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Abstract

Software Testing is a quality control activity that, in addition to finding flaws
or bugs, provides confidence in the software’s correctness. The quality of the
developed software depends on the strength of its test suite. Mutation Testing has
shown that it effectively guides in improving the test suite’s strength. Mutation is
a test adequacy criterion in which test requirements are represented by mutants.
Mutants are slight syntactic modifications of the original program that aim to
introduce semantic deviations (from the original program) necessitating the testers
to design tests to kill these mutants, i.e., to distinguish the observable behavior
between a mutant and the original program. This process of designing tests to
kill a mutant is iteratively performed for the entire mutant set, which results in
augmenting the test suite, hence improving its strength.

Although mutation testing is empirically validated, a key issue is that its
application is expensive due to the large number of low-utility mutants that it
introduces. Some mutants cannot be even killed as they are functionally equivalent
to the original program. To reduce the application cost, it is imperative to limit
the number of mutants to those that are actually useful. Since it requires manual
analysis and test executions to identify such mutants, there is a lack of an effective
solution to the problem. Hence, it remains unclear how to mutate and test a code
efficiently.

On the other hand, with the advancement in deep learning, several works in
the literature recently focused on using it on source code to automate many non-
trivial tasks including bug fixing, producing code comments, code completion, and
program repair. The increasing utilization of deep learning is due to a combination
of factors. The first is the vast availability of data to learn from, specifically source
code in open-source repositories. The second is the availability of inexpensive
hardware able to efficiently run deep learning infrastructures. The third and the
most compelling is its ability to automatically learn the categorization of data by
learning the code context through its hidden layer architecture, making it especially
proficient in identifying features. Thus, we explore the possibility of employing
deep learning to identify only useful mutants, in order to achieve a good trade-off
between the invested effort and test effectiveness.



Hence, as our first contribution, this dissertation proposes Cerebro, a deep
learning approach to statically select subsuming mutants based on the mutants’
surrounding code context. As subsuming mutants reside at the top of the sub-
sumption hierarchy, test cases designed to only kill this minimal subset of mutants
kill all the remaining mutants. Our evaluation of Cerebro demonstrates that it
preserves the mutation testing benefits while limiting the application cost, i.e.,
reducing all cost factors such as equivalent mutants, mutant executions, and the
mutants requiring analysis.

Apart from improving test suite strength, mutation testing has been proven
useful in inferring software specifications. Software specifications aim at describing
the software’s intended behavior and can be used to distinguish correct from
incorrect software behaviors. Specification inference techniques aim at inferring
assertions by generating and filtering candidate assertions through dynamic test
executions and mutation testing. Due to the introduction of a large number
of mutants during mutation testing such techniques are also computationally
expensive, hence establishing a need for the selection of mutants that fit best for
assertion inference. We refer to such mutants as Assertion Inferring Mutants. In
our analysis, we find that the assertion inferring mutants are significantly different
from the subsuming mutants. Thus, we explored the employability of deep learning
to identify Assertion Inferring Mutants. Hence, as our second contribution, this
dissertation proposes Seeker, a deep learning approach to statically select Assertion
Inferring Mutants. Our evaluation demonstrates that Seeker enables an assertion
inference capability comparable to the full mutation analysis while significantly
limiting the execution cost.

In addition to testing software in general, a few works in the literature attempt
to employ mutation testing to tackle security-related issues, due to the fault-based
nature of the technique. These works propose mutation operators to convert
non-vulnerable code to vulnerable by mimicking common security bugs. However,
these pattern-based approaches have two major limitations. Firstly, the design of
security-specific mutation operators is not trivial. It requires manual analysis and
comprehension of the vulnerability classes. Secondly, these mutation operators can
alter the program semantics in a manner that is not convincing for developers and
is perceived as unrealistic, thereby hindering the usability of the method.

On the other hand, with the release of powerful language models trained on
large code corpus, e.g. CodeBERT, a new family of mutation testing tools has
arisen with the promise to generate natural mutants. We study the extent to which
the mutants produced by language models can semantically mimic the behavior
of vulnerabilities aka Vulnerability-mimicking Mutants. Designed test cases failed
by these mutants will also tackle mimicked vulnerabilities. In our analysis, we
found that a very small subset of mutants is vulnerability-mimicking. Though,



this set mimics more than half of the vulnerabilities in our dataset. Due to the
absence of any defined features to identify vulnerability-mimicking mutants, as our
third contribution, this dissertation introduces Mystique, a deep learning approach
that automatically extracts features to identify vulnerability-mimicking mutants.
Despite the scarcity, Mystique predicts vulnerability-mimicking mutants with a high
prediction performance, demonstrating that their features can be automatically
learned by deep learning models to statically predict these without the need of
investing any effort in defining features.

Since our vulnerability-mimicking mutants cannot mimic all the vulnerabilities,
we perceive that these mutants are not a complete representation of all the vul-
nerabilities and there exists a need for actual vulnerability prediction approaches.
Although there exist many such approaches in the literature, their performance
is limited due to a few factors. Firstly, vulnerabilities are fewer in comparison
to software bugs, limiting the information one can learn from, which affects the
prediction performance. Secondly, the existing approaches learn on both, vulnera-
ble, and supposedly non-vulnerable components. This introduces an unavoidable
noise in training data, i.e., components with no reported vulnerability are con-
sidered non-vulnerable during training, and hence, results in existing approaches
performing poorly. We employed deep learning to automatically capture features
related to vulnerabilities and explored if we can avoid learning on supposedly
non-vulnerable components. Hence, as our final contribution, this dissertation
proposes TROVON, a deep learning approach that learns only on components
known to be vulnerable, thereby making no assumptions and bypassing the key
problem faced by previous techniques. Our comparison of TROVON with existing
techniques on security-critical open-source systems with historical vulnerabilities
reported in the National Vulnerability Database (NVD) demonstrates that its
prediction capability significantly outperforms the existing techniques.
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1
Introduction

This Chapter presents the context, the challenges addressed, and the solutions
proposed by us as our contributions in this dissertation. Firstly, the general
principles of software testing especially mutation testing are introduced followed by
the presentation of challenges faced by mutation testing in practice. Then, we
present our proposed solution employing machine learning to address these
challenges. Next, we present the applications of mutation testing with their faced
challenges followed by our proposed solutions employing machine learning to
mitigate these challenges. Next, the limitation of mutation testing in one of its
applications, i.e., security testing, in tackling vulnerabilities, is discussed followed
by our proposed solution. Finally, an overview of our four contributions in this
dissertation is presented followed by the organization of the rest of the dissertation.
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1.1 Context
The focus of this dissertation is on guiding software functional white-box testing

through machine learning. White-box testing enables the evaluation of a program’s
internal behavior and logic due to the accessibility of the internal code and structure
of the software being tested. This enables the evaluation through the design of
tests that exercise different parts of the code and verify specific functionalities of
the program. The tests are written to check for expected behavior and to ensure
the correctness of the program under test.

Software systems have become increasingly complex in the past few decades,
with larger code size and more interactions between software modules. As a
consequence, the cost of software testing, including mutation testing, has risen.
Mutation testing, a fault-based testing technique that employs artificial faults or
mutants to develop tests, is highly effective. However, the number of mutants
increases with larger code, which presents significant challenges for mutation testing
and its applications in software engineering and security testing due to the high
application cost involved.

On the other hand, the advancement in machine learning continues to improve
its ability to learn the categorization of data and make it further proficient in
identifying features automatically. This is promising in identifying useful mutants
to achieve a good trade-off between the invested effort and the effectiveness gained.

1.1.1 Software Testing
Software testing is an essential process in software development that aims to

ensure that software is reliable and meets intended requirements. A key aspect
of software testing is designing effective test cases to find faults in the developed
software and give confidence in its correctness by validating the developed soft-
ware’s behavior. Researchers have developed various techniques for generating
test cases and found that the effectiveness of software testing can be improved, as
demonstrated in studies by Li et al. [LZT+19], Padhye et al. [PLS+19], and Fraser
et al. [FA11].

White-box testing is a critical testing technique that evaluates the internal
workings of software, including its code and logic. It can be used to identify
defects that may not be apparent through black-box testing. Researchers have
proposed various white-box testing techniques, including code coverage analysis,
data-flow analysis, and mutation testing. These techniques have been found to
improve the effectiveness of software testing, as demonstrated by many empirical
studies [CPT+17; ABL+06; AO08a; Fra00].

Testers typically follow a systematic approach to test the developed software.
It involves, among others, the creation of tests (test suite), the execution of the
created tests against the developed software, and the observation of the program
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behavior during the tests’ execution in order to determine its correctness. One key
part of software testing is the creation (design) of the test suites. The quality of
software testing depends on the quality of the created test suites.

Designing effective test cases is a critical part of the software testing process.
The goal is to create a set of test cases that thoroughly exercise the software
system, uncover defects, and validate that the system meets its functional and
non-functional requirements. Effective test case design is a complex task that
requires careful consideration of various factors such as the system requirements,
the input and output data, the functionality being tested, and the testing technique
used.

The metrics used to evaluate the thoroughness and quality of a set of test cases
in software testing are known as Test adequacy criteria [ZHM97] (TAC). The goal
of test adequacy criteria is to assess whether the test cases are effective in revealing
faults or defects in the software system. Typically, Coverage metrics are used to
define test adequacy criteria, which measure the degree to which test cases cover
various aspects of the software system.

Research studies have investigated the effectiveness of different TACs in detecting
faults in software systems. For example, Hierons et al. [HLZ12] evaluated the
effectiveness of different TACs in detecting faults in a large number of real-world
software systems. Their study found that different TACs have varying effectiveness
in detecting different types of faults in software systems. Most TACs are based
on the structure of the program. A few examples are statement coverage, branch
coverage, and path coverage. However, in 1971, Richard Lipton proposed a different
TAC based on artificial faults and named it Mutation [Lip71]. Many studies in
academia [CPT+17; MKK17; JH11; KFZ+19] and in the industry [SW09; BWB+21;
PI18a] show that software practitioners find Mutation effective to uncover faults in
their software.

1.1.2 Mutation Testing
Mutation testing is a fault-based testing technique that has been widely used

as a test adequacy criteria (TAC) for evaluating the quality of software testing.
This approach involves creating a set of artificial faults, known as mutants, in the
software program and then checking whether the test cases can detect these faults.
Mutation testing has been shown to be an effective approach for evaluating the
adequacy of test cases, as it can identify weaknesses in the test suite that other
criteria may not detect.

Many studies have investigated the effectiveness of mutation testing in either
white-box or black-box settings. Papadakis et al. [PHT14] injected mutants on the
input models of programs (used to perform model-based testing) and demonstrated
that they provide stronger correlation to actual code-related faults than using
other model-based criteria such as combinatorial interaction testing. Smith and
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Williams [SW09] found that mutation analysis was useful in identifying additional
faults in a software program that were not found using other criteria. In another
study, Petrovic et al. [PI18a] reported that mutation testing was effective in
uncovering faults in a real-world industrial application, and provided insights on
how to further improve the technique. A study by Chekam et al. [CPT+17] found
that mutation testing identified significantly more faults than traditional criteria
such as branch coverage and statement coverage. Another advantage of mutation
testing is that it provides a measure of the quality of test cases by quantifying the
percentage of mutants that are killed by the test cases. This measure can be used
to improve the overall quality of the test suite.

Mutation as a TAC has requirements represented by mutants (a.k.a. artificial
bugs). Mutants can be obtained by performing slight syntactic modifications to
the original program. For instance, for a program with a statement such as diff
= a - b, a mutant can be created by replacing the operator ‘-’ with ‘+’. This is
an example of the arithmetic operator replacement mutation operator, which is
designed to mimic a common programming mistake. The program mutant created
by applying this operator where a single instance of ‘-’ is replaced with ‘+’ is known
as called first order mutation and the mutants are called first order mutants. In
contrast to first order mutation, when two or more simple syntactic changes are
simultaneously induced into the program under test, the mutation is called higher
order mutation and the mutants are called higher order mutants. The focus of this
dissertation is on first order mutants and we use the terms mutant and mutation
referring to first order mutant and first order mutation, respectively.

The next step is to evaluate the generated mutants using the test suite. If
the test execution on the original program differs (at the output) from the test
execution on the mutant, we say that the mutant is killed by the test (the test
requirement is fulfilled). Otherwise, the mutant survives, indicating that the test
suite is not adequate and should be improved.

1.1.3 Mutation Testing in practice
Figure 1.1 presents an overview of how the testing process is performed when it

is guided by mutation. We adapted this figure from the one published in [AO08b,
Figure 5.2]. Given a program P as input, the mutation testing process starts by
creating a set M of mutants forming the test requirements. Test requirements are
satisfied when tests kill the mutants. Since the number of mutants is excessive and
forms the key cost factor of mutation testing [PKZ+19], testers select a subset M ′

of mutants from M to focus on their analysis. Then, testers pick a mutant m ∈M ′

and design a test t capable of killing m or judge it as equivalent (to the original
code) and discard it. The process is repeated until the design of test is capable of
killing a predefined ratio of mutants (threshold). Finally, the designed test suite T
is used to check the correctness of program P (w.r.t. test suite T ). If test suite T
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Figure 1.1: Mutation Testing process. Given a program P and a mutant set M , a
practitioner selects from M a subset of mutants M ′ to be used for test generation.
Then, M ′ is used in Test generation, test execution, and mutation score calculation
steps.
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detects some bug in program P , then P has to be fixed and the same mutation
testing procedure can be employed again.

1.2 Challenges of Mutation Testing
Mutation testing has gained popularity as an effective technique to improve test

suite quality, but it has not yet become a widely adopted practice in the industry
due to the various challenges it poses. One significant challenge faced by mutation
testing is its high computational cost. As the size and complexity of the software
system grow, the number of mutants generated increases exponentially, making
mutation testing computationally expensive. Many studies have reported that
despite its effectiveness, mutation testing is computationally expensive, many times
prohibitively expensive [OLR+96; JH11; PKZ+19]. It is also requires substantial
resources compared to other coverage techniques [ZHM97]. Li et al. [OL17] also
highlighted the issue of high computational cost and its impact on the scalability
of mutation testing in large-scale software systems.

Another challenge faced by mutation testing is the issue of redundant and
equivalent mutants. The presence of redundant mutants leads to a higher number
of generated mutants and longer execution times, without adding any additional
value to the test suite. Similarly, equivalent mutants have the same behavior as the
original program, making them ineffective in detecting faults. Several studies have
addressed this challenge and proposed techniques to reduce the number of redundant
and equivalent mutants, such as the use of selective mutation operators [OLR+96]

6



and test execution optimizations [PM11; PM10b; DPP+16] in order to achieve the
common goal of reducing the computational cost of mutation testing.

The major cost factor in mutation testing is the mutants that introduce over-
heads during both, test generation, and test execution, leading to negligible test
effectiveness improvements. Therefore, to reduce the mutation testing effort while
preserving its effectiveness, it is essential to focus on those mutants that add value
by considerably improving the test suites. One such subset of mutants is Subsuming
mutants.

Subsuming mutants, also called disjoint or dominator mutants [KPM10; KAO+16],
are the minimum subset of all mutants that when killed, by any possible test suite,
results in killing the entire set of killable mutants. Given two mutants M1 and
M2, it is said that M1 subsumes M2 if every test suite T killing M1 also kills M2.
Unfortunately, identifying subsuming mutants is undecidable as it is not possible to
know a mutant’s behavior under every possible input. Thus, researchers typically
approximate them through test suites [ADO14; PHH+16; KAO+16; PCT18]. Since
killing subsuming mutants leads to the killing of all killable mutants, testers should
focus mutation analysis on subsuming mutants [KPM10; KPM10; ADO14]. The
problem though is that one needs to know the subsumption relations between
mutants in advance, before starting to analyze the mutants and designing tests.

Machine learning, on the other hand, allows computers to learn from data and
make predictions or decisions without being explicitly programmed [Alp04; GBC16].
Machine learning algorithms are designed to identify patterns, relationships, and
anomalies in large and complex datasets by automatically detecting features and
extracting meaningful insights. It involves training an algorithm on a labeled dataset
that can accurately predict the correct output for new, unseen inputs [Alp04]. Hence,
we propose Cerebro [GOD+22], an approach based on machine learning to statically
predict subsuming mutants from given mutant sets.

1.3 Applications of Mutation Testing
Mutation testing is a fault-based testing technique that involves introducing

small changes (i.e., mutations) into the source code to simulate faults. The goal
is to evaluate the effectiveness of the test suite by measuring how many mutants
are detected. This fault-based nature of mutation testing enables its application in
other software engineering tasks [JH11; PKZ+19], such as specification inference
and security testing.

1.3.1 Specification Inference
Software specifications are descriptions of the intended behavior of the soft-

ware. They are crucial for determining whether software behavior is correct or not.
Specifications can be formally expressed as a set of executable constraints/asser-

7



Figure 1.2: Specification Inference via Dynamic Test Execution and Mutation
Analysis.
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tions. The specification inference problem consists of automatically generating
specifications from existing software artifacts especially source code. Program
specifications are composed of a set of (executable) assertions for various program
points, such as method preconditions, postconditions, and invariants, that must
hold true during the program execution, at the corresponding program points. In
this dissertation, we focus on postcondition assertions, i.e., assertions that state
what are the properties that are expected to hold after a given method is executed.
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1.3.2 Role of Mutation in Specification Inference and its
associated challenges

Figure 1.2 illustrates the typical process of existing assertion inference tech-
niques [TJT+20; MPA+21; MdA22]. First, the assertion generation step, based in
general on a search-based algorithm (e.g. GAssert [TJT+20] and EvoSpex [MPA+21]
use evolutionary search algorithms, while SpecFuzzer [MdA22] uses fuzzing), pro-
duces a set of candidate assertions for a given program/method. Second, the
program’s test suite (given as input or automatically generated) is executed to
determine which of those assertions are coherent with the behaviors currently
exhibited by the program. Lastly, the non-falsified assertions (i.e., those that are
coherent with the test suite executions) go through a mutation analysis step for
filtering out weak assertions. Here, a non-falsified assertion that is also coherent
with all the mutants’ execution of a given program, is considered to be weak because
it is unable to distinguish between the original and the mutated program behaviors,
and is hence discarded. The inferred assertions are the ones that are coherent with
the current program behavior but are falsified by the behavior of buggy programs
(i.e., they kill at least one mutant).

Despite being effective for discarding weak assertions, mutation analysis suffers
from scalability issues due to the large number of mutants that are generated from
even a small piece of code. This adversely affects the overall performance and
scalability of assertion inference techniques, especially on large subjects.

One way to address the performance and scalability issue faced by assertion
inference techniques is to focus mutation analysis on only the mutants that are
useful for assertion inference. Though, this information, i.e., which mutants are
useful for the task of specification inference, is not known in advance, before starting
to employ mutants and executing candidate assertions.

In Figure 1.2, steps 2 and 3 show that the generated candidate assertions
undergo a two-step filtering process. Assertions that are falsified when running
the test suite of a target class C are discarded. Though such filtering alone is
not enough as it leaves room for weak assertions, i.e, assertions that are trivial
to satisfy and would not trigger any error if the target class C had any incorrect
behaviour. For instance, a tautology such as assert(x >= y || x <= y) is a valid
assertion that cannot be falsified, but it is unlikely to be useful.

Such weak assertions are not useful and thus the use of mutation analysis has
been proposed to identify and discard them (step 3) [TJT+20; MPA+21; MdA22].
On the contrary, assertions that do not hold for at least one mutant of the target
class, are useful because they are capable of distinguishing buggy versions of the
code. Given a target class C and a set A of candidate assertions that are consistent
with the behavior of C, a mutant C’ of C is an Assertion Inferring Mutant if at
least one assertion in A is able to kill C’.

9



As specification/assertion inference heavily relies on Assertion Inferring Mutants,
practitioners should focus mutation analysis on these mutants for the task of
specification inference. The problem though is that one needs to know which
mutants are assertion inferring before starting to employ mutants and executing
candidate assertions. To address this problem, we propose Seeker [GDM+23], a
machine learning method to predict Assertion Inferring Mutants from given mutant
sets. Seeker’s predictions infer almost all of the total ground truth assertions.
Moreover, Seeker enables the assertion inference technique SpecFuzzer to scale on
all our large subjects.

1.3.3 Security Testing

In the field of software development, ensuring security is of utmost importance.
To ensure the software system is secure, security testing is essential. It involves
evaluating the security controls of the software system and identifying weaknesses
that may be exploited by attackers. Security testing can be conducted at different
stages of software development, including design, development, testing, and deploy-
ment. There are different types of security testing, such as penetration testing,
vulnerability scanning, and code review. The primary objective of security testing
is to identify and mitigate potential security risks before deploying the software
system. By conducting thorough security testing, software developers can minimize
the risk of security breaches, data theft, and other cybersecurity incidents.

Common Vulnerability Exposures (CVE) [09] defines a security vulnerability
as “a flaw in a software, firmware, hardware, or service component resulting from
a weakness that can be exploited, causing a negative impact to the confidentiality,
integrity, or availability of an impacted component or components.”. The inadver-
tence of a developer or insufficient knowledge of defensive programming usually
causes these mistakes. Vulnerabilities in source code are a significant threat to
software security, and numerous studies have highlighted their importance. For
instance, a study by the software security company, Veracode [Ver20], found that
70% of applications contain at least one security flaw in their source code, which
can be exploited by attackers. A study by the Ponemon Institute [Ins20] found
that 62% of organizations surveyed had experienced a data breach caused by a
vulnerability in their source code.

The consequences of vulnerabilities in source code can be severe, ranging from
financial losses to reputational damage. A study by the National Institute of
Standards and Technology (NIST) [oST19] found that the average cost of a data
breach was 3.86 million USD, with a significant portion of that cost being attributed
to the impact on customer trust and reputation.
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1.3.4 Role of Mutation in Security Testing and its associ-
ated challenges

The issues related to security, especially vulnerabilities have received little
attention in the mutation testing literature. As a result, despite its flexibility,
mutation testing has not been used as the first line of defense against vulnerabilities.
Mutation testing can be used to test the security of a software system by generating
mutants that simulate common security vulnerabilities, such as buffer overflows,
SQL injection, or cross-site scripting (XSS) [Elb11; dOP17]. For example, a mutant
that introduces a SQL injection vulnerability can be created by changing a database
query in the source code. If the test suite does not detect this mutant, it suggests
that the system is vulnerable to SQL injection attacks and needs to be improved.

Mutation testing can also be used to evaluate the effectiveness of security testing
tools, such as vulnerability scanners or penetration testing frameworks [LDP+17;
BGV10]. By generating mutants that simulate known vulnerabilities, developers
can check if these tools can detect the mutants and identify the corresponding
vulnerabilities. This can help to improve the quality of security testing tools and
ensure that they are effective in detecting real-world vulnerabilities.

With the release of powerful language models trained on large code corpus, e.g.
CodeBERT, a new family of mutation testing tools has arisen with the promise to
generate natural mutants. One such example is µBERT [DP22], a mutation testing
tool that uses CodeBERT to generate mutants by masking and replacing tokens.
µBERT takes a Java class and extracts the expressions to mutate. It then masks
the token of interest, e.g. a variable name, and invokes CodeBERT to complete
the masked sequence (i.e., to predict the missing token). It is interesting to study
the extent to which the mutants produced by µBERT can semantically mimic the
behavior of vulnerabilities aka vulnerability-mimicking mutants. Designed test
cases failed by these mutants will also tackle mimicked vulnerabilities.

In the existing literature, there is no clear definition of Vulnerability-mimicking
Mutants, (i.e., mutants that mimic the vulnerability behavior) to focus on. There-
fore, for the purpose of this dissertation, we define a mutant as vulnerability-
mimicking [GDP+23] if it fails exactly the same tests that are failed by the vulner-
ability it mimics, hence having the same observable behavior as the vulnerability.

Since a mutant is a slight syntactic modification to the original program, a
large number of mutants are generated during mutation testing. This introduces
the problem of identifying Vulnerability-mimicking Mutants among a huge pile of
mutants. In our dataset, vulnerability-mimicking mutants are 3.9% of the entire
lot. Also, the labeling information, i.e., which mutant is vulnerability mimicking,
is not known in advance. Hence, we proposed Mystique, a machine learning method
to predict Vulnerability-mimicking Mutants from a given mutant’s code context.
Our experiments show that Mystique identified Vulnerability-mimicking Mutants
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with high prediction performance, which indicates that the features of Vulnerability-
mimicking Mutants can be automatically learned by machine learning models to
statically predict these without the need of investing effort in defining such features.

1.3.5 Limitation of Mutation in Security Testing and Key
obstacles in Vulnerability Prediction

Vulnerability prediction is the process of identifying software components, such
as files or modules, that are likely to contain vulnerabilities. Though mutation
testing is powerful, it is challenging for security testing, especially vulnerability
prediction. The reason is that artificially generated mutants cannot mimic all the
potential vulnerabilities that may exist in a software system. This also happened
during our study where we analyze the extent to which the mutants produced by
the language models can semantically mimic vulnerabilities. Hence, we perceive
that these mutants are not a complete representation of all the vulnerabilities, and
there exists a need for actual vulnerability prediction approaches. These techniques
can help identify potential security issues that are not easily detectable through
manual inspection or traditional testing methods.

There are many vulnerability prediction approaches in the literature but their
performance is limited. Firstly, vulnerabilities are fewer in comparison to software
bugs, limiting the information one can learn from, which affects the performance
of existing techniques. Secondly, the existing approaches learn on both, vulnerable,
and supposedly non-vulnerable components. This introduces an unavoidable noise
in training data, i.e., components with no reported vulnerability are considered
non-vulnerable during training, and hence, results in existing approaches performing
poorly. This establishes a need for robust vulnerability prediction techniques.

Hence, we explore if we can avoid learning on supposedly non-vulnerable com-
ponents, and we propose TROVON [GDJ+22], a deep learning based vulnerability
prediction approach that learns only on components known to be vulnerable,
thereby making no assumptions and bypassing the key problem faced by previous
techniques.

1.4 Overview of the Contribution and Organiza-
tion of the Dissertation

This section presents the contributions of this dissertation followed by the
organization of the remaining chapters.

1.4.1 Contributions
Following are the contributions of this dissertation.
• Cerebro: Static Subsuming Mutant Selection (Chapter 4). As our

first contribution, in chapter 4, we proposed Cerebro, a method that learns to
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select subsuming mutants (a subset of mutants that subsumes the others, i.e.,
tests killing them also kill all the mutants of the given mutant set) from given
mutant sets. Our experiments showed that Cerebro identified subsuming
mutants with high precision and recall at an inter-project scenario (trained
on different projects than the ones it was evaluated). These predictions
enable testers to design test cases capable of killing more than twice the
subsuming mutants that they would kill if they were using either randomly
selected mutants or another previously proposed machine learning-based
mutant selection technique. At the same time Cerebro entails the analysis of
significantly fewer equivalent mutants and mutant executions, indicating a
large reduction in the practical effort/cost of the approach.

• Seeker: Efficient Class Specification Inference (Chapter 5). As our
second contribution, in chapter 5, we proposed Seeker, a method that learns to
select Assertion Inferring Mutants (a small subset of mutants that is suitable
for assertion inference) from given mutant sets. Our experiments show that
Seeker identified assertion inferring mutants with high prediction performance.
These predictions enable many times faster inference with minor effectiveness
loss compared to the use of all mutants. Similarly, Seeker’s predictions infer
almost all of the total ground truth assertions, which is substantially greater
than Subsuming Mutant Selection and Random Mutant Selection. Moreover,
Seeker enables the assertion inference technique SpecFuzzer to scale on all
our large subjects (by inferring assertions where SpecFuzzer failed previously
due to timeouts) in comparison to Random Mutant Selection which failed to
infer any assertion in half of the cases.

• Mystique: Enabling Security conscious Mutation Testing using
Language Models (Chapter 6). As our third contribution, in chapter 6,
we showed that language model based mutation testing tools can produce
Vulnerability-mimicking Mutants, i.e., mutants that mimic the observable
behavior of vulnerabilities. Since these mutants are significantly fewer among
the entire mutant set, there is a need for a static approach to identify such
mutants. To achieve this, we proposed Mystique, a method that learns to
select Vulnerability-mimicking Mutants from a given mutant’s code context.
Our experiments show that Mystique identified Vulnerability-mimicking Mu-
tants with high prediction performance, which indicates that the features of
Vulnerability-mimicking Mutants can be automatically learned by machine
learning models to statically predict these without the need of investing effort
in defining such features.

• Learning from What We Know: How to Perform Vulnerability
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Prediction using Noisy Historical Data (Chapter 7). As our fourth
contribution, in chapter 7, we proposed TROVON, a machine translation
based approach to automatically learn to predict vulnerable components from
noisy historical data. Taking advantage of the large amounts of historical
data, our predictions can be used to assist developers in code reviews and se-
curity testing. The important advantage of TROVON is that it is completely
automatic as it learns latent features (context, patterns, etc.) linked with vul-
nerabilities based on information mining from code repositories (in particular
by analyzing historical vulnerability fixes and their context). We empirically
evaluated the effectiveness of TROVON following the methodological guide-
lines set by Jimenez et al. [JRP+19]. In particular, we demonstrated that
TROVON can mitigate the problem of real-world noisy data on the releases
of the three security-critical open source systems that were used by previous
research. Moreover, we showed that TROVON significantly outperforms
existing techniques.

1.4.2 Organization of the Dissertation
In the remaining of this dissertation, chapter 2 presents the technical background

and definitions used in this dissertation. Chapter 3 discusses the existing work
related to the contribution of this dissertation, and presents an overview of the
existing literature on mutation testing and its applications especially specification
inference and security testing. Chapter 4 presents Cerebro, our proposed method
that learns to select subsuming mutants from given mutant sets. Chapter 5 presents
Seeker, our proposed method that learns to select assertion-inferring mutants from
given mutant sets. Chapter 6 discusses the ability of language model based mutation
testing tools to produce vulnerability-mimicking mutants. It also presents Mystique,
our proposed method that learns to select such mutants from a given mutant’s
code context. Chapter 7 presents TROVON, our proposed machine learning based
vulnerability prediction approach that learns only on components known to be
vulnerable, and bypasses the key problem faced by previous techniques. Finally,
Chapter 8 concludes this dissertation and presents the future research directions.
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2
Technical Background and Definitions

This chapter presents the technical background and definitions used in this
dissertation.
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2.1 Mutation Testing
2.1.1 Mutant Selection

Mutation testing is computationally expensive due to the large number of
mutants that it introduces, all of which require analysis and execution. To reduce
its application cost, it is imperative to limit the number of mutants to those that
are actually useful, prior to any manual mutant analysis or test execution. This
problem is known as the mutant selection problem [PKZ+19] and has been studied
in the form of selective mutation [OLR+96; ZGM+13], i.e., restricting the number
of transformations to be used, with limited success [KAO+16; CPB+20]. Though
the key issue with mutant selection is the simple syntactic-based nature of the
selection process. The problem is that the mutants are introduced everywhere
with respect to simple language operators (e.g. by replacing an operator with
another) that completely ignore the program and particular location semantics.
This operator matching mutant selection has the unfortunate effect of introducing
mutants independent of their context and program semantics. It is desirable to
analyze only the mutants that add value and help in improving the test suite.

2.1.2 Equivalent Mutants
Early research on mutation testing has demonstrated that deciding whether

a mutant is equivalent (to the original code) is an undecidable problem [BA82].
Mutation testing may produce a mutant that is syntactically different from the
original, yet semantically identical, aka equivalent mutant [PJH+15; KPJ+18]. The
undecidability of equivalence means that it is impossible to automatically discard
them all. As a result, the tester may never know whether he or she has failed to
find a killing test case because the mutant is particularly hard to kill, yet remains
killable (a ‘stubborn’ mutant [PCT18]), or whether failure to find a killing test
case derives from the fact that the mutant is equivalent. The best options we
have are effective algorithms that can remove most equivalent mutants, e.g., in C
data-set [CPC+21] authors applied Trivial Compiler Equivalence (TCE) [PJH+15;
KPJ+18; HSF+19] to filter out equivalent and duplicated mutants. Interestingly,
early research on mutation testing [Acr80] has shown that humans also make many
mistakes (approximately 20%) when judging mutants as being equivalent or not.
This means that it is unrealistic to expect that automated tools (or testers, in the
case of manual test case design) kill all the killable mutants.

To make a fair approximation of killable mutants state-of-the-art test generation
tools (KLEE [CDE08], SEMu [CPC+21], and EvoSuite [FZ10]) are used, together
with mature developer test suites to identify killable mutants. The remaining live
mutants (i.e., mutants killed neither by the developers’ written nor automatically
generated test suites) are assumed as equivalent. Although this assumption may
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have some impact on the results, it allows quantifying the effort involved by testers
in analyzing low utility mutants when using the current state-of-the-art advances.
We analyze the impact of this assumption on our results in Chapter 4 Section 4.7.4.

2.1.3 Subsuming Mutants
Subsuming mutants are the minimum subset of all mutants that when killed,

by any possible test suite, results in killing the entire set of killable mutants.
Given two mutants M1 and M2, it is said that M1 subsumes M2 if every test
suite T killing M1 also kills M2. Unfortunately, identifying subsuming mutants is
undecidable as it is not possible to know a mutant’s behavior under every possible
input. Thus, researchers typically approximate them through test suites [JH09;
ADO14; PHH+16; KAO+16; PCT18].

More precisely, let M1, M2 and T be two mutants and a test suite, respectively,
where T1 ⊆ T and T2 ⊆ T are the set of tests from T that kill mutants M1 and M2,
respectively, and T1 ̸= ∅ and T2 ̸= ∅, indicating that both M1 and M2 are killable
mutants. We say that mutant M1 subsumes mutant M2, if and only if, T1 ⊆ T2. In
case T1 = T2, we say that mutants M1 and M2 are indistinguishable for T . The
set of mutants which are both killable, and subsumed only by indistinguishable
mutants are called Subsuming mutants.

For example, if we have a mutant set of 3 mutants (M1, M2, and M3) and a test
set T = {t1, t2, t3}, where M1 is killed by T1 = {t1}; M2 is killed by T2 = {t1, t2};
and M3 is killed by T3 = {t3}. We can notice that every time that we run a test
(t1) to kill mutant M1 we will also kill mutant M2. However, the opposite does not
hold. Thus, in this example, we have two subsuming mutants, i.e., M1 and M3.

Interestingly, killing subsuming mutants leads to the killing of all killable
mutants, thus, testers need to focus mutation analysis on subsuming mutants [JH09;
KPM10; KAD+14; ADO14]. The problem though is that one needs to know the
subsumption relations between mutants in advance, before starting to analyze the
mutants and designing tests. To deal with this issue, in Chapter 4, we propose a
static technique that predicts subsuming mutants without requiring any dynamic
analysis, with the aim to help testers decide on which mutants to use when
performing mutation-guided test generation [PM10b; FZ10]. Given the input
program, P and the set M of mutants, our proposed technique selects a subset
M ′ of mutants (mutants predicted as subsuming) to be used for mutation testing,
i.e., to guide testers and evaluate test effectiveness. Based on M ′, testers and/or
automatic test generation techniques can focus on the few strong mutants and
design effective test cases.

2.1.4 Subsuming Mutation Score (MS*)
Subsuming mutation score (MS*) is the ratio between killed subsuming mu-

tants over the total number of subsuming mutants [PHH+16]. It has been pro-
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posed [ADO14; PHH+16; KPM10] as a reliable metric to evaluate the effectiveness
of testing techniques as it does not consider the presence of subsumed mutants.
Subsumed mutants can artificially inflate the mutation score of a testing technique
and can mislead its apparent ability to detect faults. For example, if we have a
mutant set of 3 mutants (M1, M2, and M3) and a test set T = {t1, t2, t3}, where M1
is killed by T1 = {t1}; M2 is killed by T2 = {t1, t2}; and M3 is killed by T3 = {t3},
we have two subsuming mutants, i.e., M1 and M3. A test suite {t1, t2} kills 66.7%
of all the mutants (i.e., M1 and M2), but 50% of the subsuming ones (M3 is not
killed).

2.2 Machine Learning
Machine learning is a subset of artificial intelligence that focuses on the develop-

ment of algorithms that allow computers to learn from data and make predictions
or decisions without being explicitly programmed [Alp04; GBC16]. Machine learn-
ing algorithms are designed to identify patterns, relationships, and anomalies in
large and complex datasets by automatically detecting features and extracting
meaningful insights.

Machine learning has a wide range of applications in various fields, including
natural language processing, computer vision, speech recognition, recommendation
systems, fraud detection, medical diagnosis, and autonomous driving [LBH15;
Dom12]. With the growing availability of data and computational resources,
machine learning is becoming an increasingly important tool for businesses and
organizations to extract insights and make data-driven decisions.

2.2.1 Supervised learning
There are several types of machine learning, including supervised learning,

unsupervised learning, semi-supervised learning, and reinforcement learning [Bis07].
Throughout this dissertation, we focus on supervised learning. Supervised learning
is a type of machine learning that involves training an algorithm on a labeled
dataset, where the correct output is provided for each input. The goal is to
develop a model that can accurately predict the correct output for new, unseen
inputs [Alp04].

The process of building a supervised learning model typically involves several
steps, including data collection, data preprocessing and cleaning, feature engineering,
model selection, training and validation, and testing and evaluation. The first step
is to collect a labeled dataset, where each input is associated with a known output.
The dataset is then preprocessed and cleaned to ensure that it is ready for analysis.
Next, the dataset is split into two subsets: a training set and a validation set. The
training set is used to train the model, while the validation set is used to evaluate
its performance and tune its parameters.
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During training, the model is fitted to the training set by adjusting its parameters
to minimize a loss function, which measures the difference between the predicted
and actual outputs. The validation set is used to prevent overfitting, which occurs
when the model becomes too complex and begins to fit the noise in the training
set rather than the underlying patterns [Bis07]. Once the model is trained and
validated, it is tested on a separate test set to evaluate its performance on new,
unseen data. The goal is to develop a model that generalizes well to new inputs
and can accurately predict the correct output.

Supervised learning has a wide range of applications including image classifica-
tion [KSH12], speech recognition [12], fraud detection [PBC+18], and recommenda-
tion systems [KBV09]. The key advantage of supervised learning is that it allows
for accurate predictions on new, unseen data, making it a powerful tool for many
real-world problems.

2.2.2 Machine Translation
Machine Translation is a type of supervised learning. In machine translation,

the goal is to develop a model that can automatically translate text from one
language to another [SVL14]. This is typically done by training a machine learning
model on a large corpus of parallel texts, where each sentence in one language
is paired with its translation in the other language. During training, the model
is presented with input sentences in one language and the corresponding output
sentences in the other language. The goal is to learn a function that can accurately
map the input sentences to the correct output sentences. This is a supervised
learning task, since the training data is labeled with the correct translations.

Machine Translation is a transformation function transform(X) = Y , where
the input X = {x1 , x2 , . . . , xn} is a set of entities that represents a component
to be transformed, to produce the output Y = {y1 , y2 , . . . , yn}, which is a set of
entities that represent a transformed (desired) component. In the training phase,
the transformation function learns on the example pairs (X , Y ) available in the
training dataset. In our context, X contains the source code with an annotation
that indicates the location and type of the mutation operator applied, and Y
contains the same information, plus a label that indicates whether the mutant is
subsuming or not.

The transformation function is trained to append the label to a given mu-
tant by training the function on the example pairs (Code+MutationAnnotation,
Code+MutationAnnotation+Label), where Code+MutationAnnotation represents
the source code with an annotation in the statement to indicate the mutation
operator type applied. This learned transformation is used as our prediction model.
Among the several machine translation algorithms that have been suggested over
the past years, we use the RNN Encoder-Decoder which is established and is used
by many recent studies [TWB+19a; TWB+19b; SVL14].
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2.2.3 RNN Encoder-Decoder architecture
The encoder-decoder architecture for recurrent neural networks is the standard

neural machine translation method that rivals and in some cases outperforms
classical statistical machine translation methods [Bro18a]. We use the RNN
Encoder-Decoder that is established and is used by many recent studies [GDJ+22;
SVL14; TWB+19a]. The RNN Encoder-Decoder machine translation is composed
of two major components: RNN Encoder to encode a sequence of terms x into a
vector representation, and RNN Decoder to decode the representation into another
sequence of terms y. The model learns a conditional distribution over an output
sequence conditioned on another input sequence of terms: P (y1; . . . ; ym|x1; . . . ; xn),
where n and m may differ. For example, given an input sequence x = Sequencein

= (x1; . . . ; xn) and a target sequence y = Sequenceout = (y1; . . . ; ym), the model
is trained to learn the conditional distribution: P (Sequenceout|Sequencein) =
P (y1; . . . ; ym|x1; . . . ; xn), where xi and yj are separated tokens. A bi-directional
RNN Encoder [BGL+17], formed by a backward RNN and a forward RNN, is
considered the most efficient to create representations as it takes into account both
past and future inputs while reading a sequence [BCB14].

2.2.4 Prediction performance metrics
Prediction modeling is a binary classification problem where the data is divided

into 2 classes,i.e.,Positive class and Negative class. The positive class represents
the data that we are interested in, and the rest is represented by the negative
class [HTF09]. e.g. in case of subsuming mutant prediction where a model is
trained to predict the mutants that are subsuming, the positive class is represented
by the subsuming mutants, and the negative class is represented by the rest,
i.e.,non-subsuming mutants.

Thus prediction modeling results in four types of outputs: Given a component
of the positive class, if it is predicted as positive, then it is a true positive (TP);
otherwise, it is a false negative (FN). Given a component of the negative class,
if it is predicted as negative, then it is a true negative (TN); otherwise, it is a
false positive (FP). From these, we can compute the traditional evaluation metrics
such as Precision, Recall, and F-measure scores, which quantitatively evaluate the
prediction accuracy of prediction models.

Precision = TP

TP + FP
Recall = TP

TP + FN
F-measure = 2× Precision× Recall

Precision + Recall

Intuitively, Precision indicates the ratio of correctly predicted positives over all
the considered positives. Recall indicates the ratio of correctly predicted positives
over all the actual positives. F-measure indicates the weighted harmonic mean of
Precision and Recall.
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Yet, these metrics do not take into account the true negatives and can be mis-
leading, especially in the case of imbalanced data. Hence, these are complemented
with the Matthews Correlation Coefficient (MCC) [Mat75], a reliable metric of
the quality of prediction models [SBH14a]. It is generally regarded as a balanced
measure that can be used even when the classes are of very different sizes, e.g. in a
case where typically less than 15% components belong to the positive class whereas
the remaining 97% belong to the negative class. MCC is calculated as:

MCC = TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

MCC returns a coefficient between 1 and -1. An MCC value of 1 indicates a perfect
prediction, while a value of -1 indicates a perfect inverse prediction i.e.,a total
disagreement between prediction and reality. MCC value of 0 indicates that the
prediction performance is equivalent to random guessing.

2.3 Applications of Mutation Testing
The fault-based nature of mutation testing enables its application in other

software engineering tasks [PKZ+19], such as specification inference and security
testing. In specification inference, mutation testing can be used to validate the
inferred specification by checking if it can distinguish between the original code and
the generated mutants. By doing so, it can help to identify weaknesses in the inferred
specification, thereby improving its quality. Similarly, in security testing, mutation
testing can be used to simulate common security vulnerabilities by generating
mutants. By checking if the tests can detect the generated mutants, developers can
identify areas where the system is vulnerable to attacks. This can help to improve
the security of the system by addressing the identified vulnerabilities.

2.3.1 Specification Inference
Software specifications are descriptions of the intended behavior of the soft-

ware. They are crucial for determining whether software behavior is correct or not.
The provision of software specifications is strongly related to the oracle problem,
i.e., the problem, in the context of software testing, of determining whether the
results of program executions are coherent with the desired behavior of the pro-
gram [BHM+15]. Though specifications are typically expressed informally (e.g.,
via API documentations), when these are expressed more formally as a set of
executable constraints/assertions, they have powerful applications in many software
engineering tasks such as software design [Mey97], software testing [AO08a; FZ12],
and verification [CR06; GRP+10].

The specification inference problem consists of automatically generating specifi-
cations from existing software artifacts, e.g., documentation, source code, program
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executions, etc. At the source code level, formal program specifications are typically
composed of a set of (executable) assertions for various program points, such as
method preconditions, postconditions, and invariants, that must hold true during
the program execution, at the corresponding program points. In this disserta-
tion, we focus on postcondition assertions, i.e., assertions that state what are the
properties that are expected to hold after a given method is executed.

2.3.2 Assertion Inferring Mutants

The generated candidate assertions undergo a two-step filtering process. Asser-
tions that are falsified when running the test suite of a target class C are discarded,
since these are invalid assertions not satisfying the legit program behavior exhibited
by the test suite execution. Though important to identify valid assertions, such
filtering is not enough as it leaves room for weak assertions, i.e, assertions that
are trivial to satisfy and would not trigger any error if the target class C had any
incorrect behaviour. For instance, a tautology such as assert(x >= y || x <= y) is
a valid assertion that cannot be falsified, but it is unlikely to be useful. In the case
of SpecFuzzer [MdA22], the fuzzer reports thousands of constraints (i.e., candidate
assertions), and only a few are falsified by the test suite.

Such weak assertions are not useful and thus the use of mutation analysis has
been proposed to identify and discard them [TJT+20; MPA+21; MdA22]. The
underlying idea is that valid assertions that are also coherent with every mutant’s
execution of target class C are weak because they represent properties that hold
also for buggy versions of C (the mutants). On the contrary, assertions that do
not hold for at least one mutant of C, are useful because they are capable of
distinguishing buggy versions of the code. Given a target class C and a set A of
candidate assertions that are consistent with the behavior of C, a mutant C’ of C
is called assertion inferring if at least one assertion in A is able to kill of C’.

Despite being effective for discarding weak assertions, mutation analysis suffers
from scalability issues due to the large number of mutants that are generated from
even a small piece of code. This adversely affects the overall performance and
scalability of assertion inference techniques, especially on large subjects. Therefore,
for the task of specification inference, a practitioner should focus mutation analysis
on Assertion Inferring Mutants. Though the problem is that this information,
i.e., which mutants are assertion inferring, is not known in advance, before starting
to employ mutants and executing candidate assertions. To deal with this issue, in
Chapter 5, we propose a learning-based approach to effectively identify Assertion
Inferring Mutants to improve the performance and scalability of assertion inference
techniques.
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2.3.3 Security Testing and Vulnerabilities
Security testing is an essential component of software development, particularly

in today’s ever-evolving threat landscape. With cyber attacks becoming increasingly
sophisticated and frequent, it is crucial that software systems are designed and
tested to be as secure as possible. Security testing involves evaluating the security
controls of a software system and identifying weaknesses that could be exploited
by attackers. Security testing can be conducted at various stages of the software
development lifecycle, including design, development, testing, and deployment. This
ensures that security is built into the software system from the very beginning and
helps to minimize the risk of security breaches, data theft, and other cybersecurity
incidents.

There are different types of security testing that can be used to identify potential
vulnerabilities in a software system. These include penetration testing, vulnerability
scanning, and code review. Penetration testing involves simulating an attack on
the software system to identify potential vulnerabilities that could be exploited
by attackers. Vulnerability scanning involves using automated tools to scan the
software system for known vulnerabilities. Code review involves manually reviewing
the software code to identify potential vulnerabilities.

By conducting thorough security testing, software developers can identify and
mitigate potential security risks before deploying the software system. This is
particularly important in predicting and preventing vulnerabilities that could be
exploited by attackers. The aim of security testing is to ensure that software
systems are as secure as possible, and that they are designed and tested with the
latest security measures in mind. Overall, security testing plays a critical role in
ensuring the security and integrity of software systems in the face of ever-evolving
cybersecurity threats.

Common Vulnerability Exposures (CVE) [09] defines a security vulnerability
as “a flaw in a software, firmware, hardware, or service component resulting from
a weakness that can be exploited, causing a negative impact to the confidentiality,
integrity, or availability of an impacted component or components.”. The inadver-
tence of a developer or insufficient knowledge of defensive programming usually
causes these mistakes. Still, vulnerabilities are of critical importance for software
vendors, who often offer bounties to find them and prioritize their resolution over
other less harmful bugs, hence reducing a potential business impact.

Vulnerabilities in source code are a significant threat to software security, and
numerous studies have highlighted their importance. For instance, a study by the
software security company, Veracode [Ver20], found that 70% of applications contain
at least one security flaw in their source code, which can be exploited by attackers.
A study by the Ponemon Institute [Ins20] found that 62% of organizations surveyed
had experienced a data breach caused by a vulnerability in their source code.
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The consequences of vulnerabilities in source code can be severe, ranging from
financial losses to reputational damage. A study by the National Institute of
Standards and Technology (NIST) [oST19] found that the average cost of a data
breach was 3.86 million USD, with a significant portion of that cost being attributed
to the impact on customer trust and reputation.

In addition to financial losses, source-code vulnerabilities can also pose risks to
human life. For example, vulnerabilities in medical devices or critical infrastruc-
ture systems can be exploited by attackers to cause harm to patients or disrupt
essential services. A study by the Institute of Electrical and Electronics Engineers
(IEEE) [IEE17] highlights the importance of addressing vulnerabilities in medical
devices, as these devices can be exploited to cause harm to patients. Similarly,
vulnerabilities in critical infrastructure systems, such as those that control power
grids or transportation systems, can have serious consequences if they are exploited.

Vulnerabilities are usually reported in publicly available databases to promote
their disclosure and fix. One such example is National Vulnerability Database, aka
NVD [02]. NVD is the U.S. government repository of standards based vulnerability
management data. All vulnerabilities in the NVD have been assigned a CVE
(Common Vulnerabilities and Exposures) identifier. The Common Vulnerabilities
and Exposures (CVE) Program’s primary purpose is to uniquely identify vulnera-
bilities and to associate specific versions of codebases (e.g., software and shared
libraries) to those vulnerabilities. The use of CVEs ensures that two or more
parties can confidently refer to a CVE identifier (ID) when discussing or sharing
information about a unique vulnerability. For every vulnerability, along with the
Git commit IDs of the code related to vulnerability-fix commit, NVD also provides
related information, i.e., CVE number, vulnerability description, CWE number (if
applicable), time of creation, and the list of the impacted releases in the form of
reports.

2.3.4 Vulnerability-mimicking mutants
In the existing literature, there is no clear definition of Vulnerability-mimicking

Mutants, (i.e., mutants that mimic the vulnerability behavior) to focus on, in
order to perform mutation testing to guarantee the software under analysis is
vulnerability-free. Therefore, for the purpose of this dissertation, we use the
following definition:
A mutant is vulnerability-mimicking if it fails exactly the same tests that are failed
by the vulnerability it mimics, hence having the same observable behavior as the
vulnerability.

Since a mutant is a slight syntactic modification to the original program, a
large number of mutants are generated during mutation testing which requires
analysis and execution with the related test suites. This introduces the problem of
identifying vulnerability-mimicking mutants among a huge pile of mutants. In our
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dataset, vulnerability-mimicking mutants are 3.9% of the entire lot. To deal with
the problem of identification of vulnerability-mimicking mutants (which are not
known in advance), in Chapter 6, we introduce a deep learning based approach that
predicts Vulnerability-mimicking Mutants without requiring any dynamic analysis.

2.4 Limitation of Mutation in Security Testing:
Vulnerability Prediction

Vulnerability prediction is the process of identifying software components, such
as files or modules, that are likely to contain vulnerabilities. This is typically
done using various software analysis techniques, such as static analysis or dynamic
analysis. In the case of predicting vulnerable files, the goal is to identify files within
a software project that are likely to contain vulnerabilities, such as buffer overflow
or SQL injection vulnerabilities.

While mutation testing is a powerful software testing technique, it is challenging
for security testing, especially vulnerability prediction, because artificially generated
mutants cannot mimic all the potential vulnerabilities that may exist in a software
system. Hence, it can be perceived that these mutants are not a complete repre-
sentation of all the vulnerabilities and there exists a need for actual vulnerability
prediction approaches. These techniques can help identify potential security issues
that are not easily detectable through manual inspection or traditional testing
methods.

2.4.1 Prediction Modeling
Vulnerability prediction modeling aims at learning statistical properties of

interest based on historical data. While the resulting models are usually suitable
only for the project/application on which they have been trained, the learning
process is generic and applies to a specific set of features that associate with the
property to predict. In the context of vulnerabilities, a prediction model can be
used to classify software components, such as files, as likely or unlikely vulnerable.
This information can be used to support the code review process. The task is
similar to defect prediction, yet due to the sparsity of available examples, it is
harder to predict vulnerabilities than defects [SW13; TW20].

2.4.2 Intra vs Inter Predictions
Prediction modeling is usually performed in both intra- and cross-project fashion,

i.e., training on data of the same or of other projects. However, vulnerabilities
are project-specific, i.e., they are tied to the project context, used libraries, and
development process, and thus, inter-project predictions do not work. Scandariato
et al. [SWH+14] found that the models for 11 apps out of 20 were too specific for
cross-project prediction and the link was more pairwise rather than generic. The
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results of cross-project vulnerability prediction in the study of Sara et al. [MS16]
show high recall but comparatively low F2 score. Therefore, we focus our research
in this area on intra-project predictions.

2.4.3 Prediction Granularity Level
Prediction models can target various levels of granularity, such as line, function,

component/file, module, etc. However, the key target should be actionable for the
developers and code reviewers that are envisioned to use the technique. Given this,
a commonly accepted tradeoff is the component (file) level granularity as it has
been vetted by Microsoft developers in a study by Morrison et al. [MHM+15], and
is used by most existing approaches. Thus, in this dissertation, we consider a source
code file as our component for vulnerability prediction, i.e.,file-level granularity, as
it is actionable for industrial use [MHM+15], and provides a baseline for comparing
our results with those reported in the relevant literature that we elaborate in
Section 7.3.5 in Chapter 7.

2.4.4 Clean Training Data Settings
Jimenez et al. [JRP+19] demonstrated that the existing vulnerability prediction

approaches have been built under a “clean” training data assumption, i.e.,all the
component’s labeling information (vulnerable / non-vulnerable) is always available
irrespective of time, which is unrealistic. Jimenez et al. showed that under these
settings, aka Clean Training Data Settings, prediction approaches fail to account for
the gradual revelation of vulnerabilities over time. This results in biased prediction
models, i.e., models trained on vulnerabilities that have not been discovered at the
release time, e.g. all vulnerabilities known from time t onwards are available at all
times, even before time t.

2.4.5 Realistic Training Data Settings
In contrast to Clean Training Data Settings, where the component’s labeling

information (vulnerable / non-vulnerable) is always available irrespective of time,
Realistic Training Data Settings necessitate vulnerability labels to be used for
training the prediction models to be those that are available at training time.
For instance in Realistic Training Data Settings, at a given time t, only the
vulnerabilities known at time t should be available for training. All vulnerabilities
known after time t should not be available for training beforehand. Jimenez et
al. study demonstrated that Realistic Training Data Settings introduce noise in
the training data, because every component with no reported vulnerability till the
training time is considered as non-vulnerable during training, that makes existing
approaches perform poorly.

Irrespective of the poor performance of existing approaches, Realistic Training
Data Settings represents a realist case study, the vulnerabilities are discovered and
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fixed long after the release date of the projects. In our release-based experiments,
(i.e.,one release for training the model and next release for testing the trained
model), only those components are considered as vulnerable in the training set
whose vulnerabilities have been discovered and fixed before the next release date of
the system.

2.4.6 Seen Vulnerable Components
Vulnerabilities can remain in the code and get propagated throughout different

releases (one release after another) of a system, without getting fixed. Due to this,
in a release-based experiment, (i.e.,one release for training the model and next
release for testing the trained model), vulnerable components that are present in
the training set and “seen” by the prediction model during training can also appear
in the testing set. Throughout this dissertation, we refer to such components as
Seen vulnerable components.

2.4.7 Unseen Vulnerable Components
From one release of a system to the next one, many files/components are

modified either to introduce new functionality or to modify an existing one. In the
case of Linux Kernel, Wireshark, and OpenSSL projects, we analyzed that 29.95%,
72.53%, and 73.58% of the files, on average, are changed between the releases. A
component that was non-vulnerable in the previous release can become vulnerable
in this release, because of such a modification by a developer. Due to this, in a
release-based experiment, any component in a testing set which is vulnerable and
is not available in the training set, represents a novel vulnerability. Since this
component is “unseen” and has not been trained on by the model, we refer to it as
Unseen vulnerable component.

2.4.8 Overcoming Key Obstacles in Vulnerability Predic-
tion

There are many vulnerability prediction approaches in the literature but their
performance is limited due to a few factors that we explained in the sections
above. Firstly, vulnerabilities are fewer in comparison to software bugs, limiting
the information one can learn from, which affects the performance of existing
techniques. Secondly, the existing approaches learn on both, vulnerable, and
supposedly non-vulnerable components. This introduces an unavoidable noise in
training data, i.e., components with no reported vulnerability are considered non-
vulnerable during training, and hence, results in existing approaches performing
poorly. Hence, in Chapter 7, we explore if we can avoid learning on supposedly
non-vulnerable components and we propose a deep learning based vulnerability
prediction approach that learns only on components known to be vulnerable,
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thereby making no assumptions and bypassing the key problem faced by previous
techniques. The comparison of our proposed approach with existing techniques on
security-critical open-source systems with historical vulnerabilities reported in the
National Vulnerability Database (NVD) demonstrates that its prediction capability
significantly outperforms the existing techniques.

29



30



3
Related Work

This chapter discusses the existing work related to the contribution of the
dissertation. We present an overview of the existing literature on mutation testing
and works targeted to reduce its cost. This chapter also discusses the existing works
on the applications of mutation testing especially specification inference and
security testing.
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3.1 Mutation Testing
3.1.1 Random Mutant Sampling and Selective Mutation

Mutation testing has been established as one of the strongest test criteria
[CPT+17; ADO14]. Despite its potential, mutation is considered to be expensive
since it introduces too many mutants. To this end, random mutant sampling [DLS78;
PM10a] and selective mutation [OLR+96] (restricting mutant instances according
to their types) have been proposed as potential solutions. Unfortunately, these
approaches fail to capture relevant program semantics and performing similarly to
random mutant sampling [ZGM+13; KAO+16; CPB+20].

3.1.2 Selective Program Locations for Mutation
Other attempts regard the selection of relevant program locations, which should

be mutated. Sun et al. [SXL+17] proposed selecting mutants that reside in diverse
static control flow graph paths. Gong et al. [GZY+17] identified dominator nodes
(using static control flow graph) to select mutants.

3.1.3 Mutant Selection
More recent attempts regard the identification of interesting mutants (pairs of

mutant types and related locations). Petrovic and Ivankovic [PI18b] proposed using
the code AST in order to identify “useful” mutants. Papadakis et al. [PDT14] used
dynamic features to select mutants that have impact on the internal program states
but not on the program behaviour to guide the selection of likely killable mutants.
Ma et al. [MCP+21] used a combination of Contextual, modifcation and mutant
utility features to predict relevant mutants to code commits. A followup study
of Ma et al. [MZS+22] used Graph Neural Networks to predict killable mutants.
Mirshokraie et al. [MMP15] employed complexity metrics together with test
executions to select killable mutants. Similarly, Titcheu et al. [CPB+20] employed
static features, including data flow analysis, complexity, and AST information, in
order to perform mutant selection, with respect to the mutants linked with real
faults.

In Chapter 4, we approximate the performance of the above approaches through
the two baselines we adopt and show that our proposed approach significantly
outperforms these. Random mutant sampling performs comparably to operator
mutant selection [ZGM+13], while the supervised baseline we consider simulates
the AST-based and complexity-based approaches.

3.1.4 Weak Mutant Selection
Perhaps the closest work to ours is from Marcozzi et al. [MBK+18], which

attempts to identify subsumed mutants using verification techniques (such as
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weakest precondition). While Marcozzi et al.’s approach is particularly powerful, it
targets weak mutation opposite to what we do. This results in several false positives
in the strong mutation case due to failed error propagation [CPT+17]. Moreover,
Marcozzi et al.’s approach is time consuming, and requires complex computations
and infrastructure while our proposed approach in Chapter 4 is fast and simple.
Nevertheless, future research should attempt to combine these methods.

3.1.5 Deep Learning guided mutant generation
Tufano et al. [TWB+19a] proposed using Neural Machine Translation to

learn mutations from bug fixes with the aim of introducing mutations that are
syntactically similar to real bugs. Our proposed approach in Chapter 4 relies on the
same technology, though it targets a different problem; the identification of high
utility mutants, among those given by regular mutation testing tools, while Tufano
et al. aim at generating mutants regardless of their potential. This indicates that
our proposed approach can complement Tufano et al by selecting relevant mutants.
Nevertheless, we focus on subsuming mutants, that help in measuring test adequacy
and designing test suites, which are unlikely to be supported by Tufano et al. as
there is no notion of subsumption in the bug-fixing sets they use. Moreover, we
make no assumption about the availability and repetitiveness of historical bugs
and their fixes.

3.1.6 Predictive mutation testing (PMT)
Predictive mutation testing (PMT) [ZZH+19] attempts to predict whether a

given test can kill a given mutant without performing any mutant execution. The
approach relies on a set of both static and dynamic features (relying on coverage
and code attributes) and achieves relatively good results (on average with 10%
error). PMT mainly targets intra-project predictions, while we target inter-project.
Nevertheless, PMT is incomparable to our proposed approach since PMT aims at
evaluating test execution results, while we perform mutant selection prior to any
test execution. In other words, we aim at identifying the mutants to be used for
test design/generation, while PMT is used to verify whether mutants are killed
by some tests. Therefore, the two methods target different but complementary
problems.

3.1.7 Evolutionary Mutation Testing (EMT)
Evolutionary Mutation Testing (EMT) [DEG+11] utilizes dynamic features

(execution traces) in order to identify interesting locations and mutant types.
As such, EMT requires tests and user feedback, which make it different but
complementary to ours; our proposed approach in Chapter 4 can set a starting
point for EMT or integrate its predictions within EMT’s fitness function.
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3.1.8 Higher-order Mutation
Higher-order mutation [JH09] aims at dynamically optimizing mutants based

on given test suites. While higher-order mutation is only applicable after test
generation, our proposed approach can be directly applied to support test generation
prior to any test generation. More importantly, while higher-order mutation
introduces major mutant execution overheads, our proposed approach does not
introduce any expensive dynamic mutant execution.

3.2 Specification Inference
3.2.1 Specification Inference Technique

Modern assertion inference techniques take on Daikon [EPG+07], a well-known
dynamic technique that infers assertions by monitoring test executions. Given a
program under analysis and a test suite, Daikon executes the tests, monitors the
program states at various points, and then evaluates candidate assertions, obtained
by instantiating assertion patterns on the program states. Those assertions that are
never falsified by any test at a given program point are reported as likely invariants
at the program point. As Daikon does not use mutation analysis or any other
sophisticated mechanism to detect irrelevant/redundant assertions, it often reports
many assertions that can be weak or redundant with respect to other reported
program assertions [MdA22].

3.2.2 Evolutionary algorithm guided Specification Inference
GAssert [TJT+20] and EvoSpex [MPA+21] are assertion inference techniques

based on evolutionary search algorithms. Similar to Daikon, these tools execute
a test suite of the program under analysis and observe the execution in order to
infer assertions that are consistent with the observations. By favoring shorter
assertions during evolution, and also favoring assertions that are able to detect
buggy behaviors via mutation analysis, these techniques are able infer shorter
and stronger assertions, compared to Daikon. However, as the components of the
evolutionary process are specifically designed to handle the assertion languages
these tools support, changing or extending these languages implies redefining
evolutionary operators and other elements of the process, which is non-trivial.

3.2.3 Fuzzing based Specification Inference
SpecFuzzer [MdA22] is another assertion inference technique which infers as-

sertions through a combination of static analysis, grammar-based fuzzing, and
mutation analysis. First, it uses a lightweight static analysis to produce a grammar
for the assertion language, which is tuned to the program under analysis. Second,
it uses a grammar-based fuzzer to generate candidate assertions from the grammar.
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Then, a dynamic detector determines which of those assertions are consistent with
the behavior exhibited by a provided test suite. Finally, SpecFuzzer eliminates
redundant and irrelevant assertions using a selection mechanism based on mutation
analysis. A salient feature of SpecFuzzer is that developers can adjust the produced
specifications by tuning the grammar, as opposed to making changes to a search
algorithm, as GAssert and EvoSpex would require.

It is worth remarking that all of the above described techniques infer assertions
from the current program behavior, which may not necessarily be the intended
program behavior if the program is incorrect. Inferred assertions are useful for
many tasks, including regression and differential analyses, as well as for program
understanding.

3.3 Security Testing
3.3.1 Proof of vulnerability

There exist several vulnerability datasets for many programming languages
[BNM21; FLW+20; GDJ+22]. However, they do not contain bug-witnessing test
cases to reproduce vulnerabilities, i.e., Proof of Vulnerability (Pov). Such test cases
are essential for this study in order to determine whether generated mutants are
Vulnerability-mimicking Mutants, as explained in the section above. In general, it
is hard to reproduce exploitation (i.e., PoV) for vulnerabilities. Vul4J [BSF22]
is a dataset of real vulnerabilities, with the corresponding fixes and the PoV
test cases, that we utilized for our study on Vulnerability-mimicking Mutants in
Chapter 6. Although, due to a few test cases failing even after applying the provided
vulnerability-fixes, we had to exclude a few vulnerabilities. In total, we conducted
our study on 45 vulnerabilities. In table 6.1 of Chapter 6, we mention the details of
considered vulnerabilities that include CVE ID, CWE ID and description, Severity
level (that ranges from 0 to 10, provided by National Vulnerability Database [02]),
number of Files and Methods that were modified during the vulnerability fix, and
number of Tests that are failed by the vulnerability a.k.a. Proof of Vulnerability
(PoV).

3.3.2 Pre-trained Language Model guided Mutation
µBERT [DP22] is a mutation testing tool that uses a pre-trained language

model CodeBERT to generate mutants by masking and replacing tokens. µBERT
takes a Java class and extracts the expressions to mutate. It then masks the
token of interest, e.g. a variable name, and invokes CodeBERT to complete the
masked sequence (i.e., to predict the missing token). This approach has been
proven efficient in increasing the fault detection of test suites [DP22] and improving
the accuracy of learning-based bug-detectors [RW22] and thus, we consider it as a
representative of pre-trained language-model-based techniques.
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For instance, consider the sequence int total = out.length;, µBERT mu-
tates the object field access expression length by feeding CodeBERT with the
masked sequence int total = out.<mask>;. CodeBERT predicts the 5 most
likely tokens to replace the masked one, e.g., it predicts total, length, size,
count and value for the given masked sequence. µBERT takes these predictions
and generates mutants by replacing the masked token with the predicted ones (per
masked token creates five mutants). µBERT discards non-compilable mutants and
those syntactically the same as the original program (cases in which CodeBERT
predicts the original masked token).

3.3.3 Designing vulnerability-targeted mutation operators
The unlikelihood of standard PIT [CLH+16] operators to produce security-

aware mutants was observed by Loise et al. [LDP+17] where the authors designed
pattern based operators to target specific vulnerabilities. They relied on static
analysis for validation of generated mutants to have similarities with their targeted
vulnerabilities.

Fault modeling related to security policies was explored by Mouehli et al. [MLB07]
where they designed new mutation operators corresponding to fault models for
access control security policies. Their designed operators targeted modifying user
roles and deleting policy rules to modify application context, specifically targeting
the implementation of access control policies.

Mutating high-level security protocol language (HLPSL) models to generate
abstract test cases was explored by Dadeau et al. [DHK+15] where their proposed
mutations targeted to introduce leaks in the security protocols. They relied on the
automated validation of Internet security protocols and applications tool set to
declare the mutated protocol unsafe and capable of exploiting the security flaws.

Targeting black box testing by mutating web applications’ abstract models
was explored by Buchler et al. [BOP12] where they produced model mutants by
removing authorization checks and introducing noisy (non-sanitized) data. They
relied on model-checkers to generate execution traces of their mutated models
for the creation of intermediate test cases. Their work was focused on guiding
penetration testers to find attacks exploiting implementation-based vulnerabilities
(e.g., a missing check in a RBAC system, non-sanitized data leading to XSS attacks).

Similar to Loise et al., Nanavati et al. [NWH+15] also show that traditional
mutation operators only simulate some simple syntactic errors. Hence, they designed
memory mutation operators to target memory faults and control flow deviation.
They focused on programs in C language and rely on memory allocation primitives in
specific to C. Similarly, Shahriar and Zulkernine [SZ08] and Ghosh et al. [GOM98]
also defined mutation operators related to the memory faults. Their designed
operators also exploited memory manipulation in C programs (such as buffer
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overflows, uninitialized memory allocations, etc.), which security attacks may
exploit. These works also focused on programs in C language.

Unlike the above-mentioned related works, our work in Chapter 6 does not
target a specific vulnerability pattern/type. Also, since we rely on a pre-trained
language model (employed by µBERT), we do not require to design specific mu-
tation operators to target specific security issues. Additionally, our validation of
Vulnerability-mimicking Mutants is not based on a static analysis, but rather a
dynamic proof as our produced/predicted vulnerability-mimicking mutants fail
tests that were failed by respective vulnerabilities, a.k.a., Proof-of-vulnerability
(PoV).

3.3.4 Manual Feature Definition for Vulnerability Predic-
tion

Early work in the area of vulnerability prediction has focused on defining
features that could be linked to vulnerabilities and thus to be used to train learners.
The first such work can be traced back to the study of Neuhaus et al. [NZH+07],
which investigated the use of libraries and function calls. Later, Shin et al. [SW13;
SMW+11] and Zulkernine et al. [CZ11] investigated the use of code metrics such as
complexity, code churn, and object oriented metrics. Theisen and Williams [TW20]
showed that a combination of these features can slightly improve the F-score and
recommend identifying new features.

These approaches, although promising, were all using features designed based on
human intuition. Scandariato et al. [SWH+14] advocated that the learners should
find their features without human intervention. To achieve this, they suggested the
Text Mining approach where code is treated as text and the learner learns from
Bag of Words (BoW). The results of their exploratory study demonstrated that
Text Mining’s prediction power was superior to the state of the art vulnerability
prediction models with good performance for both precision and recall in intra-
project predictions.

3.3.5 Deep Learning guided Prediction
Recently, deep learning techniques have been explored to automatically learn the

required features to predict vulnerabilities. Li et. al [LZX+18] used Bidirectional
LSTMs to train a vulnerability prediction model on code gadgets, which are seman-
tically related lines of code. Under Clean Training Data Settings, this technique
was shown to be effective for analyzing two particular weaknesses, namely, buffer
error vulnerabilities (CWE-119) and management error vulnerabilities (CWE-399).
In contrast, our proposed approach in Chapter 7 trains the translation model on
sequences extracted from the source code and does not target specific weaknesses.

Machine learning has also been used in other software engineering prediction
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tasks. For instance, several works [DLR12; HBB+12; YLX+15; WLT16] used
machine learning models for defect prediction. Particularly, RNN models have
been used for automatically fixing errors in C programs [GPK+17], for generating
API usage sequences [GZZ+16], and for fault localization [HLZ16]. Closer to
our work, machine translation-based approaches have been successfully applied
to automatically learn code features for detecting code clones [WTV+16], and
interesting mutants [GOD+22], for learning how to mutate source code from
bugs [TWB+19a], and to produce bug-fixing repairs [TWB+19b]. To our knowledge,
our proposed approach in Chapter 7 is the first that proposes and evaluates a
machine translation-based vulnerability prediction.

39



40



4
Cerebro: Static Subsuming Mutant Selection

Mutation testing research has indicated that a major part of its application
cost is due to the large number of low utility mutants that it introduces. Although
previous research has identified this issue, no previous study has proposed any
effective solution to the problem. Thus, it remains unclear how to mutate and test
a given piece of code in a best effort way, i.e., achieving a good trade-off between
invested effort and test effectiveness. To achieve this, we propose Cerebro, a
machine learning approach that statically selects subsuming mutants, i.e., the set
of mutants that resides on the top of the subsumption hierarchy, based on the
mutants’ surrounding code context. We evaluate Cerebro using 48 and 10 programs
written in C and Java, respectively, and demonstrate that it preserves the mutation
testing benefits while limiting application cost, i.e., reduces all cost application
factors such as equivalent mutants, mutant executions, and the mutants requiring
analysis. We demonstrate that Cerebro has strong inter-project prediction ability,
which is significantly higher than two baseline methods, i.e., supervised learning on
features proposed by state-of-the-art, and random mutant selection. More
importantly, our results show that Cerebro’s selected mutants lead to strong tests
that are respectively capable of killing 2 times higher than the number of subsuming
mutants killed by the baselines when selecting the same number of mutants. At the
same time, Cerebro reduces the cost-related factors, as it selects, on average, 68%
fewer equivalent mutants, while requiring 90% fewer test executions than the
baselines.
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4.1 Introduction
Research and practice with mutation testing has shown that it can effectively

guide developers in improving their test suite strengths [CPT+17; ADO14], and
can be used to reliably compare test techniques [ABL+06; PSY+18]. A key issue
though, is that it is expensive, as a large number of mutants are involved, the
majority of which are of low utility, i.e., they do not contribute to the testing
process [JH09; KPM10; ADO14]. This means that mutation testers should filter
their mutant sets using manual analysis to identify equivalent mutants [BA82],
and perform numerous test executions to discard mutants that do not provide
testing value, i.e., mutants that are detected by the tests designed to detect other
mutants [JH09; KPM10; ADO14].

Working with large real-world systems makes the problem almost intractable
due to the vast numbers of mutants involved. Test execution overheads alone can
limit the scalability of the technique. For instance, in our experiments, we needed
around 48 hours to execute the mutants for a single component of the systems we
examined. At the same time the manual effort required by testers is escalated with
larger programs as the number of mutants grows proportionally to program size.

To reduce application cost, it is imperative to limit the number of mutants
to those that are actually useful, prior to any manual mutant analysis or test
execution. Thus, we need to identify which mutants are killable in order to limit
the manual effort involved in their identification, and also to identify the mutants
that are subsuming (disjoint)1, in order to reduce unnecessary computations, and
to provide accurate adequacy measurements [PHH+16].

This problem is known as the mutant selection problem [PKZ+19] and has been
studied in the form of selective mutation [OLR+96; ZGM+13], i.e., restricting the
number of transformations to be used, with limited success [KAO+16; CPB+20].
Though, the key issue with mutant selection is the simple syntactic-based nature
of the selection process. The issue is that mutants are introduced everywhere
with respect to simple language operators, e.g., by replacing an operator with
another, that completely ignore the program and particular location semantics.
This operator matching mutant selection has the unfortunate effect of introducing
mutants independent of their context and program semantics.

We propose Cerebro2, a machine learning technique that learns to identify
interesting mutants given their context. In particular we learn the associations
between mutants and their surrounding code. Our learning scope is a relatively
small area around the mutation point that differentiates locally, the mutants that

1The term disjoint mutants refers to a minimal subset of mutants that need to be killed in
order to reciprocally kill the original set [KPM10; PCT18].

2Cerebro is a fictional device appearing in Marvel comics used by the X-Men to detect human
mutants. More details in https://en.wikipedia.org/wiki/Cerebro.
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are useful from those that are not. This allows mutating the program elements to
fit best to their context, instead of mutating entire codebases with every possible
transformation, enabling inter-project predictions.

Cerebro operates at lexical level, with a simple code preprocessing. In particular,
a mutant and its surrounding code is represented as a vector of tokens where all
literals and identifiers, i.e., user defined variables, types, and method calls, are
replaced with predefined, hence predictable, identifier names. This allows restricting
the related vocabulary and learning scope to a relatively small fixed size of tokens
around the mutation points. Learning is performed using a powerful and language-
agnostic machine translation technique [BGL+17] that we train on related code
fragments and their labels.

We consider useful, the subset of mutants that resides on top of the subsumption
hierarchy and subsumes the others [KAD+14], aka subsuming mutants [JH09], for
the set of all possible mutant instances produced by a given set of mutation
operators. Mutant M1 subsumes mutant M2 if every test case detecting M1 also
detects M2. This implies that the tests detecting the subsuming mutant will also
detect the subsumed ones thereby making subsumed mutants redundant.

We implemented Cerebro and evaluated its ability to predict (inter-project
predictions) subsuming mutants on a large set of programs, composed of 48 C
programs (CoreUtils) and 10 Java projects (Apache Commons, Joda-Time, and
Jsoup). Our results demonstrate that Cerebro significantly outperforms both,
random mutant selection and a supervised machine learning approach (used by
previous research) on both, C and Java benchmarks.

In particular, our results show that Cerebro significantly outperforms the
baselines. In Java projects, Cerebro obtained 2.81 times higher MCC3 values, an
improvement of 82% in F-measure, 68.88% in Precision, and 85.71% in Recall
over the state-of-the-art supervised machine learning. In C programs, Cerebro
obtained 2.76 times higher MCC values, 3.72 times higher precision, and slightly
increased Recall value (4% higher). The improvement measured in F-measure is
approximately 65%.

To put the predictions into a context and understand its influence on mutation
testing, we also validated Cerebro in a controlled simulation of the envisioned use
case. In particular, we simulate a scenario where testers are guided by mutation
testing, i.e., they design test cases based on mutants. Therefore, fewer mutants
imply less effort, while stronger mutants imply stronger tests. Our analysis shows
that Cerebro achieved more than twice the subsuming mutation scores4 in both, C

3The Matthews Correlation Coefficient (MCC) [Mat75] is a reliable metric of the quality of
prediction models [SBH14a], relevant when the classes are of very different sizes, e.g. in case of C
programs, 10.2% subsuming mutants (positives) over 89.8% non-subsuming mutants (negatives).

4Subsuming mutation score (MS*) is the ratio of the killed and the total number of subsuming
mutants.
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and Java programs that we use. At the same time Cerebro required significantly
less effort in terms of both, analyzed equivalent mutants and test executions. In
C programs, 3.70% of the mutants analyzed by Cerebro are equivalent, while
55.56% and 53.33% analyzed by random mutant selection and supervised learning,
respectively are equivalent; Cerebro also required 91% fewer test executions than
random selection and supervised learning, respectively. In Java programs, Cerebro
required the analysis of 41% and 36% fewer equivalent mutants, and 92% and
87% fewer test executions than random mutant selection and supervised learning,
respectively.

All-in-all this chapter makes the following contributions:

1. We present Cerebro, a powerful static subsuming mutant selection technique.

2. We provide evidence suggesting that Cerebro successfully predicts subsuming
mutants with 0.85 Precision, 0.33 Recall and 0.46 MCC.

3. We show that Cerebro significantly outperforms the current state-of-the-art,
i.e., random mutant selection and previously proposed machine learning
technique, by revealing 2 times the subsuming mutants, while analyzing
64% to 67% fewer equivalent mutants and requiring 89% to 92% fewer test
executions.

The remainder of the chapter is organized as follows.Section 4.2 elaborates on a
particular motivating example for Cerebro. Section 4.3 describes the approach in
detail. Section 4.4 introduces the research questions and Section 4.5 details the
experimental setup. The results of our experimental evaluation are summarized in
Section 4.6. We discuss threats to validity in Section 4.8. In Section 4.7 we also
discuss the impact of the abstraction process and mutants’ context size on Cerebro’s
prediction performance. Finally, we present our conclusion in section 4.10.

4.2 Motivating Example
Let us consider the code snippet of function max of Figure 4.1a, which takes

three integers as input and returns the maximum number among them. Also,
consider (for simplicity) that we have the 11 mutants shown in the figure. For
instance, mutant M0 mutates sub-expression a >= b of line 2 into a < b. Similar
mutations on relational operations were applied to produce mutants M1, M3, M5,
M6 and M8. Mutants M2 and M7 replace the conjunction (&&) by the disjunction
(||). While mutants M4, M9 and M10 replace the returned variable name by other
variable name or constant (M10 replaces variable name c by constant 0).

For the sake of the thorough demonstration, we observed scenarios under the
following testing conditions: A test case invoking max(1,2,0) and expecting 2
as a result, kills mutant M3, as well as, mutants M0, M2, M5, M8, and M9. But
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Figure 4.1: The example shows that by analyzing only the three subsuming mutants
M3, M4 and M7 is enough for covering all 9 killable mutants. Particularly, mutants
M1 and M6 are equivalents.

1 int max(int a, int b, int c){
2 if (a >= b && a >= c) //M0: (a < b && a >= c)

//M1: (a >= b && a > c)
//M2: (a >= b || a >= c)
//M3: (true && a >= c)

3 return a; //M4: return b;
4 else if (b >= a && b >= c)//M5: (b < a && b >= c)

//M6: (b >= a && b > c)
//M7: (b >= a || b >= c)
//M8: (false && b >= c)

5 return b; //M9: return a;
6 else
7 return c; //M10: return 0;
8 }

(a) The code and mutants for the function max.

M4 M3 M7

M0 M2 M10M5, M8

M9

(b) Mutant subsumption hierar-
chy graph for the function max.
Subsuming mutants are the ones
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(c) The mutants selected by Cerebro lead to stronger
test suites than those designed to kill randomly se-
lected mutants, when equal number of mutants is
analyzed.
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tests invoking max(2,0,1), max(1,0,2), and max(0,2,1) will kill mutants M0,
M2, M5, M8, and M9, except M3. Figure 4.1b shows a graph representation of the
subsumption relation between the 9 killable mutants. Moreover, Figure 4.1b shows
that M3 subsumes M0, M5, M8 and M2. Particularly notice that mutants M5 and
M8 are indistinguishable, since they are killed by the same tests, and subsume
mutant M9. Although, mutants M1 and M6 are equivalent.

In summary, mutants M3, M4 and M7 are subsuming, indicating that in order
to kill every killable mutant it is sufficient to kill only these 3 subsuming mutants.

Cerebro will take as input the program max and the set of mutants, and it will
point to those that are most likely subsuming. In an ideal scenario, Cerebro would
point only to M3, M4 and M7, but it is possible, as in every machine learning
based technique, that it does some mistakes, i.e., incorrect predictions of subsuming
mutants, pointing to some non-subsuming (subsumed or equivalent mutants) as
subsuming.

For instance, consider the case in which Cerebro predicts M3 and M4 and M10
as subsuming mutants. Therefore, a tester will incrementally design test cases to
kill all the predicted mutants. Assume that the tester starts by analyzing mutant
M3 and designs a test to kill it, e.g., by invoking max(1,2,0). This test does
not kill the rest of the selected mutants. The tester then proceeds to analyze the
surviving mutant M4, for which he/she designs a test that invokes max(2,0,1)
to kill it. Finally, the tester designs a test by invoking max(0,1,2), which kills
mutant M10 and also (non selected) subsuming mutant M7. Notice that this test
suite designed to kill all mutants selected by Cerebro progressively increments the
MS*: first test kills subsuming mutant M3 leading to a MS* of 33.33%; second test
kills subsuming mutant M4, obtaining 66.66% of MS*; and finally, third test kills
collaterally subsuming mutant M7 leading to a MS* of 100%.

Consider a scenario in which mutants are selected randomly. For instance,
assume that M9 is the first one to be selected for analysis for which a test case
invoking max(0,2,1) is designed to kill it. This test collaterally kills mutants M5
and M8, but it does not kill any subsuming mutant. Then, assume that equivalent
mutant M1 is randomly selected, adding no value to the testing process, but
requiring analysis anyway. Afterwards mutant M0 is randomly selected for which
a test case invoking max(2,0,1) is designed to kill it, that fortunately also kills
subsuming mutant M4. Then, mutant M2 is randomly selected for which the tester
designs a test to kill it by invoking max(1,0,2). This test also kills mutant M10,
but no subsuming mutant is killed. After that, tester randomly selects mutant
M3 for analysis and designs a test by invoking max(1,2,0) to kill it. This test
kills subsuming mutant M3 and also mutant M2. Finally, mutant M4 is randomly
selected for which the tester designs a test to kill it, by invoking max(2,0,2).
Hence, all subsuming mutants are killed.
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In this particular scenario we can observe that MS* remains at 0% after analyzing
the first 2 mutants randomly selected, and reaches a MS* of 33.33% after analyzing
the third randomly selected mutant. The analysis of the fourth selected mutant
(non-subsuming) did not add value (MS* remains the same). Finally, fifth and
sixth analyzed mutants were subsuming, leading to a test suite that obtains MS*
of 100% after analyzing 6 mutants.

Figure 4.1c depicts the progress of MS* obtained by the test suites when guided
by Cerebro and random mutant selection in the previously described scenarios.
Through this example we demonstrate a case where two approaches analyze the
same number of mutants (same effort) with Cerebro having higher effectiveness
(MS*) than the random mutant selection baseline. At the same time, in order to
reach the same MS* as Cerebro, random mutant selection needs more effort, i.e.,
it will require the analysis of many more mutants than Cerebro (in the example
random baseline analyzed two times more mutants than Cerebro).

There are several points we want to highlight about the particular scenarios
just described. First, it is essential to notice that mutants selected by Cerebro will
be as close as possible to subsuming in the subsumption relation. Killing these
(almost subsuming) mutants can help in killing subsuming mutants predicted as
non-subsuming by Cerebro, for instance, the test that kills subsumed mutant M10,
also kills subsuming mutant M7 that was incorrectly predicted as non-subsuming
by Cerebro. Second, it is also important to notice that Cerebro selects the least
possible number of equivalent mutants, saving the time of analysis to the tester (in
the example, Cerebro did not predict any equivalent mutant as subsuming). Third,
notice that the prediction performance obtained by Cerebro does not necessarily
reflect its effectiveness in practice, since mutant kills are not independent of one
another. While Cerebro reached 66.66% of Precision and 66.66% of Recall in the
example, in practice, the test suite designed to kill all selected mutants obtains
100% of subsuming mutation score (MS*). And fourth, it is worth to study the
trade-off between the effectiveness and effort of the different mutant selection
techniques. We consider all these points in our empirical evaluation to assess the
prediction performance, effectiveness, and effort required by Cerebro and the related
mutant selection techniques.

4.3 Approach
The main objective of Cerebro is to automatically learn the silent features/-

patterns of the context surrounding subsuming mutants without requiring any
features definition and/or selection by human intervention, that we can use later
to predict if mutants on an unseen source code are likely to be subsuming or not.
Thus, we train a machine translator (viz. an encoder-decoder model) to identify
subsuming mutants, by feeding it with source code where the statement (to mutate)
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is annotated with the mutant type and its label (subsuming or not). Machine
translators have been successfully used to translate text from one language to
another, as they automatically recognize (i) the features of the language (to be
translated) and (ii) the required translation (to the desired language). In our case,
it is used to automatically identify the features of subsuming mutants without any
investment of time and/or resources to define features.

After training, one can input to the translator, an unseen mutant (source code
where the statement to mutate is annotated with the mutation annotation). The
translator will append the label to the mutant given as input, to predict whether it
is subsuming or not.

Figure 4.2 shows an overview of the implementation. For training, Cerebro
takes a set of mutants and their corresponding label. In each mutant source
code, the statement (to mutate) is annotated with the mutation annotation, and
the model learns the label to be appended to this annotation, that indicates
whether the mutant is subsuming or non-subsuming. We can summarize Cerebro’s
pre-processing, training and testing steps as follows:

1. Abstraction: Producing abstracted code of the actual source code by removing
irrelevant information (e.g. comments) and replacing user-defined identifiers
and literals (e.g. variable names) by predictable tokens;

2. Pairs Generation: Generating the pairs (input-expected output) to be used
for training, by adding the corresponding label into the mutation annotations;

3. Training: Training the machine translator to learn which label is to be
appended to the mutation annotations;

4. Testing: Utilizing the trained translator to predict and append labels to the
mutation annotations present in unseen mutant source code.

In the remainder of this section we describe each of the aforementioned phases
of our approach, in detail.

4.3.1 Abstracting the Irrelevant Information
A major challenge in dealing with raw source code is the huge vocabulary

created by the abundance of identifiers and literals used in the code. On such a
large scale, vocabulary may hinder the goal of learning features surrounding the
subsuming mutants. Thus, to reduce vocabulary size, we abstract source code by
replacing user-defined entities with re-usable identifiers.

Figure 4.3 shows an actual code snippet (Figure 4.3a) converted into its abstract
representation (Figure 4.3b). The purpose of this abstraction is to replace any
reference to user-defined entities (function names, types, goto labels, variable
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Figure 4.2: Implementation: Source code is abstracted and attached with mutation
annotation to produce mutant annotations. Model is trained on mutant annotations
to further append the label (subsuming/non-subsuming). Trained model is provided
with an unseen mutant annotation to append the label. The appended label acts
as the prediction for the unseen mutant annotation.
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names and string literals) by identifiers that can be reused across source code file,
hence reducing the vocabulary size. Thus, our abstraction approach first detects
user-defined entities before replacing them with unique identifiers (new IDs).

New IDs follow the regular expression (fn|tp|lb|vr|lr)_(num)+, where num
stands for numbers 1, 2, 3, . . . assigned in a sequential and positional fashion based
on the occurrence of that entity. All the user-defined Function names, Type names,
Variable names, Labels, and String Literals are replaced with fn_num, tp_num,
lb_num, vr_num, and lr_num, respectively. Thus, the first function name found
receives the ID fn_1, the second receives the ID fn_2, and so on. If any of these
entities appear multiple times in a source code file, it is replaced with the same ID.

Additionally, we remove code comments and add mutation annotations to encode
the mutation operator and the corresponding label (to be learned by the translator).
Our mutation annotations have the general shape MST[MutationOperator]MSP[],
where MST and MSP denote mutation annotation start and stop, respectively,
and MutationOperator indicates the applied mutation operation (in green in
Figure 4.3c). Between the last brackets [], our trained model adds one of the labels
S or N, indicating that the mutant obtained by applying the mutation operation, is
predicted as subsuming or non-subsuming, respectively.

4.3.2 Pairs Generation
The mutation operation (ReturnValsMutator5) shown in Figure 4.3c repre-

sents a mutant in which the sentence return null is replaced by throw new

5https://pitest.org/quickstart/mutators/#RETURN_VALS
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Figure 4.3: Abstraction: Actual Source Code (4.3a) is abstracted by replacing
user-defined entities (Function names, Type names, Variable names) with tokens
(fn_num, tp_num, vr_num) to achieve the Abstracted Code (4.3b). Mutant anno-
tation (4.3c) is generated by adding the Mutation annotation with its corresponding
label, i.e.,Subsuming (S) or Non-Subsuming (N). The trained model is used for
prediction of unseen mutant annotations.

(a) Actual Source Code
1 .
2 .
3 public String getOptionValue (
4 final Option option ) {
5 if ( option == null ) {
6 return null ;
7 }
8 final String [] values =
9 getOptionValues ( option ) ;

10 return ( values == null ) ?
11 null : values [ 0 ] ;
12 }
13 .
14 .

(b) Abstracted Code
1 .
2 .
3 public String fn_3 (
4 final tp_1 vr_3 ) {
5 if ( vr_3 == null ) {
6 return null ;
7 }
8 final String [] vr_5 =
9 fn_4 ( vr_3 ) ;

10 return ( vr_5 == null ) ?
11 null : vr_5 [ 0 ] ;
12 }
13 .
14 .

(c) Mutant Annotation

1 .
2 .
3 public String fn_3 (
4 final tp_1 vr_3 ) {
5 if ( vr_3 == null ) {
6 return null ; MST[ReturnValsMutator]MSP[ ]
7 }
8 final String [] vr_5 =
9 fn_4 ( vr_3 ) ;

10 return ( vr_5 == null ) ?
11 null : vr_5 [ 0 ] ;
12 }
13 .
14 .

Label
S / N
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java.lang.RuntimeException() exception. Notice that this mutant is labeled as
subsuming in our dataset, since there is only one test that can kill it, when the
input option is null. Hence for training we consider S as the label to be learned
by the translator to predict this mutant as subsuming.

To do so, we train in pairs (MutantAnnotation, MutantAnnotation+Label),
where the first component is the annotated code shown in Figure 4.3c, and the second
component is the same code with the predicted label, i.e., MST[ReturnValsMutator-
]MSP[S] in our case, to indicate that the mutant is subsuming. The resulting
text is arranged in a single sentence to represent a sequence of space-separated
entities (the representation supported by the machine translator). The only differ-
ence between the input sequence given to the translator and the expected output
sequence produced by it, is the predicted label S or N. Using these sequences, we
intend to capture as much code as possible around the mutant without incurring
the exponential increase in training time.

4.3.3 Building the Machine Translator
To build our machine translator, we train an encoder-decoder model that can

transform an input sequence to a desired output sequence. In our representation, a
sequence consists of tokens separated by spaces that ends with a newline character.
Thus, we train the encoder-decoder by feeding it with pairs of sequences, produced
in the previous step. The translator learns to replicate the abstracted source code
with the mutation annotation and to append the label (S/N ) that will be used as
a prediction for the mutant.

We found that training the translator on sequences of maximum 100 tokens
in length is computationally feasible, but expensive (740 training hours required
on a Tesla V100 GPU). Hence, we also experiment with sequences of 50 tokens in
length and demonstrate that the computation cost of training the translator can
be further contained (360 training hours required). We name Cerebro trained on
sequences of 100 tokens in length as Cerebro-100. Following our naming convention,
we name Cerebro trained on sequences of 50 tokens in length as Cerebro-50.

4.3.4 Predicting from appended labels
To predict whether or not a certain mutation at a particular position in an

unseen code is subsuming, we abstract the unseen code followed by sequence
generation which results in abstracted code sequence attached with mutation
annotation as depicted in Figure 4.2. We feed this sequence into the trained
machine translator to yield an output sequence with an appended label. The
appended label acts as a prediction (subsuming/non-subsuming) for this specific
mutation. If the translator produces an output sequence with a change other than
appending the predicted label, the input sequence is predicted as non-subsuming,
by default. In our experiments reported in Section 4.6, this happened in 4.2% and
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0.1% of the sequences for C and Java programs, respectively.

4.4 Research Questions
We start by checking the prediction ability of Cerebro and ask:

RQ1 Prediction Performance: How effective is Cerebro in predicting subsuming
mutants?

We leverage two datasets, made of C and Java programs, for which extensive
mutation analysis has been performed to identify subsuming mutants. We reimple-
mented 2 techniques that we use as baselines in our analysis. The first baseline
is a Random mutant sampling, while the second is a supervised machine learning
method based on manually designed features that were used by previous work
[CPB+20] (e.g., data flow, control flow, etc.). These features are used to train a
binary classifier in order to predict whether a mutant is subsuming or not. Further
details about the baselines can be found in Section 4.5.2.

After analyzing the predictions, we turn our attention to the envisioned ap-
plication scenario; measuring test effectiveness of the predicted mutants. It is
important to check the application case because a) predictions may select weak
mutants [CPB+20] (weak subsuming mutants result in lower test effectiveness than
the strong ones), b) selected mutants may not be diverse as they may include
mutually subsuming mutants [KAD+14], and c) tester benefits are unclear. Thus,
we ask:

RQ2 Effectiveness Evaluation: How does Cerebro compare with the baselines in
terms of subsuming mutation score?

We perform a simulation of a mutation testing scenario where a tester analyzes
the selected mutants in order to generate tests [ABL+06; KAO+16; CPB+20]. For
test effectiveness, we measure the subsuming mutation score (MS*) achieved by the
tests that kill the selected mutants. In essence, we evaluate the guidance offered
by the mutants when testers design tests to kill the selected mutants. It is worth
noticing that in this part of the experiment we control the number of mutants, i.e.,
all techniques analyze the same number of mutants. Such simulation is typical in
mutation testing literature [ABL+06; KAO+16; CPB+20] and aims at quantifying
the benefit of an approach over the other.

Complementary to the previous question, we compare the effort required by each
technique to obtain the same level of test effectiveness. Hence, we first investigate
the human effort measured in terms of the number of mutants analyzed by the
tester, to reach the same subsuming mutation score using Cerebro and the baselines.
Hence, we ask:
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RQ3 Manual Effort: How many mutants require manual analysis in order to reach
a given level of subsuming mutation score?

We perform a similar simulation of a testing scenario in which we measure how
many mutants the tester needs to analyze (generate a test case to kill or judge
equivalence), until he/she obtains a determined subsuming mutation score. This
allows us to quantify the human effort required by each approach to obtain the
same benefit.

Related to the previous question, we also investigate the number of test ex-
ecutions necessary to reach the same subsuming mutation score, by following
the incremental process of mutation analysis, i.e.,a tester picking a mutant and
analyzing it. If the picked mutant is killable, he/she generates a test case that kills
it, and then checks if the remaining alive (not analyzed and not killed) mutants
are collaterally killed by the same test (by executing the generated test on alive
mutants). The killed mutants are removed from the set of alive mutants. Then, we
ask:

RQ4 Computational Effort: How many test executions are required in order to
reach a given level of subsuming mutation score?

We perform a simulation as before, but in this case, every time that a test
is generated, we count the number of test executions and measure the attained
subsuming mutation score, until we reach a given subsuming mutation score.

4.5 Experimental Setup
4.5.1 Benchmarks and Ground Truth

In order to show that our approach is language agnostic, we make our evaluation
on a set of C and Java programs.

C-Benchmark: To perform our study that requires strong test suites, we used an
independently built dataset from related work [CPC+21]. It includes C programs
from the GNU Coreutils6, that consist of file, text and shell utility programs
widely used in Unix systems. The data-set is composed of 48 GNU Coreutils
(v8.22) programs aka subjects (mentioned in Table 4.1), each packaged with
an accompanying system test suite, generated by developers. The size of these
programs ranges from 1,000 to 14,000 lines of code (LOC), with a median size of
3,500 LOC. For each subject, the data-set includes a mutant-test killing matrix
that records, for each mutant, a set of tests that kill it.

The mutant-test killing matrices were obtained by generating mutants using the
Mart mutant generation tool [CPL19] and executing them against large test pools.

6https://www.gnu.org/software/coreutils/
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The test pools were built by considering developer tests and adding automatically
generated tests using a 24 hours run of KLEE [CDE08]. Additionally, mutation-
based test suites were automatically generated using 128 different configurations
of SEMu [CPC+21], each running for 2 hours, and an additional ‘seeded‘ test
generation of KLEE. To reduce the total execution cost, for each program, the 3
functions that were covered by the largest number of developer tests were selected
for mutation analysis, i.e.,mutants were generated only for these functions.

We use these mutant-test killing matrices to compute the mutant subsumption,
following the definition given in Section 2.1.3, and label each mutant as either
subsuming or non-subsuming. To make the problem as balanced as possible (to
assist in machine learning), we mark as subsuming all mutants in the top of the
hierarchies, including mutually subsumed mutants.

Needless to say, it is possible to have some noise in our labeling process in the
sense that mutants labeled as subsuming may be non-subsuming. The data-set
reduced this noise by augmenting the test suites with multiple large and diverse
test suites generated by different state-of-the-art tools. Please refer to the threat
in Section 4.8 for a related discussion.

Java-Benchmark: For Java we select a set of well-tested open source projects
from GitHub. We select projects from the Apache Commons Proper7 reposi-
tory of reusable Java components, Joda-Time8 - a date and time library, and
Jsoup9 - an HTML manipulation library. The set counts 10 projects: commons-cli,
commons-codec, commons-collections, commons-csv, commons-io, commons-lang,
commons-net, commons-text, jsoup, joda-time. These projects contain up to
284 classes. Table 4.1 reports the version/commit of each project we used for
our study. Following a similar procedure done for C in [CPC+21], we also build
test pools by using developer tests and adding automatically generated tests by
running EvoSuite[FZ10] for each project with the default running time, but with
multiple coverage metrics10. The mutant-test killing matrices were obtained using
PIT [CLH+16]. For each project, we run the mutants on the test pools for 48 hours.
To reduce execution time, we select the classes processed during that time lapse.

Table 4.2 records the total number of mutants, number (and percentage) of
killable and subsuming mutants, and number of test cases conforming to the mutant-
test killing matrices. Please note that the difference on the ratio of subsuming
mutants with previous research [PHH+16; ADO14; KAD+14] is due to the inclusion
of all mutually subsuming mutants. As already explained, we include all subsuming
mutants to avoid misleading our learner.

7https://commons.apache.org
8https://github.com/JodaOrg/joda-time/
9https://github.com/jhy/jsoup

10LINE:BRANCH:MUTATION:OUTPUT:METHOD:CBRANCH
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4.5.2 Baselines
We consider 2 baselines. The first one is the Random mutant sampling that

samples uniformly from the entire set of mutants. The second baseline is a Decision
Tree classification based on the features proposed by related work [CPB+20].

Previous works showed a strong connection between mutant utility and sur-
rounding code (utility captured through CFG, data flows, AST, etc. features).
Thus, we use the mutant features to predict subsuming mutants in both C and Java.
Features belong to 4 categories: Mutant Type related features, Control-Flow graph
related features, Control and Data dependency related features, and AST related
features. In total we used the 28 features, used by the related work [CPB+20], for
the C programs, and implemented 16 of those features for Java11. We excluded
features such as AstChildHasIdentifier and AstChildHasLiteral that we found un-
feasible to implement in the employed tools, i.e., PIT works at byte-code level
making it difficult to identify the original source code expression. Nevertheless, the
excluded features were approximated by mutant type.

After extracting the features, following the related work [CPB+20], we trained
a stochastic gradient boosted Decision Tree model by using the same configuration
as the related work [CPB+20]. We followed the same validation setup for Cerebro.

4.5.3 Implementation and Model Configuration
We rely on the srcML tool [CM16] to convert source code into an XML format

to tag literals, keywords, identifiers, comments, and our mutation annotations.
This helps in separating user-defined identifiers and string literals (the largest part
of the vocabulary) from language keywords as srcML supports C, Java and other
languages. Then, we implement the ID replacement to generate the abstracted
code.

We follow the sequence pair generation procedure mentioned in Section 4.3.2 to
generate sequences from the abstracted code. These sequences serve as training
input for our encoder-decoder model, which we build using tf-seq2seq [MAP+15], a
general-purpose encoder-decoder framework. Following previous works [TWB+19a;
TWB+19b], we configure our model with bidirectional encoder. We use a Gated
Recurrent Units (GRU) network [CvMG+14] to act as the Recurrent Neural Net-
work (RNN) cell, which was shown to perform better than possible alternatives
(simple RNNs or gated recurrent units) in related prediction tasks [SNL19]. To
achieve good performance with acceptable model training time, we utilize Atten-
tionLayerBahdanau [BCS+16] as our attention class, configured with 2 layered

11statementComplexity, expressionComplexity, MutantType, BlockDepth, CfgDepth, Cfg-
PredNum, CfgSuccNum, NumInBlock, NumOutDataDeps, NumInDataDeps, NumOutCtrlDeps,
NumInCtrlDeps, AstNodeParentType, NumberOfAstParents, AstNodeType, NumberOfAstChil-
dren
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AttentionDecoder and 1 layered BidirectionalRNNEncoder, both with 256 units.
To determine an appropriate number of training epochs, we conducted a pre-

liminary study involving a validation set, independent of both, training and test
sets that we use in our evaluation. Here we incrementally train the model, with
checks after every epoch to monitor model training accuracy. We pursue training
the model till the training performance on the validation set does not improve
anymore. We found 15 epochs to be a good default for our validation sets. Once
model training is complete, we follow the procedure explained in Section 4.3.4 to
predict whether an unseen mutant annotation sequence is subsuming or not.

The codebase of C and Java programs with mutant information, abstracted
code, and mutant annotation sequences that the encoder-decoder model trains
on and predict, with mapping to the original code, are publicly available at
https://github.com/garghub/Cerebro. In addition to our dataset, we have
made available our source code and trained models as well.

4.5.4 Experimental Procedure
In the first experimental part, we evaluate the prediction ability of our approach,

answering RQ1, while in the second part, we evaluate cost-effectiveness of Cerebro,
answering RQs2-4.

First Experimental Part

We start by evaluating the prediction performance of Cerebro, and the baselines,
using four typical metrics, namely, Precision, Recall, F-measure, and Matthews
Correlation Coefficient (MCC)[Mat75]. Given a subsuming mutant, if it is predicted
as subsuming, then it is a true positive (TP); otherwise, it is a false negative (FN).
Given a non-subsuming mutant, if it is predicted as non-subsuming, then it is
a true negative (TN); otherwise, it is a false positive (FP). Here, MCC is more
reliable to access the quality of prediction models in contrast to others as the classes
are of very different sizes, e.g. in case of C programs, 10.2% subsuming mutants
(Positives) over 89.8% non-subsuming mutants (Negatives).

The mutants selected by Cerebro are the ones predicted as subsuming. For
Decision Trees baseline, as it computes a probability of a mutant being subsuming,
we followed the probability margin convention and considered those mutants whose
predicted probability was higher than 0.5 [CPB+20].

To assess the performance we perform a inter-project evaluations. We use 5-folds
cross validation, where we evenly split each benchmark in 5 parts (10 programs
and 2 projects per fold for C and Java benchmark, respectively). Then, for each
benchmark, we repetitively use 1 fold for testing and 4 folds for training (1 part
out of 4, is used for validation).
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Second Experimental Part

To study the cost and test effectiveness of our approach and the baselines,
we simulate a testing scenario where a tester selects a subset of mutants, to use
for mutation analysis, and designs tests to kill them. Algorithm 1 provides the
pseudo-code of the simulation process we follow in our experiments. It takes as
input a set M of mutants to analyze, the test pool P and a target subsuming mutation
score tMS*, and returns a test suite T that kills every mutant from M (or reaches the
pre-specified subsuming mutation score). Additionally, it returns the subsuming
mutation score obtained by the test suite T (currMS*), number of analyzed mutants
(analyzedMut), number of equivalent mutants analyzed (equivMut), and number
of test executions (tExec) required to generate test suite T during the simulated
mutation testing scenario.

Algorithm 1 Pseudo-code of the simulation procedure to answer RQ2-4.
Input: set of mutants M
Input: test pool P
Input: target subsuming mutation score tMS*
Output: test suite T covering mutants in M
Output: subsuming mutation score currMS* obtained by T
Output: analyzedMut number of analyzed mutants
Output: equivMut number of equivalent mutants analyzed
Output: tExec number of test executions

1: T← ∅
2: C← M ▷ set of survived mutants
3: currMS*← 0
4: while currMS* < tMS* and ¬isEmpty(C) do
5: m← pickNextMutant(C)
6: analyzedMut++
7: if the test pool P can kill mutant m then
8: t← randomlyPickTestKilling(m, P)
9: T← T ∪ {t} ▷ add test t to the suite

10: tExec += size(C) ▷ run t on mutants from C
11: remove from set C all mutants killed by t
12: else
13: equivMut++ ▷ m is judged as equivalent
14: end if
15: currMS*← calculateMS*(M,T)
16: end while
17: return T, currMS*, analyzedMut, equivMut, tExec
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The simulation starts by picking (pickNextMutant) the top mutant m, according
to the technique used (Cerebro, Decision Trees, and Random), among survived
mutants from set C (initialized with all mutants from M). It then checks if there
exists some test in the test pool P that kill m (this process simulates a tester picking,
analyzing, and designing a test to kill a mutant). If no test kills mutant m, we
judge it as equivalent and remove it from C. Otherwise, we randomly pick one test
t from the pool that kills m. Then, we run the test t on every mutant from C to
check if the same test consequently kills other mutants (killed mutants are then
removed from C). This process continues by taking the next survived mutant and
finding a test to kill it until every mutant in C has been killed or until the desired
subsuming mutation score is reached. We run this simulation with the set of
mutants selected by Cerebro, Decision Trees, and Random, respectively, and use
the reported values to compare their cost-benefit performance for answering RQ2-4.
Since Algorithm 1 includes some random decisions, we repeat this process 1,000
times for all the approaches.

To answer RQ2, we measure the effectiveness (benefit) of the approaches in
terms of the subsuming mutation score (MS*), i.e.,the ratio between killed and
total number of subsuming mutants, achieved by the generated test suites when
analyzing the selected mutants. The subsuming mutation score reduces the influence
of redundant mutants [PHH+16; KAD+14].

For assessing the effectiveness of the approaches, we aim at controlling the
number of mutants selected by each tool. In the case of Cerebro, the mutants
selected are the ones predicted as subsuming by our model. For Decision Trees
baseline, we rank (in descending order) the mutants according to the predicted
probability of being subsuming, and follow the ranking to pick mutants (from
highest probability to lowest) for analysis. Random baseline randomly ranks the
mutants to be selected. Initially, we consider the same number of selected mutants
for the 3 approaches, defined as the number of mutants predicted as subsuming
by Cerebro. For instance, if Cerebro predicts 20 mutants as subsuming, then
Decision Trees and Random baselines will also select the top 20 ranked mutants.
Our intention is to compare the effectiveness reached by each approach, when the
number of selected mutants is equal.

Additionally, we study the number of equivalent mutants selected by each
approach (as these are an important source of redundancy during mutation testing),
as well as, the required number of mutants selected by the baselines in order to
reach the same subsuming mutation score as Cerebro.

To answer RQ3 and RQ4, we study the effort (cost) required by each approach
in two ways. We measure the human effort in terms of the number of analyzed
mutants, killable or not, that are presented to testers for analysis (i.e.,either
designing a test to kill these or judging these as equivalent), when applying mutation
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Figure 4.4: (RQ1) Prediction Performance Comparison: On average, Cerebro-
100 outperforms Decision Trees by 2.76 times, and 2.81 times higher MCC in C,
and Java Benchmark. Moreover, Cerebro-50 outperforms Decision Trees by 2.29
times, and 2.38 times higher MCC in C, and Java Benchmark. Overall, Cerebro
outperforms by 2.78 times higher MCC than Decision Trees.
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testing. Intuitively, for a given set of mutants, the number of analyzed mutants
can be considerably smaller than the entire set’s size because a test designed by
analyzing one mutant can kill other mutants as well. Hence, we also measure the
computational effort in terms of the number of test executions performed, during
the mutation analysis procedure, i.e.,we count the test executions required at every
step where a new test is created. As for RQ2, here we also study the number of
test executions and the number of mutants that require analysis by the baselines,
to reach the same subsuming mutation score as Cerebro.
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4.6 Experimental Results
4.6.1 Prediction Performance (RQ1)

Table 4.3 records the average (and median) performance metrics. Figure 4.4
shows the performance comparison in box plot format showing the distribution
of performance indicators (MCC, F-measure, Precision, and Recall) for both
approaches in C, and Java Benchmarks.

On average, Cerebro obtains a high Precision, i.e., 0.93 and 0.76 (Cerebro-100),
and 0.82 and 0.72 (Cerebro-50) in C and Java benchmarks, respectively. Testers
focusing on mutants selected by Cerebro can be confident that these are very
likely to be subsuming, providing high utility to the testing process. On the other
hand, Recall achieved is low, i.e., 0.26 and 0.39 (Cerebro-100), and 0.21 and 0.31
(Cerebro-50) in C and Java benchmarks, respectively. This indicates that many
subsuming mutants are mistakenly predicted as non-subsuming by Cerebro. In
practice these mutants can still be collaterally killed by other (mutually subsumed)
subsuming mutants correctly predicted as subsuming by Cerebro (which is often
the case, as we will show when answering RQ2 in the following section). Needless
to say, any complementary mutation testing and mutant selection technique can
be employed to analyze the remaining mutants that are not killed by test suites
designed to kill mutants selected by Cerebro.

On comparison with baselines, we observe that Cerebro clearly achieves much
higher prediction performance in comparison to Decision Trees in both benchmarks.
The differences are statistically significant.12

In C-Benchmark, on average, Cerebro with its MCC of 0.47 (Cerebro-100),
and 0.39 (Cerebro-50) outperforms Random (0.0 MCC). Cerebro also outperforms
Decision Trees, on average, with 2.76 times higher MCC and 64% improvement in
F-measure. It is worth mentioning that while Cerebro achieves 3.72 times higher
precision than Decision Trees, Cerebro also offers an improvement of 4% in Recall
over Decision Trees.

In Java-Benchmark, on average, Cerebro with its MCC of 0.45 (Cerebro-100),
and 0.38 (Cerebro-50) outperforms Random (0.0 MCC). Cerebro also outperforms
Decision Trees, on average, with 2.81 times higher MCC, and an improvement of
82% in F-measure, 68.88% in Precision, and 85.71% in Recall.

In summary, Cerebro offers an improvement in prediction capability (MCC) of
2.78 times higher than Decision Trees.

12We compared the MCC values using Wilcoxon signed-rank test and obtained a p − value <
5.07e−3 in comparison to Decision Trees. We also compared the MCC values with the Vargha-
Delaney A measure [VD00] and observed that in all (100%) cases, Cerebro significantly outperforms
baseline techniques.
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4.6.2 Effectiveness Evaluation (RQ2)
Figure 4.5a and 4.5d show the average subsuming mutation score (MS*) obtained

when selecting the same number of mutants (by all techniques). In C-Benchmark,
on average, Cerebro-100 obtains an MS* of 87.50%, which is 2.39 and 2.63 times
higher MS* than Decision Trees and Random, respectively. Moreover, Cerebro-50
obtains an MS* of 71.43%, which is 2.02 and 2.17 times higher MS* than Decision
Trees and Random, respectively.

In Java-Benchmark, on average, Cerebro-100 obtains an MS* of 95.90%, which is
twice higher than Decision Trees, and 69.53% improvement over Random. Moreover,
Cerebro-50 obtains an MS* of 95.66%, which is 2.20 times higher than Decision
Trees, and 83.33% improvement over Random. The differences are statistically
significant, according to the computed p − value. We also compared them with
the Vargha-Delaney A measure (Â12) [VD00], showing that Cerebro achieves better
MS* than Decision Trees, and Random, in 92.4%, and 95.7% of the cases.

We also study the selection size needed by Decision Trees and Random to
achieve the same MS* obtained by Cerebro. For C-Benchmark, Figure 4.5b shows
that while Cerebro-100 selects only 2.35% of the mutants, Decision Trees, and
Random need to select 85.42% (36.35 times higher), and 87.61% (37.28 times) of
the mutants to achieve same MS* as Cerebro. Also, Figure 4.5e shows that while
Cerebro-50 selects only 2.52% of the mutants, Decision Trees, and Random need
to select 34.23% (13.57 times higher), and 42.37% (16.79 times) of the mutants,
to achieve same MS* as Cerebro. For Java-Benchmark, while Cerebro-100 selects
9.85% of the mutants, Decision Trees, and Random need to select 44.80% (4.55
times higher), and 78.97% (8.02 times) of the mutants, to achieve same MS* as
Cerebro-100. Also, while Cerebro-50 selects 11.60% of the mutants, Decision Trees,
and Random need to select 41.77% (3.60 times higher), and 75.09% (6.48 times)
of the mutants, to achieve same MS* as Cerebro-50. We obtained a statistically
significant p − value and Â12 when compared these values, evidencing that Cerebro
in more than 98.5%, and 99.1% of the cases, selects fewer mutants than Decision
Trees, and Random.

We also measure the percentage of equivalent mutants selected. For C-Benchmark,
Figure 4.5c shows that 1.10% of mutants selected by Cerebro-100 are equivalent,
whereas 24.44%, and 26.09%, of the mutants selected by Decision Trees, and
Random, are equivalent. Also, Figure 4.5f shows that 4.37% of mutants selected
by Cerebro-50 are equivalent, whereas 24%, and 26.23%, of the mutants selected
by Decision Trees, and Random, are equivalent. In Java-Benchmark, 9.95% of
the mutants selected by Cerebro-100 are equivalent whereas for Decision Trees,
and Random, 15.11% (51.86% more), and 19.33% (94.27% more) selected mutants
are equivalent. Also, 5.45% of the mutants selected by Cerebro-50 are equivalent
whereas for Decision Trees, and Random, 15.86% (2.91 times higher), and 19.26%
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Figure 4.5: (RQ2) Results of the Simulation - Trade off between mutant selection
size and MS*.
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(a) C-Benchmark: For the
same mutant selection size,
Cerebro-100 obtains an MS*
of 87.50%, while Decision
Trees, and Random obtains
36.67%, and 33.33%.
Java-Benchmark: Cerebro
obtains, on average, an MS*
of 95.90%, while Decision
Trees, and Random obtains
47.85%, and 56.45%.
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(b) C-Benchmark: to reach
the same MS*, Cerebro-
100 uses 2.35% of the mu-
tants, while Decision Trees,
and Random 85.42%, and
87.61%.
Java-Benchmark: Cerebro-
100 uses 9.85% of the mu-
tants, while Decision Trees,
and Random use 44.80%,
and 78.97%.
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(c) C-Benchmark: Cerebro-
100 selects 1.10% equiva-
lent mutants, while Decision
Trees, and Random select
24.44%, and 26.09%.
Java-Benchmark: 9.95% of
mutants selected by Cerebro-
100 are equivalent, whereas
15.11%, and 19.33% of mu-
tants selected by Decision
Trees, and Random are equiv-
alent.
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(d) C-Benchmark: For the
same mutant selection size,
Cerebro-50 obtains an MS*
of 71.43%, while Decision
Trees, and Random obtains
34.23%, and 32.88%.
Java-Benchmark: Cerebro-
50 obtains, on average, an
MS* of 95.65%, while Deci-
sion Trees, and Random ob-
tains 43.48%, and 52.17%.
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(e) C-Benchmark: to reach
the same MS*, Cerebro-
50 uses 2.52% of the mu-
tants, while Decision Trees,
and Random 34.24%, and
42.37%.
Java-Benchmark: Cerebro-
50 uses 11.60% of the mu-
tants, while Decision Trees,
and Random use 41.77%,
and 75.09%.
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(f) C-Benchmark: Cerebro-50
selects 4.37% equivalent mu-
tants, while Decision Trees,
and Random select 24%, and
26.23%.
Java-Benchmark: 5.45% of
mutants selected by Cerebro-
50 are equivalent, whereas
15.86%, and 19.26% of mu-
tants selected by Decision
Trees, and Random are equiv-
alent.
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(3.53 times higher) selected mutants are equivalent. The differences are statistically
significant. Â12 shows that Cerebro in more than 90%, and 98.4% of the cases
selects fewer equivalent mutants than Decision Trees, and Random. These results
provide evidence that our approach can reduce significantly this long-standing
problem of mutation analysis.

4.6.3 Number of Analyzed Mutants (RQ3)
Figures 4.6a and 4.6d show the average subsuming mutation score (MS*) ob-

tained by each technique for the same number of analyzed mutants. In C-Benchmark,
on average, Cerebro-100 achieved an MS* of 78%, which is an improvement of
89.41%, and 71.20% over the MS* of Random, and Decision Trees, respectively.
Moreover, Cerebro-50 achieved an MS* of 65.75%, which is 2.14 times higher than
Random and an improvement of 97% over Decision Trees In Java-Benchmark,
on average, Cerebro-100 achieved an MS* of 94.90%, an improvement of 49.24%
and 71.21% over Decision Trees and Random, respectively. Moreover, Cerebro-50
achieved an MS* of 95.65%, an improvement of 78.65% and 91.94% over Decision
Trees and Random, respectively. The differences are statistically significant, accord-
ing to the computed p − value and Â12. We observed that Cerebro in more than
96.2%, and 98.4%, of the cases is better than Decision Trees, and Random.

We also study what should be the percentage of mutants to be analyzed by
Decision Trees and Random to achieve the same MS* as Cerebro. For C-Benchmark,
Figure 4.6b shows that while Cerebro-100 analyzes 1.21% mutants, Decision Trees,
and Random need to analyze 22.33% (18.45 times higher), and 22.80% (18.84
times higher) of mutants to reach same MS* as Cerebro-100. Also, Figure 4.6e
shows that while Cerebro-50 analyzes 1.02% mutants, Decision Trees, and Random
need to analyze 11.92% (11.58 times higher), and 13.17% (12.78 times higher) of
mutants to reach same MS* as Cerebro-50. In Java-Benchmark, while Cerebro-100
analyzes 3.22% mutants, Decision Trees, and Random need to analyze 12.07% (3.75
times higher), and 18.05% (5.61 times higher) of mutants to reach same MS* as
Cerebro-100. Moreover, while Cerebro-50 analyzes 2.52% mutants, Decision Trees,
and Random need to analyze 12.00% (4.76 times higher), and 17.19% (6.82 times)
of mutants to reach same MS* as Cerebro-50. We obtained a statistically significant
p − value and Â12, showing that Cerebro in more than 99% of the cases analyzes
less mutants than Decision Trees and Random.

We also measure the percentage of equivalent mutants analyzed by each tech-
nique. For C-Benchmark, Figure 4.6c shows that, on average, Cerebro-100 analyzes
3.70% equivalent mutants, while 53.33% (14.41 times higher), and 55.56% (15.02
times higher) of the mutants analyzed by Decision Trees, and Random are equiva-
lent. Also, 4.6f shows that Cerebro-50 analyzes 11.31% equivalent mutants, while
50% (4.42 times higher) of the mutants analyzed by Decision Trees and Random
are equivalent. For Java-Benchmark, on average, 33.48% of the mutants analyzed
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Figure 4.6: (RQ3) Results of the Simulation - Trade off between percentage of
mutants analyzed and MS*.
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(a) C-Benchmark: Same
number of mutants lead
to MS* of 78%, 45.56%,
and 41.18% for Cerebro-
100, Decision Trees, and
Random.
Java-Benchmark: Cerebro-
100 reaches MS* of 94.90%,
whereas Decision Trees,
and Random reach 63.59%,
and 55.43%.
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(b) C-Benchmark: Cerebro-
100 analyzes 1.21% mutants,
whereas Decision Trees, and
Random analyze 22.33%,
and 22.80% to reach the
same MS* as Cerebro-100.
Java-Benchmark: Cerebro-
100 analyze 3.22% mutants,
whereas Decision Trees, and
Random analyze 12.07% and
18.05% to reach same MS*.
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(c) C-Benchmark: 3.70%,
53.33%, and 55.56% of the
mutants selected by Cerebro-
100, Decision Trees, and
Random are equivalent.
Java-Benchmark: 33.48%,
52%, and 57.04% of the mu-
tants selected by Cerebro-
100, Decision Trees, and
Random are equivalent.
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(d) C-Benchmark: Same
number of mutants lead to
MS* of 65.75%, 33.33%,
and 30.77% for Cerebro-50,
Decision Trees, and Ran-
dom.
Java-Benchmark: Cerebro-
50 reaches MS* of 95.65%,
whereas Decision Trees,
and Random reach 53.54%,
and 49.83%.
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(e) C-Benchmark: Cerebro-
50 analyzes 1.02% mutants,
whereas Decision Trees, and
Random analyze 11.92%,
and 13.17% to reach the
same MS* as Cerebro-50.
Java-Benchmark: Cerebro-
50 analyze 2.52% mutants,
whereas Decision Trees, and
Random analyze 12% and
17.19% to reach same MS*.
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(f) C-Benchmark: 11.31%,
50%, and 50% of the mutants
selected by Cerebro-50, Deci-
sion Trees, and Random are
equivalent.
Java-Benchmark: 23.72%,
56.08%, and 57.38% of the
mutants selected by Cerebro-
50, Decision Trees, and Ran-
dom are equivalent.
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Figure 4.7: (RQ4) Results of the Simulation - Trade off between number of test
executions and MS*.
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(a) C-Benchmark: For same number of test
executions, Cerebro-100 obtains an MS* of
74%, while Decision Trees, and Random
obtain 45.45%, and 44.44%.
Java-Benchmark: Cerebro-100 obtains MS*
of 95.65%, while Decision Trees, and Ran-
dom obtain 57.38%, and 60.40%.
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(b) C-Benchmark: Cerebro-100 requires 291
test executions, while Decision Trees, and
Random require 3,345, and 3,149 to reach
the same MS* as Cerebro-100.
Java-Benchmark: 65,741 test executions
are required by Cerebro-100, while Deci-
sion Trees, and Random require 517,040, and
795,304.
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(c) C-Benchmark: For same number of test
executions, Cerebro-50 obtains an MS* of
65.52%, while Decision Trees, and Random
obtain 36.20%, and 36.99%.
Java-Benchmark: Cerebro-50 obtains MS*
of 95.65%, while Decision Trees, and Ran-
dom obtain 50.41%, and 60.21%.
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(d) C-Benchmark: Cerebro-50 requires 125
test executions, while Decision Trees, and
Random require 1,785, and 2,182 to reach
the same MS* as Cerebro-50.
Java-Benchmark: 50,622 test executions are
required by Cerebro-50, while Decision Trees,
and Random require 560,866, and 894,494.
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by Cerebro-100 are equivalent, while Decision Trees, and Random analyze 52%
(55.31% more), and 57.04% (70.37% more) equivalent mutants. Also, 23.72% of the
mutants analyzed by Cerebro-50 are equivalent, while Decision Trees, and Random
analyze 56.08% (2.36 times higher), and 57.38% (2.42 times higher) equivalent
mutants. This indicates that the baselines suggest the consumption of a large
effort to analyze redundant mutants, in comparison to Cerebro. The differences are
statistically significant. Â12 suggests that Cerebro in more than 98% of the cases
analyzes fewer equivalent mutants than Decision Trees, and Random.

4.6.4 Number of Test Executions (RQ4)
Figure 4.7a and 4.7c show the average subsuming mutation score (MS*) when

the number of test executions are fixed. In C-Benchmark, on average, Cerebro-100
achieves an MS* of 74%, outperforming Decision Trees, and Random by 62.82%,
and 66.52% (Decision Trees, and Random achieve 45.45%, and 44.44% of MS*).
Also, Cerebro-50 achieves an MS* of 65.52%, outperforming Decision Trees, and
Random by 80.95%, and 77.14% (Decision Trees, and Random achieve 36.21%,
and 36.99% of MS*). In Java-Benchmark, on average, Cerebro-100 and Cerebro-50
achieve an MS* of 95.65% in both simulations, an improvement of approx. 67%,
and 58% over Decision Trees, and Random (Decision Trees, and Random achieve
57.38%, and 60.40% of MS* in first simulation when compared against Cerebro-100,
and 50.41%, and 60.21% of MS* in the second comparison simulation against
Cerebro-50). We obtained a statistically significant p − value. Also Â12 suggests
that Cerebro in 94.15%, and 95.7%, of the cases is better than Decision Trees, and
Random.

We also measure the test executions required by the baselines to achieve the same
MS* as Cerebro. Figure 4.7b shows that, in C-Benchmark, Cerebro-100 requires
291 test executions (median), while Decision Trees, and Random require 3,345,
and 3,149. Also, Figure 4.7d shows that Cerebro-50 requires 125 test executions
(median), while Decision Trees, and Random require 1,785, and 2,182. This shows
that Cerebro-100 is 10-12 times less and Cerebro-50 is 14-17 times less expensive
(computationally) than the baselines.

In Java-Benchmark, Decision Trees, and Random require 517,040, and 795,304
test executions (median) to achieve the same MS* as Cerebro-100, for which 65,741
test executions are required. Moreover, Decision Trees, and Random require 560,866,
and 894,494 test executions to achieve the same MS* as Cerebro-50, for which
50,622 test executions are required. This shows that the baselines require 7 to
12 times, and 11 to 17 times higher computational effort than Cerebro-100, and
Cerebro-50.

These differences are statistically significant. Â12 value indicates that in more
than 98.7% of the cases, Cerebro executes fewer tests than Decision Trees and
Random.
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4.7 Discussion
Cerebro is a learning-based method, and thus its performance depends on a

number of parameters and design decisions we made. To this end, we discuss the
key (intuitive) parameters that make the Machine Translation approach we use
effective (Section 4.7.1), together with empirical results demonstrating the potential
impact on the model’s performance given the design decisions of using unabstracted
code sequences (Section 4.7.2), sequences with decreased length during training
(Section 4.7.3), and the impact of assuming unkilled mutants as equivalent mutants
during testing (Section 4.7.4).

4.7.1 Why Cerebro is a good candidate for subsuming mu-
tant prediction?

There are three main factors that make Machine Translation a good candidate
for subsuming mutant prediction. The first one is that it learns to select mutants
using the exact local context (entire code snippet composed of 50-100 tokens,
represented as a sequence), while previous work considers AST and data-flow
abstractions [CPB+20], ignoring the exact formulation of the code snippet. In a
sense, the key determining factor is the sequence that code tokens appear in the
local context (considered code snippet). The second reason is that the machine
translator includes a powerful self-attention mechanism, which together with the
encoder-decoder architecture makes the learning resistant to noise [TMR+18], and
able to learn out of imbalanced data. Overall, previous research has shown that
this architecture often makes the best predictions for many NLP tasks [DCL+19].
This is actually the reason why Machine Translation has been successfully used in
code analysis tasks such as mutant generation, code clone detection, test assertions
generation, etc. The third reason is the diversity of the selected mutants, i.e.,
Cerebro selects a few mutants per code block, which allows eliminating local
redundancies, while spreading testing across the entire code-base.

4.7.2 Impact of removing code abstraction
We analyzed the impact of using unabstracted code sequences to train our

models instead of proposed abstracted code sequences and how it affects the model
prediction performance (RQ1). In this experiment, we just removed the code
comments and kept everything else as it is. We found a prediction performance
reduction for projects in both C and Java benchmarks. For C-Benchmark, the
model performance deteriorated by 18.9% in MCC, 14.4% in Precision and 18.1%
in Recall. For Java-Benchmark, although we found an improvement of 15.4%
in Recall, the overall performance deteriorated by 17.9% in MCC and 22.5% in
Precision.
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Figure 4.8: Impact of the abstraction process and sequence length in Cerebro’s
prediction performance: On average, MCC is decreased by 18% with unabstracted
code and decreased by 24% with sequence length 25.
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4.7.3 Impact of reducing the sequence length
We also analyzed the impact of reducing the length of sequences that we use to

train our models and how it affects the model prediction performance (RQ1). In
this experiment, we reduced the sequence length from 50 tokens per sequence to 25
tokens per sequence. Figure 4.8 and Table 4.4 shows the average and median scores
achieved by the models. For simulation details on Effectiveness Evaluation (RQ2),
Number of Analyzed Mutants (RQ3) and Number of Test Executions (RQ4), please
refer to our online repository. From these results we found that reducing the length
of sequences used by the models to train also deteriorated the model prediction
performance for projects in both C and Java benchmarks. For C-Benchmark, the
model performance deteriorated by 23.5% in MCC, 22.2% in Precision and 18.1%
in Recall. For Java-Benchmark, although we found an improvement of 18.7%
in Recall, the overall performance deteriorated by 24.7% in MCC and 28.6% in
Precision.

69



4.7.4 Impact of considering subsuming mutants as equiva-
lent, i.e., impact of potential mistakes in evaluation

In our experiments, we considered the mutants that were not killed by our test
suite as unkillable a.k.a. equivalent. Although this being an undecidable problem
(as we elaborated in Section 2.1.2), we analyzed the impact of what would have
happened if the mutants that we considered as equivalent were subsuming instead.
Hence, we addressed this by introducing noise in our evaluation, i.e., we assumed
2% equivalent mutants in our evaluation set as subsuming and analyzed the change
in performance (MS* achieved) for all the approaches (Cerebro, Decision Trees and
Random). We gradually increased the noise percentage from 2% till 10% (i.e., 2%,
4%, 6%, 8%, 10%) and analyzed the change in behaviour for all the approaches
(i.e., change in MS*), if it increases or decreases with increase in noise.

We found that Cerebro’s and Decision Trees’ performances are more or less
inversely related to the noise in evaluation (Figure 4.9). Higher the noise, lower
the MS* achieved by both the approaches (with an exception of 10% noise in C
benchmark for Decision Trees where Decision Trees performed better than in case
of 8% noise, as detailed in Table 4.5). For Random selection, the performance also
deteriorated in most of the cases, with an exception of 10% noise in C benchmark,
and 6% and 8% noise in Java benchmark where Random’s performance improved
by 6.48%, and 0.23% and 1.26% improved MS*, respectively. Despite the reduction
in performance due to introduced noise, Cerebro still achieves higher MS* than the
baselines (Figure 4.9).

4.8 Threats to Validity
External Validity: Threats may relate to the subjects we used. Although our

evaluation expands to both C and Java projects of different sizes, the results may
not generalize to other projects or programming languages. We consider this threat
as low since we have a large sample of programs, i.e., we perform one of the largest
mutation testing studies to date.

Other external threat lies in the operators we used, since our prediction ap-
proach might not work for different types of mutants. To reduce this threat, we
employ modern mutation tools, for both C and Java that implement a large variety
of mutation operators. For the C-Benchmark, taken from [CPC+21], 816 simple op-
erators across 18 categories were considered; while for creating our Java-Benchmark,
we consider the group “ALL” of mutation operators provided by PIT [CLH+16],
resulting in 112 simple operators across 29 categories.

Internal Validity: Threats may relate to the restriction that we impose on
sequence length, i.e.,a maximum of 100 tokens. This was done to enable reasonable
model training time, approximately 740 hours. Moreover, restricting the sequence
length to 50 assisted to reach an appropriate training time of 360 hours. However,
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it resulted in a prediction performance deterioration of approximately 15%, as
discussed in Section 4.7. Other threats maybe due to the use of machine
translation for classification. This choice was made for simplicity, to use the related
framework out of the box, similar to the related studies [TWB+19a; TWB+19b].
Still a potential “sequence to class classifier” may yield better results, though such
improvements should be marginal given the low number of unexpected labels we
get, i.e., on average, 2.15% of the mutants do not get a valid label (4.2% in C and
0.1% in Java).

Threats may also relate to the features we implemented for training the Decision
Trees baseline. We follow the guidelines provided in [CPB+20], to extract the 16
features for our Java dataset. Unfortunately, many of the 28 features for C programs
presented in [CPB+20] depend on the semantic of the C language, that we found
unfeasible to be replicated in Java. However, the prediction performance of Decision
Trees in Java are in line with the results obtained for C, indicating that the impact
of this threat is low.

Other internal validity threats could be related to the test suites we used and
the mutants considered as subsuming and equivalent. To deal with this issue, we
used well-tested programs and state-of-the-art tool to generate extensive pools of
tests (KLEE[CDE08], SEMu[CPC+21], and EvoSuite[FZ10]). Since identifying
subsuming and equivalent mutants is an undecidable problem, in our experimental
setup, we approximate them through an extensive pool of tests. This has been
a typical process followed in related mutation testing studies [JH09; ADO14;
PHH+16; KAO+16; PCT18]. To be more accurate, our underlying assumption is
that the extensive pool of tests used in our experiments are a valid representation
of all possible tests that a tester can manually or automatically generate. This
assumption allowed us to identify the minimal set of mutants (i.e., subsuming
mutants) that a tester needs to kill in order to kill every other killable mutant
(i.e., subsumed mutants). Also, we assumed that unkilled mutants are equivalent.
Even if this may not be the case, it is likely that the testers guided by mutation
won’t be able to kill all the killable mutants. Here it must be noted that since
Cerebro is quite precise, its feeding with less noisy data, i.e., correct labels, will
make it perform better, i.e., more accurate labelling in training will result in better
predictions. Nevertheless, we also investigate the impact of having such noisy data
and found minor discrepancies, please refer to Section 4.7.4.

Cerebro’s use may also pose additional threats. In particular, Cerebro required
approximately 5 minutes for preprocessing of the projects and 5 minutes for
classification (decoding results). While this time overhead is low, compared to the
hours of test executions, it may still be important. Although our implementation
is non-optimal and involves no parallelism, however our encoding and decoding can
easily be parallelized, since mutant instances are independent of one another.
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Construct Validity: Our assessment metrics, subsuming mutation score, number
of equivalent mutants and number of test executions may not reflect the actual
testing cost / effectiveness values. These metrics have been suggested by literature
[PKZ+19; ABL+06; KAO+16] and are intuitive, i.e., number of selected and ana-
lyzed mutants essentially simulate the manual effort involved by testers, subsuming
mutation score the level of covering the test requirements [ADO14; PHH+16],
and number of test executions capture the computational effort involved. Here it
should be noted that automated test generation tools may reduce this cost but they
require testers to check the related test oracles. Similarly, equivalent detection tech-
niques and related heuristics may also reduce the manual effort involved [KPP+16;
KPM15]. Though, in C we applied TCE (Trivial Compiler Equivalence) [KPJ+18;
HSF+19] to filter out equivalent and duplicated mutants and our approach still
provided significant benefits. Similarly, the use of test executions capture the
computational effort involved independently of the test execution framework and
optimizations used [WXS+17; ZMK13; CZ18; PKZ+19], the machines and the
level of parallelization used during test execution. Nevertheless, the differences
are substantial making such threats unlikely to happen. Overall, we mitigate
these threats by following suggestions from mutation testing literature [PKZ+19;
ABL+06; KAO+16], using state-of-the-art tools, performing several simulations,
forming very large and diverse test pools, and got consistent and stable results
across our subjects.

4.9 Data Availability
The dataset consisting of the codebase gathered for the 48 C programs and

10 Java projects, generated mutants with information in json file format for every
program/project with mutant Id, source code file name, mutation type, and line
number, subsuming mutant labels, abstracted source code, mutant annotation
sequences in pairs, and trained models, along with Cerebro’s source code, is publicly
available in our GitHub repository13.

4.10 Conclusion
In this chapter, we presented Cerebro, a method that learns to select subsuming

mutants (a subset of mutants that subsumes the others, i.e., tests killing them also
kill all the mutants of the given mutant set) from given mutant sets. Experiments
with 58 programs showed that Cerebro identified subsuming mutants with 0.85
precision and 0.33 recall at an inter-project scenario (trained on different projects
than the ones it was evaluated). These predictions enable testers to design test
cases capable of killing more than two times the subsuming mutants that they

13https://github.com/garghub/Cerebro
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would kill if they were using either randomly selected mutants or another previously
proposed machine learning-based mutant selection technique. At the same time
Cerebro entails the analysis of 66% fewer equivalent mutants and 90% less mutant
executions, indicating a large reduction in the practical effort/cost of the approach.

73



Table 4.1: Benchmark

Project Web URL Version /
Commit

C
base64, basename,
chcon, chgrp,
chmod, chown,
chroot, cksum,
comm, date,
df, dirname,
echo, expr,
factor, false,
groups, join,
link, logname,
ls, md5sum,
mkdir, mkfifo, https://github.com/coreutils/coreutils.git v8.22
mknod, mktemp,
nproc, numfmt,
pathchk, printf,
pwd, realpath,
rmdir, sha256sum,
sha512sum, sleep,
stdbuf, sum,
sync, tee,
touch, truncate,
tty, uname,
uptime, users,
wc, whoami [CPC+21]

Java
commons-cli https://github.com/apache/commons-cli.git 6490067
commons-collections https://github.com/apache/commons-collections.git d6eeceb
commons-text https://github.com/apache/commons-text.git 26a308f
commons-csv https://github.com/apache/commons-csv.git 865872e
commons-lang https://github.com/apache/commons-lang.git 2c0429a
commons-io https://github.com/apache/commons-io.git c126bdd
commons-net https://github.com/apache/commons-net.git 33df028
commons-codec https://github.com/apache/commons-codec.git 475910a
jsoup https://github.com/jhy/jsoup.git 528ba55
joda-time https://github.com/JodaOrg/joda-time.git 767c94e
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Table 4.2: Test Subjects

Language #Programs #Mutants #Killed #Subsuming #Testcases
C [CPC+21] 48 71,850 49,530 (68.9%) 7,358 (10.2%) 136,412
Java 10 153,823 124,064 (80.6%) 41,219 (26.8%) 21,878

Table 4.3: (RQ1) Prediction Performance of Cerebro and Decision Trees. On
average, Cerebro outperforms by 2.78 times higher MCC than Decision Trees.

Average (and Median) Performance in C-Benchmark

Approach MCC F-measure Precision Recall
Decision Trees 0.17 (0.18) 0.25 (0.26) 0.25 (0.25) 0.25 (0.27)
Cerebro-50 0.39 (0.40) 0.34 (0.34) 0.82 (0.82) 0.21 (0.22)
Cerebro-100 0.47 (0.47) 0.41 (0.40) 0.93 (0.93) 0.26 (0.25)

Average (and Median) Performance in Java-Benchmark

Approach MCC F-measure Precision Recall
Decision Trees 0.16 (0.18) 0.28 (0.30) 0.45 (0.48) 0.21 (0.21)
Cerebro-50 0.38 (0.38) 0.42 (0.42) 0.72 (0.73) 0.31 (0.30)
Cerebro-100 0.45 (0.45) 0.51 (0.52) 0.76 (0.73) 0.39 (0.38)
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Table 4.4: Impact of the abstraction process and sequence length in Cerebro’s
prediction performance: On average, MCC is decreased by 18% with unabstracted
code and decreased by 24% with sequence length 25.

Average (and Median) Performance in C-Benchmark

Approach MCC F-measure Precision Recall
Cerebro-100 0.47 (0.47) 0.41 (0.40) 0.93 (0.93) 0.26 (0.25)
Cerebro-50 0.39 (0.40) 0.34 (0.34) 0.82 (0.82) 0.21 (0.22)
Cerebro-unabs 0.32 (0.31) 0.28 (0.27) 0.70 (0.73) 0.17 (0.16)
Cerebro-25 0.30 (0.29) 0.27 (0.28) 0.64 (0.61) 0.17 (0.18)

Average (and Median) Performance in Java-Benchmark

Approach MCC F-measure Precision Recall
Cerebro-100 0.45 (0.45) 0.51 (0.52) 0.76 (0.73) 0.39 (0.38)
Cerebro-50 0.38 (0.38) 0.42 (0.42) 0.72 (0.73) 0.31 (0.30)
Cerebro-unabs 0.31 (0.34) 0.43 (0.41) 0.56 (0.53) 0.36 (0.38)
Cerebro-25 0.29 (0.32) 0.42 (0.41) 0.51 (0.45) 0.36 (0.37)
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Table 4.5: Impact of noise in evaluation on all approaches’ performance (MS*):
Cerebro’s and Decision Trees’ performances are more or less inversely related to the
noise in evaluation. For Random selection, the performance also deteriorated in
most of the cases, with exceptions of 10% noise in C benchmark, and 6% and 8%
noise in Java benchmark where Random’s performance improved by 6.48%, and
0.23% and 1.26% improved MS*, respectively.

Performance Change % (Median) in MS* w.r.t. noise
for C-Benchmark

Noise (%) Cerebro Decision Trees Random
2% ↓ -2.24% ↓ -3.61% ↓ -13.91%
4% ↓ -3.10% ↓ -3.59% ↓ -8.89%
6% ↓ -4.67% ↓ -3.83% ↓ -0.95%
8% ↓ -5.78% ↓ -7.40% ↓ -8.17%

10% ↓ -7.06% ↓ -6.53% ↑ +6.48%

Performance Change % (Median) in MS* w.r.t. noise
for Java-Benchmark

Noise (%) Cerebro Decision Trees Random
2% ↓ -2.19% ↓ -1.17% ↓ -0.16%
4% ↓ -4.55% ↓ -1.89% ↓ -0.39%
6% ↓ -6.15% ↓ -2.76% ↑ +0.23%
8% ↓ -7.50% ↓ -3.76% ↑ +1.26%

10% ↓ -8.61% ↓ -4.63% ↓ -2.80%
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Figure 4.9: Impact of noise in evaluation on all approaches’ performance (MS*):
Cerebro’s and Decision Trees’ performances are more or less inversely related to the
noise in evaluation. For Random selection, the performance also deteriorated in
most of the cases, with exceptions of 10% noise in C benchmark, and 6% and 8%
noise in Java benchmark where Random’s performance improved by 6.48%, and
0.23% and 1.26% improved MS*, respectively.
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5
Seeker: Efficient Class Specification Inference

Specification inference techniques aim at automatically inferring sets of
program assertions that capture the exhibited software behavior, often by generating
and filtering assertions through dynamic test executions and mutation testing.
Although powerful, such techniques are computationally expensive due to the large
codebase that need to be assessed, and the large number of test cases and code
mutants that require execution. In this study, we introduce the notion of Assertion
Inferring Mutants, and perform a study demonstrating that these mutants are
sufficient for assertion inference, and correspond to a small subset (12.95%) of the
mutants used by mutation testing tools. Moreover, Assertion Inferring Mutants,
which are well-suited for assertion inference, are significantly different (71.59%)
from the subsuming mutants, frequently cited by mutation testing literature. We
also show that Assertion Inferring Mutants can be statically approximated via a
learning based method. In particular, we propose Seeker, an approach that predicts
Assertion Inferring Mutants with 0.79 Precision and 0.49 Recall. We further
evaluate Seeker on 46 programs and demonstrate that it enables a comparable
inference capability (missing only 12.49% of assertions) with the full mutation
analysis, while significantly reducing the execution cost (Seeker achieves 46.29
times faster inference). At the same time, Seeker is more efficient (2.5 times
faster) and more effective (36% more inferred assertions) than other mutant
selection strategies used as the baselines. More importantly, Seeker enables
assertion inference techniques to scale on subjects where full mutation testing is
prohibitively expensive and other mutant selection strategies do not lead to
acceptable assertion inference.
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5.1 Introduction
Software specifications aim at describing the software’s intended behavior, and

can be used to distinguish correct from incorrect software behaviors. While these are
typically described informally (e.g., via API documentation), specifications become
significantly more useful when expressed formally as executable constraints/asser-
tions. Executable specifications are typically expressed as code assertions for various
program points, such as method preconditions and postconditions, that must hold
true at the corresponding program points during execution. Program assertions
are known to be useful in many software engineering tasks, e.g., test generation
[dPX+06; TdH08], bug finding [LCC+05; PLE+07] and automated debugging
[DEG+06; LB12; PKL+09]. However, they are tedious to write and maintain, and
as a result developers often elude providing them [BGK+18; WTM+20].

To address this issue, different techniques that automatically infer assertions
for specific program points have been proposed [TJT+20; MPA+21; MdA22].
These techniques generate candidate assertions, and use dynamic test executions
to determine which assertions are consistent with the behavior exhibited by a
provided test suite, and mutation testing to discard ineffective/weak assertions that
are unable to detect artificially seeded faults (mutants), i.e., assertions that are
never falsified during mutants’ execution. Though powerful, these techniques are
computationally expensive due to the large number of assertions to analyze, and the
large numbers of tests and mutants that have to be executed. The problem is further
escalated when working with large programs, as the number of mutants grows
proportionally to the program size. For instance, the state of the art technique
SpecFuzzer [MdA22] times out (requires more than 90 minutes to run) in programs
with 180 lines of code.

To reduce the computational demands, it is imperative to limit the number of
mutants involved (fewer mutants result in fewer executions). Interestingly, we find
that the majority of the mutants used by the existing assertion inference techniques
are redundant, meaning that discarding these mutants does not impact the quality
of inferred assertions. We thus introduce the notion of Assertion Inferring Mutants,
the subset of mutants produced by a mutation testing tool that is sufficient to
effectively identify relevant candidate assertions (i.e., the assertions that fail at
least once on mutants).

We demonstrate that Assertion Inferring Mutants represent 12.95% of the
mutants supported by Major [JSK11] (the mutation testing tool employed in
previous studies), allowing for drastic assertion inference overhead reductions.
At the same time, Assertion Inferring Mutants are significantly different from
subsuming mutants (which have been studied in the literature [PKZ+19; GOD+22])
with 71.59% of them not being subsuming. This means that subsuming mutant
selection techniques are ineffective for assertion inference, as they would miss many
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assertions (48.53% according to our results).
Thus, we propose Seeker1, a learning-based approach to statically identify

assertion inferring mutants given their contextual information. In particular, Seeker
learns the associations between mutants and their surrounding code with respect to
the assertion inference task. This means that our learning scope is the area around
the mutation point that locally identifies the mutants that are most likely to be
useful for assertion inference.

Seeker operates at the lexical level, with a simple code pre-processing that
represents mutants and their surrounding code as vectors of tokens with all user-
defined identifiers (e.g., variable names) replaced by predefined and predictable
identifier names. This representation allows us to restrict the related vocabulary
and the learning scope to a relatively small number of tokens around the mutation
points enabling inter-project predictions. Code embeddings extracted from an
encoder-decoder architecture [KB13] that we train on code fragments, are extracted
and learned with corresponding labels using a classifier [Bre01].

We implement Seeker and evaluate its ability to predict Assertion Inferring
Mutants on a large set of 46 programs, composed of 40 taken from previous
studies [TJT+20; MPA+21; MdA22] and 6 large Maven projects taken from GitHub,
to evaluate scalability. Our results demonstrate that Seeker can statically select
Assertion Inferring Mutants with 0.79 Precision and 0.49 Recall, overall yielding
0.58 MCC2. At the same time, since Seeker selects fewer mutants than previous
work, it improves assertion inference scalability allowing it to run on all the projects
we considered where previous work failed.

Surprisingly, by performing assertion inference based only on Seeker’s predicted
mutants (instead of all mutants), we reduce assertion inference time (wall clock)
by 46.29 times with only 12.49% assertion missed. Additionally, when comparing
with randomly selected sets of mutants (same number as those selected by Seeker),
we observe a clear superiority of Seeker in terms of effectiveness, i.e., Seeker infers
36% more assertions while taking approximately equal amount of execution time
as Random Mutant Selection.

Finally, we show that Seeker’s inferring capabilities are almost complete as it
infers 96.15% of ground truth assertions, (i.e., the complete set of assertions that
were manually validated) while Random Mutant Selection only infers 19.23% of
them. More importantly, Seeker enables assertion inference techniques to scale by
allowing its operation on all 6 real-world subjects we selected, where full mutation
testing is prohibitively expensive. In half of these subjects, Random Mutant

1Our approach’s name comes from a seeker’s role in the fictional sport of Quidditch invented
by the author J.K. Rowling for her fantasy book series Harry Potter [Row97].

2Matthews Correlation Coefficient (MCC) [YS20] is a reliable metric of the quality of prediction
models [SBH14b], relevant when the classes are of different sizes, e.g., 12.95% Assertion Inferring
Mutants in total (in comparison to 87.05% low utility mutants), for subjects in our dataset.
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Figure 5.1: Mutant subsumption hierarchy for the subject QueueAr_getFront
showing the positions of Assertion Inferring Mutants and Subsuming Mutants

QueueAr_getFront

Subsuming Mutant Both

5 39 40, 41, 43

3

49

8, 12, 13

6 2 42

Assertion Inferring Mutant

Selection does not lead to any assertion inference and is subsumed by Seeker in the
other half of the subjects.

5.2 Illustrative Example
Figure 5.1 shows the mutants generated for the method getFront() of class

QueueAr, one of our subjects. The graph depicts the mutants’ subsumption hier-
archy, which is a standard way of representing subsumption relations between a
set of mutants generated from a given subject. Nodes represent mutants of the
subject, and an edge connecting mutant M1 to mutant M2 represents the fact that
M2 is subsumed by M1. In our example, mutant 39 subsumes mutants 2, 3 and
42. Mutually subsuming mutants are typically merged into a single node – e.g.,
mutants 40, 41 and 43 are mutually subsuming. Our figure highlights in purple the
subsuming mutants (those at the top of the hierarchy), and in green the Assertion
Inferring Mutants.

To analyze the impact that mutation analysis has in the inference process, we
first inferred assertions with SpecFuzzer [MdA22] on the subject QueueAr_getFront
with its default configuration, i.e., using all available mutants. SpecFuzzer inferred
27 assertions, with the assertion filtering step via mutation analysis (step 3 of
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Figure 1.2) taking 91 minutes on our infrastructure (see Section 5.5). By contrast,
if we only use subsuming mutants in the filtering step, it only takes 2.5 minutes
(36.4 times faster), but produces just 5 assertions. These results evidence that,
while reducing the number of mutants to analyze can improve the computational
efficiency of the filtering process, subsuming mutants are not appropriate for this
task. Intuitively, this is because the initial purpose of subsuming mutants is to
minimize the number of tests needed to kill all mutants. In the context of assertion
inference one aims instead at inferring all valid assertions that can distinguish the
mutants from the original code, that is, generate as many assertions that capture
the specific code properties. For instance, in our QueueAr_getFront example, 5
out of the 27 inferred assertions are falsified when executing mutant 5. On the other
hand, mutant 6 helps in inferring 21 assertions (i.e., 21 out of the 27 assertions
are falsified during mutant 6 execution); while mutant 2 helps in inferring the
remaining assertion. In other words, by considering only the five subsuming mutants
(i.e., mutants 5, 39, 40, 41 and 43), and discarding subsumed mutants (including
mutants 6 and 2 ), the assertion inference results in reporting only 5 assertions,
losing 22 strong assertions that could have been inferred by using just the three
Assertion Inferring Mutants (or the entire pool of mutants at the expense of a
significantly higher computational cost).

The above example demonstrates the difference between Subsuming Mutants
and Assertion Inferring Mutants, and the need for an approach that can efficiently
identify the latter in order to save valuable time on the mutation analysis step,
while maintaining the benefits of assertion inference. The Seeker technique that
we propose in this chapter is the first mutant selection method especially designed
for predicting Assertion Inferring Mutants, making existing specification inference
techniques more efficient and scalable. As an example, on the QueueAr_getFront
example, Seeker predicts mutant 6 as assertion inferring mutant and helps Spec-
Fuzzer to infer 21 assertions (out of 27 assertions when using all mutants), using
only a fraction of the computation time (30 seconds) that analyzing all mutants
requires (91 minutes).

5.3 Approach
The main objective of Seeker is to predict whether a mutant (of a previously

unseen piece of code) is likely to be assertion inferring. To make our approach
lightweight in terms of engineering and computational effort, we want Seeker to be
able to (a) learn relevant features of Assertion Inferring Mutants without requiring
manual feature definition, and (b) do so without costly dynamic analysis of mutant
executions. To achieve this, we decompose our problem into two parts: learn a
representation of mutants using code embedding techniques, and learn to predict,
based on such embeddings, whether the represented mutants are Assertion Inferring
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Figure 5.2: Overview of Seeker: Source code is abstracted and annotated to represent
a mutant, which is further flattened to create a space separated sequence of tokens.
An encoder-decoder model is trained on token sequences to generate mutant
embeddings. A classifier is trained on these embeddings and their corresponding
labels (whether or not the mutant is assertion inferring). The trained classifier can
then be used for label prediction of an unseen mutant.
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5.3.1 Overview of Seeker
Figure 5.2 shows an overview of Seeker. We decompose our approach into three

steps that we detail later on in this section:

1. Build a token representation: Seeker pre-processes the original code in order
to remove irrelevant information and produces abstracted code, which is then
tokenized to form a sequence of tokens. Each mutant is ultimately transformed
into its corresponding token representation and undergoes the next step.

2. Representation learning: We train an encoder-decoder model to generate an
embedding, aka vector representation of the mutant. This step is where Seeker
automatically learns the relevant features of mutants without requiring an
explicit definition of these features.

3. Classification: Seeker trains a classification model to classify the mutants (based
on their embeddings) as Assertion Inferring Mutants or not. The true labels
used for training are obtained by running SpecFuzzer on the original code,
and checking whether the mutants are Assertion Inferring Mutants (i.e., which
mutants are killed only by assertions coherent with the test-suite).
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It is interesting to note that the mutant representation learned by Seeker
does not depend on the particular set of assertions that SpecFuzzer (or any other
assertion inference technique) would check against the mutant. Seeker aims instead
at learning properties of the mutants (and their surrounding contexts) that are
generally useful for assertion inference. This is in line with the recent work on
contextual mutant selection [GOD+22; CPB+20] that aims at selecting high utility
mutants for mutation testing. This characteristic makes Seeker applicable to pieces
of code that have not been seen during training. In particular, our experiments
reveal the ability of Seeker to be effective on projects not seen during training.

The assertion inference technique that is used to build the true labels in the
classification task is very important: this technique should produce assertions that
capture the software behavior as precisely as possible in order to be capable of
distinguishing the buggy versions of the code, i.e., mutants – an essential condition
for our classifier to provide relevant prediction results. We use SpecFuzzer [MdA22],
a state-of-the-art tool that has been shown to outperform related techniques
(GAssert [TJT+20] and EvoSpex [MPA+21]) in assertion inference (SpecFuzzer
infers 7 times and 15 times more assertions than GAssert and EvoSpex), with better
performance with respect to the ground truth (it obtains better Recall and F-1
score than the existing approaches for producing developer validated assertions).

5.3.2 Training Sequences Generation
A major challenge in learning from raw source code is the huge vocabulary

created by the abundance of identifiers and literals used in the code [TWB+19b;
TPW+19; ABL+19]. In our case, this large vocabulary may hinder Seeker’s ability
to learn relevant features of Assertion Inferring Mutants. Thus, we first abstract
original (non-mutated) source code by replacing user-defined entities (function
names, variable names, and string literals) with generic identifiers that can be
reused across the source code file. During this step, we also remove code comments.
This pre-processing yields an abstracted version of the original source code, as the
abstracted code snippet in Figure 5.2.

To perform the abstraction, we use the publicly available tool src2abs [TPW+19].
This tool first discerns the type of each identifier and literal in the source code.
Then, it replaces each identifier and literal in the stream of tokens with a unique
ID representing the type and role of the identifier/literal in the code. Each ID
<TYPE>_# is formed by a prefix, (i.e., <TYPE>_ ) which represents the type and role
of the identifier/literal, and a numerical ID, (i.e., #) which is assigned sequentially
when reading the code. These IDs are reused when the same identifier/literal
appears again in the stream of tokens. Although we use src2abs, one can use any
other utility that identifies user-defined entities and replaces such with reusable
identifiers.

Next, to represent a mutant, we annotate the abstracted code with a mutation
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annotation on the statement where the mutation is to be applied. These annotations
have the general shape “MST statement MSP MutationOperator”, where MST and
MSP denote mutation annotation start and stop, respectively, and are followed
by a MutationOperator to indicate the applied mutation operation (as shown in
figure 5.2). We repeat the process for every mutant.

Finally, we flatten every mutant (by removing newline, tabs and extra whites-
pace) to create a single space separated sequence of tokens. Using these sequences,
we intend to capture as much code as possible around the mutant without incurring
in a prohibitively expensive training time [TWB+19a; TPW+19; GOD+22; GDJ+22;
GDP+23]. We found a sequence length of 500 tokens to be a good fit for our task
as it does not exceed 24 hours of training time (wall clock) on a Tesla V100 GPU.

5.3.3 Embedding Learning with Encoder-Decoder
Our next step is to learn embeddings, aka vector representations, from mutants’

token representation that can later on be used to train a classification model.
We develop an encoder-decoder model, a neural architecture commonly used in
representation learning tasks [KB13]. The key principles of our encoder-decoder
architecture are that the encoder transforms the token representation into an
embedding and the decoder attempts to retrieve the original token representation
from the encoded embedding. The learning objective is then to minimize the binary
cross-entropy between the original token representation and the decoded one. Once
the model training has converged, we can compute the embedding from any other
mutant’s token representation by feeding the latter into the encoder and retrieving
the output.

We use a bi-directional Recurrent Neural Network (RNNs) [BGL+17] to develop
our encoder-decoder, as previous works on code learning have demonstrated the effec-
tiveness of these models to learn useful representations from code sequences [BCB14;
GOD+22; GDJ+22; SVL14]. We build Seeker on top of tf-seq2seq [AAB+16], an
established general-purpose encoder-decoder framework. We use a Gated Recurrent
Units (GRU) network [CvMG+14] to act as the RNN cell, which was shown to
perform better than simpler alternatives (e.g. simple RNNs) both in software engi-
neering and other learning tasks [SNL19; GOD+22]. To achieve good performance
with acceptable model training time, we utilize AttentionLayerBahdanau [BCS+16]
as our attention class, configured with 2 layered AttentionDecoder and 1 layered
BidirectionalRNNEncoder, both with 256 units.

To determine an appropriate number of training epochs for model convergence,
we conducted a preliminary study involving a small validation set (independent
of both the training and test sets used in our evaluation) where we monitor the
model’s performance in replicating (as output) the same mutant sequence provided
as input. We pursue training the model until the training performance on the
validation set does not further improve. We found 10 epochs for the sequences up
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to a length of 500 tokens to be a good default for our validation sets.

5.3.4 Classifying Assertion Inferring Mutants
Next, we train a classification model in predicting whether a mutant (represented

through the embedding produced by the RNN encoder) is likely to be an assertion
inferring mutant. The learning objective here is to maximize the classification
performance (which we mainly measure with Matthews Correlation Coefficient
(MCC)). To obtain our true classification labels, we run an assertion inference
technique (viz. SpecFuzzer) using all available mutants and exhaustively determined
which mutants are assertion inferring. As for the classification model, we rely on
random forests [Bre01] because these are lightweight to train and have shown to
be effective in solving various software engineering tasks [JRP+19; PMD+20]. We
used standard parameters for random forests, viz. we set the number of trees to
100, use Gini impurity for splitting, and set the number of features (i.e., embedding
logits) to consider at each split to the square root of the total number of features.

Once the model training has converged, we can use the random forest to
predict whether an unseen mutant is likely to be assertion inferring. For the
actual classification, we make the mutant go through the pre-processing pipeline
to obtain its abstract token representation, then feed it into the encoder-decoder
architecture to retrieve its embedding and finally input it into the classifier to
obtain the predicted label (assertion inferring or not).

5.4 Research Questions
We start our analysis by investigating the prediction performance of Seeker to

select Assertion Inferring Mutants and compare whether these can be approximated
by other sets of mutants, namely, subsuming mutants. Thus, we ask:

RQ1 Prediction Evaluation: How effective is Seeker in predicting Assertion Infer-
ring Mutants? Can subsuming mutants approximate them?

To determine which mutants are assertion inferring (i.e. those killed by at
least one assertion), we consider the dataset provided by Molina et al. [MdA22]
and execute SpecFuzzer, a state of the art assertion inference technique, on the
40 subjects without discarding any mutant. Then, we analyze the performance
of Seeker in identifying these mutants. We compare the results with the set of
subsuming mutants since they form the main objective of mutant selection [KAO+16;
GOD+22; PHH+16] with numerous strategies targeting them [MBK+18; GZY+17;
GOD+22].

Since Seeker’s predictions might not be perfect, we also assess its performance
in the context of assertion inference, and contrast it with other mutant selection
strategies, namely, random mutant selection and subsuming mutants. We consider
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random mutant selection since it is an untargeted method that is often superior
to many mutant selection strategies [GAA+16; ZHH+10] and is considered by the
literature as a strong baseline [KAO+16; GOD+22; CPB+20]. Hence, we check
the effectiveness (completeness w.r.t. to using all mutants) and efficiency (how
much time is required) of SpecFuzzer [MdA22] when utilizing the different mutant
subsets over all supported mutants. Therefore we ask:
RQ2 Inference Evaluation: How effective and efficient is Seeker in comparison to

subsuming, randomly selected and all mutants baseline methods with respect
to the assertion inference task?

For this task, we re-execute SpecFuzzer on the 40 subjects, by selecting the mutants
following Seeker and our two baseline mutant selection techniques (subsuming and
random mutant selection), and compare its performance when executing SpecFuzzer
without discarding any mutant.

In their work [MdA22], Molina et al. carefully studied the subjects and manually
produced corresponding Ground Truth assertions capturing the intended behavior
of the subjects. SpecFuzzer was able to infer the ground truth assertions for 26
subjects, when all mutants were considered for assertion inference. Hence, we also
compared the effectiveness of all three mutant selection techniques (as explained in
the RQ2) in inferring Ground Truth assertions. Hence, we ask:
RQ3 Ground Truth Evaluation: How Seeker compares with the subsuming and

randomly selected mutants in terms of inferred ground truth assertions?
The analysis of the above research questions was feasible because we considered
subjects from Molina et al. [MdA22], where SpecFuzzer was able to infer assertions
considering all mutants of the corresponding subjects. In order to investigate
if Seeker’s predicted mutants can help SpecFuzzer to scale, i.e., if considering
only Seeker’s predicted mutants can aid SpecFuzzer to infer assertions in cases
where SpecFuzzer would time out if all mutants are considered, other subjects
must be taken into account. We thus conduct experiments on 6 subjects from
GitHub (Table 5.1) where SpecFuzzer timed out. We also compare SpecFuzzer’s
performance when it considers Seeker’s predicted mutants vs an equal number of
randomly selected mutants. Hence, we ask:
RQ4 Scalability Evaluation: Can Seeker improve the scalability of assertion infer-

ence techniques?

5.5 Experimental Setup
5.5.1 Data and Tools

We select 46 Java methods; 40 subjects used in previous studies [TJT+20;
MPA+21; MdA22] for evaluating Seeker’s performance in RQ1-3, and 6 larger
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subjects from GitHub for the scalability evaluation in RQ4. In their study, Molina
et al. [MdA22] manually constructed Ground Truth assertions capturing the intended
behavior of these 40 subjects. We use these assertions to answer RQ3.

Table 5.1 records the details of our dataset. For each method analyzed, it reports
the total number of mutants generated, the number of Assertion Inferring Mutants,
the total number of inferred assertions when using all the mutants (i.e., without
mutant selection) as well as the number of ground truth assertions produced.

To perform mutation testing we use Major [JSK11], and to construct com-
prehensive test suites (and improve the chances to infer true assertions), we use
EvoSuite [FA11] and Randoop [PLE+07] to augment the developer test suites,
similarly to what was done by previous work [MdA22].

5.5.2 Experimental Procedure
To answer our RQs we execute SpecFuzzer to infer assertions for all subjects

(Table 5.1) with its default setup, i.e., using all mutants to filter candidate assertions
during the mutation analysis step (Figure 1.2). We also determine Assertion
Inferring Mutants and Subsuming Mutants from SpecFuzzer execution logs for the
40 subjects used in RQ1-3. Once the mutants are labeled, we re-execute SpecFuzzer
by employing the following 3 mutant selection techniques:
• Subsuming Mutant Selection. We execute SpecFuzzer by only considering

subsuming mutants for mutation analysis.
• Seeker. We train models on Assertion Inferring Mutants and perform k-fold

cross validation (where k = 5) at the project level, i.e., we train on 32 subjects
and evaluate/test on 8 unseen during testing subjects, and repeat 5 times. Once
we get the predictions for all 40 subjects, we re-execute SpecFuzzer by only
considering the mutants predicted as assertion inferring.

• Random Mutant Selection. We randomly select an equal number of mutants
(equal to the number of mutants predicted as assertion inferring) from the
original set of mutants and re-execute SpecFuzzer by only considering these
randomly selected mutants. We repeat this step 10 times to eliminate the
chances to report coincidental results. We report the median case results.
To answer RQ1, we compute the Prediction Performance Metrics of Seeker

in order to show its learning ability. This is a sanity check that our prediction
modeling framework indeed manages to predict something well. Seeker’s predictions
can result in four types of outputs. Given a mutant that is assertion inferring, if it is
predicted as assertion inferring, then it is a true positive (TP); otherwise, it is a false
negative (FN). Vice-versa, if a mutant that does not infer any assertion is predicted
as assertion inferring, then it is a false positive (FP); otherwise, it is a true negative
(TN). We compute the traditional evaluation metrics, i.e.,Precision,Recall, and
Matthews Correlation Coefficient (MCC) to evaluate the performance of prediction
models. Here, MCC is more reliable than others as the classes are of very different
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sizes, i.e.,we have 12.95% Assertion Inferring Mutants (Positives) in total, for the
40 subjects in the dataset (Table 5.1).

However, prediction results do not reflect the end-task (assertion inference)
performance since mutants are not independent, there are large overlaps between
the tests and assertions that lead to mutant kills. Thus, to answer RQ2, we measure
the cost of the employed mutant selection technique, i.e., how many of the assertions
inferred when all mutants are considered, are not inferred when mutant selection is
used, and the benefit gained, i.e., the improvement in terms of wall clock time.

To answer RQ3, we check the results of RQ2 and compare how many Ground
Truth assertions SpecFuzzer infers with each mutant selection technique. It should
be noted that it was able to infer the ground truth assertions for 26 subjects out of
the 40, when all mutants were considered for mutation analysis. Hence, we analyze
the results only for these 26 subjects.

To answer RQ4, i.e., if Seeker’s predicted mutants can help SpecFuzzer to infer
assertions for 6 subjects where it was not able to infer any assertion (timed out when
all mutants were considered for analysis), we retrain Seeker on all 40 subjects (with
available labeled mutants) and predict likely Assertion Inferring Mutants for these
6 subjects. We re-execute SpecFuzzer by only using the predicted mutants and by
discarding all other mutants from the original set. Additionally, we randomly select
mutants in a similar fashion as before (following RQ2 experimental procedure) and
re-execute SpecFuzzer accordingly to compare performance with Random Mutant
Selection. Thus to answer RQ4 we measure 1) in how many subjects, the selected
mutants lead to assertion inference, and 2) the ratio of assertion inferring mutants
from the entire set of mutants.

5.6 Experimental Results
5.6.1 Prediction Evaluation (RQ1)

Figure 5.3a shows a Venn diagram recording the distribution of Assertion
Inferring Mutants and subsuming mutant sets. Notice that the set of subsuming
mutants is significantly different from the set of Assertion Inferring Mutants. Indeed,
a small number of subsuming mutants (75 out 264) are also assertion inferring,
while a large number of Assertion Inferring Mutants (450 out of 525) are not
subsuming, showing that subsuming mutant selection is not well suited for the
assertion inference task. Moreover, the set of assertion-inferring (resp. subsuming)
mutants represents 12.9% (resp. 6.5%) of the killable mutants, suggesting that
an effective mutant selection strategy would allow for drastic assertion inference
overhead reductions.

Venn diagram from Figure 5.3b shows that Seeker detects almost half of As-
sertion Inferring Mutants (258 out 525), while misclassifies just a few of them (68
out of 326). Overall, Seeker predicts Assertion Inferring Mutants with a predic-
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Figure 5.3: Venn diagrams representing the mutant class distribution of Killable,
Assertion inferring, Seeker’s predicted, and Subsuming mutants
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tion performance of 0.79 Precision, 0.49 Recall, and 0.58 MCC, a much better
performance than random mutant selection (whose MCC value is 0). Hence, using
Seeker should provide significant improvements in terms of inferred assertions over
baseline methods.

Answer to RQ1: Seeker predicts Assertion Inferring Mutants with 0.58 MCC,
0.79 Precision, and 0.49 Recall. The class of subsuming mutants cannot
reliably select Assertion Inferring Mutants (only 28% of the subsuming
mutants are also assertion inferring, while 86% of them are not subsuming).

5.6.2 Inference Evaluation (RQ2)
Table 5.2 records SpecFuzzer’s performance w.r.t. assertion inference by em-

ploying different mutant sets, i.e, Subsuming Mutant Selection, Seeker, and Random
Mutant Selection. The results show that when SpecFuzzer uses Seeker’s predicted
mutants, it infers 87.51% of total assertions, i.e., only 12.49% of the assertions
ares missed (the cost of considering only Seeker’s predicted mutants) with 46.29
times faster mutation analysis than using all the mutants (and 2.5 times faster
than considering subsuming mutants). Seeker enables SpecFuzzer to infer at least
one assertion for all subjects, and successfully infers all assertions for 23 subjects.

When SpecFuzzer uses the subsuming mutants, it infers 57.77% of total asser-
tions. It infers all assertions for 5 subjects but fails to infer any for 7 subjects.
Although it misses 42.23% of the assertions (the cost of considering only subsuming
mutants), diminishing the benefit of an improved mutant analysis time (19.16 times
faster than using all mutants).
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A good improvement in the mutation testing time is noted when SpecFuzzer
uses randomly selected mutants, but it fails to infer 48.53% of total assertions. In
2 cases it infers all assertions and fails to infer any assertion for 2 other cases.

Seeker outperforms both, random and subsuming mutant selection, with a
statistically significant3 sizeable difference.

Answer to RQ2: Seeker enables SpecFuzzer to infer assertions for all subjects,
running 46.29 times faster at the expense of 12.49% of the assertions. At the
same time, Seeker enables SpecFuzzer to infer 36% and 30% more assertions
than Random Mutant Selection and Subsuming Mutant Selection, runs 2.5
times faster than Subsuming Mutant Selection and requires similar execution
time (wall clock) to Random Mutant Selection.

5.6.3 Ground Truth Evaluation (RQ3)
Table 5.3 records SpecFuzzer’s performance in ground truth assertion inference

by employing the different mutant selection techniques. On considering Seeker’s
predicted mutants, SpecFuzzer infers almost all (96.15%) ground truth assertions
inferred when using all mutants. Seeker’s predicted mutants enable SpecFuzzer
to infer at least one ground truth assertion for all subjects except for one subject
(doublylinkedlistnode_insertRight).

When SpecFuzzer considers only subsuming mutants, it infers 67.31% of all
ground truth assertions. It infers all ground truth assertions for 17 subjects but
fails to infer any for 8 subjects.

When SpecFuzzer considers randomly selected mutants, it infers 19.23% of all
ground truth assertions. It infers all assertions for 5 subjects whereas fails to infer
assertions for 21 subjects. Seeker outperforms the baselines with a statistically
significant sizeable difference.

Answer to RQ3: Seeker’s predicted mutants enable SpecFuzzer to infer ground
truth assertions for almost all subjects except one, inferring 96.15% of the
total assertions which is superior to both Subsuming Mutant Selection (infers
67.31%) and Random Mutant Selection (infers 19.23%).

5.6.4 Scalability Evaluation (RQ4)
Table 5.4 records the results of SpecFuzzer’s performance in inferring assertions

when it employs Seeker and Random Mutant Selection, for the subjects where
3We compared the inferred assertion percentages using Wilcoxon sign-rank-test and obtained

a p− value < 0.05.
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mutation analysis with all mutants timed out. Seeker selected 2.99% mutants from
the entire mutant set. Among the predicted mutants, 83.33% mutants are assertion
inferring. When an equal number of mutants are selected using Random Mutant
Selection, only 16.67% of mutants selected are assertion inferring. When SpecFuzzer
considers only Seeker’s predicted mutants for assertion filtering, it infers assertions
for all subjects mentioned in Table 5.4 within 16 minutes, on average. On the other
hand, for 50% of the subjects (3 out of 6), SpecFuzzer fails to infer any assertion if
it uses Random Mutant Selection.

Answer to RQ4: Seeker enables SpecFuzzer to scale by inferring assertions
for all subjects where full mutation analysis timed out and Random Mutant
Selection failed in 50% of the cases.

5.7 Threats to Validity
External Validity: Threats may relate to the subjects we used. Although our

evaluation expands to projects of various sizes, the results may not generalize
to other projects. We consider this threat of low importance since we have a
large sample of subjects (40 subjects from the previous studies [TJT+20; MPA+21;
MdA22] and 6 subjects from GitHub for scalability evaluation). Moreover, our
predictions are based on the local mutant context, that has been shown to be
determinant of mutants’ utility [MCP+21; GOD+22]. Other threats may relate
to the assertion inference technique that we used for evaluation. This choice was
made since SpecFuzzer is the current state of the art and operates similarly to
other techniques (the main differences lie in the grammar used). We consider this
threat of low importance since Seeker deals with mutation analysis, which is used
in the same way by all assertion inference techniques [TJT+20; MPA+21; MdA22],
and are directly impacted by the number of mutants involved. Nevertheless, in
case other techniques require different predictions, one could re-train, tune and use
Seeker for the specific method of interest, as we did here with SpecFuzzer.

Internal Validity: Threats may relate to the restriction that we impose on
sequence length, i.e., a maximum of 500 tokens. This was done to enable reasonable
model training time, approximately 24 hours to learn mutant embeddings on a
Tesla V100 gpu. Other threats may be due to the use of tf-seq2seq [AAB+16]
for learning mutant embeddings. This choice was made for simplicity, to use the
related framework out of the box, similar to related studies [TPW+19; GDJ+22].
Other internal validity threats could be related to the test suites we used and
the mutants considered as assertion inferring. To deal with this issue, we used
well-tested programs and state-of-the-art tools to generate extensive pools of tests
(Evosuite [FA11] and Randoop [PLE+07]) as done by previous work [TJT+20;
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MPA+21; MdA22]. This is also a typical process followed in mutation testing
studies [PHH+16; KAO+16; GOD+22]. To be more accurate, our underlying
assumption is that the extensive pool of tests used in our experiments is a reasonable
approximation of the program’s test executions.

Construct Validity: Our assessment metrics, assertions inferred, ground truth
assertions inferred, and incurred time during mutation analysis may not reflect the
actual cost / benefit values. These metrics are intuitive, i.e., the inferred assertions
are the output of assertion inference techniques, and the incurred time during
mutation analysis is the wall clock time these techniques invest in filtering assertions.
Overall, we mitigate these threats by following suggestions from mutation testing
and assertion inference literature, using state of the art tools, performing several
simulations, and confirming consistent and stable results across subjects.

5.8 Data Availability
The dataset consisting of the source code of all subjects, augmented test suites,

generated mutants, and SpecFuzzer execution logs, along with Seeker’s source code
and the tools used in our study, is publicly available in a GitHub repository4.

5.9 Conclusion
In this chapter, we presented Seeker, a method that learns to select Assertion

Inferring Mutants (a small subset of mutants that is suitable for assertion inference)
from given mutant sets. Our experiments on 40 subjects show that Seeker identified
assertion inferring mutants with 0.58 MCC, 0.79 Precision, and 0.49 Recall. These
predictions enable 42.29 times faster inference with minor effectiveness loss (12.49%
fewer assertions) compared to the use of all mutants. Similarly, Seeker’s predictions
infer 96.15% of the total ground truth assertions, which is 40% more than Subsuming
Mutant Selection and 5 times more than Random Mutant Selection. Moreover,
Seeker enables the assertion inference technique SpecFuzzer to scale on all our
large subjects (by inferring assertions where SpecFuzzer failed previously due to
timeouts) in comparison to Random Mutant Selection which failed to infer any
assertion in 50% of the large subjects.

4https://github.com/garghub/seeker
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Table 5.1: The table records the test subjects, Method details, All Mutants count,
Assertion Inferring Mutants count, All Assertions and Ground Truth Assertions
inferred when all mutants are used (i.e., Specfuzzer’s default execution with no
mutant selection).

Subject Method All Assertion All Ground
Mutants Inferring Assertions Truth

Mutants Assertions
ArithmeticUtils_subAndCheck math.ArithmeticsUtils.subAndCheck 16 2 3 1
BooleanUtils_compare lang.BooleanUtils.compare 13 13 29 3
composite_addChild eiffel.Composte.addChild 35 6 185 0
doublylinkedlistnode_insertRight eiffel.DLLN.insert_right 18 7 16 2
doublylinkedlistnode_remove eiffel.DLLN.remove 18 4 21 1
Envelope_maxExtent tsuite.Envelope.maxExtent 56 10 188 0
FastMathNew_floor math.FastMath.floor 42 18 60 2
IntMath_mod guava.IntMath.mod 21 15 199 0
listcomp02_insert_r cozy.ListComp02.insert_r 20 2 1 0
listcomp02_insert_s cozy.ListComp02.insert_s 20 1 1 0
map_count eiffel.Map.count 63 3 4 0
map_extend eiffel.Map.extend 65 9 10 3
map_remove eiffel.Map.remove 63 1 1 0
MathUtilsNew_copySignInt math.MathUtils.copySignInt 48 2 16 0
MathUtil_clamp tsuite.MathUtil.clamp 11 8 12 3
maxbag_add cozy.MaxBag.add 748 53 49 1
maxbag_getMax cozy.MaxBag.get_max 749 21 25 1
maxbag_remove cozy.MaxBag.remove 748 67 26 1
polyupdate_a1 cozy.PolyUpdate.a 54 26 100 2
polyupdate_sm cozy.PolyUpdate.sm 56 13 73 1
QueueAr_dequeue daikon.QueueAr.dequeue 66 9 68 3
QueueAr_dequeueAll daikon.QueueAr.dequeueAll 67 11 69 1
QueueAr_enqueue daikon.QueueAr.enqueue 66 17 119 2
QueueAr_getFront daikon.QueueAr.getFront 67 3 27 0
QueueAr_makeEmpty daikon.QueueAr.makeEmpty 67 20 73 1
ringbuffer_count eiffel.RingBuffer.count 101 28 119 0
ringbuffer_extend eiffel.RingBuffer.extend 101 20 148 0
ringbuffer_item eiffel.RingBuffer.item 101 11 116 0
ringbuffer_remove eiffel.RingBuffer.remove 101 14 143 0
ringbuffer_wipeOut eiffel.RingBuffer.wipe_out 101 13 95 1
simple-examples_abs oasis.SimpleMethods.abs 20 18 30 1
simple-examples_addElementToSet oasis.SimpleMethods.addElementToSet 3 2 1 1
simple-examples_getMin oasis.SimpleMethods.getMin 7 6 51 1
StackAr_makeEmpty daikon.StackAr.makeEmpty 47 13 47 1
StackAr_pop daikon.StackAr.pop 63 10 35 2
StackAr_push daikon.StackAr.push 55 6 25 2
StackAr_top daikon.StackAr.top 50 8 3 0
StackAr_topAndPop daikon.StackAr.topAndPop 54 13 68 2
structure_foo cozy.Structure.foo 27 5 1 1
structure_setX cozy.Structure.setX 26 15 131 1
EmailScanner_findFirst nibor.autolink.internal.EmailScanner.findFirst 134 Scalability Evaluation (RQ4)*
EmailScanner_scan nibor.autolink.internal.EmailScanner.scan 134 Scalability Evaluation (RQ4)*
IdentityHashSet_isEmpty leplus.ristretto.util.IdentityHashSet.isEmpty 23 Scalability Evaluation (RQ4)*
OptionGroup_setRequired apache.commons.cli.OptionGroup.setRequired 34 Scalability Evaluation (RQ4)*
OptionGroup_setSelected apache.commons.cli.OptionGroup.setSelected 34 Scalability Evaluation (RQ4)*
Scanners_findUrlEnd nibor.autolink.internal.Scanners.findUrlEnd 111 Scalability Evaluation (RQ4)*
* Subjects for which SpecFuzzer timed out during mutation analysis are considered for Scalability Evaluation (RQ3).
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Table 5.2: RQ2 results - Performance of Assertion Inference

Mutation filtered assertion inference
With Subsuming With With Random
Mutant Selection Seeker Mutant Selection

Inferred Assertions 57.77% 87.51% 51.47%
(per Subject)
Missed Assertions 42.23% 12.49% 48.53%
(Cost)
Improvement in 19.16 times 46.29 times 47.34 times
Time (Benefit)

Subjects with assertions inferred
Total Subjects# 40 With Subsuming With With Random

Mutant Selection Seeker Mutant Selection
Subjects with All 5 23 2
assertions inferred
Subjects with No 7 0 2
assertion inferred

Table 5.3: RQ3 Results - Inferring Ground Truth Assertions

Ground Truth assertion inference
With Subsuming With With Random
Mutant Selection Seeker Mutant Selection

Inferred Assertions 67.31% 96.15% 19.23%
(per Subject)

Subjects with assertions inferred
Total Subjects# 26 With Subsuming With With Random

Mutant Selection Seeker Mutant Selection
Subjects with All 17 25 5
assertions inferred
Subjects with No 8 1 21
assertion inferred
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Table 5.4: RQ4 results - Scalability Evaluation

Assertion Inferring Mutants (among mutants selected)
Mutants selected: 2.99% from the With With Random
entire mutant set (per subject) Seeker Mutant Selection
Assertion Inferring Mutants 83.33% 16.67%
(among selected mutants)

Inferred assertions#
Subject With With Random

Seeker Mutant Selection
EmailScanner_findFirst 85 58
EmailScanner_scan 192 0
IdentityHashSet_isEmpty 3 2
OptionGroup_setRequired 8 8
OptionGroup_setSelected 8 0
Scanners_findUrlEnd 23 0

98



6
Mystique: Enabling Security conscious Mutation
Testing using Language Models

With the increasing release of powerful language models trained on large code
corpus (e.g. CodeBERT was trained on 6.4 million programs), a new family of
mutation testing tools has arisen with the promise to generate more “natural”
mutants in the sense that the mutated code aims at following the implicit rules and
coding conventions typically produced by programmers. In this chapter, we study to
what extent the mutants produced by language models can semantically mimic the
observable behavior of security-related vulnerabilities (a.k.a.
Vulnerability-mimicking Mutants), so that designing test cases that are failed by
these mutants will help in tackling mimicked vulnerabilities. Since analyzing and
running mutants is computationally expensive, it is important to prioritize those
mutants that are more likely to be vulnerability mimicking prior to any analysis or
test execution. Taking this into account, we introduce Mystique, a machine
learning based approach that automatically extracts the features from mutants and
predicts the ones that mimic vulnerabilities. We conducted our experiments on a
dataset of 45 vulnerabilities and found that 16.6% of the mutants fail one or more
tests that are failed by 88.9% of the respective vulnerabilities. More precisely, 3.9%
of the mutants from the entire mutant set are vulnerability-mimicking mutants that
mimic 55.6% of the vulnerabilities. Despite the scarcity, Mystique predicts
vulnerability-mimicking mutants with 0.63 MCC, 0.80 Precision, and 0.51 Recall,
demonstrating that the features of vulnerability-mimicking mutants can be
automatically learned by machine learning models to statically predict these without
the need of investing effort in defining such features.
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6.1 Introduction
Research and practice with mutation testing have shown that it is one of the

most powerful testing techniques [DLS78; AO08a; GOD+22; Rei99]. Apart from
testing the software in general, mutation testing has been proven to be useful
in supporting many software engineering activities which include improving test
suite strength [CPT+17; ADO14], selecting quality software specifications [TJT+20;
MPA+21; MdA22], among others. Though, its use in tackling software security
issues has received little attention. A few works focused on model-based test-
ing [BOP11; MFB+08] and proposed security-specific mutation operators to inject
potential security-specific leaks into models that can lead to test cases to find attack
traces in internet protocol implementations. Other works proposed new security-
specific mutation operators that aim to mimic common security bug patterns in
Java [LDP+17] and C [NWH+15]. These works empirically showed that traditional
mutation operators are unlikely to exercise security-related aspects of the applica-
tions and thus, the proposed operators attempt to convert non-vulnerable code to
vulnerable by mimicking common real-world security bugs. However, pattern-based
approaches have two major limitations. On one hand, the design of security-specific
mutation operators is not a trivial task since it requires manual analysis and compre-
hension of the vulnerability classes that cannot be easily expanded to the extensive
set of realistic vulnerability types (e.g. they restrict to memory [LDP+17] and web
application [NWH+15] bugs). On the other hand, these mutation operators can
alter the program semantics in ways that may not be convincing for developers as
they may perceive them as unrealistic/uninteresting [BWB+21], thereby hindering
the usability of the method.

With the aim of producing more realistic and natural code, a new family of
tools based on language models has recently arisen. Currently, language models are
employed for code completion [LLZ+21], test oracle generation [TDS+22], program
repair [CKT+21], among many other software engineering tasks. Particularly,
language models are been used for mutant generation yielding to several mutation
testing tools such as SemSeed [PP21] and DeepMutation [TKW+20]. While these
tools are subject to expensive training on datasets containing thousands of buggy
code examples, there is an increasing interest in using pre-trained language models
for mutant generation [RW22; BSd+22; DP22], e.g. a mutation testing tool
µBERT [DP22] uses CodeBERT [FGT+20] to generate mutants by masking and
replacing tokens with CodeBERT predictions.

Since pre-trained language models were trained on large code corpus (e.g.
CodeBERT was trained on more than 6.4 million programs), their predictions are
typically considered representative of the code produced by programmers. Hence,
we wonder:
Are mutation testing tools using pre-trained language models effective at producing
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mutants that semantically mimic the behaviour of software vulnerabilities?
A positive answer to this question can be a promising prospect for the use of

these security-related mutants to form an initial step for defining security-conscious
testing requirements. We believe that these requirements are particularly useful
when building regression test suites for security intensive applications.

The task of analyzing the mutants, and writing and executing tests, in general,
is considered expensive. Despite a large number of mutants created, it is well known
that many of them are of low utility, i.e., they do not contribute much to the testing
process [JH09; KPM10; ADO14]. Due to this, several mutant selection techniques
have been proposed to make mutation testing more cost-effective [PKZ+19; OLR+96;
ZGM+13; KAO+16; CPB+20]. Therefore, to make our approach useful in practice,
we need to filter and select only specific mutants that resemble the behavior of
security issues, especially vulnerabilities.

Taking this into account, we propose to enable security-conscious mutation
testing by focusing on a minimal set of mutants that rather behave similarly to
vulnerabilities a.k.a. Vulnerability-mimicking Mutants. Such mutants are the
ones that semantically mimic the observable behavior of vulnerabilities, i.e., a
mutant is vulnerability-mimicking when it fails the same tests that are failed by the
vulnerability that it mimics, proving its existence in the software a.k.a. PoV (Proof
of Vulnerability). Using Vulnerability-mimicking Mutants as test requirements can
guide testers to design test suites for tackling vulnerabilities similar to the mimicked
ones.

We conducted experiments on a dataset of 45 reproducible vulnerabilities, with
severity ranging from high to medium, and found that for 40 out of 45 vulnerabilities,
(i.e., for 88.9% vulnerabilities) there exists at least one mutant that fails one or
more tests that are also failed by the respective vulnerabilities. More precisely, 3.9%
of the mutants from the entire mutant set are vulnerability-mimicking. Despite
being few in quantity, these Vulnerability-mimicking Mutants semantically mimic
55.6% of the vulnerabilities, i.e., these mutants fail the “same" tests that are failed
by the respective vulnerabilities that they mimicked.

Since such mutants are very few among the large set of mutants generated, we
propose Mystique1, a machine learning based approach that automatically learns
the features of Vulnerability-mimicking Mutants to identify these mutants statically.
Mystique is very accurate in predicting Vulnerability-mimicking Mutants with 0.63
MCC, 0.80 Precision, and 0.51 Recall. This demonstrates that the features of
Vulnerability-mimicking Mutants can be automatically learned by machine learning
models to statically predict these without the need of investing effort in manually

1Mystique is a fictional character appearing in Marvel comics, who can mimic
the appearance and voice of a person with exquisite precision, and finds other mu-
tants with similar interests as her, a.k.a. Brotherhood of Mutants. More details at
https://en.wikipedia.org/wiki/Mystique_(character).
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defining any related features. We believe that Vulnerability-mimicking Mutants can
help in building regression test suites for security intensive applications, and can
be particularly useful in evaluating and comparing fuzzing or other security testing
tools. In summary, this chapter makes the following contributions:

1. We show that mutation testing tools based on language models can gener-
ate mutants that mimic real software vulnerabilities. 3.6% of the mutants
semantically mimic 25 out of 45 studied vulnerabilities.

2. We also show that for most of the vulnerabilities (40 out of 45) there exists
at least one mutant that fails the one test finding the vulnerability (although
not mimicking it).

3. We propose Mystique, a machine-learning based approach for identifying
Vulnerability-mimicking Mutants. Our results show that Mystique is very
accurate in its predictions as it obtains 0.63 MCC, 0.80 Precision, and 0.51
Recall.

6.2 Motivating Examples
Figures 6.1 and 6.2 show motivating examples of how generated mutants can

mimic the behavior of vulnerabilities. Fig. 6.1 demonstrates the example of high
severity (7.5) vulnerability CVE-2018-17201[18b] that allows “Infinite Loop”, a.k.a.,
a loop with unreachable exit condition when parsing input files. This makes the
code hang which allows an attacker to perform a Denial-of-Service (DoS) attack.
The vulnerable code (Fig. 6.1a) is fixed with the use of an “if” expression (Fig.
6.1b) to throw an exception and moves out of the loop in case of such an event. Fig.
6.1c shows one of Vulnerability-mimicking Mutants in which the “if” condition
is modified, i.e., the binary operator “<” is modified to “==”. This modification
makes the “if” condition never executed, nullifying the fix, and behaving exactly
the same as the vulnerable code.

Fig. 6.2 demonstrates the example of another high severity vulnerability CVE-
2018-1000850[18a] that allows “Directory Traversal” that can result in an attacker
manipulating the URL to add or delete resources otherwise unavailable to him/her.
The vulnerable code (Fig. 6.2a) is fixed with the use of an “if” expression (Fig.
6.2b) to throw an exception in case ‘.’ or ‘..’ appears in the “newRelativeUrl”
(Fig. 6.2b). Fig. 6.2c shows one of Vulnerability-mimicking Mutants in which
the passed argument is changed from “newRelativeUrl” to “name” which changes
the matching criteria, hence nullifying the fix, and introducing same vulnerability
behaviour.
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Table 6.1: The table records the Vulnerability dataset details that include CVE
ID, CWE ID and description, Severity level (that ranges from 0 to 10), number of
Files and Methods that were modified during the vulnerability fix, and number of
Tests that are failed by the vulnerability a.k.a. Proof of Vulnerability (PoV).

CVE CWE CWE description Severity # Files #Methods Failed Tests
(Vulnerability) (Common Weakness Enumeration) (0 - 10) modified modified (PoV)

CVE-2017-18349 CWE-20 Improper Input Validation 9.8 1 1 1
CVE-2013-2186 CWE-20 Improper Input Validation 7.5 1 1 2
CVE-2014-0050 CWE-264 Permissions, Privileges, and Access Controls 7.5 2 5 1
CVE-2018-17201 CWE-835 Loop with Unreachable Exit Condition (’Infinite Loop’) 7.5 1 1 1
CVE-2015-5253 CWE-264 Permissions, Privileges, and Access Controls 4.0 1 1 1
HTTPCLIENT-1803 NA NA NA 1 1 1
PDFBOX-3341 NA NA NA 1 1 1
CVE-2017-5662 CWE-611 Improper Restriction of XML External Entity Reference 7.3 1 2 1
CVE-2018-11797 NA NA 5.5 1 1 1
CVE-2016-6802 CWE-284 Improper Access Control 7.5 1 1 3
CVE-2016-6798 CWE-611 Improper Restriction of XML External Entity Reference 9.8 1 2 1
CVE-2017-15717 CWE-79 Improper Neutralization of Input During Web 6.1 1 2 2

Page Generation (’Cross-site Scripting’)
CVE-2016-4465 CWE-20 Improper Input Validation 5.3 1 1 1
CVE-2014-0116 CWE-264 Permissions, Privileges, and Access Controls 5.8 1 4 1
CVE-2016-8738 CWE-20 Improper Input Validation 5.8 1 1 2
CVE-2016-4436 NA NA 9.8 1 2 1
CVE-2016-2162 CWE-79 Improper Neutralization of Input During Web 6.1 1 2 1

Page Generation (’Cross-site Scripting’)
CVE-2018-8017 CWE-835 Loop with Unreachable Exit Condition (’Infinite Loop’) 5.5 1 2 1
CVE-2014-4172 CWE-74 Improper Neutralization of Special Elements in Output 9.8 2 2 1

Used by a Downstream Component (’Injection’)
CVE-2019-3775 CWE-287 Improper Authentication 6.5 1 1 1
CVE-2018-1002200 CWE-22 Improper Limitation of a Pathname to a Restricted 5.5 1 1 1

Directory (’Path Traversal’)
CVE-2017-1000487 CWE-78 Improper Neutralization of Special Elements used 9.8 3 17 12

in an OS Command (’OS Command Injection’)
CVE-2018-20227 CWE-22 Improper Limitation of a Pathname to a Restricted 7.5 1 5 1

Directory (’Path Traversal’)
CVE-2013-5960 CWE-310 Cryptographic Issues 5.8 1 2 15
CVE-2018-1000854 CWE-74 Improper Neutralization of Special Elements in Output 9.8 1 2 1

Used by a Downstream Component (’Injection’)
CVE-2016-3720 NA NA 9.8 1 1 1
CVE-2016-7051 CWE-611 Improper Restriction of XML External Entity Reference 8.6 1 1 1
CVE-2018-1000531 CWE-20 Improper Input Validation 7.5 1 1 1
CVE-2018-1000125 CWE-20 Improper Input Validation 9.8 1 4 1
APACHE-COMMONS-001 NA NA NA 1 1 1
CVE-2013-4378 CWE-79 Improper Neutralization of Input During Web 4.3 1 1 1

Page Generation (’Cross-site Scripting’)
CVE-2018-1000865 CWE-269 Improper Privilege Management 8.8 1 3 1
CVE-2018-1000089 CWE-532 Insertion of Sensitive Information into Log File 7.4 1 2 1
CVE-2015-6748 CWE-79 Improper Neutralization of Input During Web 6.1 1 1 1

Page Generation (’Cross-site Scripting’)
CVE-2016-10006 CWE-79 Improper Neutralization of Input During Web 6.1 1 1 1

Page Generation (’Cross-site Scripting’)
CVE-2018-1000615 NA NA 7.5 1 1 1
CVE-2017-8046 CWE-20 Improper Input Validation 9.8 2 5 1
CVE-2018-11771 CWE-835 Loop with Unreachable Exit Condition (’Infinite Loop’) 5.5 1 1 2
CVE-2018-15756 NA NA 7.5 1 5 2
CVE-2018-1000850 CWE-22 Improper Limitation of a Pathname to a Restricted 7.5 1 2 3

Directory (’Path Traversal’)
CVE-2017-1000207 CWE-502 Deserialization of Untrusted Data 8.8 1 3 1
CVE-2019-10173 CWE-502 Deserialization of Untrusted Data 9.8 1 7 1
CVE-2019-12402 CWE-835 Loop with Unreachable Exit Condition (’Infinite Loop’) 7.5 1 1 1
CVE-2020-1953 NA NA 10.0 1 7 2

6.3 Approach
The main objective of Mystique is to predict whether a mutant is likely to be

vulnerability-mimicking. In order for our approach to be lightweight in terms of
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engineering and computational effort, we want Mystique to be able to (a) learn rele-
vant features of Vulnerability-mimicking Mutants without requiring manual feature
definition, and (b) to do so without costly dynamic analysis of mutant executions.
To achieve this, we divide our task into two parts: learning a representation of
mutants using code embedding technique, and learning to predict based on such
embeddings whether or not the represented mutants are Vulnerability-mimicking
Mutants.

6.3.1 Overview of Mystique
Figure 6.3 shows an overview of Mystique. We divide our approach into three

steps that we detail later in this section:
1. Building a token representation: Mystique pre-processes the original code in

order to remove irrelevant information and to produce abstracted code, which
is then tokenized to form a sequence of tokens. Each mutant is eventually
transformed into its corresponding token representation and undergoes the
next step.

2. Representation learning: We train an encoder-decoder model to generate
an embedding, a.k.a. vector representation of the mutant. This step is
where Mystique automatically learns the relevant features of mutants without
requiring an explicit definition of these features.

3. Classification: Mystique trains a classification model to classify the mutants
(based on their embeddings) as Vulnerability-mimicking Mutants or not. The
true labels used for training the model are obtained by i) replacing the fixed
code file with a mutated code file in the project, ii) executing the test suite,
iii) checking whether or not the tests failed, and iv) if yes, then matching
whether the failed tests are the same as the vulnerability’s failed tests.

It is interesting to note that the mutant representation learned by Mystique does
not depend on a particular vulnerability. Mystique rather aims to learn properties
of the mutants (and their surrounding context) that are generally vulnerability
mimicking. This is in line with the recent work on contextual mutant selection
[GOD+22; CPB+20] that aims at selecting high-utility mutants for mutation testing.
This characteristic makes Mystique applicable to pieces of code that it has not
seen during training. Our results also confirm the capability of Mystique to be
effective on projects not seen during training. Certainly, to make our classifier
effective in practice, the selection of the mutant generation technique is important.
We use µBERT since it produces a sufficiently large set of useful mutants by
masking and replacing tokens of the class under analysis. Also, since it employs a
pre-trained language model, it proposes code (mutants) similar to the one written
by programmers.
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6.3.2 Token Representation
A major challenge in learning from raw source code is the huge vocabulary

created by the abundance of identifiers and literals used in the code [TWB+19b;
TPW+19; ABL+19; GDJ+22]. In our case, this large vocabulary may hinder
Mystique’s ability to learn relevant features of Vulnerability-mimicking Mutants.
Thus, we first abstract original (non-mutated) source code by replacing user-defined
entities (function names, variable names, and string literals) with generic identifiers
that can be reused across the source code file. During this step, we also remove
code comments. This pre-processing yields an abstracted version of the original
source code, as the abstracted code snippet in Figure 6.3.

To perform the abstraction, we use the publicly available tool src2abs [TPW+19].
This tool first discerns the type of each identifier and literal in the source code.
Then, it replaces each identifier and literal in the stream of tokens with a unique
ID representing the type and role of the identifier/literal in the code. Each ID
<TYPE>_# is formed by a prefix, (i.e., <TYPE>_ ) which represents the type
and role of the identifier/literal, and a numerical ID, (i.e., #) which is assigned
sequentially while traversing through the code. These IDs are reused when the
same identifier/literal appears again in the stream of tokens. Although we use
src2abs, any utility that identifies user-defined entities and replaces such with
reusable identifiers can be used as an alternative.

Next, to represent a mutant, we annotate the abstracted code with a mutation
annotation on the statement next to the operand/operator that has been mutated.
These annotations indicate the applied mutation operation, e.g., BinaryOperator-
Mutator represents mutation on the binary operator “>=", as shown in figure 6.3.
We repeat the process for every mutant.

Finally, we flatten every mutant (by removing newline, extra white space, and
tab characters) to create a single-space-separated sequence of tokens. Using these
sequences, we intend to capture as much code as possible around the mutant
without incurring an exponential increase in training time [TWB+19a; TPW+19;
GOD+22; GDJ+22; GOD+22]. We found a sequence length of 150 tokens to be a
good fit for our task as it does not exceed 18 hours of training time (wall clock) on
a Tesla V100 GPU.

6.3.3 Embedding Learning with Encoder-Decoder
Our next step is to learn the embedding, a.k.a. vector representation (that

is later used to train a classification model) from mutants’ token representation.
We develop an encoder-decoder model, a neural architecture commonly used in
representation learning task [KB13]. The key principle of our encoder-decoder
architecture is that the encoder transforms the token representation into an embed-
ding and the decoder attempts to retrieve the original token representation from
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the encoded embedding. The learning objective is then to minimize the binary
cross-entropy between the original token representation and the decoded one. Once
the model training has converged, we can compute the embedding from any other
mutant’s token representation by feeding the latter into the encoder and retrieving
the output embedding.

We use a bi-directional Recurrent Neural Network (RNNs) [BGL+17] to de-
velop our encoder-decoder, as previous works on code learning have demonstrated
the effectiveness of these models to learn useful representations from code se-
quences [BCB14; GOD+22; GDJ+22; SVL14]. We build Mystique on top of
KerasNLP [WQB+22] which is a natural language processing library providing
a general purpose Transformer Encoder-Decoder architecture following the work
of Vaswani et. al [VSP+17] which has shown to perform good both in software
engineering and other learning tasks [SNL19; GDJ+22].

To determine an appropriate number of training epochs for model convergence,
we conducted a preliminary study involving a small validation set (independent of
both the training and test sets used in our evaluation) where we monitor the model’s
performance in replicating (as output) the same mutant sequence provided as input.
We pursue training the model till the training performance on the validation set
does not improve anymore. We found 10 epochs for the sequences up to a length
of 150 tokens to be a good default for our validation sets.

6.3.4 Classifying Vulnerability-mimicking mutants
Next, we train a classification model to predict whether a mutant, which is

represented by the embedding produced by the Encoder, is likely to be Vulnerability-
mimicking Mutants. The learning objective here is to maximize the classification
performance, which we mainly measure with Matthews Correlation Coefficient
(MCC), Precision, and Recall, as detailed in section 2.2.4 in chapter 2. To obtain
our true classification labels, we replace the fixed code file with a mutated code file
in the project, execute the test suite, and check whether or not the tests failed. If
the tests fail, we match if the failed tests are the same as the vulnerability’s failed
tests to determine whether or not the mutant is a vulnerability-mimicking mutant.
For developing the classification model, we rely on random forests [Bre01] because
these are lightweight to train and have shown to be effective in solving various
software engineering tasks [JRP+19; PMD+20]. We used standard parameters
for random forests, viz. we set the number of trees to 100, use Gini impurity for
splitting, and set the number of features (i.e. embedding logits) to consider at each
split to the square root of the total number of features.

Once the model training has converged, we use the random forest to predict
whether a mutant (in the testing set) is likely to be Vulnerability-mimicking Mutants.
We make the mutant go through the preprocessing pipeline to obtain its abstract
token representation, then feed this representation into the trained encoder-decoder
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model to retrieve its embeddings, and input this embedding into the classifier to
obtain the predicted label (vulnerability-mimicking or not).

6.4 Research Questions
We start our analysis by investigating how many vulnerabilities in our dataset

can be behaviourally mimicked by one or more mutants, i.e., how many mutants fail
the same PoVs (tests that were failed by the respective vulnerabilities). Therefore
we ask:

RQ1 Empirical observation I: How many vulnerabilities can be mimicked by the
mutants?

For this task, we rely on Vul4J dataset [MdA22] (section 3.3.1) for obtaining
vulnerable projects with vulnerabilities, corresponding fixes, and PoV tests, and
on µBERT [DP22] (section 3.3.2) for generating mutants. In the Vul4J dataset,
the fixes (for the vulnerabilities) passed the corresponding project’s test suite
(containing the PoV tests) in 45 cases for which we mention the details in Table 6.1.
µBERT produces mutants of the fixed code, which are checked for mimicking the
corresponding vulnerability by replacing the fixed code file with the mutant and
executing the test suite. Apart from checking how many vulnerabilities can be
mimicked by the mutants, we also analyze how semantically similar the generated
mutants are with the vulnerabilities. We measure the semantic similarity of a
mutant with the vulnerability by calculating the Ochiai coefficient [OCH57] as
explained in the following section 6.5.1. Hence, we ask:

RQ2 Empirical observation II: How similar are the generated mutants with vulner-
abilities?

Next, we analyze if the features of Vulnerability-mimicking Mutants can be auto-
matically learned by machine learning models to statically predict these without
the need of investing effort in defining such features. We do so by training models
as explained in section 6.3 and check the performance of Mystique in predicting
Vulnerability-mimicking Mutants. Hence, we ask:

RQ3 Prediction Performance: How effective is Mystique in automatically defining
and learning the features associated with Vulnerability-mimicking Mutants?

6.5 Experimental Setup
6.5.1 Semantic similarity

Mutation seeds artificial faults, a.k.a. mutants, by performing slight syntactic
modifications to the program under analysis. For instance, in Figure 6.3, the
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expression x >= y can be mutated to x < y. Semantic similarity is usually used
to evaluate fault seeding [JH09; PSY+18; PHH+16], i.e. how similar is a mutant
(seeded artificial fault) to the desired (real) fault. In the case of this study, the
desired fault is the corresponding vulnerability.

To compute the semantic similarity we resort to dynamic test executions. We use
a similarity coefficient, i.e., Ochiai coefficient [OCH57], to compute the similarity of
the passing and failing test cases. This is a common practice in many different lines
of work, such as mutation testing [JH09; PSY+18], program repair [GNF+12], and
code analysis [GBH+17] studies. Since semantic similarity compares the behavior
between two program versions using a reference test suite, the Ochiai coefficient
approximates program semantics using passing and failing test cases.

The Ochiai coefficient represents the ratio between the set of tests that fail in
both versions over the total number of tests that fail in the sum of the two. For
instance, let P1, P2, fTS1 and fTS2 be two programs and their respective set of
failing tests, then the Ochiai coefficient between programs P1 and P2 is computed
as:

Ochiai(P1, P2) = |fTS1 ∩ fTS2|√
|fTS1| × |fTS2|

The Ochiai coefficient ranges from 0 to 1, with 0 in case of none of the failed
tests is the same between both versions of the programs, (i.e., a mutant and the
vulnerability that it is trying to mimic), and 1 in case of all the failed tests match
between both versions. Intuitively, a mutant M mimics vulnerability V , if and only
if its semantic similarity is equal to 1, i.e., Ochiai(V, M) = 1. The mutants shown
in Figures 6.1 and 6.2 have an Ochiai coefficient equal to 1 with their corresponding
vulnerability.

6.5.2 Experimental Procedure
To answer our RQs, we first execute the test suite for every mutant produced

by µBERT and analyze which mutants fail the same tests that were failed by
the vulnerability to determine Vulnerability-mimicking Mutants. In total, µBERT
produces 16,409 mutants for the fixed versions of the 45 projects (for which the 45
corresponding vulnerabilities are mentioned in Table 6.1). We repeated the test
suite execution process for every project to label Vulnerability-mimicking Mutants
that mimic the corresponding vulnerability.

Once the labeling is complete, to answer RQ1, we perform an exact match
of the mutant’s failed tests with the vulnerability’s failed tests to determine how
many vulnerabilities are mimicked by the generated mutants. To answer RQ2, we
rely on the Ochiai similarity coefficient (elaborated in Section 6.5.1) to measure
how similar the generated mutants are with the vulnerabilities. We calculate the
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Ochiai coefficient to compute the similarity of the passing and the failing test cases
of every vulnerability with all the corresponding project’s mutants. To answer
RQ3, we train models on Vulnerability-mimicking Mutants and perform k-fold
cross-validation (where k = 5) at project level (our dataset has only 1 vulnerability
per project) where each fold contains 9 projects. So, we train on mutants of 36
projects (4 training folds) and test on mutants of the remaining 9 projects (1 test
fold). Once we get the predictions for all 45 subjects, we compute the Prediction
Performance Metrics, i.e.,Precision, Recall, and Matthews Correlation Coefficient
(MCC) for Mystique in order to show its learning ability. Given a mutant is
vulnerability-mimicking if it is predicted as vulnerability-mimicking, then it is a
true positive (TP); otherwise, it is a false negative (FN). Vice-versa, if a mutant
does not mimic the vulnerability and, if it is predicted as vulnerability-mimicking
then it is a false positive (FP); otherwise, it is a true negative (TN). Here, MCC
is more reliable than others as the classes are of very different sizes, i.e.,we have
3.9% Vulnerability-mimicking Mutants (Positives) in total, for 45 vulnerabilities in
our dataset (as shown in Table 6.2).

6.6 Experimental Results

6.6.1 Empirical observation I (RQ1)

µBERT generates 16,409 mutants in total, for all projects in our dataset. Out
of 16,409 mutants, 646 mutants are Vulnerability-mimicking Mutants mimicking
25 out of 45 vulnerabilities, i.e., at least one or more mutants behave the same
as 25 vulnerabilities. Overall, 3.9% of the generated mutants mimicked 55.6% of
the vulnerabilities in our dataset. Table 6.2 shows the project-wise distribution of
Vulnerability-mimicking Mutants including the total number of mutants generated
and the number (and percentage) of mutants that mimic the vulnerabilities. These
results are encouraging and evidence the potential value of using Vulnerability-
mimicking Mutants as test requirements in practice for security-conscious testing,
leading to test suites that can tackle similar mimicked vulnerabilities.

Answer to RQ1: µBERT-generated 646 out of 16,409 mutants mimicked 25
out of 45 vulnerabilities, i.e., 3.9% of the generated mutants mimicked 55.6%
of the vulnerabilities. This evidence that pre-trained language models can
produce test requirements (mutants) that behave the same as vulnerabilities,
making security-conscious mutation testing feasible.
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6.6.2 Empirical observation II (RQ2)

In addition to 646 mutants mimicking 25 vulnerabilities, i.e., 646 mutants failed
by exactly the same tests as the respective 25 vulnerabilities of the corresponding
projects, 2,720 mutants achieved the Ochiai similarity coefficient greater than 0
with 40 vulnerabilities of the corresponding projects. This shows that 2,720 mutants,
i.e., 16.6% of the mutants fail one or more tests (of the corresponding projects)
that were failed by 40 respective vulnerabilities, i.e., 88.9% of the vulnerabilities in
our dataset. Figure 6.4 provides an overview of the mutant-vulnerability similarity
in terms of Ochiai similarity coefficient distribution across all the vulnerabilities in
our dataset when compared for similarity with the generated mutants.

Despite not behaving exactly the same as the vulnerability, there are many
mutants that share some vulnerable behaviors which can help testers to identify
the cause of the vulnerability. Moreover, vulnerability-similar mutants can help to
design more thorough and complete suites to tackle vulnerabilities.

Answer to RQ2: µBERT-generated 2,720 out of 16,409 mutants achieved an
Ochiai similarity coefficient greater than 0 with 40 out of 45 vulnerabilities, i.e.,
16.6% of the generated mutants fail one or more tests (of the corresponding
projects) that were failed by 88.9% of the respective vulnerabilities.

6.6.3 Prediction Performance (RQ3)

Despite the class imbalance, Mystique effectively predicts Vulnerability-mimicking
Mutants with a prediction performance of 0.63 MCC, 0.80 Precision, and 0.51 Recall
outperforming a random selection of Vulnerability-mimicking Mutants (i.e., MCC
equals 0). These scores indicate that the features of Vulnerability-mimicking Mu-
tants can be automatically learned by machine learning models to statically predict
these without the need of investing effort in defining such features. Indeed, any
improvement in the mutation testing tools or the pre-trained language models that
allow producing better Vulnerability-mimicking Mutants, can leverage Mystique to
select a more complete set of security-related test requirements.

Answer to RQ3: Mystique achieves a prediction performance of 0.63 MCC,
0.80 Precision, and 0.51 Recall in predicting Vulnerability-mimicking Mutants.
This indicates that the features of Vulnerability-mimicking Mutants can be
automatically learned by machine learning models to statically prioritize
these prior to any analysis or execution.
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6.7 Threats to Validity
External Validity: Threats may relate to the vulnerabilities we considered in

our study. Although our evaluation expands to vulnerabilities of severity ranging
from high to low, spanning from single method fix to multiple methods modified
during the fix (as shown in Table 6.1, the results may not generalize to other
vulnerabilities. We consider this threat of low importance since we verify all
the vulnerabilities and also their fixes by executing tests provided in the Vul4J
dataset [BSF22]. Moreover, our predictions are based on the local mutant context,
which has been shown to be a determinant of mutants’ utility [GOD+22; CPB+20].
Other threats may relate to the mutant generation tool, i.e., µBERT that we used.
This choice was made since µBERT relies on CodeBERT to produce mutations
that look natural and are effective for mutation tesing. We consider this threat of
low importance since one can use a better mutant generation tool that can produce
more Vulnerability-mimicking Mutants, which will help Mystique in achieving better
prediction performance. Nevertheless, in case other techniques produce different
predictions, one could re-train, tune and use Mystique for the specific method of
interest, as we did here with µBERT mutants.

Internal Validity: Threats may relate to the restriction that we impose on
sequence length, i.e., a maximum of 150 tokens. This was done to enable reasonable
model training time, approximately 18 hours to learn mutant embeddings on Tesla
V100 gpu. Other threats may be due to the use of Transformer Encoder-Decoder
following the work of Vaswani et. al [VSP+17] for learning mutant embeddings. This
choice was made for simplicity to use the related framework out of the box similar
to the related studies [SNL19; GDJ+22]. Other internal validity threats could
be related to the test suites we used and the mutants considered as vulnerability
mimicking. We used well-tested projects provided by the Vul4J dataset [BSF22].
To be more accurate, our underlying assumption is that the extensive pool of
tests including the Proof-of-Vulnerability (PoV) available in our experiments is
a valid approximation of the program’s test executions, especially the proof of a
vulnerability and its verified fix.

Construct Validity: Threats may relate to our metric to measure the semantic
similarity of a mutant and a vulnerability, i.e., the Ochiai coefficient. We relied on
the Ochiai coefficient because it is widely known in the fault-seeding community as
a representative metric to capture the semantic similarity between a seeded and
real fault. In the context of this study, the seeded fault is a mutant and the real
fault is a vulnerability. We consider this treat of low importance as the Ochiai
coefficient takes into consideration the failed tests of a mutant and a vulnerability
(as explained in section 6.5.1) representing the observable behavior and serving its
purpose for this study.
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6.8 Data Availability
The dataset consisting of the source code of all projects (both, vulnerable and

fixed), individual classes modified during the fix, i.e., vulnerable and fixed (where
fixed classes were used for mutation), generated mutants, separated vulnerability
fixes with sentence-level information of the fix, along with Mystique’s source code
and the tools used in our study, are publicly available in our GitHub repository2.

6.9 Conclusion
In this chapter, we showed that language model based mutation testing tools can

produce Vulnerability-mimicking Mutants, i.e., mutants that mimic the observable
behavior of vulnerabilities. Since these mutants are a few, i.e., 3.9% of the entire
mutant set, there is a need for a static approach to identify such mutants. To achieve
this, we presented Mystique, a method that learns to select Vulnerability-mimicking
Mutants from a given mutant’s code context. Our experiments show that Mystique
identified Vulnerability-mimicking Mutants with 0.63 MCC, 0.80 Precision, and
0.51 Recall, which indicates that the features of Vulnerability-mimicking Mutants
can be automatically learned by machine learning models to statically predict these
without the need of investing effort in defining such features.

2https://github.com/garghub/mystique
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Figure 6.1: Vulnerability CVE-2018-17201 (Fig. 6.1a) that allows “Infinite Loop”
making code hang, which further enables Denial-of-Service (DoS) attack is fixed
with the conditional exception using “if” expression (Fig. 6.1b). Vulnerability-
mimicking Mutant (Fig. 6.1c) modifies the “if” condition that nullifies the fix and
re-introduces the vulnerability.

(a) Vulnerable Code (CVE-2018-17201)
1 private static void decompress (final InputStream in, final byte[]

out) throws IOException {
2 int position = 0; final int total = out.length;
3 while (position < total) { final int n = in.read();

4 if (n > 128) { final int value = in.read();
5 for (int i = 0; i < (n & 0x7f); i++) {
6 out[position++] = (byte) value; }
7 } else { for (int i = 0; i < n; i++) {
8 out[position++] = (byte) in.read(); } } } }

(b) Fixed Code
1 private static void decompress (final InputStream in, final byte[]

out) throws IOException {
2 int position = 0; final int total = out.length;
3 while (position < total) { final int n = in.read();(
4 if (n<0) { throw new ImageReadException
5 ("Error decompressing RGBE file"); }
6 if (n > 128) { final int value = in.read();
7 for (int i = 0; i < (n & 0x7f); i++) {
8 out[position++] = (byte) value; }
9 } else { for (int i = 0; i < n; i++) {

10 out[position++] = (byte) in.read(); } } } }

(c) Vulnerability-mimicking Mutant
1 private static void decompress (final InputStream in, final byte[]

out) throws IOException {
2 int position = 0; final int total = out.length;
3 while (position < total) { final int n = in.read();(
4 if (n==0) { throw new ImageReadException // '<' modified to '=='
5 ("Error decompressing RGBE file"); }
6 if (n > 128) { final int value = in.read();
7 for (int i = 0; i < (n & 0x7f); i++) {
8 out[position++] = (byte) value; }
9 } else { for (int i = 0; i < n; i++) {

10 out[position++] = (byte) in.read(); } } } }
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Figure 6.2: Vulnerability CVE-2018-1000850 that allows “Path Traversal”, which
further enables access to a Restricted Directory (Fig. 6.2a) is fixed with the
conditional exception in case ‘.’ or ‘..’ appears in the “newRelativeUrl” (Fig.
6.2b). Vulnerability-mimicking Mutant (Fig. 6.2c) in which the passed argument is
changed from “newRelativeUrl” to “name” nullifies the fix and re-introduces the
vulnerability.

(a) Vulnerable Code (CVE-2018-1000850)
1 void addPathParam(String name, String value, boolean encoded) {
2 if (relativeUrl == null) { throw new AssertionError(); }
3 relativeUrl = relativeUrl.replace("{" + name + "}" ,
4 canonicalizeForPath(value, encoded));
5 }

(b) Fixed Code
1 void addPathParam(String name, String value, boolean encoded) {
2 if (relativeUrl == null) { throw new AssertionError(); }
3 String replacement = canonicalizeForPath(value, encoded);
4 String newRelativeUrl =
5 relativeUrl.replace("{" + name + "}", replacement);
6 if (PATH_TRAVERSAL.matcher(newRelativeUrl)
7 .matches()) { throw new IllegalArgumentException(
8 "@Path parameters shouldn't perform path traversal
9 ('.' or '..'): " + value ); }

10 relativeUrl = newRelativeUrl;
11 }

(c) Vulnerability-mimicking Mutant
1 void addPathParam(String name, String value, boolean encoded) {
2 if (relativeUrl == null) { throw new AssertionError(); }
3 String replacement = canonicalizeForPath(value, encoded);
4 String newRelativeUrl =
5 relativeUrl.replace("{" + name + "}", replacement);
6 if (PATH_TRAVERSAL.matcher(name)// <- passed argument changed here
7 .matches()) { throw new IllegalArgumentException(
8 "@Path parameters shouldn't perform path traversal
9 ('.' or '..'): " + value ); }

10 relativeUrl = newRelativeUrl;
11 }
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Figure 6.3: Overview of Mystique: Source code is abstracted and annotated to
represent a mutant which is further flattened to create a single-space-separated
sequence of tokens. An encoder-decoder model is trained on sequences to generate
mutant embeddings. A classifier is trained on these embeddings and their corre-
sponding labels (whether or not the mutants are Vulnerability-mimicking Mutants).
The trained classifier is then used for label prediction of test set mutants.
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Figure 6.4: RQ2: Distribution of the mutant-vulnerability similarity in terms
of Ochiai similarity coefficient across all the vulnerabilities when compared for
similarity with the generated mutants. Overall, 16.6% of the mutants fail one or
more tests that were failed by 88.9% of the respective vulnerabilities.
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Table 6.2: RQ1: The table records vulnerability-mimicking mutant distribution
details that include the number of generate mutants across all projects with vulnera-
bilities, and the number and percentage of Vulnerability-mimicking Mutants among
them. Overall, 3.9% of the generated mutants mimic 55.6% of the vulnerabilities.

CVE # Total Vulnerability-mimicking
(Vulnerability) mutants mutants

(#) (%)
CVE-2017-18349 286 0 0%
CVE-2013-2186 191 0 0%
CVE-2014-0050 456 0 0%
CVE-2018-17201 375 8 2.13%
CVE-2015-5253 257 0 0%
HTTPCLIENT-1803 553 5 0.9%
PDFBOX-3341 2169 308 14.2%
CVE-2017-5662 511 86 16.83%
CVE-2018-11797 266 1 0.38%
CVE-2016-6802 338 16 4.73%
CVE-2016-6798 441 19 4.31%
CVE-2017-15717 437 77 17.62%
CVE-2016-4465 48 0 0%
CVE-2014-0116 167 0 0%
CVE-2016-8738 50 0 0%
CVE-2016-4436 74 0 0%
CVE-2016-2162 169 1 0.59%
CVE-2018-8017 738 17 2.3%
CVE-2014-4172 212 12 5.66%
CVE-2019-3775 9 0 0%
CVE-2018-1002200 177 0 0%
CVE-2017-1000487 586 0 0%
CVE-2018-20227 18 3 16.67%
CVE-2013-5960 112 1 0.89%
CVE-2018-1000854 9 2 22.22%
CVE-2016-3720 387 0 0%
CVE-2016-7051 387 0 0%
CVE-2018-1000531 158 2 1.27%
CVE-2018-1000125 155 14 9.03%
APACHE-COMMONS-001 144 1 0.69%
CVE-2013-4378 189 0 0%
CVE-2018-1000865 432 2 0.46%
CVE-2018-1000089 205 7 3.41%
CVE-2015-6748 989 0 0%
CVE-2016-10006 356 1 0.28%
CVE-2018-1000615 67 38 56.72%
CVE-2017-8046 12 0 0%
CVE-2018-11771 1754 12 0.68%
CVE-2018-15756 274 0 0%
CVE-2018-1000850 307 2 0.65%
CVE-2017-1000207 29 0 0%
CVE-2019-10173 1658 10 0.6%
CVE-2019-12402 246 1 0.41%
CVE-2020-1953 11 0 0%
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7
Learning from What We Know: How to Perform
Vulnerability Prediction using Noisy Historical
Data

Vulnerability prediction refers to the problem of identifying system components
that are most likely to be vulnerable. Typically, this problem is tackled by training
binary classifiers on historical data. Unfortunately, recent research has shown that
such approaches underperform due to the following two reasons: a) the imbalanced
nature of the problem, and b) the inherently noisy historical data, i.e., most
vulnerabilities are discovered much later than they are introduced. This misleads
classifiers as they learn to recognize actual vulnerable components as non-vulnerable.
To tackle these issues, we propose TROVON, a technique that learns from known
vulnerable components rather than from vulnerable and non-vulnerable components,
as typically performed. We perform this by contrasting the known vulnerable, and
their respective fixed components. This way, TROVON manages to learn from the
things we know, i.e.,vulnerabilities, hence reducing the effects of noisy and
unbalanced data. We evaluate TROVON by comparing it with existing techniques
on three security-critical open source systems, i.e.,Linux Kernel, OpenSSL, and
Wireshark, with historical vulnerabilities that have been reported in the National
Vulnerability Database (NVD). Our evaluation demonstrates that the prediction
capability of TROVON significantly outperforms existing vulnerability prediction
techniques such as Software Metrics, Imports, Function Calls, Text Mining,
Devign, LSTM, and LSTM-RF with an improvement of 40.84% in Matthews
Correlation Coefficient (MCC) score under Clean Training Data Settings, and an
improvement of 35.52% under Realistic Training Data Settings.
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7.1 Introduction
A vulnerability is a hole or a weakness in the application, which can be a

design flaw or an implementation bug, that allows an attacker to cause harm to the
stakeholders, i.e.,the application owner, application users, and other entities that
rely on the application [20b]. While vulnerabilities can be thought of as specific
types of software defects (or bugs), there are subtle and significant differences
that make their identification considerably more complex and challenging than the
problem of finding bugs [TZY+15; PM04].

Vulnerabilities are fewer in comparison to defects, limiting the information one
can learn from. Also, their identification requires an attacker’s mindset [MHM+15],
which developers or code reviewers may not possess. Lastly, the continuous growth
of codebases makes it difficult to investigate them entirely and track all code
changes. For example, the Linux kernel, one of the projects with the highest
number of publicly reported vulnerabilities, reached 27.80 million LoC (Lines of
Codes) at the beginning of 2020 [20a].

Vulnerability prediction approaches were proposed to tackle these challenges
by prioritizing the efforts that developers and code reviewers have to put on when
testing or reviewing code to find vulnerabilities. These methods take advantage of
the large amounts of historical data available based on which they learn a set of
features and/or code properties that associate with vulnerabilities. For instance,
the presence of vulnerabilities has been linked to high code churn [SMW+11], to
the use of specific library imports and function calls [NZH+07], and the frequency
of suspicious code tokens [TZY+15]. Unfortunately, building models around
such features is challenging due to the small number of available vulnerable code
instances, which limit the learning ability of the predictors [ZNG+09].

Furthermore, Jimenez et al. [JRP+19] demonstrated that vulnerability pre-
diction approaches have been built under a “clean” training data assumption,
i.e.,all the component’s labeling information (vulnerable / non-vulnerable) is al-
ways available irrespective of time. Their study showed that under these settings
the approaches do not account for the gradual revelation of vulnerabilities over
time. This results in prediction models training on even those vulnerabilities that
have not been uncovered yet, e.g. all vulnerabilities known from time t onwards
are available at all times, even before time t.

Jimenez et al. advocated Realistic Training Data Settings where the vulnerabil-
ity labels used for training the prediction models are more realistically available
at training time. For example, in such settings, at a given time t, only the vul-
nerabilities known till time t should be available for training. All vulnerabilities
known from time t onwards should not be available for training beforehand. Their
study demonstrated that Realistic Training Data Settings results in unavoidable
noise in the training data because every component with no reported vulnerability
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till training time is considered non-vulnerable during training, which makes exist-
ing approaches perform poorly. This establishes a need for robust vulnerability
prediction techniques.

We advance in this direction by developing TROVON1– a method that learns
from validated data, i.e., we train only on components known to be vulnerable
and leave aside the (supposedly) non-vulnerable ones. This way, we do not make
any assumptions on non-vulnerable components and bypass the key problem faced
by previous works. To do so, we rely on a simple yet powerful language-agnostic
machine translation technique [BGL+17] which we train on pairs of vulnerable
and fixed code fragments, available at projects’ release time. In particular, we
contrast the code fragments pairs (pairs of vulnerable and fixed fragments) that
were modified when fixing a vulnerability, with fragment pairs from other functions
of the same components (fragments less likely to be vulnerable) in order to learn
to distinguish likely vulnerable from non-vulnerable code.

TROVON focuses on vulnerability fixes, i.e., code transformations that turn
vulnerable code into a non-vulnerable one, to train the machine translation model
that aims at capturing silent features related to the differences between vulnerable
and fixed components. Therefore, predictions are guided by actual points of interest,
(i.e.,diff points) in the vulnerable code where the transformations should happen.
This means that TROVON learns to identify code characteristics that are similar
to those (vulnerable) seen during training.

We empirically assess the effectiveness of TROVON on available releases of three
security-critical open source systems, i.e.,Linux Kernel, Wireshark, and OpenSSL.
Our evaluation demonstrates that TROVON significantly outperforms existing
vulnerability prediction approaches under both Clean Training Data Settings and
Realistic Training Data Settings.

In particular, our results show that when we train all the approaches (including
TROVON) with clean training data, TROVON outperforms the existing approaches
by 83.96% in Precision, 155.33% in Recall, 132.95% in F-measure, and 80.39% in
Matthews Correlation Coefficient (MCC). In addition to these metrics, we also
evaluate TROVON on predicting unseen vulnerable components specifically. This
is a new metric that we introduce in this chapter to help evaluate the extent to
which vulnerability prediction generalizes, i.e., ability to predict unseen components
(components not used for training) as being vulnerable or not. The percentages
of unseen vulnerable components predicted by TROVON, on average, are 40.05%,
64.34%, and 42.28% higher than the ones obtained by existing techniques in
Linux Kernel, Wireshark, and OpenSSL releases, reflecting TROVON’s better
generalization capability. Under Realistic Training Data Settings, on average,

1TROVON is an abbreviation for “Training on vulnerabilities only”, which is the core focus
of our study.
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TROVON achieved 0.39 MCC, (i.e.,3.63 times higher than the baselines), 0.69
F-measure, (i.e.,11.82 times higher), 0.86 Precision, (i.e.,2.66 times higher), and
0.58 Recall, (i.e.,15.25 times higher than the baselines).

In summary, we make the following contributions:

1. We present TROVON, a novel vulnerability prediction method via machine
translation.

2. We demonstrate that TROVON significantly outperforms existing methods
through a large empirical study.

3. We corroborate that TROVON remains robust when trained in Realistic
Training Data Settings that includes unavoidable noise, where almost all
previous methods that we compared with, fail [JRP+19].

7.2 Approach
The key idea of TROVON is to train a machine translator (viz. an encoder-

decoder sequence to sequence model) to identify vulnerable code, by feeding it
with vulnerable code fragments and their corresponding fixes. Machine translators
can automatically recognize: (i) features of the language (to be translated) and
(ii) required translation (to the desired language). In our case, it is used to
automatically identify vulnerability features with minimum overhead.

It should be noted that we do not aim at fixing vulnerable code, but rather
at identifying likely vulnerable code instances. The point here is that we use the
translator to indicate the presence of vulnerabilities without considering the fixes
produced by the model. In other words, we leverage the ability of the translators
to learn the vulnerabilities’ context and not their instance and location. We assert
that since vulnerable code instances are scarce, information gained from historical
data is inevitably partial and incomplete. Therefore, it can be used to indicate the
presence of vulnerabilities but not their instance context.

The translator is trained on input - desired output pairs,i.e.,on vulnerable - fixed
code fragments. For prediction, one can input an unseen code into the trained
translator to check whether it is likely to be vulnerable. If the translator changes
the code then it can be concluded that the code is likely to be vulnerable. To avoid
many false positives (the translator changing every input code fragment), we also
train it to leave non-vulnerable code fragments unchanged. To this end, we also
feed the translator with input-output pairs where each of which is a non-vulnerable
code fragment (input = output). It must be noted that we train only on the
components (files) that were fixed, leaving aside the unchanged ones. This way we
aim at reducing the noise from the training data, i.e.,by focusing on what we are
certain of; the information provided by the vulnerability fixes.
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Figure 7.1: Implementation: Sequences generated from the source-code are used
to train the model to generate desired output sequences. The trained model is
provided with sequences generated from an unseen source code. The component
prediction is based on the generated output sequences.
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Figure 7.1 shows an overview of the implementation. Starting from vulnerable
code components and their fixes, it involves the following activities: 1) decompos-
ing the components into code fragments; 2) identifying which code-fragments are
responsible for the vulnerability; 3) producing abstracted code-fragments by re-
moving irrelevant information (e.g. user-defined names, comments); 4) configuring
and training the machine translator. 5) producing abstracted code-fragments of
an unseen code component and using the trained machine translator to predict
whether it is likely to be vulnerable.

7.2.1 Decomposing Components into Code Fragments
We target our predictions at the component, (i.e.,file) level due to: a) the

empirical evidence provided by Morrison et al. [MHM+15] and b) to account for
the context of code (vulnerability-fixes) that can be fixed at multiple locations
throughout the component. A code-fix can be an addition, removal, and/or
modification of code. Since functions are the basic building blocks of a program, we
use them to establish function-level mappings between the vulnerable components
and their fixed counterparts (based on the function headers).

Thus, we extract all the functions from both, a vulnerable component and its
fixed counterpart, and pair each before-fix function with the corresponding after-fix
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Figure 7.2: Abstraction: Actual Functions (left) are abstracted by replacing
user-defined Function names, Type names, Variable names, and String Literals
to F_num, T_num, V_num, and L_num, respectively to achieve Abstracted
Functions (right).

(a) Actual Function
1 void dev_load (struct net *netw,
2 const char *name ) {
3 struct net_device *dev;
4 rcu_read_lock();
5 dev = dev_get_by_name_rcu (
6 netw , name);
7 rcu_read_unlock();
8 if ( !dev && capable (
9 CAP_NET_ADMIN ) )

10 request_module("%s", name); }

(b) Abstracted Function
1 void F_1 (struct T_1 *V_1,
2 const char *V_2 ) {
3 struct T_2 *V_3;
4 F_2();
5 V_3 = F_3 (
6 V_1, V_2);
7 F_4();
8 if ( !V_3 && F_5 (
9 V_4 ) )

10 F_6(L_1, V_2); }

function. The functions that cannot be paired, i.e., having no counterpart, are
discarded. This can happen due to the creation and/or deletion of a function to fix
a vulnerability, e.g. a function added during the fix which was not present before
or vice-versa.

7.2.2 Categorizing Functions as Vulnerable or Non-Vulnerable
As typically performed in this line of work, we consider as vulnerable, any

function that was modified to fix the vulnerability. The remaining are considered
as non-vulnerable (not vulnerable to the specific vulnerability). When comparing a
before-fix copy to its after-fix counterpart, we ignore irrelevant syntactical changes,
e.g. additional blank spaces and new lines. If there remain syntactical differences
between the two copies, we label the before-fix as vulnerable.

7.2.3 Abstracting Irrelevant Information
A major challenge in dealing with raw source code is the huge vocabulary

created by the abundance of identifiers and literals used in the code. Vocabulary,
on such a large scale, hinders the learning of relevant code patterns [TWB+19a].
Thus, to reduce the vocabulary size, we transform the source code into an abstract
representation by replacing user-defined entities with re-usable IDs.

Figure 7.2 shows a code snippet of a real function (Figure 7.2a) converted into
its abstract representation (Figure 7.2b). The purpose of this abstraction is to
replace any reference to user-defined entities (function name, type name, variable
name, and string literal) with IDs that can be reused across functions (thereby
reducing vocabulary size). Thus, we replace identifiers and string literals with
unique IDs. Additionally, comments and annotations are removed.
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New IDs follow the regular expression (F|T|V|L)_(num)+, where num stands
for numbers 0, 1, 2, . . . assigned in a sequential and positional fashion based on the
occurrence of that entity. All the entities - user-defined Function names, Type
names, Variable names, and String Literals are replaced with F_num, T_num, V_num,
and L_num, respectively. Thus, the first function name receives the ID F_1, the
second receives the ID F_2, and so on. If any of these entities appear multiple
times in a function, it is replaced with the same ID.

Each function (pair) is abstracted in isolation to yield an abstracted function
code, i.e.,same IDs can be reused across functions without impacting TROVON.
ID references are not preserved across functions, e.g., V_1 may refer to two different
variable names from one function to another. This is the key to reduce the
vocabulary size, e.g. the name of the first function called in any pair is replaced
with the ID F_1, regardless of its original name.

In the case of vulnerable functions, the before-fix copy is abstracted first and
then the after-fix copy. IDs are shared between the two copies (before-fix and
after-fix) of the functions and new IDs are generated only when new (Function,
Type, Variable) names and String Literals are found.

The abstracted code is rearranged in a single sentence to represent a sequence
of space-separated entities, which is the representation supported by the machine
translator. Sequences generated from vulnerable (before-fix), fixed (after-fix),
and unchanged functions are named vulnerable, fixed, and unchanged sequences,
respectively. In these settings, fixed and unchanged sequences represent non-
vulnerable cases. To limit the computation cost involved in training the translator,
large sequences are split into multiple sequences of no more than 50 tokens each.

7.2.4 Building the Machine Translator

To build our machine translator, we train an encoder-decoder model that can
transform an input sequence to the desired sequence (output of the model).

A representation of a sequence is similar to a sentence in a natural language
that consists of words separated by spaces and ends with a full stop. Instead of
words and full stop character, a sequence has tokens and a newline character. Thus,
we train the encoder-decoder by feeding it with pairs of sequences. More precisely,
we use two types of pairs: (i) vulnerable sequences with their corresponding
fixed sequences, and (ii) non-vulnerable sequences paired with themselves. Non-
vulnerable sequence-pairing is essential to allow the learner to identify what should
not be changed. Thereby, avoiding to raise many false positives (incorrectly
predicting non-vulnerable sequences as vulnerable) while learning only from “clean"
data.
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7.2.5 Predicting Vulnerable Components
To predict whether an unseen component, (i.e.,file) is potentially vulnerable,

we decompose it into sequences following the process depicted in Figure 7.1. Then,
we feed the resulting sequences into the machine translator which produces output
sequences. If one (or more) of the output sequences returned by the model is
different from the original one, (i.e.,input sequences), we consider the component as
likely to be vulnerable. Otherwise, we consider component as likely non-vulnerable,
i.e.,in case of no change in any of the output sequences in comparison to the input
sequences, the component is considered as likely non-vulnerable.

7.3 Experimental Evaluation
7.3.1 Research Questions

TROVON aims to support code reviews by predicting vulnerable components
in new releases, based on the information learned from previous (historical) data,
i.e., the previous project release. Therefore, our first research question regards the
prediction ability of TROVON. We measure the prediction ability of TROVON to
correctly predict vulnerable and non-vulnerable components. We do so with the
help of classification assessment metrics, i.e., Precision, Recall, F-1, and MCC. We
evaluate this by training on all available vulnerabilities of one release and testing
on the next release, for all available release pairs. Thus, we ask:
RQ1 What is the prediction performance of TROVON in a release-based scenario ?

After assessing the prediction ability of TROVON, we turn our attention to
existing techniques. Hence, we investigate:
RQ2 What is the prediction performance of TROVON in comparison to existing

techniques?
In TROVON, we train a model on the vulnerabilities of a release and test

the trained model on the components of the next release. Since we perform a
release-based evaluation, vulnerabilities spanning across multiple releases could be
either seen by the trained model (used during training) or not (newly appearing
component). Thus, we may have the knowledge in advance that a component is
vulnerable in a given release irrespective of the vulnerability detection date. As
these vulnerable components may remain unfixed and reappear in the next release,
it is essential to assess the learning potential of our models by evaluating how
proficient are the studied models in classifying correctly components that were
“seen” during training, in a sense checking how well the model remembers, and in
classifying new components, i.e., components that were “unseen” during training,
in a sense checking how well a model can actually perform on new instances. Hence,
we aim at controlling for seen and unseen vulnerable components and ask:
RQ3 What is the prediction performance of the studied techniques in predicting
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seen and unseen vulnerable components?
Until now, we consider that in every release all known vulnerable components

are labelled as such, i.e.,following the clean training data settings. This analysis
provides indications on what the potential prediction ability of the approaches is
when the available data are clean, i.e.,all the component’s labeling information
(vulnerable / non-vulnerable) is always available irrespective of time. Unfortunately,
in practice, such information is unavailable and inflates the actual performance of
the prediction models. The actual performance in Realistic Training Data Settings
is much lower due to real-world labeling issues [JRP+19], i.e.,vulnerabilities are
frequently reported at a much later time than they are actually introduced. This has
adverse effects as they cause the classifiers to treat vulnerable components as non-
vulnerable. Hence, it is imperative to study performance under Realistic Training
Data Settings, where a prediction model is trained only on those vulnerabilities
that were detected till the release date of a version for which the vulnerability
prediction is performed. For this reason, we also evaluate the approaches under
Realistic Training Data Settings. Hence, we ask:
RQ4 How effective (in predicting vulnerable components) is TROVON in compari-

son to existing techniques under Realistic Training Data Settings?

7.3.2 Data
For our study, we need projects with many releases and vulnerabilities. We

consider three large security-intensive open-source systems that were used by
previous research [JRP+19] – the Linux Kernel, the OpenSSL library, and the
Wireshark tool. These systems are widely used, mature, and have a long history of
releases and vulnerability reports.

Linux Kernel [91] is an operating system, integrated into billions of systems
and devices, such as Android. Linux is one of the largest open-source code-bases
and has a long history (since 1991), recorded in its repository. It is relevant for
our evaluation since it has many security aspects and is among the projects with
a higher number of reported vulnerabilities in NVD. OpenSSL [98a] is a library
implementing the SSL and TLS protocols, commonly used in communications.
It is of critical importance as highlighted by the Heartbleed vulnerability, which
made half of a million web servers vulnerable to attacks [14]. Wireshark [98b] is
a network packet analyzer mainly used for troubleshooting and debugging. The
project is open source and is relevant for the study because it is integrated with
most operating systems.

We use VulData7 [JPT18] which is a publicly available2 tool to gather the
vulnerabilities, i.e.,the vulnerable and the corresponding fixed components of the
aforementioned systems. As we mention in section 2.3.3, for every vulnerability,

2https://github.com/electricalwind/data7
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Table 7.1: The table records the total number of releases, average number of
components, average number of vulnerable components, and the ratio of vulnerable
components for the systems we study.

System #Releases #Avg.Comp #Avg.Vuln.Comp %Vuln.
Linux Kernel 36 16456 456 3%
Wireshark 10 2012 134 7%
OpenSSL 10 664 59 9%

NVD provides a Git commit IDs of the code related to vulnerability-fix commit.
By using these NVD provided Git commitIDs, VulData7 extracts the code of
vulnerabilities, (i.e., vulnerable code and its patch) and creates a vulnerability
dataset.

To gather the code-base of these systems, we use FrameVPM [JRP+19] which
is also a publicly available tool3. FrameVPM is a framework built to evaluate and
compare vulnerability prediction models. We also used FrameVPM to perform a
prediction comparison with existing techniques. Section 7.3.5 elaborates on the
re-implementation of existing techniques that we compare with. Table 7.1 provides
the details of our dataset. The dataset composed of the vulnerabilities reported
in National Vulnerability Database (NVD) [02], and the codebase gathered for
the 36 releases of Linux Kernel project [91], 10 releases of Openssl project [98a],
and 10 releases of Wireshark project [98b] is publicly available4, along with our
source-code and our re-implemented source-code of the baselines that we compared
TROVON with.

7.3.3 Implementation and Model Configuration
During the abstraction phase, we rely on the srcML tool [CM16] to convert

source code into an XML format including tags to identify literals, keywords,
identifiers, and comments. This helps in separating user-defined identifiers and
string literals (the largest part of the vocabulary) from language keywords (a
limited set). Then, ID replacement is performed by a dedicated tool that we
implemented. To check whether before and after-fix copies are different, we input
the XML produced by srcML into the Gumtree Spoon AST Diff [FMB+14] tool.
The purpose of using Gumtree Spoon AST Diff is to achive a fine-grained diff which
can ignore irrelevant changes such as whitespaces and/or new line characters. It
should be noted that TROVON is not bound to the above-mentioned third-party
tools. As an alternative, one can use any utility that identifies user-defined entities

3https://github.com/electricalwind/framevpm
4https://github.com/garghub/TROVON
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and performs a diff.
Our encoder-decoder model is built on top of tf-seq2seq [MAP+15], a general-

purpose encoder-decoder framework. To configure it, we learn from previous works
that apply machine translation to solve software engineering tasks other than
vulnerability prediction, e.g. [TWB+19a; TWB+19b; GOD+22]. Thus, we rely on a
bidirectional encoder as it generally outperforms a unidirectional encoder [BCB14].
We use a Long Short-Term Memory (LSTM) network [HS97] to act as the Recurrent
Neural Network (RNN) cell, which was shown to perform better than other common
alternatives like simple RNNs or gated recurrent units, in other software engineering
prediction tasks [SNL19; Bro18b]. Bucketing and padding are used to deal with the
variable length of sequences. To strike a balance between performance and training
time, we utilize AttentionLayerBahdanau as our attention class, configured with 2
layered AttentionDecoder and 1 layered BidirectionalRNNEncoder, both with 256
units.

To determine an appropriate number of training steps, we conducted a prelim-
inary study involving a validation set (independent of both the training set and
the test set that we use in our experimental evaluation) and trained the model
by iterations of 5,000 steps. At the end of each iteration, we check whether the
prediction accuracy on the validation set improved. If it improved, then we pursued
the training for another iteration, otherwise, stopped. We found out that the model
stopped improving at 50,000 steps, which we thus set as a threshold. This order of
magnitude is in line with previous research applying machine translation to solve
software engineering prediction tasks, e.g., [GOD+22; TWB+19a].

7.3.4 Experimental Settings
Our experimental evaluation is designed to evaluate techniques under Clean

Training Data Settings and Realistic Training Data Settings. We train a model
on each release and test the trained model on the following release, (i.e.,next
release) simulating a typical release-based vulnerability prediction evaluation sce-
nario [JRP+19].

Clean Training Data Settings - Used in RQs 1, 2 & 3: In these settings, a
prediction model is trained using all the vulnerabilities (vulnerable, i.e., before-fix
sequences transformation to non-vulnerable, i.e., after-fix sequences) of a release
of a system (Linux Kernel / OpenSSL / Wireshark). The trained models are
evaluated based on their predictions in the following release of the same system
(e.g., trained on vulnerable components in Linux Kernel release v4.0 and evaluated
on all components of v4.1). The components of the following release are converted
into sequences that are input to the trained model to get the output sequences.
Then, TROVON compares the output sequences generated by the trained model
with the input sequences. A component is considered vulnerable if any of the output
sequences differ from the input sequences, otherwise considered as non-vulnerable.
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This training-testing process is repeated for all available releases.
For our release-based experiments where we train the models of different ap-

proaches on one release and test the trained models on the next release, in total
we have 36 releases of Linux Kernel, 10 releases of Wireshark, and 10 releases of
OpenSSL, as mentioned in Table 7.1. In case of (n) releases available to us for a
system, we can only perform (n–1) experiments because in chronological order, the
last experiment would be to train a model on (n–1)th release and test the trained
model on (n)th release. The reason for such is that we do not have a release to
test a model trained on the nth release. Hence, for 1 approach, we performed 35
experiments for Linux Kernel, 9 experiments for Wireshark, and 9 experiments
for Wireshark. That results to 53 experiments in total (35 + 9 + 9 = 53), for 1
approach.

Realistic Training Data Settings - Used in RQ4: In contrast to the clean
training data settings, in Realistic Training Data Settings we consider the date
when the vulnerability was fixed. Vulnerability fixing date determines whether a
vulnerability is included in the training dataset or not. In these settings, a prediction
model (for one release of the system) is trained only on those vulnerabilities that
were fixed before the next release date. Then, the trained model is evaluated on all
the components of the following release of the same system.

7.3.5 Benchmarks for Vulnerability Prediction
To assess effectiveness, we compare TROVON with existing vulnerability pre-

diction techniques. To perform the comparison we use FrameVPM, a framework
enabling the replication and comparison of vulnerability prediction approaches,
introduced by Jimenez et al. [JRP+19]. Overall, we compare TROVON with:

Software Metrics: Complexity metrics have been extensively used for defect
prediction (e.g. [HBB+12]) and vulnerability prediction (e.g. [SW08; SMW+11;
CZ11; TW20]). It is based on the idea that complex code is difficult to maintain
and test, and thus has a higher chance of having vulnerabilities than simple code.
Using FrameVPM, we replicate and compare with the original study from Shin et
al. [SMW+11] that rely on features related to following metrics:

1. Complexity and Coupling

(a) LinesOfCode: lines of code;
(b) PreprocessorLines: preprocessing lines of code;
(c) CommentDensity ratio: lines of comments to lines of code;
(d) CountDeclFunction: number of functions defined;
(e) CountDeclVariable: number of variables defined;
(f) CC (sum, avg, max): sum, average and max cyclomatic complexity;
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(g) SCC (sum, avg, max): strict cyclomatic complexity[SMW+11];
(h) CCE(sum, avg, max): essential cyclomatic complexity[SMW+11];
(i) MaxNesting(sum, avg, max): maximum nesting level of control con-

structs;
(j) fanIn(sum, avg, max): number of inputs, i.e., input parameters and

global variables to functions;
(k) fanOut(sum, avg, max): number of outputs, i.e., assignments to global

variables and parameters of function calls.

2. Code Churn: added lines, modified lines and deleted lines in the history of a
component.

3. Developer Activity Metrics:

(a) number of commits impacting a component;
(b) number of developers modified a component;
(c) current number of developers working on a component.

Text Mining: It considers a source code component as a collection of terms
associated with frequencies, also known as Bag of Words (BoW), used for vul-
nerability prediction [SWH+14]. The source code is broken into a vector of code
tokens, and the frequency of each token is then used as the features to build the
vulnerability prediction model. Further improvements have been performed to
significantly improve its performance, e.g., by pooling frequency values in different
bins according to particular criteria to discretize BoW’s features [SWH+14; Kon95;
TW20].

Imports and Function Calls: The work of Neuhaus et al. [NZH+07] is based on
the observation that the vulnerable components tend to import and call a particular
small set of functions. Thus, the features of this simple prediction model are the
components’ imports and function calls. Following the suggestions of FrameVPM,
we use imports and function calls as separate sets of features. We train one model
based on Imports and another based on Function Calls, thus implementing one
model per set of features.

Devign: The work of Zhou et al. [ZLS+19] emphasizes the use of graph neural
network for vulnerability detection. With Abstract Syntax Tree (AST) as the
backbone, Zhou et al. proposed to convert components (vulnerable/non-vulnerable)
as code property graphs which helps to solve the problem of information loss during
learning. To perform component classification, (i.e.,graph-level classification), graph
neural network models are trained which are composed of gated graph recurrent
layer and convolutional layer, that enables to learn the vulnerable programming
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pattern. Since the authors’ implementation of the approach is not available, we
implemented Devign based on our understanding of [ZLS+19] and made it publicly
available5.

LSTM and LSTM-RF: The work of Dam et al. [DTP+18] focuses to capture
semantic features of code components (vulnerable/non-vulnerable) and using these
features to perform vulnerability prediction. Dam et al. asserted that Long Short
Term Memory (LSTM) [HS97] is highly effective in learning long-term dependencies
in sequential data such as text and speech, and can be used to learn features that
represent both the semantics of code tokens (semantic features) and the sequential
structure of source code (syntactic features). In this approach, components are en-
coded using the embedding layer, and along with labels (vulnerable/non-vulnerable),
are used to train LSTM models. Although these trained LSTM models are capable
of prediction, i.e.,to provide a probability of a component being vulnerable, the
approach extends a step further. The embeddings for the components are extracted
using the trained LSTM models, and are used to train binary classifier. Finally, the
trained binary classifier provides the probability/likelihood of a component being
vulnerable. For LSTM approach, we used the trained LSTM models for predictions,
and for LSTM-RF approach, we used trained binary classifiers for predictions. Here
as well, due to unavailable authors’ implementation, we implemented the approach
based on our understanding of [HS97] and made it publicly available6.

7.3.6 Performance measurement

Vulnerability prediction modeling is a binary classification problem, thus it can
result in four types of outputs: Given a vulnerable component, if it is predicted
as vulnerable, then it is a true positive (TP); otherwise, it is a false negative
(FN). Given a non-vulnerable component, if it is predicted as non-vulnerable,
then it is a true negative (TN); otherwise, it is a false positive (FP). From these,
we can compute the evaluation metrics, i.e.,Precision, Recall, F-measure, and
Matthews Correlation Coefficient (MCC) to evaluate the prediction performance of
vulnerability prediction models. Here, MCC is more reliable than others as the
classes are of very different sizes, e.g. in the case of Linux Kernel, 3% vulnerable
components (Positives) over 97% non-vulnerable components (Negatives).
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Table 7.2: Prediction with clean training data, Clean Training Data Settings (RQ1)
Release MCC F-measure Precision Recall Total Vuln. Comp.

Linux Kernel
v3.0 0.70 0.86 0.84 0.89 598
v3.1 0.72 0.87 0.82 0.92 612
v3.2 0.75 0.88 0.86 0.91 612
v3.3 0.70 0.86 0.82 0.91 609
v3.4 0.73 0.88 0.84 0.91 607
v3.5 0.72 0.86 0.94 0.79 609
v3.6 0.74 0.88 0.86 0.90 640
v3.7 0.67 0.85 0.82 0.89 640
v3.8 0.78 0.89 0.92 0.87 632
v3.9 0.69 0.86 0.83 0.90 633
v3.10 0.77 0.89 0.88 0.90 637
v3.11 0.85 0.93 0.93 0.92 613
v3.12 0.76 0.89 0.88 0.90 584
v3.13 0.72 0.87 0.82 0.92 578
v3.14 0.85 0.93 0.93 0.93 573
v3.15 0.78 0.89 0.89 0.90 554
v3.16 0.80 0.91 0.92 0.89 553
v3.17 0.81 0.91 0.91 0.91 443
v3.18 0.81 0.91 0.93 0.89 428
v3.19 0.72 0.87 0.84 0.91 420
v4.0 0.88 0.94 0.96 0.92 417
v4.1 0.86 0.93 0.94 0.93 417
v4.2 0.77 0.88 0.96 0.82 410
v4.3 0.84 0.92 0.94 0.90 391
v4.4 0.82 0.92 0.91 0.93 371
v4.5 0.79 0.90 0.92 0.88 347
v4.6 0.79 0.90 0.88 0.93 330
v4.7 0.79 0.90 0.91 0.90 310
v4.8 0.83 0.92 0.91 0.92 284
v4.9 0.80 0.90 0.90 0.90 259
v4.10 0.79 0.90 0.92 0.88 233
v4.11 0.75 0.88 0.87 0.90 194
v4.12 0.78 0.89 0.93 0.86 176
v4.13 0.79 0.90 0.94 0.86 133
v4.14 0.80 0.91 0.91 0.90 113

Wireshark
v1.8.0 0.50 0.69 0.97 0.53 138
v1.10.0 0.58 0.77 0.92 0.67 168
v1.11.0 0.78 0.88 0.97 0.81 168
v1.12.0 0.58 0.76 0.95 0.63 165
v1.99.0 0.71 0.85 0.95 0.77 156
v2.0.0 0.59 0.78 0.93 0.67 123
v2.1.0 0.74 0.86 0.98 0.76 116
v2.2.0 0.67 0.83 0.93 0.75 93
v2.4.0 0.17 0.65 0.69 0.61 79

OpenSSL
v0.9.3 0.83 0.91 1.00 0.83 53
v0.9.4 0.83 0.91 1.00 0.83 56
v0.9.5 0.83 0.91 1.00 0.83 56
v0.9.6 0.67 0.80 1.00 0.67 65
v0.9.7 0.71 0.83 1.00 0.71 78
v0.9.8 0.71 0.83 1.00 0.71 75
v1.0.0 0.71 0.84 0.96 0.75 71
v1.0.1 0.73 0.87 0.91 0.82 48
v1.0.2 0.67 0.80 1.00 0.67 26

Overall
Average 0.74 0.87 0.91 0.84 334
Median 0.76 0.88 0.92 0.89 330
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7.4 Experimental Results
7.4.1 Prediction with clean training data, aka Clean Train-

ing Data Settings (RQ1)
Table 7.2 records the prediction performance results for the experiments con-

ducted on the 56 releases we study, i.e.,36 releases of Linux Kernel, 10 of Wireshark,
and 10 of OpenSSL, and the total number of vulnerable components present in every
release. As mentioned earlier, here the model is trained on a release and evaluated
against the following (next) release of the same system. TROVON obtained an
overall average (and median) of MCC= 0.74 (0.76), F-measure= 0.87 (0.88), Preci-
sion= 0.91 (0.92), and Recall= 0.84 (0.89) in prediction of vulnerable components
in the next release of a project. For almost all releases, TROVON’s prediction
models trained with the clean data achieved above 0.65 MCC (49 out of 53 releases),
above 0.75 F-measure (51 out of 53 releases), above 0.80 Precision (52 out of 53
releases), and above 0.70 Recall (49 out of 53 releases). The results achieved by
TROVON indicate that the suggested predictions can be considered actionable for
security engineers looking to prioritize security inspection and testing efforts [SW13].

Answer to RQ1: The vulnerability prediction models built on TROVON
successfully predict the vulnerable components with an average MCC score
of 0.74, which can be considered actionable for security engineers to prioritize
components for security inspection.

7.4.2 Comparison with existing techniques (RQ2)
Figure 7.3 shows the performance comparison of TROVON with existing ap-

proaches in a box plot format. Box plots show the distribution of performance
indicators (MCC, F-measure, Precision, Recall) for the techniques per project.

We can observe that TROVON outperforms the others by achieving higher
MCC scores. Table 7.3 summarizes the overall performance of the techniques.
Interestingly, TROVON achieved higher prediction performance in comparison to
existing techniques, with a statistically significant7 difference. We can also ob-
serve that the technique Function Calls outperforms the others ( Software Metrics,

5https://github.com/garghub/TROVON/tree/main/devign
6https://github.com/garghub/TROVON/tree/main/lstm-rf
7We compared the MCC values by using Wilcoxon sign-rank-test [Wil45], and obtained a

p − value < 6.2e−9 with existing approaches. We also compared the effect size of MCC values,
by using the Vargha-Delaney A measure [VD00], and obtained a value of lower than 0.07 in every
case, clearly indicating that TROVON significantly outperforms existing techniques.
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Table 7.3: (RQ2) Comparison between existing techniques and TROVON under
Clean Training Data Settings - average (and median)

Approach MCC F-measure Precision Recall
Software Metrics 0.49 (0.53) 0.44 (0.48) 0.85 (0.92) 0.32 (0.34)
Imports 0.46 (0.49) 0.43 (0.44) 0.83 (0.88) 0.30 (0.29)
Function Calls 0.52 (0.56) 0.48 (0.50) 0.84 (0.89) 0.36 (0.35)
Text Mining 0.52 (0.55) 0.48 (0.51) 0.83 (0.88) 0.36 (0.38)
Devign 0.33 (0.36) 0.29 (0.32) 0.79 (0.89) 0.19 (0.19)
LSTM 0.25 (0.22) 0.23 (0.18) 0.15 (0.09) 0.92 (0.93)
LSTM-RF 0.47 (0.49) 0.43 (0.42) 0.80 (0.89) 0.32 (0.29)
TROVON 0.74 (0.76) 0.87 (0.88) 0.91 (0.92) 0.84 (0.89)

Imports, Text Mining, Devign, LSTM, and LSTM-RF ) with its average MCC of
0.52. TROVON even outperforms Function Calls with its 40.84% higher MCC and
80.67% higher F-measure. It is worth mentioning that the average improvement
offered by TROVON is 8.68% in Precision and 134.73% in Recall, in comparison to
Function Calls.
The results show that TROVON can provide comparatively better guidance to
security engineers than existing techniques, to prioritize components for security
inspection [SW13].

Answer to RQ2: When trained with clean data, TROVON has significantly
higher prediction ability, i.e.,, on average, 80.39% improvement in MCC score
than existing approaches, which shows that TROVON can guide security
engineers comparatively better than existing techniques to prioritize security
inspection and testing efforts.

7.4.3 Predictions on Seen vs Unseen Vulnerable Compo-
nents (RQ3)

Table 7.4 shows the average percentages of the seen vulnerable components
correctly predicted by TROVON and existing techniques across 56 releases of the
systems. On average, the models that are based on TROVON predict 92.79%,
69.48% and 87.19% of the seen vulnerable components in Linux Kernel, Wireshark,
and OpenSSL project releases, respectively. The models based on LSTM performs
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Table 7.4: (RQ3) Comparison between existing techniques and TROVON wrt to
their ability to predict correctly already seen vulnerable components, i.e., (classify
then as vulnerable)

Approach Linux Kernel
36 releases

Wireshark
10 releases

OpenSSL
10 releases

Software Metrics 48.12% 54.84% 54.17%
Imports 48.12% 60.76% 50.00%
Function Calls 58.65% 52.69% 64.58%
Text Mining 57.14% 56.99% 64.58%
Devign 32.34% 39.64% 35.69%
LSTM 96.69% 76.43% 95.77%
LSTM-RF 47.66% 48.81% 51.25%
TROVON 92.79% 69.48% 87.19%

the best in identifying already seen vulnerable components, i.e.,96.69%, 76.43%,
and 95.77% of the vulnerable components identified correctly in Linux Kernel,
Wireshark, and OpenSSL project releases, respectively. The percentages gained by
TROVON are higher than existing techniques, except LSTM, by 44.12% for Linux
Kernel releases, 17.19% for Wireshark releases, and 33.81% for OpenSSL releases,
indicating a high learning potential.

Table 7.5 shows the average percentages of the unseen vulnerable component
prediction. On average, TROVON based trained models predict 76.53%, 91.03%
and 60.07% of the unseen vulnerable components in Linux Kernel, Wireshark, and
OpenSSL project releases, respectively. The percentages gained by TROVON are
higher than existing techniques by 40.05% for Linux Kernel releases, 64.34% for
Wireshark releases, and 42.28% for OpenSSL releases, reflecting higher general-
ization capability in comparison to existing techniques. It is worth noting that
TROVON obtains all the above mentioned percentages with an MCC of 0.74, on
average, which is 80.39% higher than existing techniques.

Answer to RQ3: The models trained on TROVON have higher learning
potential and generalization capability in comparison to existing approaches
in almost all cases.
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Table 7.5: (RQ3) Comparison between existing techniques and TROVON wrt
to their ability to predict correctly already unseen vulnerable components, i.e.,
(classify then as vulnerable)

Approach Linux Kernel
36 releases

Wireshark
10 releases

OpenSSL
10 releases

Software Metrics 09.09% 15.48% 18.18%
Imports 50.00% 08.93% 23.08%
Function Calls 56.10% 60.00% 09.09%
Text Mining 45.45% 16.07% 18.18%
Devign 32.54% 33.13% 14.99%
LSTM 25.79% 27.63% 23.02%
LSTM-RF 36.39% 25.62% 18.01%
TROVON 76.53% 91.03% 60.07%

7.4.4 Comparison with existing techniques under Realistic
Training Data Settings (RQ4)

As mentioned before, in Realistic Training Data Settings, a model is trained
only on the vulnerabilities of a release that were detected / made public before
the next release date of the system. This unavoidably introduces mislabeling noise
because every component that has no vulnerabilities uncovered before the next
release date, is considered non-vulnerable during training. Figure 7.4 shows that the
performance of all the techniques is considerably reduced in the Realistic Training
Data Settings, in comparison to the Clean Training Data Settings. The results are
in accordance with Jimenez et al. [JRP+19]. Despite this drop in performance,
TROVON outperforms existing techniques with a statistically significant8 sizeable
difference.

Table 7.6 shows the overall average and median performance statistics for each
technique. We can observe that the technique LSTM-RF outperforms the other ex-
isting techniques (Software Metrics, Imports, Function Calls, Text Mining, Devign,
and LSTM) with its average MCC of 0.29. TROVON even outperforms LSTM-
RF in all the performance measures, i.e.,35.52% higher MCC, 148.91% higher

8We compared the MCC values using Wilcoxon sign-rank-test and obtained a p − value <
7.7e−9 with existing approaches. We also compared the MCC values with the Vargha-Delaney A
measure and obtained a value lower than 0.03 in every case, indicating that TROVON significantly
outperforms existing techniques.
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Table 7.6: (RQ4) Comparison between existing techniques and TROVON under
Realistic Training Data Settings - average (median)

Approach MCC F-measure Precision Recall
Software Metrics 0.06 (0.03) 0.03 (0.01) 0.31 (0.30) 0.02 (0.01)
Imports 0.06 (0.06) 0.04 (0.02) 0.34 (0.33) 0.02 (0.01)
Function Calls 0.07 (0.05) 0.04 (0.02) 0.34 (0.33) 0.03 (0.01)
Text Mining 0.06 (0.05) 0.04 (0.01) 0.29 (0.28) 0.02 (0.01)
Devign 0.13 (0.02) 0.12 (0.03) 0.34 (0.06) 0.18 (0.02)
LSTM 0.16 (0.14) 0.14 (0.11) 0.08 (0.06) 0.83 (0.86)
LSTM-RF 0.29 (0.27) 0.28 (0.23) 0.47 (0.49) 0.21 (0.15)
TROVON 0.39 (0.41) 0.69 (0.68) 0.86 (0.87) 0.58 (0.56)

F-measure, 81.61% higher Precision, and 183.90% higher Recall, in comparison to
LSTM-RF. This indicates that TROVON has much higher accuracy in vulnerability
prediction than existing techniques in the Realistic Training Data Settings as well.

Answer to RQ4: Under the Realistic Training Data Settings, TROVON
based models obtain significantly higher accuracy in vulnerability prediction,
i.e., 3.63 times higher MCC scores than existing techniques.

7.5 TROVON with Bi-LSTM
Although training a machine translator (viz. an encoder-decoder sequence to

sequence model) to identify vulnerable components, is an integral part of TROVON’s
architecture, we also replicated our experiments with Bi-LSTM models. We kept
the entire experimental setting the same, (i.e., both Clean Training Data Settings
and Realistic Training Data Settings with the corresponding training and test sets)
and trained Bi-LSTM models instead of training sequence to sequence models. For
this experiment, we adhere to the key idea of TROVON and train Bi-LSTM models
on the validated data, (i.e., only on components known to be vulnerable and leave
aside the non-vulnerable ones). We name this approach TROVON-BILSTM.

Tables 7.7 and 7.8 show the average and median performance statistics of
TROVON-BILSTM in Clean Training Data Settings and Realistic Training Data
Settings, respectively. We also mention the results of TROVON for comparison. On
average, in Clean Training Data Settings, TROVON-BILSTM achieved 0.73 MCC,
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Table 7.7: Comparison between TROVON-BILSTM and TROVON under Clean
Training Data Settings - average (median)

Approach MCC F-measure Precision Recall
Linux Kernel

TROVON-BILSTM 0.73 (0.70) 0.84 (0.83) 0.84 (0.83) 0.84 (0.84)
TROVON 0.78 (0.78) 0.89 (0.89) 0.89 (0.91) 0.90 (0.90)

Wireshark
TROVON-BILSTM 0.54 (0.54) 0.72 (0.72) 0.85 (0.85) 0.63 (0.61)
TROVON 0.59 (0.59) 0.79 (0.78) 0.92 (0.95) 0.69 (0.67)

OpenSSL
TROVON-BILSTM 0.71 (0.68) 0.82 (0.79) 0.93 (0.98) 0.73 (0.68)
TROVON 0.74 (0.71) 0.86 (0.84) 0.99 (0.99) 0.76 (0.75)

0.84 F-1, 0.84 Precision, and 0.84 Recall for Linux Kernel releases; 0.54 MCC, 0.72
F-1, 0.85 Precision, and 0.63 Recall for Wireshark releases; and 0.71 MCC, 0.82
F-1, 0.95 Precision, and 0.73 Recall for OpenSSL releases. In Realistic Training
Data Settings, TROVON-BILSTM achieved 0.38 MCC, 0.65 F-1, 0.84 Precision,
and 0.53 Recall for Linux Kernel releases; 0.34 MCC, 0.66 F-1, 0.73 Precision, and
0.61 Recall for Wireshark releases; and 0.37 MCC, 0.68 F-1, 0.75 Precision, and
0.62 Recall for OpenSSL releases.

Figures 7.5 and 7.6 show the performance comparison of TROVON-BILSTM
and TROVON in Clean Training Data Settings and Realistic Training Data Settings,
respectively. The figures show that TROVON performs comparatively better than
TROVON-BILSTM. Overall, when trained with vulnerabilities, in Clean Training
Data Settings, TROVON outperforms TROVON-BILSTM by 6.49% in MCC, 6.63%
in F-1, 6.40% in Precision, and 6.75% in Recall. In Realistic Training Data Settings,
TROVON outperforms TROVON-BILSTM by 5.08% in MCC, 5.21% in F-1, 5.01%
in Precision, and 5.43% in Recall.

7.6 Threats To Validity
Construct Validity: We use VulData7 [JPT18] for data collection using the Git

commit IDs provided in the CVE-NVD database. This process ensures the retrieval
of known and fixed vulnerabilities, whereas undiscovered or unfixed vulnerabilities
are ignored. This may result in false negatives with a potential impact on our
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Table 7.8: Comparison between TROVON-BILSTM and TROVON under Realistic
Training Data Settings - average (median)

Approach MCC F-measure Precision Recall
Linux Kernel

TROVON-BILSTM 0.38 (0.39) 0.65 (0.67) 0.84 (0.87) 0.53 (0.54)
TROVON 0.40 (0.41) 0.68 (0.68) 0.88 (0.88) 0.56 (0.55)

Wireshark
TROVON-BILSTM 0.34 (0.36) 0.66 (0.65) 0.73 (0.70) 0.61 (0.62)
TROVON 0.37 (0.38) 0.72 (0.72) 0.79 (0.79) 0.66 (0.66)

OpenSSL
TROVON-BILSTM 0.37 (0.31) 0.68 (0.68) 0.75 (0.74) 0.62 (0.61)
TROVON 0.41 (0.31) 0.73 (0.68) 0.81 (0.78) 0.67 (0.62)

measurements. However, given the size of Linux Kernel, Wireshark, and OpenSSL
and their long history of vulnerability reports, we believe that it is unlikely to have
many such cases.

Another concern originates from our choice to learn from the vulnerable and
fixed pairs of components. Since TROVON has access to this information one can
argue that the improved performance is due to this additional knowledge of fixed
components. To diminish this concern we also included the fixed versions of the
vulnerable files in the training set for training existing techniques, but this resulted
in negligible differences in their performance.

One may wonder if most of the vulnerabilities are introduced due to code
changes performed between the releases and whether every changed component
between adjacent releases can be flagged as vulnerable. We analyzed our data
and found that the results are close to random guessing with MCC- 0.06, 0.09, 0.1
and Precision- 0.04, 0.08, 0.14 for Linux Kernel, Wireshark, and OpenSSL project
releases, respectively. These results are in accordance with the findings of Jimenez
et al. [JRP+19] that most vulnerabilities span across multiple releases without
being detected, and mislead the predictions, e.g. an existing vulnerability in release
R1 may get detected and fixed in the release R4. Also, many files are modified
between the releases, i.e.,29.95%, 72.53%, and 73.58% of the files, on average, are
changed for Linux Kernel, Wireshark, and OpenSSL, which adds to the imprecision
of this baseline by producing excessive numbers of false positives/negatives.

Internal Validity: We do not consider non-vulnerable components for training
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as these files can in fact be vulnerable (vulnerability undetected till date) and
may mislead our predictor. Still, we train on the unchanged and fixed parts of
the vulnerable components as we believe that these are unlikely to be vulnerable.
To support this intuition, we checked our data and found that it is indeed true,
i.e.,components having more than one vulnerability, with one fixed and the other
not, are on average 0.037%, 0.19%, and 0.24% of the Linux Kernel, Wireshark, and
OpenSSL components per release.

We use FrameVPM [JRP+19] to implement vulnerability prediction models
for Software Metrics, Imports, Function Calls, and Text Mining. As none of the
replicated approaches provide a replication package, the framework may not have
implemented precisely the original approaches. To reduce this threat we inspected
the code, parameters, and experiment decisions to perform the most accurate
replication possible. Given that our results are in line with the previous replication
studies [JPL16; JRP+19] and the original studies [SMW+11; NZH+07], we believe
this threat is of less significance.

Similarly, we implement Devign, LSTM, and LSTM-RF based on our under-
standing of authors’ work described in the available articles because the author’s
implementation/source-code of these approaches is not available. Still, there is a
possibility that we may not have implemented the original approaches as precisely
as the authors of these approaches would have. Nevertheless, these approaches
make the clean labeling assumption [JRP+19] thereby experimenting fundamental
limitations on their performance. This is actually the key reason why previous
work reports much better results. Nevertheless, when using Clean Training Data
Settings, we found F-1 scores of 32.73% and 36.54% for Linux Kernel and Wireshark,
which are in line with the results reported by Zhou et al. [ZLS+19] (i.e.,F-1 score of
24.64% and 42.05% for Linux Kernel and Wireshark), in their case of imbalanced
data (the only case that is somehow comparable with our analysis).

External Validity: Although the study expands its evaluation to three security-
critical open source systems, the results may not generalize to other projects
(e.g., Android). Additional studies are required to sufficiently take care of the
generalization threat. Also, we split the methods into sequences of no more than
50 tokens each. Method-splitting in larger sequences may require more training
time and computational resources but can lead to better results.

7.7 Data Availability
The dataset consisting of the codebase and the vulnerabilities, (i.e., the vulner-

able and the corresponding fixed components) of the 36 releases of Linux Kernel,
10 releases of Openssl, and 10 releases of Wireshark, along with TROVON’s source
code, is publicly available in our GitHub repository9. In addition to the source

9https://github.com/garghub/TROVON
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code of TROVON, we also implement existing approaches due to their unavailable
authors’ implementation. Our implementations of the existing approaches which
we compare TROVON with are also available in this repository.

7.8 Conclusion
In this chapter, we presented TROVON, a machine translation based approach

to automatically learn to predict vulnerable components from noisy historical data.
Taking advantage of the large amounts of historical data, our predictions can be
used to assist developers in code reviews and security testing. The important
advantage of TROVON is that it is completely automatic as it learns latent features
(context, patterns, etc.) linked with vulnerabilities based on information mining
from code repositories (in particular by analyzing historical vulnerability fixes and
their context). We empirically evaluated the effectiveness of TROVON following
the methodological guidelines set by Jimenez et al. [JRP+19]. In particular, we
demonstrated that TROVON can mitigate the problem of real-world noisy data
on the releases of the three security-critical open source systems that were used
by previous research. Moreover, we showed that TROVON outperforms existing
techniques under both, clean and realistic, (i.e.,noisy) training data settings. On
average, when trained on clean data, TROVON achieved an overall improvement
of 80.39% in MCC score. Moreover, in Realistic Training Data Settings, TROVON
achieved 3.63 times higher MCC score in comparison to existing approaches.
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Figure 7.3: Comparison with existing approaches (RQ2) in Clean Training Data
Settings: When trained with clean data, TROVON outperforms existing approaches
with an average improvement in MCC, F-measure, Precision, and Recall of 80.39%,
132.95%, 83.96%, and 155.33%, respectively.
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Figure 7.4: Comparison with existing techniques in Realistic Training Data Settings
(RQ4): Despite a reduced performance of models when trained with realistic
training data, TROVON significantly outperforms existing techniques with 3.63
times higher MCC, 11.82 times higher F-measure, 2.66 times higher Precision, and
15.25 times higher Recall, respectively.
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Figure 7.5: Comparison between TROVON-BILSTM and TROVON under Clean
Training Data Settings: TROVON outperforms TROVON-BILSTM by 6.49% in
MCC, 6.63% in F-1, 6.40% in Precision, and 6.75% in Recall.
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Figure 7.6: Comparison between TROVON-BILSTM and TROVON under Realistic
Training Data Settings: TROVON outperforms TROVON-BILSTM by 5.08% in
MCC, 5.21% in F-1, 5.01% in Precision, and 5.43% in Recall.
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8
Conclusion

This chapter presents the overall conclusion of the dissertation and proposes
potential research directions.
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8.1 Summary of contributions
In this dissertation, we aim to tackle one of the most significant challenges of

mutation testing - its application cost. The complexity of selecting the most useful
mutants to test is compounded by the sheer volume of generated mutants and
the lack of advanced knowledge of which ones are effective for analysis or testing.
To overcome this hurdle, we explore the application of context-aware machine
learning techniques to identify subsets of mutants that are most effective for a given
task. Our research also addresses the limitations of mutation testing in security
testing, particularly vulnerability prediction. We present the following four distinct
contributions to the field that address various aspects of this problem: 1) Cerebro -
a deep learning approach to statically select subsuming mutants in order to preserve
the mutation testing benefits while limiting the application cost, 2) Seeker - a deep
learning approach to statically select Assertion Inferring Mutants in order to enable
an assertion inference capability comparable to the full mutation analysis while
significantly limiting the execution cost and improving the scalability of assertion
inference techniques, 3) Mystique - a deep learning approach to automatically
identify vulnerability-mimicking mutants in order to design test cases to tackle
mimicked vulnerabilities, and 4) TROVON - a deep learning based vulnerability
prediction approach that bypasses the key problem faced by previous techniques
and outperforms them. Through our experiments, we demonstrate the effectiveness
and efficiency of our proposed methods in achieving significant improvements in
respective metrics compared to existing approaches. Our work provides valuable
insights into the effectiveness of machine learning guided mutation and security
testing. The source code, datasets, and our implementation of existing approaches
resulting from the work presented in this dissertation are made publicly available.
The following details our contributions in detail.

As our first contribution, we proposed Cerebro, a method that learns to select
subsuming mutants (a subset of mutants that subsumes the others, i.e., tests killing
them also kill all the mutants of the given mutant set) from given mutant sets. Our
experiments showed that Cerebro identified subsuming mutants with high precision
and recall at an inter-project scenario (trained on different projects than the ones
it was evaluated). These predictions enable testers to design test cases capable of
killing more than twice the subsuming mutants that they would kill if they were
using either randomly selected mutants or another previously proposed machine
learning-based mutant selection technique. At the same time Cerebro entails the
analysis of significantly fewer equivalent mutants and mutant executions, indicating
a large reduction in the practical effort/cost of the approach.

As our second contribution, we proposed Seeker, a method that learns to select
Assertion Inferring Mutants (a small subset of mutants that is suitable for assertion
inference) from given mutant sets. Our experiments show that Seeker identified
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assertion inferring mutants with high prediction performance. These predictions
enable many times faster inference with minor effectiveness loss compared to the use
of all mutants. Similarly, Seeker’s predictions infer almost all of the total ground
truth assertions, which is substantially greater than Subsuming Mutant Selection
and Random Mutant Selection. Moreover, Seeker enables the assertion inference
technique SpecFuzzer to scale on all our large subjects (by inferring assertions
where SpecFuzzer failed previously due to timeouts) in comparison to Random
Mutant Selection which failed to infer any assertion in half of the cases.

As our third contribution, we showed that language model based mutation
testing tools can produce Vulnerability-mimicking Mutants, i.e., mutants that mimic
the observable behavior of vulnerabilities. Since these mutants are significantly
fewer among the entire mutant set, there is a need for a static approach to identify
such mutants. To achieve this, we proposed Mystique, a method that learns to
select Vulnerability-mimicking Mutants from a given mutant’s code context. Our
experiments show that Mystique identified Vulnerability-mimicking Mutants with
high prediction performance, which indicates that the features of Vulnerability-
mimicking Mutants can be automatically learned by machine learning models to
statically predict these without the need of investing effort in defining such features.

As our fourth contribution, we proposed TROVON, a machine translation
based approach to automatically learn to predict vulnerable components from
noisy historical data. Taking advantage of the large amounts of historical data,
our predictions can be used to assist developers in code reviews and security
testing. The important advantage of TROVON is that it is completely automatic
as it learns latent features (context, patterns, etc.) linked with vulnerabilities
based on information mining from code repositories (in particular by analyzing
historical vulnerability fixes and their context). We empirically evaluated the
effectiveness of TROVON following the methodological guidelines set by Jimenez
et al. [JRP+19]. In particular, we demonstrated that TROVON can mitigate
the problem of real-world noisy data on the releases of the three security-critical
open source systems that were used by previous research. Moreover, we showed
that TROVON significantly outperforms existing techniques under both, clean and
realistic, (i.e.,noisy) training data settings.

8.2 Future prospects
In the following, we discuss potential future research that follows the contribu-

tions and ideas presented in this dissertation:
• Transfer learning via pre-trained models trained on large code

corpus: Recently, it has become increasingly common to pre-train the
entire model on a data-rich task, which causes the model to develop general-
purpose abilities and knowledge that can then be transferred to downstream
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tasks [RSR+19]. In this practice aka Transfer Learning and its applications
to computer vision [OBL+14; JSD+14], pre-training is typically done via
supervised learning on a large labeled data set like ImageNet [RDS+15].
In contrast, modern techniques for transfer learning in Natural Language
Processing (NLP) often pre-train using unsupervised learning on unlabeled
data [DCL+19; LLS+21]. The resulting pre-trained models are further trained
on specialized datasets to accomplish the desired tasks. Unsupervised pre-
training for NLP is attractive and seems a good fit for neural networks as
it has been shown to exhibit remarkable scalability, i.e.,it is often possible
to achieve better performance simply by training a larger model on a larger
data set [HNA+17; SMM+17; JVS+16; MGR+18]. It will be worthwhile to
explore such available pre-trained models [MSC+21; FGT+20] and if these
can be further refined to address our specific prediction tasks.

• Expanding Mutation Techniques for Improved Vulnerability Mim-
icking In Chapter 6, we study the extent to which the mutants produced by
the language models can semantically mimic the behavior of vulnerabilities
aka Vulnerability-mimicking Mutants. Since our vulnerability-mimicking mu-
tants cannot mimic all the vulnerabilities, we perceive that these mutants are
not a complete representation of all the vulnerabilities. This suggests that
augmenting the mutation techniques to include a wider range of mutation op-
erators may improve the ability to mimic more vulnerabilities. In future work,
we plan to include additional mutation operators that have been shown to be
effective in generating diverse and realistic mutants in the context of software
testing, such as syntactic and semantic mutations (e.g., [OL17; CDH13]).
Such mutation techniques have been shown to be effective in generating high-
quality mutants that more accurately reflect real-world software faults. By
including additional mutation techniques, we can increase the proportion of
mutants that mimic the observable behavior of vulnerabilities. Furthermore,
increasing the proportion of mutants mimicking vulnerabilities should also
improve the effectiveness of Mystique in predicting Vulnerability-mimicking
Mutants, as the models will have more samples to learn from.
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Abbreviations

API Application Programming Interface.
AST Abstract Syntax Tree.

BoW Bag of Words.

CVE Common Vulnerability Exposures.

EMT Evolutionary Mutation Testing.

F2 Weighted Harmonic Mean of Precision and Recall.
FN False Negative.
FP False Positive.

IEEE Institute of Electrical and Electronics Engineers.

LSTM Long Short Term Memory.

MCC Matthews Correlation Coefficient.
MS* Subsuming Mutation Score.

NIST National Institute of Standards and Technology.
NVD National Vulnerability Database.

PIT Pitest.
PMT Predictive Mutation Testing.
PoV Proof of Vulnerability.

RBAC Role Based Access Control.
RNN Recurrent Neural Network.

SQL Structured Query Language.

TAC Test Adequacy Criteria.
TCE Trivial Compiler Equivalence.
TN True Negative.
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TP True Positive.

USD United States Dollar.

XSS Cross-Site Scripting.
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