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ABSTRACT
With the advent of digital media, the availability of art content has

greatly expanded, making it increasingly challenging for individuals

to discover and curate works that align with their personal prefer-

ences and taste. The task of providing accurate and personalized

Visual Art (VA) recommendations is thus a complex one, requiring a

deep understanding of the intricate interplay of multiple modalities

such as image, textual descriptions, or other metadata. In this paper,

we study the nuances of modalities involved in the VA domain (im-

age and text) and how they can be effectively harnessed to provide a

truly personalized art experience to users. Particularly, we develop

four fusion-based multimodal VA recommendation pipelines and

conduct a large-scale user-centric evaluation. Our results indicate

that early fusion (i.e, joint multimodal learning of visual and tex-

tual features) is preferred over a late fusion of ranked paintings

from unimodal models (state-of-the-art baselines) but only if the

latent representation space of the multimodal painting embeddings

is entangled. Our findings open a new perspective for a better

representation learning in the VA RecSys domain.
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• Information systems → Personalization; Recommender
systems; • Computing methodologies→ Learning latent repre-
sentations; • Applied computing→ Media arts.
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1 INTRODUCTION
Art is vast and diverse, with a wide range of styles, mediums, and

forms. As a result, it can be challenging for individuals to discover
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new art that aligns with their personal preferences and interests.

Art appreciation is also highly subjective, and what one person finds

beautiful or inspiring may not be the same for another. Personalised

recommender systems (RecSys) can help to address this challenge

by suggesting artworks that are tailored to an individual’s taste

and preferences. However, creating effective personalised recom-

mendations for Visual Art (VA) poses several challenges. In the VA

domain, paintings are important items that bring together complex

elements such as drawings, gestures, narration, composition, or ab-

straction [30]. The subjective nature of user’s taste and the unique

nature of their preferences, which are longstanding challenges in

content personalization, are also salient issues in VA RecSys.

Furthermore, the kind of emotional and cognitive reflections

paintings may trigger in users are also diverse, depending on

their background, knowledge, and several other environmental

factors [34]. Traditional RecSys often rely on collaborative filter-

ing (CF), where the preferences of a group of users are used to

make suggestions for a given user. However, such approaches may

not be effective for VA recommendation, as the aesthetics of art

can vary widely and may not be easily captured by a group of

users. Additionally, the prevalence of the cold start problem in real

applications of VA RecSys (i.e. museums and art galleries) where

personalised recommendations are to be offered for new visitors,

makes CF approaches impractical [48]. Hence, to enhance person-

alized VA recommendations, efficiently capturing latent semantic

relationships of paintings is vital and yet remains an open research

challenge.

The majority of previous work in VA RecSys often infers simi-

larities and relationships among paintings from high-level features

derived from the above-mentioned traditional metadata such as

artist names, styles, materials, etc. However, these features may

not be expressive enough to capture abstract concepts that are

“hidden” in paintings and that could better adapt the recommenda-

tions to the subjective taste of the users. For this, a high-quality

representation of the data is crucial [5]. Unfortunately, research on

machine-generated data representation techniques for VA RecSys

has been often overlooked, as prominent works have largely relied

on manually curated metadata [27].

Over the past few years, representation learning techniques

have gained attention in VA RecSys. For example, He et al. [15]

were among the first ones to use latent visual features extracted

using Deep Neural Networks (DNN) and also use pre-trained DNN

models for VA RecSys. Messina et al. [33] showed that DNN-based

visual features perform better than leveraging textual metadata,

however they were focused on the artwork market, which is driven

by transaction data rather than enhancing the users’ quality of

https://doi.org/10.1145/3565472.3592964
https://creativecommons.org/licenses/by/4.0/
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experience. Therefore, it is unclear if their findings would transfer

to a more user-centric setting, which essentially entails investigating
the actual relevance of recommendations to users.

Previous works argued that visual features tend to perform better

than textual metadata [32, 46, 48] and hence they argued for not

considering text-based information in VA RecSys. However, recent

work [47] showed that both modalities significantly capture the

complex semantics embedded in VA and their combination, using

late fusion techniques, can even lead to a better performance. To

this end, we set out to explore techniques that can jointly learn

latent semantic representations of VA from different modalities

for a personalized VA RecSys task. In particular, in this work we

address the following key research questions:

RQ1: Can we jointly learn meaningful latent semantic represen-

tations from different modalities (textual descriptions and

images) of VA to derive personalised recommendations?

RQ2: Does jointly learned features generate better recommenda-

tions than late-fused rankings?

To answer these questions, we study two multimodal VA repre-

sentation learning techniques based on state-of-the-art approaches:

Contrastive Language-Image Pre-training (CLIP) [37] and Boot-

strapping Language-Image Pre-training (BLIP) [24]. Subsequently,

we investigate whether jointly learned features (i.e, features that

are learned from both modalities simultaneously) generate better

recommendations than late-fused rankings (i.e., combining recom-

mendations from each modality after they have been generated

separately) of paintings.

For the latter, we study the combination of best performing

models from previous work [47, 48]: Latent Dirichlet Allocation

(LDA) [6] to learn text features and the popular Residual Neural

Network (ResNet) [14] to learn visual features.

Finally, we conduct a large-scale user study that evaluated how

accurate, diverse, novel, and serendipitous were the generated rec-

ommendations. In sum, this paper makes the following contribu-

tions:

• We develop and study four VA RecSys engines: two versions

of late fusion combining LDA with ResNet and two early

fusion engines (CLIP and BLIP).

• We conduct a large-scale user study (𝑁 = 100) to assess VA

RecSys performance from a user-centric perspective.

• We contextualize our findings and provide guidance about

how to design next-generation VA RecSys.

2 RELATEDWORK
With the proliferation of online marketplaces, it has become eas-

ier than ever for artists to showcase and sell their work the web.

However, with such a large volume of art available, it can be chal-

lenging for both artists and collectors to find and connect with each

other. This is where VA RecSys come in. Nowadays, VA RecSys

are becoming more and more prevalent in online platforms as well

as in Cultural Heritage environments such as museums and art

galleries [20]. The huge potential and benefit of personalized rec-

ommendations, in particular in the VA field, has been discussed by

Esman [12], for which different approaches to VA RecSys has been

proposed over the years. For example, Aroyo et al. [13] proposed

a semantically-driven RecSys and semi-automatic generation of

personalized museum visits guided by visitor models. Deladiennee

et al. [10] and Kuflik et al. [22] introduced a graph-based semantic

RecSys that relies on an ontological formalisation of knowledge

about manipulated entities. However, there are several aspects that

are challenging in VA RecSys.

Primarily, because paintings are both high-dimensional and se-

mantically complex, we need a computationally efficient way of

modelling both their content and their context. This essentially calls

for efficient data representation techniques that are capable of cap-

turing the complex semantics embedded in paintings. To this end,

He et al. [15] proposed a visually, socially, and temporally-aware

model for artistic recommendation. This was among the first works

that utilized the power of DNNs to exploit latent representations

for VA recommendation. Their work primarily builds upon two

methods, factorized personalized Markov chains [39] and visual

Bayesian personalized ranking [16]. Although, the method is only

applicable under collaborative filtering scenario.

Subsequently, Messina et al. [31–33] explored content-based art-

work recommendation using images, keywords, and transaction

data from the UGallery online artwork store.
1
Their work suggested

that automatically computed visual features perform better than

manually-engineered visual features extracted from images (i.e,

texture, sharpness, brightness, etc.). Their work also indicated that

a hybrid approach combining visual features and textual keyword

attributes such as artist, title, style, etc., yields a further perfor-

mance improvement. However, their hybrid approach was based on

computing a score as a convex linear combination of the scores of

individual methods (visual similarity and keyword similarity). Par-

ticularly, they did not explore feature learning approaches which are

more scalable and generalizable. Recent work by Yilma et al. [48]

proposed a VA recommendation approach that leveraged topic

modeling techniques from textual descriptions of paintings and per-

formed a comparative study against visual features automatically

extracted using DNNs. Their study demonstrated the potential of

learning features from text-based data, especially when it comes

to explaining the recommendations to the user. However, they did

not study the combination of text-based and image-based RecSys

engines. A follow-up work by Yilma and Leiva [47] explored VA

RecSys through reciprocal rank fusion to combine recommenda-

tions generated from engines independently trained on image and

text. The results from this study indicated that a combination of

both modalities performs better.

In sum, a number of VA Recsys strategies have been proposed

over the years, but given that (i) user preferences are highly sub-

jective and (ii) visual artwork is particularly complex to grasp, VA

recommendation remains a rather challenging task. It demands a

more accurate representation of not only VA content but also user

profiles such as modelling temporal and social dynamics in terms of

users’ tendency to interact with content more or less consistently,

as well as their preferences towards individual artists, styles, colors,

etc. However, these are rarely available or not directly accessible in

practice, making the so called cold-start problem a prevalent issue

in VA RecSys. Thus, research effort in uncovering latent semantics

of visual art is still considered a worthwhile endeavour, especially

1
https://www.ugallery.com/

https://www.ugallery.com/
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with regards to evaluating the quality of the recommendations from

a user-centric perspective.

3 LEARNING LATENT REPRESENTATIONS OF
PAINTINGS

Figures 1 to 3 summarize the VA RecSys approaches we have studied

in this work. In the following we provide the essential information

to understand the backbone models in each case.

3.1 Feature learning from text-based
representations of paintings

Latent Dirichlet Allocation (LDA) [6] has demonstrated superiority

over several other models in capturing hidden semantic structures

in document modeling. It has been applied in several text-based

RecSys tasks such as scientific paper recommendation [1], personal-

ized hashtag recommendation [49], and online course recommenda-

tion [2]. Recent work by Devlin et al. [11] developed Bidirectional

Encoder Representations from Transformers (BERT) and set a new

state-of the-art performance on sentence-pair related tasks like

semantic textual similarity and question answering. However, LDA

based representations have shown superiority over BERT on a VA

Recsys task [47]. Hence, in this work we adopt LDA to learn paint-

ing feature representations from their associated textual metadata,

where each painting is represented by a document containing de-

tailed annotations such as title, format, or a curated description;

see Figure 4 for an example. A detailed discussion on LDA topic

modeling can be found in [6] and [18].

Once the LDA model is trained over the entire text dataset, a

matrix A ∈ R𝑚×𝑚
is produced where each entry A𝑖 𝑗 is the cosine

similarity measure between document embeddings. This similarity

matrix therefore captures the latent topic distribution over all doc-

uments, which is then leveraged to compute semantic similarities

of paintings for VA RecSys tasks, as explained in the next section.

3.2 Feature learning from image-based
representations of paintings

Visual feature extraction is critical to have a discriminative rep-

resentation of images [29], and it is widely used in several tasks

such as object detection, classification, or segmentation [40]. Tra-

ditional approaches to feature extraction include Harris Corner

Detection [8], or the more advanced version Shi-Tomasi Corner De-

tector [3]. Other approaches have been proposed, such as SURF [28]

or BRIEF [7], but they have been superseded by recent advances

in Deep Learning, in particular in Convolutional Neural Networks

(CNN). Today, image feature extraction techniques are mostly

based on pre-trained CNN architectures such as AlexNet [21],

GoogLeNet [43], and VGG [42]. The winner of the 2015 ImageNet

challenge, ResNet, proposed by He et al. [14] introduced the use of

residual layers to train very deep CNNs, setting a world record of

more than 100 layers. ResNet-50 is the 50-layer version of this archi-

tecture, trained on more than a million images from the ImageNet

database.
2
Thus, it has learned rich feature representations for a

2
http://www.image-net.org

wide range of images and has shown superiority over other pre-

trained models as a feature extractor [4, 17, 23]. We use the ResNet-

50 model pre-trained on ImageNet to extract latent visual features

(image embeddings) from paintings. By passing each painting image

through the network, a convolutional feature map (i.e., a feature

vector representation) is obtained.

Once we extract all image features from the entire dataset, a

matrix A ∈ R𝑚×𝑚
is produced where each entry A𝑖 𝑗 is the cosine

similarity measure between all image embeddings. This similarity

matrix therefore captures the latent visual distribution over all

images, which is then leveraged to compute semantic similarities

of paintings for VA RecSys tasks, as explained in the next section.

3.3 Joint feature learning from visual and
textual representations of paintings

3.3.1 Contrastive Language-Image Pre-training (CLIP). CLIP is a

technique for pre-training a language model on a large dataset of

images and their associated text [37]. Unlike traditional models

that use an image encoder (e.g., a CNN) and a classifier (e.g., a

fully-connected network), CLIP jointly trains an image encoder and

a text encoder to encourage a close embedding space between the

ones that form a pair via contrastive learning. The model predicts

the correct image given a text prompt, and vice versa. During pre-

training, the network learns to generate a shared embedding space

for both image and text inputs, where similar images and captions

are close to each other in the embedding space. The idea is that by

pre-training on this task, the model will learn to understand the

relationship between language and visual concepts, which can then

be fine-tuned for a variety of natural language understanding and

image understanding tasks.

Particularly, given a batch of 𝑀 <image,text> pairs, CLIP is

trained to predict which of the 𝑀 × 𝑀 possible image-text pair-

ings across a batch actually occurred. Thus, the model learns a

multimodal embedding space by jointly training an image encoder,

either a ResNet or a Vision Transformer (ViT), and a text encoder

(a Transformer such as BERT) to maximize the cosine similarity

of the image and text embeddings of the𝑀 real pairs in the batch,

while minimizing the cosine similarity of the embeddings of the

𝑀2
-𝑀 incorrect pairings. Hence, a symmetric cross-entropy loss

is optimized over these similarity scores. In this work, we leveraged

CLIP as a feature extractor to learn a joint embedding space for

images of paintings and their corresponding textual descriptions in

order to uncover the latent semantic relationships between paint-

ings embedded within the two modalities. We use ResNet-50 as our

image encoder and BERT as our text encoder in our CLIP architec-

ture. Once features from both modalities are extracted, a matrix

A ∈ R𝑚×𝑚
can be produced where each entry A𝑖 𝑗 is the cosine

similarity measure between the joint painting embeddings which

is then leveraged to compute semantic similarities of paintings for

VA RecSys tasks. Figure 2 illustrates our multimodal approach to

learn latent semantic representations of paintings with CLIP.

3.3.2 Bootstrapping Language-Image Pre-training (BLIP). BLIP is

also a method for pre-training a neural network that combines

language and image modalities [24]. However, unlike CLIP where a

model is pre-trained by learning to distinguish between the correct

and wrong image-text pairs, BLIP pre-trains a model by learning

http://www.image-net.org
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Cosine similarity matrix
from image embeddings

Cosine similarity matrix
from text embeddings

ResNet-50

Topics Topic proportions and assignments
ALDA ∈ R 𝑚 × 𝑚

AResNet-50 ∈ R 𝑚 × 𝑚

Figure 1: Overview of our unimodal approaches to learn latent semantic representations of paintings: Image-based (top) and
text-based (bottom).

ResNet

BERT

M

M

M

M

M

M

Figure 2: Overview of our multimodal approach with CLIP to learn latent semantic representations of paintings.

to predict an image or a text given the other modality, and makes

sure the model is able to learn from a large dataset with the goal of

bootstrapping the model’s understanding of language and image

relationships. In order to pre-train a unified vision-language model

with both understanding and generation capabilities, BLIP intro-

duces multimodal mixture of encoder-decoder, a multi-task model

which can operate in one of the following three functionalities.

(1) Unimodal encoders, which separately encode image and text.

The image encoder is a ViT and the text encoder is BERT. A [CLS]

token is appended to the beginning of the text input to summarize

the sentence. (2) Image-grounded text encoder, which injects visual

information by inserting a cross-attention layer between the self-

attention layer and the feed forward network for each transformer

block of the text encoder. A special [Encode] token is appended

to the text, and its output embedding is used as the multimodal

representation of the image-text pair. (3) Image-grounded text de-
coder, which replaces the bi-directional self-attention layers in the
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text encoder with causal self-attention layers. A special [Decode]
token is used to signal the beginning of a sequence.

During pre-training, BLIP jointly optimizes three objectives

namely Image-Text Contrastive Loss (ITC), Image-Text Matching

Loss (ITM), and Language Modeling Loss (LM). ITC activates the

unimodal encoder with the aim of aligning the feature space of the

visual and text transformers by encouraging positive image-text

pairs to have similar representations in contrast to the negative

pairs. ITM activates the image-grounded text encoder for a binary

classification task, where the model is asked to predict whether

an image-text pair is positive (matched) or negative (unmatched)

given their multimodal feature. LM activates the image-grounded

text decoder, which aims to generate textual descriptions condi-

tioned on the images. By jointly optimizing these three objectives,

BLIP allows to maximize the similarity between image and text

representation. For the task of painting representation learning, we

leveraged the pre-trained BLIP as a multimodal feature extractor.

Unlike CLIP, BLIP has an ITM head which is known to perform

better at computing image-text similarity [24]. The ITM head uses

cross-attention to fuse image and text features, which can capture

finer-grained similarity compared to the simple cosine similarity

function (used by the ITC loss and CLIP). Thus, we compute ITM

scores for every painting by first extracting multimodal features

and passing them to the ITM head which generates a probability

matching scores for the (image, text) pairs. Once this is done a

matrix A ∈ R𝑚×𝑚
can be produced where each entry A𝑖 𝑗 is the

the probability matching score between the joint painting embed-

dings which is then leveraged to compute semantic similarities of

paintings for VA RecSys tasks. Figure 3 illustrates our multimodal

approach to learn latent semantic representations of paintings with

BLIP.

4 PERSONALIZED RECOMMENDATION OF
PAINTINGS

We study approaches that can learn features from both textual and

visual information of paintings, either independently or jointly.

On the one hand, we use LDA for learning text-based representa-

tions, as it has shown superiority on VA RecSys [47]. On the other

hand, since visual features have been extensively explored in VA

RecSys [15, 19, 31, 48], we study ResNet-50 for learning image-

based representations, which it is considered the state of the art in

prior work [19, 48]. Finally, for joint representation learning, we

study CLIP and BLIP, presented in Section 3.3, which have not been

considered before in the domain of VA RecSys.

4.1 Problem formulation
Let P = {𝑝1, 𝑝2, . . . , 𝑝𝑚} be a set of paintings with their associated

embeddings P∗ = {𝒑
1
,𝒑

2
, . . . ,𝒑𝑚} according to CLIP or BLIP, and

P𝑢 = {𝑝𝑢
1
, 𝑝𝑢

2
, . . . , 𝑝𝑢𝑛 } be the set of paintings a user 𝑢 has rated,

where P𝑢 ⊂ P and 𝜔𝑢 = {𝜔𝑢
1
, 𝜔𝑢

2
, . . . , 𝜔𝑢

𝑛 } are the normalised

ratings
3
that 𝑢 gave to a small set of paintings P𝑢

. Once the dataset

embeddings (latent feature vectors) are learned using the models

(LDA, ResNet, CLIP or BLIP) we compute the similarity matrix for

3
In our application, to be described later, users elicit their preferences in a 5-point scale

rating (higher is better), thus we transform those values into weights 𝜔𝑢
𝑖
∈ [0, 1] for

every painting 𝑝𝑢
𝑖
the user has rated.

all the paintings A as discussed in Section 3. Then, the predicted

score 𝑆𝑢 (𝑝𝑖 ) the user would give to each painting in the collection

P is calculated based on the weighted average distance between

the rated paintings and all other paintings:

𝑆𝑢 (𝑝𝑖 ) =
1

𝑛

𝑛∑︁
𝑗=1

(
𝜔𝑢
𝑗 · A𝑖 𝑗

)
(1)

where A𝑖 𝑗 = 𝑑 (𝒑𝑖 ,𝒑 𝑗 ) is the similarity between embeddings of

paintings 𝑝𝑖 and 𝑝 𝑗 in the computed similarity matrix. The summa-

tion in Equation 1 is taken over all user’s rated paintings 𝑛 = |P𝑢 |.
Once the scoring procedure is complete, the paintings are sorted

and the 𝑟 most similar paintings constitute a ranked recommenda-

tion list. In sum, the VA RecSys task consists of recommending the

most similar paintings to a user based on a small set of paintings

rated before, i.e., the elicited preferences.

4.2 Early vs. Late fusion
Traditionally, late fusion (i.e. at post-hoc) has been preferred over

early fusion (i.e. at the feature level) in previous work because the

fused models can be independent from each other, so each can

use their own features, numbers of dimensions, etc. [38]. However,

recent advances in multimodal representation learning techniques

have shown promising results in several downstream tasks [25].

Thus, we explore whether that jointly learned features can be more

effective at capturing the complex relationships between the differ-

ent modalities and producing better recommendations.

In order to answer our research questions, we study four VA

RecSys engines: the first two engines are combinations of text and

image representations of paintings by fusing independently trained

LDA and ResNet rankings, whichwe refer to as “late fusion engines”.

The other two engines are based on jointly learned embeddings of

text and image representations of paintings using CLIP and BLIP,

which we refer to as “early fusion engines”. For the late fusion

engines, we adopted the reciprocal rank fusion strategy [9] for

combining rankings in information retrieval systems, as it is simple

to use and has been proved effective for VA RecSys tasks [47].

We consider two approaches to late fusion: “partial late fusion”

(or Late-partial) and “total late fusion” (or Late-total). In partial

late fusion we fuse the individual image and text-based rankings

(of 𝑟 paintings each) and keep the top-ranked 𝑟 paintings. In total

late fusion we rank first the whole collection of paintings for each

modality (image and text representations), then fuse the individual

rankings, and finally pick the top 𝑟 paintings. This later approach

tries to promote more painting agreements, thereby encouraging

more consistent fused rankings.

5 DATASET
The dataset used in our study contains 2,368 paintings from The

National Gallery, London.
4
This curated set of paintings belongs

to the CrossCult Knowledge Base.
5
Each painting image is accom-

panied by a set of text-based metadata, which makes this dataset

suitable for testing the proposed feature learning approaches. A

sample data point is shown in Figure 4. For image-based represen-

tation learning, the actual images of paintings are used, whereas

4
https://www.nationalgallery.org.uk/

5
https://www.crosscult.lu/

https://www.crosscult.lu/
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"The Mona Lisa is ...by Italian artist Leonardo da Vinci "

M M

Figure 3: Overview of our multimodal approach with BLIP to learn latent semantic representations of paintings.

for text-based representation learning, we use all available painting

attributes, such as artist name, painting title, technique used, etc. as

well as descriptions provided by museum curators. These descrip-

tions carry complementary information about the paintings, such

as stories and narratives, that can be exploited to better capture the

painting semantics.

5.1 Story groups
The dataset provides 8 curated stories (categories) linked to a few

of the paintings, namely: ‘Women’s lives’, ‘Contemporary style and
fashion’, ‘Water, Monsters and Demons’, ‘Migration: Journeys and
exile’, ‘Death’, ‘Battles and Commanders’, and ‘Warfare’. Figure 5
shows a 2D projection map of the story groups in the dataset using

the non-linear projection t-SNE algorithm [44]. We can see that the

majority of the paintings belong to the ‘uncategorized’ class. These

story groups are meant to provide context to a selected group

of paintings, according to the museum experts who created the

dataset. We can observe from the latent space projections that the

story groups are scattered across the entire dataset, suggesting that

museum curators considered them to be representative examples of

the collection. The map projection also surfaces the complex latent

semantic relationships among the paintings.

5.2 Preprocessing
In order to learn visual features (i.e, extract convolutional feature

maps) with the pre-trained ResNet-50 model and ViT, we used

the actual images of paintings.
6
In order to learn textual features,

the painting metadata were pre-processed: text fields concatena-

tion, removal of punctuation symbols and stop-words, lowercasing,

6
All paintings are available under a Creative Commons (CC) license.

and lemmatization. For the purpose of unimodal semantic repre-

sentation learning using LDA, a “topic coherence” analysis was

conducted. Topic coherence is a commonly used technique to evalu-

ate topic models and select the optimal number of topics that yield

a meaningful representation [18]. Ideally, a good model should gen-

erate coherent topics; i.e the higher the coherence score the better

the model is [35]. Following a coherence analysis the number of

topics in our implementation were set to 10. For more details on

LDA topic coherence we refer the reader to [18] and [35].

5.3 Modality gap
Multimodal models map inputs from different data modalities (e.g.

image and text) into a shared latent representation space [24, 37]. A

recent work by Liang et al. [26] discovered an intriguing geometric

phenomenon of the representation space, where embeddings from

different modalities are located in two completely separate regions

of the embedding space. A systematic analysis demonstrated that

this gap is caused by a combination of model initialization and

contrastive learning optimization [26]. Their work also showed that

varying the modality gap has a significant impact in the model’s

downstream performance. However, they did not evaluate potential

impacts of the modality gap in other models such as BLIP, which is

a multimodal architecture that optimizes not only contrastive loss

(ITC) but also other objectives jointly (ITM and LM). In Figure 6 we

can see that CLIP embeddings adhere to the reported phenomenon

of the modality gap [26] but BLIP embeddings are rather entangled

(i.e., a reduced modality gap).

Postulate 1. A small modality gap has a positive impact on
downstream performance [26], therefore we expect BLIP to achieve
higher user-centred performance than CLIP in VA RecSys tasks.
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 painting_id

 title

 artist

 publication_date

 size_format

 size

000-0349-0000

Master of the Clarisse (possibly Rinaldo da Siena)

Rinaldo da Siena

13th_century

Very Small

Portrait

 technique

description

-

This painting was probably influenced by a

Byzantine icon. It shows the Virgin and Child,

together with images which represent the

Redemption of Man by Christ: the Annunciation and

the Crucifixion. On either side is the Last

Judgement, with trumpeting angels calling people

from their tombs. It may be missing a gable with

the Blessing Redeemer at the top and possibly

wings on either side. 

Figure 4: Sample painting and associated metadata from the National Gallery dataset.

LDA ResNet
Story groups

Text embeddings Image embeddings

Figure 5: Unimodal Latent space projection (t-SNE projection) of the curated story groups.

BLIPCLIP

Text embeddings

Image embeddings

Figure 6: Modality gap in multimodal representation learning, in this case corresponding to CLIP and BLIP embeddings (t-SNE
projection) of paintings.
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6 EVALUATION
The main goal of our evaluation was to understand the user’s per-

ception towards the quality of our studied RecSys engines, and

ultimately to assess which feature learning approach best captures

the semantic relatedness of paintings. We conducted a large-scale

user study, discussed below, that was approved by the Ethics Review

Panel of the University of Luxembourg with ID 22-031.

Apparatus. We created a web application that first collected pref-

erence elicitation ratings from users and then showed a set of VA

recommendations based on their elicited preferences. Then, partici-

pants were provided with one set of recommendations from each

VA RecSys engine at a time (see Figure 7 left). Since participants

could use any device (desktop computer, laptop, or mobile) to com-

plete the study, we used a responsive design. By clicking or tapping

on any image, in both the elicitation and rating screens, a modal

window displays an enlarged version of the image (see Figure 7

right).

Participants. We recruited a large sample of 𝑁 = 100 participants

via the Prolific crowdsourcing platform.
7
We enforced the following

screening criteria for any participant to be eligible: being fluent in

the English language, art is listed among their interests/hobbies,

minimum approval rate of 100% in previous crowdsourcing studies

in the platform, and registration date before January 2022 (i.e.,

participants had been active for at least one year in the platform).

Our recruited participants (60 female, 40 male) were aged 28.55

years (SD=8.1) and could complete the study only once. Most of

them had South African (20%), Portuguese (18%), or Italian (10%)

nationality. The study took 6min on average to complete (SD=3.9)

and participants were paid an equivalent hourly wage of $10/h.

Design. Participants were exposed to all VA engines twice

(within-subjects design), to serve as an attention check and also

to ensure a consistent intra-rater agreement. Five users had a low

intra-rater agreement
8
and thus were excluded from analysis. Our

dependent variables are widely accepted proxies of recommen-

dation quality [36]: Accuracy ("The recommendations match my
personal preferences and interests"); Diversity ("The recommended
paintings are diverse"); Novelty ("The recommender helped me dis-
cover paintings I did not know before"); Serendipity ("I found sur-
prisingly interesting paintings").

Procedure. Participants accessed our web application and entered
their demographics information (age, gender) on a welcome screen.

There, they were informed about the purpose of the study and the

data collection policy.

Then, participants advanced to the preference elicitation screen,

where they were shown one painting at random from each of the

nine curated story groups. They rated each painting in a 5-point

numerical scale (5 is better, i.e. the user likes the painting the most).

Finally, users advanced to the RecSys assessment screen, where

they were shown a set of nine painting recommendations drawn

from each VA RecSys engine. Note that each user initially rated

nine paintings (one from each story group) but recommendations

7
https://www.prolific.co/

8
The difference between ratings for the same ranking was at least 2 points for at least

one of the four dependent variables.

may come from only one or a few story groups, depending on their

elicited preferences. Each set of paintings was rated in a 5-point

Likert scale (1: Strongly disagree, ..., 5: Strongly agree) for each of

the considered dependent variables.

6.1 Results
We investigated whether there is any difference between any of the

four VA RecSys engines, for which we use a linear mixed-effects

(LME) model where each dependent variable is explained by each

engine. Participants are considered random effects.

An LME model is appropriate here because the dependent vari-

ables are discrete and have a natural order. In addition, LME mod-

els are quite robust to violations of several distributional assump-

tions [41].

We fit the LME models (one per dependent variable) and com-

pute the estimated marginal means for specified factors. We then

run pairwise comparisons (also known as contrasts in LME par-

lance) with Bonferroni-Holm correction to guard against multiple

comparisons.

Figure 8 shows the distributions of user ratings for each of the

dependent variables considered. We report below statistical signifi-

cance (𝑝-values) and effect sizes (𝑟 ) to better gauge the differences

between our four VA RecSys engines.

Accuracy analysis. Differences between BLIP and CLIP were

statistically significant (𝑝 < .0001, 𝑟 = 0.28). Differences between

BLIP and both late fusion engines were also statistically significant

(𝑝 = .0001, 𝑟 = 0.24). All other comparisons were not found to be

statistically significant. Effect sizes suggest a moderate practical

importance of the results.

Diversity analysis. Differences between BLIP and CLIP were

statistically significant (𝑝 < .0001, 𝑟 = 0.26). Differences between

BLIP and the partial late fusion engine were statistically significant

(𝑝 = .043, 𝑟 = 0.13). Differences between CLIP and both late fusion

engines were also statistically significant (𝑝 = .043, 𝑟 = 0.14). No

statistically significant differences were found between both late

fusion engines. Effect sizes suggest a small practical importance.

Novelty analysis. No statistically significant differences between

BLIP and CLIP were found. Differences between BLIP and both

late fusion engines were also statistically significant (𝑝 < .01, 𝑟 =

0.22). Differences between CLIP and the partial late fusion engine

were statistically significant (𝑝 = .015, 𝑟 = 0.16). No statistically

significant differences were found between both late fusion engines.

Effect sizes suggest a small to moderate practical importance.

Serendipity analysis. Differences between BLIP and CLIP were

statistically significant (𝑝 < .0001, 𝑟 = 0.29). Differences between

BLIP and both late fusion engines were also statistically significant

(𝑝 < .001, 𝑟 = 0.27). All other comparisons were not found to be

statistically significant. Effect sizes suggest a moderate practical

importance.

Ranking overlap analysis. We conducted an additional analysis

that checked whether our participants did receive truly personal-

ized recommendations. For this, we computed the Intersection over

Union (IoU) and Rank-Biased Overlap (RBO), which are widely used

measures in information retrieval to assess ranking quality [45].

https://www.prolific.co/
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Figure 7: Screenshots of our web application for evaluation, in this case in a desktop browser.
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Figure 8: Distribution of user ratings. Dots denote mean values.

RBO and IoU were calculated in a pairwise manner among all users

exposed to the same engine. Tables 1 and 2 present the results of

this analysis. As shown in the tables, there is little overlap in the

rankings produced by each engine. This analysis thus indicates that

each participant indeed was shown a personalized set of recommen-

dations and that each VA Recsys engine produced very different

rankings.

7 DISCUSSION
To the best of our knowledge, our work is the first to exploit jointly

learned multimodal approaches in VA RecSys, and subjected to a

rigorous user evaluation. Particularly, leveraging joint optimization

objectives such as BLIP set our work apart from previous studies,

which have seemingly limited their scope to benchmarking with

publicly available datasets, without delving deeper into user evalu-

ations. Hence, we believe that our findings will inspire researchers

to further explore multimodal approaches and open a new perspec-

tive for a better representation learning that serves not only the

domain of VA RecSys but also several downstream tasks such as

multimodal classification of paintings or prediction of user ratings

towards artwork, for example.

Our results indicate that early fusion is preferred over late fusion

but only if the latent space of the painting embeddings is entangled,

which is the one provided by BLIP. Our results also show that both

versions of late fusion engines were preferred over CLIP (which

ensures the modality gap). This further complements our previous

knowledge about reduced downstream performance of multimodal

models in varying the modality gap [26]. This phenomenon was re-

ported to be caused by model initialization and contrastive learning

optimization. While this phenomenon was observed across multi-

ple scenarios and benchmarks on publicly available datasets, there

were no concrete recommendations regarding how to modify the

gap and shift the embeddings to improve downstream performance.

Following on this discussion, multimodal architectures that de-

part from solely optimizing contrastive loss, such as BLIP, have not

been studied in VA RecSys before. Hence, our work represents a

significant contribution by extending BLIP to a real world appli-

cation and conducting a large-scale user evaluation to assess its

downstream performance. From our analysis, we believe that the

multimodal representation learning technique employed in BLIP,

which jointly optimizes three objective functions, allows to enhance

model’s understanding of text and image relationships, maximizing

the similarity between these representations. Notably, it helps to

overcome the modality gap and provides better recommendations,

which validates our Postulate 1.

Based on our results, we can also conclude that instead of only

contrastive learning, leveraging a late-total fusion approach (which

ranks the whole database before using reciprocal rank fusion) is

beneficial to generate better recommendations, as it promotes find-

ing more common items. However, we can conclude that the best

strategy for a personalized VA RecSys task is leveraging BLIP, which

allows to jointly learn meaningful latent semantic representations

from image and text modalities. Hence, we can provide affirmative

answers to our initial research questions.
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Table 1: Within-ranking overlap results, showing Mean ± SD of IoU and RBO measures.

Late-partial Late-total CLIP BLIP

IoU 0.09 ± 0.15 0.09 ± 0.15 0.09 ± 0.15 0.08 ± 0.17

RBO 0.10 ± 0.16 0.10 ± 0.16 0.10 ± 0.17 0.09 ± 0.16

Table 2: Between-ranking overlap results, showing Mean ± SD of IoU and RBO measures.

Late-partial Late-total CLIP BLIP

Late-partial 0.14 ± 0.14 0.01 ± 0.02 0.00 ± 0.01

Late-total 0.08 ± 0.11 0.00 ± 0.01 0.00 ± 0.00

CLIP 0.01 ± 0.01 0.00 ± 0.01 0.00 ± 0.01

BLIP 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.01

7.1 Limitations and future work
Wehave analysed a rich dataset with joint image and text modalities,

which is a good representative of the VA domain. However, in

practice it is difficult to get access to such datasets from other

museums and galleries, therefore it would be interesting in the

future to study the performance of our multimodal approaches on

other art collections.

We also acknowledge that participants in a crowdsourcing study

might not be intrinsically motivated, as they are rewarded with

monetary incentives to take part in the study. However, to account

for such a potential bias, among other strict screening criteria, we se-

lected a large pool of participants, enforced that art would be listed

among their interests/hobbies, and ensured that all their previous

crowdsourcing studies were successfully approved. Furthermore,

participants were considered as a random effect in our statistical

analysis. Nonetheless, as a follow-up of this work, conducting a

museum study with in-situ visitors may be beneficial to have a

more accurate insight into the representation power of our models.

8 CONCLUSION
We have presented a novel approach to personalized VA recommen-

dation grounded on multimodal representation learning. We ex-

plored different fusion strategies for image and textmodalities by de-

veloping four different RecSys engines. Two engines were combina-

tions of independently trained LDA and ResNet rankings, which we

refer to as “late fusion engines”, whereas the other two engines were

based on jointly learned embeddings of images and textual descrip-

tions of paintings using CLIP and BLIP, which we refer to as “early

fusion engines”. We then conducted a large-scale user study to eval-

uate the performance of each engine. Our results indicate that BLIP

produces the best recommendation for users, followed by both late

fusion approaches. Our data, code, and models are available as open-

source software at https://github.com/Bekyilma/MRL_VA_RecSys.
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