd order attack for any number of shares n in the countermeasure. We then describe a simple
reparation with a proof of security, and we eventually provide a comparison between our high-order
inversion algorithm from Section 4.3 and the repaired algorithm.

12

5.1 Our third-order attack

Let R be a ring. The technique used in [KLRBG22] to high-order compute the inverse of an element
a ∈ R? is to use a multiplicative masking a =

∏n
i=1mi with invertible elements mi ∈ R?, so that the

inversion in R? becomes a linear operation in the number n of masks (instead of quadratic for additive
masking):

a−1 =
n∏

i=1

m−1i

We recall in Algorithm 11 below the arithmetic to multiplicative masking conversion algorithm from
[KLRBG22, Alg. 4].

Algorithm 11 Additive to multiplicative conversion (A2M)

Input: An arithmetic masking a = a1 + · · ·+ an ∈ R
Output: A multiplicative masking a =

∏n
i=1mi ∈ R

1: for i = n downto 2 do
2: ri ← R?

3: for j = 1 to i do
4: aj ← ri · aj
5: end for
6: mi ← r−1i . a =

(∑i
j=1 aj

)∏n
j=imj

7: ai−1 ← ai−1 + ai
8: end for
9: m1 ← a1

10: return m1, . . . ,mn

Our attack. We describe a 3-rd order attack that works for any number of shares n. We probe the
initial value a1, the value a′1 of the variable a1 for the last index i = 2 after Line 5, and the output
variable m1. Since for each n ≥ i ≥ 2 the random ri is multiplicatively accumulated on the variable
a1, we obtain:

a′1 = a1 ·
n∏

i=2

ri = a1 ·
n∏

i=2

m−1i

which gives:

a =
n∏

i=1

mi = m1 ·
n∏

i=2

mi = m1 · a1 · (a′1)−1

which shows that the secret value a can always be recovered from the 3 probes a1, a
′
1 and m1. This

shows that for any number of shares n, the countermeasure can provide at most second-order security.

In [KLRBG22, Alg. 6] the authors also described an optimization of their algorithm, which consists
in converting the additive shares a = a1 + · · ·+an into multiplicative shares of the inverse of a, namely
a−1 = m1 × · · · × mn, using a single inversion instead of n − 1. Our 3-rd order attack also applies
against this variant. In the following, we focus on this variant since it is more efficient (as it requires
a single inversion in R? instead of n − 1 inversions). More precisely, we provide a reparation of this
later algorithm, with a proof of security in the ISW probing model.

13

5.2 Repaired polynomial inversion algorithm

Additive to multiplicative conversion. In this section, we describe the repaired high-order poly-
nomial inversion algorithm, starting from the additive to multiplicative conversion algorithm described
in [KLRBG22, Alg. 6], which requires a single polynomial inversion only. In order to repair such al-
gorithm, it suffices to add a mask refreshing at each iteration of the for loop, and to delay the shares
recombination to the end of algorithm. We provide the pseudo-code of the A2MINV algorithm below;
we refer to Appendix A.5 for the LinearRefresh algorithm. Such corrected version is actually similar to
the zero-test algorithm in [CGMZ21, Algorithm 3], which is also based on an additive to multiplicative
masking conversion. The time complexity of the modified algorithm is

TA2M(n) = n · (1 + n+ 3n− 3) + n+ Tinv(R?) ∼ 4n2

Algorithm 12 Additive to multiplicative conversion (A2MINV)

Input: a = a1 + · · ·+ an
Output: a−1 = m1 · · · · ·mn

1: for i = 1 to n do
2: ri ← R?

3: for j = 1 to n do aj ← ri · aj
4: a1, . . . , an ← LinearRefreshR(a1, . . . , an)

5: mi ← ri . a =
(∑n

j=1 aj

)∏i
j=1m

−1
j

6: end for
7: m1 ← m1 · (

∑n
j=1 aj)

−1 . a−1 = m1 ·m2 · · · · ·mn

8: return m1, . . . ,mn

Theorem 6 (t − SNI security of A2MINV conversion). For any subset O ⊂ [1, n] and any t1
intermediate variables with t1 + |O| ≤ t, the output variables m|O and the t1 intermediate variables
can be perfectly simulated from input variables a|I , with |I| ≤ t1

Proof. We denote by Parti for 1 ≤ i ≤ n the steps of the algorithm from Line 1 to Line 6 in

the For loop with index i, and by a
(i)
j the value of the share aj at the end of Parti. Let P =

{i | Parti has been probed or i ∈ O}. From t1 + |O| < n we deduce P ([1, n] and therefore there
exists i? such that Parti? has not been probed and i? /∈ O. We construct a subset I ⊂ [1, n] of input
indexes for the simulation. We start with an empty I and for each probed variable aj we add j to the
set. By construction we must have |I| ≤ t1.

Every probed variable in Parti for i < i? can be perfectly simulated from a|I . It remains to simulate
the variables probed at Parti for i > i?. Since by assumption mi? and ri? have not been probed and

i? /∈ O, the random ri? acts as a one-time pad for the value a(i
?) = a

(i?)
1 + · · · + a

(i?)
n . Moreover we

note that a(i
?) = a ·m1 · · · · ·mi? is invertible as the product of invertible elements. Therefore, a(i

?)

is uniformly distributed in R?. Since Parti? has not been probed, the corresponding LinearRefresh

instance has not been probed. We can therefore perfectly simulate all shares a
(i?)
j at the end of Parti?

with fresh random values whose sum is invertible. Such simulation can subsequently be propagated to
all aj variables until the end of the algorithm. We therefore conclude that Algorithm 12 is (n−1)−SNI.

Multiplicative to additive masking conversion. In [KLRBG22], the authors also provide a
multiplicative to additive masking conversion algorithm, without a security proof. In the following, we

14

recall their algorithm, and prove that it achieves the t− SNI security property. We refer to Appendix
E for the proof. The complexity of the algorithm is TM2A(n) ∼ 2n2.

Algorithm 13 Multiplicative to additive conversion (M2A)

Input: m = m1 · · · · ·mn ∈ R
Output: m = a1 + · · ·+ an ∈ R
1: a1 ← m1

2: for i = 1 to n− 1 do
3: a1, . . . , ai+1 ← LinearRefreshR(a1, . . . , ai, 0)
4: for j = 1 to i+ 1 do aj ← aj ·mi+1

5: end for
6: return a1, . . . , an

Theorem 7 (t − NI security of M2A conversion). Any set of t probed variables can be perfectly
simulated from the input variables m|I , with |I| ≤ t

High-order polynomial inversion. Finally, we describe the full SNI-secure inversion algorithm
based on mask conversion. The algorithm achieves the (n − 1) − SNI security property, based on the
composition of a (n − 1) − SNI and a (n − 1) − NI gadget. The complexity of high-order polynomial
inversion in S/q = Zq[X]/Φ` is O(n2 + log `) operations in S/q.

Algorithm 14 Inversion based on multiplicative masking INVMul

Input: a = a1 + · · · an ∈ R?

Output: a−1 = b1 + · · ·+ bn

1: m1, . . . ,mn ← A2MINV(a1, . . . , an)
2: b1, . . . , bn ← M2A(m1, . . . ,mn)
3: return b1, . . . , bn

Theorem 8 (t−SNI security of INVMul). For any subset O ⊂ [1, n] and any t1 intermediate variables
with t1 + |O| ≤ t, the output variables b|O and the t1 intermediate variables can be perfectly simulated
from input variables a|I , with |I| ≤ t1.

5.3 Comparison

The repaired polynomial inversion algorithm from [KLRBG22] is asymptotically faster than our algo-
rithm from Section 4.3, since for inversion in S/q = Zq[X]/Φ`, its complexity is O(n2+log `) operations
in S/q, instead of O(n2 ·(log `+log log q)). This is confirmed experimentally in tables 3 and 4 below, in
which we compare the cycle count and randomness consumption between the two polynomial inversion
algorithms.

15

Security order t

1 2 3 4 5 6 7

SecSqInverse 18760 41912 115196 213702 332595 484385 644636

INVMul 4187 11264 21558 30964 42155 56451 71288

SecSqInverse AVX2 743 1192 2044 2947 4115 5611 7525

INVMul AVX2 87 141 232 357 522 700 927

Table 3: Comparison for the inversion in S/q between multiplicative masking and our technique for a
naive and an optimized implementation of the polynomial multiplication, in thousands of cycles.

Security order t

1 2 3 4 5 6 7

SecSqInverse 19 50 94 151 221 303 398

INVMul 3 8 14 23 34 46 61

Table 4: Randomness usage comparison for the inversion in S/q between multiplicative masking and
our technique, in thousands of calls to the RNG outputting 32 bits of randomness.

6 High-order masking of NTRU decryption

In the previous sections, we have considered the masking of some specific components of NTRU. In this
section, we consider the full high-order masking of the NTRU IND-CCA decryption, more precisely the
Decapsulate algorithm (Alg. 6).

We first recall the NTRU Decrypt and Decapsulate algorithms, already described in Section 3. The
Decrypt algorithm takes as input the ciphertext c and returns (r,m) if the ciphertext c is well formed
(fail = 0), otherwise it returns fail = 1. If the ciphertext is well formed, the Decapsulate algorithm
returns the session key k1 = H1(r,m), otherwise it returns the dummy key k2.

Algorithm 3 Decrypt((f, fp, hq), c)

1: if c 6= 0 mod (q, Φ1) return (0, 0, 1)
2: a← (c · f) mod (q, Φ1Φ`)
3: m← (a · fp) mod (3, Φ`)
4: r ← ((c−m) · hq) mod (q, Φ`)
5: if (r,m) ∈ (Lr,Lm) return (r,m, 0)
6: else return (0, 0, 1)

Algorithm 6 Decapsulate((f, fp, hq, s), c)

1: (r,m, fail)← Decrypt((f, fp, hq), c)
2: k1 ← H1(r,m)
3: k2 ← H2(s, c)
4: if fail = 0 return k1
5: else return k2

We summarize below the high-order masking of the Decrypt and Decapsulate operations.

1. At Step 1 of Decrypt, the input ciphertext is unmasked, so we can perform the test c 6= 0 mod (q, Φ1)
in clear.

2. At Step 2 of Decrypt, by assumption the secret-key f is arithmetically masked modulo q with n
shares, so we obtain a masked polynomial a modulo q, by multiplying each share of f by c, as
explained in Section 4.1.

3. At Step 3 of Decrypt, we must convert the masked polynomial a = c · f = 3 · g · r + m · f
(mod (q, Φ1Φ`)) into a masked polynomial ã modulo 3, so that the term 3 · g · r is removed by

16

reduction modulo 3. This has been described in Section 4.1. After high-order multiplication by fp,
which is arithmetically masked modulo 3, we eventually obtain the masked message m modulo 3.

4. At Step 4 of Decrypt, we must first convert m from arithmetic masking modulo 3 to masking
modulo q. See Appendix A.2 for a description of the technique. We can then obtain an arithmetic
masking of r modulo q.

5. At Step 5 of Decrypt, we must test membership r ∈ Lr = T and m ∈ Lm from masked r and m.
We describe the corresponding high-order algorithms in sections 6.1 and 6.2 below. The bit fail
can be computed in the clear.

6. At Step 1 of Decapsulate, we obtain masked polynomials m and r, modulo q. For hashing (r,m)
at Step 2 in Decapsulate, we must high-order mask the packS3 algorithm from [CDH+19], which
is applied to (r,m) before hashing, with a Boolean masked output; see Section 6.3. We then high-
order compute the hash function H1 over Boolean shares, and the session-key k1 is eventually
returned with Boolean shares. The same procedure is applied for H2 if fail = 1.

6.1 Testing membership r ∈ Lr = T

The membership test r ∈ Lr = T is used at Step 5 of Decrypt. Recall that T is the set of non-zero
ternary polynomials of degree at most ` − 2. We actually test if r ∈ T ∪ {0}, which means that we
consider (r,m) with r = 0 as a legitimate plaintext in the DPKE scheme. We consider the ` − 1
coefficients r(j) of r, where each coefficient is arithmetically masked modulo q with n shares. To test
if r ∈ T ∪{0}, we must check that each of the `− 1 coefficients r(j) is in {−1, 0, 1}. More precisely, we
must high-order compute the bit:

b =
`−2∧
j=0

(
r(j)

?
= −1

)
∨
(
r(j)

?
= 0
)
∨
(
r(j)

?
= 1
)

which we can rewrite as:

b =

`−2∧
j=0

(
r(j) ⊕ (−1)

?
= 0
)
∨
(
r(j)

?
= 0
)
∨
(
r(j) ⊕ 1

?
= 0
)

(7)

In order to high-order compute (7), we first convert each coefficient r(j) from arithmetic to Boolean
masking (see Appendix A.1). Secondly, we xor the first share with −1, 0 and 1 modulo q. Thirdly, we
perform 3 zero-tests on Boolean shares to check whether the coefficient equals −1, 0 or 1 (see Appendix
A.3). We then perform a secure Or between the 3 resulting tests, using x ∨ y = x ∧ y, with the same
secure And gadget as in [ISW03]. Eventually, we obtain a Boolean sharing of the bit b. Since we must
perform an arithmetic modulo q to Boolean conversion for each of the ` coefficients, the complexity is
O(` · log(q) · n2).

6.2 Testing membership m ∈ Lm

The membership test r ∈ Lm is used at Step 5 of Decrypt. In the HRSS version, we have Lm = T (see
Table 1), and since the coefficients of m are ternary by definition (as they are obtained modulo 3),
we do not need to perform any additional test. For the HPS version, we have Lm = T (q/8− 2), so we
need to check that m has q/16− 1 coefficients equals to 1 and q/16− 1 coefficients equals to −1. To
do so we first check if the sum of the coefficients of m is zero, and we then test if the sum of squared

17

coefficients of m is q/8 − 2. More precisely, given the ` − 1 coefficients (m(0), . . . ,m(`−2)) of m, we
high-order compute the bit:

b =

`−2∑
j=0

m(j) mod q
?
= 0

 ∧
`−2∑

j=0

(m(j))2 − (q/8− 2) mod q
?
= 0

For this, we need to perform two zero-tests on arithmetic sharing modulo q, starting from an arithmetic
masking modulo q of the coefficients of m (which is also required for the high-order computation of r
at Step 4 of Decrypt); see Appendix A.4. The complexity is O((log(q) + `) · n2).

Note that for the testing of m ∈ Lm and r ∈ Lr, the adversary should not learn whether m ∈ Lm
and r ∈ Lr separately, so we must keep the result of both tests in masked form before returning the
result of the And of the two tests. However this final result (fail = 0 or fail = 1) is not sensitive and
can be computed in the clear. The total complexity is O(` · log(q) · n2).

6.3 Packing ternary polynomials

In the NIST submission of NTRU [CDH+19], the authors describe the PackS3 algorithm for converting
ternary polynomials into a sequence of bytes. In particular, the PackS3 algorithm is used for computing
the hash k1 = H1(r,m) at Step 2 of Decapsulate.

More precisely, given as input a vector v of 5 ternary coefficients v = (v0, . . . , v4) ∈ {0, 1, 2}5, the
packS3 algorithm interprets the vector v as an integer 0 ≤ x < 243 in base 3:

x =

4∑
j=0

3j · vj (8)

which is then converted into a 8-bit string. The above procedure is applied sequentially on chunks of
five coefficients of the polynomial until no coefficient is left.

When the polynomials r and m are arithmetically masked modulo 3, the above coefficients vj ’s
are also masked modulo 3. Therefore, we first perform an arithmetic modulo 3 to arithmetic modulo
256 conversion of each coefficient vj (we refer to Appendix A.2 for a full description of the conversion
algorithm):

vj = vj,1 + · · ·+ vj,n (mod 3)

= wj,1 + · · ·+ wj,n (mod 256) (9)

Combining (8) and (9), we obtain an arithmetic masking of x modulo 256:

x =
4∑

j=0

3j ·
n∑

i=1

wj,i =
n∑

i=1

 4∑
j=0

3j · wj,i

 (mod 256)

Eventually we perform an arithmetic to Boolean conversion of x. The final complexity is O(n2) for n
shares.

In the algorithm above we have assumed that the polynomial r is initially masked modulo 3,
while after Step 4 of the Decrypt algorithm (Alg. 3), the polynomial r is actually masked modulo q.
However, we know after Line 5 that the polynomial r must be ternary. Therefore, we can use the
Mod3Red algorithm from Section 4.1 to obtain an arithmetic masking modulo 3 of r. We also describe
in Appendix C another method to pack ternary polynomials when they are arithmetically masked
modulo q.

18

7 High-order masking of NTRU key generation

In this section, we consider the high-order masking of the NTRU key generation. We first recall the
KeyGen algorithm, already described in Section 3.

Algorithm 1 KeyGen

1: f ← Lf , g ← Lg
2: fq ← (1/f) mod (q, Φ`)
3: h← (3 · g · fq) mod (q, Φ1Φ`)
4: hq ← (1/h) mod (q, Φ`)
5: fp ← (1/f) mod (3, Φ`)
6: return ((f, fp, hq), h)

We summarize below the high-order masking of the KeyGen algorithm:

1. At Step 1 of KeyGen, we must obtain the masked secret f ← Lf . In the HPS version, Lf = T , which
is the set of non-zero ternary polynomials. We describe the corresponding algorithm in Section 7.1.
In the HRSS version, we have Lf = T+. We describe the corresponding algorithm in Section 7.2. In
both cases, we output both an arithmetic masking modulo 3 and an arithmetic masking modulo q
of the polynomial f .

2. Similarly, we must generate g ← Lg. The polynomial g must be masked modulo q. In the HPS
version, we must sample g ∈ T (q/8 − 2). The procedure was already described in Section 4.3. In
the HRSS version, we must sample g ← Φ1 · T+, see Section 7.2.

3. At Step 2, we must mask the inversion fq ← (1/f) mod (q, Φ`), starting from an arithmetic masking
modulo q of f . The inversion can be computed as a sequence of squares and multiplies in the finite
field modulo (2, Φ`), and then lifted by a sequence of multiplications to modulo (q, Φ`). This was
already considered in Section 4.3.

4. At Step 3, we compute a high-order multiplication of g and fq to obtain the public-key h, whose
shares are recombined. The inversion at Step 4 is then done in the clear. Namely, hq is part of the
secret key only to fasten the recomputation of r during the CCA decryption, but hq does not need
to be secret since it can be computed from the public key h.

5. Finally, at Step 5, we must also high-order compute the inversion fp ← (1/f) mod (3, Φ`). This is
also performed as a sequence of squares and multiplies in the finite field modulo (3, Φ`), as when
working modulo 2. We describe this procedure in Appendix D.

7.1 Masked generation of f ← Lf with Lf = T (HPS version)

We describe the high-order masked generation of f ← Lf at Step 1 of KeyGen. We first consider the
HPS version where Lf = T ; we will consider the HRSS version in the next section. Recall that T is the
set of non-zero ternary polynomials of degree at most `−2. Therefore |T | = 3`−1−1. For simplicity we
can actually generate a random f ∈ T ∪{0}, so that we can generate each coefficient of f in {−1, 0, 1}
independently. 2

The high-order sampling is straightforward: we simply generate independently n polynomials fi
for 1 ≤ i ≤ n with random coefficients modulo 3. The polynomials fi’s will be the n arithmetic shares

2 In [CDH+19], the polynomial f is generated by the Ternary algorithm, which samples each coefficient independently
from {−1, 0, 1}, but with a slightly biased distribution.

19

modulo 3 of the secret polynomial f :

f =
n∑

i=1

fi (mod 3)

Recall that we must also obtain an arithmetic sharing modulo q of f . For this we will convert
each coefficient f (j) of f from masking modulo 3 to modulo q. This is easily done by applying the
table-based conversion algorithm from [CGMZ22], see Appendix A.2.

7.2 Masked generation of f ← Lf with Lf = T+ (HRSS version)

In the HRSS version of the scheme, one must sample the polynomial f in the set T+, which is a subset
of T containing solely polynomials

∑`−2
i=0 v

(i)Xi such that
∑`−2

i=0 v
(i) ·v(i+1) ≥ 0. Elements of T+ are said

to be non-negatively correlated; we refer to [CDH+19, Section 2.2.4] for the motivation of generating
f in T+ rather than T .

We first describe the unmasked version. We first randomly generate a random element v ← T ,
with v =

∑`−2
i=0 v

(i)Xi. We then compute the correlation:

t =

`−2∑
i=0

v(i) · v(i+1) (10)

If t < 0, we flip the sign of even-indexed coefficients, so that we obtain a positive t. Indeed, letting v′

be the polynomial with flipped coefficients and letting t′ be its correlation, we obtain:

t′ =
`−2∑
i=0

v′(i) · v′(i+1) =
`−2∑
i=0

−v(i) · v(i+1) = −t > 0

For the high-order masked version, we start from a high-order masked v ← T from the procedure
of Section 7.1, with an arithmetic masking modulo q. We can high-order compute the value t in (10)
using a sequence of secure multiplications and additions modulo q. The sign of t can then be retrieved
by converting to Boolean masked form and extracting the most significant bit. This sign bit is not
sensitive, since eventually we must have t ≥ 0. Therefore it can be unmasked, and if t < 0 we can
flip the even-indexed coefficients over the arithmetic shares modulo q. Note that the value of t can be
computed modulo q, because we must have |t| < ` < q/2. The complexity is O((log(q) + `) · n2).

Masked generation of g ← Lg = Φ1·T+ (HRSS version). We proceed similarly for the generation
of g ← Lg = Φ1 · T+, simply by generating a random element in T+ as above, and then multiplying by
Φ1.

8 Implementation results and concrete evaluation

8.1 Implementation results

In order to assess the practicality and scalability at high-order of our countermeasure, we have per-
formed a proof of concept implementation in C. The source code can be found at

https://github.com/fragerar/Masked_NTRU

We have run our implementation on a laptop equipped with an Intel CPU, and also on a Cortex-
M3 core mounted on an Arduino Due board. Random numbers are generated using a simple xorshift
PRNG, a secure implementation should replace it by a cryptographically secure PRNG or a TRNG.

20

https://github.com/fragerar/Masked_NTRU

Performances on Intel CPU. We provide the running times for various security orders t in tables
5, 6, 7 and 8. More precisely, in Table 5, we display the cycle counts for the masked version of the
decapsulation procedure incorporated in the reference code, across all parameters sets. The scaling
seems to be quite reasonable for all versions of NTRU. However, this result is slightly biased by the fact
that the polynomial multiplication used in the reference code of NTRU is not optimized. Indeed, this
operation is relatively slow, and therefore the overhead incurred by our new gadgets is relatively low,
since a large amount of time is spent in the polynomial multiplications.

Security order t

0 1 2 3 4 5 6 7 8

ntruhps2048509 716 2 178 4 496 7 715 12 217 18 645 25 986 31 533 38 717

ntruhps2048677 1 074 3 406 7 582 12 537 19 658 29 395 37 610 51 538 74 899

ntruhrss701 1 219 3 777 8 329 13 887 21 526 30 259 40 560 59 834 83 818

ntruhps4096821 1 593 4 917 11 190 18 196 28 805 39 129 60 898 90 625 123 323

Table 5: Cycle counts for decapsulation for all parameters of NTRU, in thousands of cycles, on Intel(R)

Core(TM) i7-1065G7 CPU @1.30GHz.

Similarly, we provide in tables 6 and 7 the cycle count for the key generation, using the exponen-
tiation method from Section 4.3 and the multiplicative method from Section 5.2. We see that as in
Section 5.3, the later is more efficient.

Security order t

0 1 2 3

ntruhps2048509 3 565 33 060 73 685 130 005

ntruhps2048677 6 398 71 054 129 927 287 812

ntruhrss701 7236 71 560 138 982 269 223

ntruhps4096821 8 580 82 550 202 390 333 269

Table 6: Cycle counts for key generation (exponentiation method) for all parameters of NTRU, in
thousands of cycles, on Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz.

Security order t

0 1 2 3

ntruhps2048509 3 565 10 339 14 858 22 306

ntruhps2048677 6 398 18 307 27 012 38 778

ntruhrss701 7 236 16 635 34 845 57 310

ntruhps4096821 8 580 23 322 38 745 59 819

Table 7: Cycle counts for key generation (multiplicative method) for all parameters of NTRU, in thou-
sands of cycles, on Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz.

We also provide in Table 8 the cycle counts using the AVX2 optimized version of the reference
code for the ntruhps2048509 parameter set, significantly reducing the cost of polynomial multiplication.
We obtain a significant speed-up for the Decapsulate, KeyGen (exponentiation method) and KeyGen’

21

(multiplicative method) algorithms. In particular, since KeyGen and KeyGen’ consist almost only in
polynomial multiplications (and randomness generation), their runtime is hugely reduced by the AVX2
optimizations, which makes it competitive with the decapsulation. On the other hand, the overhead to
mask the decapsulation is now way larger, since gadgets not depending on the polynomial arithmetic
are taking a larger amount of the runtime.3 We also display in Table 8 the relative performances of
the gadgets. We see that the reduction modulo 3 and the ternary check are the most time consuming,
because of the conversions between arithmetic and Boolean masking.

Security order t

0 1 2 3 4 5 6 7 8

Decaps 20 608 1758 3210 5479 8683 12019 15453 19505

KeyGen 89 753 1915 3599 6877 8661 12976 17684 21032

KeyGen’ 89 323 581 1077 1782 2619 3520 4644 6207

sec S3 mul − 15 37 84 130 193 268 333 467

poly mod3 reduce − 249 671 1457 2313 3633 5028 6443 8879

ternary check − 92 420 676 1234 1786 2350 2960 3913

pack S3 − 26 93 187 317 491 667 874 1205

check message space − 47 94 198 307 471 653 869 1141

lift − 24 56 132 219 349 501 660 893

Table 8: Cycle counts for key generation, decapsulation and main gadgets for the optimized AVX2
version of ntruhps2048509, in thousands of cycles

Randomness usage We provide in Table 9 the randomness usage of the full decryption (Decapsulate)
and of the key generation (KeyGen and KeyGen’); we also provide the randomness consumption of
the main gadgets. As expected, the number of calls to the RNG is growing significantly when the
order increases. In general, randomness usage is strongly correlated to performances, because shares
refreshing is needed at the core of most gadgets to ensure security in the probing model. The exceptions
are gadgets that manipulate polynomials with small coefficients such as the masked multiplication of
ternary polynomials and the key generation procedure. Indeed, they are cheap in terms of randomness
since multiple coefficients can be extracted from a 32-bit integers but are still performing the expensive
polynomial multiplication in the ring. Note that for the gadgets performing refreshes modulo q, a whole
call to the RNG is counted for each value in Zq. In practice, at least two values could be extracted from
the 32-bit output of the RNG, but it was not done for the sake of simplicity and to avoid potential
leakage due to multiple random elements of Zq depending on the same initial random value.

3 Note that it would also be possible to write the other gadgets in AVX2 to speed them up, but the benefit is likely to
be reduced compared to polynomial arithmetic which is a highly structured operation.

22

Security order t

1 2 3 4 5 6 7 8

Decapsulate 52 205 419 745 1147 1621 2170 2842

KeyGen 31 84 161 264 393 552 740 960

KeyGen’ 13 38 78 134 207 301 415 551

sec S3 mul 0.042 0.129 0.258 0.428 0.641 0.897 1.189 1.543

poly mod3 reduce 17 74 154 278 432 612 822 1080

ternary check 15 61 122 219 337 475 633 832

pack S3 2 10 21 38 59 84 113 149

check message space 3 10 22 37 57 80 108 140

lift 2 7 15 26 41 58 78 102

Table 9: Randomness usage for key generation, decapsulation and main gadgets, in thousands of calls
to the RNG outputting 32 bits of randomness.

Embedded implementation. In addition, since masking schemes are mainly aimed at embedded
devices, we have also tested our code on a Cortex-M3 core mounted on an Arduino Due board. The
cycle counts on this platform for the decapsulation and the key generation of ntruhps2048509 are
displayed in Table 10. We see that the scaling of the masking scheme at different orders is mostly
similar to the results of tables 5 and 6. This is not surprising since the implementation is in plain C
and not optimized for any particular architecture.

Security order t

0 1 2 3 4

Decaps 10 508 32 472 70 357 117 367 182 471

KeyGen 117 348 541 752 1 152 565 1 992 624 3 051 656

Table 10: Cycle counts for decapsulation and key generation of ntruhps2048509 on a Cortex-M3 CPU,
in thousands of cycles

8.2 Concrete leakage evaluation

Finally, we also provide some security guarantees by performing a fixed vs random t-test over 10 000
traces for one of the main gadgets, namely the reduction modulo 3 described in Section 4.1. The results
can be found in Figure 1. The platform used for the experiments is a ChipWhisperer-Lite board that
embeds a Cortex-M4 microcontroller (STM32F303) and a light oscilloscope.

For the leakage assessment, we have rewritten the gadget specifically at order 1 in ARM assembly, to
avoid potential side-channel unsafe modifications from the compiler. We have conducted a fixed versus
random t-test using the methodology described in [SM15]. The technique consists in performing the
power consumption measurements while the device is executing the targeted gadget either with a
fixed secret value chosen beforehand, or with a random value sampled before each measurement. This
creates two sets of traces corresponding to the fixed vs the random values respectively. The t-test will
then be used as a distinguisher between the two sets at each point in the power traces. If the values
output by the t-test are high, it means that the statistical difference could potentially be used by the
adversary to learn something about the secret key. In practice, we have used a set of 10 000 traces.
For each trace, a coin was flipped to determine whether the random or the fixed secret value should
be used.

23

We see in Figure 1 that when the RNG is switched off with randomness set to 0 (that is, without
refreshing the shares), the random and fixed inputs are distinguishable as the t-values are well above
the usual threshold |t| > 4.5. When the random number generator is switched on, values are properly
masked and the test is successful on the gadget.

(a) RNG off (b) RNG on

Figure 1: t-test results on a ChipWhisperer-Lite board, with 10 000 traces.

9 Conclusion

In this paper, we have described the first fully masked implementation of the NTRU Key Encapsulation
Mechanism submitted to NIST (IND-CCA decapsulation and key generation), with a security proof in
the ISW probing model. We have provided a concrete implementation on ARM Cortex-M3 architecture,
showing that our implementation is reasonably efficient, and also a t-test leakage evaluation. Finally,
we have described a 3-rd order attack against a high-order polynomial inversion algorithm for NTRU

recently published in [KLRBG22], and a repaired algorithm with a security proof in the ISW probing
model.

References

BBD+16. Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, Pierre-Yves
Strub, and Rébecca Zucchini. Strong non-interference and type-directed higher-order masking. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016, pages 116–129, 2016. Publicly available at https://eprint.iacr.org/2015/506.pdf.

BBE+18. Gilles Barthe, Sonia Beläıd, Thomas Espitau, Pierre-Alain Fouque, Benjamin Grégoire, Mélissa Rossi, and
Mehdi Tibouchi. Masking the GLP lattice-based signature scheme at any order. In Advances in Cryptology
- EUROCRYPT 2018 - Proceedings, Part II, pages 354–384, 2018.

BGR+21. Joppe W. Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Christine van Vredendaal. Masking
Kyber: First- and higher-order implementations. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(4):173–
214, 2021. https://eprint.iacr.org/2021/483.

BP18. Daniel J Bernstein and Edoardo Persichetti. Towards kem unification. Cryptology ePrint Archive, 2018.

CDH+19. Cong Chen, Oussama Damba, Jeffrey Hoffstein, Andreas Hülsing, Joost Rijneveld, John M. Schanck, Peter
Schwabe, William Whyte, and Zhenfei Zhang. NTRU: Algorithm specifications and supporting documenta-
tion. Brown University and Onboard security company, Wilmington USA, 2019.

24

https://eprint.iacr.org/2015/506.pdf
https://eprint.iacr.org/2021/483

CGMZ21. Jean-Sébastien Coron, François Gérard, Simon Montoya, and Rina Zeitoun. High-order polynomial com-
parison and masking lattice-based encryption. Cryptology ePrint Archive, Report 2021/1615, 2021.
https://ia.cr/2021/1615.

CGMZ22. Jean-Sébastien Coron, François Gérard, Simon Montoya, and Rina Zeitoun. High-order table-based con-
version algorithms and masking lattice-based encryption. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2022(2):1–40, 2022. https://ia.cr/2021/1314.

CGV14. Jean-Sébastien Coron, Johann Großschädl, and Praveen Kumar Vadnala. Secure conversion between boolean
and arithmetic masking of any order. In Proceedings of CHES 2014, pages 188–205, 2014.

Cor14. Jean-Sébastien Coron. Higher order masking of look-up tables. In Proceedings of EUROCRYPT 2014, pages
441–458, 2014.

Cor17. Jean-Sébastien Coron. High-order conversion from boolean to arithmetic masking. In Proceedings of CHES
2017, pages 93–114, 2017. Full version available at http://eprint.iacr.org/2017/252.

EMVW22. Andre Esser, Alexander May, Javier Verbel, and Weiqiang Wen. Partial key exposure attacks on bike,
rainbow and ntru. Cryptology ePrint Archive, Report 2022/259, 2022. https://ia.cr/2022/259.

FO99. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption
schemes. In CRYPTO ’99, Proceedings, pages 537–554, 1999.

Gou01. Louis Goubin. A sound method for switching between boolean and arithmetic masking. In Çetin Kaya Koç,
David Naccache, and Christof Paar, editors, Cryptographic Hardware and Embedded Systems - CHES 2001,
Third International Workshop, Paris, France, May 14-16, 2001, Proceedings, volume 2162 of Lecture Notes
in Computer Science, pages 3–15. Springer, 2001.

HCY20. Wei-Lun Huang, Jiun-Peng Chen, and Bo-Yin Yang. Power analysis on NTRU prime. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2020(1):123–151, 2020.

HPS98. Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. Ntru: A ring-based public key cryptosystem. In
International algorithmic number theory symposium, pages 267–288. Springer, 1998.

HRSS17. Andreas Hülsing, Joost Rijneveld, John M. Schanck, and Peter Schwabe. High-speed key encapsulation from
NTRU. In Wieland Fischer and Naofumi Homma, editors, Cryptographic Hardware and Embedded Systems
- CHES 2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings, volume
10529 of Lecture Notes in Computer Science, pages 232–252. Springer, 2017.

ISW03. Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing hardware against probing attacks.
In CRYPTO 2003, Proceedings, pages 463–481, 2003.

IT88. Toshiya Itoh and Shigeo Tsujii. A fast algorithm for computing multiplicative inverses in gf(2m) using
normal bases. Information and Computation, 78(3):171–177, 1988.

KAA21. Emre Karabulut, Erdem Alkim, and Aydin Aysu. Single-trace side-channel attacks on ω-small polynomial
sampling: With applications to ntru, NTRU prime, and CRYSTALS-DILITHIUM. In IEEE International
Symposium on Hardware Oriented Security and Trust, HOST 2021, Tysons Corner, VA, USA, December
12-15, 2021, pages 35–45. IEEE, 2021. https://eprint.iacr.org/2022/494.

KLRBG22. Markus Krausz, Georg Land, Jan Richter-Brockmann, and Tim Güneysu. Efficiently masking polynomial
inversion at arbitrary order. Cryptology ePrint Archive, Paper 2022/707, 2022. https://eprint.iacr.org/
2022/707.

PPM17. Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel attacks on masked lattice-based
encryption. In CHES 2017, Proceedings, pages 513–533, 2017.

REB+21. Prasanna Ravi, Martianus Frederic Ezerman, Shivam Bhasin, Anupam Chattopadhyay, and Sujoy Sinha Roy.
Will you cross the threshold for me?-generic side-channel assisted chosen-ciphertext attacks on ntru-based
kems. Cryptology ePrint Archive, 2021.

RP10. Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of AES. In CHES 2010,
Proceedings, pages 413–427, 2010.

SM15. Tobias Schneider and Amir Moradi. Leakage assessment methodology - A clear roadmap for side-channel
evaluations. In CHES 2015. Proceedings, volume 9293 of Lecture Notes in Computer Science, pages 495–513.
Springer, 2015.

SMS19. Thomas Schamberger, Oliver Mischke, and Johanna Sepulveda. Practical evaluation of masking for ntru-
encrypt on arm cortex-m4. In International Workshop on Constructive Side-Channel Analysis and Secure
Design, pages 253–269. Springer, 2019.

SPOG19. Tobias Schneider, Clara Paglialonga, Tobias Oder, and Tim Güneysu. Efficiently masking binomial sampling
at arbitrary orders for lattice-based crypto. In PKC 2019, Proceedings, Part II, pages 534–564, 2019.

SS13. Damien Stehlé and Ron Steinfeld. Making ntruencrypt and ntrusign as secure as standard worst-case
problems over ideal lattices. Cryptology ePrint Archive, Report 2013/004, 2013. https://ia.cr/2013/004.

XPRO20. Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, and David F. Oswald. Magnifying side-channel leakage of
lattice-based cryptosystems with chosen ciphertexts: The case study of Kyber. IACR Cryptol. ePrint Arch.,
2020:912, 2020.

25

https://ia.cr/2021/1615
https://ia.cr/2021/1314
http://eprint.iacr.org/2017/252
https://ia.cr/2022/259
https://eprint.iacr.org/2022/494
https://eprint.iacr.org/2022/707
https://eprint.iacr.org/2022/707
https://ia.cr/2013/004

A Existing masking gadgets

In this section, we summarize the main masking gadgets used in the definition of our algorithms, with
their running-time complexity and security property.

A.1 Conversion between arithmetic and Boolean masking

For the high-order masking of NTRU, we need to convert between arithmetic masking modulo 2k and
Boolean masking. Such high-order conversion was first described in [CGV14], with complexity O(n2 ·k)
for n shares and k-bit words, with the NI property, in both directions. To obtain the SNI property, it
suffices to compose with a SNI mask refreshing. These conversion algorithms were later extended by
[BBE+18] to arithmetic masking modulo any integer q, with complexity O(n2 ·k) or even O(n2 · log k),
where k = log2(q), still with the SNI property.

Recently, a different algorithm was described in [CGMZ22], based on randomized table-recomputa-
tion, with the same complexity O(n2 · k) in both directions, and satisfying the SNI property. An
alternative algorithm for converting from Boolean to arithmetic masking is also described in [SPOG19],
with the same property.

In summary, we can assume that we have SNI conversion algorithms denoted AtoBq and BtoAq,
to convert between arithmetic masking modulo q and Boolean masking, with asymptotic complexity
O(n2 · log q) in both directions, and satisfying the SNI property.

A.2 Arithmetic modulo 3 to modulo q conversion

We describe the conversion from arithmetic masking modulo 3 to masking modulo 2k. One could use
the composition of two conversions with Boolean masking as a intermediate step, with complexity
O(n2 · k). Alternatively, a direct approach based on table recomputation is easier and more efficient,
with complexity O(n2) only.

More precisely, in [CGMZ22], the authors described the high-order computation of any function
f : G→ H where G and H are arbitrary groups. We instantiate their generic conversion with G = Z3,
H = Z2k and the injection f : Z3 → Z2k that maps 0, 1,−1 to 0, 1, (2k − 1) respectively. This leads to
the following algorithm below (Alg. 18), with complexity O(n2). It uses a table T with 3 rows T (0),
T (1) and T (2) of n shares each. As shown in [CGMZ22], the algorithm satisfies the SNI property.

A.3 Zero-testing over Boolean shares

We consider the zero-testing of a value x ∈ {0, 1}k over Boolean shares. More precisely, the algorithm
takes as input a Boolean sharing of x, and returns a Boolean sharing of b ∈ {0, 1} such that b = 1 if and

only if x = 0. Writing x = (x(0), . . . , x(k−1))2 the k bits of x, we have b =
∧k−1

i=0 x
(i). Therefore the bit b

can be high-order computed by using high-order secure And gadgets, with the SNI property. We refer
to [CGMZ21] for the description of such an algorithm, with complexity TZeroTestBool(k, n) = O(k · n2).

A.4 Zero-testing over arithmetic shares

For the zero-testing over arithmetic shares, we refer to [CGMZ21] for the description of various tech-
niques. A first technique consists in first applying an arithmetic to Boolean conversion and then ap-
plying the zero-testing over the Boolean shares as in the previous section. Another method for prime
moduli is based on Fermat’s little theorem. A third method, also for prime moduli, is based on convert-
ing from arithmetic to multiplicative masking. Eventually, we assume that we have an SNI zero-test
algorithm ZeroTestArith taking as input an arithmetic sharing modulo 2k of a value x, and returning a
Boolean sharing of b such that b = 1 if and only if x = 0, with complexity TZeroTestArith(k, n) = O(k ·n2)

26

Algorithm 18 ConvertZ3,Z2k
(x1, . . . , xn)

Input: (x1, . . . , xn) ∈ Zn
3

Output: (y1, . . . , yn) ∈ Zn
2k

with
∑n

i=1 yi = x (mod 2k),
∑n

i=1 xi = x (mod 3) and x ∈ {0, 1,−1}.
1: T (0)← (0, 0, . . . , 0)
2: T (1)← (1, 0, . . . , 0)
3: T (2)← (2k − 1, 0, . . . , 0)
4: for i = 1 to n− 1 do
5: for u = 0 to 2 do
6: for j = 1 to n do T ′(u)[j]← T (u+ xi mod 3)[j]
7: end for
8: for u = 0 to 2 do
9: T (u)← RefreshZ

2k
(T ′(u))

10: end for
11: end for
12: y1, . . . , yn ← RefreshZ

2k
(T (xn))

13: return y1, . . . , yn

A.5 Linear mask refreshing

We recall the LinearRefresh algorithm from [RP10], working in any additive group G:

Algorithm 19 LinearRefresh

Input: x1, . . . , xn ∈ G
Output: y1, . . . , yn ∈ G such that y1 + · · ·+ yn = x1 + · · ·+ xn
1: yn ← xn
2: for j = 1 to n− 1 do
3: rj ← G
4: yj ← xj + rj
5: yn ← yn − rj
6: end for
7: return y1, . . . , yn

B Computing inverses in S/q

B.1 Proof of Theorem 3 (correctness of exponentiation in Z2[X]/Φ`)

We claim Algorithm 9 is correct. Let x ∈ Z2[X]/Φ` and m ∈ N. We show by induction on k−1 ≥ i ≥ 0

that at the end of each iteration of the loop, the value yi of the variable y satisfies yi = x2
Mi−1, where

Mi = m� i. For i = k − 1, we have Mk−1 = mk−1 = 1, hence yk−1 = x = x2
Mk−1−1 as required. We

now assume the result holds at iteration i and we show that the result holds at step i − 1. From the
square step, we have y′i = (yi)

2Mi × yi, and after the multiply step, we have yi−1 = (y′i)
2mi−1 × xmi−1 ,

which gives yi−1 = y2
mi−1

i × y2
Mi+mi−1

i × xmi−1 = (y2
Mi+1

i)2
mi−1 × xmi−1 . By induction hypothesis

yi = x2
Mi−1, so we obtain yi−1 = xe with

e = (2Mi − 1) · (2Mi + 1) · 2mi +mi−1 = (22Mi − 1) · 2mi−1 +mi−1

= 22Mi+mi−1 +mi−1 − 2mi−1

27

From 2 ·Mi + mi−1 = Mi−1 and mi−1 − 2mi−1 = −1 we deduce e = 2Mi−1 − 1. Hence the induction
step is proven. Therefore y0 = x2

M0−1 = x2
m−1 and the algorithm is correct.

Moreover we need a multiplication for each square step and from each multiply step with exception
of the first square step which corresponds to 1 ∗ 1. This lead to a number of multiplications:

blog2(m)c+Hw(m)− 1 ≤ 2blog2(m)c

B.2 Proof of Theorem 4

We claim that Algorithm 10 is correct. Indeed, we show by induction that at the beginning of each
step i of the while loop we have ti = 2i and vi · a = 1 (mod (2ti , Φ`)), where vi denotes the variable v
at Step i. At step i = 0, by definition we have t0 = 1. Moreover we have v0 · a = 1 mod (2, Φ`).

We now prove the induction step, assuming that ti = 2i and vi · a = 1 (mod (2ti , Φ`)) holds. First,
we have ti+1 = 2ti = 2i+1. We have:

1− a · vi+1 = 1− a · vi · (2− a · vi) (mod (22ti , Φ`))

= (1− a · vi)2 (mod (22ti , Φ`))

From the induction hypothesis, we can write 1−a ·vi = P ·2ti (mod Φ`) for some polynomial P ∈ Z[x],
which gives:

1− a · vi+1 = P 2 · 22ti (mod (22ti , Φ`))

= 0 (mod (2ti+1 , Φ`))

which proves the induction step, and therefore the correctness of the SqInverse algorithm.

B.3 Secure exponentiation modulo 2

We provide in Algorithm 20 the high-order masking of the FastExpo algorithm recalled in Section 4.3.
We assume that we have a SecMult algorithm for high-order computing the product of two polynomials
in Z2[X]/Φ`, with the SNI property. It can be obtained as a straightforward extension of the And gadget
from [ISW03].

B.4 Masking inversion in S/q

We provide an algorithmic description of the high-order masked version of the SqInverse algorithm
from Section 4.3. As previously, we assume that we have a SecMulPoly algorithm for high-order com-
puting the product of two polynomials in Zq[X]/Φ`, with the SNI property, as it can be obtained as a
straightforward extension of the And gadget from [ISW03].

28

Algorithm 20 SecFastExpo((x1, . . . , xn),m)

Input: An integer m = (mk−1, . . . ,m0)2, and an arithmetic sharing modulo 2 of x ∈ Z2[X]/Φ`,
denoted (x1, . . . , xn).

Output: An arithmetic sharing modulo 2 of x2
m−1 in Z2[X]/Φ`, denoted (y1, . . . , yn).

1: y1, . . . , yn ← (1, 0, · · · , 0)
2: for i = k − 1 to 0 do
3: m′ ← m� (i+ 1)

4: for l = 1 to n do zl ← y2
m′

l

5: z1, . . . , zn ← RefreshS/2(z1, . . . , zn)
6: y1, . . . , yn ← SecMult((y1, . . . , yn), (z1, . . . , zn))
7: if mi = 1 then
8: for l = 1 to n do yl ← y2l
9: y1, . . . , yn ← SecMult((y1, . . . , yn), (x1, . . . , xn))

10: end if
11: end for
12: return y1, . . . , yn

Algorithm 21 SecSqInverse(a1, . . . , an)

Input: An arithmetic sharing modulo q (a1, . . . , an) of a ∈ S/q×.
Output: An arithmetic sharing modulo q (v1, · · · , vn) of v such that v · a = 1 mod (q, Φ`).
1: v1, . . . , vn ← SecFastExpo((a1 mod 2, . . . , an mod 2), `− 2)
2: v1, . . . , vn ← (v21 mod q, . . . , v2n mod q)
3: t← 1
4: while t < log2(q) do
5: v′1, . . . , v

′
n ← v1, . . . , vn

6: v1, . . . , vn ← SecMulPoly((v1, . . . , vn), (−a1, . . . ,−an))
7: v1 ← v1 + 2
8: v1, . . . , vn ← SecMulPoly((v′1, . . . , v

′
n), (v1, . . . , vn))

9: t← 2t
10: end while
11: return (v1, . . . , vn)

B.5 Proof of Theorem 5

The SecFastExpo algorithm is SNI, thanks to the SNI property of SecMult and the SNI mask refreshing
at Line 5. Similarly, the SecSqInverse is SNI, by composition of SNI gadgets.

B.6 Addition chain improvement

The FastExpo algorithm is not the most efficient since it does not necessarily use the minimal addition
chain. In particular, for computing an inverse over Z2[X]/Φ701 we have the following minimal addition
chain for 699 : 1 < 2 < 3 < 6 < 12 < 15 < 27 < 42 < 84 < 168 < 336 < 672 < 699. Hence, we deduce
the following algorithm computing the inverse with 12 multiplications, instead of 15 multiplications
for Algorithm 9, as in [HRSS17].

29

Algorithm 22 FastInvS2 701(x)

Input: An element x ∈ Z2[X]/Φ701

Output: The inverse of x in Z2[X]/Φ701

1: y0 ← x2

2: y1 ← y20 × y0
3: y2 ← y21 × y0
4: y3 ← y2

3

2 × y2
5: y4 ← y2

6

3 × y3
6: y5 ← y2

3

4 × y2
7: y6 ← y2

12

5 × y4
8: y7 ← y2

15

6 × y5
9: y8 ← y2

42

7 × y7
10: y9 ← y2

84

8 × y8
11: y10 ← y2

168

9 × y9
12: y11 ← y2

336

10 × y10
13: y12 ← y2

27

11 × y6
14: return y12

We also recall the minimal addition chains for `− 2 for the four versions of the NTRU parameters
(see Table 2):

507 : 1 < 2 < 3 < 6 < 12 < 15 < 30 < 60 < 63 < 126 < 252 < 504 < 507

675 : 1 < 2 < 3 < 5 < 10 < 20 < 21 < 42 < 84 < 168 < 336 < 672 < 675

699 : 1 < 2 < 3 < 6 < 12 < 15 < 27 < 42 < 84 < 168 < 336 < 672 < 699

819 : 1 < 2 < 2 < 6 < 12 < 24 < 48 < 51 < 102 < 204 < 408 < 816 < 819

We note that the masking of Algorithm 22 is straightforward. It suffices to replace each multipli-
cation with a secure multiplication and apply the linear power-of-two exponentiation on each share
independently. However, one should be careful about refreshes when the two shared inputs are linearly
dependent.

C Packing S/3 polynomials from S/q

During decryption, it is required to pack polynomials with coefficients in {0, 1, q−1}. In the unmasked
version, this is performed by first applying the map {0, 1, q − 1} 7→ {0, 1, 2} to the five coefficients to
obtain (v0, . . . , v4) ∈ {0, 1, 2}5 and then packing as depicted in Section 6.3. While straightforwardly
applying the map is cheap in unmasked form, it is more expensive over shares. Instead, we use the
following trick: consider the function

f : Z512 → Z512 : x 7→ x · (511 + 3x)

that effectively maps the set {0, 1, 511} to {0, 2, 4} in Z512. We note that a masked version of f is
fairly cheap to compute over arithmetic shares modulo 512 since the only non-linear operation is a
SecMult. We first map the coefficients from {0, 1, q−1} to {0, 1, 511} by reducing every share mod 512
(recall that q is a power of two) and then apply the masked f to bring the coefficients in {0, 2, 4} in
arithmetic form modulo 512. Once we have our five coefficients (v′0, . . . , v

′
4) ∈ {0, 2, 4}5, we compute

x′ =
4∑

j=0

3j · v′j = 2 ·
4∑

j=0

3j · vj

30

as in the regular packS3. Eventually, we obtain the correct result by performing an arithmetic to
Boolean conversion of x′ and right-shifting every share by 1, effectively dividing x′ by 2. We note that
it is trivial to find an equivalent to f over Zq and thus that we could have directly mapped {0, 1, q−1}
to {0, 2, 4} but we decided to first reduce modulo 512 (which is the smallest power of two giving a
result holding over Z) to make the arithmetic to Boolean conversion cheaper.

D High-order computing inverses over S/3 = Z[x]/(3, Φ`)

D.1 Computing inverses over S/3

At Step 5 of KeyGen, we must compute f3 = (1/f) mod (3, Φ`). Since 3 is of maximal order in Z×` ,
the cyclotomic polynomial Φ` is irreducible modulo 3 and therefore S/3 is a field, with |S/3| =
|Z<`−1

3 [X] \ {0}| = 3`−1 − 1. Therefore, as in the modulo 2 case, we can compute the inverse of f via
an exponentiation:

f−1 = f3
`−1−2 = f3·(3

`−2−1)+1 (mod (3, Φ`))

To compute this exponentiation efficiently, we can adapt equation (6) from the modulo 2 case, using
the identity 3a+b − 1 = 3a · (3b − 1) + (3a − 1):

f (3
a+b−1) = f3

a·(3b−1)+(3a−1) mod (3, Φ`)

Adapting Algorithm 9 from Section 4.3, we obtain the following algorithm. The correctness is proved
similarly.

Algorithm 23 FastExpo3(x,m)

Input: An integer m = (mk−1, . . . ,m0)2 and an element x ∈ Z3[X]/Φ`

Output: x(3
m−1) in Z3[X]/Φ`

1: y ← 1
2: x← x× x
3: for i = k − 1 to 0 do
4: m′ ← m� (i+ 1)

5: y ← y × y3m
′

6: if mi = 1 then y ← y3 × x
7: end for
8: return y

D.2 High-order inversion in S/3

We describe the high-order masking of the previous FastExpo3 algorithm.

31

Algorithm 24 SecFastExpo3(x,m)

Input: An integerm = (mk−1, . . . ,m0)2 and an arithmetic sharing modulo 3 (x1, . . . , xn) of an element
x ∈ Z3[X]/Φ`

Output: An arithmetic sharing modulo 3 (y1, . . . , yn) of x(3
m−1) in Z3[X]/Φ`

1: y1, . . . , yn ← (1, 0, . . . , 0)
2: x′1, . . . , x

′
n ← RefreshZ3(x1, . . . , xn)

3: x1, . . . , xn ← SecMult((x1, . . . , xn), (x′1, . . . , x
′
n))

4: for i = k − 1 to 0 do
5: m′ ← m� (i+ 1)

6: for l = 1 to n do zl ← y3
m′

l

7: z1, . . . , zn ← Refresh3(z1, . . . , zn)
8: y1, . . . , yn ← SecMult((y1, . . . , yn), (z1, . . . , zn))
9: if mi = 1 then

10: for l = 1 to n do yl ← y3l
11: y1, . . . , yn ← SecMult((y1, . . . , yn), (x1, . . . , xn))
12: end if
13: end for
14: return y1, . . . , yn

The theorem below shows our inverse algorithm SecFastExpo3 achieves the t−SNI security notion.
The proof is similar to the proof of Theorem 5 and is therefore omitted.

Theorem 9 (t− SNI security of SecFastExpo3). For any subset O ⊂ [1, n] and any t1 intermediate
variables with t1 + |O| ≤ t, the output variables y|O and the t1 intermediate variables can be perfectly
simulated from input variables x|I , with |I| ≤ t1.

E Proof of Theorem 7

We use the following Lemma on the LinearRefresh procedure, showing that except in the trivial case
where only the inputs of LinearRefresh are probed, we only need t − 1 inputs instead of t to simulate
all internal probes in LinearRefresh.

Lemma 1 ([Cor17]). Let x1, . . . , xn be n inputs shares, and let xn+1 = 0. Consider the circuit
y1, . . . , yn+1 ← LinearRefreshn+1(x1, . . . , xn, xn+1), where the random values are accumulated on xn+1.
Let t be the number of probed variables. There exists a subset I such that all probed variables can be
perfectly simulated from x|I , with |I| ≤ t− 1, except if only the input xi’s are probed.

We denote by Gi the gadget taking m1, . . . ,mi+1 as input and returning a1, . . . , ai+1 at the end
of the i-th execution of the main for loop when 1 ≤ i ≤ n − 1. We denote by G0 the initialization at
Line 1. By definition the full algorithm corresponds to Gn−1. We also denote by Hi the part taking as
input (a1, . . . , ai,mi+1) and returning (a1, . . . , ai+1) in the i-th execution of the for loop. We have that
Gi is the composition of Gi−1 and Hi. We prove by induction that Gi achieves the t−NI property for
all 0 ≤ i ≤ n − 1, which will prove that the full algorithm is t − NI. The property is clearly satisfied
for G0.

We now assume that Gi−1 achieves t − NI, and we consider the Gi gadget. We split the t probes
with t1 probes in Gi−1 and the remaining t2 = t− t1 probes in Hi. By convention, we assume that a
probe on some input aj of Hi is actually a probe on the same output aj of Gi−1, among the other t1
probes. We distinguishes 2 cases:

32

– If no variable has been probed in Hi (t2 = 0), the t1 = t probed variables from Gi−1 can be
simulated from at most t inputs since Gi−1 is assumed to achieve t− NI.

– If at least one variable has been probed in Hi (t2 > 0), we consider the t3 and t4 variables probed
in LinearRefresh and the rest of Hi respectively. We can construct a subset O ⊂ [1, i+ 1] such that
the t4 probes in the rest of Hi can be simulated from the outputs a|O of LinearRefresh and mi+1,
with |O| ≤ t4.
We apply lemma 1 to LinearRefresh with the t3 internal probes and the output probes corresponding
to O, with t3 + |O| ≤ t3 + t4 ≤ t2. Since by convention no inputs of LinearRefresh has been probed,
there exists a subset IH such that the above probes can be perfectly simulated from the inputs
a|IH of Hi, with |IH | ≤ t2− 1. Therefore the t2 probes in Hi can be simulated from a|IH and mi+1.
Finally, applying the induction hypothesis on Gi−1, we obtain a subset I ⊂ [1, i] such that the
t1 internal probes and outputs a|IH can be perfectly simulated from m|I with |I| ≤ t1 + |IH | ≤
t1 + t2 − 1 = t− 1. Finally, the t probes in the full Gi gadget can be perfectly simulated from m|I′
with I ′ = I ∪ {i+ 1} and |I ′| ≤ t as required.

In both cases, the t probes in the Gi gadget can be perfectly simulated using at most t inputs,
which terminates the proof.

33

	High-order masking of NTRU

