
Genetics in Medicine (2023) 25, 100018

www.journals.elsevier.com/genetics-in-medicine
ARTICLE

A Solve-RD ClinVar-based reanalysis of 1522 index
cases from ERN-ITHACA reveals common pitfalls and
misinterpretations in exome sequencing
A R T I C L E I N F O
Article history:
Received 14 March 2022
Received in revised form
12 January 2023
Accepted 12 January 2023
Available online 20 January 2023

Keywords:
ClinVar
Developmental disorder
Exome reanalysis
Rare diseases
*Correspondence and requests for materials
génomique des maladies rares, FHU-TRANSLA
address: anne-sophie.denomme-pichon@u-bourg
Bourgogne, 14 rue Paul Gaffarel, 21073 Dijon, F

A full list of authors and affiliations appears

doi: https://doi.org/10.1016/j.gim.2023.100018
1098-3600/© 2023 The Authors. Published by El
under the CC BY license (http://creativecommon
A B S T R A C T

Purpose: Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network
for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate
whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could
establish additional diagnoses. We present the results of the “ClinVar low-hanging fruit”
reanalysis, reasons for the failure of previous analyses, and lessons learned.
Methods: Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from
European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital
Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-
nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in
ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and
reinterpreted.
Results: We identified causal variants in 59 cases (3.9%), 50 of them also raised by other ap-
proaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in
genes not known to be involved in human disease at the time of the first analysis, misleading
genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality
filters, low allelic balance, or high frequency).
Conclusion: The “ClinVar low-hanging fruit” analysis represents an effective, fast, and easy
approach to recover causal variants from exome sequencing data, herewith contributing to the
reduction of the diagnostic deadlock.
© 2023 The Authors. Published by Elsevier Inc. on behalf of American College of Medical

Genetics and Genomics. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

Exome sequencing (ES) and genome sequencing (GS) are
gold standard tests for the diagnosis of genetic develop-
mental anomalies. Wright et al1 reported an exome diag-
nostic rate of 42% in pediatric population for intellectual
disability (ID). Overall, in developmental disorders, ES al-
lows positive results in 25% to 45% of the individuals.1-3
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Unfortunately, the remaining 55% to 75% of the cases are
still left without a diagnosis.

Most disease-causing variants are located within the
coding part of the genome,4 and therefore, most cases could
theoretically be solved by an exome analysis. In practice,
however, the tools and knowledge available are sometimes
still insufficient or incomplete at the time of initial analysis.
Reanalysis of existing sequencing data offers the possibility
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2 A.-S. Denommé-Pichon et al.
to increase the diagnostic yield in the light of improved
bioinformatics pipelines and updated literature.5-21 Data
reanalysis or reevaluation can increase the diagnostic yield
by 22% to 89%,8,12,16,21 depending on the date of the initial
analysis and on the time before the reanalysis. The Amer-
ican College of Medical Genetics and Genomics (ACMG)
has published a series of points to consider regarding the
reevaluation and reanalysis of genomic test results at
various levels.22 It recommends a periodic variant-level
reevaluation and case-level reanalysis. In addition, for
cases remaining unsolved, it is useful to keep updated
phenotypic descriptions to improve the specificity of the
phenotype, because this can help to increase the diagnostic
yield as well. Teams often use a manual approach for
routine reanalysis; however this is not sustainable at scale,
especially for iterative reanalyzes with unsolved cases
accumulating over time. The bottleneck here is that these
procedures are time-consuming and require dedicated
personnel to be completed.

Solve-RD is a Horizon 2020-supported EU study
bringing together more than 300 clinicians, scientists, and
patient representatives from 51 sites in over 15 European
countries. The project aims to establish a diagnosis for
genetically undiagnosed individuals. The use of different
standardized and automated bioinformatics pipelines
makes systematic reinterpretation less labor-intensive on a
large data set. As part of the Solve-RD project, it is
expected that a data set composed of more than 19,000
exomes and genomes of genetically unsolved cases will
be reanalyzed in several batches over 5 years.23 Data are
provided by centers associated with 4 core European
Reference Networks (ERNs), including the ERN-
ITHACA (Intellectual disability, TeleHealth, Autism and
Congenital Anomalies). To facilitate such large-scale
reanalysis, multiple working groups for data analysis
have been established, each focusing on a specific type
of variant (eg, copy number variants [CNVs], mito-
chondrial variants, de novo variants, and mobile element
insertions).

The working group focused on the detection of single-
nucleotide variants (SNVs) and small insertions and de-
letions (indels) of less than 40 base pairs (Solve-RD SNV-
indel Working Group) aims to initially programmatically
identify SNVs or indels already annotated in ClinVar as
pathogenic or likely pathogenic (P/LP) variant: the so-called
“low-hanging fruit” variants.19,24 ClinVar is a freely
accessible public database aggregating information about
genomic variations and their relationship to diseases. It
features more than 1.9 million recorded submissions25 and
contains, in particular, variants reported as P/LP by the
genetics community.

In this article, we present the results of this first focused
reanalysis, referred to as “ClinVar low-hanging fruit,” on
the first batch of the data set composed of ERN-ITHACA
negative ES and report the causes underlying missed di-
agnoses at first analysis.
Materials and Methods

The steps of the study process are shown in Figure 1.

Patient inclusion

Clinical data, pedigree structure, and their corresponding ES
or GS raw data (FASTQ, BAM, or CRAM format) of 3576
data sets (including 1522 from index cases, with ID or
developmental disorder, and 2054 relatives) have been
shared internationally by 7 health care partners from ERN-
ITHACA through the RD-Connect Genome-Phenome
Analysis Platform (GPAP) (https://platform.rd-connect.eu/)
between April 2018 and November 2019 as described by
Zurek et al.23 In compliance with the local ethical guidelines
and the Declaration of Helsinki, all individuals (or legal
representatives) provided informed consent to participate in
the Solve-RD project.

ES reanalysis and reinterpretation

ES and bioinformatics analyses were performed on plat-
forms as previously described26-28 and are detailed in the
Supplemental Methods. Raw data were reanalyzed using a
centralized, automated analysis and filtering approach
developed within the RD-Connect GPAP and in the context
of the Solve-RD project.19 We retained SNVs and indels (1)
located in genes associated with ID or neurodevelopmental
diseases, according to a list of clinical and research candi-
date genes provided by ERN-ITHACA (in Supplemental
Gene List Table), (2) having a Genome Aggregation Data-
base (gnomAD) allele frequency of < 1%, (3) having an
internal RD-Connect GPAP allele frequency of < 2%, and
(4) reported in ClinVar (v.13-01-2020)29 as being likely
pathogenic or pathogenic. Methods of this step have already
been described in Matalonga et al.19 Variants were priori-
tized if zygosity of the variant matched with the inheritance
patterns of the gene (based on OMIM and the Develop-
mental Disorder Gene-to-Phenotype [DDG2P] database) in
which the variants were observed and, in addition, filtered
on gnomAD frequency and internal frequency depending on
the mode of inheritance (Figure 2). Frequency filters allow
discarding frequent variants that are not involved in rare
diseases and then avoid having to interpret irrelevant vari-
ants, including variants wrongly reported as being P/LP in
ClinVar. The annotated variants were subsequently returned
in February 2020 to the original submitting center that had
initially produced the sequencing data for clinical
interpretation.

Variants that were considered to be responsible for the
phenotype of the cases were visualized in the Integrative Ge-
nomics Viewer (IGV) alongside the exome data of the parents
when available for final visual valuation of quality controls
(QCs). The ACMG and Association for Molecular Pathology
criteria29 for variant classification were used. Validation

https://platform.rd-connect.eu/


Inclusion by centers
(clinical geneticists and biologists)

Timeframe: months

Data sharing and upload on RD-Connect by centers 
(bioinformaticians and biologists)

Timeframe: days

Pipeline development and running by the CNAG (Barcelona)
(bioinformaticians and biologists)

Timeframe: weeks

Filtering by the Radboud UMC (Nijmegen)  
(bioinformaticians, biologists) 

Timeframe: hours

Results interpretation by inclusion centers 
(biologists)

Timeframe: 2 days

Results confirmation by inclusion centers 
(biologists and clinical geneticists)

Timeframe: months

Data collection by centers
(phenotypic data: clinical geneticists

sequencing data: biologists)
Timeframe: months

Figure 1 Steps, roles, and timeframes of the study. CNAG,
National Center for Genomic Analysis; UMC, University Medical
Center.
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through alternative methods was performed locally in the
clinical laboratory that submitted the sample to Solve-RD.

For each diagnosis achieved through this process, we
subsequently attempted to determine the reason why the
variants were not identified or discarded at the first analysis.
Clinical laboratories, in parallel to submission of the
genetically unsolved cases to Solve-RD, also performed
local reanalysis. Only information about diagnoses obtained
through this reanalysis strategy had to be recorded by the
inclusion centers.
Results

We identified 1618 SNVs and indels reported as being P/LP in
ClinVar (Table 1, Figure 2) in 980 index cases from 649 trios,
11 duos, and 320 singletons. We identified 147 candidate
variants in 127 individuals. Of these, the variant led to a
conclusive molecular diagnosis in 59 individuals (3.9%).
Among these 59 cases, 50 (3.3%) were also solved through
local reanalyzes in parallel to the Solve-RDproject between the
data upload and the reanalysis, in diagnostic or research labo-
ratories, whereas the remaining 9 (0.6%)were solely identified
using the Solve-RD infrastructure. For various reasons, the 88
remaining variants did not solve the cases: single heterozygous
variant for autosomal recessive disorders, no phenotypic fit
combinedwith poor evidence of the pathogenicity based on the
ACMG/Association for Molecular Pathology criteria29 about
the variants that should not have been reported in ClinVar as
P/LP, variants already returned to the patient but not fully
explanatory, or incidental findings. These variants were
rejected based on expert interpretation in the context of the
observed phenotype. We had no dual diagnoses.

For the 9 cases only identified through the ClinVar Solve-
RD analysis (Table 2), we retrospectively looked back at the
original ES data and interpretations to understand why the
variant was not considered at the time of the previous ana-
lyses. Two cases were not resolved, because the gene was not
yet known to be involved in human disease (cases 1 and 2), 3
because the variants had been filtered out during data inter-
pretation (cases 3-5) and 4 because the variants had not been
detected using the in-house pipeline or were filtered out
during the bioinformatics filtering process (cases 6-9).
Case 1: TRRAP: No disease–gene association at the
time of previous analyses

The first solved case was of an 8-year-old boy with intra-
uterine growth retardation, global developmental delay, se-
vere hypotonia, facial features (cleft palate, short upper lip),
cerebellar hypoplasia, polymicrogyria, and an arachnoid
cyst. The reanalysis identified a heterozygous missense
variant in TRRAP reported as likely pathogenic in ClinVar,
leading to the diagnosis of autosomal dominant develop-
mental delay with or without dysmorphic facies and autism
(OMIM 618454). At the time of the first exome analysis in
2018 using a singleton strategy, the TRRAP gene was not
yet known to be involved in human disease. It has been
published in 2019.30 After the identification of the variant as
an excellent candidate for the condition, family segregation
using Sanger sequencing confirmed its de novo origin.

Case 2: NFIA: No disease–gene association at the
time of previous analyses

The second solved case was of a 12-year-old girl with an
infantile-onset global developmental delay associated with
behavioral abnormality, hypotonia, and corpus callosum
hypoplasia. Dysmorphological features included epicanthal
fold, strabismus, wide nasal base, brachydactyly and clino-
dactyly of the second toes, 1 hemangioma on the inner side
of the thigh, and thickened skin. At 4 years and 4 months,
she weighed 14.0 kg (−1.3 SD), she was 99.5 cm (−1.3
SD), and her occipital frontal circumference was 79.8 cm
(−0.4 SD). The reanalysis identified a heterozygous
missense variant in NFIA reported as likely pathogenic in
ClinVar, associated with autosomal dominant brain mal-
formations with or without urinary tract defects (OMIM
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Figure 2 Flowchart of the study. AD, autosomal disease; AF, allelic frequency; AR, autosomal recessive; NDD, neurodevelopmental
disease; DX, dominant X-linked; gnomAD, Genome Aggregation Database; ID, intellectual disability; ITHACA, Intellectual disability,
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613735).31 The variant was not identified at the time of the
first exome analysis using a singleton strategy in 2016,
because the NFIA gene was not yet reported in the OMIM
database as a morbid gene. It was associated with human
disease in the OMIM database in 2017. Family segregation
using Sanger sequencing showed that the variant occurred
de novo.
Case 3: PTEN: A variant of uncertain significance
reclassified as pathogenic

The third solved case was of a 9-year-old boy with speech
and language developmental delay, impaired social in-
teractions and poor eye contact, progressive macrocephaly,
and short corpus callosum. His father presented with uni-
lateral convergent strabismus, testicular ectopia, excessive
Table 1 Number of cases and identified variants by center

Solve-RD Center From ERN-ITHACA
Uploaded
Data Sets

In
Ca

Radboud University Medical Center (Nijmegen) 2031
Dijon Bourgogne University Hospital (Dijon) 826
Charles University (Prague) 232
Azienda Ospedaliero-Universitaria Senese (Siena) 231
Ospedale Pediatrico Bambino Gesù (Rome) 109
Bordeaux University Hospital (Bordeaux) 117
Institute of Health Carlos III (Madrid) 30
Total 3576 1

ERN-ITHACA, European Reference Network for Intellectual disability, TeleHealt
sweating, and macrocephaly (62.5 cm, > +4 SD). His
mother also presented with macrocephaly (61 cm, +4 SD).
He was born at 38 weeks of gestation via a normal delivery
after a normal pregnancy. Head circumference at birth was
35.0 cm (−1.5 SD). At age 3 years, he weighed 17.0 kg
(+0.8 SD) and was 90.0 cm tall (−2.5 SD) and he later
developed macrocephaly (> +2 SD) and obesity (body mass
index, +3.6 SD). He had dysmorphological features
including frontal bossing, telecanthus, esotropia associated
with horizontal nystagmus, and one cafe-au-lait spot.

The singleton-based reanalysis identified a heterozygous
missense variant in PTEN that had been previously reported
as a variant of uncertain significance in the patient because it
was inherited from the mother, who was initially assumed to
be unaffected. The variant had been submitted as pathogenic
in ClinVar in the meantime. The Solve-RD reanalysis led us
to reexamine the mother, who was apparently asymptom-
dex
ses

Candidate
Variants

Solved
Cases

Cases Solved Only via
the ClinVar-Based Reanalysis

687 63 23 4
554 62 36 5
105 13 0 0
83 8 0 0
44 1 0 0
39 0 0 0
10 0 0 0
522 147 59 9

h, Autism and Congenital Anomalies.



Table 2 Results for the 9 additional diagnoses because of the reanalysis based on ClinVar

Case
Seq.

Strategy

First
Analysis

(or Previous
Reanalysis)

Date
Disease (OMIM Number)
and Mode of Inheritance Gene Genotype cDNA Variant

Amino Acid
Change Inh.

ClinVar Status
(Variant ID)

Submission
Date in
ClinVar

Cause of
Missed

Diagnosis

1 Singleton 2018-03 Developmental delay
with or without
dysmorphic facies
and autism
(618454), AD

TRRAP Het NM_001375524.1:
c.3127G>A

p.(Ala1043Thr) D.n. P (634849) 2019-06 Gene not yet
reported
morbid in
OMIM

2 Singleton 2016-08 Brain malformations
with or without
urinary tract
defects (613735), AD

NFIA Het NM_001134673.4:
c.361C>T

p.(Arg121Cys) D.n. P (265253) 2017-03 Gene not yet
reported
morbid in
OMIM

3 Singleton 2016-08 Macrocephaly/autism
syndrome (605309),
AD

PTEN Het NM_000314.8:
c.1004G>A

p.(Arg335Gln) Mat. P (427580) 2017-05 Segregation
initially
considered
not compatible,
because the
variant was
inherited from
the mother,
initially
suspected
as being
unaffected

4 Singleton 2017-11 Spinocerebellar ataxia,
autosomal recessive
10 (613728), AR

ANO10 Hom NM_018075.5:
c.132dup

p.(Asp45Argfs*9) Mat. Pat. P/LP (162016) 2014-12 Interpreted as
heterozygous

5 Trio 2016-10 Intellectual
developmental
disorder, autosomal
dominant
5 (612621), AD

SYNGAP1 Het NM_006772.3:
c.2294+1G>A

p.? D.n. LP (41460) 2013-04 Missed during
interpretation
by the
geneticist

6 Trio 2018-12 Cortical dysplasia,
complex, with other
brain malformations
1 (614039), AD

TUBB3 Het NM_006086.4:
c.763G>A

p.(Val255Ile) D.n. LP (372654) 2016-12 Not targeted
by the
enrichment
kit

(continued)
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atic, with mild features compatible with the diagnosis. This
led to the diagnosis of autosomal dominant macrocephaly/
autism syndrome (OMIM 605309), a condition that is
associated with PTEN loss of function.

Case 4: ANO10: Homozygous variant rejected
because falsely presumed to be heterozygous

The fourth solved case was of a 41-year-old female with a
young adult-onset spinocerebellar ataxia, associated with
nystagmus and hypoplasia of the cerebellar vermis. There
was no medical family history. The first symptoms started at
age 29 years with progressive dysarthria.

The singleton-based reanalysis identified a homozygous
indel in ANO10 reported 4 times as pathogenic and once as
likely pathogenic in ClinVar at the moment of our reanalysis
and already described in several studies.32 At the time of
first analysis, the variant was examined; however, it was
previously wrongly interpreted by the geneticist as hetero-
zygous based on inspection of the data in IGV. The genome
aligner had produced alignment artifacts, effectively hiding
the indel variant because of its position at the end of reads
(Figure 3). The pipeline used HaplotypeCaller and thus did
not require realignment around the indels. Because there is
no local realignment around the indels on raw data, the
BAM files loaded into IGV to visualize the variant did not
show the indel correctly, suggesting that the variation was in
a heterozygous state.

The new calling was suggestive of a homozygous variant,
whichwe confirmed through Sanger sequencing verifying the
homozygous state, and leading to the diagnosis of autosomal
recessive spinocerebellar ataxia type 10 (OMIM 613728).

Case 5: SYNGAP1: Misinterpretation

The fifth solved case was of a 12-year-old female with ID,
delayed speech and language development, absence seizures
triggered by food intake, autism, and behavioral troubles.
She had hyperbilirubinemia during neonatal period and
feeding difficulties in infancy. She presented with hypo-
pigmentation of the skin, recurrent infections, muscular
hypotonia, hip dysplasia, and equinovarus deformity.

The reanalysis identified a de novo heterozygous splicing
variant in SYNGAP1, reported as likely pathogenic in Clin-
Var, leading to the diagnosis of autosomal dominant intel-
lectual developmental disorder type 5 (OMIM 612621). The
variant was missed by the geneticist at the time of the trio-
based analysis (2016), despite SYNGAP1 being a known ID
gene at the time of initial analysis, the variant being reported
in the literature33 and being clearly visible in the BAM file.

Case 6: TUBB3: Undetected by the pipeline

The sixth solved case has been previously described in de
Boer et al.34 This case was of a 16-year-old female with



Case 4 (ANO10)

Case 7 (TUBB)

Case 8 (EEF1A2)

chr6:30 691 734
Total count: 23
A : 12 (52%, 8+, 4- )
C : 0
G : 10 (43%, 2+, 8- )
T : 1 (4%, 1+, 0- )
N : 0
---------------

chr20:62 127 262
Total count: 168
A : 0
C : 140 (83%, 96+, 44- )
G : 0
T : 28 (17%, 25+, 3- )
N : 0
---------------

chr3:43 647 213
Total count: 113
A : 0
C : 0
G : 0
T : 113 (100%, 55+, 58- )
N : 0
---------------
DEL: 0
INS: 83

Figure 3 Integrative Genomics Viewer visualization of BAM files (GRCh37) from the first analysis of cases 4 (ANO10), 7 (TUBB),
and 8 (EEF1A2). Case 4: chr3:g.43647213dup variant in the homozygous state (ref: 30; alt: 83). Case 7: chr6:g.30691734A>G variant with
low depth of coverage (23 X: ref: 12; alt 11 with 10 G and 1 T). The variant is absent from the parents. Case 8: chr20:g.62127262C>T variant
with low allelic balance (0.17%). alt, alteration; ref, reference.
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severe neurodevelopmental delay, severe ID, and progres-
sive microcephaly (−2 SD at 1 year). Family history was
negative for genetic diseases and ID. She presented with
delayed motor and communication development and
behavioral problems (auto- and hetero-aggressive behavior,
sleep disturbance, and phonophobia). She had mild dys-
morphological features, including round face, deeply set
eyes, short philtrum, inverted nipples, pectus carinatum, and
short feet. She had other medical problems, including short
stature (−2.5 SD), high hypermetropia, strabismus, recur-
rent upper respiratory and urinary tract infections, con-
stipation, and impaired pain sensation. Brain magnetic
resonance imaging (MRI) at age 2 years and 2 months
showed notably corpus callosum hypoplasia, reduced vol-
ume of supratentorial white matter, and ventriculomegaly.

The reanalysis identified a heterozygous missense variant
in TUBB3, reported as likely pathogenic in ClinVar. The in-
house pipeline in the first trio-based analysis (2014) did not
call the variant, because it was located in a region not tar-
geted by the enrichment kit. Variant calling in the bioin-
formatics pipeline was based on this target set ± 200 bases,
leaving the variant undetected. We found it in Solve-RD
using genome-wide variant calling on raw data sets, lead-
ing to the diagnosis of autosomal dominant cortical
dysplasia, complex, with other brain malformations type 1
(OMIM 614039).
Case 7: TUBB: Rejected by the pipeline based on QC
filters

The seventh solved case was of a 24-year-old female with
global developmental delay (motor, speech, and language
development) and cerebral palsy. She had severe cortical
visual impairment associated with megalocornea, hypopla-
sia of the optic nerve, severe myopia, unilateral strabismus,
horizontal nystagmus, and photophobia. Dysmorphological
features included ptosis, wide nasal bridge, bulbous nasal
tip, low insertion of columella, wide mouth, thick lower lip
vermilion, long fingers with prominent fingertip pads, and
short feet with pes planus and hallux valgus. Other medical
problems included constipation and Hirschsprung disease.
Brain MRI showed corpus callosum agenesis, gray matter
heterotopias, and abnormality of the caudate nucleus and
putamen. Mother presented with (familial occurring) bilat-
eral coloboma of the iris and retina.

The reanalysis identified a heterozygous pathogenic
missense in TUBB reported in the literature in 2012.35 The
variant had not passed at initial trio-based analysis in 2013
because of the overall low quality of the variant, likely
because of low depth of coverage (23 X coverage, with 8
variant reads) (Figure 3). Indeed, the in-house pipeline
generates a QC score per variant, and this variant had a low
score, probably because of the low coverage and because
there was 1 read with a third allele at the locus. The initial
local diagnostic analysis heavily relied on de novo variant
calling, which is less accurate for variants with low QC
scores. Therefore, the variant was likely filtered out during
the interpretation process. Now, the variant led to the
diagnosis of autosomal dominant cortical dysplasia, com-
plex, with other brain malformations type 6 (OMIM
615771).
Case 8: EEF1A2: Rejected by the pipeline based on
allelic balance

The eighth solved case was of a 19-year-old male with se-
vere ID associated with global developmental delay (motor,
speech, and language development delay), autism (stereo-
typies, short attention span, poor eye contact), seizures,
hypotonia, sleep disturbance, and gait troubles. Dysmor-
phological features included macrocephaly, retrognathia,
high forehead, anteverted nares, macrotia, incisor macro-
dontia, large hands with abnormality of the thumbs, and hip
dysplasia. Brain MRI showed nonspecific white matter ab-
normalities around the left frontal horn.

The reanalysis identified a pathogenic missense variant in
EEF1A2, in a mosaic state in the blood (17%). At the time
of the first trio-based analysis in 2014, the position of this
variant was properly covered and the variant was identified
with substandard QC, however was presumably subse-
quently rejected based on the allelic fraction being below the
threshold for interpretation (<20%) (Figure 3). The variant
led to a diagnosis of developmental and epileptic encepha-
lopathy type 33 (OMIM 616409).
Case 9: FKPB14: Filtered by pipeline as too frequent

The ninth solved case was of a 29-year-old female with
hyperelastic skin, hypermobility, severe muscle hypotonia at
birth, and delayed gross motor development. Family history
was negative for genetic diseases. Her father was 170 cm
(−1 SD) and mother 160 cm (−1 SD). She was born pre-
maturely after a normal pregnancy. At 24 years old, she
weighed 52.0 kg (−0.7 SD), was 147 cm tall (−2.5 SD) and
her sitting height was 75.0 cm (−4.9 SD). Dysmorpho-
logical features included progressive juvenile onset scoli-
osis, arachnodactyly, thin fibula, pes valgus, short fourth
and fifth metatarsal, retrognathia, high narrow palate, and
microtia. She presented with convergent strabismus and
high progressive myopia. She was initially suspected of
having Stickler syndrome.

The reanalysis identified a homozygous pathogenic
frameshift in FKBP14. At the time of the first singleton-
based analysis, the variant was present in the raw VCF,
but it had been filtered out by the in-house pipeline because
it was tagged as “common” in the single nucleotide poly-
morphism database (dbSNP build 151) with an allele fre-
quency in gnomAD of over 10−4. It appears that this very
frequent variant accounts for 70% of alleles involved in the
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autosomal recessive Ehlers-Danlos syndrome, kyphoscoli-
otic type 2 (OMIM 614557).36
Discussion

The aim of Solve-RD is to solve the diagnostic dead end via
reanalysis and also to identify new genes and new molecular
mechanisms through data sharing and patient inclusion at a
pan-European level. The purpose of the “ClinVar low-
hanging fruit” analysis of 3576 individuals (including
1522 index cases) from the ERN-ITHACA cohort was not
to identify new genes but to decrease the diagnostic dead
end. With 59 diagnoses (3.9%), it shows the usefulness of a
systematic reanalysis of negative exomes that is focused on
the SNVs and indels reported as being pathogenic and likely
pathogenic in ClinVar through systematic realignment,
recalling, and reinterpretation using up-to-date bioinfor-
matics pipelines.19 Between the inclusion of the cases in the
Solve-RD project in 2018 and the reanalysis in 2020, 50
candidate cases from the “ClinVar low-hanging fruit”
reanalysis were solved in parallel to the Solve-RD project,
mainly through co-occurring reanalyzes or re-evaluation of
the patients (because individuals without a genetic diagnosis
are often advised to recontact their clinician for such anal-
ysis). Nine additional cases (0.6%) were not yet identified
locally either because they had not recontacted their clini-
cian for reanalysis or if they had, because the variant
escaped detection at any stage of the ES process (enrich-
ment, efficient sequencing, alignment, calling, annotation,
and/or interpretation). These results match those of the
previous similar study on the Deciphering Developmental
Disorders cohort (13,462 probands) in which Wright et al37

were able to identify 112 variants in 107 probands (0.8%) as
possible diagnoses.

After collection of the raw data and completion of their
bioinformatics reanalysis, the reinterpretation of the 1522
negative cases was easy to implement and fast to interpret.
There were only 147 variants after overlap with a disease-
specific gene list and prioritization. Although this list
limited the possibility of identifying so-called unanticipated
diagnosis, referring to phenocopies of a genetically different
disease group (eg, ID genes vs epilepsy genes), this
approach does help to limit the risks of incidental findings.
In addition, the in silico enrichment filters also limited the
needs in human resources, because the centers did not have
to filter the thousands of cases manually. Moreover, the
cohort analysis with only candidate variants to re-evaluate
resulted in time saving compared with a case-by-case
reanalysis considering different strategies.

Our centralized reanalysis has taught us some lessons.
The first and very essential one is that stringent filters should
not be used for variants reported as P/LP in ClinVar: (1) if
there is a variant with low depth of coverage, consider it
nonetheless for the interpretation, (2) if there is a variant
with low allelic balance, consider mosaicism, (3) if there is
an inherited variant, check for paucisymptomatic parent or
consider incomplete penetrance, and (4) if there is a frequent
variant, check for recurrent variants and involvement in
recessive disorder and use homozygous count annotation in
gnomAD. The second lesson is to remain cautious when
interpreting variants located at the end of the reads, espe-
cially in IGV. Genome aligners can produce alignment ar-
tifacts and hide indels located at the end of the reads,
especially when there is no realignment around the indel
step in the bioinformatic pipeline, because it can be the case
when using UnifiedGenotyper. In these cases, the variant
calling is correct, but the BAM still contains the misalign-
ment. Although most current pipelines use variant callers
with a reassembly step, such as HaplotypeCaller or
Platypus, and thus do not require local indel realignment, it
is still useful for legacy tools such as UnifiedGenotyper to
correct mapping errors made by genome aligners.38,39 We
have to keep in mind that when looking at variations in IGV
located at the end of reads, there may be artifacts related to
the fact that there was no realignment around the indels. The
third lesson is to never stop reanalyzing genomic data
because new genes and new variants are reported all the
time. Some tools allow automating the reanalysis in real
time,13 such as Variant Alert,40 which can highlight updates
from ClinVar as soon as variants are submitted at the scale
of the complete database.

ClinVar-based reanalysis is an effective technique for
solving unsolved cases from the ERN-ITHACA cohort with
ID and congenital abnormalities, and this strategy should
also be effective for other types of cohorts such as those of
Solve-RD project. Given the success of the ClinVar-based
reanalysis in diagnosing unsolved cases, similar strategies
for other variant types, such as CNVs, may be equally
successful, which are currently ongoing.

This approach should be used as part of a more
comprehensive reanalysis strategy, because it only targets
variants already reported and cannot resolve all cases. Other
strategies should be considered in reanalysis, such as the
identification of de novo variants from trio, CNVs, mito-
chondrial variants, mobile element insertions, short tandem
repeat expansions, uniparental disomy, and variants in runs
of homozygosity. However, ES reanalysis alone will not
solve the other causes of diagnostic impasse and additional
experiments such as GS or multiomic analyses will be
therefore required.
Data Availability
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López Martín, Milan Macek Jr, Leslie Matalonga, Isabelle
Maystadt, Manuela Morleo, Vicenzo Nigro, Michele Pinelli,
SimonePizzi,Manuel Posada, FrancescaC.Radio,Alessandra
Renieri, Olaf Riess, Caroline Rooryck, Lukas Ryba,
Jean-Madeleine de Sainte Agathe, Gijs W.E. Santen, Martin
Schwarz, Marco Tartaglia, Christel Thauvin, Annalaura
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Tübingen, Tübingen, Germany; 10Centre for Rare Diseases,
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Paris, France; 22INSERM UMR 1141 “NeuroDiderot,”
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Koç University
Ayşe Nazlı Başak
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Alexander Münchau, Katja Lohmann, Rebecca Herzog,
Martje Pauly

University of Luxembourg
Patrick May

University of Oxford
David Beeson, Judith Cossins

University of Siena
Alessandra Renieri, Simone Furini, Chiara Fallerini, Elisa
Benetti

Orphanomix Group

Alexandra Afenjar, Alice Goldenberg, Alice Masurel, Alice
Phan, Anne Dieux-Coeslier, Anne Fargeot, Anne-Marie
Guerrot, Annick Toutain, Arnaud Molin, Arthur Sorlin,
Audrey Putoux, Béatrice Jouret, Béatrice Laudier, Bénédicte
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