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Abstract. We study T. Willwacher’s twisting endofunctor tw in the category of dg prop(erad)s

P under the operad of (strongly homotopy) Lie algebras, i : Lie → P. It is proven that if P
is a properad under properad of Lie bialgebras Lieb, then the associated twisted properad twP
becomes in general a properad under quasi-Lie bialgebras (rather than under Lieb). This result
implies that the cyclic cohomology of any cyclic homotopy associative algebra has in general an

induced structure of a quasi-Lie bialgebra. We show that the cohomology of the twisted properad

twLieb is highly non-trivial — it contains the cohomology of the so called hairy graph complex
introduced and studied recently in the context of the theory of long knots and the theory of

moduli spaces Mg,n of algebraic curves of arbitrary genus g with n punctures.

Using a polydifferential functor from the category of props to the category of operads, we

introduce and study two new twisting endofunctors, one in the category dg prop(erad)s P under
the minimal resolution of Lieb, and one for the involutive version of Lieb. We compute the

cohomology of the associated deformation complexes, and discuss their applications in string

topology.
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1. Introduction

In this paper we study some new aspects of a well-known twisting endofunctor tw [W1] in a certain
subcategory of the category of properads, and introduce a new one. Both of them have applications
in several areas of modern research — string topology, the theory of moduli spaces of algebraic
curves, the theory of cyclic strongly homotopy associative algebras etc — which we discuss below.

Let P be a properad under the operad Lied of (degree d ∈ Z shifted) Lie algebras, that is, one
equipped with a morphism

i : Lied −→ P.

Thomas Willwacher introduced in [W1] a twisting endofunctor

tw : P −→ twP

in the category of such properads; the twisted properad twP is obtained from P by adding to
it a new generator degree d generator • with no inputs and precisely one output encoding the
defining property of a Maurer-Cartan element of a generic Lied-algebra. This twisting construction
originated in the formality theory of the operad of chains of little disks operad [Ko2, LV, W1] and
found many other important applications including the Deligne conjecture [DW], the homotopy
theory of configuration spaces [CW] and the theory of moduli spaces of algebraic curves [MW1,
Me2]. The twisted properad comes equipped with a canonical morphism

Lied −→ twP

so the twisting construction is indeed an endofunctor in the category PROPLied
of operads under

Lied. It can be naturally extended [W1] to the category PROPHolied
of properads under Holied,

the minimal resolution of Lied. It is proven in [DW] that twHolied is quasi-isomorphic to Lied; the
cohomologies of twisted versions of some other classical operads under Lied have been computed
in [DW, DSV].

The main purpose of this paper is to study the restriction of T. Willwacher’s twisting endofunctor
tw,

tw : PROPLiebc,d
−→ PROPLied

to the subcategory PROPLiebc,d
⊂ PROPLied

of properads under the properad Liebc,d of (degree
shifted) Lie bialgebras, i.e. the ones which come equipped with a non-trivial morphism of properads,

(1) i : Liebc,d −→ P.

and then to appropriately modify tw⇝ Tw such that the new functor Tw which an endofuntor of
PROPLiebc,d

. Everything will work, of course, in the category PROPHoliebc,d
of properads under

Holiebc,d, the minimal resolution of Liebc,d.
The notion of Lie bialgebra was introduced by Vladimir Drinfeld in [D1] in the context of the theory
of Yang-Baxter equations and the deformation theory of universal enveloping algebras. This notion
and its involutive version have since found many applications in algebra, string topology, contact
homology, theory of associators and the theory of Riemann surfaces with punctures. The properad
Liebc,d controls Lie bialgebras with Lie bracket of degree 1− d and Lie-cobracket of degree 1− c;
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the properads Liebc,d with the same parity of c+ d ∈ Z are isomorphic to each other up to degree
shift so that there are essentially two different types of such properads, even and odd ones.

In general, given P ∈ PROPLiebc,d
, the associated twisted properad twP is no more a properad

under Liebc,d — a generic Maurer-Cartan element of the Lie bracket need not to respect the
Lie cobracket. Surprisingly enough, the cohomology of any twisted properad twP always comes
equipped with an induced from i morphism of properads,

(2) iq : qLiebc−1,d −→ H•(twP),

where qLiebc−1,d is the properad of (degree shifted) quasi-Lie bialgebras which have been also
introduced by Vladimir Drinfeld in [D1] in the context of the theory of quantum groups. The
map iq is described explicitly in Theorem 3.4 below. In the special case when P is the properad
of ribbon graphs RGrad introduced in [MW1], the map iq has been found (in a slightly different
but equivalent form) in [Me2]. As twRGrad acts canonically (almost by its very construction),
on the reduced cyclic cohomology H•(Cyc(A)) of an arbitrary cyclic strongly homotopy associa-
tive algebra A (equipped with the degree −d scalar product), we deduce a new observation that
H•(Cyc(A)) is always a quasi-Lie bialgebra, see §3.7 for full details. It is worth noting that the
twisted properad of ribbon graphs twRGrad controls [Me2] the totality of compactly supported

cohomology groups
∏

n≥1,2g+n≥3 H
•−d(2g−2+n)
c (Mg,n) of moduli spaces Mg,n of genus g algebraic

curves with m boundaries and n punctures, and the associated map

iq : qLiebd−1,d −→ H(twRGrad) ≃
∏

n≥1,2g+n≥3

Hc(Mg,n)

is non-trivial on infinitely many elements of qLieb−1,0 (see §3.9 in [Me2]).

The deformation complex

Def
(
qLiebc−1,d

iq−→ H•(twP)
)

of the morphism iq has, in general, a much richer cohomology than the complex Def(Lied
i−→ twP);

moreover, that cohomology comes always equipped with a morphism of cohomology groups,

H•(GC≥2
c+d−1) −→ H•

(
Def

(
qLiebc−1,d

iq−→ H•(twP)
))

where GC≥2
n is the famous Maxim Kontsevich graph complex [Ko1] (more precisely, its extension

allowing graphs with bivalent vertices). The case c + d = 3 is of special interest as the dg Lie

algebra H•(GC≥2
2 ) contains the Grothendieck–Teichmüller Lie algebra [W1]. The case c+ d = 2 is

also of interest as it corresponds to the odd Kontsevich graph complex H•(GC≥2
1 ) which contains

a rich subspace generated by trivalent graphs.

Another important example of a dg properad in the subcategory PROPLiebc,d
is the properad

Liebc,d itself; the cohomology H•(twLiebc,d) of the associated twisted properad is highly non-
trivial: we show in §3.5 that, for any natural number N ≥ 1, there is an injection of cohomology
groups,

H•(HGCN
c+d) −→ H•+dN (twLiebc,d)

where HGCN
d is a version of the Kontsevich graph complex GCd withN labelled hairs which has been

introduced and studied recently in the context of the theory of moduli spaces Mg,n of algebraic
curves of arbitrary genus g with n punctures [CGP] and the theory of long knots [FTW].

The functor tw is not an endofunctor of the category PROPHoliebc,d
and, contrary to the canonical

projection twHolied → Holied, the analogous “forgetful” map

twHoliebc,d −→ Holiebc,d

is not a quasi-isomorphism (as the above result with the hairy graph complex demonstrates). In
§4 we introduce a new twisting endofunctor

Tw : PROPHoliebc,d
−→ PROPHoliebc,d
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which is an enlargement of tw in the sense of the number of new generators (hence the notation) and
which fixes both these “not”s . The key point is to introduce the correct notion of a Maurer-Cartan
element of a generic Holiebc,d-algebra. The idea is to use a polydifferential functor [MW1]

O : Category of dg props −→ Category of dg operads
P −→ OP

whose main property is that, given any dg prop P and a representation of P in a dg vector space
V , the dg operad OP comes equipped canonically with an induced representation in the graded
commutative tensor algebra ⊙•V given in terms of polydifferential — with respect to the standard
multiplication in ⊙•V — operators. The point is that the dg operad OHoliebc,d comes equipped
with a highly non-trivial morphism of dg properads which was discovered in [MW1],

Holie+c+d −→ OHoliebc,d,

and whose image brings into play all generators of the properad Holiebc,d, not just the ones
spanning the sub-properad Holied of Holiebc,d. Here the symbol + means a slight extension of
Holied which take cares about deformations of the differential in representation spaces [Me1].
It makes sense to talk about Maurer–Cartan elements of representations of Holie+c+d as usual,

and hence it makes sense to talk about Maurer–Cartan elements γ ∈ ⊙•≥1(V [c]) of an arbitrary
Holiebc,d-algebra V via the above morphism. Rather surprisingly, these MC elements γ can be used
to twist not only the dg operad OHoliebc,d but the dg properad Holiebc,d itself giving thereby rise
to a new twisting endofunctor Tw on the category PROPHoliebc,d

! As explained in §4, the twisting
endofunctor Tw adds to a generic properad P underHoliebc,d infinitely many new (skew)symmetric
generators,

•
1 2 . . . m

= (−1)c|σ|
•

σ(1) σ(2)
. . .

σ(m)

∀σ ∈ Sm, m ≥ 1.

with the m = 1 corolla • corresponding to the original functor tw. We show in §4.7 that the

quotient of TwHoliebc,d by the ideal generated by • gives us a dg free properad closely related
to the properad of strongly homotopy triangular Lie bialgebras.

It is proven in §4 that the natural projection

TwHoliebc,d −→ Holiebc,d

is a quasi-isomorphism. We also prove for any P ∈ PROPHoliebc,d
the dg Lie algebra

Def(Holiebc,d
i→ P) controlling deformations of the given morphism i : Holiebc,d → P acts on

TwP by derivations. In the case P = Holiebc,d the associated complex

Def(Holiebc,d
Id→ Holiebc,d)

has cohomology equal (up to one rescaling class) to H•(GC≥2
c+d+1) [MW2] so that, for any dg

properad P under Holiebc,d there is always a morphism of cohomology groups

H•(GC≥2
c+d+1) −→ H•(Def(Holiebc,d

i→ P))

and hence an action of H•(GC≥2
c+d+1) on the cohomology of the twisted dg properad TwP by

derivations (which can be in concrete cases homotopy trivial).

A similar trick via the polydifferential functor O works fine in the case of strongly homotopy
involutive Lie bialgebras; we denote the associate properad by Lieb⋄c,d and its minimal resolution

by Holieb⋄c,d. There is again a highly non-trivial morphism of dg properads [MW1],

Holie⋄+c+d → OHolieb⋄c,d,

where Holie⋄+ is a diamond extension of Holied which was introduced and studied in [CMW].
Maurer–Cartan elements of Holie⋄+-algebras are defined in the standard way so that the above
morphism of properads can be immediately translated into the notion of Maurer–Cartan element
of a Holieb⋄c,d-algebra. However this time we obtain essentially nothing new: this approach just
re-discovers the notion which has been introduced earlier in general in [CFL], and in the special
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case of Lieb⋄c,d-algebras of cyclic words in [B1, B2]. Therefore the diamond extension Tw⋄ of
the twisting endofunctor Tw from §3 gives us essentially nothing new as well: we obtain just a
properadic incarnation of the twisting constructions in [B1, B2, CFL]. This incarnation fits nicely
the beautiful approach to string topology developed in [NW] via the so called partition functions
of closed manifolds. Full details are given in §5.

Notation. We work over a field K of characteristic zero. The set {1, 2, . . . , n} is abbreviated
to [n]; its group of automorphisms is denoted by Sn; the trivial (resp., sign) one-dimensional

representation of Sn is denoted by 11n (resp., by sgnn). We often abbreviate sgnd
n := sgn

⊗|d|
n ,

d ∈ Z. The cardinality of a finite set A is denoted by #A.

We work throughout in the category of Z-graded vector spaces over a field K of characteristic
zero. If V = ⊕i∈ZV

i is a graded vector space, then V [d] stands for the graded vector space with
V [d]i := V i+d; the canonical isomorphism V → V [d] is denoted by sd. for v ∈ V i we set |v| := i.

For a prop(erad) P we denote by P{d} a prop(erad) which is uniquely defined by the following
property: for any graded vector space V a representation of P{d} in V is identical to a represen-
tation of P in V [d]; in particular, one has for an endomorphism properad EndV {−d} = EndV [d].
Thus a map P{d} → EndV is the same as P → EndV [d] ≡ EndV {−d}. The operad controlling
Lie algebras with Lie bracket of degree −d is denoted by Lied+1 while its minimal resolution by
Holied+1; thus Lied+1 is equal to Lie{d} if ones uses the standard notation Lie := Lie1 for the
ordinary operad of Lie algebras.

We often used the following elements∮
123

:=

3∑
k=1

(123)k ∈ K[S3], AltdSn :=
∑
σ∈Sn

(−1)d|σ|σ ∈ K[Sn]

as linear operators on S3- and, respectively, Sn-modules.
Acknowledgement. I am grateful to the referee for useful comments and suggestions.

2. Twisting of operads under Lied — an overview in pictures

2.1. Introduction. This section is a more or less self-contained exposition of Thomas
Willwacher’s construction [W1] of the twisting endofunctor in the category of operads under the
operad of Lie algebras. For purely pedagogical purposes, we consider here a new intermediate step
based on the “plus” endofunctor from [Me1]. We give most of the necessary details (including
elementary ones) with emphasis on the action of the deformation complexes on twisted operads.
Many calculations in the later sections, where we discuss some new material, are more tedious but
analogous to the ones reviewed here.

2.2. Reminder about Holied. Recall that the operad of degree shifted Lie algebras is defined,
for any integer d ∈ Z, as a quotient,

Lied := Free⟨e⟩/⟨R⟩,
of the free prop generated by an S-module e = {e(n)}n≥2 with all e(n) = 0 except1

e(2) := sgnd
2 ⊗ 111[d− 1] = span

〈
•

21

= (−1)d •
12

〉
modulo the ideal generated by the following relation

(3)

∮
123

•• 3
21

≡ •• 3
21

+
•• 2
13

+
•• 1
32

= 0.

1When representing elements of all operads and props below as (decorated) graphs we tacitly assume that all

edges and legs are directed along the flow going from the bottom of the graph to the top.
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Its minimal resolution Holied is a dg free operad whose (skew)symmetric generators,

(4)
. . .

1 2 3 n−1 n

• = (−1)d
. . .

σ(1) σ(2) σ(n)

• , ∀σ ∈ Sn, n ≥ 2,

have degrees 1 + d− nd. The differential in Holied is given by

(5) δ
. . .

1 2 3 n−1 n

• =
∑
A⊊[n]
#A≥2

±
•

...

. . .︸ ︷︷ ︸
[n]\A

•︸ ︷︷ ︸
A

If d is even, all the signs above are equal to −1.

2.3. “Plus” extension. We also consider a dg operad Holieb+d which is an extension of Holiebd

by an extra degree 1 generator • and the differential given by an above formula with the sum-

mation running over all possible non-empty subsets A ⊂ [n].

More generally, there is an endofunctor on the category of dg props (or dg operads) introduced in
[Me1]

+ : category of dg props −→ category of dg props
(P, ∂) −→ (P+, ∂+)

defined as follows. For any dg prop P, let P+ be the free prop generated by P and one other

operation • of arity (1, 1) and of cohomological degree +1. On P+ one defines a differential ∂+

by setting its value on the new generator by

∂+ • := − •
•

and on any other element a ∈ P(m,n) (which we identify pictorially with the (m,n)-corolla whose
vertex is decorated with a) by the formula

(6) ∂+ ◦
. . .1 2 m

. . .
1 2 n

:= ∂ ◦
. . .1 2 m

. . .
1 2 n

−
m−1∑
i=0

◦
.. •

i+1

..1 i m

. . .
1 2 n

+ (−1)|a|
n−1∑
i=0

◦
.. •

i+1

..
1 i n

. . .1 2 m−1 m

.

where ∂ is the original differential in P. The dg prop (P+, ∂+) is uniquely characterized by the
property: there is a one-to-one correspondence between representations

ρ : P+ −→ EndV
of (P+, ∂+) in a dg vector space (V, d), and representations of P in the same space V but equipped

with a deformed differential d+ d′, where d′ := ρ(•).

2.4. From morphisms Holie+d to twisted morphisms from Holied. Given any dg operad
(A = {A(n)}n≥0, ∂), it is well-known that any element h ∈ A(1) defines a derivation Dh of the
(non-differential) operad A by the formula analogous to (6),

Dha = h ◦1 a− (−1)|h||a|
n∑

i=1

a ◦i h, ∀ a ∈ A(n).

Moreover, if |h| = 1 and ∂h = −h ◦1 h, then the operator

∂� := ∂ +Dh

is also a differential in A (which acts on h by ∂�h = h ◦1 h). Assume we have a morphism of dg
operads

(7) g+ : (Holie+d , δ
+) −→ (A, ∂)
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Then the element h := g+(•) satisfies all the conditions specified above so that the sum

∂� := ∂ +D
g+(•)

is a differential in A. Hence we have the following

2.4.1. Proposition. For any morphism of dg operads (7) there is an associated morphism of dg
operads,

g : (Holied, δ) −→ (A, ∂�)

given by the restriction of g+ to the generators of Holied.

Proof. Abbreviating Cn :=

(
•

1 2
...

n

)
, we have for any n ≥ 2,

∂�g(Cn) ≡ ∂�g
+(Cn) = ∂g+(Cn) +D

g+(•)(Cn) = g+(δ+Cn) +D
g+(•)(Cn) = g(δCn). □

2.5. Twisting of Holied by a Maurer-Cartan element. Let t̃wHolied be a dg free operad
generated by degree 1 + d − nd corollas (4) of type (1, n) with n ≥ 2, and also by an additional
corolla • of type (1, 0) and of degree d. The differential is defined on the (1, n ≥ 2) generators
by the standard formula (5), while on the new generator it is defined as follows

(8) δ • = −
∑
k≥2

1

k! ...︸ ︷︷ ︸
k

•

• • •

2.5.1. Lemma. δ2 = 0, i.e. it is indeed a differential in t̃wHolied.

Proof. We have (assuming that d is even to simplify signs)

δ2 • = −
∑
k≥2

1

k!
δ


...︸ ︷︷ ︸

k

•

• • •



= +
∑
k≥2

1

k!

 ∑
k=k′+k′′

k′≥2,k′′≥1

k!

k′!k′′!
...

...︸ ︷︷ ︸
k′

︸ ︷︷ ︸
k′′

•

•

• •

• •

−
∑
k≥2

1

k!

∑
l≥2

k

l!
...

...︸ ︷︷ ︸
l

︸ ︷︷ ︸
k−1

•

•

• •

• •

 = 0,

where the first summand comes from (5) and the second one from (8). □

A representation

ρ : t̃wHolied −→ EndV
of t̃wHolied in a dg (appropriately filtered) vector space (V, d) is given by aHolied-algebra structure
{µn}n≥1 on V ,

mu1 := d, µn := ρ

(
•

1 2
...

n

)
: ⊙n(V [d]) → V [d+ 1], n ≥

together with a special element m := ρ( • ) satisfying the equation (a filtration on V is assumed to

be such that this infinite in general sum makes sense)

dm+
∑
k≥2

1

k!
µk(m, . . . ,m) = 0.

Such an element is called the Maurer-Cartan element of the given Holied-algebra structure on V .
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2.5.2. Proposition. There is a morphism of dg operads

c+ : (Holie+d , δ
+) −→ (t̃wHolied, δ)

given on the generators as follows:

(9) • c+−→
∑
k≥1

1

k! 1 ...︸ ︷︷ ︸
k

•

• • •
,

•

1 2
...

n

c+−→
∑
k≥0

1

k! 1 2
...

n
...︸ ︷︷ ︸

k

•

• • •
∀n ≥ 2.

Proof. One has to check that δ ◦ c+ = c+ ◦ δ+. One has (assuming for simplicity of signs again
that d is even)

δ ◦ c+( • ) =
∑
k≥1

1

k!
δ


1 ...︸ ︷︷ ︸

k

•

• • •

 = −
∑
k≥1

1

k!

 ∑
k+1=k′+k′′
k′≥2,k′′≥0

k!

k′!k′′!
1 ...

...︸ ︷︷ ︸
k′

︸ ︷︷ ︸
k′′

•

•

• •

• •

+
∑

k=k′+k′′
k′,k′′≥1

k!

k′!k′′!
1

...

...︸ ︷︷ ︸
k′

︸ ︷︷ ︸
k′′

•

•

• •

• •

+
∑
k≥1

1

k!

∑
l≥2

k

l!
1 ...

...︸ ︷︷ ︸
l

︸ ︷︷ ︸
k−1

•

•

• •

• •



= −
∑

k′,k′′≥1

1

k′!k′′!
1

...

...︸ ︷︷ ︸
k′

︸ ︷︷ ︸
k′′

•

•

• •

• • = −c+
(

•
•
)

= c+ ◦ δ+
(
•
)
.

Similarly one checks the required equality for any n ≥ 2

δ ◦ c+
(

•

1 2
...

n

)
=
∑
k≥0

1

k!
δ


1 2

...
n

...︸ ︷︷ ︸
k

•

• • •

 =−
∑
k≥1

1

k!

 ∑
k=k′+k′′

k′≥0,k′′≥1

k!

k′!k′′!
1
...

n

...

...︸ ︷︷ ︸
k′

︸ ︷︷ ︸
k′′

•

•

• •

• •

+
∑

k=k′+k′′
k′≥1,k′′≥0

k!

k′!k′′!

n∑
i=1 i

...
...

...︸ ︷︷ ︸
k′

︸ ︷︷ ︸
k′′

︸︷︷︸
[n]\i

•

•

• •

• •

−
∑
k≥2

1

k!

 ∑
k=k′+k′′

k′≥2,k′′≥0

k!

k′!k′′!

n∑
i=1

n1
... ...

...︸ ︷︷ ︸
k′

︸ ︷︷ ︸
k′′

•

•

• •

• •



+
∑
k≥1

1

k!

∑
l≥2

k

l!
n1

... ...

...︸ ︷︷ ︸
l

︸ ︷︷ ︸
k−1

•

•

• •

• •

−
∑
k≥0

1

k!

∑
k=k′+k′′
k′,k′′≥0

k!

k′!k′′!

∑
[n]=I′⊔I′′
#I′,#I′′≥2

...

...
...

...︸ ︷︷ ︸
k′

︸ ︷︷ ︸
k′′

︸︷︷︸
I′′ ︸︷︷︸

I′

•

•

• •

• •

= −c+

 •
•

1 2
...

n

+

n∑
i=1

i

•

1 •2
... ...

n

− 0 + c+

(
δ

•

1 2
...

n

)
= c+

(
δ+

•

1 2
...

n

)
.

□

Hence by Proposition 2.4.1, the differential in the operad t̃wHolied can be twisted,

δ → δ� = δ +D
c+( • )

.

The operad t̃wHolied equipped with the twisted differential δ� is denoted from now on by twHolied.
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2.5.3. Definition-proposition. The data twHolied := {twHolied(n)}n≥0, δ�) is called the
twisted operad of strongly homotopy Lie algebras. It comes equipped with a monomorphism

c : (Holied, δ) −→ (twHolied, δ�)

given on the generators of Holied by the second expression in formula (9).

2.6. Twisting of operads under Holied [W1]. Let (A, ∂) be a dg operad equipped with a
non-trivial morphism of operads

i : Holiebd −→ A
Such an operad is called an operad under Holied. Generic elements of A = {A(n)}n≥0 are denoted
in this paper as decorated corollas with, say, white vertices (to distinguish them from generators
of Holied),

. . .
1 2 3 n−1 n

◦ ∈ A(n), n ≥ 1.

The images of the generators (4) of Holied under the map i are denoted by decorated corollas with
vertices shown as ⊚ (to emphasize the special status of these elements of A),

. . .
1 2 3 n−1 n

⊚• := i

(
. . .

1 2 3 n−1 n

•

)
∈ A(n), n ≥ 2.

It is worth noting that some of these elements can stand for the zero vector in A(n) as we do not
assume in general that the map i is an injection on every generator.

We define a dg operad t̃wA = {t̃wA(n)}n≥0 as an operad generated freely by A and one new

generator • of type (1, 0) and of cohomological degree d. The differential ∂ in t̃wA is equal to
∂ when acting on elements of A, and its action on the new generator is defined by

(10) ∂ • = −
∑
k≥2

1

k! ...︸ ︷︷ ︸
k

⊚•

• • •

There is a chain of operadic morphisms,

i+ : (Holie+d , δ
+)

c+−→ (t̃wHolied, δ)
i−→ (t̃wA, ∂)

where the map i is extended to the extra generator as the identity map.

Using Proposition 2.4.1, one concludes that the differential ∂ in t̃wA can be twisted,

∂ → ∂� := ∂ +D
i+( • )

This makes the S-module t̃wA into a new dg operad denoted from now on by twA.

2.6.1. Definition-proposition. For any dg operad (A, δ) underHolied, the associated dg operad

twA := {twA(n), ∂�)}n≥0

is called the twisted extension of A or the twisted operad of A. There is

(i) a morphism of dg operads

ι : (Holied, δ) −→ (twA, ∂�)

which factors through the composition

(Holied, δ)
c−→ (twHolied), δ�)

tw(i)−→ (twA, ∂�)

and hence is given explicitly by

(11)
. . .

1 2 3 n−1 n

• ι−→
∑
k≥0

1

k!
1 2

...
n

...︸ ︷︷ ︸
k

⊚•

• • •
∀ n ≥ 2.
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(ii) a natural epimorphism of dg operads

p : (twA, ∂�) −→ (A, ∂)

which sends the extra generator • to zero.

2.6.2. Proposition [DW]. The endofunctor tw in the category of operads under Holied is exact,
i.e. any diagram

Holied −→ A g−→ A′

with g being a quasi-isomorphism, the map twg in the associated diagram

Holied −→ twA tw(g)−→ twA′

is also a quasi-isomorphism.

2.7. An action of the deformation complex of Holied
i→ A on twA. Given a dg operad

(A, ∂) under Holied,

i : Holiebd −→ A
•

1 2
...

n

−→ ⊚•

1 2
...

n

Consider a dg Lie algebra controlling deformations of the morphism i (see [MeVa] for several
equivalent constructions of such a dg Lie algebra),

Def
(
Holied

i→ A
)
=
∏
n≥2

A(n)⊗Sn sgn |d|
n [d(1− n)]

Its Maurer-Cartan elements are in 1-1 correspondence with morphisms Holied → A which are
deformations of i; in particular the zero MC element corresponds to i itself. An element γ of the
above complex can be represented pictorially as a collection of (1, n)-corollas,

γ = { ︸ ︷︷ ︸
n

⊛

... }n≥2,

of corollas whose vertices are decorated with elements of A(n)⊗Sn sgn
|d|
n and whose input legs are

(skew)symmetrized (so that we can omit their labels); the degrees of decorations of vertices are
shifted by d(1− n). To distinguish these elements from the generic elements of A as well as from
the images of Holied-generators under i, we denote the vertices of such corollas from now on by
⊛. A formal sum of such corollas is homogeneous of degree p if and only if the degree of each
contributing (1, n)-corolla is equal to p + d − dn. The differential δ in the deformation complex

Def
(
Holied

i→ A
)
can then be given explicitly by

(12) δ ︸ ︷︷ ︸
n

⊛

... = ∂ ︸ ︷︷ ︸
n

⊛

... +
∑

[n]=[n′]⊔[n′′]
n′≥2,n′′≥1

± ...

...︸ ︷︷ ︸
n′

︸ ︷︷ ︸
n′′

⊚•

⊛ ∓ (−1)|⊛| ...

...︸ ︷︷ ︸
n′

︸ ︷︷ ︸
n′′

⊛

⊚•


where the rule of signs depends on d and is read from (5); for d even the first ±-symbol is +1,
while the second one is −1.

Let (Der(twA), [ , ]) be the Lie algebra of derivations of the non-differential operad twA. The
differential ∂� in twA is, of course, its MC element and hence makes Der(twA) into a dg Lie algebra
with the differential given by the commutator [∂�, ].
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2.7.1. Proposition. There is a canonical morphism of dg Lie algebras

(13)
Φ : Def

(
Holied

i→ A
)

−→ Der(twA)

γ −→ Φγ

where the derivation Φγ is given on the generators by

Φγ : twA −→ twA

• −→
∑
k≥2

1− k

k! ...︸ ︷︷ ︸
k

⊛

• • •

◦

1 2
...

n

−→
∑
k≥1

1

k!

−
⊛

• •...︸ ︷︷ ︸
k

◦

1 2
...

n

+(−1)|⊛||◦|
n∑

i=1 i • •...︸ ︷︷ ︸
k

◦

1 ⊛2
... ...

n


Proof. Any derivation of twA is uniquely determined by its values on the generators, i.e. on •

and on every element
◦

1 2
...

n

of A. The first value can be chosen arbitrary, while the second ones

are subject to the condition that they are derivations of the operad structure in A; as Φγ applied

to
◦

1 2
...

n

is precisely of the form Dh discussed §2.4, we conclude that the above formulae do

define a derivation of twA as a non-differential operad. Hence it remains to show that Φγ respects
differentials in both dg Lie algberas, that is, satisfies the equation

(14) Φδγ = [∂�,Φγ ].

It is straightforward to check that the operator equality (14) holds true when applied to generators
of twA if and only if one has the equality,

∑
k≥1

1

k! ...︸ ︷︷ ︸
k

(δ⊛)

• • • =
∑
k≥1

...︸ ︷︷ ︸
k

(∂�⊛)

• • • +
∑
k≥1
l≥2

(−1)|⊛|

k!l!

⊚•
• •...︸ ︷︷ ︸

k

⊛

• •
...

•︸ ︷︷ ︸
l

which is indeed the case due to (12). The compatibility of the map Φ with Lie brackets is almost
obvious. □

Thus the Lie algebra H•(Def(Holied → A)) acts on the cohomology of the twisted operad twA by
derivations. For some operads (see Example in §2.10) below) this cohomology Lie algebra can be
extremely rich and interesting.

2.8. Twisting of Lied. Assume, in the above notation, that A is Lied and the morphism

i : Holied −→ Lied
is the canonical quasi-isomorphism. Then twLied is a dg operad generated by the degree 1 − d

corolla •

1 2

= (−1)d •

2 1

(modulo the Jacobi relations) and the degree d (1, 0)-corolla • . The

twisted differential δ� is trivial on the first generator (due to the Jacobi identities)

δ�
•

1 2

≡
•

•

1 2

• + (−1)d
•

•

1 •
2

+
•

•

2 •
1

= 0,

while it acts on the second generator by

δ� • =
1

2
•

• •
.
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The twisted morphism tw(i) : Lied −→ twLied becomes in this case the obvious inclusion. This
example is important for understanding those twisted operads twA for which the map Holied → A
factors through the above projection,

Holied −→ Lied −→ A.

We call such dg operads operads under Lied. The deformation complex of the epimorphism i has
almost trivial cohomology, H•(Def(Holiebd → Lied)) = R[−1]; the only non-trivial cohomology
class acts on twLiebd by rescaling its generators.

2.9. Twisting of (prop)operads under Lied. Let (A, ∂) be a dg operad equipped with an
operadic morphism

ı : (Lied, 0) −→ (A, ∂)

•
21

−→ ⊚•

1 2

where Lied is understood as a differential operad with the trivial differential. Then (twA, ∂�) is

an operad freely generated by A and one new generator • of degree d. The differential ∂� acts,

by definition, on an element a of A(n) (identified with the a-decorated (1, n)-corolla) by a formula
similar to (6)

(15) ∂�
◦

1 2
...

n

:= ∂
◦

1 2
...

n

+
⊚•

•◦

1 2
...

n

− (−1)|a|
n∑

i=1
i •

◦

1 ⊚•2
... ...

n

and on the extra generator as follows

(16) ∂� • =
1

2
⊚•

• •
.

By Proposition 2.6.2, the canonical epimorphism

twHolied −→ twLied
is a quasi-isomorphism. Moreover, it is proven in [DW] that the natural projections,

(17) twHolied −→ Holied, twLied −→ Lied
are quasi-isomorphisms as well.

2.9.1. Example: Twisting of Ass. The operad of associative algebras Ass is obviously an
operad under Lie1 and hence can be twisted. It is proven in [CL] that the natural projection

twAss −→ Ass

is a quasi-isomorphism.

2.10. Example: M. Kontsevich’s operad of graphs. Here is an example of the twisting
procedure used in [W1] to reproduce an important dg operad of graphs Graphsd which has been
invented by M. Kontsevich in [Ko2] in the context of a new proof of the formality of the little disks
operad, and which was further studied in [LV, W1]. By a graph Γ we understand a 1-dimensional
CW complex whose 0-cells are called vertices and 1-cells are called edges; the set of vertices of Γ
is denoted by V (Γ) and the set of edges by E(Γ). Let Grad(n), d ∈ Z, stand for the graded vector
space generated by graphs Γ such that

(i) Γ has precisely n vertices which are labelled, that is an isomorphism V (Γ) → [n] is fixed;
(ii) Γ is equipped with an orientation which for d even is defined as an ordering of edges (up

the sign action of S#E(Γ)), while for d odd it is defined as a choice of the direction on each
edge (up to the sign action of S2 whose generator flips the direction).

(iii) Γ is assigned the cohomological degree (1− d)#E(Γ).
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For example,

1 2
◦ ◦ ∈ Grad(2),

1

2

3
◦

◦

◦
◦◦

◦
∈ Grad(3)

where for d odd one should assume a choice of directions on edges (defined up to a flip and
multiplication by −1). The Z-graded vector space Grad(n) is an Sn-module with the permutation
group acting on graphs by relabeling their vertices. The S-module

Grad := {Grad(n)}

is an operad [W1] with the operadic compositions

(18)
◦i : Gra(n)⊗ Gra(m) −→ Gra(m+ n− 1)

Γ1 ⊗ Γ2 −→ Γ1 ◦i Γ2

defined as follows: Γ1 ◦i Γ2 is the linear combination of graphs obtained by substituting the graph
Γ2 into the i-labeled vertex of Γ1 and taking a sum over all possible re-attachments of dangling
edges (attached earlier to that vertex) to the vertices of Γ2. Here is an example (for d odd),

1 2
• •!!••aa ◦1

1

2

•

•��
=

1

2
3

•

•��• •!!••aa
+

1

2

3
•

•��
• •!!••aa

+
1

2

3
•

•��

•
•))•

• uu
+

1

2

3
•

•��

•
•

ii
•

•
55

There is a morphism of operads [W1]

Lied −→ Grad
•

21
−→ 1 2◦ ◦

so that one can apply the twisting endofunctor to Grad. The resulting dg operad twGrad is
generated by graphs with two types of vertices, white ones which are labelled and black ones which
are unlabelled and assigned the cohomological degree d, e.g.

2

1

◦

◦

◦
◦•

◦
∈ Graphsd(2)

The differential acts on white vertices and black vertices by splitting them,

(19)
i◦⇝ i◦ •, •⇝ • •

and re-attaching edges. The dg sub-operad of twGrad generated by graphs with at least one
white vertex is denoted by Graphsd. It is proven in [Ko2, LV] that its cohomology H•(Graphsd)
is the operad of d-algebras. The case d = 2 is of special interest as 2-algebras are precisely
the Gerstenhaber algebras which have many applications in algebra, geometry and mathematical
physics.

3. Partial twisting of properads under Liebd and quasi-Lie bialgebras

3.1. Reminder on the properads of (degree shifted) Lie bialgebras and quasi-Lie bial-
gebras. The properad of degree shifted Lie bialgebras is defined, for any pair of integer c, d ∈ Z,
as the quotient

Liebc,d := Free⟨E0⟩/⟨R⟩,
of the free prop generated by an S-bimodule E0 = {E0(m,n)}m,n≥0 with all E0(m,n) = 0 except

E0(2, 1) := 111 ⊗ sgnc
2[c− 1] = span

〈
•

21

= (−1)c •
12
〉

E0(1, 2) := sgnd
2 ⊗ 111[d− 1] = span

〈
•

21

= (−1)d •
12

〉
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by the ideal generated by the following relations
(20)

R :


∮
123 ••

3
21

= 0 ,
∮
123

•• 3
21

= 0

(−1)c+d •
•

21

1 2

+ (−1)cd

(
•
•

1
2

2

1

+ (−1)d •
•

2
1

2

1

+ (−1)d+c •
•

2
1

1

2

+ (−1)c •
•

1
2

1

2

= 0

)
.

where the vertices are ordered implicitly in such a way that the ones on the top come first.

V. Drinfeld introduced [D2] the notion of quasi-Lie bialgebra or Lie quasi-bialgebra. The prop(erad)
qLiebc,d controlling degree shifted quasi-Lie bialgebras can be defined, for any pair of integer
c, d ∈ Z, as the quotient

qLiebc,d := Free⟨Eq⟩/⟨Rq⟩,

of the free prop(erad) generated by an S-bimodule Q = {Q(m,n)}m,n≥0 with all Q(m,n) = 0
except

Q(2, 1) := 111 ⊗ sgnc
2[c− 1] = span

〈
•

21

= (−1)c •
12 〉

,

Q(1, 2) := sgnd
2 ⊗ 111[d− 1] = span

〈
•

21

= (−1)d •
12

〉
,

Q(3, 0) := (sgn3)
⊗|c|[2c− d− 1] = span

〈
•

1

•
2

•
3

= (−1)c|σ| •
σ(1)

•
σ(2)

•
σ(3)

∀σ ∈ S3
〉
,

modulo the ideal generated by the following relations

(21) Rq :



∮
123

(
••

3
21

+
•

1

•
2

•
••
3

•
1

)
= 0 ,

∮
123

•• 3
21

= 0 , AltcS4
•

1

•
2

•
••

3

•
4

= 0

•
•

21

1 2

+ (−1)cd+c+d

(
•
•

1
2

2

1

+ (−1)d •
•

2
1

2

1

+ (−1)d+c •
•

2
1

1

2

+ (−1)c •
•

1
2

1

2

)
= 0.

Its minimal resolution Hoqliebc,d is a free operad Hoqliebc,d := Free ⟨E⟩ generated by an S-
bimodule Eq = {Eq(m,n)}m≥1,n≥0,m+n≥3 with

Eq(m,n) := sgn⊗|c|
m ⊗sgn |d|

n [cm+dn−1−c−d] ≡ span

〈
•
. . .σ(1) σ(2) σ(m)

. . .
τ(1) τ(2) τ(n)

= (−1)c|σ|+d|τ | •
. . .1 2 m

. . .
1 2 n

〉
∀σ∈Sm
∀τ∈Sn

The differential in Hoqliebc,d is given on the generators by

(22) δ •
. . .1 2 m−1 m

. . .
1 2 n−1 n

=
∑

[m]=I1⊔I2
|I1|≥0,|I2|≥1

∑
[n]=J1⊔J2
|J1|,|J2|≥0

± •
. . .

︷ ︸︸ ︷I1

. . .︸ ︷︷ ︸
J1

•
. . .

︷ ︸︸ ︷I2

. . .︸ ︷︷ ︸
J2

where the signs on the r.h.s are uniquely fixed for c + d ∈ 2Z by the fact that they all equal to
−1 if c and d are even integers. Taking the quotient of Hoqliebc,d by the ideal generated by all
(m, 0)-corollas, m ≥ 3, gives us the minimal model Holiebc,d of the properad Liebc,d.
The properads Holiebc,d and qHoliebc,d with the same parity of c+d are isomorphic to each other
up to degree shift,

Holiebc,d = Holiebc+d,0{d}, qHoliebc,d = qHoliebc+d,0{d},

i.e. there are essentially two different types of the (quasi-)Lie bialgebra properads, even and odd
ones.
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3.2. A short reminder on graph complexes. The M. Kontsevich graph complexes come in
a family GCd parameterized by an integer d ∈ Z. The complex GCd for fixed d is generated by
arbitrary graphs Γ with valencies |v| of vertices v of Γ satisfying |v| ≥ 3, and with the orientation or
defined on each graph Γ ∈ GCd as an ordering of edges (up to an even permutation) for d even, and
an ordering of vertices and half edges (again up to even permutation); each graph Γ has precisely
two different orientations, or and −or, and one identifies (Γ, or) = −(Γ,−or) and abbreviates the
pair (Γ, or) to Γ. The cohomological degree of Γ ∈ GCd is defined by

|Γ| = d(#V (Γ)− 1) + (1− d)#E(Γ)

The differential δ on GCd is given by an action, δΓ =
∑

v δvΓ, on each vertex v = • of a

graph Γ ∈ GCd by splitting v into two new vertices connected by an edge, and then re-attaching
the edges attached earlier to v to the new vertices in all possible ways,

δv : • −→
∑

•
• .

It is very hard to compute the cohomology classes GCd explicitly. Here are two examples of degree
zero cycles in GC2

w3 = •

•

• •
, w5 = •

•
• •

• •

+
5

2
•

•
• •

• •

,

which represent non-trivial cohomology classes. It has been proven in [W1] that H0(GC2) = grt1,
the Lie algebra of the Grothendieck-Teichmüller group GRT1. Interestingly in the present context,
the graph complexes GCc+d+1 control [MW2] the homotopy theory of properads Holiebc,d and
Liebc,d, i.e. there is a quasi-isomorphism, up to one rescaling class, of dg Lie algebras

GCc+d+1 −→ Der(Holiebc,d) ≃ Def(Liebc,d
Id→ Liebc,d)[1]

where Der(Holiebc,d) is the derivation complex of the completion of the properad Holiebc,d with
respect to the filtration by the genus (or the loop number) of the generating graphs.

The graph complex HGCN
d with N labelled hairs is defined similarly — the only novelty is that

each graph Γ in HGCN
d has precisely N hairs (or legs) attached to its vertex or vertices. Again

each vertex must be at least trivalent (with hairs counted), and the differential δ acts on vertices
as before. One can understand hairs as kind of special univalent vertices on which δ does not
act; they are assigned the same cohomological degree 1 − d as edges. The hairy graph complexes
has been introduced and studied recently in the context of the theory of moduli spaces Mg,N of
algebraic curves of arbitrary genus g with N punctures [CGP] and the theory of long knots [FTW].
It has been proven in [CGP] that there is an isomorphism of cohomology groups

H•(HGCN
0 ) =

∏
2g+N≥4

W0H
•−N
c Mg,N

where W0H
•
cMg,N stands for the weight zero summand of the compactly supported cohomology

of the moduli space Mg,N .

3.3. Partial twisting of properads under Liebc,d. Let P = {P(m,n), ∂}m,n≥0 be a dg prop-
erad. We represent its generic elements pictorially as (m,n)-corollas

(23)
...

...
◦

1 2 m

2 n1

whose white vertex is decorated by an element of P(m,n). Properadic compositions in P are
represented pictorially by gluing out-legs of such decorated corollas to in-legs of another decorated
corollas.
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Assume P comes equipped with a non-trivial morphism

(24) i : Liebc,d −→ P : •
1 2

i→ ⊚

1 2

, •

1 2

i→ ⊚

1 2

The images under i of the generators of Liebc,d are special elements of P and hence we reserve
a special notation ⊚ for the decoration of the associated corollas. In particular, P is a properad
under Lied and hence can be twisted in the full analogy to the case of operads discussed in the
previous section: applying T. Willwacher twisting endofunctor to (P, ∂) we obtain a dg properad
(twP, ∂�) called the partial twisting of a properad P under Holiebc,d. The latter is freely generated
by P and an extra generator • of degree d. The twisted differential ∂� acts on the latter generator
by the standard formula (16), while its action on elements of P is given by the following obvious
analogue of (15),

(25) ∂� ◦

1

◦

2

◦

. . .

◦◦

m

◦

1

◦

2

◦
. . .

◦◦
n

= ∂ ◦

1

◦

2

◦

. . .

◦◦

m

◦

1

◦

2

◦
. . .

◦◦
n

+

m−1∑
i=0 ◦◦◦

..

◦

⊚
•

i+1

◦◦
..1 i m

◦◦
. . .

◦◦

1 2 n−1 n

− (−1)|a|
n−1∑
i=0

◦◦◦
..

◦

⊚
•

i+1

◦◦
..

1 i n

◦◦
. . .

◦◦

1 2 m−1 m

,

The twisted properad comes equipped with a natural epimorphism of dg properads

(twP, ∂�) −→ (P, ∂)

which sends the MC generator to zero. According to the general twisting machinery, the element

⊚

1 2

remains a cocycle in P even after the twisting of the original differential so that the original

morphism i extends to the twisted version by the same formula,

(26)

ı : (Lied, 0) −→ (twP, ∂�)

•

1 2

−→ ⊚

1 2

.

However the image of the co-Lie generator in P is not, in general, respected by the twisted differ-
ential,

∂�
1

⊚

1 2

=

2

⊚

⊚

1

1

• + (−1)c

1

⊚

⊚

2

1

• − (−1)c−1

1

⊚

⊚

1 •

2

=

1

⊚

⊚

2

•
1

+ (−1)c

2

⊚

⊚

1

•
1

.

where we used the image under i of the third relation in (20) (and ordered vertices from bottom
to the top). The first equality in the formula just above, the formula (16) and the Drinfeld
compatibility condition (that is, the bottom relation in (21)) imply

∂�
•
⊚

1 2

=

2

⊚

⊚

1

•
• + (−1)c

1

⊚

⊚

2

•
• − (−1)c−1

1

⊚

⊚

• •

2

+
(−1)c−1

2

1

⊚

⊚

• •

2

= 0

which in turn implies that the element

1

⊚

⊚

2

•
1

∈ twP is a cycle with respect to the twisted differential

∂�. The linear combination
1

⊚

⊚

2

•
1

+ λ(−1)c
2

⊚

⊚

1

•
1

is a ∂�-coboundary for λ = 1, but for other values of the parameter λ, say for λ = −1, it represents,
in general, a non-trivial cohomology class in H•(twP, ∂�) of cohomological degree 2− c.
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3.4. Theorem on partial twisting and quasi-Lie bialgebras. Let P be a dg properad under
Liebc,d and twP the associated twisting of P as a properad under Lied. Then there is an explicit
morphism of properads

iQ : qLiebc−1,d −→ H•(twP, ∂�)

•

1 2

−→ ⊚

1 2

mod Im ∂�

1

•
1 2

−→
1

⊠

1 2

:= 1
2

 1

⊚

⊚

2

•
1

− (−1)c

2

⊚

⊚

1

•
1

 mod Im ∂�

•
1

•
2

•
3 −→

∮
123

2

⊚

⊚ ⊚

1 3

• •

mod Im ∂�

Proof. Proof is a straightforward but rather tedious calculation. Remarkably, the first and and
the fourth relations in the list RQ above hold true exactly. However, the remaining third relation
holds true only up to ∂�-exact terms. Let us check it in full details that the map iQ satisfies

(27) Altc−1
S4 iQ

(
•

1

•
2

•
••

3

•
4 )

= 0 mod Im ∂�.

We have

iQ

(
•

1

•
2

•
••

3

•
4
)
=

(Id + (−1)c−1(34))

2


2

⊚

⊚ ⊚ ⊚

1

3

4
⊚

• • •

+ (−1)c−1

1

⊚

⊚ ⊚ ⊚

2

3

4
⊚

• • •

+
2⊚

⊚ ⊚

⊚
1

3

4
⊚

• •

•

 .

The Jacobi identity for the Lie generator implies the following vanishing

Altc−1
S4 2⊚

⊚ ⊚

⊚
1

3

4
⊚

• •

•
= 0

The symmetry properties of the generators imply, for any c, d ∈ Z, the equality

2

⊚

⊚ ⊚ ⊚

1

3

4
⊚

• • •

=

3

⊚

⊚ ⊚ ⊚

4

2

1
⊚

• • •

Therefore the first two summands in the above formula do not cancel out upon
(skew)symmetrization. However one has the equality modulo ∂�-exact terms,

2

⊚

⊚

x

•
y

= (−1)c−1

x

⊚

⊚

2

•
1

which can be used to transform first two terms in the above formula into the third one (up to a
permutation) which has been just considered. Hence

Altc−1
S4

2

⊚

⊚ ⊚ ⊚

1

3

4
⊚

• • •

= (−1)c−1Altc−1
S4 2⊚

⊚ ⊚

⊚
1

3

4
⊚

• •

•
mod ∂� = 0 mod Im ∂�

and the claim follows. □
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3.5. Hairy graph complexes and twLiebc,d. The epimorphism

twHoliebc,d = {twHoliebc,d(N,M)} −→ twLiebc,d = {twLiebc,d(N,M)}

is a quasi-isomorphism for any M,N ≥ 1 as tw is an exact functor. It is a straightforward
inspection to see the complex twHoliebc,d(N, 0) is identical to the oriented hairy graph complex

HHOGCN
c+d+1[−dN ] introduced in §3.4.2 of [AWZ]. One of the main results in that paper says that

there is an isomorphism of cohomology groups

H•(HGCN
d ) ≃ H•(HHOGCN

d+1)

Hence we can conclude that for any natural number N ≥ 1 one has an isomorphism of cohomology
groups

H• (twHoliebc,d(N, 0)) ≃ H•(twLiebc,d(N, 0)) ≃ H•−dN (HGCN
c+d).

In particular, we have an induced morphism

H•(HGCN
c+d) −→ H•+dN (twP(N, 0))

for any dg properad P ∈ PROPHoliebc,d
.

3.6. An example: (chain) gravity properad. A ribbon graph Γ is a graph with an extra
structure: the set of half-edges attached to each vertex comes equipped with a cyclic ordering (a
detailed definition can be found, e.g., in §4.1 of the paper [MW1] to which we refer often in this
subsection). Thickening each vertex v ∈ V (Γ) of a ribbon graph Γ into a closed disk, and every
edge e ∈ Γ attached to v into a 2-dimensional strip glued to that disk, one associates to Γ a unique
topological 2-dimensional-surface with boundaries; the set of such boundaries is denoted by B(Γ).
Shrinking 2-strips back into 1-dimensional edges, one represents each boundary b as a closed path
comprising some vertices and edges of Γ. We work with connected ribbon graphs only, their genus
is defined by

(28) g = 1 +
1

2
(#E(Γ)−#V (Γ)−#B(Γ)) .

Let RGrad(m,n), d ∈ Z, stand for the graded vector space generated by ribbon graphs Γ such that

(i) Γ has precisely n vertices and m boundaries which are labelled, i.e. some isomorphisms
V (Γ) → [n] and B(Γ) → [m̄] := {1̄, . . . , m̄} are fixed;

(ii) Γ is equipped with an orientation which is for d even is defined as an ordering of edges (up
the sign action of S#E(Γ)), while for d odd it is defined as a choice of the direction on each
edge (up to the sign action of S2).

(iii) Γ is assigned the cohomological degree (1− d)#E(Γ).

For example,

1̄

21
∈ RGrad(1, 2), 1̄

2̄

1

∈ RGrad(2, 1), 1̄ 2̄ 3̄

1

2

∈ RGrad(3, 2), 1̄

1

2

∈ RGrad(1, 2).

The subspace of RGrad(m,n) spanned by ribbon graphs of genus g is denoted by RGrad(g;m,n).
The permutation group Sop. ×Sn acts on RGrad(m,n) by relabelling vertices and boundaries. The
S-bimodule

RGrad = {RGrad(m,n)}

has the structure of a properad [MW1] given by substituting a boundary b of one ribbon graph into
a vertex v of another one, and reattaching half-edges (attached earlier to v) among the vertices
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belonging to b in all possible ways while respecting the cyclic orders of both sets. One of the main
motivation behind this definition of RGrad is that it comes with a morphism of operads,

(29)

i : Liebd,d −→ RGrad

•
21

1̄

−→ 1̄

21

•
1

1̄2̄

−→ 1̄

2̄

1

In particular, RGrad is a properad under Lied and hence can be twisted: twRGrad is generated
by ribbon graphs with two types of vertices, white ones which are labelled and black ones which
are unlabelled and assigned the cohomological degree d (cf. §2.10), e.g.

1̄

1

•
∈ twRGrad(1, 1).

The differential δ� in twRGrad is determined by its action on vertices as in (19). One of the main
results in [Me2] is the proof of the following

3.6.1. Theorem. (i) For any g ≥ 0, m ≥ 1 and n ≥ 0 with 2g+m+n ≥ 3 one has an isomorphism
of Sopm × Sn-modules,

H•(twRGrad(g;m,n)) = H•−m+d(2g−2+m+n)
c (Mg,m+n × Rm)

where Mg,m+n is the moduli space of genus algebraic curves with m + n marked points, and H•
c

stands for the compactly supported cohomology functor.

(ii) For any g ≥ 0, m ≥ 1 and n ≥ 0 with 2g +m+ n < 3 one has

Hk(twRGrad(g;m,n)) =

{
K if g = n = 0,m = 2, k = (1− d)p with p ≥ 1 and p ≡ 2d+ 1 mod 4
0 otherwise.

where K is generated by the unique polytope-like ribbon graph with p edges and p bivalent vertices
which are all black.

This result says that the most important part of twRGrad is the dg sub-properad ChGravd spanned
by ribbon graphs with black vertices at least trivalent; it is called the chain gravity properad. Its
cohomology

Gravd :=


∏
g≥0

2g≥3−m−n

H•−m+d(2g−2+m+n)
c (Mg,m+n × Rm)


m≥1,n≥0

is called the gravity properad. The general morphism iQ from Theorem 3.4 reads in this concrete
situation as follows

iQ : qLiebd−1,d −→ GRavd
1̄

•
21

−→ 1̄

21

•
1

2̄1̄

−→ 1
2

 1̄

2̄

1

•• − (−1)d
2̄

1̄

1

••


•

1̄

•
2̄

•
3̄

−→ 1
2

(
1̄

2̄
3̄

••
− (−1)d 2̄

1̄
3̄

••

)
We have in twRGrad

δ� 1̄ 3̄

2̄

•• = 1̄
2̄

3̄

••
− 2̄1̄

3̄

•

••
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so that the above map can be re-written exactly in form first found in [Me2] via a completely
independent calculation using ribbon graphs only,

iQ : •
1

•
2

•
3

−→ 1

2

− 2̄1̄

3̄

•

••
+ 1̄2̄

3̄

•

••


This version of the map iQ was used in [Me2] to show that this map is injective on infinitely
elements of qLiebd−1,d constructing thereby infinitely many higher genus cohomology classes in
H•(Mg,m+n) from the unique cohomology class in H•(M0,3) via properadic compositions in
Gravd ⊂ H•(twRGrad).

3.7. Quasi-Lie bialgebra structures on Hochschild cohomologies of cyclic A∞-algebras.
Let A be a graded vector space equipped with a degree −n non-degenerate scalar product

(30)
⟨ , ⟩ : A⊙A −→ K[−n]

a⊙ b −→ ⟨a, b⟩ = (−1)|a||b|⟨a, b⟩.
One has an associated isomorphism of graded vector spaces,

A ≃ A∗[−n] := Hom(A,K)[−n],

and an induced non-degenerate pairing

Θ : ⊗2 (A[n− 1]) −→ K[n− 2] ≡ K[1− (3− n)]
(a′ = sn−1a, b′ = sn−1b) −→ s2n−2⟨a, b⟩

which satisfies the following equation (cf. §2.3 in [MW1] with d = 3 − n in the notation of that
paper)

Θ(b′, a′) = s2n−2⟨b, a⟩
= (−1)|a||b|s2n−2⟨a, b⟩
= (−1)(|a

′|+n−1)(|b′|+n−1)Θ(a′, b′)

= (−1)|a
′|+|b′|+(3−n)Θ(a′, b′)

where we used the fact that Θ(a, b) = 0 unless |a| + |b| = n. By Theorem 4.2.2 in [MW1] this
symmetry equation implies that the (reduced) space of cyclic word

Cyc(A) :=
⊕
p≥2

(⊗p(A[n− 1]))
Zp ≃

⊕
p≥2

(⊗p(A[n− 1]))
Zp

carries canonically a representation of the properad RGra3−n discussed in the previous subsection.
In particular this space is a Lieb3−n,3−n-algebra (see (29)) with the Lie bracket given by a simple
formula,

{(a′1⊗...⊗b′k)
Zk , (b′1⊗...⊗b′l)

Zn} :=

k∑
i=1

l∑
j=1

±Θ(a′i, b
′
j)(a

′
1 ⊗ ...⊗ a′i−1 ⊗ b′j+1 ⊗ ...⊗ b′l ⊗ b′1 ⊗ ...⊗ b′j−1 ⊗ a′i+1 ⊗ . . .⊗ a′k)

Zk+l−2

Maurer Cartan elements elements of this Lied-algebra are degree d = 3− n elements γ ∈ Cyc(A)
such that {γ, γ} = 0. There is a one-to-one correspondence between such Maurer-Cartan elements
and2 degree n cyclic strongly homotopy algebra structures in A. The dg Lie algebra

CH(A) := (Cyc(A), dγ := {γ, })
is precisely the (reduced) cyclic Hochschild complex of the cyclic A∞-algebra (A, γ).

By the very definition of the twisting endofunctor tw, the chain gravity properad ChGrav3−n

admits a canonical representation in CH(A) for any degree n cyclic A∞-algebra A. In particular,

2One can use this statement as a definition of a degree n cyclic A∞-algebra structure on A.
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the gravity properad Grav3−n acts on its cohomology H•(CH(A)) implying, by Theorem 3.4, the
following corollary.

3.7.1. Corollary. The Hochschild cohomology H•(CH(A)) of any degree n cyclic A∞ algebra is
a quasi-Lie bialgebra; more precisely it carries a representation of the properad qLieb2−n,3−n.

If A is a dg Poincaré model of some compact n-dimensional manifold, then there is a linear map

H̄S1

• (LM) −→ H•(CH(A))

from the reduced equivariant homology H̄S1

• (LM) of the free loop space LM of M . If M is simply

connected, this map is an isomorphism so that the gravity properad Gravd acts on H̄S1

• (LM).
However the Maurer–Cartan element associated to any Poincaré model is a relatively simple linear
combination of cyclic words in the letters, and the action we just mentioned is much trivialized.
That “trivialization” is studied in detail in [Me4] where it is shown that the action of ChGrav3−n

on CH(A) factors through a quotient properad ST3−n which contains Liebd,d [CS], the gravity
operad [G, We] and the four Holieb⋄d−1-operations found in [Me3].

One has to consider a less trivial class (comparing to the class of Poincare models) of cyclic A∞-
algebras A in order to get a chance to see a less trivial action of the gravity properad on the
associated cyclic Hochschild cohomologies.

4. A full twisting of properads under Holiebc,d

4.1. Reminder on the polydifferential functor O. There is an exact polydifferential functor
[MW1]

O : Category of dg props −→ Category of dg operads
P −→ OP

which has the following property: given any dg prop P and an arbitrary representation ρ : P →
EndV in a dg vector space V , the associated dg operad OP has an associated representation, Oρ :
O(P) → End⊙•V , in the graded commutative tensor algebra ⊙•V given in terms of polydifferential
(with respect to the standard multiplication in ⊙•V ) operators. Roughly speaking the functor O
symmetrizes all outputs of elements of P, and splits all inputs into symmetrized blocks; pictorially,
if we identify elements of P with decorated corollas as in (23), then every element of O(P) can be
identified with a decorated corolla which is allowed to have the same numerical labels assigned to
its different in-legs, and also with the same label 1 assigned to its all outgoing legs3

◦◦◦◦◦◦◦◦◦
... ...

111 i ii kk k

1111

◦◦◦◦ ≃ ◦◦◦◦◦◦◦◦◦
... ...

◦◦◦◦

1 ki

1

Since we want to apply the above construction to dg props P under Holiebc,d, we are more
interested in this paper in its degree shifted version, Oc,d, which was also introduced in [MW1],

Oc,dP := O(P{c})
The notation may be slightly misleading as Oc,d does not depend on d but it suits us well in the
context of this paper. We refer to [MW2] for more details about the functor Oc,d (and to [MW3]
for its extension D) and discuss next the particular example, the dg operad

Oc,dHoliebc,d ≃ OHolieb0,c+d ≡ {OHolieb0,c+d(k)}k≥1.

The Sk-module OHolieb0,c+d(k), k ≥ 1, is generated by graphs γ constructed from arbitrary
decorated graphs Γ from Holieb0,c+d(m,n), ∀m,n ≥ 1, as follows:

3Treating out- and inputs legs in this procedure on equal footing, one gets a polydifferential functor D in the

category of dg props such that O(P) a sub-operad of D(P). It was introduced and studied in [MW3].
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(i) draw new k big white vertices labelled from 1 to k (these will be inputs of γ) and one extra
output big white vertex,

(ii) symmetrize all m outputs legs of Γ and attach them to the unique output white vertex;
(iii) partition the set [n] of input legs of Γ into k ordered disjoint (not necessary non-empty)

subsets
[n] = I1 ⊔ . . . ⊔ Ik, #Ii ≥ 0, i ∈ [k],

then symmetrize the legs in each subset Ii and attach them (if any) to the i-labelled input
white vertex.

For example, the element

Γ = •
•1

2

2 3

6

1

4 5

∈ Holieb0,c+d(2, 6)

can produce the following generator

γ = •
•

1 2 3 4

∈ OHolieb0,c+d(4) ≃ Oc,dHoliebc,d(4)

in the associated polydifferential operad (note that one and the same element Γ ∈ Holieb0,c+d can
give rise to several different generators of OHolieb0,c+d). The labelled white vertices of elements
of O(Holieb0,c+d are called external, while unlabelled black vertices (more, precisely, the vertices
of the underlying elements of Holieb0,c+d) are called internal. The same terminology can applied
to OP for any dg prop P.

For any k, l ≥ 1 and i ∈ [k] the operadic composition

◦i : OHolieb0,c+d(k)⊗OHolieb0,c+d(k) −→ OHolieb0,c+d(k + l − 1)
Γ1 ⊗ Γ2 −→ Γ1 ◦i Γ2

is defined by

(i) substituting the graph Γ2 (with the output external vertex erased so that all edges con-
nected to that external vertex are hanging at this step loosely) inside the big circle of the
i-labelled external vertex of Γ1,

(ii) erasing that big i-th labelled external circle (so that all edges of Γ1 connected to that i-th
external vertex, if any, are also hanging loosely), and

(iii) finally taking the sum over all possible ways to do the following three operations in any
order,
(a) glue some (or all or none) hanging edges of Γ2 to the same number of hanging edges

of Γ1,
(b) attach some (or all or none) hanging edges of Γ2 to the output external vertex of Γ1,
(c) attach some (or all or none) hanging edges of Γ1 to the external input vertices of Γ2,
in such a way that no hanging edges are left.

We refer to [MW1, MW3] for concrete examples of such compositions.

4.1.1. Proposition [MW1]. There is a morphism of dg operads

(31) Holie+c+d → Oc,dHoliebc,d

given explicitly on the (1, 1)-generator by

• −→
∑
m≥2

•
1 1 . . . 1 1

︷ ︸︸ ︷m

and on the remaining (1, n)-generators with n ≥ 2 by

. . .
1 2 3 n

• −→
∑
m≥1

11 1

. . .

•

1 2 n

︷ ︸︸ ︷m
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Proof is a straightforward calculation (cf. §5.5 and §5.7 in [MW1]).

Using T. Willwacher’s twisting endofuctor discussed in §2 one obtains via the morphism (31) a dg
operad twOc,dHoliebc,d.

4.1.2. Properads under Holiebc,d. Assume P is a dg properad under Holiebc,d, i.e. the one
which comes equipped with a non-trivial morphism

(32)

i : Holiebc,d −→ P
...

...
•

1 2 m

2 n1

−→
...

...
⊚

1 2 m

2 n1

Note that corollas on the right hand side (the ones with ⊚ as the vertex) stand from now on for
images of the generators of Holiebc,d under the map i so that some (or all) of them can in fact be
equal to zero.

Applying the functor Oc,d and using the above proposition we obtain an associated chain of mor-
phism of dg operads,

ι : Holie+c+d −→ Oc,dHoliebc,d −→ Oc,dP
and hence a morphism of the associated twisted dg operads,

twO(i) : twOc,dHoliebc,d ≃ twO(Holieb0,c+d) −→ twOc,dP

The degree of the generating (m,n)-corolla
...

...
• of Holieb0,c+d is equal to 1+ c+d− (c+d)n, so

its m out-legs are carry trivial representation of Sm (and are assigned degree 0), while its in-legs
are (skew)symmetrized according to the parity of c+d ∈ Z (and assigned degree (c+d); the vertex
is assigned the degree 1 + c + d. Hence it is only the sum c + d of our integer parameters which
plays a role in this story. Therefore we can assume without loss of generality that

c = 0, d is an arbitrary integer,

from now on, i.e. work solely with dg props under Holieb0,d.

4.2. Maurer-Cartan elements of strongly homotopy Lie bialgebras. Given a Holieb0,d-
algebra structure in a dg vector space (V, δ), i.e. a morphism of properads

ρ : Holieb0,d −→ EndV .
Its Maurer-Cartan element is, by definition, a Maurer-Cartan element γ ∈ ⊙≥1V of the associated
Holie+d structure induced on ⊙≥1V via the canonical monomorphism

Holie+d → OHolieb0,d

described explicitly in Proposition 4.1.1. Let us describe it in more detail. The Holieb0,d-structure
on V is given by a collection of linear maps of cohomological degree 1 + d− dn,

ρ

(
...

...
•

1 2 m

2 n1

)
=: µm,n : ⊗nV −→ ⊙mV

satisfying compatibility conditions. Each such linear map gives rise to a map

µ̂m,n : ⊗n(⊙≥1V ) −→ ⊙≥1V

given, in arbitrary basis {pα} of V as follows

µ̂m,n(f1, . . . , fn) :=
∑

±µm,n(pα1 ⊗ pα2 ⊗ . . .⊗ pαn) ·
∂f1
∂pα1

∂f2
∂pα2

· · · ∂fn
∂pαn

, ∀f1, . . . , fn ∈ ⊙≥1V.

Then a degree d element γ ∈ ⊙≥1V is a Maurer-Cartan element of the (appropriately filtered or
nilpotent) Holieb0,d-algebra on structure V if and only if the following equation holds,

(33) δγ +
∑

m,n≥1

1

n!
µ̂m,n(γ, . . . , γ︸ ︷︷ ︸

n

) = 0.
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The operator

(34) δγv := δv +
∑
n≥1

1

n!
µ1,n+1(γ1, . . . , γ1︸ ︷︷ ︸

n

, v), ∀ v ∈ V,

with γ1 being the image of γ under the projection ⊙≥1V → V , is a twisted differential on V .

4.2.1. Combinatorial incarnation. Maurer-Cartan elements ofHolieb0,d-algebras admit a sim-
ple combinatorial description as (a representation in V of) an infinite linear combination

γ ≃
∑
m≥1

1

m! •
. . .

︷ ︸︸ ︷m

of degree d (m, 0)-corollas with symmetrized outgoing legs. One extends the standard differential
δ in Holieb0,d to such new generating corollas as follows

(35) δ
•
. . .

︷ ︸︸ ︷m

= −
∑

k≥1,[m]=⊔[m•]
m0≥1,k+m0≥3
m1,...,mk≥0

1

k!

... ... ...

•

• • •︸ ︷︷ ︸
k

...

m0︷︸︸︷ m1︷︸︸︷ m2︷︸︸︷ mn︷︸︸︷
∀ m ≥ 1.

where we take the sum over all partitions of the ordered set [m] into k + 1 ordered subsets. For
k = 1 we recover the standard formula (cf. (8)).

Let us check first that the above definition makes sense.

4.2.2. Lemma. δ2
•
. . .

︷ ︸︸ ︷m

≡ 0 for any m ≥ 1.

Proof. The proof is based on a straightforward calculation which is similar to the one made in
the proof of Lemma 2.5.1 above. The only really new phenomenon is the appearance in δ2 of
summands of the form

(36)
∑

[m]=[m′
•]⊔[m′′

• ]⊔[m0]

1

k′!

1

k′′!

... ... ............

•

• • •︸ ︷︷ ︸
k′′

...

m′′
0︷︸︸︷ m′′

1︷︸︸︷ m′′
2︷︸︸︷ m′′

n︷︸︸︷
•

...

m0︷︸︸︷
•

•••︸ ︷︷ ︸
k′

...

m′
0︷︸︸︷m′

1︷︸︸︷m′
2︷︸︸︷m′

n︷︸︸︷

which cancel each other for symmetry reasons. □

4.3. Full twisting of properads under Holiebc,d. Let P be a properad under Holieb0,d (as in
(32)). We construct the associated fully twisted properad (TwP, ∂�) in several steps.

First we define T̃wP to be be the properad generated freely by P and a family of new (m, 0)-

corollas,
•
. . .

︷ ︸︸ ︷m

, m ≥ 1, of cohomological degree d which are called MC generators. We make

this properad differential by using the original differential ∂ on elements of P and extending its
action on the new generators by (cf. (35))

(37) ∂
•
. . .

︷ ︸︸ ︷m

= −
∑

k≥1,[m]=⊔[m•]
m0≥1,k+m0≥3
m1,...,mk≥0

1

k!

... ... ...

⊚

• • •︸ ︷︷ ︸
k

...

m0︷︸︸︷ m1︷︸︸︷ m2︷︸︸︷ mn︷︸︸︷
∀ m ≥ 1.

Note that corollas with ⊚-vertices are images of the geneartors of Holieb0,d in P under the mor-
phism i (and hence some of them can, in principle, be zero). The map (32) extends to a morphism

T̃w(i) : T̃wHolieb0,d −→ T̃wP

which restricts on the MC generators as the identoty map.
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Next we notice the following surprising result which tells us essentially the MC elements originating
in O(Holiebc,d) can be used to twist not only the operad O(Holiebc,d) (which is obvious) but also
the properad Holiebc,d itself!

4.3.1. Theorem. There is a canonical monomorphism of dg props

Holieb+0,d −→ T̃wHolieb0,d

given on the generating (m,n)-corollas with m,n ≥ 1 as follows,

•
. . .1 2 m−1 m

. . .
1 2 n−1 n

−→
∑

k≥0,[m]=⊔[m•],
m0≥1,k+m0+n≥3

m1,...,mk≥0

1

k!

... ... ...

1 2
...

n

...

•

• • •

m0︷ ︸︸ ︷ m1︷︸︸︷ m2︷︸︸︷ mk︷︸︸︷

︸ ︷︷ ︸
k

.

Proof. One has to check that the above explicit map of properads respects their differentials, δ+ on
the l.h.s. and ∂ on the r.h.s. This is a straightforward calculation which is analogous to (but much
more tedious than) the one used in the proof of Theorem 2.5.2. The only really new aspect is again
the appearance of terms (36) which cancel out for symmetry reasons. We omit full details. □

Hence for any properad P under Holieb0,d there is an associated morphism of dg properads

i+ : Holieb+0,d −→ T̃wP

which factors through the morphism described in the Theorem just above.

4.3.2. Twisting of the differential. The argument in §2.4 about twisting of differentials in
operads extends straightforwardly to properads. Indeed, given any dg prop (P = {P(m,n)}, ∂),
and any h ∈ A(1, 1), there is an associated derivation Dh of the (non-differential) prop P by the
formula analogous to (6),

(38) Dh(a) =

m∑
i=1

h1 ◦i a− (−1)|h||a|
n∑

j=1

aj ◦1 h, ∀ a ∈ P(m,n).

Moreover, if |h| = 1 and h ◦1 h = −∂h, then the sum ∂h := ∂ +Dh is a differential in P.

Assume we have a morphism of dg props

(39) g+ : (Holieb+0,d, δ
+) −→ (P, ∂)

Then the element

(40) ♦ := g+(•) =
∞∑
k=1

1

k! ...︸ ︷︷ ︸
k

⊛

• • •
∈ T̃wP

satisfies all the conditions specified above for h so that the sum

∂� := ∂ +D
♦

is a differential in T̃wP.
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4.3.3. Main definition. Let P be a dg properad under Holieb0,d. The full twisting, TwP, of P
is a dg properad defined as the properad T̃wP equipped with the twisted differential ∂�.

Thus TwP is identical to T̃wP as a non-differential properad, i.e. it is generated freely by P and

the family of extra generators •
1 2 . . . m

, m ≥ 1, of degree d. If we represent elements of P as

decorated corollas (23), then the twisted differential ∂� acts on elements of P as follows,

(41) ∂� ◦

1

◦

2

◦

. . .

◦◦

m

◦

1

◦

2

◦
. . .

◦◦
n

= ∂ ◦

1

◦

2

◦

. . .

◦◦

m

◦

1

◦

2

◦
. . .

◦◦
n

+

m−1∑
i=0

◦◦◦
..

◦
♦

i+1

◦◦
..1 i m

◦◦
. . .

◦◦

1 2 n−1 n

− (−1)|a|
n−1∑
i=0

◦◦◦
..

◦
♦
i+1

◦◦
..

1 i n

◦◦
. . .

◦◦

1 2 m−1 m

where ♦ is given by (40). On the other hand, the action of ∂� on the MC generators is given by,

(42) ∂� •

. . .1 2 m

:=

m−1∑
i=0 •

.. ♦

i+1

..1 i m −
∑

k≥1,[m]=⊔[m•],
m0≥1,k+m0≥3
m1,...,mk≥0

1

k!

... ... ...

⊚

• • •︸ ︷︷ ︸
k

...

m0︷︸︸︷ m1︷︸︸︷ m2︷︸︸︷ mn︷︸︸︷
∀ m ≥ 1.

Note that for m ≥ 2 the first sum on the r.h.s. of (42) cancels out with all the summands corre-
sponding to k ≥ 2,m0 = 1,mi = m− 1, i ∈ [k], in the second sum.

By its very construction, this twisted prop TwP has the following properties:

(a) There is a canonical chain of morphisms of dg prop(erad)s

(Holieb0,d, δ) −→ (TwHolieb0,d, δ�) −→ (TwP, ∂�).

given explicitly by

(43) •
. . .1 2 m−1 m

. . .
1 2 n−1 n

−→
∑

k≥0,[m]=⊔[m•]
m0≥1,k+m0+n≥3

m1,...,mk≥0

1

k!

... ... ...

1 2
...

n

...

⊚

• • •

m0︷︸︸︷ m1︷︸︸︷ m2︷︸︸︷ mk︷︸︸︷

︸ ︷︷ ︸
k

, m, n ≥ 1,m+ n ≥ 3

(b) There is a canonical epimorphism of of dg prop(erad)s,

(TwP, ∂�) −→ (P, ∂)

which sends all the MC generators
•
. . .

︷ ︸︸ ︷m

, m ≥ 1, to zero. Note that the natural

inclusion of S-bimodules P → TwP is not, in general, a morphism of dg properads.

4.3.4. Remark. Assume P is a properad under Lieb0,d, i.e. all corollas on the r.h.s. of the map

(32) vanish except the following two, ⊚

1 2

and ⊚

1 2

. Then the associated twisted properad

TwP is, in general, a properad under the minimal resolution Holieb0,d of Lieb0,d, not just under
Lieb0,d! Put another way, the full twisting of P produces, in general, higher homotopy Lie bialgebras
operations, a new phenomenon comparing to what we get in twP under the partial twisting of P.

4.3.5. Full twisting for general values of the integer parameters c and d. The full twisting
TwP of a dg properad P under Holiebc,d is defined as (TwP{c}){−c}; note that P{c} is a dg
properad under Holieb0,c+d so that the above twisting functor Tw applies. Thus the full twisting
TwP of P ∈ PROPHoliebc,d

is generated freely by P and extra MC generators

•
1 2 . . . m

= (−1)c|σ|
•

σ(1) σ(2)
. . .

σ(m)

∀σ ∈ Sm, m ≥ 1,

of cohomological degree (1−m)c+ d. It comes equipped with a canonical morphism Holiebc,d →
TwP given by (43).

Next we show that quasi-isomorphisms (17) extend to their full twisting analogues.
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4.3.6. Theorem. The canonical projection π : TwHoliebc,d → Holiebc,d is a quasi-isomorphism,
i.e. H•(TwHoliebc,d) = Liebc,d.

Proof. For any m ≥ 2 the r.h.s. of formula (42) applied to P = Holiebc,d contains a unique
summand of the form

∂� •

. . .1 2 m

:= −
•
••

. . .1 2 m

+ . . . .

Let us call the unique edge of such a summand special, and consider a filtration of TwHoliebc,d
by the number of non-special edges plus the total number of MC generators. On the initial page
E0 of the associated spectral sequence the induced differential acts only on MC generators with
m ≥ 2 by the formula given just above (with no additional terms). Hence the next page E1 of the
spectral sequence is equal to the quotient subcomplex twHolieb′c,d of the partially twisted properad
twHoliebc,d by the differential ideal generated by graphs with at least one special edge; the induced
differential acts only on the generators of Holiebc,d by the standard formula (22). We consider next
a filtration of E1 by the total number of paths connecting in-legs and univalent MC generators

• to the out-legs of elements of E1. The induced differential d on the associated graded complex

grE1 is precisely the 1
2 -prop differential4 in Holiebc,d given explicitly by those summands in (22)

whose lower (or upper) corolla has type (1, p ≥ 2) (or, resp., (p ≥ 2, 1)) only. The point is that
such summands never create new special edges which have to be set to zero by hand, i.e. the fact
that we have to take the quotient by graphs with at least one special edge does not complicate the
action of the induced differential any more. Hence the next page E2 ∼ H•(grE1) of our spectral
sequence is spanned by graphs generated by the following three corollas

•
1 2

= (−1)d •
2 1

,
1

•
1 2

= (−1)c

1

•
2 1

, • ,

subject to the relations∮
123

••
3

21

= 0,

∮
123

•• 3
21

= 0,
•
•

21

1 2

= 0,
•
•

1 2

= 0.

The induced differential acts only on the MC generator by the standard formula

• −→ 1

2
•

• •
.

As H•(twLied) = Lied, we conclude that the cohomology is spanned by the standard two gen-
erators of Liebc,d modulo the above three relations. Hence H•(TwHoliebc,d) = Liebc,d and the
Theorem is proven. □

4.4. An action of the deformation complex Def(Holiebc,d → P) on TwP. Given a dg

properad P under Holiebc,d (see (32)), one can consider P as a dg properad under Holieb+c,d using
the composition

i+ : Holieb+c,d −→ Holiebc,d
i−→ P

where the first arrow is the unique morphism which sends the (1, 1)-generator to zero and is
the identity on all other generators. Following [MW1] we define the deformation complex of the
morphism i in (32) as the deformation complex of the morphism i+,

Def

(
Holieb+c,d

i+−→ P
)

=
∏

m,n≥1

P(m,n)⊗Sopm ×Sn

(
sgn |c|

m ⊗ sgn |d|
n

)
[c(1−m) + d(1− n)].

Note that even in the case when the properad P is generated by (m,n)-operations with m,n ≥ 1
and m+ n ≥ 3 (as, e.g., in the case P = Holiebc,d) the term P(1, 1) is often non-zero and should

4The notion of 1
2
-prop (as well the closely related notion of path filtration) was introduced by Maxim Kontsevich

[Ko3]. A nice exposition of this theory can be found in [MaVo].
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not be ignored in the deformation theory (cf. [MW3]); hence the +-extension. As in [MW2], we

abuse notation and re-denote Def(Holieb+c,d
i+→ P) by Def(Holiebc,d

i→ P).

Following [MeVa] one can describe the differential (and Lie brackets) in Def
(
Holiebc,d

i→ P
)
very

explicitly. Let us represent a generic element of this complex pictorially as a collection of (m,n)-
corollas,

γ =


m︷ ︸︸ ︷

︸ ︷︷ ︸
n

...

⊛
...


m,n≥1

, or as a formal sum γ =
∑

m,n≥1

1 2 ... m

⊛

1 2
...

n

,

of corollas whose vertices are decorated with elements5 of P(m,n) ⊗Sopm ×Sn (sgn
|c|
m ⊗ sgn

|d|
n ) and

denoted by ⊛ in order to distinguish them from the generic elements of P which are represented as
corollas (23) and also from the images ofHolied-generators under i which are represented pictorially
as ⊚-vertex corollas. Since labels of in- and out legs are (skew)symmetrized, one cam omit them
in pictures. The differential in the deformation complex is given by

(44) δ

m︷ ︸︸ ︷
︸ ︷︷ ︸

n

...

⊛
...

= ∂

m︷ ︸︸ ︷
︸ ︷︷ ︸

n

...

⊛
...

+
∑

[n]=[n′]⊔[n′′]
n′≥2,n′′≥1

± ...

...︸ ︷︷ ︸
n′

m′︷ ︸︸ ︷
︸ ︷︷ ︸

n′′

m′′︷ ︸︸ ︷
⊚

⊛
∓ ...

...︸ ︷︷ ︸
n′

m′︷ ︸︸ ︷
︸ ︷︷ ︸

n′′

m′′︷ ︸︸ ︷
⊛

⊚


where the rule of signs depends on d and is read from (5); for d even the first ambiguous sign
symbol on the r.h.s. is +1, while the second one is −(−1)|⊛|.

Let (Der(TwP), [ , ]) be the Lie algebra of derivations of the properad TwP. The differential ∂�
is its MC element making Der(TwP) into a dg Lie algebra with the differential [∂�, ].

4.4.1. Theorem. There is a morphism of dg Lie algebras

(45)
Φ : Def

(
Holiebc,d

i→ P
)

−→ Der(TwP)

γ −→ Φγ

where the derivation Φγ is given on the generators by

Φγ : TwP −→ TwP

•

. . .1 2 m

−→
m−1∑
i=0

•••
..

•
♢

i+1

••
..1 i m

+
∑

k≥1,m=
∑

m•,
m0≥1,k+m0≥3
m1,...,mk≥0

1

k!

... ... ...
⊛

• • •︸ ︷︷ ︸
k

...

m0︷ ︸︸ ︷
m1︷︸︸︷ m2︷︸︸︷ mn︷︸︸︷

◦

1

◦

2

◦

. . .

◦◦

m

◦

1

◦

2

◦
. . .

◦◦
n

−→
m−1∑
i=0

◦◦◦
..

◦
♢

i+1

◦◦
..1 i m

◦◦
. . .

◦◦

1 2 n

− (−1)|a|
n−1∑
i=0

◦◦◦
..

◦
♢
i+1

◦◦
..

1 i n

◦◦
. . .

◦◦

1 2 m

where (cf. (40))

(46) ♢ := −
∞∑
k=1

1

k! ...︸ ︷︷ ︸
k

⊛

• • •

5A formal sum γ of such (m,n)-corollas is homogeneous of degree k as an element of the deformation complex if

and only if their degrees |⊛ | as elements of P(m,n)⊗Sopm ×Sn (sgn
|c|
m ⊗ sgn

|d|
n ) are equal to k+ c(1−m) + d(1− n).

This explains the grading consistency of the explicit formulae shown in Theorem 4.4.1 below.
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Proof. (A sketch). Any derivation of TwP (viewed as a non-differential properad) is uniquely

determined by its values on the MC generators •

. . .1 2 m−1 m

and on arbitrary elements of P. The
first values can be chosen arbitrary, while the second ones must be compatible with the properad
compositions; as the second values are, by the definition, of the form (38), we conclude that the
above formulae do define a derivation of TwP as a non-differential prop(erad). Hence the main
point is to show that Φγ respects differentials in both dg Lie algebras, i.e. satisfies the equation

(47) Φδγ = [∂�,Φγ ].

Consider first a simpler morphism of non-differential graded Lie algebras,

Φ̃ : Def
(
Holiebc,d

i→ P
)

−→ Der(TwP)

γ −→ Φ̃γ

where the derivation Φ̃γ ∈ Der(TwP) is given on the generators by

Φ̃γ

(
•

. . .1 2 m−1 m
)
=

∑
k≥1,m=

∑
m•,

m0≥1,k+m0≥3
m1,...,mk≥0

1

k!

... ... ...
⊛

• • •︸ ︷︷ ︸
k

...

m0︷︸︸︷
m1︷︸︸︷ m2︷︸︸︷ mn︷︸︸︷

, Φ̃γ

(
◦

1

◦

2

◦

. . .

◦◦

m

◦

1

◦

2

◦
. . .

◦◦
n

)
= 0.

The map Φ̃ respects the Lie bracket while the obstruction for this map to respect the differentials
is given by the derivation of type (38),

[∂�, Φ̃γ ]− Φ̃γ = Dγ1
, γ1 = Φ̃γ

(
♦
)
∈ TwP(1, 1),

with ♦ given by (40). It is a straightforward calculation to check that the adjustment of the

derivation Φ̃γ with an extra term of the type (38),

Φ̃γ −→ Φγ = Φ̃γ +D
♢

solves the problem of the compatibility with the differentials. □

4.5. Grothendieck-Teichmüller group and twisted properads. Let Ĥoliebc,d be the genus
completion of the properad Holiebc,d. It was proven in [MW2] that for any c, d ∈ Z there is a
morphism of dg Lie algebras

F : GCor
c+d+1 → Der(Ĥoliebc,d)

which is a quasi-isomorphism up to one rescaling class (which controls the automorphism of
Holiebc,d given by rescaling each (m,n) generator by λm+n−2 for any λ ∈ K∗). Here GCor

c+d+1

stands for the oriented version of the Kontsevich graph complex from §3.2 which was studied in
[W2] and where it was proven that

H•(GCor
3 ) = H•(GC2) = grt1,

This result implies that for any c, d ∈ Z with c+ d = 2, one has an isomorphism of Lie algebras,

H0(Der(Ĥoliebc,d)) = grt

where grt is the Lie algebra of the “full” Grothendieck-Teichmüller group GRT1 [D2].

Let P̂ be a dg properad under Ĥoliebc,d and let TwP̂ be the associated twisted properad. One has
morphisms

Tw(i) : (Ĥoliebc,d, δ) −→ (TwP̂, ∂�), Φ : Def
(
Ĥoliebc,d

i→ P̂
)
−→ Der(TwP̂)

given explicitly by the same formulae as in (43) and in Theorem 4.4.1.



30

4.5.1. Proposition. For any dg properad P̂ under Ĥoliebc,d there is an associated morphism of
complexes,

F : GCor
c+d+1 −→ Der(TwP̂)[1],

where GCor
c+d+1 is the oriented version of the Kontsevich graph complex. If c + d = 2, there is an

associated linear map grt −→ H1
(
Der(TwP̂)

)
.

Proof. The morphism Tw(i) induces a morphism of dg Lie algebras,

Def(Ĥoliebc,d
Id→ Ĥoliebc,d) −→ Def(Ĥoliebc,d

Tw(i)−→ TwP̂)

The l.h.s. can be identified as a complex (but not as a Lie algebra) with the degree shifted derivation

complex Der(Ĥoliebc,d)[−1] while the r.h.s. can be mapped, according to Theorem 4.4.1, into the

complex Der(Tw(P̂). Thus we obtain a chain of morphisms of complexes

F : GCor
c+d+1

F−→ Der(Ĥoliebc,d) −→ Der(TwP̂)[1]

which proves the claim. □

Thus fully twisted completed properads under Holiebc,d can have potentially a highly non-trivial
homotopy theory depending on the properties of the above map F at the cohomology level.

4.6. From representations of P to representations of TwP. Assume a dg properad P under
Holiebc,d admits a representation in a dg space (V, d). Then the graded vector space V [−c] is a
Holieb0,c+d-algebra. For any Maurer-Cartan element γ ∈ ⊙≥1(V [−c]) , that is, for any a solution
of the equation (33), we obtain a presentation of TwP in V equipped with the twisted differential
(34). Let us consider such twisted representations in the case P = Holiebc,d in detail.

4.6.1. Twisted Holiebc,d-algebra structures: an explicit description. Let (V, d) be a graded
vector space equipped with a basis {eα} and V ∗ its dual equipped with the dual basis {eα}.
Consider a graded commutative tensor algebra

⊙≥1(V [−c])⊗⊙≥1(V ∗[−d]) ⊂ ⊙• (V [−c]⊕ V ∗[−d]) ≃ K[xα, pα]

where xα := s−deα, pα := s−ceα. The paring V [−c]⊗ V ∗[−d] → K[−c− d] makes this space into
a Lie algebra with respect to the Poisson type brackets { , } (of degree −c− d).

There is a 1-1 correspondence representations of Holiebc,d in V ,

ρ : Holiebc,d −→ EndV ⇒
{
ρ

(
...

...
•

1 2 m

2 n1

)
=: πm

n (x, p) ∈ ⊙n(V ∗[−d])⊗⊙m(V [−c])

}
m,n≥1,m+n≥3

,

and Maurer-Cartan elements of the Lie algebra (⊙≥1(V [c])
⊗

⊙≥1(V ∗[d]), { , }), that is, with
degree 1 + c+ d elements

π(x, p) =
∑

n,m≥1

πm
n (x, p) =

∑
m≥1

∑
α•,β•

1

m!n!
πα1...αm

β1...βn
pα1

· · · pαm
xβ1 · · ·xβn

such that

{π, π} = 2
∑
α

± ∂π

∂xα

∂π

∂pα
= 0

and the degree 1 summand π1
1 ∈ V ⊗V ∗ is precisely the given differential d in V . The representation

ρ induces a representation of the associated polydifferential operad

Oc,d(ρ) : Oc,d(Holiebc,d) −→ End⊙•(V [−c])

and hence a Holiec+d-algebra structure on End⊙•(V {−c}) via the composition of Oc,d(ρ) with the
map (31). Let

γ(p) =
∑
m≥1

γm(p), γm ∈ ⊙m(V [−c]) ⊂ K[pα]
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be a Maurer-Cartan element of that Holiec+d-algebra structure, that is, a degree c+ d solution of
the following explicit coordinate incarnation of the Maurer-Cartan equation (33),∑

n≥1

± 1

n!

∂nπ

∂xα1 . . . ∂xαn
|x=0

∂γ(p)

∂pα1

. . .
∂γ(p)

∂pαn

= 0.

Then the data π(x, p) and γ(p) give rise to a representation,

ρTw : TwHoliebc,d −→ EndV
...

...
•

1 2 m

2 n1

−→ πm
n

•
. . .

︷ ︸︸ ︷m

−→ γm

of the twisted prop TwHoliebc,d in V = span⟨eα⟩ equipped with the deformed differential

(48) d� = d+
∑
k≥1

±eβ
1

k!

∂k+2π

∂pβ∂xα0xα1 . . . ∂xαk
x=p=0

∂γ(p)

∂pα1

|p=0 . . .
∂γ(p)

∂pαk

|p=0
∂

∂eα0

The associated twisted Holiebc,d structure on V is given explicitly by (cf. (43))

πTw :=
∑

m,n≥1
α•,β•

1

m!n!
πβ1...βm
α1...αn

pβ1 . . . pβm(xα1 +
∂γ

∂pα1

) . . . (xαn +
∂γ

∂pαn

)

The MC equation for γ ensures that πTw|x=0 = 0. As πTw is produced from π by the change of

variables xα → xα + ∂γ(p)
∂pα

, it is easy to check — using the vanishing of the sum

∑
± ∂2γ(p)

∂pα∂pβ
)
∂π(x, p)

∂xα

∂π(x, p)

∂xβ
≡ 0

solely for degree+symmetry reasons — that that the equation {πTw, πTw} = 0 holds true indeed.
Finally, one notices that the (1, 1) summand in πγ (which is responsible for the differential on V )
is precisely the twisted differential (48) or, equivalently, d +

∑
k≥2 µ̂k,1 in the notation of §4.2).

This gives a short and independent “local coordinate” check of many “properadic” claims made
above.

4.7. Homotopy triangular Lie bialgebras and Lie trialgebras. Assume V is a vector space
concentrated in degree zero, say, V = KN for some N ∈ N, and let Holieb1,1 be the prop of
ordinary Lie bialgebras. Any representation ρ of TwHolieb1,1 in V is uniquely determined by its
values on generators of cohomological degree zero only, i.e. only on the following three generators
of TwHolieb1,1,

ρ ( • ) : V → ∧2V, ρ ( • ) : ∧2V → V, ρ ( • ) ∈ ∧2V

which satisfy the standard relations (20) as well as the following one,

(49)
•
• 3

1 2

+
•
• 2

3 1

+
•
• 1

2 3

+ (−1)c
(

1

•
• •

2 3 +
1

•
• •

2 3 +
3

•
• •

1 2

)
= 0.

If ρ ( • ) happens to be zero, then the new relation (49) reduced to the classical Yang-Baxter

equation so that associated TwHolieb1,1-algebra structure in V becomes precisely a so called
triangular Lie bialgebra structure on V [D1]. Thus a generic TwHolieb1,1-algebra structure on
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KN is a version of that notion in which V has two Lie bialgebra structures, one is given by the

pair ρ ( • ) and ρ ( • ) and one is given by a pair

ρ

(
•

1 2

)
and ρ

(
1

•
1 2

+

1

•
•

2

1

−
2

•
•

1

1

)

in which the Lie cobracket is twisted by the coboundary term.

Motivated by the above observation, we introduce a properad of Lie trialgebras Lieb∨c,d which is
generated by the S-bimodule T = {T (m,n)}m,n≥0 with all T (m,n) = 0 except

T (2, 1) := 111 ⊗ sgn
|c|
2 [c− 1] = span

〈
1

•
1 2

= (−1)c

1

•
2 1

〉

T (1, 2) := sgn
|d|
2 ⊗ 111[d− 1] = span

〈
•

1 2

= (−1)d •
2 1

〉

T (2, 0) := sgn
|c|
2 [c− d] = span

〈
1 2

• = (−1)c
2 1

•

〉
modulo relations (20) and (49). This properad comes equipped with two morphisms from Liebc,d,
the one which is identity on the generators of Liebc,d and the twisted one given by

(50) •
1 2

→ •
1 2

,
1

•
1 2

→
1

•
1 2

+

1

•
•

2

1

+ (−1)c
2

•
•

1

1

The full twisting construction gives us a minimal resolution of Lieb∨c,d as follows. Consider a
quotient dg properad

Holieb∨c,d := TwHoliebc,d/⟨ • ⟩

by the ideal generated by the univalent MC generator.

4.7.1. Theorem. The canonical projection Holieb∨c,d → Lieb∨c,d is a quasi-isomorphism.

Proof. Consider a filtration of Holieb∨c,d by the number of MC generators. The differential d in

the associated graded complex grHolieb∨c,d acts on the generators coming from Holiebc,d by the
standard formula (22) while on the MC generators by

d
1 2

• = 0, d
•

. . .1 2 m−1 m

:= −
∑

[m]=[m0]⊔[m1]
#m0=2,#m1≥1

......

•

•

m0︷︸︸︷ m1︷︸︸︷
∀m ≥ 3.

Since the number of the MC generators is preserved, we can assume that they are distinguished,
say, labelled by integers. Then the direct summand of grHolieb∨c,d with, say, k MC generators
(labelled by integers from [k]) can by identified with a direct summand in Holiebc,d whose first
in-legs (labelled by integers from [k]) are attached to “operadic type” (mi, 1)-corollas with mi ≥ 2,
i ∈ [k]. The cohomology of this summand is spanned by trivalent corollas only; trivalent (2, 1)
corollas whose unique in-legs are labelled by integers from [k] correspond in this approach precisely

to k copies of the MC generator
1 2

• . This result proves the claim. □
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4.7.2. Properad of triangular Lie bialgebras and its minimal resolution. Triangular Lie
bialgebras appear naturally in the representation theory of the twisted properad TwHoliebc,d.
Consider a quotient properad

Lieb△c,d := Lieb∨c,d/I

of the defined above properad Lieb∨c,d by the ideal I generated by the coLie corolla • . Thus

Lieb△c,d governs two operations of degrees 1− d and d− c respectively,

•
1 2

= (−1)d •
2 1

,
1 2

• = (−1)c
2 1

•

which are subject to the following relations

(51) R△ :

{
•• 3
21

+
•• 2
13

+
•• 1
32

= 0,
1

•
• •

2 3 +
1

•
• •

2 3 +
3

•
• •

1 2 = 0.

Its representations in a dg vector space V are precisely degree shifted triangular Lie bialgebra
structures in V , the case c = d = 1 corresponding to he ordinary triangular Lie bialgebras [D1].
There is a morphism of properads

f : Liebc,d −→ Lieb△c,d
given on the generators by

f ( •
1 2

) = •
1 2

, f(
1

•
1 2

) =

1

•
•

2

1

+ (−1)c
2

•
•

1

1

Consider an ideal I△ in TwHoliebc,d generated by all (m,n)-corollas
1 2 ... m

⊛

1 2
...

n

with m ≥ 2, n ≥

1. This ideal is differential, and, moreover, the quotient properad TwHoliebc,d/I
△ is a dg free

properad with generators

. . .
1 3 n

• = (−1)d
. . .

σ(1) σ(n)

• ∀σ ∈ Sn≥2 , •
1 2 . . . m

= (−1)c|τ |
•

τ(1) τ(2)
. . .

τ(m)

∀τ ∈ Sm≥1,

of degrees 1+d−nd and d+c−mc respectively. This is an extension of TwHolied by the MC (m, 0)-
generators with m ≥ 2. The induced differential acts on the unique (1, 2)- and (2, 0)-generators
trivially, i.e. they are cohomology classes. In fact every cohomology class in TwHoliebc,d/I

△

is generated by this pair via properadic compositions. Indeed, consider a further quotient of

TwHoliebc,d/I
△ by the ideal generated by • and denote that quotient by Holieb△c,d; notice that

the induced differential in Holieb△c,d is much simplified: this properad is freely generated by the

operad Holied equipped with standard differential (5) and the MC elements •
1 2 . . . m

, m ≥ 2

with the differential given by

∂�
1 2

•
= 0, ∂� •

. . .1 2 m

= −
∑

k≥2,[m]=⊔[m•],
m0=1,m1,...,mk≥1

1

k!

... ... ...

•

• • •︸ ︷︷ ︸
k

...

m0︷︸︸︷ m1︷︸︸︷ m2︷︸︸︷ mn︷︸︸︷
∀ m ≥ 3.

Let show that the projection

TwHoliebc,d/I
△ −→ Holieb△c,d

is a quasi-isomorphism. Consider a filtration of both sides by the number of the MC (m, 0)-
generators with m ≥ 2 (this number can not decreese). The induced differential on the associated
graded of the right hand side acts only on Holied generators so that its cohomology is a properad,
say P , generated freely by Lied and the MC generators with m ≥ 2. On the other hand, the
associated graded of the left hand side is isomorphic to tensor products (modulo the action of
finite permutation groups) of complexes twHolied with the trivial complex spanned by (m, 0)
generators with m ≥ 2. According to [DW], the H•(twHolied) = Lied so that on the l.h.s. we get
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the same properad P . Thus at the second page of the spectral sequence the above map becomes
the identity map implying, by the Comparison Theorem, the resquired quasi-isomorphism.

It has been proven [Kh] using Gröbner basis techniques (cf. [DK]) that Holieb△c,d is a minimal

resolution of Lieb△c,d at the dioperadic level. Perhaps this result holds true at the properadic level

as well. Homotopy triangular Lie bialgebras (in a different, non-properadic, context) have been
studied in [LST] where their relation to homotopy Rota–Baxter Lie algebras has been established.

4.8. Full twisting of properads under Liebc,d. Assume P = Liebc,d and the map i :
Holiebc,d → Liebc,d is the canonical projection. The associated twisted dg prop(erad)
(TwLiebc,d, δ�) is generated by the standard corollas

•
1 2

= (−1)d •
2 1

,
1

•
1 2

= (−1)c

1

•
2 1

of degrees 1−c and 1−d respectively modulo relations (20), as well by the family of extra generators,

•
1 2 . . . m

= (−1)c|σ| •

σ(1) σ(2)
. . .

σ(m)

∀σ ∈ Sm, m ≥ 1,

of cohomological degree (1−m)c+d. The twisted differential δ� is given explicitly on the first pair
of generators by

δ�
•

1 2

= 0, δ�
1

•
1 2

=

1

•
•

2

•
1

+ (−1)c
2

•
•

1

•
1

.

where we used relations (20) (and an ordering of vertices in the second line just above goes from
the bottom to the top). The action of ∂� on the remaining MC generators is given by

∂� • = +
1

2
•

• •
and ∂�

1 2

•
= −

•

•
1 2

and, for m ≥ 3, by

∂� •

. . .1 2 m−1 m

=
∑

[m]=[m0]⊔[m1]
#m0=2,#m1≥1

(−1)1+cσ′ ...

•

•

m0︷︸︸︷ m1︷︸︸︷
−

∑
[m]=[m0]⊔[m1]⊔[m2]
#m0=1,#m1,#m2≥1

(−1)cσ
′′

2

......

•

••

m0︷︸︸︷ m2︷︸︸︷m1︷︸︸︷
,

where σ′ (resp. σ′′) is the parity of the permutation [m] → [m0] ⊔ [m1] (resp. [m] → [m0] ⊔ [m1] ⊔
[m2]) associated with the partition of the ordered set [m] into two (resp. three) disjoint ordered
subsets.
These relations imply

∂�

(
1

•
1 2

+

1

⊚

•

2

1

+ (−1)c
2

•

•

1

1

)
= 0

which is in agreement with the general result saying that TwLiebc,d is a properad under Holiebc,d;
the morphism (43) takes in this case the following form

(52) •
. . .1 2 m−1 m

. . .
1 2 n−1 n

−→



0 ifn ≥ 2 and m+ n > 3,

•

1 2

if n = 2,m = 1,

1

•
1 2

+

1

•

•

2

1

+ (−1)c
2

•

•

1

1

if n = 1,m = 2,

∑
[m]=[m0]⊔[m1]
#m0=1,#m1≥1

(−1)cσm0,m1

...

•

•

m0︷︸︸︷ m1︷︸︸︷
if n = 1,m ≥ 3.
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Note that the quotient of the dg operad TwLiebc,d by the (differential) ideal generated by corollas

•

. . .1 2 m−1 m

with m ̸= 2 gives us precisely the properad of Lie trialgebras Lieb∨c,d. Theorem 4.3.6
implies that the canonical projection TwLiebc,d → Liebc,d is a quasi-isomorphism.
Similarly one can describe explicitly the twisted properad TwP associated to any properad P ∈
PROPLiebc,d

. Note that TwP is not in general a properad under Liebc,d as higher homotopy
operations of type (m ≥ 3, 1) can be non-trivial.

5. Full twisting endofunctor in the case of involutive Lie bialgebras

5.1. Introduction. This section adopts the full twisting endofunctor Tw in the category of prop-
erads under Holiebc,d to the case when (strongly homotopy) Lie bialgebras satisfy the involutivity
or diamond condition (which is often satisfied in applications). The corresponding twisting endo-
functor

Tw⋄ : PROPHolieb⋄
c,d

−→ PROPHolieb⋄
c,d

admits a much shorter and nicer formulation than Tw due to the equivalence of Holieb⋄c,d-algebra
structures and the so called homotopy BVcom-structures which are used heavily in the Batalin-
Vilkovisky formalism of the mathematical physics and QFT.

We give many formulae explicitly but omit all the calculations proving them because proofs are
analogous to the ones given in the previous sections. This diamond version Tw⋄ of Tw gives us
a properadic incarnation the well-known and very nice constructions from [CFL, NW]; more pre-
cisely that constructions are recovered in our approach via representations of the twisted properad
Tw⋄Holieb⋄c,d.

5.2. Reminder on involutive Lie bialgebras. Given any pair of integers c, d of the same
parity, c = d mod 2Z, the properad Lieb⋄c,d of involutive Lie bialgebras is defined as the quotient
of Liebc,d by the ideal generated by the involutivity, or “diamond”, relation

•
•

= 0.

Note that this relation is void in Liebc,d for c and d of opposite parities.

It was proven in [CMW] that the minimal resolution Holieb⋄c,d of the properad Lieb⋄c,d is a free
properad generated by the following (skew)symmetric corollas of degree 1+c(1−m−a)+d(1−n−a)

(53) aaaa

. . .
1 2 n

aaaa

. . .1 2 m

= (−1)(d+1)(σ+τ)
aaaa

. . .
τ(1) τ(2) τ(n)

aaaa

. . .σ(1) σ(2) σ(m)

∀σ ∈ Sm,∀τ ∈ Sn,

where m+ n+ a ≥ 3, m ≥ 1, n ≥ 1, a ≥ 0. The differential in Holieb⋄d is given on the generators
by

(54) δ aaaa

. . .
1 2 n

aaaa

. . .1 2 m

=
∑
l≥1

∑
a=b+c+l−1

∑
[m]=I1⊔I2
[n]=J1⊔J2

±
b

c

...

...︸ ︷︷ ︸
J1

︷︸︸︷I1

...

...︸ ︷︷ ︸
J2

︷ ︸︸ ︷I2

...

where the summation parameter l counts the number of internal edges connecting the two vertices
on the right hand side, and the signs are fixed by the fact that they all equal to −1 for c and d
odd integers.

The “plus” extension (see §2.3), Holieb⋄+c,d, of this properad looks especially natural — one adds

just one extra (1, 1)-generator (which we denote from now on by 00 ) to the list while keeping the

differential (54) formally the same.
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Let ℏ be a formal variable of degree c + d and, for a vector space V . Let V [[ℏ]] stand for the
topological vector space of formal power series with coefficients in V ; it is a module over the
topological ring K[[ℏ]] of formal power series in ℏ. Consider a dg properad Holiebℏ+c,d which is iden-

tical to Holieb+c,d[[ℏ]] as a topological K[[ℏ]]-module but is equipped with a different ℏ-dependent
differential

(55) δ •
. . .

1 2 m

. . .1 2 n

=
∑
l≥1

∑
[m]=I1⊔I2
[n]=J1⊔J2

±ℏl−1

•

•
...

...︸ ︷︷ ︸
J1

︷︸︸︷I1

...

...︸ ︷︷ ︸
J2

︷ ︸︸ ︷I2

...

where l counts the number of internal edges connecting the two vertices on the r.h.s. The symbol
± stands for −1 in the case c, d ∈ 2Z. There is a morphism of dg properads (cf. [CMW])

F+ : Holiebℏ+c,d −→ Holieb⋄+c,d[[ℏ]]

given on the generators as follows (cf. [CMW])

(56) F+ : •
. . .1 2 m

. . .
1 2 n

−→
∞∑
a=0

ℏa aaaa

. . .
1 2 m

aaaa

. . .1 2 n

∀ m,n ≥ 1.

There is obviously a 1-1 correspondence between morphisms of dg properads Holieb⋄c,d −→ P in the

category of graded vector spaces over K, and continuous morphisms of dg properads Holiebℏ+c,d −→
P[[ℏ]] in the category of topological K[[ℏ]]-modules.

Let Holie⋄d be the quotient of Holieb⋄c,d by the (differential) ideal generated by all corollas with the
number of outgoing legs ≥ 2. It is generated by the following family of (skew)symmetric corollas
with a ≥ 0, n ≥ 1 and a+ n ≥ 2,

1 2 n

...

aaaaa = (−1)d|σ|

σ(1) σ(2) σ(n)

...

aaaaa ∀ σ ∈ Sn,

which are assigned degree 1− d(n− 1 + a); the induced differential acts as follows

δ
1 2 n

...

aaaaa =
∑

a=p+q
[n]=I1⊔I2

± p

q

...︸ ︷︷ ︸
I1

...︸ ︷︷ ︸
I2

Representations, ρ : Holie⋄d → EndV , of this operad in a dg vector space (V, ∂) can be identified
with continuous representations of the topological operadHolied[[ℏ]] in the topological vector space
V [[ℏ]] equipped with the differential

∂ +
∑
p≥1

ℏp∆p, ∆p := ρ

(
aa

)
.

Here the formal parameter ℏ is assumed to have homological degree d.

It is easy to see that the quotient of the dg properad Holiebℏ+c,d by the (differential) ideal generated

by all corollas with the number of outgoing legs ≥ 2 is identical to Holie+d [[ℏ]] as a dg properad.
Hence we obtain from (56) a canonical morphism of dg properads

(57) f+ : Holie+d [[ℏ]] −→ Holie⋄+d [[ℏ]]

It gives us a compact presentation of any morphism Holie⋄+d → P as an associated continuous
morphism of properads Holied[[ℏ]] → P[[ℏ]] in the category of topological K[[ℏ]]-modules.
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5.2.1. Proposition. There is a morphism of dg operads

F+ : Holie⋄+c+d → Oc,dHolieb⋄c,d

given explicitly on the (1, 1)-generators by

00 −→
∑
m≥2

00000

︷ ︸︸ ︷m

,

and on the remaining (1, n)-generators with a+ n ≥ 2 by

(58)
1 2 n

...

aaaaa −→
∑

m≥1,li≥1

a=c+
∑n

i=1
(li−1) 1

c

n

...

. . .

︷ ︸︸ ︷m

l1 ln

.

Proof is a straightforward direct calculation (cf. §4.1.1). The existence of such a map follows also
from Proposition 5.4.1 and Lemma B.4.1 proven in [CMW].

Given a Holieb⋄c,d-algebra structure,

ρ : Holieb⋄c,d −→ EndV ,

µa
m,n := ρ

(
aaaa

. . .
1 2 m

aaaa

. . .1 2 n
)

: ⊙n(V [−c]) −→ (⊙m(V [−c]))[1 + (c+ d)(1− n− a)],

in a graded vector space V , there is an associated Oc,dHoliebc,d-algebra structure in ⊙•(V [−c])

given in terms of polydifferential operators, and hence a continuous Holie+d [[ℏ]]-algebra structure
on ⊙•(V [−c])[[ℏ]] given by the composition

Holie+d [[ℏ]]
f+

→ Holie⋄+d [[ℏ]] F
+

→ Oc,dHoliebc,d[[ℏ]] → End⊙•(V [−c])[[ℏ]]

Assuming that the latter is nilpotent (or appropriately filtered which is often the case in appli-
cations), one defines a Maurer-Cartan element γ of the given Holiebc,d-algebra structure in V as

a Maurer–Cartan of the induced continuous Holieℏ+c+d-algebra structure in ⊙•(V [−c])[[ℏ]]. Using
(58) one can describe such an MC element as a homogeneous (of degree c+ d) formal power series

(59) γ =
∑

a≥0,m≥0

ℏaγa,m ∈ ⊙•≥1(V [−c])[[ℏ]], γa,m ∈ ⊙m(V [−c]),

satisfying the equation

(60) ∆ρ

(
e

γ
ℏ

)
= 0

where ∆ρ is a degree +1 polydifferential operator on ⊙•(V [−c])[[ℏ]] given, in an arbitrary basis
{pα} of V [−c] as a sum (cf. §4.2)

(61) ∆ρ :=
∑
a≥0

m,n≥1

±ℏa+n−1µa
m,n(pα1

⊗ ...⊗ pαn
)

∂n

∂pα1
. . . ∂pαn

Here the differential in V is encoded as µ0
1,1. The operator ∆ρ encodes fully the given Holieb⋄c,d-

algebra structure ρ in V : there is a one-to-one correspondence [CMW, Me3] between Holieb⋄c,d-
algebra structures in V and degree 1 operators on ⊙•(V [−c])[[ℏ]] of the form

∆ =
∑
a≥0

ℏa∆a

such that ∆a is a derivation of the graded commutative algebra ⊙•(V [−c]) of order ≤ a+ 1 (such
structures are often called BVcom

∞ -algebra structures in the literature [Kr]).
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The sum

(62) δγv :=
∑
n≥0

1

n!
µ0
1,n+1(γ1, . . . , γ1︸ ︷︷ ︸

n

, v),

is a twisted differential on V which is used in the following definition-proposition.

5.3. Diamond twisting endofunctor. The diamond twisting, (Tw⋄P, ∂�), of a dg properad
(P, ∂) under Holieb⋄c,d is, by definition, a properad freely generated by P and the S-bimodule
M = {M(m,n)} such that M(m,n) = 0 for n ≥ 1 and M(m, 0) = ⊕a≥0Ma(0,m) with Ma(0,m)
being the following 1-dimensional representations of Sm,

Ma(0,m) := sgn |c|
m [(c+ d)(1− a)− cm] = span

〈
...1

a

m

a

2

aa

〉
The differential in Tw⋄P is defined on the generators as follows

(63) ∂� ◦

1

◦

2

◦

. . .

◦◦

m

◦

1

◦

2

◦
. . .

◦◦
n

= ∂ ◦

1

◦

2

◦

. . .

◦◦

m

◦

1

◦

2

◦
. . .

◦◦
n

+
m−1∑
i=0

◦◦◦
..

◦
♦

i+1

◦◦
..1 i m

◦◦
. . .

◦◦

1 2 n−1 n

− (−1)|a|
n−1∑
i=0

◦◦◦
..

◦
♦
i+1

◦◦
..

1 i n

◦◦
. . .

◦◦

1 2 m−1 m

(64) ∂�
...1

a

m

a

2

aa
:=

m−1∑
i=0 a

.. ♦

i+1

..1 i m −
∑

k≥1,[m]=⊔[m•]

a=b+
∑k

i=1
(ci+li−1)

1

k!
c1

b

ck

...

. . .

︷ ︸︸ ︷m0

l1 lk

︷︸︸︷m1 ︷︸︸︷mk

∀ a,m ≥ 1.

where ♦ is given by

(65) ♦ :=

∞∑
k=1

1

k! ...︸ ︷︷ ︸
k

0

0 0 0

Note that for m + a ≥ 1 the first sum on the r.h.s. of (42) cancels out with all the summands
corresponding to k ≥ 2,m0 = 1,mi = m− 1, ci = a, i ∈ [k], in the second sum.

5.3.1. Theorem. For any dg properad P equipped with a map

f : Holieb⋄c,d −→ P

there is an associated map of dg properads

Twf : Holieb⋄c,d −→ Tw⋄P

given explicitly by

aaaa

. . .
1 2 n

aaaa

. . .1 2 m

−→
∑

k≥1,[m]=⊔[m•]

a=b+
∑k

i=1
(ci+li−1)

± 1

k!
c1

b

ck

...

... ...

︷ ︸︸ ︷m0

︸︷︷︸
n

l1 lk

︷ ︸︸ ︷m1 ︷ ︸︸ ︷mk

(In the case c, d ∈ 2Z the symbol ± above can be replaced by +1.)
To prove this statement one has to check the compatibility of Twf with the differentials on both
sides. This can be done either by a direct (but tedious) computation or by studying generic
representations of both properads involved in the above statement as is done briefly in §5.4 below
in the most important and illustrative case P = Holieb⋄c,d.

In a full analogy to §4.4.1 the deformation complex of any morphism f as above acts on Tw⋄P
by derivations, that is, there is a morphism of dg Lie algebras

Def
(
Holieb⋄c,d

f→ P
)
−→ Der(TwP)
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5.4. Representations of Tw⋄Holieb⋄c,d. Let ρ : Holieb⋄c,d → EndV be a homotopy involutive
Lie bialgebra structure in a graded vector space V and let ∆ρ be its equivalent incarnation as a
differential operator (61) on ⊙•(V [−c][[ℏ]]. Assume a Maurer-Cartan element γ of this Holieb⋄c,d-
structure is fixed, that is, a formal power series (59) satisfying the equation (60). This datum
(ρ, γ) gives us

(i) a representation of TwHolieb⋄c,d in V which sends the MC generators,

...1

a

m

a

2

aa
−→ γa,m ∈ ⊙m(V [−c])

to the corresponding summands of the MC series (59).
(ii) a twisted Holieb⋄c,d-algebra structure on V which can be encoded as the following γ-twisted

differential operator

∆γ := e−
γ
ℏ ◦∆ρ ◦ e

γ
ℏ =:

∑
a≥0

ℏa∆(a)γ

The MC equation (60) guarantees that summands ∆(a)γ are differential operators of order ≤ a+1
so that ∆γ induces some Holieb⋄c,d-algebra structure on V indeed. A straightforward combinatorial
inspection of ∆γ recovers the universal properadic formula shown in Theorem §5.3.1.

Thus, contrary to the twisting endofunctor Tw introduced in the previous section, its diamond
version Tw⋄ gives us essentially nothing new — it reproduces in a different language the well-
known twisting construction introduced in §9 of [CFL] in terms of generic representations of the
properads Holieb⋄c,d and Tw⋄Holieb⋄c,d. In the special class of representations of Lieb⋄c,d on the
spaces of cyclic words, the MC equation (60) has been introduced and studied by S. Barannikov
[B1, B2] in the context of the deformation theory of modular operads and its applications in the
theory of Kontsevich moduli spaces.

A beautiful concrete solution Γ of the MC equation (60) has been constructed by F. Näef and T.
Willwacher in [NW] when studying string topology of not necessarily simply connected manifolds
M ; that MC element γ has been obtained in [NW] from the so called partition function ZM on
M which has been constructed earlier by R. Campos and T. Willwacher in [CW] when studying
new graph models of configuration spaces of manifolds. Thus the Holieb⋄3−n-algebra structure
constructed in [NW] on the space of cyclic words Cyc(H•(M)[1]) of the de Rham cohomology
H•(M) of an n-dimensional closed manifold M gives us an example of the action of the twisting
endofunctor Tw⋄ on standard Lieb⋄3−n-algebra structure on Cyc(H•(M)[1]).
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