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Abstract

The Grand Duchy of Luxembourg is a small country in Western Europe, which,
despite its size, is an important global financial centre. Due to its highly multilingual
population, and the fact that one of its national languages - Luxembourgish - is
regarded as a low-resource language, this country lends itself naturally to a wide
variety of interesting research opportunities in the domain of Natural Language
Processing (NLP).

This thesis discusses and addresses challenges with regard to domain-specific and
language-specific NLP, using the unique linguistic situation in Luxembourg as an
elaborate case study. We focus on three main topics: (I) NLP challenges present in
the financial domain, specifically handling personal names in sensitive documents, (II)
NLP challenges related to multilingualism, and (III) NLP challenges for low-resource
languages with Luxembourgish as the language of interest.

With regard to NLP challenges in the financial domain, we address the challenge of
finding and anonymising names in documents. Firstly, an empirical study on the
usefulness of Transformer-based deep learning models is presented on the task of
Fine-Grained Named Entity Recognition. This empirical study was conducted for a
wide array of domains, including the financial domain. We show that Transformer-
based models, and in particular BERT models, yield the best performance for this
task. We furthermore show that the performance is also strongly dependent on the
domain itself, regardless of the choice of model. The automatic detection of names in
text documents in turn facilitates the anonymisation of these documents. However,
anonymisation can distort data and have a negative effect on models that are built
on that data. We investigate the impact of anonymisation of personal names on the
performance of deep learning models trained on a large number of NLP tasks.

Based on our experiments, we establish which anonymisation strategy should be
used to guarantee accurate NLP models.

Regarding NLP challenges related to multilingualism, we address the need for polyglot
conversational AI in a multilingual environment such as Luxembourg. The trade-off
between a single multilingual chatbot and multiple monolingual chatbots trained
on Intent Classification and Slot Filling for the banking domain is evaluated in an
empirical study. Furthermore, we publish a quadrilingual, parallel dataset that we
built specifically for this study, and which can be used to train a client support
assistant for the banking domain.

With regard to NLP challenges for the Luxembourgish language, we predominantly
address the lack of a suitable language model and datasets for NLP tasks in Lux-
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embourgish. First, we present the most impactful contribution of this PhD thesis,
which is the first BERT model for the Luxembourgish language which we name
LuxemBERT. We explore a novel data augmentation technique based on partially
and systematically translating texts to Luxembourgish from a closely related lan-
guage in order to artificially increase the training data to build our LuxemBERT
model. Furthermore, we create datasets for a variety of downstream NLP tasks in
Luxembourgish to evaluate the performance of LuxemBERT. We use these datasets
to show that LuxemBERT outperforms mBERT, the de facto state-of-the-art model
for Luxembourgish. Finally, we compare different approaches to pre-train BERT
models for Luxembourgish. Specifically, we investigate whether it is preferable to
pre-train a BERT model from scratch or continue pre-training an already existing
pre-trained model on new data. To this end, we further pre-train the multilingual
mBERT model and the German GottBERT on the Luxembourgish dataset that we
used to pre-train LuxemBERT and compare all models in terms of performance and
robustness. We make all our language models as well as the datasets available to the
NLP community.
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Take every chance,
Take every second chance seriously.
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1 Introduction

In this first chapter, we introduce the general motivation for researching
domain-specific and language-specific NLP problems present in Luxembourg. We then
present specific challenges in three parts, followed by our contributions addressing
those challenges. Finally, we show the roadmap for the remainder of this thesis.
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Chapter 1. Introduction

1.1 Motivation
The Grand Duchy of Luxembourg is a small country in Central Europe, surrounded
by France, Germany, and Belgium. Despite its size, the country attracts myriad
international companies and investors, resulting in a strong economy, not only by
European standards, but by global standards as well.

Organisations settling in Luxembourg are typically faced with the task of adapting
themselves to the unique linguistic situation in the country and the varied demo-
graphic makeup of its population. Both of these factors give rise to numerous
challenges with regard to automation of tasks, in particular of those involving the
automated processing of documents and textual data in general. This in turn makes
Luxembourg a magnet for interesting research questions in the domain of Natural
Language Processing (NLP).

One of the most important branches of the economy in Luxembourg is the financial
sector. Indeed, it makes up nearly a third of the country’s GDP and the Luxem-
bourg Banker’s Association (ABBL) represents 123 banks in Luxembourg1, with the
Deutsche Bank, the Banque et Caisse d’Épargne de l’État, and BGL BNP Paribas
being some of the most important banks in the country. Table 1.1 shows the ten
most important banks in Luxembourg in terms of total assets2.

Table 1.1: Ten largest banks in Luxembourg in terms of total assets (in million
Euros)

Name Business Focus Assets
JP Morgan Bank Luxembourg SA Investment Banking 66 880

Banque et Caisse d’Épargne de l’État Universal Banking 53 764
BGL BNP Paribas Universal Banking 51 642

Société Générale Luxembourg Private B., Investment B. 51 333
CACEIS Bank, Luxembourg Branch Securities Services 46 082
Banque Internationale à Luxembourg Universal Banking 32 445

Deutsche Bank Luxembourg SA Wealth Management 27 530
ING Luxembourg Universal Banking 23 303

Intesa Sanpaolo Bank Luxembourg SA Corporate Banking 21 091
DZ Privatbank SA Private Banking 20 915

With the continuous growth of financial institutes, the accompanying challenges are
also increasing in number. These challenges include the rising number of financial
documents to be treated, the ever-present risk of defrauding schemes, and the increas-
ing concerns of data privacy. Evidently, there is a vested interest in investigating
automated approaches to handle the growing workload, as it becomes progressively
infeasible to be managed by humans. As such, the deployment of NLP models that
can handle tedious, yet simple, tasks with little to no oversight can significantly
reduce the need for manual labour. However, financial documents, by their nature,
present a number of challenges that make the creation of adequate NLP models more
difficult. For one, they are examples of non-typical textual data with specific use of

1https://www.abbl.lu/en/home
2according to: https://thebanks.eu/banks-by-country/Luxembourg
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language and specialised vocabulary. These domain-specific linguistic characteristics
could reduce the performance of off-the-shelf models.

Another factor that makes the deployment of NLP models in Luxembourgish organi-
sations more challenging, is the diversity of the country’s population. Luxembourg is
marked by a high number of border workers, as well as high immigration, making its
diversity and multiculturalism immediately apparent. The demographic situation in
Luxembourg stems from a population shift with a continuous increase of the share of
foreigners since the 1960s and 1970s [6][7]. Nowadays, the population of Luxembourg
is made up of more than 175 different nationalities despite its small population size
of almost 650 000, with most people being either of Luxembourgish (≃ 52.88%),
Portuguese (≃ 15.55%), French (≃ 7.6%), or Italian (≃ 3.74%) descent. Table 1.2
shows the demographic makeup of Luxembourg3. With multiculturalism comes
multilingualism which is evident by the multitude of languages spoken in the country.
Influenced by its neighbouring countries, Luxembourg’s administrative languages are
French, German, and Luxembourgish, the latter being a Moselle-Franconian dialect
closely related to German [8]. With the addition of English, Luxembourgers learn
each of these languages in school and use them largely on a daily basis. With such a
diverse pool of languages spoken by potential clients and business partners, companies
are incentivised to invest into managing multilingual systems to accommodate a
userbase comprised of people who do not all speak the same language at the same
degree of proficiency.

Table 1.2: Demographic makeup of the population in Luxembourg as of January 1,
2022

Demographic Size % of population
Luxembourgish 356 775 52.88
Portuguese 93 678 15.55
French 49 173 7.60
Italian 24 116 3.74
Belgian 19 414 3.01
German 12 796 1.98
Spanish 8388 1.30
Romanian 6405 0.99
Polish 5020 0.78
Chinese 4142 0.64
British 4104 0.64
Dutch 4069 0.63
Greek 4017 0.62
Asian 19 066 2.95
African 13 668 2.12
American 7707 1.10
Oceanian 244 0.04

A final factor that hinders the creation of NLP models in Luxembourg relates to the
Luxembourgish language itself. Originating as a Moselle Franconian dialect before

3https://www.justarrived.lu/en/practical-information/population-in-luxembourg/
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being formally recognised as an official language [6], Luxembourgish is spoken by
nearly 600 000 people world-wide4. Due to the small number of native speakers,
the prevalence of other languages, and the fact that it is predominantly a spoken
language, textual data written in Luxembourgish is sparse compared to text written
in widespread languages such as English, Spanish, or Chinese. This is further
illustrated by the fact that printed media such as newspapers and magazines are
typically not available in Luxembourgish, but in German or French, adding to the
scarcity of textual data in Luxembourgish. Additionally, the number of articles on
the Luxembourgish Wikipedia, which is 61 159 at the time of writing, exceeds the
median number of Wikipedia articles per language, which is 9 497. However, this
amounts to fewer than half a million sentences, which is comparably low. Due to
this lack of data, Luxembourgish is considered a low-resource language, posing a
challenge for working on NLP problems in Luxembourgish.

In this work, we will discuss various domain-specific and language-specific challenges
present in the NLP field. Due to the importance of the financial domain and the
aforementioned unique linguistic circumstances, the country of Luxembourg acts as
a suitable case study for this thesis. We will focus on three major aspects important
to Luxembourg: (I) NLP in the Financial Domain, (II) Multilingualism, and (III)
Luxembourgish NLP. We aim to determine and address specific challenges relevant
to each of these aspects, in order to strengthen the Luxembourgish NLP community.
In a partnership with the Luxembourgish bank BGL BNP Paribas, we determined a
variety of research problems based on actual use cases and projects. In return, our
research helped our partners make decisions to improve their workflows, revealing
a tangible benefit of the NLP community on the industry and bridging the gap
between academia and the industry.

1.2 Challenges
In this section, we present relevant challenges for each domain we address in this
work: challenges in the financial domain, challenges stemming from multilingualism,
and challenges regarding the low-resource nature of the Luxembourgish language.

1.2.1 Challenges Related to the Financial Domain
The main challenges for financial institutions lie in the sensitive nature of the
data being processed. Mistakes and failure to comply with regulations can have
catastrophic financial and legal consequences. Furthermore, textual data must not
leave the organisation, so they cannot rely on external services and are thus limited
to their own resources.
1.2.1.1 Detection of Names
Documents processed at financial institutions, such as letters of credit or loan
applications, need to be analysed with regard to the names they contain, e.g., the
names of loan applicants, company names involved in trade deals, brand names,
etc. This kind of information is crucial, e.g., to anonymise sensitive information,
to determine if given trade partners comply with law and trade regulations, and
to ensure that information is consistent across documents. While models trained
on Named Entity Recognition exist, it is not guaranteed that the existing models

4according to https://cursus.edu/en/23040/luxembourgish-at-its-best
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work on these kinds of data, as there is a significant difference with regard to the
language used in financial documents. Not only is there a difference from a vocabulary
standpoint, but also in terms of style, requiring models that are specialised in the
financial domain.

1.2.1.2 Protection of Personal Data

Financial institutes have to handle vast amounts of data that contain sensitive
information such as clients’ names, postal addresses, phone numbers, etc. It is crucial
to keep this information protected from leaving the system. This is true not only for
banks but for any organisation that stores personally identifiable information from
their customers. Since the introduction of the General Data Protection Regulation
(GDPR)[9], companies have been under increased scrutiny regarding the collection,
storage, and processing of personal data. Under the threat of sizeable fines, companies
are incentivised to keep such data protected, and anonymised before further processing
it. While it is relatively easy to find and anonymise such information in structured
data formats such as tables, unstructured texts such as legal documents, loan
applications, and emails pose a challenge for this task. Not only is the detection of
proper names more difficult in natural text, but the act of anonymisation can have a
detrimental effect on the usability of the text in downstream NLP tasks.

1.2.2 Challenges Related to Multilingualism

Multilingual systems are evidently more demanding than monolingual ones, and the
effort required to manage a multilingual system is proportional to the number of
languages needed. For example, company websites hosted in a country such as the
UK are typically displayed in a single language, whereas a similar website in a country
such as Switzerland, Luxembourg, South Africa, or India, should ideally cover every
official language in order to reach most of the country’s population. However, while
websites that are simply tasked to display information are relatively easy to expand
to include several languages, complex tasks that require one to interact with the
userbase are not. Such tasks include holding conversations, analysing reviews, or
automatically dispatching incoming emails. These simple tasks are usually handled
by automated systems powered by machine learning or deep learning models. The
multilingual setting introduces a new set of obstacles. For instance, there might
not be sufficient training data for each language, leading to some languages being
under-represented and, in turn, leading to a worse performance of the resulting
system. In addition, multilingual areas tend to lead to regular code switching. People
who speak multiple languages are likely to switch between languages while speaking
or writing, increasing the challenge for multilingual systems that actively interact
with their users [10][11]. This can also be frequently observed in Luxembourg. While
the country has three official languages (Luxembourgish, German, and French), there
are no well-defined language regions. Unlike Belgium and Switzerland where a given
language is predominantly used depending on the geographical area, the lines are
blurred in Luxembourg [6]. Typically, native Luxembourgers speak Luxembourgish
among themselves regardless of the region and switch to German, French, or English
when speaking to non-natives or foreigners.
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1.2.3 Challenges Related to Luxembourgish NLP
As a low-resource language, the challenges related to Luxembourgish typically involve
the lack of high-quality textual data. However, there are additional factors that
exacerbate the issues with texts written in Luxembourgish, including data scarcity
and quality.
1.2.3.1 Scarcity of Annotated Data
In order for ML models to adequately solve specific NLP problems, they need to be
trained on large datasets of labelled data. As there is a high focus of training models
for the English language, there is no shortage of datasets at hand. However, this
is rarely the case for low-resource languages. Datasets should ideally be annotated
manually and by multiple native speakers to increase inter-annotator agreement and
ensure high-quality data. While it is not difficult to find many native speakers of
wide-spread languages, it is a considerable challenge for languages spoken by few
people.
1.2.3.2 Scarcity of Unannotated Data
For many languages, the scarcity of data does not only mean a lack of annotated
data for supervised learning tasks, but a shortage of textual data in general. Modern
language models such as BERT models [3] require a vast amount of data which can
be difficult to find.
1.2.3.3 Data Quality
The problem of scarcity in case of the Luxembourgish language is exacerbated by
several factors that can lead to spelling variations of words and noisy textual data.
Table 1.3 shows various valid spellings of personal pronouns in Luxembourgish. Most
of these words have two valid spellings which both need to be learned by a language
model. These variations can have various reasons. We differentiate between three
types of variations: regional variations, grammatical/sociolinguistic variations, and
historical variations [8]:

Regional Variations
There are several Luxembourgish dialects despite the small size of the country [12].
As such, most words have multiple valid spellings that differ depending on the
speaker’s/writer’s region of origin. These differences in spelling can be small with a
single letter that differs between spelling variations; however, oftentimes, entirely
different words are used depending on the dialect. For instance, Table 1.3 shows that
there are two possible variations for the word "us": "eis" and "ons".

Grammatical/Sociolinguistic Variations
Despite Luxembourgish being an officially recognised language with standardised
grammar and spelling rules, it is primary a spoken language rather than a written one,
although this is slowly changing [13][7]. Furthermore, compared to German, French,
and English, the language is barely taught at schools in Luxembourg [8]. Both of
these factors lead to most people struggling to write Luxembourgish in accordance
with official grammatical rules despite being native speakers [14]. This in turn leads
to a large number of spelling variations for most words in text sources such as text
messages, forums, social media, or blogs [13] which can make them undesirable
for building generative language models that are supposed to write grammatically
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correct text.

Historical Variations
Finally, Luxembourgish has been subject to multiple spelling reforms, which typically
lead to significant orthographic changes in many words [7][14]. The last spelling
reform came into effect in 2019, leading to numerous problems for NLP models for
the Luxembourgish language. The biggest such problem concerns texts that were
written before the reform which now contain a lot of invalid spelling variations. This,
similarly to texts with a lot of grammatical variations, severely limits the amount of
text that can be used for grammatically correct generative language models.

Table 1.3: Spelling variations of personal pronouns in Luxembourgish[5]

Number Person Gender Nominative Accusative Dative

Singular
1st - ech mech mir/mer
2nd - du/de dech dir/der

3rd

Male hien/en hien/en him/em
Neutral hatt/et/’t hatt/et/’t him/em
Female si/se si/se hier/er

Plural
1st - mir/mer eis/ons eis/ons
2nd - dir/der iech iech
3rd - si/se si/se hinnen/en

1.2.3.4 Multilingual Texts
In addition to the inconsistent spelling of words, Luxembourgish texts also oftentimes
contain inconsistent use of languages, i.e. textual data tends to be a mixture of mul-
tiple languages, specifically in news articles and press releases. Since Luxembourgish
people are generally multilingual, French and German text is typically not translated
in news media. This can include interviews with non-Luxembourgish people, or
official communiques which are oftentimes written in French.

1.3 Contributions
The contributions of this work to address the aforementioned challenges can be
summarised as follows in three major parts:

In the first part, we address the challenges present in the financial domain. In
particular, we focus on the handling of names in financial and other sensitive
documents. In a first step, we tackle the challenge of recognising names in a
document and studying the effect of the domain on the performance of the examined
models. In a second step, we study the effect of anonymising personal names on the
subsequent processing of a document.

• A comparison of Transformer based models on fine-grained Named Entity
Recognition: Named Entity Recognition (NER) is a fundamental Natural
Language Processing (NLP) task and has remained an active research field.
In recent years, Transformer models and more specifically the BERT model
developed at Google revolutionised the field of NLP. While the performance
of Transformer-based approaches such as BERT has been studied for NER,
there has not yet been a study for the fine-grained Named Entity Recognition
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(FG-NER) task. In this chapter, we compare three Transformer-based models
(BERT, RoBERTa, and XLNet) to two non-Transformer-based models (CRF
and BiLSTM-CNN-CRF). Furthermore, we apply each model to a multitude
of distinct domains. We find that Transformer-based models incrementally
outperform the studied non-Transformer-based models in most domains with
respect to the F1 score. Furthermore, we find that the choice of domain
significantly influenced the performance regardless of the respective data size
or the chosen model.

• A comparison of various anonymisation strategies on the impact of downstream
NLP tasks: Data anonymisation is often required to comply with regulations
when transferring information across departments or entities. However, the
risk is that this procedure can distort the data and jeopardise the models
built on it. Intuitively, the process of training an NLP model on anonymised
data may lower the performance of the resulting model when compared to a
model trained on non-anonymised data. In this chapter, we investigate the
impact of anonymisation on the performance of nine downstream NLP tasks.
We focus on the anonymisation and pseudonymisation of personal names and
compare six different anonymisation strategies for two state-of-the-art pre-
trained models. Based on these experiments, we formulate recommendations
on how the anonymisation should be performed to guarantee accurate NLP
models.

In the second part, we study the challenges in multilingual systems. Specifically, we
evaluate to what degree the presence of multiple languages affects the performance
of such systems.

• An empirical study to compare monolingual and multilingual chatbots: With the
momentum of conversational AI for enhancing client-to-business interactions,
chatbots are sought in various domains, including FinTech where they can
automatically handle requests for opening/closing bank accounts or issuing/ter-
minating credit cards. Since they are expected to replace emails and phone
calls, chatbots must be capable to deal with diversities of client populations. In
this chapter, we focus on the variety of languages, in particular in multilingual
countries. Specifically, we investigate the strategies for training deep learning
models of chatbots with multilingual data. We perform experiments for the
specific tasks of Intent Classification and Slot Filling in financial domain chat-
bots and assess the performance of mBERT multilingual model vs multiple
monolingual models.

In the third part, we address the challenges related to the low-resource nature of
the Luxembourgish language. In a first step, we focus on mitigating the lack of
textual data by examining the usefulness of a novel data augmentation scheme for
the creation of a Luxembourgish language model. In a second step, we examine
the trade-offs of various pre-training schemes and use the gained knowledge to
improve upon our Luxembourgish language model. We also mitigate the lack of
annotated data by providing numerous Luxembourgish datasets for NLP tasks to
the community.

• A first Transformer-based language model for the Luxembourgish language: In
this chapter, we present LuxemBERT, a BERT model for the Luxembourgish
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language that we create using the following approach: we augment the pre-
training dataset by considering text data from a closely related language that
we partially translate using a simple and straightforward method. We are then
able to produce the LuxemBERT model, which we show to be effective for
various NLP tasks: it outperforms a simple baseline built with the available
Luxembourgish text data as well as the multilingual mBERT model, which is
currently the only option for Transformer-based language models in Luxem-
bourgish. Furthermore, we present datasets for various downstream NLP tasks
that we created for this study and will make them available to researchers on
request.

• A comparison of various pre-training schemes for Luxembourgish language mod-
els: In this chapter, we propose two novel BERT models for the Luxembourgish
language that improve on the state of the art. We also present an empirical
study on both the performance and robustness of the investigated BERT mod-
els. We compare the models on a set of downstream NLP tasks and evaluate
their robustness against different types of data perturbations. Additionally, we
provide novel datasets to evaluate the performance of Luxembourgish language
models. Our findings reveal that pre-training a pre-loaded model has a positive
effect on both the performance and robustness of fine-tuned models and that
using the German GottBERT model yields a higher performance while the
multilingual mBERT results in a more robust model. This study provides
valuable insights for researchers and practitioners working with low-resource
languages and highlights the importance of considering pre-training strategies
when building language models.

9



Chapter 1. Introduction

1.4 Roadmap
Figure 1.1 shows the overall structure of this work. The general introduction is fol-
lowed by Chapter 2, which provides a general background to facilitate understanding
the rest of the thesis. The main part of the thesis will focus on the three pillars that
mark interesting research directions for NLP in Luxembourg: (I) Financial NLP in
Chapters 3 and 4, (II) Multilingualism in Chapter 5, and (III) Luxembourgish NLP
in Chapters 6 and 7. Finally, we will conclude this dissertation and address future
work in Chapter 8.

Part I: Financial NLP

Chapter 3:
Evaluating Pre-trained 

Transformer-based Models on 
the Task of Fine-Grained 

Named Entity Recognition

Chapter 4:
Evaluating the Impact of 

Anonymisation on Downstream 
NLP Tasks 

Part II: Multilingualism

Chapter 5:
Comparing MultiLingual and 
Multiple MonoLingual Models 

for Intent
Classification and Slot Filling

Part III: Luxembourgish NLP

Chapter 6:
LuxemBERT: Simple and 

Practical Data Augmentation 
in Language Model 

Pre-Training for 
Luxembourgish

Chapter 7:
Comparing Pre-Training 

Schemes for Luxembourgish 
BERT Models 

Chap 2: Background

Chap 8: Conclusion

- Text Representation and Language Modeling
- Common NLP Tasks

- Summary
- Future Work

Figure 1.1: Roadmap for this thesis
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2 Background

In this chapter, we present previous work that forms the basis for this thesis. We
will present the evolution of text representations for NLP models in general, but we
will also highlight work that was done for multilingual and low-resource settings,
which is crucial for NLP in a country such as Luxembourg. Furthermore, we will
present NLP tasks that will be commonly featured throughout this work.
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Chapter 2. Background

2.1 Text Representation and Language Modeling
One crucial aspect to solve any Machine Learning task to a satisfying degree is to
create an appropriate representation of the input data fed to the model. While this
aspect can be straightforward depending on the nature of the data, the representation
of textual data for NLP models is, in and of itself, a challenge for solving NLP
problems adequately. Words carry meaning that humans can understand with little
mental effort; machines, on the other hand, do not process text in the same way.
As such, a first step to handle tasks in this field is to convert textual data into a
form that a machine can understand. Throughout the past decades, there have
been numerous ways to represent text in the form of numerical vectors. Those
representations can largely be divided into three categories: Frequency-based vectors,
static word embeddings, and embeddings derived from language models.

2.1.1 Frequency-Based Approaches to Text Representation
Many classical approaches to text representation revolve around the frequency of
words present in the text. Being straightforward and light on resources, they can be
useful for classification and topic modeling tasks. The most well-known techniques
include Bag-Of-Words (BOW), bag of n-grams [15], and Term Frequency-Inverse
Document Frequency (TF-IDF) [16] [17]:

Given a vocabulary V of size |V | = k and a word sequence s:

BOW vectors are k-dimensional vectors of the form

v(s) = ⟨f1, f2, ..., fk⟩

where fi denotes the frequency of the ith word in V in word sequence s. This kind
of representation is useful to encode the general idea of a text sequence, making it
an effective technique for simple text categorisation and topic modeling problems.

In contrast to the BOW model, the n-gram model encodes word sequences as
subsequences of size n, allowing to capture the word order of the sequence. To a
certain degree, it also allows to more effectively encode ambiguous words that have
different meanings depending on the group of words they are part of such as:

...the United States of America...
... water has three states of matter...

Here, an NLP model could use trigrams to differentiate between "States of America"
and "states of matter", which would not be possible with a BOW approach.

TF-IDF is a weighting approach that improves on BOW models by encoding the
importance of a specific word (here: term) for a given word sequence (here: document)
in a corpus. For instance, common terms such as the determiner "the" are generally
not very relevant in a given document even if they are very frequent. TF-IDF
weighting reduces the importance of such terms by dividing their frequency in the
document by their frequency in the entire corpus. A TF-IDF vector for a given
document d with vocabulary V and corpus C is given by:

v(d) = ⟨tf(t1, d) × idf(t1, C),...,tf(t|V |, d) × idf(t|V |, C)⟩
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2.1. Text Representation and Language Modeling

with

tf(ti, d) = fti,d∑
tj ∈V

ftj ,d

idf(ti, C) = log |C|
|{dj∈C:ti∈dj}|

where fti,d denotes the frequency of the ith term in V in document d. This allows
models to effectively ignore common words such as stop words and function words
that could otherwise impact the model’s performance.

While these techniques are easy to implement, and do not present a strain on resources,
they do not take into account the underlying meaning of the words. In addition,
BOW and TF-IDF also ignore the word order and context in a given sequence. For
example, the sentences "You owe the banks a lot of money." and "The banks owe
you a lot of money." would have identical BOW and TF-IDF representations despite
having opposite meanings. While n-grams do represent text as ordered chunks of
words, they only mitigate this issue to a small degree, taking into account only
the direct context of any given word. Finally, neither approach can encode Out of
Vocabulary (OOV) words, limiting the number of words that can be represented in a
vector.

In summary, these approaches are severely limited in their usefulness due to their
lack of properly encoding semantic information of the text or word context. Thus, for
many NLP tasks such as Natural Language Generation (NLG) and Natural Language
Understanding (NLU) tasks, these techniques are inadequate.

2.1.2 Static Word Embeddings
In an attempt to encode the meaning of words in a fixed-size numerical vector,
Mikolov et al. proposed two architectures to learn embeddings of words from their
contexts using a huge text corpus: Continuous bag-of-words (CBOW) and skip-
gram [1] (cf. Figure 2.1). In the CBOW model, a word wt is predicted from its
context words ⟨wt−k, .., wt−1, wt+1, ..., wt+k⟩ with context window k. In contrast, the
Skip-gram predicts the context around a given word wt. Words which appear in
similar contexts are ideally mapped to a similar representation in the vector space.

Such word embeddings can then be used as features for ML models, significantly
outperforming simple frequency-based vectors. The most popular word embeddings
based on the architectures introduced by Mikolov et al. include word2vec [18],
GloVe [19], and fastText [20].

While these approaches are a vast improvement over the ones presented in Sec-
tion 2.1.1, they are not without drawbacks. Their main disadvantage is that for any
given word, there is only a single vector representation. As such, words with several
possible meanings such as "hand" (which could refer to a human hand or the hand
on a clock) will be encoded to the same vector regardless of the context they appear
in. In addition, word embeddings do not solve the word order problem present in
frequency-based vectors as sentence vectors are typically constructed by averaging
word embeddings without considering the order of the words in the sentence. Finally,
the OOV problem that is prevalent in frequency-based approaches, is also present
for both the word2vec and GloVe techniques. This issue is addressed in the fastText
approach which trains representations for subwords rather than entire words.

13



Chapter 2. Background

Figure 2.1: CBOW and Skip-gram models proposed by Mikolov et al. [1]

2.1.3 Word Embeddings from Language Models
Language Models (LM) are probabilistic models trained to assign probabilities to
word sequences and predict missing words in a sequence [21]. This allows for creating
different embeddings for words depending on their context, e.g. consider the following
sentences:

I hurt my hand in an accident.
The clock’s small hand points to 12.

The meaning of the word "hand" can be determined by the context words, allowing
for a model to distinguish between the different possible meanings of ambiguous
words. As such, LMs address the word order and ambiguity problems faced by classic
approaches and static word embedding techniques such as word2vec. Outputs of LMs
can either be used as embeddings [22] for ML models, or be fine-tuned for specific
supervised problems [23].

One early architecture for context-sensitive LMs is Embeddings from Language
Models (ELMo) by Peters et al. [22], which significantly advanced the state of the art
in the NLP field. By combining a left-to-right and a right-to-left LSTM [24] network,
words can be modeled as a concatenation of functions of each network’s internal
states. This allows to create vector representations that take into account context
words from both directions. The authors showed that neural networks that used
ELMo embeddings outperformed state-of-the-art models for six important NLP tasks
including SQuAD for Question Answering [25] and SST-5 for Sentiment Analysis [26].
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2.1.3.1 The Rise of Transformers

Vaswani et al. [2] first described the Transformer model which superseded the
popular LSTM model in favour of the attention mechanism [27] . Figure 2.2 shows
the Transformer architecture in detail. The Transformer consists of stacks of N
identical encoder blocks and decoder blocks. Each encoder block consists of a multi-
head self-attention layer connected to a fully connected feed-forward neural network.
This attention layer helps the model put focus on other words in the input sequence
while encoding a given word. Along with these components, decoder blocks feature
an additional attention layer focusing on the previous output sequence of the model.

Figure 2.2: The architecture of the Transformer model [2]

Unlike Recurrent Neural Networks (RNN) such as LSTMs, Transformers do not need
to process words in sequence, instead, entire sentences can be processed at once.
This allows for more parallelisation than RNN models, and in turn, Transformer
models can be trained much faster. Due to this advantage, Transformers have become
fundamental for state-of-the-art models in the NLP field.

One early notable model that employed Transformers is the Generative Pre-training
Transformer (GPT) model [28]. It was trained on a Next Token Prediction task,
using a huge corpus. The original GPT model outperformed state-of-the-art models
in nine out of twelve NLU tasks. However, arguably the most well-known and popular
Transformer-based models are BERT and BERT-like models. [3]
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2.1.3.2 The Introduction of BERT
Devlin et al. revolutionised the NLP landscape by introducing Bidirectional Encoder
Representations from Transformers (BERT) [3]. Three factors helped BERT become
a state-of-the-art model and shape the future of the NLP domain for years to come:
its architecture, its pre-training algorithms, and its pre-training corpus size.

Unlike the unidirectional GPT model or the pseudo-bidirectional ELMo model, BERT
is a jointly bidirectional Transformer model, which allows it to capture context from
the left-to-right and right-to-left direction. Figure 2.3 shows the difference between
these three architectures. This in turn helps encode the meaning of ambiguous words
using the context words around it.

Figure 2.3: Architecture differences between ELMo, GPT, and BERT (adapted from
Devlin et al [3])

BERT is pre-trained on two learning algorithms: Masked Language Modeling (MLM)
and Next Sentence Prediction (NSP). The objective of MLM is to learn the rela-
tionship between words. Specifically, MLM is a 2-step process where the first step
consists of randomly masking out words from a given sentence. In a second step, the
model attempts to reconstruct the original sentence by predicting the words that
were masked out:

After Step 1: I [MASK] 200 euros at the [MASK].
After Step 2: I withdrew 200 euros at the bank.

On the other hand, NSP is a sentence pair classification task, allowing the model to
learn the relationship between sentences. Specifically, given a sentence pair A and
B from a corpus, the task consists of predicting whether B is preceded by A in the
corpus:

A: I went to the bank. B: I withdrew 200 euros. is_next
A: I went to the bank. B: The dog wagged its tail. is_not_next

Finally, the model was trained on a large corpus comprising the complete English
Wikipedia and the BooksCorpus [29], adding up to 130 million sentences or 13GB of
textual data.

Devlin et al. pre-trained two different BERT models: BERT Base and BERT Large.
In order to compare its performance to the original GPT model, BERT Base contains
12 Transformer blocks, 768 hidden layers, 12 self-attention blocks, and 110 million
learnable parameters. The Large model is comprised of 24 Transformer blocks,
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1024 hidden layers, and 16 self-attention blocks, for a total of 340 million trainable
parameters.

Fine-tuned BERT Base and BERT Large models outperformed the state of the art
in eleven tasks, including the GLUE [30] and SQuAD [25] benchmarks.
2.1.3.3 The Ubiquity of BERT-like Models
Recent years have marked the appearance of a wide array of models that expanded
or improved on the original BERT model, leading to numerous models outperforming
the original model on many NLP tasks including the GLUE benchmark. Indeed, at
the time of writing (December 2022), the BERT Large model is at position 47 on
the GLUE leaderboard1.

Some notable examples of such models include XLNet [31] (Chapter 3), RoBERTa [32]
(Chapter 3), and ERNIE [33] (Chapter 4).

Yang et al. introduced XLNet [31], replacing the MLM task of the BERT model
with a permutation-based autoregression task, effectively predicting sentence tokens
in random order. Furthermore, they vastly increase the pre-training corpus size from
13GB to 158GB. XLNet manages to outperform BERT Large in 20 tasks, including
the GLUE, SQuAD and RACE [34] benchmarks.

Liu et al. introduced Robustly optimized BERT approach (RoBERTa). [32] Similarly
to XLNet, they used a larger pre-training corpus, consisting of 160GB of textual
data, and they trained the model for longer periods of time. In addition, the authors
tweaked the MLM pre-training task by dynamically applying masks to the sentences
for every iteration, and removed the NSP task. The authors reported that RoBERTa
outperforms both XLNet and BERT Large on the GLUE, SQuAD, and RACE
benchmarks.

Finally, Sun et al. introduced Enhanced Representation through kNowledge
IntEgration (ERNIE) [33]. They further tweak the MLM task by adding phrase-level
masking and entity-level masking, masking out entire groups of words and named
entities from the pre-training sentences, respectively. Furthermore, they add nu-
merous word-level and sentence-level tasks to the pre-training phase of their model.
They report that the ERNIE model outperforms both BERT and XLNet on 16 tasks,
including the GLUE benchmark.
2.1.3.4 Domain-Specific and Non-English Language Models
While most modern language models generally yield a high performance for many
NLP tasks, they typically have major drawbacks. First, they perform less well on
domain-specific tasks [35]. Many domains such as the legal, the financial, or the
scientific domain have specialised vocabularies with words that either barely or not
at all appear in most corpora. As such, there has been considerable effort to train
models on dedicated datasets. Examples of such models include FinBERT trained
on financial texts [36], LEGAL-BERT trained on legislative text and court case
documents [37], and SciBERT trained on scientific papers from various fields of
study.

Another drawback of most language models such as BERT is that they are trained on
1https://gluebenchmark.com/leaderboard
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data written entirely in English, making them less usable for non-English languages.
In recent years, BERT models for every wide-spread language have been published.
Large text collections that cover multiple languages such as Wikipedia or the OSCAR
corpus [38][39] proved to be useful for delivering the necessary textual data for models
such as the French CamemBERT [40], the German GottBERT [41], or the Spanish
BETO [42].

In order to mitigate the restrictions of monolingual LMs, various multilingual models
have been introduced, most notably multilingual BERT (mBERT) (Chapters 5, 6,
and 7) which was jointly pre-trained on the 100 largest Wikipedia corpora, covering
numerous low-resource languages including Luxembourgish. While the model is
indeed useful for performing NLP tasks in a language for which no LM is available,
it suffers drawbacks compared to LMs that were pre-trained on fewer languages. Wu
et al. showed that pairing subsets of closely related languages leads to LMs that
outperform mBERT on the respective target language for parsing tasks and Named
Entity Recognition [43].

2.1.4 On the Availability of Non-English Textual Data
While most available public textual data is written in English, there are multiple
projects that provide access to corpora written in other languages, most notably
Wikipedia, Common Crawl, and the Leipzig Corpora Collection.
2.1.4.1 Multilingual Text Corpora
The pre-training of modern non-English and multilingual models depend upon vast
amounts of available data which in turn require a considerable effort to collect. There
exist various large-scale corpora covering a multitude of languages, facilitating the
step of data gathering for building language models.

The most well-known collection of multilingual textual data is Wikipedia, spanning
318 languages with an average of 169 316 and a median of 10 646 articles per language
at the time of writing (December 2022). The English Wikipedia contains the highest
number of articles with 6 125 199 while the smallest Wikipedia corpus with 159
articles is the Wikipedia written in Cree, the language spoken by the North American
indigenous people of the same name2. Single Wikipedia corpora can be downloaded
as raw data dumps3 and pre-processed with APIs such as WikiExtractor [44].

One of the largest public text repositories available is the one created by the Common
Crawl organisation4. It consists of textual data crawled from the web that has been
collected since 2011. The current version of the repository has a size of several
petabytes. While being an impressively large dataset, it has a major disadvantage
in that it is not subdivided by language. As such, it is not convenient to use for
building monolingual language models without thorough pre-processing.

The Open Super-large Crawled ALMAnaCH coRpus (OSCAR) [38] addresses the
aforementioned shortcoming of the Common Crawl repository by pre-processing
and classifying it by language. The current version supports 166 languages.5 The

2https://www.thecanadianencyclopedia.ca/en/article/cree
3https://dumps.wikimedia.org/
4https://commoncrawl.org/
5https://oscar-project.org/post/oscar-v22-01/
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language with the largest subset is English with a size of 3.2TB or nearly 377 billion
words; the smallest is the Quechua subset with a size of merely 744 bytes or 14 words,
Quechua being the most widespread indigenous language family in South America6.

Another important repository for multilingual web-crawled data is the Leipzig
Corpora Collection [45]7. The repository includes textual data for 293 languages.
It consists of crawled and pre-processed data from various sources including news
articles and Wikipedia.

2.1.4.2 Low-Resource Languages and Data Augmentation
As discussed in Section 1.2.3, languages such as Luxembourgish face a considerable
challenge regarding the creation of well-performing language models: the scarcity
of available data. While large-scale repositories for multiple languages are useful,
there are many languages that benefit only to a degree from these corpora due to
the limited availability of public texts. These languages are known as low-resource
languages [46] The lack of resources can be due to various factors such as the low
number of speakers or the language being a spoken language rather than a written
one.

As mentioned in Section 2.1.3.2, BERT-like language models need a huge amount of
data in order to perform well. BERT, CamemBERT, GottBERT, and BETO were
trained on 13GB, 135GB, 145GB, and 17GB, respectively, consisting of hundreds
of millions of sentences. This amount of data is usually not available for low-
resource languages. Indeed, while there are Luxembourgish portions of Wikipedia
and the OSCAR corpus available, they contain merely 38MB and 16MB of textual
data, respectively. The Luxembourgish portion of the Leipzig Corpora Collection
is considerably larger, consisting of 305MB of textual data. However, this amount
is still several orders of magnitude smaller than the dataset used to pre-train the
original BERT model.

Due to the challenges posed by the Luxembourgish language involving the presence
of foreign words and spelling variation, building reliable models may prove difficult as
shown by numerous failed language technologies for other low resource languages [47].
The difficulties may stem from sociolinguistic variations where the vocabulary used
by target user base differs from the one used by the model [48], or the high number
of loanwords and frequent code switching [10]. It is important to keep these pitfalls
in mind when building datasets and models for languages such as Luxembourgish.

In order to mitigate the lack of data, new data can be artificially created using Data
Augmentation. The term Data Augmentation is used to describe a set of techniques
that are used to generate synthetic data samples by slightly modifying authentic
data. Originating from the field of Computer Vision and Image Classification,
where techniques such as rotations, cropping, or random noise injection are used to
automatically enhance datasets and improve model performances, data augmentation
has also proved useful in the field of NLP. Numerous simple text altering techniques
have been proposed to create synthetic textual data that can be used for supervised
as well as unsupervised NLP tasks and language model pre-training.

6https://www.omniglot.com/writing/quechua.htm
7https://wortschatz.uni-leipzig.de/de/download
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Kobayashi et al. [49] proposed to augment data by replacing words in given sentences
by words with paradigmatic relations such as synonyms and antonyms for text
classification tasks. Expanding on this approach, Wei et al. [50] leveraged synonym
replacement, random insertion, random swap, and random deletion to further in-
crease the performance of text classifiers. Liu et al. [51] used data augmentation
via conditional text generation based on a reinforcement learning model, which
significantly boosted performances on three NLU tasks when compared to prior data
augmentation techniques. Each of the aforementioned techniques augments data
from the target language and creates synthetic sentences that are close to already
existing data, yet they are useful to improve the performance of trained models.

2.2 Common NLP Tasks
There is a broad range of supervised NLP tasks, varying greatly in hardness and
complexity. They range from simple parsing tasks, over text classification tasks
to NP-hard NLU tasks. Figure 2.4 shows an overview of a selection of NLP tasks
ordered by difficulty. [4] The performance of LMs and other architectures is typically
evaluated by how well they perform in downstream NLP tasks. In this section, we
discuss some of the NLP tasks that will be investigated throughout this thesis and
provide examples for each relevant task. We divide these tasks into three categories:
sequence-to-sequence tasks, text classification, and Natural Language Understanding
tasks.

Document about:srcdoc

1 of 1 1/27/2023, 3:32 PM

Figure 2.4: Selection of NLP tasks ordered by difficulty (adapted from Vajjala et
al. [4])
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2.2.1 Sequence-to-Sequence Tasks
Sequence-to-Sequence (seq2seq) tasks take sentences as input and assign labels to
each word in the sentence, i.e. they map sequences of words to sequences of labels. In
this work, we look at two well-known seq2seq tasks: Part-of-Speech (POS) Tagging
(cf. Chapter 6 and 7) and Named Entity Recognition (NER) (cf. Chapters 3, 6, and
7)

Part-of-Speech Tagging

POS-Tagging is a common parsing task, the objective of which is to attribute
grammatical classes to each word in a given sentence, e.g. noun, adjective, determiner,
etc. A sentence could be tagged using the Penn Treebank tagset [52] as follows:

He owes a lot of money to the bank
PP VBP DT NN IN NN IN DT NN

While most of POS tags are the same across languages, a lot of languages have
unique grammatical classes. For instance, there is an APPRART tag for both
Luxembourgish and German, which denotes a contraction of a preposition and a
determiner.

Named Entity Recognition

Named Entity Recognition is a common Information Extraction task to detect proper
names in a text. For simple (or coarse-grained) NER, we typically distinguish
between four main types: person (PER), organisation (ORG), location (LOC), and
miscellaneous (MISC), as well as a fifth type Other (O) to denote words that are not
named entities. Using these tags, a sentence could be tagged as follows:

Frank owes a lot of money to BGL BNP Paribas
PER O O O O O O ORG

These tags can be further extended to include a sizeable number of classes which are
more informative than the standard NER tags.

2.2.2 Text Classification Tasks
Some of the most common tasks in NLP are text classification (TC) tasks where
a given text is assigned a label from a predefined set of classes. TC tasks include
Intent Classification (IC) for conversational AI (cf. Chapters 5, 6, and 7) and News
Classification (NC) (cf. Chapters 4, 6 and 7).

Intent Classification

Intent Classification tasks are fundamental tasks needed for conversational AI such as
digital personal assistants or chatbots. Given a user query or prompt, the objective
is to recognise the underlying intent of the message. Evidently, potential labels for
intents are strongly dependent on the domain in which the model is deployed. The
most well-known dataset for IC is the Airline Travel Information System (ATIS)
dataset [53] containing examples related to commercial flight travel such as:
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I need a flight tomorrow from Columbus to Minneapolis → ask_flight_information
What is the distance from Los Angeles International Airport to Los Angeles → ask_travel_distance
Show me the fares from Dallas to San Francisco → ask_airfare

News Classification

News Classification typically refers to the categorisation of news articles into prede-
fined categories such as news related to politics, sports, or celebrities. One of the
largest NC datasets is the News Category Dataset [54][55], containing nearly 210 000
news headlines from HuffPost8 divided into 42 categories including entertainment,
business, and comedy:

23 Of The Funniest Tweets About Cats And Dogs This Week (Sept. 17-23) → comedy
Biden Says Queen’s Death Left ’Giant Hole’ For Royal Family → politics
Privatization Isn’t The Answer To Jackson’s Water Crisis → environment

One important related task is Fake News Classification aiming to detect whether
a news article is factual, or contains falsified or misleading information. This task
is particularly important in the context of political and medical news, as false
information prevents people from making informed decisions concerning upcoming
election cycles or their own health. The Politifact Fact Check Dataset is a useful
dataset for this task containing nearly 21 000 texts from PolitiFact9:

A German doctor discovered the COVID-19 vaccines include graphene oxide or graphene hydroxide [...] → false
Barack Obama has played over 90 rounds of golf as president. → true
Republicans Mitt Romney and Paul Ryan support m̈assive cuts in Social Security for future generations.¨ → half-true

2.2.3 Natural Language Understanding Tasks
The most difficult tasks for NLP to solve are Natural Language Understanding
(NLU). They can be regarded as NP-complete problems with regard to computational
complexity [56]. In this thesis, we will focus on tasks from the General Language
Understanding Evaluation (GLUE) collection [30] (cf. Chapters 4, 6, and 7).
2.2.3.1 The General Language Understanding Evaluation Benchmark
The most well-known benchmark to evaluate the NLU capabilities of a language
model is the GLUE benchmark by Wang et al. [30] They are a collection of nine tasks
divided into three broad categories: single-sentence tasks, similarity and paraphrasing
tasks, and inference tasks. Table 2.1 shows each task in the collection.

Single-Sentence Tasks

The collection features two single-sentence classification tasks that are relevant for
this thesis: Corpus of Linguistic Acceptability (CoLA) (cf. Chapter 4) and the
Stanford Sentiment Treebank (SST-2) dataset (cf. Chapter 7)

8https://www.huffpost.com/
9https://www.politifact.com/
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2.2. Common NLP Tasks

Table 2.1: Tasks featured in the GLUE collection

Corpus #Train (k) #Test (k) Task Domain
Single-Sentence Tasks

CoLA 8.5 1 acceptability misc.
SST-2 67 1.8 sentiment movie reviews

Similarity and Paraphrasing Tasks
MRPC 3.7 1.7 paraphrase news
STS-B 7 1.4 sentence similarity misc.
QQP 364 391 paraphrasing social QA questions

Inference Tasks
MNLI 393 20 NLI misc.
QNLI 105 5.4 QA/NLI Wikipedia
RTE 2.5 3 NLI news, Wikipedia

WNLI 0.634 0.146 co-reference/NLI fiction books

The CoLA task [57] consists of determining whether or not a given sentence is
grammatically sound, which is a useful dataset to train grammar checkers. The
samples in the dataset can be grouped together into clusters of sentences that are
similar to each other, some of them being grammatically acceptable while others are
not acceptable:

The book was written by John. → acceptable
The book was written from John. → not_acceptable
The book was written by. → not_acceptable

SST-2 [26] is a popular Sentiment Analysis (SA) dataset consisting of determining
whether a sentence expresses a positive or a negative sentiment. This dataset is a
collection of single sentences from movie reviews such as the following:

are more deeply thought through than in most ’ right-thinking ’ films. → positive
lend some dignity to a dumb story → negative
saw how bad this movie was. → negative

Similarity and Paraphrasing Tasks

While the GLUE benchmark features three similarity and paraphrasing tasks, only one
is relevant to this work: the Microsoft Research Paraphrasing Corpus (MRPC) [58]
(cf. Chapter 4). Given a sentence pair A and B, the objective is to determine whether
or not B expresses the same meaning as A. It is made up of sentence pairs from news
articles such as:

Yucaipa owned Dominick’s before selling the chain to Safeway in 1998 for $2.5 billion. → not_paraphraseYucaipa bought Dominick’s in 1995 for $693 million and sold it to Safeway for $1.8 billion in 1998.
They had published an advertisement on the Internet on June 10 offering the cargo sale he added. → paraphraseOn June 10 the ship’s owners had published an advertisement on the Internet offering the explosives for sale.
A BMI of 25 or above is considered overweight; 30 or above is considered obese. → not_paraphraseA BMI between 18.5 and 25.9 is considered normal over 25 is considered overweight.
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Inference Tasks

There are three Natural Language Inference (NLI) tasks that are relevant to this
dissertation: the Multi-Genre NLI (MNLI) task (cf. Chapter 4), the Recognizing
Textual Entailment (RTE) task (cf. Chapters 4 and 7), and the Winograd NLI
(WNLI) task (cf. Chapters 4, 6, and 7).

All three tasks are sentence pair tasks. Given a pair A and B, the general objective of
each task consists of determining whether or not sentence A entails B. However, the
tasks and the data sources differ for each task. The data for the MNLI task [59] was
collected from a multitude of texts including fiction books, government press releases,
and travel guides. It is an inference task with three possible labels: entailment,
contradiction, and neutral:

At the heart of the sanctuary, a small granite shrine once held the sacred barque of Horus. → entailmentHorus has a shrine.
At the heart of the sanctuary, a small granite shrine once held the sacred barque of Horus. → neutralHorus is a god.
At the heart of the sanctuary, a small granite shrine once held the sacred barque of Horus. → contradictionThe barque of Horus still remains within a shine inside the sanctuary.

The RTE task [60] features data from both news and Wikipedia articles. It is a
binary task with the labels entailment and not_entailment:

No Weapons of Mass Destruction Found in Iraq yet. → not_entailmentWeapons of Mass Destruction Found in Iraq.
Lin Piao, after all, was the creator of Mao’s "Little Red Book" of quotations. → entailmentLin Piao wrote the "Little Red Book".

The data for WNLI [61] was collected exclusively from fiction books. It is considered
the most challenging task in the collection as it combines a co-reference task with an
inference task. Given two texts A and B, where A contains one or several pronouns,
and B is a substring of A with a pronoun replaced by a noun from A, the task
consists of determining whether or not A entails B. The objective essentially is to
decide whether or not the pronoun was replaced by the correct noun. Similarly to
CoLA, the samples can be clustered into nearly identical sentence pairs, with both
correct and incorrect pronoun replacements:

John couldn’t see the stage with Billy in front of him because he is so short. → entailmentJohn is so short.
John couldn’t see the stage with Billy in front of him because he is so short. → not_entailmentBilly is so short.
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PART I

NLP in the Financial Domain

In the first part, we address the challenges present in the financial domain. In
particular, we focus on the handling of names in financial and other sensitive
documents. In a first step, we tackle the challenge of recognising names in a
document and studying the effect of the domain on the performance of the examined
models. In a second step, we study the effect of anonymising personal names on the
subsequent processing of a document.





3 Evaluating Pre-trained Transformer-
based Models on the Task of Fine-
Grained Named Entity Recognition

In this chapter, we compare three Transformer-based models (BERT, RoBERTa, and XLNet) to
two non-Transformer-based models (CRF and BiLSTM-CNN-CRF). Furthermore, we apply each
model to a multitude of distinct domains. We find that Transformer-based models incrementally
outperform the studied non-Transformer-based models in most domains with respect to the F1 score.
We also find that the choice of domain significantly influenced the performance regardless of the
respective data size.

This chapter is based on the work published in the following research paper:

• Cedric Lothritz, Kevin Allix, Lisa Veiber, Tegawendé F. Bissyandé, Jacques Klein, Evaluating
pretrained transformer-based models on the task of fine-grained named entity recognition,
Proceedings of the 28th International Conference on Computational Linguistics, 2020

Contents
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Research Questions . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 RQ1: Do Transformer-based models outperform the state-

of-the-art model for the FG-NER task? . . . . . . . . . . 33
3.3.2 RQ2: What are the strengths, weaknesses, and trade-offs

of each investigated model? . . . . . . . . . . . . . . . . 34
3.3.3 RQ3: How does the choice of the domain influence the

performance of the models? . . . . . . . . . . . . . . . . 35
3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Fine-Grained Named Entity Recognition . . . . . . . . . 37
3.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



Chapter 3. Evaluating Pre-trained Transformer-based Models on the
Task of Fine-Grained Named Entity Recognition

3.1 Overview
Named Entity Recognition (NER) is part of the fundamental tasks in Natural
Language Processing (NLP). The main objective of NER is to detect and classify
proper names (named entities) in a free text. Typically, named entities can be
subdivided into four broad categories: persons, i.e., first and last names, locations
such as countries or landscapes, organisations such as companies or political parties,
and miscellaneous entities which serves as a catch-all category for other named
entities such as brands, meals, or social events. NER is an active research field
and state-of-the-art solutions such as spaCy1, flair [62], and Primer2 manage to
achieve near-human performance. However, classical NER (which we refer to as
coarse-grained NER in this chapter) models typically distinguish between only a
small number of entity types, usually fewer than a dozen distinct categories.

While this kind of broad classification is sufficient for many applications, there
are industrial use-cases in which more precise information is necessary such as
financial documents processing in the banking and finance context. For instance,
application forms for a business loan are usually supplied with several supporting
textual documents. These can contain the names of different types of persons, such
as the owner or the CEO of the applying company, the contact person(s) at the
issuing bank, finance analysts, or lawyers. The same is true for organisation names
such as the name of the issuing bank, a government agency, or the name of the
applying company or third-party companies. It is necessary to not only detect
entity names, but to also qualify and differentiate between various entity types.
Indeed, in many contexts the actual name of an entity is important only if it can be
associated to a role, or any other relevant quality. In the banking and finance world
for example, the strict regulatory requirements cannot be satisfied with just a list
of who is involved; knowing how entities are involved is a necessity. Furthermore,
this kind of preprocessing step could help with compliance and background checks of
applicants and affiliated companies. For instance, automatically extracting names
from a document and cross-checking them with databases can speed up the process
to find blacklisted, fraudulent, or otherwise undesirable companies in the paper work.

The term "Fine-Grained Named Entity Recognition" (FG-NER) was first coined
by Fleischman et al. [63]. It describes a subtask of NER, where the objective
remains the same as coarse-grained NER, but where the number of entity types is
considerably higher. In extreme cases, FG-NER models such as the FIne-Grained
Entity Recognizer (FIGER) [64] are able to distinguish between more than 100
distinct labels.

Conditional Random Field (CRF) models [65] have been popular for numerous
sequence-to-sequence tasks such as NER. They perform reasonably well and can
serve as a baseline for the task of FG-NER.

In a previous study, Mai et al. [66] compared the performance of several FG-NER
approaches for the English and Japanese languages. They found that the BiLSTM-
CNN-CRF model devised by Ma et al. [67] combined with gazetteers performed the

1https://spacy.io
2https://primer.ai/blog/a-new-state-of-the-art-for-named-entity-recognition/
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3.1. Overview

best in terms of F1 score for the English language. They also found that BiLSTM-
CNN-CRF performed well without the use of gazetteers. In fact, among the models
that did not make use of gazetteers, BiLSTM-CNN-CRF achieved the highest F1
score.

The introduction of the Transformer [2] and BERT models[3] led to state-of-the-art
results in numerous NLP tasks, including NER. Indeed, Devlin et al. reported an F1
score of 92.8% when fine-tuned on the CoNLL-2003 dataset for NER [68], achieving
similar results as state-of-the-art models such as Contextual String Embeddings [62]
and ELMo Embeddings [69].

One model that improved on the BERT approach is the RoBERTa [32] model
by vastly increasing the size of the pre-training dataset and tweaking the learning
algorithm. They report that fine-tuned models derived from RoBERTa either matched
or improved on BERT models in terms of performance, although they did not perform
experiments specifically on the NER task.

Finally, the XLNet model developed by Yang et al. [31] addressed shortcomings of
BERT regarding the pre-training approach. Yang et al. [31] reports that XLNet
outperforms BERT in 20 NLP tasks such as text classification and language under-
standing, but they do not report any results on sequence-to-sequence tasks like NER.

While BERT, RoBERTa, and XLNet (which we collectively refer to as Transformer-
based models throughout this chapter) achieve state-of-the-art performances in
numerous Natural Language Understanding (NLU) tasks, we observe a lack of
research in the area of FG-NER. In this chapter, we present an empirical study of the
performance of FG-NER approaches derived from a pre-trained BERT, a pre-trained
RoBERTa, and a pre-trained XLNet model as well as a comparison to a simple CRF
model and the model presented by Ma et al. [67]. Furthermore, we apply these
approaches to a large number of distinct domains, with varying numbers of data
samples and entity categories.

Our contributions are two-fold:

(a) An empirical study on the performance of Transformer-based approaches on
the FG-NER task

(b) An analysis of the impact of the choice of domain on the performance of models
trained on FG-NER

We use the EWNERTC dataset published by Sahin et al. [70], containing roughly
7 million data samples in 49 different domains. To the best of our knowledge, our
study was the first aiming to precisely evaluate the performance of these existing
approaches on the FG-NER task.

The rest of this chapter is organised as follows: Section 3.2 describes our experimental
setup for this study, the EWNERTC dataset and the models that we investigate.
In Section 3.3, we present the results of our experiments, and answer the research
questions that we laid out. Section 3.5 lists various possible shortcomings and limits
of our study. Finally, we summarise our findings in Section 3.6.
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Chapter 3. Evaluating Pre-trained Transformer-based Models on the
Task of Fine-Grained Named Entity Recognition

3.2 Experimental Setup
In this section, we enumerate our research questions, present the dataset used in this
study and we introduce the different models that we compare against each other.

3.2.1 Research Questions
1. RQ1: Do Transformer-based models outperform the state-of-the-art model for

the FG-NER task? We consider two non-Transformer approach vs. three
Transformer-based approaches to determine if there is a noticeable trend.

2. RQ2: What are the strengths, weaknesses, and trade-offs of each investigated
model? We examine the results of each model with regard to precision, recall,
and F1 score to establish the advantages and disadvantages of each approach.

3. RQ3: How does the choice of the domain influence the performance of the
models? We fine-tune each approach on 49 separate domains and examine
differences in the results to determine if the choice of domain has a noticeable
impact on the performance of a fine-tuned model.

3.2.2 Dataset
For this study, we apply the selected models to the English Wikipedia Named Entity
Recognition and Text Categorization (EWNERTC) dataset3 published by Sahin
et al. [71]. It is a collection of automatically categorised and annotated sentences
from Wikipedia articles. The original dataset consists of roughly 7 million annotated
sentences, divided into 49 separate domains. These 49 domains vary significantly in
overall size and number of entity types. The physics domain is the smallest subset
with 68 sentences, 144 entities and merely 6 distinct entity types. In contrast, the
location domain is the largest subset with 443 646 sentences, 1 472 198 entities, and
1603 types. Table 3.1 contains statistics for the subsets investigated in this study.

Physics, fashion, finance, exhibitions, and meteorology are the five smallest sets,
consisting of fewer than 3000 sentences each. The largest sets are government, film,
music, people, and location with more than 300 000 sentences each. It is noteworthy
that the physics dataset is an obvious outlier in terms of size (since the second
smallest dataset is the fashion dataset, which contains an order of magnitude more
sentences). It is possible that the size of the physics subset is too small to produce
meaningful results.

For this study, the number of entity types was drastically reduced. This measure was
taken for two reasons: most entity types appear only a few times in any given subset.
Furthermore, the training time for CRF models tends to explode when dealing with
a high number of entity types according to Mai et al. [66]. We limited the number of
entity types per domain to the top 50 and, if necessary, added a miscellaneous type
as a catch-all for all remaining named entities.

3.2.3 Approaches
In this section, we present the five models that we investigate for this study in more
detail and we specify the configuration of each model.

3https://data.mendeley.com/datasets/cdcztymf4k/1
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Table 3.1: Statistics for the datasets used for this study

ID domain #sentences #words #named entities #entity types #entity types
before removal after removal

1 physics 68 1916 144 6 5
2 fashion 1043 27598 2182 68 20
3 finance 1723 42834 4121 75 24
4 exhibitions 1829 40162 2950 131 34
5 meteorology 2838 69551 7659 92 32
6 interests 3462 87318 6132 150 44
7 measurement_unit 3864 103222 9675 103 50
8 internet 3915 100110 9140 171 50
9 engineering 4475 118061 11548 242 50
10 chemistry 4883 109289 10007 100 43
11 astronomy 8298 201407 25072 214 50
12 automotive 10349 270043 25364 90 39
13 soccer 11398 280920 36620 216 50
14 opera 11559 290749 35459 227 50
15 law 11813 320329 38737 310 51
16 visual_art 12059 306650 32693 292 51
17 basketball 12604 308931 51532 316 50
18 computer 12955 321726 34494 297 50
19 theater 15340 372118 51848 408 50
20 symbols 21171 531455 61097 728 50
21 comic_books 21262 541396 53764 317 50
22 language 21306 551685 62830 214 50
23 religion 27977 721771 77446 401 50
24 time 28903 758863 84560 573 50
25 royalty 30587 788890 110169 427 50
26 games 31420 806552 109941 433 50
27 aviation 36924 939383 125823 344 50
28 medicine 37729 940578 82854 402 51
29 fictional_universe 39781 1010777 89567 567 50
30 food 41160 1034233 100445 415 50
31 media_common 49714 1269641 142084 959 50
32 biology 53042 1248434 131518 246 50
33 travel 59965 1467691 152712 750 50
34 business 68244 1688935 182306 1009 50
35 architecture 76322 1947451 237468 633 50
36 geography 94712 2355917 296847 359 51
37 military 95809 2548948 303750 864 50
38 transportation 111864 2867706 403018 482 50
39 award 117280 2733563 595158 1323 51
40 book 135865 3351012 437189 1032 50
41 organization 146583 3679927 502582 1215 50
42 tv 154152 3720607 574619 935 51
43 sports 171645 4300796 622688 961 51
44 education 212423 5113452 783132 792 51
45 government 331720 8380706 1170947 1182 51
46 film 430693 9557747 1720973 1134 51
47 music 441220 10116628 1684479 918 50
48 people 442683 11452451 1762255 1825 50
49 location 443646 12525545 1472198 1603 50
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Task of Fine-Grained Named Entity Recognition

3.2.3.1 CRF
As CRF models remain largely popular solutions for sequence-to-sequence tasks,
we use a simple CRF model as a baseline. We use a large number of context
and word shape features such as casing information and whether or not the word
contains numerical characters. While simple CRF models generally perform well
for coarse-grained NER, they require custom-made features and their usefulness is
limited for FG-NER according to Mai et al. [66] who observed that CRF models
tend to require too much time to finish when handling a large number of labels.
We use the sklearn_crfsuite API4 for python with the following hyperparameters
for training: gradient descent using the L-BFGS method as the training algorithm
with a maximum of 100 iterations. The coefficients for L1 and L2 regularisation
are fixed to C1 = 0.4 and C2 = 0.0. We use the following features: the word itself,
casing information, is the word alphabetical, numerical or alphanumerical, suffixes
and prefixes, as well as the words and features in a two-words context window.
Considering that the datasets are numerous and very diverse, we decided against
using specialised gazetteers/dictionaries for this study, despite their proven usefulness
in earlier studies [66].

3.2.3.2 BiLSTM-CNN-CRF
As our state-of-the-art model, we use the implementation of Reimers et al. [72]5
of the BiLSTM-CNN-CRF model proposed by Ma et al. [67]. The model consists
of a combination of a convolutional neural network (CNN) layer, a bidirectional
long short-term memory (BiLSTM) layer, and a CRF layer. In a first step, the
CNN is used to extract character-level representations of given words which are
then concatenated with word embeddings to create word level representations of the
input tokens. These representations are fed into a forward and a backward LSTM
layer, creating a bidirectional encoding of the input sequence. Finally, a CRF layer
decodes the resulting representations into the most probable label sequence [67].
Mai et al. [66] achieved the best performance with a combination of gazetteers and
BiLSTM+CNN+CRF, but as was mentioned above, we do not use gazetteers for
this study due to the diverse nature of our datasets. We use the hyperparameters
recommended by Reimers et al. [73] as they were shown to be useful for coarse-grained
NER. We also use Global Vectors (GLoVe)6 word embeddings with 300 dimensions
for the same reason.

3.2.3.3 BERT
For our first Transformer-based language model, we use the English BERT Base model
(cf. Section 2.1.3.2) that we fine-tune on each dataset separately. As we compare
models for FG-NER, we chose the cased model as recommended, in order to preserve
casing information. We use the Transformers library7 provided by Huggingface [74]
which allows to pre-train and fine-tune BERT models with a simplified procedure
using CLI commands.

The BERT Base model contains 12 Transformer blocks, 768 hidden layers, 12 self-

4https://github.com/TeamHG-Memex/sklearn-crfsuite
5https://github.com/UKPLab/emnlp2017-bilstm-cnn-crf
6https://github.com/stanfordnlp/GloVe
7https://github.com/huggingface/transformers
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attention blocks, and 110 million parameters in total. While the BERT Large model
yields better results in every task that Devlin et al.[3] investigated, the BERT Base
model can be useful for determining a lower boundary for the performance. Devlin
et al.[3] report that the recommended hyperparameters vary depending on the NLP
task, but generally the best performances are observed for a batch size in {16, 32},
a learning rate in {2e-5, 3e-5, 5e-5}, and training epochs in {2, 3, 4}. After testing
on three specific domains (comic books, symbols, and fictional universe with 21 262,
21 171 and 39 781 sentences respectively), we found that a batch size of 16, a learning
rate of 5e-5, and 5 training epochs yielded the highest F1 scores.
3.2.3.4 RoBERTa
As our second Transformers-based model, we use the RoBERTa Base model (cf.
Section 2.1.3.3), which contains 12 Transformer blocks, 768 hidden layers, 12 self-
attention heads, and 125 million trainable parameters. We fine-tune it on each dataset
separately. Similar to the pre-trained BERT model, the pre-trained RoBERTa model
is also cased, making it appropriate for fine-tuning on NER tasks. Liu et al. [32]
trained RoBERTa using the same hyperparameters as BERT, except for the number
of training epochs which they fixed to ten. We perform a similar grid search as for
BERT, i.e., a batch size in {16, 32}, and a learning rate in {2e−5, 3e−5, 5e−5}, but
training epochs in {2, 4, 6, 8, 10}. Testing on the comic books, symbols, and fictional
universe, we found that a batch size of 16 , a learning rate of 5e-5, and 10 training
epochs performed best with regard to F1 score.
3.2.3.5 XLNet
The final model used for this study is the XLNet model by Yang et al. [31] (cf.
Section 2.1.3.3). For the comparison, we use the cased XLNet Base model with
12 Transformer blocks, 768 hidden layers, 12 self-attention heads, and 110 million
parameters. Yang et al. [31] fine-tuned their pre-trained model using the same
hyperparameters as the BERT models to compare their performances. We perform
the same hyperparameter grid search as for BERT, and get the best F1 score with a
batch size of 16, a learning rate of 5e-5 and 5 training epochs for the domains comic
books, symbols, and fictional universe.

3.3 Experimental Results
In this section, we will answer the three research questions that we formulated for
this study (cf. Section 3.2.1). Table 3.2 shows the performance of the five models for
each domain. In order to account for the imbalanced distribution of the entity types,
we opt to calculate micro-averaged performance scores which takes into account the
frequency of every entity type. To facilitate reading, we highlight (in bold) the
highest F1 score for each domain.

3.3.1 RQ1: Do Transformer-based models outperform the state-
of-the-art model for the FG-NER task?

The results indicate that, overall, the Transformer-based models outperform CRF and
BiLSTM-CNN-CRF in most domains in terms of F1 score. Specifically, the results
show that the BERT and RoBERTa models yield the highest and second-highest
F1 scores for almost every domain. BERT has the highest F1 score in 36 out of 49
domains, while RoBERTa achieves the best F1 score in 10 out of 49 domains. While
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XLNet outperforms BiLSTM-CNN-CRF in most domains, its performance scores
are slightly lower than the ones of both the BERT and RoBERTa models. It is also
noteworthy that XLNet performs consistently worse than BiLSTM-CNN-CRF in the
ten smallest domains.

Figure 3.1a provides the boxplots showing the distributions of the F1 scores over
all the domains across the five models. We can make two observations. The
boxplots indicate that, on average, all of the Transformer-based models achieve
higher performances than both CRF and BiLSTM-CNN-CRF. Furthermore, we
can observe that the ranges, and, more importantly, the interquartile ranges of the
Transformer-based models are smaller. This indicates that their performances are
more stable and less sensitive to the choice of domain than the performances of CRF
and BiLSTM-CNN-CRF.

RQ1 Answer: Transformer-based models generally outperform both the CRF
and the BiLSTM-CNN-CRF models in terms of F1 score, with BERT yielding the
highest results overall. In addition, their performance is also more stable across
domains.

(a) Distribution of F1 scores (b) Distribution of Precision (c) Distribution of Recall

Figure 3.1: Distribution the performance of the five models used

3.3.2 RQ2: What are the strengths, weaknesses, and trade-offs
of each investigated model?

While the Transformer-based models clearly outperform the other models with
regard to the F1 score, it is worth examining the precision and recall scores as well.
Regarding the precision, the CRF model almost consistently outperforms all of the
other models as shown in Table 3.2. When compared to the BiLSTM-CNN-CRF
model, the Transformer-based models perform worse in most domains in terms of
precision. In fact, BERT outperforms BiLSTM-CNN-CRF in less than half of the
domains, RoBERTa outperforms BiLSTM-CNN-CRF in only a third of the domains
and XLNet outperforms it in only a fifth of the domains. Figure 3.1b shows the
distribution of the precision scores over all the domains across the five models. The
boxplots confirm the strength of CRF over the other models. Furthermore, they
show that BiLSTM-CNN-CRF performs slightly better than the Transformer-based
models, albeit at a loss of stability as indicated by the large range.

On the other hand, the Transformer-based models significantly outperform the other
models with regard to recall as seen in Table 3.2. In fact, both BERT and RoBERTa
significantly outperform CRF and BiLSTM-CNN-CRF in almost every domain, while
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Table 3.2: Micro-averaged results of each model for every domain. Bold text indicates
the highest F1 score for the domain.

CRF LSTM-CNN-CRF BERT RoBERTa XLNet
ID domain #sents prec rec F1 prec rec F1 prec rec F1 prec rec F1 prec rec F1
1 physics 68 1 0.778 0.875 1 0.833 0.909 0.857 0.667 0.75 0.5 0.444 0.471 0.706 0.667 0.686
2 fashion 1043 0.92 0.765 0.836 0.894 0.776 0.831 0.849 0.801 0.824 0.816 0.816 0.816 0.825 0.77 0.797
3 finance 1723 0.859 0.708 0.776 0.83 0.731 0.777 0.807 0.796 0.802 0.794 0.839 0.815 0.768 0.759 0.764
4 exhibitions 1829 0.901 0.737 0.811 0.831 0.744 0.785 0.765 0.754 0.76 0.788 0.782 0.785 0.759 0.74 0.75
5 meteorology 2838 0.748 0.675 0.709 0.75 0.753 0.751 0.746 0.79 0.767 0.755 0.792 0.773 0.722 0.742 0.732
6 interests 3462 0.943 0.811 0.872 0.912 0.843 0.876 0.877 0.868 0.872 0.887 0.875 0.881 0.873 0.838 0.855
7 measurement unit 3864 0.822 0.707 0.76 0.812 0.772 0.791 0.794 0.806 0.8 0.79 0.795 0.792 0.773 0.785 0.779
8 internet 3915 0.83 0.63 0.716 0.768 0.657 0.709 0.727 0.712 0.719 0.749 0.725 0.737 0.73 0.687 0.708
9 engineering 4475 0.856 0.63 0.726 0.764 0.691 0.726 0.734 0.722 0.728 0.739 0.725 0.732 0.694 0.689 0.691
10 chemistry 4883 0.869 0.736 0.797 0.874 0.768 0.818 0.836 0.823 0.829 0.815 0.823 0.819 0.81 0.805 0.808
11 astronomy 8298 0.85 0.743 0.792 0.825 0.781 0.802 0.825 0.833 0.829 0.831 0.831 0.831 0.821 0.814 0.817
12 automotive 10 349 0.799 0.735 0.766 0.788 0.779 0.784 0.792 0.816 0.803 0.773 0.797 0.785 0.772 0.801 0.786
13 soccer 11 398 0.766 0.647 0.702 0.779 0.681 0.727 0.77 0.773 0.772 0.756 0.769 0.763 0.761 0.764 0.763
14 opera 11 559 0.865 0.74 0.798 0.825 0.776 0.8 0.827 0.847 0.837 0.83 0.839 0.834 0.814 0.824 0.819
15 law 11 813 0.792 0.64 0.708 0.756 0.701 0.727 0.75 0.759 0.754 0.758 0.752 0.755 0.761 0.745 0.753
16 visual art 12 059 0.861 0.649 0.74 0.81 0.674 0.736 0.766 0.725 0.745 0.774 0.721 0.747 0.761 0.718 0.738
17 basketball 12 604 0.836 0.796 0.815 0.832 0.83 0.831 0.833 0.849 0.841 0.828 0.85 0.839 0.824 0.844 0.834
18 computer 12 955 0.814 0.673 0.737 0.768 0.74 0.754 0.762 0.773 0.767 0.755 0.767 0.761 0.748 0.757 0.752
19 theater 15 340 0.79 0.608 0.688 0.733 0.658 0.694 0.709 0.719 0.714 0.719 0.725 0.722 0.7 0.697 0.698
20 symbols 21 171 0.72 0.571 0.637 0.715 0.62 0.664 0.723 0.727 0.725 0.724 0.712 0.718 0.711 0.699 0.705
21 comic books 21 262 0.854 0.711 0.776 0.808 0.749 0.777 0.808 0.829 0.818 0.818 0.821 0.82 0.796 0.815 0.805
22 language 21 306 0.803 0.74 0.77 0.79 0.764 0.777 0.81 0.816 0.813 0.799 0.809 0.804 0.787 0.8 0.793
23 religion 27 977 0.805 0.697 0.747 0.787 0.761 0.774 0.808 0.81 0.809 0.8 0.796 0.798 0.787 0.791 0.789
24 time 28 903 0.717 0.565 0.632 0.697 0.63 0.662 0.716 0.722 0.719 0.704 0.704 0.704 0.704 0.705 0.705
25 royalty 30 587 0.804 0.725 0.762 0.785 0.76 0.772 0.786 0.798 0.792 0.779 0.788 0.784 0.774 0.785 0.779
26 games 31 420 0.839 0.741 0.787 0.796 0.77 0.783 0.79 0.813 0.801 0.789 0.81 0.799 0.768 0.791 0.779
27 aviation 36 924 0.795 0.712 0.751 0.779 0.73 0.754 0.789 0.807 0.798 0.781 0.797 0.789 0.774 0.79 0.782
28 medicine 37 729 0.848 0.697 0.765 0.797 0.755 0.776 0.802 0.788 0.795 0.791 0.788 0.789 0.799 0.791 0.795
29 fictional universe 39 781 0.874 0.756 0.811 0.845 0.781 0.812 0.843 0.855 0.849 0.841 0.848 0.845 0.837 0.842 0.839
30 food 41 160 0.801 0.648 0.717 0.746 0.69 0.717 0.776 0.788 0.782 0.76 0.766 0.763 0.752 0.774 0.763
31 media common 49 714 0.862 0.723 0.786 0.819 0.755 0.786 0.806 0.825 0.815 0.807 0.819 0.813 0.803 0.812 0.807
32 biology 53 042 0.854 0.771 0.811 0.843 0.807 0.825 0.834 0.847 0.84 0.832 0.837 0.834 0.836 0.837 0.836
33 travel 59 965 0.822 0.696 0.754 0.803 0.719 0.759 0.784 0.79 0.787 0.764 0.772 0.768 0.779 0.777 0.778
34 business 68 244 0.803 0.634 0.709 0.756 0.666 0.708 0.765 0.771 0.768 0.755 0.759 0.757 0.752 0.754 0.753
35 architecture 76 322 0.709 0.588 0.643 0.685 0.627 0.654 0.707 0.722 0.715 0.688 0.701 0.694 0.685 0.695 0.69
36 geography 94 712 0.813 0.728 0.768 0.801 0.752 0.776 0.798 0.815 0.806 0.795 0.804 0.799 0.789 0.799 0.794
37 military 95 809 0.836 0.731 0.78 0.82 0.778 0.798 0.816 0.827 0.821 0.811 0.821 0.816 0.809 0.823 0.816
38 transportation 111 864 0.828 0.738 0.781 0.834 0.804 0.819 0.845 0.857 0.851 0.845 0.85 0.848 0.839 0.844 0.841
39 award 117 280 0.702 0.617 0.657 0.702 0.671 0.686 0.685 0.716 0.7 0.682 0.707 0.694 0.689 0.703 0.695
40 book 135 865 0.761 0.604 0.675 0.717 0.639 0.676 0.711 0.73 0.721 0.708 0.723 0.716 0.716 0.722 0.719
41 organization 146 583 0.769 0.64 0.698 0.765 0.674 0.717 0.767 0.776 0.771 0.756 0.766 0.761 0.762 0.768 0.765
42 tv 154 152 0.725 0.574 0.641 0.733 0.603 0.662 0.697 0.696 0.696 0.688 0.686 0.687 0.702 0.684 0.693
43 sports 171 645 0.781 0.705 0.741 0.799 0.767 0.783 0.806 0.822 0.814 0.801 0.816 0.808 0.807 0.819 0.813
44 education 212 423 0.734 0.653 0.691 0.747 0.706 0.726 0.769 0.78 0.774 0.763 0.774 0.769 0.769 0.774 0.771
45 government 331 720 0.81 0.725 0.765 0.815 0.764 0.789 0.821 0.828 0.825 0.816 0.824 0.82 0.824 0.825 0.824
46 film 478 479 0.75 0.68 0.713 0.743 0.695 0.718 0.769 0.773 0.771 0.766 0.767 0.766 0.772 0.768 0.77
47 music 462 949 0.786 0.654 0.714 0.78 0.668 0.72 0.744 0.744 0.744 0.739 0.736 0.737 0.752 0.736 0.744
48 people 442 683 0.836 0.771 0.802 0.847 0.795 0.82 0.83 0.83 0.83 0.825 0.821 0.823 0.834 0.825 0.829
49 location 443 646 0.809 0.703 0.752 0.8 0.713 0.754 0.79 0.789 0.79 0.775 0.772 0.774 0.784 0.775 0.78

XLNet outperforms them in most. The same result can be observed in Figure 3.1c.
The Transformer-based models not only outperform the other models, but their
interquartile ranges are significantly smaller as well. This difference in recall score
also explains the higher F1 scores for the Transformer-based models.

RQ2 Answer: CRF shows its strength in terms of precision, BERT, RoBERTa,
and XLNet perform well with regard to both recall and F1 score, with BERT
usually achieving the highest performances. The BiLSTM-CNN-CRF model acts
as a trade-off between CRF and the Transformer-based models.

3.3.3 RQ3: How does the choice of the domain influence the
performance of the models?

Figure 3.1a shows that while different models may achieve significantly different
performance, no approach yields a significant breakthrough, with regard to the others,
for the task at hand, and all leave room for improvement. The five tested models
obtained relatively stable performances, as is visible from the fact that boxes, which
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represent the performance measurements of 50% of the domains, cover only a ±0.05
band around the average.
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Figure 3.2: Performances of the five models for every domain (in terms of F1 score).

Figure 3.2, that plots the F1 scores for every domain (ordered by size), reveals
however that all models are similarly impacted by domains: with the exceptions
of the four smallest domains (left-most on Figure 3.2), when one model achieves a
lower performance than its overall average, all models are also performing worse than
their overall averages. We also note that the per-domain variations in performance
cannot be explained by the size of the domains (since the performance looks erratic
across all domain sizes). The variations in performance can also not be explained
by the perceived obscurity of the domain. Intuitively, it is conceivable that the
scientific domains (physics, engineering, chemistry, biology), as well as finance and
law could lead to worse performances as they typically contain terms that are rarely
encountered during the pre-training phase of the respective word embeddings or
language models. However, there is no clear indication that this is the case as only
the engineering and law domains consistently lead to results that are significantly
below the median performance of the respective model, while the other domains lead
to results that are either close to or significantly above the median performance.

Overall, the results are a clear indication that most domains are either: (a) relatively
hard for every model, or (b) relatively easy for every model. This suggests that no
model manages to acquire a massively better language understanding that would
make it able to avoid the difficulties faced by the other models, at least in the context
of FG-NER.

Furthermore, the ranking of the five models is very stable across domains: given the
fact that one specific model performs the best (resp. the worst) for one domain, it
can reliably be predicted that this model will also perform the best (resp. the worst)
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across all domains. It follows that some models do bring a sometime incremental,
but nonetheless measurable improvement over other models. Nevertheless, we note
that for the four smallest domains, the difference in performance from one model to
another is more important, and no ranking pattern is visible.

The performance variations between domains that we see in our results have also
been reported in the study by Guo et al. [75], who investigated the stability of
coarse-grained NER across domains for the Chinese language. Notably, when trained
on the sports domain, their baseline has a significantly higher F1 score than the
other domains. The same is true here, but it has to be noted that they use the
classic NER-labels, i.e., person, location, organisation, and miscellaneous, rather than
domain-specific labels.

RQ3 Answer: We observe significant discrepancies when applying the models
to different domains. Moreover, when a model is performing better (resp. worse)
on one domain, the other models also perform better (resp. worse). This suggests
that while Transformer-based models can indeed bring significant performance
improvements, their language understanding may not be outstandingly different.
Indeed, if they were clearly different, we could have reasonably expected to note
different patterns in the performance for the FG-NER task (i.e., they would not
systematically perform well/badly for the same domains).

3.4 Related Work
3.4.1 Fine-Grained Named Entity Recognition
Early efforts to develop a fine-grained approach to NER were made by Bechet
et al. [76], where they focused on differentiating between first names, last names,
countries, towns, and organisations. While this would be considered coarse-grained
by today’s standards, they do split the classical NER labels person and location
into more nuanced labels. FG-NER was first described as "fine grained classification
of named entities" by Fleischman et al. [63]. They focused on a fine-grained label
set for personal names, dividing the generic person label into eight subcategories,
i.e., athlete, politician/government, clergy, businessperson, entertainer/artist, lawyer,
doctor/scientist, and police. They experimented with a variety of classic machine
learning approaches for this task, and achieved promising results of 68.1%, 69.5%,
and 70.4% in terms of accuracy for SVM, a feed-forward neural network, and a C4.5
decision tree, respectively. Furthermore, Ling et al. [64] introduced their fine-grained
entity recognizer (FIGER), which can distinguish between 112 different labels and
handle multi-label classification. Mai et al. [66] presented an empirical study on
FG-NER prior to the rise of Transformer-based models (which are the focus of
our study). They targeted an English dataset containing 19 800 sentences and a
Japanese dataset which contained 19 594 sentences, dividing the named entities into
200 categories. They compared performances for FIGER, BiLSTM-CNN-CRF, and
a hierarchical CRF+SVM classifier, which classifies an entity into a coarse-grained
category before further classifying it into a fine-grained subcategory. Furthermore,
they combine some of the aforementioned methods with gazetteers and category
embeddings to further improve the performance of the models. They found that the
BiLSTM-CNN-CRF model by Ma et al. [67] combined with gazetteer information
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performed the best for the English language with an F1 score of 83.14% while
BiLSTM-CNN-CRF with both gazetteers and category embeddings yielded an F1
score of 82.29%, and 80.93% without either gazetteers or category embeddings.

3.5 Threats to Validity
This study was conducted on the EWNERTC dataset [70] which was annotated
automatically. We are operating under the assumption that the annotations are
accurate. However, while Sahin et al.[71] conducted an evaluation for the Turkish
counterpart of the dataset (TWNERTC), they did not evaluate the English one.
Nevertheless, EWNERTC is the largest publicly available dataset that we could
find and that is relevant for FG-NER studies. We further proposed to reduce the
potential noise in labelling by considering only the subset associated to top labels
(cf. Section 3.2.2).

Performance measurements can be impacted by sub-optimal implementation of
algorithms. To mitigate this threat, we collected the models’ implementations that
were released by their original authors, and already leveraged in previous studies,
and we reused them in the settings they were designed for.

While we conducted grid searches to determine optimised hyperparameters for
the CRF, BERT, RoBERTa and XLNet models, we did not specifically optimise
the hyperparameters for the the BiLSTM-CNN-CRF model due to the induced
computational costs. Furthermore, as pointed out in Section 3.2.3.1, due to the large
number of domains, we decided against using gazetteers even though they would
likely have increased the F1 scores of the non-Transformer-based models.

3.6 Summary
In this chapter, we presented an empirical study of the performance of various
Transformer-based models for the FG-NER task on a multitude of domains and
compared them to both CRF and BiLSTM-CNN-CRF models (which are commonly
used in the literature for the NER task).

We concluded that while the Transformer-based models did not manage to outperform
non-Transformer-based models in terms of precision, we observed a consistent increase
in recall and F1 scores in most domains. We noticed, however, significant differences
in performance for a selection of domains that could not be explained by the size of
the respective datasets. This study yields the main insight that while Transformer-
based models can indeed bring significant performance improvements, they do not
necessarily revolutionise the achievements in FG-NER to the same extent they did
in other NLP tasks.
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4 Evaluating the Impact of Text De-
Identification on Downstream NLP
Tasks

In this chapter, we investigate the impact of text de-identification on the performance of nine
downstream NLP tasks. We focus on the anonymisation and pseudonymisation of personal names
and compare six different anonymisation strategies for two state-of-the-art pre-trained models.
Based on these experiments, we formulate recommendations on how the de-identification should be
performed to guarantee accurate NLP models.

This chapter is based on the work published in the following research paper:

• Cedric Lothritz, Bertrand Lebichot, Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein,
Andrey Boytsov, Clément Lefebvre, and Anne Goujon. Evaluating the Impact of Text De-
Identification on Downstream NLP Tasks, Nordic Conference on Computational Linguistics,
2023
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4.1. Overview

4.1 Overview
Protection of personal data has been a hot topic for decades [77]. Careless sharing of
data between and within companies, cyber attacks, and other forms of data breaches
can lead to catastrophic leaks of confidential data, potentially resulting in invasion
of people’s privacy and identity theft.

To mitigate damages and to hold bad actors accountable, many countries introduced
various laws that aim to protect confidential data. Examples of such legislation include
the Health Insurance Portability and Accountability Act (HIPAA) for healthcare
confidentiality [78], and the Gramm–Leach–Bliley Act (GLBA) in the financial
domain [79]. Most notably, with the introduction of the General Data Protection
Regulation (GDPR), protection of any personally identifiable information was codified
into EU law in 2018 [9]. Failure to comply with these regulations can lead to huge
fines in case of a data breach. Indeed, the amount of fines for GDPR violations adds
up to over 1.5 trillion euros with the largest single fine of 746 million euros being
imposed on Amazon.1

In order to mitigate data leaks and avoid costly fines, organisations such as financial
institutes and hospitals are required to anonymise or pseudonymise sensitive data
before processing them further. Similarly, automated NLP models should ideally
be trained using de-identified data as resulting models could potentially violate
a number of GDPR guidelines such as the individuals’ right to be forgotten, and
the right to explanation. Furthermore, models can be manipulated to partially
recreate the training data [80], which can result in disastrous data breaches. On
the other hand, however, de-identification of texts can lead to loss of information
and meaning, making NLP models trained on de-identified data less reliable as a
result [81]. Intuitively, this in turn could lead to a decrease in performance of such
models when compared to models trained on non-anonymised text. As such, it is
crucial to choose an appropriate anonymisation strategy to mitigate this loss of
information and avoid performance drops of trained models.

In this study, we investigate the impact of text de-identification on the performance
of downstream NLP tasks, focusing on the anonymisation and pseudonymisation of
personal names only. This allows us to select from a wide array of NLP tasks as most
datasets contain a large number of personal names whereas other types of names are
less commonly found. Specifically, we compare six different anonymisation strategies,
and two Transformer-based pre-trained model architectures in our experiments: the
popular BERT [3] architecture and the state-of-the-art ERNIE [33] architecture.
Furthermore, we look into nine different NLP tasks of varying degrees of difficulty.
In addition, we set out to do a limited qualitative analysis of the performance and
shortcomings of each fine-tuned model using the Language Interpretability Tool [82].

Our contributions are two-fold:

(a) An empirical study on the impact of popular anonymisation strategies on
numerous downstream NLP tasks

1at the time of writing this work, according to https://www.privacyaffairs.com/
gdpr-fines/
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(b) A superficial qualitative analysis to discover patterns in the decision making of
our models

4.2 Experimental Setup
In this section, we enumerate our research questions, present the datasets used in
this study and we introduce the different anonymisation strategies that we compare
against each other. We also briefly introduce the pre-trained models we use.

4.2.1 Research Questions
1. RQ1: Which anonymisation strategy is the most appropriate for downstream

NLP tasks? We evaluate and rank the performance of models trained on
de-identified data to determine which anonymisation strategy has the lowest
negative impact on a model.

2. RQ2: Should a model be trained on original or de-identified data? We train
pairs of models on original and on de-identified data, and determine which
model performs better on a de-identified test set.

3. RQ3: In what cases do certain models fine-tuned on de-identified data fail?
Using a popular Explainability approach (LIME[83]), we investigate to what
degree the de-identification changed the decision of a given model for a selection
of samples.

4.2.2 Datasets
Table 4.1: Statistics for the datasets. Size of datasets, number of names found
in the training set (#names), number of unique names found in the training set
(#unique), percentage of samples that contains at least one name (i.e. the percentage
of samples to be de-identified) (%de-identified), and the type of the classification
task (binary/multiclass)

dataset FND NBD FED MRPC RTE WNLI CoLA MNLI ETC
train set 4382 1374 8980 3668 2489 635 6039 39 999 6354
dev set 690 196 997 407 276 71 851 5000 926
test set 1237 395 1926 1725 800 146 1661 5396 1798
#names 68 890 15 610 30 404 3324 3685 898 2600 85 999 6550
#unique 7500 3247 6104 1729 2042 102 335 10 460 2807

%de-identified 90.9 83.9 55.7 43.1 51 61.9 41 93.8 42.6
type binary multi binary binary binary binary binary multi multi

For this study, we selected several downstream tasks that greatly vary in complexity,
ranging from simple text classification to complicated Natural Language Understand-
ing (NLU) tasks featured in the GLUE benchmark collection [30] (cf. Section 2.2.3.1).
We ensured that each set contains a considerable number of personal names. Ta-
ble 4.1 shows a breakdown and statistics for each dataset. These datasets are detailed
hereafter. We release the original as well as the de-identified datasets for most tasks.2

4.2.2.1 Fake News Detection
Disinformation is a prevalent problem, especially in the areas of medicine and politics.
In order to combat the spreading of false information and maintain the trust in

2https://github.com/lothritz/anonymisation_paper
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the free press, several actors are engaged in reliably recognising fake news. The
Fake News Detection (FND)3 task is a binary classification task which consists of
determining whether a given news article is real or contains false information. The
dataset consists of 6309 political news articles, 50% of which are classified as fake. As
it is mainly made up of political news articles, it contains a large number of personal
names. The training set includes 68 890 names. Unsurprisingly, more than 90% of
the news articles contain personal names.

4.2.2.2 News Bias Detection

Expanding on the FND task, Bharadwaj et al. [84] created and annotated a corpus
for a more fine-grained, multiclass news classification task. It serves for detecting
problematic or unreliable news articles and features the following labels: bs(bullshit),
(political) bias, junk science, conspiracy theory, state(-controlled news), hate(-speech),
and satire. We removed some articles from the dataset as they were not in English.
After removal, the dataset is made up of 1965 news articles. Similarly to the FND
dataset, the number of personal names is relatively high with 15 610 names, and
83.9% of the articles including at least one name.

4.2.2.3 Fraudulent Email Detection

Fraudulent and spam emails can be a dangerous threat to personal data security
and lead to identity theft, making the automated detection of fraudulent emails a
crucial task. For this study, we use the Fraud Email dataset created byRadev et
al. [85]. It is a collection of 11 903 emails, 57% of which are legitimate, and 43% are
spam or otherwise fraudulent. The dataset contains 30 404 names in the training
set. Considering the large number of names, the number of emails with at least one
name is comparably low with only 55%.

4.2.2.4 Microsoft Research Paraphrase Corpus

Dolan et al. [58] created the Microsoft Research Paraphrase Corpus (MRPC). Being
part of the GLUE benchmark collection, it is an important dataset for evaluating
the capabilities of modern language models. As the name suggests, the task consists
of determining whether or not two given texts are paraphrases of each other. Given
a text pair A and B, the corresponding label is 1 if text B is a paraphrase of text
A, and 0 otherwise. The MRPC set contains 5625 sentence pairs, 66% of which are
paraphrase pairs, while 34% are not. The training set contains 3324 names, with
43.1% of the sentence pairs containing at least one name.

4.2.2.5 Recognizing Textual Entailment

Similar to the MRPC dataset, the Recognizing Textual Entailment (RTE) dataset [60]
is part of the GLUE collection. This task consists of determining whether a claim
can be logically inferred from a given premise, known as linguistic entailment. Given
a text pair A and B, the corresponding label is 1 if text A entails text B, and
0 otherwise. The set contains 3563 sentence pairs, 51% of which are examples of
linguistic entailment, and 49% of which are not. There are 3685 names in the training
set, with 51% of the text pairs containing at least one name.

3The dataset can be found at: https://www.kaggle.com/shubh0799/fake-news
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4.2.2.6 Winograd Natural Language Inference
The Winograd Natural Language Inference (WNLI) dataset was introduced by
Levesque et al. [61] and is part of the GLUE collection. The dataset consists of text
pairs A and B, where A contains one or several pronouns. Text B is a substring
of A with one of the pronouns replaced by a word or name. The task consists
of determining whether or not A entails B. Depending on the sentence and the
anonymisation strategy, ground truths can be accidentally falsified, making this
task’s evaluation problematic. The dataset contains 853 sentence pairs, with 46%
entailments, and 54% non-entailments. The training set contains 898 names, and
61.9% of its sentence pairs contain names.

4.2.2.7 Corpus of Linguistic Acceptability
The Corpus of Linguistic Acceptability (CoLA) was introduced by Warstadt et al. [57]
and is part of the GLUE collection. The task consists of determining whether or
not a given sentence makes grammatical sense. As the test set is not labelled, we
used the provided training set to construct a new training, validation, and test set.
The final dataset contains 8551 samples, 70% of which are grammatically correct
sentences. The number of personal names is comparably low at 2600 names, and
merely 41% of the sentences containing at least one name.

4.2.2.8 Multigenre Natural Language Inference
Similarly to most datasets used for this study, the Multigenre Natural Language
Inference (MNLI) [59] is part of the GLUE collection. Similarly to WNLI, it is
a sentence-pair inference task. Given sentences A and B, the task consists of
determining whether A entails, contradicts, or is independent from B. Due to the
size of the dataset and the low number of sentences containing names, we reduced
the dataset by nearly 90%, resulting in 50 395 sentence pairs. 35% of the samples
are labeled entailment, 33% are contradiction, and 32% are neutral. As we removed
mostly sentences without names, our resulting dataset has the highest percentage of
sentence pairs containing at least one name with 93.8%. It also contains the highest
absolute number of names with 85 999.

4.2.2.9 Email Topic Classification (Proprietary)
The Email Topic Classification Dataset (ETC) is related to the financial domain
and was provided by our partners at BGL BNP Paribas. As such, it is a proprietary
dataset consisting of sensitive emails from clients, and thus cannot be publicly
released. However, it serves as an authentic use-case for our study. The task consists
of classifying the given emails along 19 broad topics related to banking activities
such as credit cards, wire transfers, account management etc., which will then be
forwarded to the appropriate department. We selected a subset of the provided
dataset, such that each topic is represented equally. More specifically, for each topic
in the set, we randomly selected ≃ 500 emails, for a total of nearly 9000 emails.
Furthermore, the dataset is multilingual, but we perform our experiments on the
emails written in French due to the high number of samples.

4.2.3 Anonymisation Strategies
In this section, we present the six anonymisation strategies that we consider for
this study. These strategies are commonly found in the literature [86, 87]. They
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largely fall into three categories: replacement by a generic token, removal of names,
and replacement by a random name. Table 4.2 shows the differences between each
strategy on a simple example.

Table 4.2: Example for each anonymisation strategy
Original "Hi, this is Paul, am I speaking to John?" "Sorry, no, this is George. John is not here today."

AS1 "Hi, this is ENTNAME, am I speaking to ENTNAME?" "Sorry, no, this is ENTNAME. ENTNAME is not here today."
AS2 "Hi, this is ENTNAME1, am I speaking to ENTNAME2?" "Sorry, no, this is ENTNAME1. ENTNAME2 is not here today."
AS3 "Hi, this is ENTNAME1, am I speaking to ENTNAME2?" "Sorry, no, this is ENTNAME3. ENTNAME2 is not here today."
AS4 "Hi, this is , am I speaking to " "Sorry, no, this is . is not here today."
AS5 "Hi, this is Bert, am I speaking to Ernie?" "Sorry, no, this is Elmo. Kermit is not here today."
AS6 "Hi, this is Jessie, am I speaking to James?" "Sorry, no, this is Meowth. James is not here today."

4.2.3.1 AS1: Singular Generic Token
One straightforward de-identification technique is to replace each name by a generic
token: ENTNAME. This technique prevents any re-identification of anonymised
documents. As a downside, it is not possible to distinguish between different people
mentioned in a given document, making certain NLU tasks involving Entity Linking
such as the WNLI task more difficult. On the other hand, tasks where certain names
could introduce bias could potentially perform better when using this strategy.

4.2.3.2 AS2: Unique Generic Token Per Mention
Similarly to AS1, AS2 replaces each name by a generic token. However, rather than
using the same token for every name, each name will be replaced by a unique token.
Specifically, names get replaced by ENTNAME+n where n increases every time a
name is found in a given sentence. Similarly to AS1, some NLU tasks such as the
WNLI task will be more difficult as there is no way to link two given de-identified
tokens.

4.2.3.3 AS3: Unique Generic Token Per Mention with Identity Mapping
AS3 is almost identical to AS2, with the difference that identical names are mapped
to the same de-identified token. Intuitively, this strategy improves on AS2 as it
preserves the link between names. As such, we expect downstream tasks that involve
Entity Linking to perform better when using AS3 when compared to AS1 and AS2.

4.2.3.4 AS4: Removal of Name
For AS4, rather than replacing names, we instead remove them completely from
the dataset. Similarly to AS1, this strategy should reduce bias for tasks such as
FND and NBD. However, we would expect AS4 to perform significantly worse in
the CoLA task as removing words from a sentence will almost certainly render
previously grammatically correct sentences nonsensical. This in turn may produce a
high number of false positives in the datasets.

4.2.3.5 AS5: Random Name
Rather than introducing new generic tokens, for AS5, we opt to pseudonymise the
datasets by replacing every name with a different name. As the choice of name is
random, it is likely that two different names are mapped to the same pseudonym.
AS5 has the same downside as AS1 and AS2 in that we expect it to perform worse
in tasks such as WNLI.
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4.2.3.6 AS6: Random Name with Identity Mapping

Similarly to AS5, AS6 replaces names with random names. However, similarly to
AS3, identical names will be mapped to identical pseudonyms, improving on AS5.
As such, we expect AS6 to perform better in the WNLI task than AS5.

4.2.4 Name Detection
In Chapter 3, we determined that the BERT model is generally best suited for the
task of name detection in most domains. Following this result, we fine-tune a BERT
Large model on the task of Personal Name Detection. We use the CoNLL-2003
dataset for Named Entity Recognition [68] and modify it by relabeling every non-
Person entity as non-entity. The resulting training set consists of 204 567 words,
11 128 are Person entities and 193 439 are labeled as non-entities.4 The resulting
model achieved an F1 score of 0.9694, precision of 0.9786, and a recall of 0.9694
on the modified CoNLL-2003 test set. We use this fine-tuned model to detect and
replace names from the training, validation, and test set of the selected downstream
tasks.

4.2.5 Model Training
We compare the impact of anonymisation strategies using two Transformer-based
models: BERT [3] and ERNIE [33]. For our study, we use the transformers li-
brary by Huggingface [74] as our framework. Furthermore, we take a grid-search
based approach to determine the most appropriate fine-tuning parameters for each
downstream task.

4.2.5.1 BERT

Being one of the most important advancements in recent years, BERT models remain
popular choices for many NLP applications. (cf. Section 2.1.3.2) For this study, we
use the uncased English BERT Base model with 12 Transformer blocks, 768 hidden
layers, 12 self-attention heads, and 110 million trainable parameters. For the ETC
task, we are working on emails written in French. Despite the existence of French
BERT models such as CamemBERT [40], we choose to do our experiments with
mBERT model as we also use a mulitilingual ERNIE model because there is no
French ERNIE model to the best of our knowledge.

4.2.5.2 ERNIE

ERNIE (cf. Section 2.1.3.3) is currently one of the highest ranking language models
on the GLUE benchmark leaderboard5. Similarly to BERT Base, the ERNIE Base
model has 12 Transformer blocks, 768 hidden layers, and 12 self-attention heads,
allowing for a fair comparison between the BERT and ERNIE models. Specifically,
we use the ERNIE 2.0 model published by Sun et al. [33] for most tasks. For the
ETC task, as already mentioned, we once again use a multilingual model, i.e., the
ERNIE-M model published by Ouyang et al. [88].

4The dataset used to to train the de-identification model can be found at https://github.com/
lothritz/anonymisation_paper/tree/main/anonymisation_model

5https://gluebenchmark.com/leaderboard
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4.2.6 Fine-tuning Parameters
In order to fine-tune the pre-trained BERT and ERNIE models for the selected tasks,
we need to choose appropriate hyperparameters for the batch size, learning rate, and
number of training epochs as suggested by Devlin et al. [3] and Sun et al. [33]. We
perform a grid search on the original datasets to find the optimised configuration for
each task. For BERT models, we perform a grid search with batch size in {16, 32},
learning rate in {2e-5, 3e-5, 5e-5}, and training epochs in {1, 2, 3, 4, 5}. For ERNIE
models, we choose the same ranges for learning rate and training epochs, but the
possible batch sizes are in {4, 8, 16, 32, 64, 128, 256, 512}. Furthermore, as Sun et
al. [33] published appropriate hyperparameters for their ERNIE models on GLUE
tasks, we reuse them for the MRPC, RTE, WNLI, CoLA, and MNLI tasks. Table 4.3
shows the final hyperparameters used for fine-tuning.

Table 4.3: Hyperparameters for fine-tuning pre-trained models for downstream tasks
BERT ERNIE

Task batch size learning rate #epochs batch size learning rate #epochs
FND 16 5e-5 1 8 2−5 1
NBD 16 5e-5 3 8 2−5 5
FED 32 3e-5 3 32 5−5 1

MRPC 16 5e-5 3 32 3−5 4
RTE 16 5e-5 4 4 2−5 4

WNLI 16 3e-5 4 8 2−5 4
ColA 16 5e-5 3 64 3−5 3
MNLI 16 5e-5 2 512 3−5 3
ETC 16 5e-5 5 8 3−5 3

4.3 Experimental Results

Table 4.4: Results of our fine-tuned models. We highlight in green (↑) the models
that outperform the models trained on original data, in red (↓) the models that do
not.

BERT ERNIE
Task Metric Original AS1 AS2 AS3 AS4 AS5 AS6 Original AS1 AS2 AS3 AS4 AS5 AS6
FND F1 0.973 0.976↑ 0.974↑ 0.969↓ 0.965↓ 0.968↓ 0.971↓ 0.968 0.962↓ 0.960↓ 0.960↓ 0.956↓ 0.956↓ 0.963↓
NBD F1 0.653 0.658↑ 0.647↓ 0.654↑ 0.681↑ 0.674↑ 0.683↑ 0.678 0.681↑ 0.684↑ 0.695↑ 0.709↑ 0.653↓ 0.669↓
FED F1 0.994 0.995↑ 0.996↑ 0.996↑ 0.996↑ 0.994 0.995↑ 0.996 0.994↓ 0.993↓ 0.994↓ 0.993↓ 0.995↓ 0.993↓
MRPC F1 0.791 0.786↓ 0.769↓ 0.768↓ 0.797↑ 0.792↑ 0.783↓ 0.811 0.824↑ 0.817↑ 0.799↓ 0.832↑ 0.826↑ 0.82↑
RTE Acc 0.691 0.67↓ 0.654↓ 0.639↓ 0.624↓ 0.644↓ 0.666↓ 0.703 0.696↓ 0.665↓ 0.671↓ 0.683↓ 0.716↑ 0.676↓
WNLI F1 0.520 0.530↑ 0.526↑ 0.551↑ 0.586↑ 0.541↑ 0.535↑ 0.561 0.472↓ 0.557↓ 0.564↑ 0.595↑ 0.614↑ 0.550↓
CoLA MCC 0.555 0.520↓ 0.522↓ 0.524↓ 0.443↓ 0.495↓ 0.532↓ 0.519 0.517↓ 0.543↑ 0.556↑ 0.385↓ 0.540↑ 0.542↑
MNLI Acc 0.754 0.742↓ 0.730↓ 0.734↓ 0.745↓ 0.742↓ 0.747↓ 0.789 0.774↓ 0.750↓ 0.759↓ 0.770↓ 0.776↓ 0.773↓
ETC F1 0.626 0.624↓ 0.683↑ 0.617↓ 0.619↓ 0.616↓ 0.595↓ 0.642 0.635↓ 0.696↑ 0.642 0.635↓ 0.627↓ 0.621↓

In this section, we show and evaluate the results of our experiments and address the
research questions introduced in Section 4.2.1. For each task we investigate, and for
each pre-trained model, we fine-tune a model on the original dataset and each of
our six de-identified datasets. We do five runs for each case, and take the average of
the performance of each run. We then compare the average performance for each
AS to the performance of the models trained on original data. Table 4.4 shows the
average performance of every fine-tuned model. For each of the GLUE tasks, we use
the metric recommended by Wang et al. [30]. We use F1 score for the remaining
classification tasks.
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Table 4.5: Ranking scores for fine-tuned models. Bold text indicates the winner
according to Borda Count, underlined text indicates the winner according to Instant
Runoff.

BERT ERNIE
Task AS1 AS2 AS3 AS4 AS5 AS6 AS1 AS2 AS3 AS4 AS5 AS6
FND 5 4 2 0 1 3 4 3 3 1 1 5
NBD 2 0 1 4 3 5 2 3 4 5 0 1
FED 2 5 5 5 0 2 4 2 4 2 5 2
MRPC 3 1 0 5 4 2 3 1 0 5 4 2
RTE 5 3 1 0 2 4 4 0 1 3 5 2
WNLI 1 0 4 5 3 2 0 2 3 4 5 1
CoLA 2 3 4 0 1 5 1 4 5 0 2 3
MNLI 3 0 1 4 3 5 4 0 1 2 5 3
ETC 4 5 2 3 1 0 3 5 4 3 1 0
Total 27 21 20 26 18 28 25 20 25 25 28 21
Average 3 2.33 2.22 2.89 2 3.11 2.78 2.22 2.78 2.78 3.11 2.33

Table 4.6: Results of testing the original models on de-identified data. We highlight
in green (↑) the models that significantly outperform the matching model in Table 4.4
using a Wilcoxon test, in red (↓) the models that perform significantly worse, in
black the models that do not perform significantly differently.

BERT ERNIE
Task Metric Original AS1 AS2 AS3 AS4 AS5 AS6 Original AS1 AS2 AS3 AS4 AS5 AS6
FND F1 0.973 0.933↓ 0.910↓ 0.907↓ 0.950↓ 0.963↓ 0.963↓ 0.968 0.951↓ 0.938↓ 0.935↓ 0.957↑ 0.967↑ 0.967↑
NBD F1 0.653 0.566↓ 0.551↓ 0.546↓ 0.601↓ 0.602↓ 0.609↓ 0.678 0.683 0.684 0.659↓ 0.687↓ 0.683↑ 0.683↑
FED F1 0.994 0.995 0.995 0.995 0.996 0.996 0.996 0.996 0.995 0.995 0.995 0.996 0.996 0.996
MRPC F1 0.791 0.809↑ 0.811↑ 0.811↑ 0.819↑ 0.816↑ 0.814↑ 0.811 0.848↑ 0.848↑ 0.849↑ 0.852↑ 0.804↓ 0.834↑
RTE Acc 0.691 0.665↓ 0.663↑ 0.669↑ 0.670↑ 0.645↑ 0.660↓ 0.700 0.703↑ 0.701↑ 0.693↑ 0.699↑ 0.688↓ 0.704↑
WNLI F1 0.520 0.504↓ 0.504↓ 0.504↓ 0.504↓ 0.504↓ 0.504↓ 0.561 0.435↓ 0.442↓ 0.467↓ 0.506↓ 0.458↓ 0.428↓
CoLA MCC 0.555 0.376↓ 0.515↓ 0.528↑ 0.335↓ 0.549↑ 0.550↑ 0.519 0.427↓ 0.537↓ 0.511↓ 0.313↓ 0.518↓ 0.523↓
MNLI Acc 0.754 0.753↑ 0.724↓ 0.753↑ 0.753↑ 0.744↑ 0.744↓ 0.789 0.783↑ 0.545↓ 0.760↑ 0.772↑ 0.669↓ 0.765↓

4.3.1 RQ1: Which anonymisation strategy is the most appropri-
ate for downstream NLP tasks?

In order to determine the most appropriate strategy, we consider two ranking-based
approaches: Borda Count and Instant Runoff [89]. For both approaches, we determine
the score sa,t for each anonymisation strategy (AS, indexed by a) and for each task
(indexed by t) in the following way: The best of the six approaches gets a score of
five, then the second best approach gets a score of four, and so on.

The final Borda Count score for a given anonymisation strategy A is defined as∑T
t=0 sA,t (where T is the total number of tasks, here, nine). The model with the

highest score is considered the best.

Instant Runoff is an iterative procedure. For each iteration, we count the number
of wins for each AS, where an AS is considered a winner in a given task if its
corresponding fine-tuned model outperforms every other model. We then eliminate
the AS with the lowest number of wins and update the scores accordingly. We repeat
this process until one AS remains, or until we cannot eliminate further ASs.

Table 4.5 shows the scores for each model and the winning anonymisation strategies
according to the aforementioned approaches. For BERT models, we see that AS1,
AS4, and AS6 are the best performing strategies according to Borda count, AS6
being a close winner. Instant Runoff leads to similar results with AS4 and AS6
reaching the final iteration, and AS6 being the overall winner. Furthermore, we note
a lower variance in the scores for AS6 when compared to AS4. In contrast, when
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evaluating ERNIE models, we note that AS5 models are performing significantly
better than every other strategy according to Borda Count. Similarly, AS5 also
wins the Instant Runoff with AS4 and AS5 making it to the final round. Overall, it
appears that using random names over generic tokens to de-identify textual data is
the preferable solution as AS1, AS2, AS3 models, which were all trained on data
with generic tokens, usually rank low.

Interestingly, it appears that the intuitive predictions that we made in Section 4.2.3
do not all reflect the outcome of our experiments. As expected, AS4 performs much
worse in the CoLA task than all the other models, likely due to the introduction
of false positives in the training set. On the other hand, we also assumed AS1,
AS2, and AS5 to perform worse for WNLI. While AS1 does perform worse than the
original model when trained using the ERNIE architecture, we see similar or better
results for AS2, and AS5. We also predicted AS6 to yield higher performances than
AS5, but this does not seem to be the case, either. Finally, we predicted that, in
general, AS3 and AS6 would perform better than AS2 and AS5, respectively, but in
our experiments, we see mixed results.

RQ1 Answer: De-identification using random names yielded the best results
with AS5 and AS6 reducing performances the least depending on the architecture
used.

4.3.2 RQ2: Should a model be trained on original or de-identified
data?

In order to answer this question, we investigate the performance of models trained
on original data on the de-identified test sets and compare them to the models
trained directly on de-identified data. Table 4.6 shows the results of testing models
trained on the original training sets on de-identified test sets. We find that nearly
half of the models trained on de-identified data outperform the counterpart model
trained on original data. While there is not always a clear trend, we observe that
the original models almost consistently perform better in the MRPC and RTE tasks,
and perform worse in the WNLI and CoLA tasks, regardless of the architecture used.
Furthermore, for BERT models, the models trained on de-identified data consistently
perform worse on the FND and NBD tasks. For the ERNIE models, the models
trained on original data consistently perform better on the FED task ever so slightly.
Despite these observations, we also notice that the performance losses are oftentimes
very high, specifically for the NBD, WNLI, and CoLA tasks, while performance gains
tend to be lower.

RQ2 Answer: This is inconclusive as we notice different trends depending on
the investigated task.

4.3.3 RQ3: In what cases do certain models fine-tuned on de-
identified data fail?

In order to answer this question, we use the Language Interpretability Tool (LIT) [82].
It is a convenient tool that can be used to visualise textual datasets and perfor-
mances of NLP-models. More importantly, it allows to create explanations of model
predictions for given samples using a number of salience maps including Local Inter-
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pretable Model-Agnostic Explanations (LIME) [83]. We use the tool to do a limited
qualitative analysis of our fine-tuned models. We chiefly investigated examples that
were correctly classified by the model trained on original data, but incorrectly on
most AS models. Figure 4.1 shows LIME explanations for an example from the
CoLA dataset. Tokens that are coloured blue influenced the model towards the
prediction it made while red coloured tokens show a negative impact on the model’s
prediction. A darker shade indicates a higher impact on the prediction. Intuitively,
AS4 should be the only anonymisation strategy leading to a misclassification due to
the high number of false positives in the training set as mentioned in Section 4.2.3.4.
However, the only models that made the correct prediction are the original, AS5,
and AS6 models which are the only models that were trained using real names.
Furthermore, we observe that each model highlighted the pattern that indicates that
the given sentence is not valid, i.e. "being talked". We found several examples where
the models trained on generic anonymisation tokens failed to predict the correct
class. Even though this observation is not reflected by the overall performance of
the models in Table 4.4, it appears that using generic tokens lowers the performance
of the fine-tuned model as we observed this pattern several times. Figures 4.2, 4.3,
and 4.4 contain further examples of similar patterns appearing for both the CoLA
and MNLI tasks.

RQ3 Answer: In the investigated cases, we notice that generic tokens lead to
less certainty in the decision of the model.

Figure 4.1: Predictions and LIME explanations of each model on a given example
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Figure 4.2: Predictions and LIME explanations of each model on a valid example
from the CoLA dataset

Figure 4.3: Predictions and LIME explanations of each model on a neutral example
from the MNLI dataset

.
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Figure 4.4: Predictions and LIME explanations of each model on a Contradictory
example from the MNLI dataset

4.4 Discussion
Judging by the results of our experiments, we recommend practitioners to de-identify
their sensitive textual data using random names, as they typically lead to the best
results among the anonymisation strategies we tested. We also recommend to de-
identify data before the training of NLP models. It follows that it is important to
keep the de-identification process and naming schemes consistent throughout the
entire pipeline that uses the data in order to mitigate potential performance losses
of models. It may also be important to keep the number of names sufficiently high
in order to avoid introducing bias in the training that may contribute to unfair
discrimination against specific names, a well-known issue in machine learning models
that handle person names [90].

4.5 Related Work
4.5.1 Impact of Anonymisation on Tabular Data
Various studies have been conducted to investigate the impact of anonymisation
on tabular data. For instance, Slijepčević et al. [91] evaluated the impact of k-
anonymisation [92] on downstream classification tasks using four tabular datasets
such as the Adult dataset [93]. The authors observe decreases in performance as k
increases, but the amount of decrease was dependent on the chosen classifier and
dataset.

4.5.2 Impact of Anonymisation on Textual Data
Relevant studies done on textual data largely focus on medical texts and on a very
limited number of tasks and anonymisation strategies when compared to our work.
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On the other hand, they typically anonymise a wide variety of protected health
information (PHI) classes, while our work focuses on anonymisation of persons’
names only. Berg et al. [86] studied the impact of four anonymisation strategies
(pseudonymisation, replacement by PHI class, masking, and removal) on down-
stream NER tasks for the clinical domain. Similarly to our findings, they find that
pseudonymisation yields the best results among the investigated strategies. On
the other hand, removal of names resulted in the highest negative impact on the
downstream tasks. Deleger et al. [87] investigated the impact of anonymisation on an
information extraction task using a dataset of 3503 clinical notes. They anonymised
12 types of PHI such as patients’ name, age, email address, etc., and used two
anonymisation strategies (replacement by fake PHI, and masking). They found no
significant loss in performance for this task. Similarly, Meystre et al. [81] found that
the informativeness of medical notes only marginally decreased after anonymisation,
using 18 types of PHI and 3 anonymisation strategies (replacement by fake PHI,
replacement by PHI class, and replacement by generic PHI token). Using the same
anonymisation strategies and ten types of PHI, Obeid et al. [94] investigated the
impact of anonymisation on a mental status classification task. Comparing nine
different machine learning models, they did not find any significant difference in
performance between original and anonymised data.

4.6 Threats to Validity
As this study is limited in scope, there are certain threats to its validity. First, the
de-identification is 1-dimensional as we only consider anonymising personal names
while ignoring other kinds of personal data such as postal addresses, phone numbers,
ID numbers, etc. On the other hand, this allowed us to investigate a wider variety
of tasks where the datasets include only personal names and no other identifying
information. Secondly, the scope of the study could have been widened by including
more models, including non- Transformer-based ones. Finally, a bigger focus could
have been given on the explainability aspect of the study. While we did find patterns
in the decisions of the models using the LIT-tool and LIME, these patterns could
have been coincidental in nature.

4.7 Summary
In this chapter, we presented an empirical study analysing the impact of text
de-identification on downstream NLP tasks. We investigated the difference in
performance of six distinct anonymisation strategies on nine NLP tasks ranging from
simple classification tasks to hard NLU tasks. Furthermore, we compared two state-
of-the-art architectures, those being the BERT and ERNIE architectures. Overall,
we found that de-identifying data before training an NLP model does have a negative
impact on its performance. However, this impact is relatively low. Furthermore, we
determined that using pseudonymisation techniques that involve random names leads
to higher performances across most investigated tasks. Specifically, replacing names
by random names (AS5) had the least negative impact when using an ERNIE model.
Similarly, replacing names by random names while preserving the link between
identical names (AS6) worked best for simple BERT models.

In addition, we determined that it is advisable to also de-identify the data prior to
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training as we observed a large difference in performance between models trained on
original data versus models trained on anonymised data.

We also observed a noticeable difference between the performances of BERT and
ERNIE, warranting further investigation into the performance differences between a
larger number of language models.

Finally, we conducted a limited qualitative analysis on our results using the Language
Interpretability Tool. Our analysis suggested that using a generic token for the
de-identification can lead to the misclassification of a given sample.
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PART II

Multilingualism

In the second part, we study the challenges in multilingual systems. Specifically, we
evaluate to what degree the presence of multiple languages affects the performance
of such systems.





5 Comparing MultiLingual and Multi-
ple MonoLingual Models for Intent
Classification and Slot Filling

In this chapter, we investigate the performance of conversational AI models, in particular in
multilingual countries. Specifically, we investigate the strategies for training deep learning models of
chatbots with multilingual data. We perform experiments for the specific tasks of Intent Classification
and Slot Filling in financial domain chatbots and assess the performance of mBERT multilingual
model vs multiple monolingual models.

This chapter is based on the work published in the following research paper:
• Cedric Lothritz, Kevin Allix, Bertrand Lebichot, Lisa Veiber, Tegawendé F. Bissyandé,

Jacques Klein. Comparing MultiLingual and Multiple MonoLingual Models for Intent
Classification and Slot Filling, International Conference on Applications of Natural Language
to Information Systems, 2021
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Chapter 5. Comparing MultiLingual and Multiple MonoLingual Models
for Intent Classification and Slot Filling

5.1 Overview
Chatbots usually operate in a single language depending on where they are deployed
(e.g., a chatbot for a British bank will only handle requests written in English).
While deploying a single monolingual chatbot is usually sufficient in countries where
the entire population speaks one language, this strategy presents challenges in
multilingual areas where people do not necessarily speak the same language at a
high level. In multilingual countries, such as Switzerland, Luxembourg, India, South
Africa, etc. with two or more national languages, companies and banks need to be
able to communicate with their clients in the language of the latter’s choosing in
order to stay competitive. The same holds true for client support chatbots, which
have to support multiple languages to stay viable in a multilingual environment.
This requirement presents a challenge as companies have to decide on a strategy for
implementing a multilingual chatbot system. Two such strategies are as follows: (S1)
For n languages, employ n chatbots, each of which is trained to handle requests in a
single language. (S2) For n languages, employ one chatbot which is trained using
data written in n languages. There are some immediate advantages for training a
chatbot using mixed-language data as one would have to train only a single chatbot
and maintain only one database as opposed to multiple. However, it is unclear how
the performance of a singular multilingual chatbot (S2) compares to a combination
of multiple monolingual chatbots (S1).

In this chapter, we explore these two strategies for chatbots in a multilingual
environment. Specifically, we investigate the performance of S1 and S2 on two tasks
that represent fundamental blocks for chatbot systems: Intent Classification (IC),
which is the task of identifying a user’s intent based on a piece of text, and Slot
Filling (SF), the task of identifying attributes that are relevant to a given intent.
For this study, we use the Rasa chatbot framework, which uses the Dual Intent and
Entity Transformer Classifier [95] for both the IC and SF tasks. Furthermore, we
compare two techniques for text representation, namely bag-of-words (BOW) and
multilingual BERT (mBERT) [3].

We aim to answer the following research questions:

1. RQ1: How does the number of languages affect the performance of Intent
Classification and Slot Filling models?

2. RQ2: How does the distribution of data samples per language influence the
performance of multilingual chatbots?

3. RQ3: How do S1 and S2 compare in terms of Intent Classification and Slot
Filling?

For this study, we use a novel dataset for IC and SF in the financial domain, which
we name the Banking Client Support (BCS) dataset. We also use the MultiATIS++
dataset published by Xu et al. [96].

The rest of this chapter is structured as follows: In Section 5.2, we explain the
datasets we use, the chatbot framework, and give a detailed description for S1 and
S2. In section 5.3, we present the results of our experiments, answer the research
questions, and show the merits of multilingual chatbots. We discuss our findings in
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Section 5.3.4 Section 5.4 shows various papers related to this study. In Section 5.5,
we clarify some potential threats to the validity of our study, and we finally conclude
our findings in Section 5.6.

5.2 Experimental Setup
In this section, we introduce the datasets that we use for this study, the chatbot
framework and configuration, as well as the possible implementation strategy for
multilingual chatbots.

5.2.1 Research Questions
1. RQ1: How does the number of languages affect the performance of Intent

Classification and Slot Filling models? We use multilingual datasets for this
study, and evaluate the difference in performance of models fine-tuned on
subsets with varying numbers of languages.

2. RQ2: How does the distribution of data samples per language influence the
performance of multilingual chatbots? We fine-tune models on bilingual datasets,
and evaluate the difference in performance when varying the proportion of
samples for each language.

3. RQ3: How do S1 and S2 compare in terms of Intent Classification and Slot
Filling? We train pairs of models on bilingual datasets, one using the S1
strategy and one using the S2 strategy. We then compare the performance of
each model.

5.2.2 Datasets
For this study, we use two multilingual datasets to evaluate the performance of
multilingual chatbots. We created one dataset for client support bots in the banking
domain as there are no public datasets available to the best of our knowledge. We
also use a multilingual version of the well-known ATIS dataset to verify the results
using a larger dataset.
5.2.2.1 Banking Client Support Dataset
The first dataset (which we refer to as Banking Client Support dataset (BCS)
throughout this chapter) is based on a toy dataset provided by Rasa1. The orig-
inal dataset contains 337 samples divided into 15 intents. We removed three of
the intents together with 93 samples as they seemed too vague (inform) or were
not directly related to the banking domain (help&human_handoff ), and added
763 samples and introduced 16 new intents, resulting in 1003 samples across 28
intents with each intent being distributed quite equally. The intents cover basic
conversational phrases such as greet or affirm and requests specific to the banking
domain such as make_bank_transfer, block_card or search_atm. Additionally, the
set contains 253 entities, divided into 6 unique entity types such as account_type
or credit_card_type. We then translated the dataset into three languages (German,
French and Luxembourgish) with Google Translate and manually corrected trans-
lation errors, resulting in a total of four distinct, but parallel datasets2. Table 5.1

1https://github.com/RasaHQ/financial-demo
2Available at https://github.com/Trustworthy-Software/BCS-dataset
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shows a small excerpt of each dataset. For this study, we use these four base datasets
to construct mixed-language datasets containing equal numbers of samples from
the base datasets, e.g., the English-French dataset consists of 50% English samples
and 50% French data samples. There are 11 possible language combinations: six
combinations with two languages, four with three languages, and one combination
with all four languages, which gives us a total of 15 different datasets containing
varying numbers of languages.

Table 5.1: Excerpt of the BCS dataset

intent English French German Luxembourgish
greet Good evening Bonsoir Guten Abend Gudden Owend

close_account Close my savings Clôturez mon compte d’épargne, Bitte schließen Maacht mäi Spuerkont zou,
account, please. s’il vous plaît. Sie mein Sparkonto. wann ech gelift.

order_card I need a new J’ai besoin d’une Ich brauche eine Ech brauch eng
credit card nouvelle carte de crédit neue Kreditkarte nei Kreditkaart

apply_for_loan I would like to. Je souhaite demander un prêt. Ich möchte einen . Ech wéilt e Prêt ufroen.
apply for a loan Kredit beantragen

5.2.2.2 MultiATIS++ Dataset:
The second dataset is based on the popular Airline Travel Information System (ATIS)
dataset [53]. The original dataset contains a total of 5871 sentences divided into
26 intents. Furthermore, it contains 19 356 samples for slot filling, divided into 128
slot types. MultiATIS++ is a multilingual version of ATIS created by Upadhyay et
al. [97] and Xu et al. [96]. For this study, we use the English, German and French
versions of the MultiATIS++ dataset. Furthermore, we reduced the number of
intents by removing intents with fewer than five samples, resulting in a total of 5860
sentences divided into 17 intents. Table 5.2 shows a small excerpt of the dataset. It
is to note that the distribution of the intents is highly imbalanced with 73.6% of the
samples having the intent atis_flight. There are four possible language combinations,
resulting in a total of seven datasets.

Table 5.2: Excerpt of the MultiATIS++ dataset

intent English French German
airfare All fares and flights Tous les tarifs et les vols Alle Tarife und Flüge

from Philadelphia de Philadelphia von Philadelphia
flight Show me flights from all Me montrer des vols de tous Zeige mir die Flüge von

airports to Love Field les aéroports à Love Field allen Flughäfen nach Love Field
meal What types of meals Quels types de repas Welche Arten von Mahlzeiten

are available sont disponibles sind verfügbar
abbreviation what does us stand for Que signifie US Was bedeutet US

5.2.3 Chatbot Framework Used in this Study
Bocklisch et al. introduced the Rasa NLU and Rasa Core tools [95], with the objective
of making a framework that is more accessible for creating conversational software.
The modular design of a chatbot made with Rasa allows to swap out configuration
files and training data. For this study, we created two different configurations: (C1) a
bag-of-words (BOW, cf. Section 2.1.1) pipeline consisting of a WhitespaceTokenizer,
RegexFeaturizer, LexicalSyntacticFeaturizer, and a CountVectorsFeaturizer. (C2)
an mBERT pipeline which consists of the HFTransformersNLP model initializer
using the cased multilingual BERT Base as its pre-trained model as well as its
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accompanying tokenizer and featurizer3.

As our pre-trained language model, we use mBERT (cf. Section 2.1.3.3) as our
datasets contain texts written in English, French, German, and Luxembourgish.
However, as the number of Wikipedia articles varies greatly for every language of
mBERT, there are significant disparities between the datasets used to train the
different language components. Specifically, the English dataset is the largest with
around 6 million articles, the German and French datasets have comparable sizes
with 2.5 and 2.2 million articles respectively, and the Luxembourgish dataset is the
smallest with only 59 000 articles. Table 5.3 shows the exact number of Wikipedia
articles and words used for training mBERT for each language relevant to this study.

For this study, we use the cased mBERT model with 12 Transformer blocks, 768
hidden layers, attentions heads and 110 trainable parameters provided by Devlin et
al.4 [3].

Table 5.3: Training data size for mBERT

#Articles #Words
English 6 192 739 3 725 704 263
German 2 501 955 1 284 323 232
French 2 268 908 1 328 358 955
Luxembourgish 59 091 11 035 407

5.2.4 Implementation Strategies
Figure 5.1 shows the setup of multilingual and pseudo-multilingual chatbots trained
on French and English data.

5.2.4.1 S1: Pseudo-multilingual Chatbots

For each monolingual dataset, we train two chatbots: one using an mBERT model,
and one without. By combining a language-selector (LS) and monolingual chatbots,
we can create pseudo-multilingual chatbots (cf. Figure 5.1a). This allows us to
directly compare the performance between monolingual chatbots and multilingual
chatbots. For the language selector, we use either TextBlob5 or langid6. TextBlob is
able to identify Luxembourgish text as opposed to langid.

5.2.4.2 S2: Multilingual Chatbots

Based on the monolingual datasets, we construct mixed-language datasets. For every
language combination, we extract a stratified subset from each monolingual dataset
and combine them to create multilingual datasets. For each of these new datasets, we
train two multilingual chatbots, one using a BOW model, and one using an mBERT
model (cf. Figure 5.1b).

3Further information on Rasa models: https://rasa.com/docs/rasa/components/
4https://github.com/google-research/bert/blob/master/multilingual.md
5https://github.com/sloria/TextBlob
6https://github.com/saffsd/langid.py
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Figure 5.1: Setups for pseudo-bilingual and bilingual chatbots
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5.3 Experimental Results
In this section, we will answer the three research questions that we formulated for
this study (cf. Section 5.2.1).

5.3.1 RQ1: How does the number of languages affect the per-
formance of Intent Classification and Slot Filling models?

In order to answer this question, we trained chatbot models in Rasa using the
datasets that we constructed (cf. Section 5.2.2). We evaluated their performance for
the IC and SF tasks using 5-fold cross-validation. Figure 5.2 shows the F1 scores
for the IC task after training chatbots on the 15 various BCS datasets. Specifically,
Figure 5.2a shows the performances of the chatbots using the mBERT model. While
there are significant differences in the performance for every language, the plot seems
to indicate a decrease in performance as the number of languages in the dataset
increases.

Table 5.4: F1 scores for Intent Classification using the BCS datasets
1 language 2 languages 3 languages 4 languages

En Fr De Lb En-Fr En-De En-Lb Fr-De Fr-Lb De-Lb En-Fr-De En-Fr-Lb En-De-Lb Fr-De-Lb En-Fr-De-Lb
mBERT 0.804 0.784 0.728 0.672 0.745 0.706 0.676 0.627 0.662 0.638 0.707 0.687 0.663 0.680 0.648
BOW 0.830 0.827 0.811 0.794 0.833 0.797 0.794 0.761 0.778 0.783 0.773 0.773 0.807 0.785 0.743
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(a) F1 scores with mBERT
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Figure 5.2: Performances of chatbot models trained on the BCS datasets with n
languages for Intent Classification task. Each dot represents a different language
combination.

The performance for datasets containing English samples is generally higher than
for the non-English datasets as is evidenced by Table 5.4. This can be explained
by the amount of data used to pre-train mBERT. Conversely, the sets containing
Luxembourgish samples usually lead to worse results overall, which can be due to
the relatively small amount of data used to pre-train mBERT. This is consistent
with the findings of Wu et al. [43]. Interestingly, there is a significant difference
in performance between the French and German datasets, although mBERT was
pre-trained on a similar number of articles for both languages.

A similar result can be observed for the MultiATIS++ set, albeit on a smaller scale.
As the dataset is highly imbalanced, the F1-score can lead to an overly optimistic
estimation of model performances [98]. As such, the Matthews Correlation Coefficient
(MCC) is a more useful metric to evaluate the models’ performances [99]. Indeed,
while there is only a slight difference in performance regarding precision, recall and
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F1, a larger difference can be observed for the MCC. Table 5.5 and Figure 5.3 show
the results of Intent Classification for the MultiATIS++ datasets.

Table 5.5: F1 scores for Intent Classification using the MultiATIS++ datasets

1 language 2 languages 3 languages
En Fr De En-Fr En-De Fr-De En-Fr-De

mBERT 0.950 0.951 0.941 0.933 0.937 0.933 0.934
BOW 0.945 0.941 0.921 0.929 0.942 0.911 0.94
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Figure 5.3: Performances of chatbot models trained on the MultiATIS++ datasets
with n languages for Intent Classification task. Each dot represents a different
language combination.

We observe that for mBERT models, the performance decreases as the number of
languages increases. However, this trend is less obvious in the case of BOW models
where the model trained on the En-Fr-De dataset performs similarly well as the one
trained on the En-De dataset. Similarly to the BCS dataset, the models trained
on data that include samples in English general yield higher performance than the
models trained on purely non-English data.

Figure 5.2b shows the F1 scores for chatbot models trained without mBERT. Similarly
to Figure 5.2a, it shows a decrease in performance as the number of languages in the
training set increases, however, we can observe that the performances are better and
the spread is smaller.

Figure 5.4 shows the results for slot filling using every language combination of
the BCS dataset. Similarly to the IC-task, we observe that the performance of the
models tends to decrease as the number of languages in the training set increases.
This is true for both the mBERT models (see Figure 5.4a) and the BOW models
(Figure 5.4b). We do see a similar result for models trained on MultiATIS++ datasets
(Figure 5.5).

Table 5.6: F1 scores for Slot Filling with the BCS dataset
1 language 2 languages 3 languages 4 languages

En Fr De Lb En-Fr En-De En-Lb Fr-De Fr-Lb De-Lb En-Fr-De En-Fr-Lb En-De-Lb Fr-De-Lb En-Fr-De-Lb
mBERT 0.856 0.846 0.815 0.811 0.850 0.825 0.827 0.833 0.884 0.833 0.800 0.855 0.817 0.815 0.786
BOW 0.856 0.855 0.839 0.837 0.874 0.836 0.815 0.833 0.864 0.866 0.794 0.820 0.838 0.845 0.767
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Figure 5.4: Performances of chatbot models trained on the BCS datasets with n
languages for Slot Filling task. Each dot represents a different language combination.

Table 5.7: MCC scores for Slot Filling with the MultiATIS++ dataset

1 language 2 languages 3 languages
En Fr De En-Fr En-De Fr-De En-Fr-De

mBERT 0.966 0.948 0.942 0.952 0.954 0.943 0.945
BOW 0.964 0.943 0.949 0.948 0.952 0.937 0.946
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Figure 5.5: Performances of chatbot models trained on the MultiATIS++ datasets
with n languages for Slot Filling task. Each dot represents a different language
combination.

In contrast to the IC-task, for which the BOW models significantly outperformed the
mBERT models, there is no clear favourite model for the Slot Filling task when using
the BCS dataset. While the results show a smaller spread for the BOW models when
compared to the mBERT models, the latter reach better performances for certain
language combinations. Table 5.6 shows that BOW models consistently outperform
mBERT when trained on monolingual datasets, but neither consistently outperforms
the other when trained on mixed-language datasets. However, when trained on the
MultiATIS++ datasets, we do see a clearer trend favouring the mBERT, even though
the differences are relatively small.

RQ1 Answer: For both tasks, the performance of the models decreases as the
number of languages in the training set increases.
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5.3.2 RQ2: How does the distribution of data samples per lan-
guage influence the performance of multilingual chatbots?

In order to answer this question, we create chatbots trained on bilingual datasets,
vary the distribution of both languages in the sets, and evaluate their performance
on various test sets. Specifically, we train 11 chatbot models on 11 mixed-language
datasets where dataset 0 contains 0% samples from language A and 100% samples
of language B, dataset 1 contains 10% samples of language A, 90% samples of
language B, etc. These models are tested on three test sets: (1) a monolingual
test set containing samples from language A, (2) a test set containing samples from
language B, (3) a stratified test set containing an equal number of samples from
both languages A and B.

5.3.2.1 Intent Classification
Figure 5.6 shows the performances of three language combinations in terms of F1
score. These combinations are: English/French (En/Fr), French/German (Fr/De)
being two languages that are very dissimilar in terms of syntax and vocabulary, and
German/Luxembourgish (De/Lb) being syntactically very similar. When varying
the distribution of per-language data samples, we can make several observations: (1)
when tested on a monolingual test set, we tend to observe very low performances if
the training set does not contain the tested language at all, while we can see very
high performances for the opposite case. This performance drop is less apparent
for the De/Lb combinations (cf. Figure 5.6c and Figure 5.6f). Furthermore, the
Fr/De combinations (cf. Figure 5.2b and Figure 5.6e) show the highest performance
drop for these extreme cases. (2) When testing on the mixed-language test set, we
can observe comparable performances for every training set, except for the models
that were trained on monolingual training sets. (3) Models that are trained on
sets containing 50% samples from each language tend to perform similarly for each
test set. Figure 5.7 shows the results of the same experiment performed on the
MultiATIS++ dataset. We observe that the performance remained stable except for
the models trained on monolingual data.

5.3.2.2 Slot Filling
Figure 5.8 shows the performances of the En/Fr, Fr/De, and De/Lb combinations
for slot filling. We can make similar observations as we did for IC: we see very high
and low performances for chatbots that were trained on monolingual datasets, with
less noticeable drops for the German/Luxembourgish language combinations (cf.
Figures 5.8c and 5.8f). When tested on the mixed test sets, most models perform
similarly well except for the monolingual ones. It is to note that this performance
drop is smaller for the SF task than it is for the IC task.

When performing the same experiment on the MultiATIS++ dataset (cf. Figure 5.9),
the performance of the models fluctuated only slightly except for the models trained
on monolingual data.

RQ2 Answer: There is a noticeable drop in performance if a language is absent
from the training set. A 50/50 split in the training set tends to lead to the highest
performances on the mixed-language test sets.
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(a) En/Fr BOW

(b) Fr/De BOW

(c) De/Lb BOW

(d) En/Fr mBERT

(e) Fr/De mBERT

(f) De/Lb mBERT

Figure 5.6: Evolution of the F1 score for bilingual chatbots for Intent Classification
task using the BCS dataset when varying the distribution of data samples per
language. The horizontal line represents the performance of the LS+monolingual
chatbots models.
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Figure 5.7: Evolution of the F1 score for bilingual chatbots for Intent Classification
task using the MultiATIS++ dataset when varying the distribution of data samples
per language. The horizontal line represents the performance of the LS+monolingual
chatbots models.
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(a) En/Fr BOW

(b) Fr/De BOW

(c) De/Lb BOW

(d) En/Fr mBERT

(e) Fr/De mBERT

(f) De/Lb mBERT

Figure 5.8: Evolution of the F1 score for bilingual chatbots for Slot Filling task using
the BCS dataset when varying the distribution of data samples per language. The
horizontal line represents the performance of the LS+monolingual chatbots models.
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Figure 5.9: Evolution of the F1 score for bilingual chatbots for Slot Filling task
using the MultiATIS++ dataset when varying the distribution of data samples per
language. The horizontal line represents the performance of the LS+monolingual
chatbots models.
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5.3.3 RQ3: How do S1 and S2 compare in terms of Intent
Classification and Slot Filling?

In order to answer this question, we reuse the bilingual chatbot models that were
trained on the datasets which contain 50% data samples from each language (S2)
and compare their performance to pseudo-bilingual chatbots (S1).

Table 5.8 compares F1 scores for pseudo-bilingual chatbot models and bilingual
chatbot models for the IC task. Our results show that the combination of a language
selector and two monolingual chatbots yields higher performances with regard to
every performance measure used. It is to note that the English/French variant is an
exception to the rule as the model with the S2 strategy significantly outperforms
the S1 model. This trend can be observed for both the chatbot models with an
mBERT and the ones with a BOW model. The performance differences between S1
and S2 models with mBERT are usually larger when compared to the performance
differences between the models that do not use pre-trained models. Furthermore, the
models based on BOW consistently outperform the models with mBERT by several
percentage points.

Table 5.9 shows the results of the same task on the MultiATIS++ datasets. In
contrast to the BCS sets, the results are in favour of the S2 strategy. When comparing
the MCC scores, we observe that the performance of the bilingual models either
exceeds or matches that of the combinations of LS+monolingual chatbots.

Table 5.8: Test results for bilingual chatbots (S2) vs monolingual chatbots with
language selector (S1) on Intent Classification task on BCS set.

BOW mBERT
Bilingual LS + Monolingual Bilingual LS + Monolingual

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
En/Fr 0.851 0.835 0.833 0.864 0.805 0.823 0.779 0.753 0.745 0.830 0.771 0.791
En/De 0.810 0.801 0.797 0.867 0.835 0.843 0.744 0.708 0.706 0.796 0.766 0.769
En/Lb 0.807 0.797 0.794 0.845 0.810 0.819 0.712 0.679 0.676 0.747 0.697 0.703
Fr/De 0.787 0.764 0.761 0.835 0.788 0.796 0.691 0.664 0.654 0.800 0.753 0.763
Fr/Lb 0.805 0.780 0.778 0.824 0.777 0.787 0.703 0.677 0.662 0.728 0.674 0.679
De/Lb 0.794 0.788 0.783 0.826 0.784 0.797 0.668 0.640 0.638 0.725 0.678 0.683

Table 5.9: Test results for bilingual chatbots(S2) vs monolingual chatbots with
language selector(S1) on Intent Classification task on MultiATIS++ set

BOW mBERT
Bilingual LS + Monolingual Bilingual LS + Monolingual

Prec Rec F1 MCC Prec Rec F1 MCC Prec Rec F1 MCC Prec Rec F1 MCC
En/Fr 0.973 0.967 0.969 0.929 0.976 0.961 0.967 0.914 0.971 0.970 0.97 0.933 0.979 0.968 0.973 0.929
En/De 0.977 0.974 0.975 0.942 0.930 0.966 0.968 0.924 0.973 0.972 0.972 0.937 0.978 0.972 0.974 0.937
Fr/De 0.964 0.959 0.961 0.911 0.971 0.962 0.966 0.916 0.974 0.97 0.971 0.933 0.974 0.965 0.968 0.922

In order to determine if pseudo-bilingual (S1) significantly outperform bilingual (S2)
models, we perform a Wilcoxon test for both strategies over every dataset used. We
find that the differences in performance for mBERT models are indeed significant,
but in the case for BOW models, only the difference in precision is clearly significant.

Tables 5.10 and 5.11 show the F1 scores with regard to the SF task. We generally
see better results for the mBERT model. Similarly to the IC task, the combination
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of monolingual chatbots and a language selector almost consistently outperforms the
chatbots trained on bilingual datasets by a large margin. This is true for both the
BCS and the MultiATIS++ datasets.

Table 5.10: Test results for bilingual chatbots vs monolingual chatbots with language
selector on Slot Filling task on BCS set

Bag-of-Words mBERT
Bilingual LS + Monolingual Bilingual LS + Monolingual

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
En/Fr 0.877 0.882 0.874 0.86 0.712 0.768 0.841 0.728 0.773 0.955 0.810 0.863
En/De 0.804 0.894 0.836 0.928 0.911 0.919 0.919 0.802 0.839 0.969 0.920 0.943
En/Lb 0.765 0.898 0.815 0.904 0.814 0.848 0.835 0.724 0.760 0.977 0.900 0.931
Fr/De 0.847 0.841 0.833 0.890 0.877 0.882 0.864 0.721 0.776 0.993 0.917 0.953
Fr/Lb 0.817 0.928 0.864 0.917 0.927 0.921 0.898 0.797 0.825 1.000 0.883 0.935
De/Lb 0.856 0.884 0.866 0.975 0.950 0.956 0.890 0.796 0.828 0.950 0.926 0.934

Table 5.11: Test results for bilingual chatbots vs monolingual chatbots with language
selector on Slot Filling task on MultiATIS++ set

Bag-of-Words mBERT
Bilingual LS + Monolingual Bilingual LS + Monolingual

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
En/Fr 0.948 0.949 0.948 0.962 0.965 0.962 0.953 0.952 0.952 0.969 0.970 0.968
En/De 0.953 0.955 0.952 0.966 0.967 0.966 0.954 0.955 0.954 0.975 0.976 0.975
Fr/De 0.937 0.940 0.937 0.946 0.945 0.943 0.946 0.944 0.943 0.959 0.959 0.958

We once again determine statistical significance of the obtained results through a
Wilcoxon test. The resulting p-values show that the performance differences are
significant except for recall and F1 score for the BOW models.

RQ3 Answer: In most cases, S1 performs better than S2, with IC on Multi-
ATIS++ being a notable exception.

5.3.4 Discussion
When using a small dataset, the results of the conducted experiments are generally
in favour of strategy S1 and by a significant margin. This is true for both the IC
and the SF tasks. The results are less conclusive when training the chatbots on
the larger MultiATIS++ dataset. For the IC task, neither strategy is consistently
outperforming the other. On the other hand, strategy S1 is superior regardless of the
dataset as it outperforms S2 for the BCS dataset as well as the MultiATIS++ dataset.
The performances of the investigated models were significantly dependent on the task.
While BOW-models generally performs better for the IC task, mBERT-models seems
to be the favourable choice for the SF task, as strategy S1 with mBERT generally
largely outperformed the BOW-models when compared directly.

5.4 Related Work
5.4.1 Multilingual Intent Classification and Slot Filling
Previous multilingual text classification systems are usually based on two different
approaches: (1) machine translation systems that translate training data into the
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target language [100] or (2) parallel corpora that are used to learn embeddings jointly
from multiple languages [101]. Such crosslingual embeddings prove useful for binary
classification tasks such as Sentiment Classification [102, 103] and Churn Intent
detection [104]. Abbet et al. [104] use multilingual embeddings for the task of churn
intent detection in social media. They show that bilingual embeddings trained on an
English and German dataset outperform monolingual embeddings for this binary
IC task. Furthermore, they show that models trained on social media data can be
applied to chatbot conversations as well. Schuster et al. [105] evaluate three methods
for multilingual IC and SF, namely translating the training data into the target
language, using pre-trained crosslingual embeddings, and using a novel pre-trained
translation encoder to generate embeddings.

5.4.2 Multilingual Chatbots
Previous work often relied on machine-translation (MT) to create multilingual
chatbots. Vanjani et al. [106] linked the Google Translate API to the English-speaking
Rose chatbot7, resulting in a bot that can converse in 103 different languages. A
student talked the chatbot in German, and the resulting transcript was evaluated by
46 students in a Turing test. They concluded that the chatbot’s utterances did not
reach the same quality as a human’s. In a similar study, Vanjani et al. [107] linked
the Google Translate API to the Tutor Mike system8 and evaluated transcripts given
in German, Spanish and Korean for cogency and appropriateness. They found that
while the replies given in German and Spanish were usually logical and natural, the
quality of the Korean conversation was lower. Lin et al. [108] evaluated multilingual
and crosslingual models for personalised dialogue systems and compared them to
monolingual and MT-based models. They found that multilingual models performed
better than MT-based models and similarly to monolingual models.

5.4.3 Multilingual Datasets
One major challenge for multilingual IC and SF is the lack of textual data in languages
other than English. Schuster et al. created a dataset containing 57 000 utterances
divided into three languages [105]: 43 000 utterances in English, 8600 in Spanish
and 5000 in Thai. Their data is annotated for 12 intent types, and 11 slot types
in total. They use their dataset to evaluate various crosslingual transfer methods
for IC and SF. The ATIS dataset [53] is one of the most popular datasets for IC
and SF. Originally available only in English, it was partially translated into Hindi
and Turkish [109], creating MultiATIS. Xu et al. further extended MultiATIS to six
more languages [96], resulting in MultiATIS++, consisting of nine versions of the
original ATIS dataset. Datasets related to the banking domain are usually difficult
to find as most of them are proprietary [110], making our BCS dataset one of the
few public datasets related to that domain.

5.5 Threats to Validity
As this study is limited in scope, there are some potential shortcomings that threaten
the validity of our observations. The first possible threat relates to the BCS dataset.
As it is fairly small with only nearly 1000 samples, there is a possibility that our

7http://ec2-54-215-197-164.us-west-1.compute.amazonaws.com/speech.php
8http://bandore.pandorabots.com/pandora/talk?botid=ad1eeebfae345abc
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models overfitted on the data. In addition, it was written by a small number of
people, so the same writing style are repeated over most of the samples, adding
on the possibility of overfitting. On the other hand, we repeated our experiments
on the publicly available MultiATIS++ dataset, and found that our main findings
remained largely consistent, confirming the results of our experiments on the BCS
set. Furthermore, we could have included more architectures, as we consider only
bag-of-words and mBERT for this study.

5.6 Summary
In this chapter, we presented a study on multilingual chatbots, specifically on the
Intent Classification and Slot Filling tasks. We studied the effect of increasing the
number of languages on the performance of the chatbot model. We also compared two
implementation strategies and two embedding techniques. We noticed that training
a chatbot on mixed-language data decreases the overall performance, and that the
higher the number of languages in the dataset, the lower the performance in terms
of F1 score. We concluded that, in the case of two languages, the combination of a
language selector and two monolingual chatbots (S1) usually outperforms chatbots
that are directly trained on bilingual datasets (S2). While the BOW models almost
consistently outperform the mBERT models in the Intent Classification tasks, the
mBERT models usually perform better in the Slot Filling tasks when using the S1
strategy.
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PART III

Luxembourgish NLP

In the third part, we address the challenges related to the low-resource nature of
the Luxembourgish language. In a first step, we focus on mitigating the lack of
textual data by examining the usefulness of a novel data augmentation scheme for
the creation of a Luxembourgish language model. In a second step, we examine
the trade-offs of various pre-training schemes and use the gained knowledge to
improve upon our Luxembourgish language model. We also mitigate the lack of
annotated data by providing numerous Luxembourgish datasets for NLP tasks to
the community.





6 LuxemBERT: Simple and Practical
Data Augmentation in Language Model
Pre-Training for Luxembourgish

In this chapter, we present LuxemBERT, a BERT model for the Luxembourgish language that we
create using a data augmentation approach based on partial translation. We are then able to produce
the LuxemBERT model, which we show to be effective for various NLP tasks: it outperforms a
simple baseline built with the available Luxembourgish text data as well the multilingual mBERT
model, which is currently the only option for Transformer-based language models in Luxembourgish.
Furthermore, we present datasets for various downstream NLP tasks that we created for this study.

This chapter is based on the work published in the following research paper:
• Cedric Lothritz, Bertrand Lebichot, Kevin Allix, Lisa Veiber, Tegawendé F. Bissyandé,

Jacques Klein, Andrey Boytsov, Clément Lefebvre, and Anne Goujon. LuxemBERT: Simple
and Practical Data Augmentation in Language Model Pre-Training for Luxembourgish,
Proceedings of the Language Resources and Evaluation Conference, 2022
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6.1 Overview
The increasing importance and popularity of pre-trained Language Models for NLP
tasks over the last years is undeniable and they will likely continue to thrive in the
years to come. Their usefulness is immediately obvious as they mitigate the need to
train specific NLP models from scratch and can be reused for multiple tasks through
fine-tuning. In particular, as we established in Sections 2.1.3.2 and 2.1.3.3, BERT [3]
and its variants such as RoBERTa [32], DistilBERT [111], and XLNet [31] are some
of the most valuable contributions to the NLP community and are widely leveraged
by researchers and practitioners alike.

Unfortunately, while these models generally reach state-of-the-art performances for
most downstream tasks, they present a significant caveat as the pre-training step
requires huge amounts of computing resources, time, and, most importantly, data.
In Section 2.1.4.2, we brought up the fact that BERT models for English, German,
French, and Spanish are trained on hundreds of millions of sentences. While this
amount of data is readily available for such widely spoken languages, it is not the
case for many low-resource languages such as Luxembourgish. This data scarcity
therefore becomes a major obstacle for building adequate language models.

Data from low-resource languages have been included along many other languages
to build mBERT which researchers and practitioners resort to for dealing with NLP
tasks. Unfortunately, although mBERT-based models generally perform well, they
are usually outperformed by monolingual models if an adequate amount of data
is available [43]. To get enough data, Wu et al.[43] have proposed to augment
pre-training datasets by adding textual data from a different language that is closely
related to the target language. We explore this direction in our research.

In this chapter, we introduce LuxemBERT, a BERT-like model for Luxembourgish. In
order to overcome the challenge of data scarcity, we propose an approach focusing on
improving the suitability of the textual data collected from an auxiliary language. We
propose to partially translate a subset of widely common and unambiguous words from
the auxiliary language to the target language, in order to make the supplementary
corpus resemble more closely the limited corpus of the target language. Using this
approach, we combine Luxembourgish and German data to build an adequate pre-
training corpus to build LuxemBERT. To assess the effectiveness of LuxemBERT,
we build several datasets for a variety of downstream NLP tasks. We compare
its performance to the de facto state of the art based on mBERT as well as to a
baseline built by training a BERT model with the limited text data available in
Luxembourgish.

Our contributions are threefold:

(a) LuxemBERT, a cased and uncased BERT model for the Luxembourgish lan-
guage,

(b) Annotated datasets for four NLP-tasks to evaluate Luxembourgish language
models that we make available to the research community,

(c) A strategy to augment pre-training data for low-resource languages.

The rest of this chapter is structured as follows: In Section 6.2, we present our Luxem-
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BERT model, the pre-training dataset we use, and the training hyperparameters. In
Section 6.3, we define research questions for this study, present our baseline models,
the datasets for the downstream tasks to evaluate LuxemBERT, and the fine-tuning
parameters. In Section 6.4, we present the results of our experiments, address the
research questions, and report the performance of LuxemBERT. Section 6.5 discusses
the results we obtained. Section 6.6 discusses a selection of works related to this
chapter. In Section 6.7, we present some potential threats to the validity of our
study. Finally, we conclude our findings in Section 6.8.

6.2 LuxemBERT
Wu et al. [43] proposed to pair two closely related languages to increase the quality
of the learned embeddings. Inspired by this approach, we aim to create a novel
augmented dataset. However, we seek to decrease the differences between the dataset
written in the auxiliary language and the one written in the target language. To this
end, we partially and systematically translate common and unambiguous words into
the target language. Intuitively, we expect this approach to decrease noise introduced
by the auxiliary language and further improve the learned word embeddings. Bernard
et al. [112] proposed a similar method for Part-of-Speech (POS) tagging where they
systematically translate a selection of words from Alsatian sentences to German and
evaluate the performance of a German POS-tagger on the resulting dataset.

Using our approach, we train a BERT model for the Luxembourgish language, which
we appropriately name LuxemBERT.1 Figure 6.1 shows the pre-training schema of
our LuxemBERT model.

Lb Text Preprocessing Pretraining LuxemBERTn sents

De Text Preprocessing

n sents

Translate 
Function 
Words

Figure 6.1: Data augmentation scheme for LuxemBERT (De: German / Lb: Luxem-
bourgish)

For the creation of the pre-training corpus, we take advantage of the similarity
between Luxembourgish and German. First, there is a sizeable overlap between
the vocabularies between both languages. Indeed, we downloaded a list of 19 366
Luxembourgish-German word pairs2, and determined that 3809 word pairs are
identical, 3489 word pairs have a Levenshtein distance of 1 and 2333 pairs have a

1The final (uncased) model can be found at https://huggingface.co/lothritz/LuxemBERT
2https://github.com/robertoentringer/appli
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distance of 2. Furthermore, both languages are closely related from a structural
standpoint. The sentence syntax between both Luxembourgish and German is nearly
identical with a few minor exceptions. Thanks to this syntactic similarity, it is
possible to translate single words from one language to the other without significantly
changing the meaning of the sentence. We exploit this feature to build a simple
mapping table to partially translate the German portion of the pre-training corpus
to Luxembourgish.

Specifically, we translate unambiguous function words. Function words are usually
defined as words that have little to no meaning on their own, but are mainly used
to structure a sentence [113]. Examples for function words include determinants,
pronouns, prepositions, and numerals. In contrast to content words such as nouns,
verbs, or adjectives, function words are few in number, but make up a sizeable
portion of everyday texts, allowing to translate a sizeable portion of the text with
relatively little effort. Indeed, Pennebaker et al. [114] suggests that the English
language contains around 450 function words which, in spite of the small number,
make up 55 percent of the words people use.

Due to these properties, we deem function words appropriate candidates for the
translation strategy. We identified a list of 529 unambiguous German/Luxembourgish
function word pairs. Using a mapping table, we automatically translate a portion
of the German part of our pre-training dataset. Specifically, this method allows
us to translate nearly 20% of the German part of the dataset. Figure 6.2 shows
an example sentence that was translated using our mapping table. Note that this
pseudo-translation is nearly identical to the actual translation despite the simplicity
of the method.

Figure 6.2: Example pseudo-translation for LuxemBERT

In order to determine the appropriate amount of augmented data to add to the
dataset, we created several datasets containing half a million sentences each, varying
the ratio of Luxembourgish and German data for every set. The datasets contain 0%,
20%, 40%, 50%, 60% 80%, and 100% German data, respectively. We then fine-tuned
each resulting model on five downstream tasks over five runs, and averaged the
performances. Figure 6.3 shows the results of our experiment. While we find that the
model pre-trained on 100% German data usually performs worst, the performances
of the remaining models are mixed. However, we find that the model trained on
50% Luxembourgish and 50% German data achieved the highest mean and lowest
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standard deviation across all tasks. Following this result, we pre-train LuxemBERT
on 50% Luxembourgish and 50% translated German data.

Figure 6.3: Results of experiments for determining best Lb/De ratio for LuxemBERT

6.2.1 Dataset for Pre-training
We collected textual data from various sources such as news articles and the Luxem-
bourgish version of Wikipedia. In total, we collected nearly 6.1 million sentences
written in Luxembourgish. Table 6.1 shows a breakdown of the used corpus. In order
to assess the impact of the corpus size on the performance of the model, we trained
models with three different subsets of the corpus (small, medium, and large).

The small dataset consists of the entirety of the Luxembourgish Wikipedia only.
Specifically, we downloaded the most recent version on March 10, 2021, with wp-
download3, making up nearly 500 000 sentences.

The medium dataset consists of the Luxembourgish Wikipedia, as well as news
articles and webpages featured in the Leipzig Corpora Collection [45]. Specifically,
we downloaded 300 000 sentences of the Newscrawl dataset, 1 million sentences of
the 2013 Web dataset, and 300 000 sentences of the 2015 Web dataset. In total, this
dataset consists of 2.1 million sentences.

Finally, the large dataset contains each of the aforementioned sets, as well as news
articles, radio broadcast transcripts, and pseudonymised user comments from the
Luxembourgish News station RTL.4 In addition, it contains pseudonymised chatlogs
from the defunct Luxembourgish Chatroom Luxusbuerg and example sentences from
the Luxembourgish Online Dictionary5.

3https://github.com/pacurromon/wp-download
4www.rtl.lu
5www.lod.lu
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We are aware of the OSCAR dataset [38] which contains Luxembourgish text, however,
it is mostly made up of Wikipedia articles which would result in a large number of
duplicate sentences in our dataset. As such, we omit the dataset for pre-training.

In total, the data amounts to more or less 6.1 million sentences or 130 million words,
a sizeable difference to the corpus used to train the original BERT model by Devlin
et al. [3] which consists of 3.3 billion words. For the German part of the dataset, we
collected articles from the German Wikipedia, for an additional 6.1 million sentences.

Table 6.1: Breakdown of pre-training corpus

source #sentences
Wikipedia 500k
News articles 300k
Webpages 1.3M
RTL user comments 1.57M
RTL news articles 1.64M
RTL radio broadcasts 572k
Chatroom logs 175k
LOD 50k
Total 6.1M

6.2.1.1 Pre-training Parameters
The BERT Base model created by Devlin et al. [3] contains 12 Transformer blocks,
768 hidden layers, 12 self-attention blocks, and 110 million parameters in total. We
reuse the same configuration to pre-train LuxemBERT. However, in contrast to
the original BERT model, we drastically reduce the alphabet size from 1000 to 120
to accommodate the Luxembourgish alphabet. The pre-training is done using the
Masked Language Modeling task over 10 epochs and with masking probability of
15%. The sentences in our pre-training corpus were largely unordered, making it
difficult to build an adequate dataset for the Next Sentence Prediction task, which
is why we omitted that task from the pre-training step. The pre-training was done
using the HPC facility at the University of Luxembourg [115].

6.2.2 Cursory Evaluation of the MLM Task
In order to determine LuxemBERT’s performance after pre-training, we perform a
quick manual evaluation on the Fill Mask task. Given a sentence where a single
word is masked out, we let the model predict a list of five suggestions to replace
the masked word. We then manually evaluate whether the suggested words result
in a sentence that is grammatically and semantically correct. Table 6.2 shows our
selection of test sentences along with five words each proposed by the final, publicly
available uncased LuxemBERT model as well as the cased model. We translated the
sentences and suggestions into English for the reader’s convenience. The suggestions
are ordered by the model’s confidence score. We highlighted in green the suggestions
that are both grammatically and semantically correct.

Note that some suggestions are only valid in Luxembourgish, and that the English
translations often introduce grammar or other mistakes. For example, the sentence "I
go to retirement." is grammatically incorrect in English, but "Ech ginn an d’Pensioun."
is a valid Luxembourgish sentence. The correct translation would be "I am retiring.".
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Furthermore, note that we ignore factual errors. For instance, we accept the sentence
"Paräis ass d’Haaptstad vu Spuenien." ("Paris is the Capital of Spain.") despite it
being factually incorrect as it is correct from a grammatical and semantic standpoint.
Finally, as mentioned in Section 1.2.3.3, many words in Luxembourgish have multiple
valid spelling variations. This is also illustrated by the model’s suggestion of "gin"
and "ginn" for sentence 1, both of which mean "go" in this context, however, "gin" is
the misspelled form of the word. In this work, we accept both spellings.

We observe that, overall, most of the uncased LuxemBERT’s suggestions do indeed
result in valid sentences. In terms of grammar, it appears to consistently suggest
correct parts of speech. Furthermore, it seems capable of distinguishing genders
of nouns. The words en, e, um, and de indicate that the noun that follows has to
be male (examples 3, 4, 6, 10), while the words d’, and eng precede a female noun
(examples 2, 5). Uncased LuxemBERT also almost consistently applies the Äifler
Regel correctly, which is a phonological rule where words lose their final n if they
are followed by certain words [116]. We can observe this rule being applied in the
sentences 3 and 4, where the Äifler Regel dictates that the word following "en" has to
begin with one of the letters in {a, e, i, o, u, y, d, h, n, t, z}, while the word following
"e" cannot begin with any of these letters. The model applied the rule correctly in
all cases except for Kaffi in sentence 3 as the correct use would be "e Kaffi" rather
than "en Kaffi".

With regard to semantics, the uncased LuxemBERT usually suggests words that
make sense in the context of the sentence. Once notable exception is that the model
oftentimes suggests drinks rather than food (examples 3 and 4). Finally, it appears
that it learned some world knowledge during the pre-training phase indicated by its
most confident suggestions for examples 8, 9, and 10.

On the other hand, the cased version of LuxemBERT seemed to struggle with half of
the sentences, in particular sentences 2 through 6. It almost consistently suggested
single characters rather than words. Interestingly, it seemed to "correctly apply" the
Äifler Regel as the letters suggested in sentence 2 are indeed ones that must follow
the word "en".

We note that in the cases where the cased model did predict entire words, they were
usually correct from both a grammatical and a semantic standpoint.
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Table 6.2: Selection of sentences to test the pre-training task of LuxemBERT.
Suggestions to replace the [MASK] tokens are ordered by confidence score. We
highlighted in green whether a suggestion is valid.

ID Lang Sentence Suggestion 1 Suggestion 2 Suggestion 3 Suggestion 4 Suggestion 5

1 Lb Ech [MASK] an d’Schoul. gin ginn muss war fueren
En I [MASK] to school. go go have to (go to) was drive

2 Lb Ech ginn an d’[MASK]. Schoul Pensioun Vakanz Politik Kierch
En I go to the [MASK]. school retirement holiday politics church

3 Lb Ech iessen en [MASK]. net och Kaffi Téi Déier
En I eat a/it [MASK]. not also coffee tea animal

4 Lb Ech iessen e [MASK]. Kaffi Kuch Patt Fleesch Béier
En I eat a [MASK]. coffee cake drink meat beer

5 Lb Ech iessen eng [MASK]. Glace Pizza Zopp Kou Schmier
En I eat a [MASK]. ice cream pizza soup cow sandwich

6 Lb Den Hond läit um [MASK]. Buedem Kapp Réck Bauch Hals
En The dog lies on the/its [MASK]. floor head back belly neck

7 Lb D’A4 verleeft vun Esch bis op [MASK]. Diddeleng Esch Beetebuerg Schëffleng Péiteng
En The (motorway) A4 connects Esch and [MASK]. Dudelange Esch Bettembourg Schifflange Pétange

8 Lb Paräis ass d’Haaptstad vu [MASK]. Frankräich Paräis Spuenien Bordeaux Versailles
En Paris is the Capital of [MASK]. France Paris Spain Bordeaux Versailles

9 Lb [MASK] ass d’Haaptstad vu Frankräich. Paräis Et Versailles Arrondissement Si
En [MASK] is the Capital of France. Paris it Versailles arrondissement it

10 Lb De Xavier Bëttel ass de [MASK] vu Lëtzebuerg. Buergermeeschter Premier Premierminister Spëtzekandidat Fraktiounschef
En Xavier Bëttel is the [MASK] of Luxembourg. mayor prime minister prime minister frontrunner faction leader

(a) Suggestions for LuxemBERT uncased
ID Lang Sentence Suggestion 1 Suggestion 2 Suggestion 3 Suggestion 4 Suggestion 5

1 Lb Ech [MASK] an d’Schoul. ginn gin muss war fueren
En I [MASK] to school. go go have to (go to) was drive

2 Lb Ech ginn an d’[MASK]. f k b r s
En I go to the [MASK]. f k b r s

3 Lb Ech iessen en [MASK]. net t a z h
En I eat a/it [MASK]. not t a z h

4 Lb Ech iessen e [MASK]. k g b s v
En I eat a [MASK]. k g b s v

5 Lb Ech iessen eng [MASK]. s k t p b
En I eat a [MASK]. s k t p b

6 Lb Den Hond läit um [MASK]. Kapp Kënn 1 p a
En The dog lies on the/its [MASK]. head chin 1 p a

7 Lb D’A4 verleeft vun Esch bis op [MASK]. Lëtzebuerg Ell Éinen Feelen Käl
En The (motorway) A4 connects Esch and [MASK]. Luxembourg Ell Ehnen Feulen Kayl

8 Lb Paräis ass d’Haaptstad vu [MASK]. Lëtzebuerg Wien Berlin Japan St
En Paris is the Capital of [MASK]. Luxembourg Vienna Berlin Japan St

9 Lb [MASK] ass d’Haaptstad vu Frankräich. Et Si Lëtzebuerg Dat Se
En [MASK] is the Capital of France. it it Luxembourg that it

10 Lb De Xavier Bëttel ass de [MASK] vu Lëtzebuerg. Premier Mann Chef Minister Bierger
En Xavier Bëttel is the [MASK] of Luxembourg. prime minister man boss minister citizen

(b) Suggestions for LuxemBERT cased

6.3 Experimental Setup
In this section, we enumerate the research questions, describe the baselines to compare
against LuxemBERT, and discuss the downstream tasks on which the models are
assessed.

6.3.1 Research Questions
We investigate the following research questions:

• RQ1: Does LuxemBERT outperform the state of the art for Luxembourgish-targeted
NLP tasks? We consider mBERT as the main comparison point to demonstrate
the added value of LuxemBERT on several tasks.

• RQ2: Is our data augmentation scheme effective for improving model pre-training?
We assess the effectiveness of our approach by proposing an ablation study
where we compare LuxemBERT against a BERT model trained with available
Luxembourgish text data. We further evaluate the impact of our partial translation
scheme by comparing LuxemBERT against a version where the augmented dataset
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is non-translated German.

6.3.2 Baseline Models
We consider three baselines for comparison: mBERT; a pure Luxembourgish BERT;
and a Bilingual BERT (trained with Luxembourgish and German data).
6.3.2.1 mBERT
As LuxemBERT is the first Transformer-based model for the Luxembourgish language,
we use the mBERT (cf. Section 2.1.3.3)6 as a baseline to evaluate the performance
of the LuxemBERT models on the selected downstream tasks. mBERT contains
12 Transformer blocks, 768 hidden layers, 12 self-attention blocks, and 110 million
trainable parameters, and was released as a cased and an uncased version. The
Luxembourgish component of mBERT was trained using the entire Luxembourgish
Wikipedia, which consisted of 59 000 articles at the time of training.
6.3.2.2 Lb BERT: Simple Luxembourgish BERT
As a second baseline, we use a BERT model that we pre-train on Luxembourgish
data only. This allows us to determine the impact of adding augmented data on the
performance of the language model. This baseline will be called Lb BERT.
6.3.2.3 Lb/De BERT: Bilingual BERT
Following the approach by Wu et al. [43], we train a bilingual BERT model as our
final baseline. Similarly to LuxemBERT, the dataset for this model consists of 50%
Luxembourgish and 50% German data. It will be referred to as Lb/De BERT.

6.3.3 Downstream Tasks
We consider five downstream tasks to assess the performance of our LuxemBERT
model: Part-of-Speech (POS) tagging, Named Entity Recognition (NER), Intent
Classification (IC), News Classification (NC) and the Winograd Natural Language
Inference (WNLI) task (cf. Section 2.2). As suitable datasets are scarce, we create
a number of Luxembourgish ones ourselves. Table 6.3 shows an overview of each
dataset used for fine-tuning. As most of these datasets are based on articles from
RTL, we cannot publish them, but we make them available to researchers on request.

Table 6.3: Breakdown of datasets used for fine-tuning LuxemBERT on downstream
tasks

Task train dev test #labels max min mean median
POS 4291 459 750 15 16452 7 4864 3915
NER 4291 459 750 5 2272 95 1214 1239
IC a 698 149 159 28 60 23 36 35.5
IC b 606 130 137 23 60 28 38 37
NC 7057 1034 1961 8 2866 106 1257 1120
WNLI 568 63 136 2 409 358 383.5 383.5

6.3.3.1 Part-of-Speech Tagging
For this dataset, we downloaded several months worth of written news articles from
RTL which cover topics such as politics, local and world news, sports, and tabloid

6https://github.com/google-research/bert/blob/master/multilingual.md
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news. We made sure not to reuse data from the pre-training corpus. The dataset
consists of 450 Luxembourgish news articles, totalling 5500 sentences. We consider
15 typical POS-tags. The tagging for this ground-truth dataset was done using a
Luxembourgish spaCy model7 and verified by a native Luxembourgish speaker. The
biggest class is the Noun class with 16 452 samples, the smallest is the Interjection
class with 7 samples, the mean sample count per class is 4864 while the median is
3915.

6.3.3.2 Named Entity Recognition

For the NER task, we use the same dataset that we use for POS-tagging, i.e., a
collection of news articles downloaded from RTL. We consider five labels: Person,
Organisation, (natural) Location, Geopolitical Entity, and Miscellaneous. As there
is currently no NER-tagger available to the best of our knowledge, the set was
annotated manually by a single native speaker. The dataset consists of 450 news
articles, amounting to 5500 sentences. There is a total of 107 521 words, 101 453 of
which are non-entities, and 6068 are named entities. The Person class is the biggest
with 2272 samples, Location is the smallest with 95 samples, the mean is 1214, and
the median is 1239.

6.3.3.3 Intent Classification

For the IC task, we reuse the Banking Client Support dataset (cf. Section 5.2.2.1).
It contains 1006 samples divided into 28 different intents related to banking requests
such as opening/closing a bank account or ordering/blocking a credit card. The
biggest class is check_balance with 60 samples while the smallest class is goodbye
with 23 samples. The average samples count per class is 36 while the median is 35.5.

We split this dataset into two subsets: (a) the entire dataset as is, (b) a set containing
only the ’non-trivial’ intents, with the following intents removed from the original
dataset: affirm, deny, greet, goodbye, and thankyou. This subset contains 863 samples
divided into 23 intents. The biggest class is again the check_balance class with 60
samples, and the smallest is check_recipients with 28 samples. The average sample
count is 38 and the median is 37.

6.3.3.4 News Classification

To build the NC dataset, we scraped news articles from RTL and selected a variety
of topics, ensuring that there is no overlap with the data we used for pre-training.
Specifically, we chose national, European, and global news, as well as articles about
sports, culture, gaming, technology, and cooking recipes, for a total of 8 categories.
The annotating was done using the metadata of the article pages. The dataset
contains 10 052 articles. The sports class is the biggest with 2866 articles while there
are merely 106 recipes articles. On average, there are 1257 articles per class, and the
median is 1120.

7https://github.com/PeterGilles/Luxembourgish-language-resources/blob/master/
spaCy%20for%20Luxembourgish.ipynb
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6.3.3.5 Winograd Natural Language Inference
For this dataset, we modified the WNLI dataset that was originally created by
Levesque et al. [61]. We translated the dataset to Luxembourgish8. Furthermore, as
the labels for the test set are not public, we annotated it ourselves. The final dataset
contains 767 samples. There are 409 samples with the 0 label and 358 with the 1
label.

6.3.4 Fine-tuning Parameters
Regarding fine-tuning parameters, Devlin et al. [3] report that the best performances
for downstream NLP tasks are observed for a batch size in {16, 32}, a learning rate
in {2e-5,3e-5,5e-5}, and training epochs in {2, 3, 4}. We perform a grid search to
determine which of these parameters yield the highest performance when fine-tuning
an uncased mBERT model, and use these parameters for the remaining models. The
parameters for every downstream task are given in Table 6.4.

Table 6.4: Results of grid search for parameters

Task batch size learning rate #epochs
POS 16 5e-5 3
NER 16 5e-5 3
IC a 16 5e-5 5
IC b 16 5e-5 5
NC 16 2e-5 2
WNLI 16 5e-5 5

6.4 Experimental Results
In this section, we present and analyse the results of our experiments and answer
the research questions we asked in Section 6.3.1. As mentioned in Section 6.2.1,
we pre-train our models with three dataset sizes named small, middle, and large.
Furthermore, we train both cased and uncased models for every given dataset. In
order to evaluate the performance of our BERT models, we separately fine-tune
the pre-trained models on each downstream task over five runs, resulting in five
fine-tuned models per task and per pre-trained model. We then calculate the average
performance of each fine-tuned model in terms of F1 score. Tables 6.5 and 6.6 show
the results (and standard deviation) for the uncased and cased models, respectively.
We notice that generally, the performance of the models increases and the standard
deviation decreases as the size of pre-training data increases. It is also to note that
for mBERT, we observe a high standard deviation for many of the downstream tasks
when compared to the LuxemBERT models.

Comparing all these results can be tedious. To help us, we used two statistical tests:
The Friedman/Nemenyi (F/N) test [117]. This test is not very powerful [118]
but allows to compare all pairs of models directly and has an easy-to-interpret
visualization. It first computes the rank of each considered approach for all datasets.
Then, the plot reports the mean rank R (the higher, the better) for each approach.

8The final dataset can be found at https://github.com/Trustworthy-Software/
LuxemBERT-datasets
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Table 6.5: Comparison of results for uncased models on downstream tasks

Model POS NER IC a IC b NC WNLI
Lb BERT small 88.0 ± 0.1 59.4 ± 1.0 56.9 ± 5.3 55.8 ± 4.0 85.7 ± 0.2 51.8 ± 2.1
Lb/De BERT small 88.3 ± 0.1 61.5 ± 0.3 54.4 ± 1.7 59.7 ± 2.2 86.9 ± 0.3 49.9 ± 0.0
LuxemBERT small 88.0 ± 0.2 61.9 ± 0.5 55.9 ± 2.6 60.1 ± 2.7 87.0 ± 0.3 49.9 ± 0.0
Lb BERT medium 88.3 ± 0.1 65.4 ± 0.5 63.4 ± 1.8 63.6 ± 0.8 89.4 ± 0.2 51.7 ± 2.5
Lb/De BERT medium 89.1 ± 0.2 68.9 ± 0.7 64.4 ± 2.0 67.0 ± 1.8 89.9 ± 0.3 52.2 ± 1.9
LuxemBERT medium 88.7 ± 0.2 66.8 ± 0.8 66.2 ± 1.6 69.3 ± 1.1 90.3 ± 0.2 50.8 ± 1.4
Lb BERT large 89.1 ± 0.3 69.4 ± 1.0 71.0 ± 1.7 68.8 ± 1.2 91.6 ± 0.2 52.0 ± 2.3
Lb/De BERT large 88.8 ± 0.1 70.8 ± 0.8 74.0 ± 2.2 72.1 ± 1.4 91.4 ± 0.2 54.3 ± 1.9
LuxemBERT large 89.0 ± 0.1 70.0 ± 0.8 72.5 ± 1.1 70.9 ± 1.8 91.8 ± 0.2 54.6 ± 1.6
mBERT 88.6 ± 0.1 68.9 ± 1.0 46.0 ± 5.6 48.3 ± 9.4 90.0 ± 0.5 57.3 ± 0.0

Table 6.6: Comparison of results for cased models on downstream tasks

Model POS NER IC a IC b NC WNLI
Lb BERT small 86.6 ± 0.2 54.4 ± 0.6 57.7 ± 3.8 60.5 ± 3.2 84.4 ± 0.5 49.9 ± 0
Lb/De BERT small 87.4 ± 0.2 59.3 ± 0.6 59.9 ± 1.9 60.1 ± 1.6 85.1 ± 0.3 49.9 ± 0
LuxemBERT small 87.0 ± 0.1 58.8 ± 0.8 59.6 ± 2.9 60.9 ± 0.6 85.2 ± 0.3 51.6 ± 2.0
Lb BERT medium 88.6 ± 0.2 62.7 ± 0.7 65.0 ± 2.1 64.1 ± 1.4 87.6 ± 0.2 49.9 ± 0
Lb/De BERT medium 88.9 ± 0.1 66.3 ± 0.3 65.5 ± 3.5 68.3 ± 1.1 88.2 ± 0.1 50.8 ± 1.6
LuxemBERT medium 89.0 ± 0.1 66.5 ± 0.4 65.7 ± 2.1 66.3 ± 2.6 88.9 ± 0.3 50.7 ± 1.6
Lb BERT large 88.8 ± 0.1 68.9 ± 0.8 65.5 ± 2.4 69.0 ± 2.4 89.6 ± 0.2 52.5 ± 0.5
Lb/De BERT large 88.9 ± 0.1 68.4 ± 0.2 69.0 ± 2.6 66.9 ± 2.9 90.0 ± 0.1 52.5 ± 3.9
LuxemBERT large 88.8 ± 0.1 69.5 ± 0.5 67.4 ± 1.9 67.9 ± 2.9 89.4 ± 0.3 51.5 ± 1.8
mBERT 87.6 ± 0.2 62.3 ± 0.4 46.7 ± 4.1 46.3 ± 8.9 88.7 ± 0.5 19.1 ± 0

An approach a is considered as significantly better than another (b) if its mean
rank Ra exceeds Rb by critical difference CD, i.e. Ra > Rb + CD. The Wilcoxon
test [117] compares the difference of performance for a pair of approaches across
datasets. It is more powerful than F/N tests as it only considers two alternatives.

6.4.1 RQ1: Does LuxemBERT outperform the state of the art
for Luxembourgish-targeted NLP tasks?

First, we do the same cursory evaluation of the Fill Mask task that we performed on
the LuxemBERT models in Section 6.2.2, but we evaluate the uncased and cased
mBERT models. Table 6.7 shows the results of this experiment.

We observe that both mBERT models struggle to make proper suggestions for the
sentences 1 to 6, typically failing to even suggest proper Luxembourgish words and
instead resorting to single characters, suffixes (marked by ##), or non-Luxembourgish
words. On the other hand, they usually manage to produce meaningful sentences
for sentences 7 through 10. It is to note that these sentences can be regarded as
statements of facts which are commonly found in texts such as encyclopedias, and
by extension, Wikipedia articles. For that reason, it is unsurprising that a language
model trained on this kind of data would handle those kinds of sentences well. This
first set of experiments seems to indicate that the LuxemBERT models handle the
Luxembourgish language better than the mBERT models.

Figure 6.4 shows a comparison of both mBERT and LuxemBERT models. With
regard to the uncased models, there is a slight increase in F1 scores for the POS,
NER, and NC tasks, and a large increase for IC a, and IC b. On the other hand,
the only task on which mBERT outperforms LuxemBERT is the WNLI task. With

88



6.4. Experimental Results

Table 6.7: Performance of the uncased and cased mBERT BERT models. Suggestions
to replace the [MASK] tokens are ordered by confidence score. We highlighted in
green whether a suggestion is valid. ## marks a suffix for the previous word.

ID Lang Sentence Suggestion 1 Suggestion 2 Suggestion 3 Suggestion 4 Suggestion 5

1 Lb Ech [MASK] an d’Schoul. ##ill ##uel ##ed ##eh ##ap
En I [MASK] to school. ##ill ##uel ##ed ##eh ##ap

2 Lb Ech ginn an d’[MASK]. Stad u z 2 nr
En I go to the [MASK]. town u z 2 nr

3 Lb Ech iessen en [MASK]. nederland Europa zee belgie Vlaanderen
En I eat a/it [MASK]. Netherlands Europe sea Belgium Flanders

4 Lb Ech iessen e [MASK]. ##w s al ! man
En I eat a [MASK].##w s old ! man

5 Lb Ech iessen eng [MASK]. ##r ##h ##s ##l ##g
En I eat a [MASK]. ##r ##h ##s ##l ##g

6 Lb Den Hond läit um [MASK]. km2 m km hektar Island
En The dog lies on the/its [MASK]. km2 m km hektar Iceland

7 Lb D’A4 verleeft vun Esch bis op [MASK]. Lëtzebuerg Köln Luxemburg Aachen Koblenz
En The (motorway) A4 connects Esch and [MASK]. Luxembourg Cologne Luxembourg Aachen Koblenz

8 Lb Paräis ass d’Haaptstad vu [MASK]. Lëtzebuerg frans paris Frankreich france
En Paris is the Capital of [MASK]. Luxembourg French Paris France France

9 Lb [MASK] ass d’Haaptstad vu Frankräich. Metz Nancy Toulouse Troyes Poitiers
En [MASK] is the Capital of France. Metz Nancy Toulouse Troyes Poitiers

10 Lb De Xavier Bëttel ass de [MASK] vu Lëtzebuerg. Politiker President Gouverneur maire Premierminister
En Xavier Bëttel is the [MASK] of Luxembourg. politician president governor mayor prime minister

(a) Suggestions for mBERT uncased
ID Lang Sentence Suggestion 1 Suggestion 2 Suggestion 3 Suggestion 4 Suggestion 5

1 Lb Ech [MASK] an d’Schoul. , ##ch ##lo war ...
En I [MASK] to school. , ##ch ##lo was ...

2 Lb Ech ginn an d’[MASK]. St d D Dr H
En I go to the [MASK]. St d D Dr H

3 Lb Ech iessen en [MASK]. op is de en in
En I eat a/it [MASK]. entirely is the a/it in

4 Lb Ech iessen e [MASK]. ##ch ##h dr ##hn St
En I eat a [MASK]. ##ch ##h dr ##hn St

5 Lb Ech iessen eng [MASK]. ##e ##en ##er . ##n
En I eat a [MASK]. ##e ##en ##er . ##n

6 Lb Den Hond läit um [MASK]. Land K Vol s k
En The dog lies on the/its [MASK]. countryside K flight s k

7 Lb D’A4 verleeft vun Esch bis op [MASK]. Esch Thorn Antwerpen Bus Luxemburg
En The (motorway) A4 connects Esch and [MASK]. Esch Thorn Antwerpen Bus Luxembourg

8 Lb Paräis ass d’Haaptstad vu [MASK]. Lëtzebuerg Par Paris Kantonen Republik
En Paris is the Capital of [MASK]. Luxembourg Par Paris cantons republic

9 Lb [MASK] ass d’Haaptstad vu Frankräich. Lëtzebuerg Esch Et Arrondissement Gare
En [MASK] is the Capital of France. Lëtzebuerg Esch it arrondissement train station

10 Lb De Xavier Bëttel ass de [MASK] vu Lëtzebuerg. Fränk Premierminister Xavier Politiker Jong
En Xavier Bëttel is the [MASK] of Luxembourg. Frank prime minister Xavier politician boy

(b) Suggestions for mBERT cased

regards to the cased models, LuxemBERT outperforms mBERT on every task, with
a slight increase in performance on the POS and NC tasks and a large increase on
NER, IC a, IC b, and WNLI.

We perform a Wilcoxon test for LuxemBERT (small cased, medium cased, large
cased, small uncased, medium uncased, and large uncased) versus the corresponding
mBERT model (cased or uncased). For cased, we find a p-value of 0.219, 0.016, 0.016
for small, medium, and large, respectively. For uncased, we find a p-value of 0.5,
0.281, 0.109 (same order).

RQ1 Answer: For cased, LuxemBERT outperforms mBERT, even if we train
LuxemBERT on a fraction of the data at our disposal. For uncased, LuxemBERT
does outperform mBERT, but we needed all data at our disposal.
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Figure 6.4: mBERT vs LuxemBERT

6.4.2 RQ2: Is our data augmentation scheme effective for im-
proving model pre-training?

With this second research question, we now want to quantify how Lb/De BERT and
LuxemBERT can improve performance by leveraging German data. We compare
them to Lb BERT and mBERT. As a first comparison, we evaluate the performance
of the cased and uncased models on the MLM task by using the same 10 example
sentences from Section 6.2.2. Tables 6.7 and 6.8 show the suggestions of each model.

We observe that the De/Lb models often fail to produce meaningful answers, resorting
to single character suggestions instead. This is in particular true for sentences 3
to 5. We do notice that, similarly to the cased LuxemBERT model, both De/Lb
models "apply" the Äifler Regel correctly despite producing mostly single character
responses. For this reason, we conclude that this behaviour was learned during the
pre-training and is not coincidental.

The performance of Lb BERT models is comparable to that of the LuxemBERT mod-
els, with the suggestions of uncased Lb BERT being almost always correct from both
a grammatical and semantic standpoint, and thus matching the uncased LuxemBERT
model in that regard. However, the cased Lb BERT model performs significantly bet-
ter than the cased LuxemBERT model, managing to produce meaningful suggestions
for each sentence except for example 5.

Overall, it appears that both the uncased Lb BERT and uncased LuxemBERT
models perform best in this experiment.
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Table 6.8: Performance of the uncased and cased Lb BERT models. Suggestions to
replace the [MASK] tokens are ordered by confidence score. We highlighted in green
whether a suggestion is valid.

ID Lang Sentence Suggestion 1 Suggestion 2 Suggestion 3 Suggestion 4 Suggestion 5

1 Lb Ech [MASK] an d’Schoul. ginn gin muss fueren kommen
En I [MASK] to school. go go have to (go to) drive come

2 Lb Ech ginn an d’[MASK]. Vakanz Pensioun Schoul Ausland Bett
En I go to the [MASK]. holiday retirement school foreign countries bed

3 Lb Ech iessen e [MASK]. net och Téi nie do
En I eat a/it [MASK]. not also tea never there

4 Lb Ech iessen e [MASK]. Kaffi Fësch Kuch Croissant Béier
En I eat a [MASK]. coffee fish cake croissant beer

5 Lb Ech iessen eng [MASK]. Ham Pizza Glace Zalot Zopp
En I eat a [MASK]. ham pizza ice cream salad soup

6 Lb Den Hond läit um [MASK]. Buedem Kapp Bauch Réck Hals
En The dog lies on the/its [MASK]. floor head belly back neck

7 Lb D’A4 verleeft vun Esch bis op [MASK]. Schëffleng Diddeléng Esch Beetebuerg Péiteng
En The (motorway) A4 connects Esch and [MASK]. Schifflange Dudelange Esch Bettembourg Pétange

8 Lb Paräis ass d’Haaptstad vu [MASK]. Paräis Frankräich Lëtzebuerg Bréissel London
En Paris is the Capital of [MASK]. Paris France Luxembourg Brussels London

9 Lb [MASK] ass d’Haaptstad vu Frankräich. Et Lëtzebuerg Si Schengen Paräis
En [MASK] is the Capital of France. it Luxembourg it Schengen Paris

10 Lb De Xavier Bëttel ass de [MASK] vu Lëtzebuerg. Premier President Premierminister Buergermeeschter Staatschef
En Xavier Bëttel is the [MASK] of Luxembourg. prime minister president prime minister mayor head of state

(a) Suggestions for Lb BERT uncased
ID Lang Sentence Suggestion 1 Suggestion 2 Suggestion 3 Suggestion 4 Suggestion 5

1 Lb Ech [MASK] an d’Schoul. ginn gin fueren war muss
En I [MASK] to school. go go drive was have to (go to)

2 Lb Ech ginn an d’[MASK]. Vakanz Politik Schoul Kierch Mass
En I go to the [MASK]. holidays politics school church church mass

3 Lb Ech iessen en [MASK]. net och Déier Haus 2
En I eat a/it [MASK]. not also animal house 2

4 Lb Ech iessen e [MASK]. bëssen wéineg net gutt Stéck
En I eat a [MASK]. little little also good piece

5 Lb Ech iessen eng [MASK]. Hand 2 Mask 1 3
En I eat a [MASK]. hand 2 mask 1 3

6 Lb Den Hond läit um [MASK]. Réck Kapp Buedem Been Waasser
En The dog lies on the/its [MASK]. back head floor leg water

7 Lb D’A4 verleeft vun Esch bis op [MASK]. Esch Lëtzebuerg Schengen Gare Feelen
En The (motorway) A4 connects Esch and [MASK]. Esch Luxembourg Schengen train station Feulen

8 Lb Paräis ass d’Haaptstad vu [MASK]. Lëtzebuerg Japan Wien St Schengen
En Paris is the Capital of [MASK]. Luxembourg Japan Vienna St Schengen

9 Lb [MASK] ass d’Haaptstad vu Frankräich. Et Si Lëtzebuerg Dat Se
En [MASK] is the Capital of France. it it Luxembourg that it

10 Lb De Xavier Bëttel ass de [MASK] vu Lëtzebuerg. Chef Premier Mann Patron Kinnek
En Xavier Bëttel is the [MASK] of Luxembourg. boss prime minister man owner king

(b) Suggestions for Lb BERT cased
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Table 6.9: Performance of the uncased and cased Lb/De BERT models. Suggestions
to replace the [MASK] tokens are ordered by confidence score. We highlighted in
green whether a suggestion is valid.

ID Lang Sentence Suggestion 1 Suggestion 2 Suggestion 3 Suggestion 4 Suggestion 5

1 Lb Ech [MASK] an d’Schoul. ginn gin muss war fueren
En I [MASK] to school. go go have to (go to) was drive

2 Lb Ech ginn an d’[MASK]. Vakanz F Pensioun Schoul Mass
En I go to the [MASK]. holiday f retirement school church mass

3 Lb Ech iessen en [MASK]. net o h . z
En I eat a/it [MASK]. not o h . z

4 Lb Ech iessen e [MASK]. g k p s w
En I eat a [MASK]. g k p s w

5 Lb Ech iessen eng [MASK]. s k g b z
En I eat a [MASK]. s k g b

6 Lb Den Hond läit um [MASK]. Réck Bauch Kapp Ouer Hals
En The dog lies on the/its [MASK]. back belly head ear neck

7 Lb D’A4 verleeft vun Esch bis op [MASK]. Diddeleng Beetebuerg Lëtzebuerg Ettelbréck Wolz
En The (motorway) A4 connects Esch and [MASK]. Dudelange Bettembourg Luxembourg Ettelbruck Wiltz

8 Lb Paräis ass d’Haaptstad vu [MASK]. Paräis Frankräich Bréissel Marseille Lëtzebuerg
En Paris is the Capital of [MASK]. Paris France Brussels Marseille Luxembourg

9 Lb [MASK] ass d’Haaptstad vu Frankräich. Et Si Stroossbuerg Paräis Lëtzebuerg
En [MASK] is the Capital of France. it it Strasbourg Paris Luxembourg

10 Lb De Xavier Bëttel ass de [MASK] vu Lëtzebuerg. Buergermeeschter Premier Premierminister President Staatsminister
En Xavier Bëttel is the [MASK] of Luxembourg. mayor prime minister prime minister president minister of state

(a) Suggestions for De/Lb BERT uncased
ID Lang Sentence Suggestion 1 Suggestion 2 Suggestion 3 Suggestion 4 Suggestion 5

1 Lb Ech [MASK] an d’Schoul. ginn gin war muss fueren
En I [MASK] to school. go go was have to (go to) drive

2 Lb Ech ginn an d’[MASK]. m k Schoul d f
En I go to the [MASK]. m k school d f

3 Lb Ech iessen en [MASK]. a i t z d
En I eat a/it [MASK]. a i t z d

4 Lb Ech iessen e [MASK]. k s g l b
En I eat a [MASK]. k s g l b

5 Lb Ech iessen eng [MASK]. s k p b r
En I eat a [MASK]. s k p b r

6 Lb Den Hond läit um [MASK]. Kapp a Mo Been h
En The dog lies on the/its [MASK]. head a stomach leg h

7 Lb D’A4 verleeft vun Esch bis op [MASK]. Lëtzebuerg St Stad Ell Käl
En The (motorway) A4 connects Esch and [MASK]. Luxembourg St city Ell Kayl

8 Lb Paräis ass d’Haaptstad vu [MASK]. Lëtzebuerg Japan Berlin Wien Europa
En Paris is the Capital of [MASK]. Luxembourg Japan Berlin Vienna Europe

9 Lb [MASK] ass d’Haaptstad vu Frankräich. Et Si Lëtzebuerg Dat Se
En [MASK] is the Capital of France. it it Luxembourg that it

10 Lb De Xavier Bëttel ass de [MASK] vu Lëtzebuerg. Chef Premier Mann Patron Minister
En Xavier Bëttel is the [MASK] of Luxembourg. boss prime minister man owner minister

(b) Suggestions for De/Lb BERT cased
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In addition to leveraging the presence of German data, we also leverage the size of
the pre-training corpus to quantify how much adding the auxiliary language can
improve a language model in the case where the lack of data is even more apparent.
Figures 6.5, 6.6, and 6.7 show the performances of our models trained on small,
medium and large datasets, respectively. The results of the F/N test can be found
in Figures 6.8a to 6.8f. From these figures, Lb/De BERT and LuxemBERT clearly
emerge as better alternatives, except for small (cased and uncased). Lb/De BERT
and LuxemBERT are often ahead in terms of performance, with two exceptions:
(1) for small uncased, mBERT seems to be more competitive, and (2) for large, Lb
BERT is in-between Lb/De BERT and LuxemBERT.

(a) mBERT (uncased) vs uncased models

(b) mBERT (cased) vs cased models

Figure 6.5: Comparison of Lb BERT, Lb/De BERT, and LuxemBERT to mBERT
on the small-sized dataset
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(a) mBERT (uncased) vs uncased models

(b) mBERT (cased) vs cased models
Figure 6.6: Comparison of Lb BERT, Lb/De BERT, and LuxemBERT to mBERT
on the medium-sized dataset

Figure 6.7: Comparison of Lb BERT, Lb/De BERT, LuxemBERT on large dataset
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(a) small uncased

(b) small cased

(c) medium uncased

(d) medium cased

(e) large uncased

(f) large cased

Figure 6.8: Comparison of mBERT, Lb BERT, Lb/De BERT, and LuxemBERT with
Friedman/Nemenyi tests. An approach a is considered as significantly better than
another (b) if its mean rank Ra is such that Ra > Rb + CD. The higher the mean
rank, the better. These plots allow observing that the best approach is dependant
on the size of the training data and the case. However, Lb/De and LuxemBERT are
consistently among the best approaches. To decide which of the approach is the best
in practice, we rely on Figure 6.10.
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From a statistical point of view, we can learn more by running additional Wilcoxon
tests (with p-value=0.05). For cased models, Lb/De BERT and LuxemBERT are
superior to Lb BERT for small and medium. They are also superior to mBERT for
medium and large. For uncased models, Lb/De BERT and LuxemBERT are superior
to Lb BERT for medium. They are also superior to mBERT for large, but only with
a p-value around 10%.

RQ2 Answer: The data augmentation strategies of Lb/De BERT and Luxem-
BERT clearly improve the performance against our baselines. It was not possible
to show a statistical difference between both, but LuxemBERT obtained overall
better results than Lb/De BERT.

6.5 Discussion
The main factor of success is the training data size. The second factor is data
augmentation: we show that it significantly increases the results among the considered
tasks. Finally, we showed that automatic translation can further increase the results.

Table 6.10: Wins/ties/losses comparison, based on Wilcoxon superiority tests, of all
models of this study.

Model name W T L
Lb BERT small cased 1 4 14
Lb/De BERT small cased 2 1 12
LuxemBERT small cased 2 5 12
Lb BERT medium cased 6 3 10
Lb/De BERT medium cased 9 3 7
LuxemBERT medium cased 9 3 7
Lb BERT large cased 11 6 2
Lb/De BERT large cased 11 5 3
LuxemBERT large cased 10 6 3
Lb BERT small uncased 1 6 12
Lb/De BERT small uncased 1 6 12
LuxemBERT small uncased 1 6 12
Lb BERT medium uncased 8 3 8
Lb/De BERT medium uncased 10 6 3
LuxemBERT medium uncased 11 5 3
Lb BERT large uncased 15 2 2
Lb/De BERT large uncased 17 2 0
LuxemBERT large uncased 18 1 0
mBERT cased 1 6 13
mBERT uncased 2 18 0

As a last consideration, we compare all variants to search for the best among all
20 alternatives presented in this chapter. To do so, we generate the results for all
possible pairs of Wilcoxon superiority tests. We assume an alternative is better
if the p-value of the superiority test (accounting for the six downstream tasks) is
lower than 0.05, as before. We report these results in a Wins/Ties/Losses chart in
Table 6.10. It means that we counted the number of times each of the alternatives
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significantly beats/was beaten by all 19 others (wins and losses, respectively). When
the test cannot conclude because of a large p-value, we call it a tie. The results show
that LuxemBERT large uncased is the best alternative, and we recommend its usage
for NLP in Luxembourgish.

6.6 Related Work
6.6.1 Training Language Models on Multilingual Data
As mentioned in Section 2.1.3.4, multilingual language models such as mBERT
serve as an important language model for numerous less widespread languages as
it offers versatility at the expense of performance. Indeed, Wu et al. [43] compared
mBERT’s performance to that of monolingual baseline models on three NLP tasks.
They showed that for low-resource languages such as Latvian or Mongolian, mBERT
reached higher performances as opposed to monolingual models. The opposite was
observed for models trained on high-resource languages.

In addition, Wu et al. proposed a middle-ground between mBERT and monolingual
models for low-resource languages by training models on bilingual data. They
suggested to pair them with a language that is closely related to the target language
in order to increase the performance of the model. The resulting models outperformed
the monolingual models on almost every selected task, however, they generally
performed worse than mBERT. Our approach seeks to make the text data from the
auxiliary language resemble the data written in the target language more closely.

6.7 Threats to Validity
As all experimental, the work presented here can face potential threats to validity.

First, it is possible that the results of our experiments are contingent upon the quantity
of data used in our experimental setup. To mitigate this risk, and to investigate
the effect of data size on the approach we propose, we performed experiments with
three different sizes of dataset.We also note that we leveraged new datasets to go
beyond what was already available to the research community for the Luxembourgish
language, thus enabling us to investigate three vastly different sizes of dataset.

The quality of the data could also threaten the strength of our conclusions. In
particular, a lack of diversity in the training data would limit the performance of
any language model. While some of the additional datasets we leveraged contain
sentences of irregular quality (user comments), a significant part of our new datasets
are made exclusively of high-quality, professionally written news articles.

When possible and meaningful, we computed statistical tests to measure the statistical
significance of the performance difference of the tested approaches. Hence, it is
possible to evaluate whether the observed differences are likely due to random
fluctuations, or are more likely effects of the tested approaches.

6.8 Summary
In this chapter, we introduced a new BERT model for Luxembourgish, a low-resource
language. To circumvent the lack of data, we rely on two data augmentation strategies.
We showed that they lead to improvement on six NLP tasks, even though it was not
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always possible to prove statistical significance between all variants.

We showed that our Luxembourgish model, LuxemBERT, outperforms its only
competitor, mBERT, in five of the six tested tasks. The cased LuxemBERT beats
cased mBERT on all six tasks. In addition, we created Luxembourgish datasets for
various NLP tasks, that we make available to researchers on request. We believe our
work is a great addition to the NLP field, with a new BERT model for Luxembourgish
and the release of four datasets. We also believe that our data augmentation strategy
can be applied to other low-resource languages.
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7 Comparing Pre-Training Schemes
for Luxembourgish BERT Models

In this chapter, we propose two novel Luxembourgish BERT models that improve on the state of the
art. We also present an empirical study on both the performance and robustness of the investigated
BERT models. We compare the models on a set of downstream NLP tasks and evaluate their
robustness against different types of data perturbations. Additionally, we provide novel datasets to
evaluate the performance of Luxembourgish language models. Our findings reveal that pre-training a
pre-loaded model has a positive effect on both the performance and robustness of fine-tuned models.

This chapter is based on the work in the following research paper under submission:
• Cedric Lothritz, Saad Ezzini, Christoph Purschke, Tegawendé F. Bissyandé, Jacques Klein,

Andrey Boytsov, Clément Lefebvre, Anne Goujon, and Isabella Olariu. Comparing Pre-
Training Schemes for Luxembourgish BERT Models, Konferenz zur Verarbeitung natürlicher
Sprache, 2023
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Chapter 7. Comparing Pre-Training Schemes for Luxembourgish BERT
Models

7.1 Overview
The introduction of BERT models in 2018 [3] (cf. Section 2.1.3.2) was a crucial
milestone for the NLP community. The ability to fine-tune an already pre-trained
BERT model mitigated the need for specialised model architectures for given tasks.
Despite the emergence of better-performing architectures in recent years, fine-tuning
BERT models continues to be a popular approach for numerous NLP tasks in
industrial settings.

While highly performing pre-trained BERT models are readily available for widely
spoken languages, they are comparably scarce for low-resource languages due to
the amount of data necessary to pre-train adequate models. In fact, we determined
that the number of languages for which a pre-trained BERT model is available on
Huggingface1 is less than 150, with many of them supported only through multi-
lingual models such as mBERT [3] and XLM-RoBERTa [119] (cf. Section 2.1.3.3).
These multilingual models provide a viable alternative, but monolingual models can
outperform them if sufficient pre-training data is available, as shown by Wu et al.[43].

Several factors can influence the quality of a language model (LM), such as the
size of the pre-training corpus, which can be increased through data augmentation
techniques [120] (cf. Chapter 6). The configuration of the model architecture can
also be varied to improve performance, as highlighted by Wu et al.[43]. Another
approach to enhance the performance of a language model is to choose whether to
pre-train the LM from scratch or to pre-load the weights from an existing model and
continue the pre-training using data from the target language, as discussed in [121].
These considerations are important when working with low-resource languages as
they can greatly impact the quality of the pre-trained models.

In this study, we focus on Luxembourgish. We investigate the impact of pre-training
a pre-loaded LM versus using pre-training from scratch, as well as the impact of
pre-loading a monolingual versus a multilingual pre-trained model.

The contributions of this study are threefold:

(a) Two novel BERT models for the Luxembourgish language that improve on the
state of the art

(b) An empirical study on both the performance and robustness of the investigated
BERT models

(c) Novel datasets to evaluate the performance of Luxembourgish language models

The remainder of this chapter is structured as follows: Section 7.2 describes our
approach to building our novel language models. We establish our research ques-
tions, and describe our overall experimental setup for this study in Section 7.3. In
Section 7.4, we present the results from our experiments, which we then discuss in
Section 7.5. Section 7.6 shows a selection of works that are related to our own study.
We lay down a number of potential threats to the veracity of our experiments in
Section 7.7. Finally, we conclude our findings in Section 7.8.

1https://huggingface.co/models
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7.2 Approach
In this section, we describe the creation of the two novel BERT models that we
pre-trained for this study: Lb_mBERT and Lb_GottBERT.

7.2.1 Pre-loaded Models
As mentioned in Section7.1, we set out to compare pre-loading a multilingual and
a monolingual BERT model. Our models of choice are the multilingual mBERT
and the German GottBERT model which we pre-train on a corpus of 12 million
sentences2.
7.2.1.1 mBERT
As mentioned before, the mBERT model was pre-trained on Wikipedia articles,
including the Luxembourgish Wikipedia, which contained 59 000 articles at the
time of training. mBERT contains 12 Transformer blocks, 768 hidden layers, 12
self-attention blocks, and 110 million trainable parameters, as well as a vocab size of
105 879 WordPiece tokens, 100 of which are unused. Our first model uses mBERT as
its starting point and is appropriately named Lb_mBERT. We adapt the vocab file
by replacing the unused tokens with the 100 most common ones in our pre-training
corpus. We then train the model for 10 epochs on the Masked-Language-Modeling
task (MLM) with a masking probability of 15%.
7.2.1.2 GottBERT
Luxembourgish is a West Germanic language originating from a Moselle Franconian
dialect [8]. As such, Luxembourgish and German are closely related. As mentioned
in Section 6.2, both languages are similar in terms of vocabulary and structure. Due
to these similarities, we choose the German GottBERT model [41] as a pre-loaded
model to create Lb_GottBERT. GottBERT was pre-trained on the German part
of the OSCAR corpus [38] consisting of nearly 459 million sentences. Its vocab file
consists of 52 009 WordPiece tokens. As none of these tokens are unused, we cannot
modify the vocab file. Similarly to the training of Lb_mBERT, we pre-train the
model for 10 epochs on the MLM task with a masking probability of 15% using the
same pre-training corpus.

7.2.2 Pre-training Corpus
In order to pre-train our models, we use the same corpus that we used to build
LuxemBERT (cf. Section 6.2.1) which consists of 12 million sentences, 6 million of
which are written in Luxembourgish.

7.3 Experimental Setup
In this section, we list our research questions for this study and describe the setup
of experiments we perform to answer these questions. For our experiments, we
consider six pre-trained language models fine-tuned on eight NLP tasks: Part-of-
Speech (POS) tagging, Named Entity Recognition (NER), Intent Classification (IC),
News Classification (NC), Winograd Natural Language Inference (WNLI), Sentence
Negation (SN), Sentiment Analysis (SA), and Recognizing Textual Entailment

2Our final models are available at https://huggingface.co/lothritz/Lb_GottBERT and
https://huggingface.co/lothritz/Lb_mBERT
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(RTE) (cf. Section 2.2). Furthermore, when applicable, we apply four perturbation
techniques to our test sets: negation, name replacement, location replacement, and
synonym replacement.

7.3.1 Research Questions
We address the following two research questions:

1. RQ1: Which model yields the highest performance on downstream NLP tasks?
In this research question, we aim to evaluate and compare the performance
of different language models on a set of downstream tasks such as News
Classification, Named Entity Recognition, POS-tagging, etc. The goal is to
identify the model that performs the best across all tasks or a specific set of
tasks.

2. RQ2: How robust are the models against data perturbation? In this research
question, we aim to evaluate the robustness of the models against different
types of data perturbations, namely: negation, name replacement, location
replacement, and synonym replacement. The goal is to understand how well
the models can handle these variations in input data and identify the model
that is the most robust.

7.3.2 Baseline Models
In this section, we present the various BERT models we investigated for this study.
Most of the models were pre-trained on Luxembourgish data. Table 7.1 shows an
overview of the differences between each model.

Table 7.1: Differences in pre-training scheme and data for each investigated model.
(NAP = no additional pre-training)

mBERT GottBERT LuxemBERT DA BERT Lb_mBERT Lb_GottBERT
Pre-training NAP NAP from scratch from scratch from mBERT from GottBERT

Authentic Lb Data No No Yes Yes Yes Yes
Translated De Data No No Yes No Yes Yes
Augmented Lb Data No No No Yes No No

7.3.2.1 mBERT & GottBERT
We use the original versions of both mBERT and GottBERT without additional
pre-training as two of our baseline models. This allows us to determine the impact
of our pre-training corpus on each respective model. While mBERT was partially
trained on Luxembourgish Wikipedia articles, GottBERT was trained exclusively
on German data. As such, we expect mBERT to yield better performances on the
downstream tasks.
7.3.2.2 LuxemBERT
We reuse the LuxemBERT model (cf. Chapter 6) that we made from scratch trained
on the 12 million sentences described in Section 6.2.1. Its architecture is made
up of 12 Transformer blocks, 768 hidden layers, 12 self-attention blocks, and 110
million trainable parameters, as well as a vocab size of 30 000 WordPiece tokens.
It was trained on the MLM task for 10 epochs with a masking probability of 15%.
As LuxemBERT already outperforms mBERT in numerous tasks, we expect it to
outperform both mBERT and GottBERT in most of our experiments.
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7.3.2.3 DA BERT
DA BERT was created by Olariu et al.[122] and was trained on the same 6 million
Luxembourgish sentences as LuxemBERT. Similarly to LuxemBERT, it was pre-
trained from scratch, and has a similar architecture to LuxemBERT: 12 Transformer
blocks, 768 hidden layers, 12 self-attention blocks, and 110 million trainable param-
eters. The vocab size is also identical with 30 000 tokens. However, contrary to
LuxemBERT, the 6 million remaining sentences were not translated from a different
language. Instead, they employed classical data augmentation techniques to create
more data. Specifically, they replaced words in the original dataset while preserving
the original meaning of the original sentences. The word replacements consisted of
synonym replacements, named entity replacements, and modal verb replacements.
They found that the performance of their new model is similar to that of Luxem-
BERT. As such, we also expect its performance in our experiments to be comparable
to that of LuxemBERT.

7.3.3 Downstream Tasks
For this study, we consider eight downstream tasks. In addition to the five tasks
introduced in Section 6.3.3 (POS-tagging, Named Entity Recognition, Intent Clas-
sification, News Classification, and WNLI), we also investigate Sentence Negation,
Sentiment Analysis, and the Recognizing Textual Entailment task, which we describe
in the following section3.

7.3.3.1 Sentence Negation
The sentence negation task consists of changing the polarity of a given sentence.
Specifically, the objective is to correctly place the word "net"4 in order to turn the
sentence negative. For this task, we only consider sentences that are fewer than
15 words long. The dataset consists of a subset of the Luxembourgish portion of
the Leipzig Corpora Collection [45]5, which was not used to pre-train either of our
models. We extract all the sentences containing the word "net" and turn them into a
labelled dataset accordingly. The resulting training, validation, and test sets contain
33975, 2171, and 10095 sentences, respectively. The word "net" is at position 3 in
most sentences (14.52% of the dataset), while it is at position 13 in the fewest cases
(0.5%).

7.3.3.2 Recognizing Textual Entailment
The Recognizing Textual Entailment (RTE) task was introduced by Haim et al. [60]
and was added to the GLUE benchmark collection [30] for evaluating the performance
of language models (cf. Section 2.2.3.1. As there is currently no Luxembourgish
version for this task, we translated the original version to Luxembourgish using the
googletrans API6. The final dataset contains translation errors, but it is serviceable
for our experiments. The training, validation, and test sets contain 2490, 277, and 801
sentences, respectively. 51% of the sentence pairs are examples for textual entailment
while 49% are not.

3Our datasets are available at https://github.com/Trustworthy-Software/LuxemBERT
4The Luxembourgish word for "not"
5https://wortschatz.uni-leipzig.de/en/download/Luxembourgish
6https://pypi.org/project/googletrans/
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7.3.3.3 Sentiment Analysis
Sentiment Analysis is a classic NLP problem consisting of determining whether a
given sentence is positive, negative, or neutral. For this study, we use two different
datasets: SA1 and SA2. SA1 is a dataset of Luxembourgish user comments collected
from the news website RTL7 that was manually annotated with the labels positive,
negative, and neutral. The training, validation and test sets contain 1293, 188, and
367 samples, respectively. 12% of the samples are labelled positive, 34% negative, and
54% are neutral8. SA2 is a subset of the SST-2 dataset [26] which we automatically
translated to Luxembourgish using Google Translate. Unlike the SA1 dataset, it has
binary labels: positive and negative. SA2’s training, validation, and test sets contain
9646, 872, and 2360 samples, respectively. 55% of the samples are labelled positive
and 45% negative.

7.3.4 Fine-tuning Parameters
Devlin et al. [3] recommends choosing hyperparameters for batch size, learning rate,
and number of training epochs from the following ranges: rangebatch size={16,32},
rangelearning rate={2e-5, 3e-5, 5e-5}, and rangeepochs={1,2,3,4,5}. For the POS, NER,
IC, NC, and WNLI tasks, we reuse the same parameters from Section 6.3.4, for the
remaining tasks, we perform a grid search using the original LuxemBERT model to
find the best-performing configuration of parameters. Table 7.2 shows the chosen
hyperparameters for each task. We fine-tune each of our models on the same sets of
hyperparameters.

Table 7.2: Fine-tuning hyperparameters for each investigated task

Task POS NER IC NC WNLI SN RTE SA1 SA2
batch size 16 16 16 16 16 16 16 16
learning rate 5e-5 5e-5 5e-5 2e-5 5e-5 5e-5 5e-5 5e-5
# epochs 3 3 5 2 5 4 4 2

7.3.5 Perturbation Techniques
In order to evaluate the robustness of our models, we investigate three perturbation
techniques, some of which are described by Ribeiro et al. [123]: sentence negation,
entity replacement, and synonym replacement. For this study, we conduct our
experiments as follows: we train our models on unperturbed training and validation
sets, and then test them on both the unperturbed and the perturbed test sets,
allowing us to determine the robustness of our models to each perturbation technique.
Due to the nature of our tasks, we cannot apply each perturbation technique to
every test set. Table 7.3 shows an overview of the techniques we use.
7.3.5.1 Negation
As described in Section 7.3.3.1, the aim of sentence negation is to turn a given
sentence into a negative. By applying sentence negation to the sentiment analysis,
we can change the polarity of sentences, turning positive sentences into negative
ones and vice versa. Furthermore, we can apply the technique to RTE by negating

7www.rtl.lu
8We make this dataset available on request
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Table 7.3: Applicability of the perturbation techniques

PT POS NER IC NC WNLI SN RTE SA1 SA2
Negation ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓

Name replacement ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓
Location replacement ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗

Synonym replacement ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

one sentence of each entailment pair in the test set. This approach will turn an
entailment sentence pair into a not_entailment pair.
7.3.5.2 Entity Replacement
Entity Replacement describes replacing proper names such as person’s or location
names in the datasets. Intuitively, changing names should not alter the meaning of
sentences in our datasets, so the predictions of the models should remain the same
regardless of the test set we use. For this study, we focus on replacing first names as
well as location names as they are the most common types of names in our datasets.
Specifically, we replace names in each sentence in our test sets by a randomly chosen
one from the same list of first names that was used to augment the pre-training data
for DA BERT. In order to maintain consistency, we ensure that identical names in
the datasets are all mapped to the same names during the replacement.
7.3.5.3 Synonym Replacement
As the name implies, for the synonym replacement perturbation, we replace words in
the test set by a randomly selected synonym. Specifically, we replace 0 or 1 synonym
in each sentence in each of our test sets. Similarly to entity replacement, this kind of
perturbation technique should not change the meaning of a given sentence and thus
not modify the prediction of a model. For this, we use the same synonym dictionary
that was used to augment the pre-training corpus for DA BERT

7.4 Experimental Results
In this section, we will present the detailed results from our experiments. Table 7.4
shows the average performance of each model on each task using the original test sets
in terms of F1 score. Table 7.5 displays the performances on original and perturbed
test sets of each model fine-tuned on Sentence Negation, RTE, and Sentiment
Analysis.

7.4.1 RQ1: Which model yields the highest performance on
downstream NLP tasks?

Similarly to Section 6.4, we first test the performance of each model on the MLM
task using the 10 example sentences introduced in Section 6.2.2. Tables 6.2, 7.6, 7.7,
and 7.8 show the suggestions to each example sentence from each of the investigated
models. Overall, it appears that the original LuxemBERT model still performs best
with all suggestions being grammatically correct and most suggestions making sense
from a semantic standpoint (cf. Table 6.2). Notable exceptions are the suggestions
related to food (sentences 3, 4, and 5) where the model oftentimes suggests drinks
rather than foods. However, it is to note that every other model struggles with
predictions for these particular sentences, most of them suggesting single letters rather
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Table 7.4: Results for each task on the original test sets. * denotes naive classifier
that always predicts the same class

Task mBERT GottBERT LuxemBERT DA BERT Lb_mBERT Lb_GottBERT
POS 0.886 0.902 0.890 0.887 0.889 0.900
NER 0.689 0.661 0.700 0.708 0.717 0.726
IC 0.460 0.574 0.725 0.717 0.760 0.762
NC 0.900 0.871 0.918 0.900 0.906 0.900

WNLI 0.640 0.780* 0.596 0.544 0.560 0.650
SN 0.804 0.248* 0.859 0.858 0.867 0.883

RTE 0.488 0.512* 0.528 0.551 0.563 0.489
SA1 0.612 0.636 0.666 0.687 0.664 0.651
SA2 0.737 0.697 0.859 0.861 0.868 0.864

Table 7.5: Difference (in percentage points) of performances between original test sets
and perturbed sets (Neg: Negated test set / NR: Test set with name replacement/
LR: Test Set with location replacement/ SR: Test set with synonym replacement)

Perturbation #samples mBERT GottBERT LuxemBERT DA BERT Lb_mBERT Lb_GottBERT
Sentence Negation

NR 356 0.1 0.0 1.8 0.6 0.2 0.5
LR 527 0.9 0.0 3.7 1.7 1.1 1.6
SR 6597 13.0 0 14.2 6.9 12.7 13.8

Recognizing Textual Entailment
Neg 373 100 100 38.2 41.1 2.5 41.6
NR 243 0 0 2.3 2.4 2.4 3.4
LR 363 0 0 2.0 3.4 0.3 5.7
SR 682 0 0 0.2 0.6 0.6 5.1

Sentiment Analysis 1
Neg 45 8.7 5.1 22.1 32.3 20 19.5
NR 11 4.3 0 1.5 4.3 0 2
LR 24 2.8 2.2 6.3 4 3.1 3.6
SR 276 0.5 0.6 0.9 0.6 1.1 1.2

Sentiment Analysis 2
Neg 1587 19.6 24.2 27.5 33.1 36.0 33.6
NR 148 0.9 1.0 1.0 1.8 0.8 1.4
SR 1508 1.1 5.3 0.9 2.6 2.2 2.0

than words. Both DA BERT (cf. Table 7.6) and Lb_GottBERT (cf. Table 7.8b)
perform similarly well to each other, only performing poorly when tested on sentences
3, 4, and 5. Lb_mBERT (cf. Table 7.7b) additionally struggles with sentence 2,
mostly suggesting letters instead of words. The unmodified mBERT model (cf.
Table 7.7a) performs well with sentences 7, 8, 9, and 10. As these sentences can be
regarded as statements of fact commonly found in documents such as encyclopaedias,
it is understandable that mBERT performs well with these types of sentences as it
was pre-trained exclusively on Wikipedia articles. GottBERT (cf. Table 7.8a), which
was not trained on any Luxembourgish data at all, performs worst in this task. The
model tends to either suggest seemingly random German words, or add suffixes to
the word before the masking token in order to create German words. For example,
regarding sentence 6, GottBERT only suggests verbs which, when added to the word
"um" result in new verbs.
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Table 7.6: Suggestions for DA BERT
ID Lang Sentence Suggestion 1 Suggestion 2 Suggestion 3 Suggestion 4 Suggestion 5

1 Lb Ech [MASK] an d’Schoul. gin ginn muss war wëll
En I [MASK] to school. go go have to (go to) was want (to go to)

2 Lb Ech ginn an d’[MASK]. Vakanz Schoul Congé Ausland f
En I go to the [MASK]. holiday school annual leave foreign countries f

3 Lb Ech iessen en [MASK]. a z net och o
En I eat a/it [MASK]. a z not also o

4 Lb Ech iessen e [MASK]. k b s r l
En I eat a [MASK]. k b s r l

5 Lb Ech iessen eng [MASK]. s k b a z
En I eat a [MASK]. s k b a z

6 Lb Den Hond läit um [MASK]. Buedem Réck Schwanz Kapp Bauch
En The dog lies on the/its [MASK]. floor back tail head belly

7 Lb D’A4 verleeft vun Esch bis op [MASK]. Diddeleng Esch Déifferdeng Beetebuerg Schëffleng
En The (motorway) A4 connects Esch and [MASK]. Dudelange Esch Differdange Bettembourg Schifflange

8 Lb Paräis ass d’Haaptstad vu [MASK]. Frankräich Paräis Lëtzebuerg Spuenien Katalounien
En Paris is the Capital of [MASK]. France Paris Luxembourg Spain Catalonia

9 Lb [MASK] ass d’Haaptstad vu Frankräich. Paräis Et Si Lille Bréissel
En [MASK] is the Capital of France. Pari sit it Lille Brussels

10 Lb De Xavier Bëttel ass de [MASK] vu Lëtzebuerg. Premier Buergermeeschter Premierminister Staatsminister President
En Xavier Bëttel is the [MASK] of Luxembourg. prime minister mayor prime minister minister of state president

Table 7.7: Performance of MLM task on the mBERT models
ID Lang Sentence Suggestion 1 Suggestion 2 Suggestion 3 Suggestion 4 Suggestion 5

1 Lb Ech [MASK] an d’Schoul. ##ill ##uel ##ed ##eh ##ap
En I [MASK] to school. ##ill ##uel ##ed ##eh ##ap

2 Lb Ech ginn an d’[MASK]. Stad u z 2 nr
En I go to the [MASK]. town u z 2 nr

3 Lb Ech iessen en [MASK]. nederland Europa zee belgie Vlaanderen
En I eat a/it [MASK]. Netherlands Europe sea Belgium Flanders

4 Lb Ech iessen e [MASK]. ##w s al ! man
En I eat a [MASK].##w s old ! man

5 Lb Ech iessen eng [MASK]. ##r ##h ##s ##l ##g
En I eat a [MASK]. ##r ##h ##s ##l ##g

6 Lb Den Hond läit um [MASK]. km2 m km hektar Island
En The dog lies on the/its [MASK]. km2 m km hektar Iceland

7 Lb D’A4 verleeft vun Esch bis op [MASK]. Lëtzebuerg Köln Luxemburg Aachen Koblenz
En The (motorway) A4 connects Esch and [MASK]. Luxembourg Cologne Luxembourg Aachen Koblenz

8 Lb Paräis ass d’Haaptstad vu [MASK]. Lëtzebuerg frans paris Frankreich france
En Paris is the Capital of [MASK]. Luxembourg French Paris France France

9 Lb [MASK] ass d’Haaptstad vu Frankräich. Metz Nancy Toulouse Troyes Poitiers
En [MASK] is the Capital of France. Metz Nancy Toulouse Troyes Poitiers

10 Lb De Xavier Bëttel ass de [MASK] vu Lëtzebuerg. Politiker President Gouverneur maire Premierminister
En Xavier Bëttel is the [MASK] of Luxembourg. politician president governor mayor prime minister

(a) Suggestions for mBERT
ID Lang Sentence Suggestion 1 Suggestion 2 Suggestion 3 Suggestion 4 Suggestion 5

1 Lb Ech [MASK] an d’Schoul. ginn gin muss war fueren
En I [MASK] to school. go go have to (got to) was drive

2 Lb Ech ginn an d’[MASK]. t Pensioun f a l
En I go to the [MASK]. t retirement f a l

3 Lb Ech iessen en [MASK]. d z o s .
En I eat a/it [MASK]. d z o s .

4 Lb Ech iessen e [MASK]. g k b s p
En I eat a [MASK]. g k b s p

5 Lb Ech iessen eng [MASK]. z p s k d
En I eat a [MASK]. z p s k d

6 Lb Den Hond läit um [MASK]. i Buedem Hals Bauch t
En The dog lies on the/its [MASK]. i floor neck belly t

7 Lb D’A4 verleeft vun Esch bis op [MASK]. Beetebuerg Péiteng Schëffleng Diddeleng Sussem
En The (motorway) A4 connects Esch and [MASK]. Bettembourg Pétange Schifflange Dudelange Sanem

8 Lb Paräis ass d’Haaptstad vu [MASK]. Frankräich Paräis Spuenien Lëtzebuerg Frankreich
En Paris is the Capital of [MASK]. France Paris Spain Luxembourg France

9 Lb [MASK] ass d’Haaptstad vu Frankräich. Et Paräis Versailles Lille Metz
En [MASK] is the Capital of France. it Paris Versailles Lille Metz

10 Lb De Xavier Bëttel ass de [MASK] vu Lëtzebuerg. Premier Premierminister Buergermeeschter Regierungsminister Staatsminister
En Xavier Bëttel is the [MASK] of Luxembourg. prime minister prime minister mayor government minister minister of state

(b) Suggestions for Lb_mBERT
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Table 7.8: Performance of MLM task on the GottBERT models
ID Lang Sentence Suggestion 1 Suggestion 2 Suggestion 3 Suggestion 4 Suggestion 5

1 Lb Ech [MASK] an d’Schoul. nung os se tel .
En I [MASK] to school. nung os se tel .

2 Lb Ech ginn an d’[MASK]. er frau mann männer Freunde
En I go to the [MASK]. he man woman men friends

3 Lb Ech iessen en [MASK]. Youtube Pinterest Anleitung kaufen Balkon
En I eat a/it [MASK]. Youtube Pinterest manual buy balcony

4 Lb Ech iessen e [MASK]. ch den mail ct de
En I eat a [MASK]. ch den mail ct de

5 Lb Ech iessen eng [MASK]. land ine ingen kaufen agement
En I eat a [MASK]. country ine ingen buy agement

6 Lb Den Hond läit um [MASK]. rühren füllen drehen gießen legen
En The dog lies on the/its [MASK]. stir fill turn water lay

7 Lb D’A4 verleeft vun Esch bis op [MASK]. 50 60 70 40 94
En The (motorway) A4 connects Esch and [MASK]. 50 60 70 40 94

8 Lb Paräis ass d’Haaptstad vu [MASK]. est es j vert o
En Paris is the Capital of [MASK]. est es j vert o

9 Lb [MASK] ass d’Haaptstad vu Frankräich. ass , and ass the
En [MASK] is the Capital of France. ass , and ass the

10 Lb De Xavier Bëttel ass de [MASK] vu Lëtzebuerg. la france e de mer
En Xavier Bëttel is the [MASK] of Luxembourg. la france e de mer

(a) Suggestions for GottBERT
ID Lang Sentence Suggestion 1 Suggestion 2 Suggestion 3 Suggestion 4 Suggestion 5

1 Lb Ech [MASK] an d’Schoul. ginn gin muss war fueren
En I [MASK] to school. go go have to (got to) was drive

2 Lb Ech ginn an d’[MASK]. Vakanz Pensioun Kierch Schoul Ausland
En I go to the [MASK]. holiday retirement church school foreign countries

3 Lb Ech iessen en [MASK]. h a o z e
En I eat a/it [MASK]. h a o z e

4 Lb Ech iessen e [MASK]. g k s f p
En I eat a [MASK]. g k s f p

5 Lb Ech iessen eng [MASK]. s k f p z
En I eat a [MASK]. s k f p z

6 Lb Den Hond läit um [MASK]. Buedem Schwanz Réck Bauch Kapp
En The dog lies on the/its [MASK]. floor tail back belly head

7 Lb D’A4 verleeft vun Esch bis op [MASK]. Beetebuerg Belval Péiteng Tréier Diddeleng
En The (motorway) A4 connects Esch and [MASK]. Bettembourg Belval Pétange Troyes Dudelange

8 Lb Paräis ass d’Haaptstad vu [MASK]. Paräis Frankräich Marseille Lëtzebuerg Bréissel
En Paris is the Capital of [MASK]. Paris France Marseille Luxembourg Brussels

9 Lb [MASK] ass d’Haaptstad vu Frankräich. Paräis Metz Et Marseille Versailles
En [MASK] is the Capital of France. Paris Metz it Marseille Versailles

10 Lb De Xavier Bëttel ass de [MASK] vu Lëtzebuerg. Premier Buergermeeschter Premierminister President Spëtzekandidat
En Xavier Bëttel is the [MASK] of Luxembourg. prime minister mayor prime minister president prime candidate

(b) Suggestions for Lb_GottBERT

For a more in-depth answer to this question, we refer to the results shown in both
Table 7.4 and Figure 7.1. Both the simple mBERT and GottBERT models perform
poorly compared to the remaining models, which is to be expected. In addition,
the GottBERT models fine-tuned for WNLI, SN, and RTE are all naive classifiers
that consistently predict not_entailment for the WNLI task, position 3 for the SN
task, and not_entailment for the RTE task. However, GottBERT does outperform
each model in the POS-tagging task, and mBERT outperforms every model except
for LB_GottBERT in the WNLI task. On the other hand, both the Lb_mBERT
and Lb_GottBERT models almost consistently outperform each remaining model,
with Lb_GottBERT performing best in four out of nine tasks, and Lb_mBERT
performing best in two tasks and second-best in four tasks. The two models that
were pre-trained from scratch usually achieve intermediate performances. However,
one notable exception is the SA1 task where both outperform Lb_mBERT and
Lb_GottBERT with DA BERT significantly outperforming every other model.
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RQ1 Answer: The models with no additional pre-training generally performed
worst, the models that were pre-trained with pre-loaded models performed best,
and the models pre-trained from scratch yielded intermediate results. Overall,
Lb_GottBERT generally performed best.
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Figure 7.1: Fine-tuning results of the models on each investigated task

7.4.2 RQ2: How robust are models against data perturbation?
In order to answer this question, we applied the perturbation techniques as described
in Section 7.3.5 to the test sets from three of the investigated tasks: Sentence
Negation, RTE, and Sentiment Analysis. For each perturbation technique, we only
consider the samples that were affected, omitting the samples that were unchanged
during the perturbation process. We then test each fine-tuned model on both the
original and the perturbed test sets we generated. We report the differences in
performance of each model between the unperturbed and perturbed test sets for SN,
RTE, and SA in Table 7.5.

Overall, we notice that both negation and synonym replacement perturbations have a
moderate to high impact on the performance of the models, while name and location
replacements have a relatively low impact (cf. Figures 7.2, 7.3, 7.4, 7.5)

For the SN task, we notice that both entity perturbation techniques, name replace-
ment and location replacement, generally have a very low impact on the performance
of the chosen models. One noticeable outlier is the original LuxemBERT model
with an average difference of 1.8 percentage points for name replacement, and 3.7
percentage points for location replacement, showing that fine-tuned LuxemBERT
models are somewhat susceptible to this kind of data perturbation. Another outlier is
the GottBERT model as there is no difference in performance between the perturbed
and unperturbed test sets, but as already mentioned, this particular model always
predicts the same answer: 3. As such, this score is not meaningful.
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Figure 7.2: Impact of negation on each model’s performance.
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Figure 7.3: Impact of name replacements on each model’s performance.
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Figure 7.4: Impact of location replacements on each model’s performance.
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Figure 7.5: Impact of synonym replacements on each model’s performance.
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While the differences are very low for entity replacements, we notice significant
differences for synonym replacement, most of which are close to 10 percentage points.
Once again, the LuxemBERT model shows the highest difference with 14.2 percentage
points. DA BERT, which was partially trained on data that was augmented with
synonym replacements, shows to be more robust against this kind of data perturbation
compared to the remaining models with a difference of only 6.9 percentage points.
For the RTE task, we observe that most models with the exception of Lb_GottBERT
are fairly robust against the replacement perturbation techniques. On the other hand,
they are very susceptible to negation, as only Lb_mBERT’s performance is almost
unchanged when tested on perturbed data; each remaining model’s performance is
nearly 40 percentage points lower. We notice a similar trend on the SA2 task, where
replacement techniques have only a slight impact on the model performance while
negation has a high impact, the difference in performance ranging from nearly 20-35
percentage points depending on the model. Regarding the SA1 task, we observe low,
yet mixed results for both entity replacement techniques, but this might be due to
the very small sample size of the respective datasets. On the other hand, the impact
of sentence negation and synonym replacement is noticeably smaller compared to
the SA2 task across all models.

RQ2 Answer: Most models were highly affected by sentence negation, moderately
affected by synonym replacement, and barely impacted by both name replacement
or location replacement. Lb_mBERT was shown to be the most robust of our
models overall.

7.5 Discussion
Overall, both Lb_mBERT and Lb_GottBERT outperform LuxemBERT and DA
BERT in almost all tasks. (cf. Table 7.4) However, while Lb_mBERT is also
shown to be highly resistant to data perturbation, it appears that the impact of
perturbation on Lb_GottBERT’s performance varies depending on the task. On
the other hand, both models trained from scratch display worse resistance to data
perturbation than Lb_mBERT. As such, we conclude that it is preferable to continue
pre-training a pre-existing model on textual data in the target language. According
to our experiments, it appears that there is a trade-off between performance and
robustness depending on the choice of pre-trained language model. A multilingual
model should be chosen if robustness is preferred, while a model for a language that
is close to the target language is preferable if the objective is high performance, at
least judging by the results from our experiments.

7.6 Related Works
7.6.1 Pre-Training Pre-Loaded Language Models
Similar to our approach, Muller et al. [121] continued to pre-train mBERT to various
unseen low-resource languages written in different non-Latin scripts and evaluate
the performance on three common NLP tasks. Similar to our own experiments, they
found that this approach typically leads to models that outperform both the original
mBERT and models that were trained from scratch. Our study, however, focuses on
a single language that is featured in mBERT. Furthermore, we do not only apply
this approach to mBERT, but also to GottBERT to evaluate the performance gain
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of pre-training a pre-loaded model for a language that is close to the target language.

7.6.2 Evaluating the Robustness of Language Models
Ribeiro et al. [123] introduced CheckList, a tool to semi-automatically create a
large number of test cases to determine the robustness of NLP models. Similarly to
our study, they consider various types of simple data perturbations to create new
test samples. However, their tool is more versatile as it also allows the creation of
templates to generate a large number of simple sentences as well as simple additions
of phrases that do not change the label of a sample.

Most of our own data perturbation techniques were inspired by data augmentation
approaches for low-resource languages detailed by Hedderich et al. [120] These
techniques included synonym replacements and named entity replacement such as
location replacement.

The ability of BERT models to handle negation on the task of Sentiment Analysis
was studied by Tejada et al. [124] who found that these models were not truly capable
of handling the concept of negation. Furthermore, models that were not shown any
negated sentences during the training performed poorly on negated sentences. A
similar result was found in our own study.

7.7 Threats to Validity
Similar to most experimental studies, there are factors that might threaten the
validity of this work when scrutinised.

The first threat is related to the choice of the pre-loaded models, namely mBERT and
GottBERT. Both of these models were pre-trained with hyperparameters that slightly
differ from the LuxemBERT and DA BERT models, so the improved performance
might have been due to confounding variables that we did not control. In particular,
the alphabet size and vocabulary size differ significantly as mentioned in Section 7.2.1.
However, we deemed GottBERT and mBERT as appropriate baselines for our study
as they are the closest to LuxemBERT and DA BERT in terms of architecture.

Another possible threat concerns some of the downstream tasks we chose to evaluate
our models. Specifically, the RTE and SA1 tasks are problematic as they were
automatically translated without manually correcting the result. As such, there are
numerous translation mistakes present in these datasets which might have influenced
the results of our experiments.

7.8 Summary
In this chapter, we investigated the effects of pre-training pre-loaded language models
vs pre-training language models from scratch for building Luxembourgish language
models. We evaluated our models in two dimensions: performance and robustness.
We conducted our experiments on nine downstream NLP tasks of varying difficulty,
and invesitgated the robustness of our models with three perturbation techniques.
We found that pre-training a pre-loaded model does indeed have a positive effect on
both the performance and robustness of fine-tuned models. In particular, the results
from our experiments suggest that using the German GottBERT model yields a
higher performance, while the multilingual mBERT results in a more robust model.
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8 Conclusion

In this chapter, we will summarise our contributions, and provide an outlook into
the future by discussing various ideas for follow-up research directions.
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Chapter 8. Conclusion

8.1 Summary
In this thesis, we discussed various domain-specific and language-specific NLP
challenges that arise in a multilingual country such as Luxembourg. We emphasised
three key aspects to be considered when handling NLP systems in Luxembourg:
challenges related to the financial domain, challenges related to multilingualism, and
challenges related to the Luxembourgish language. In short, our contributions to
the NLP community include multiple empirical studies, three novel language models,
and nine novel datasets for various NLP tasks.

With regard to NLP challenges relevant to the banking domain, we focused on
handling names in documents, but also generalised the task to include non-financial
documents as well. In Chapter 3, we performed an empirical study on the performance
of models based on the Transformer architectures BERT, RoBERTa, and XLNet
on the Fine-Grained Named Entity Recognition task, and compared them to two
non-Transformer based models: a simple CRF and an ensemble BiLSTM-CNN-CRF
model. We performed the study on 49 different domains including the banking
domain, the legal domain, and scientific domains. We determined that Transformer-
based models indeed outperform the competition in this task in terms of recall and F1
score, but not in terms of precision. Specifically, the simple BERT model performed
best in 36 out of 49 domains and RoBERTa in 10 out of 49 in terms of f1 score. We
furthermore noticed that there is a high correlation between the performance of a
model and the choice of the domain which could not be explained by the size of the
respective datasets. We then investigated in Chapter 4 how much the performance
of NLP models is impacted after the training datasets have been anonymised. We
considered two Transformer-based models, BERT and ERNIE, and six anonymisation
strategies applied to datasets for nine NLP tasks varying in difficulty. We found
that the impact of anonymisation before model training exists, but is relatively low.
We determined that the best results were achieved when anonymising using random
names. We furthermore found and recommend to anonymise the data prior the
model training to increase the performance gain of fine-tuned models.

Addressing challenges related to multilingualism, we performed an empirical study on
multilingual chatbots for the banking domain. Specifically, in Chapter 5 we targeted
the NLU capabilities of a chatbot, i.e. the Intent Classification and Slot Filling
tasks when trained on up to four languages. We concluded that chatbots trained
on mixed-language datasets lead to a worse performance, and that the decrease in
performance correlated with the increase in number of languages. We also found
that training several chatbots on separate datasets is usually preferable to training a
single chatbot on a mixed-language dataset. In addition to the study, we also publish
a novel multilingual dataset for Intent Classification and Slot Filling.

With respect to Luxembourgish NLP, we focused on challenges related to the training
of BERT models for the Luxembourgish language. In Chapter 6, we introduced
LuxemBERT as the first Transformer-based model for Luxembourgish. We showed
that our data augmentation technique is viable to create new textual data for
language model pre-training. We also show that our LuxemBERT outperforms its
sole competitor mBERT in five out of six downstream NLP tasks. Additionally,
we make the model itself as well as four NLP datasets in Luxembourgish available
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to the community. Finally, in Chapter 7, we investigated various strategies to pre-
train BERT models. We specifically perform a study to determine whether it is
preferable to pre-train a model from scratch, or to continue pre-training using an
already existing model. Based on the approach of continued pre-training from a
pre-loaded model, we trained and published two additional Luxembourgish language
models named Lb_mBERT and Lb_GottBERT. Furthermore, we introduced and
published four additional Luxembourgish datasets for NLP tasks. We found that
our LuxemBERT model from Chapter 6 also outperforms mBERT in these four
additional tasks, increasing the number from five out of six to nine of ten. We,
furthermore found that our two novel language models further advance the state
of the art as Lb_mBERT performs best in two out of nine investigated tasks and
Lb_GottBERT performs best in four out of nine tasks. We additionally performed
an evaluation of the robustness of each of our models and found that the performance
of our models was highly impacted by sentence negation. Simple word replacements
on the other hand had a low to moderate effect on the performance. We found that
Lb_mBERT was typically the most robust out of all the models.

8.2 Future Work
Finally, we present multiple potential research opportunities to expand or improve
on the work featured in this dissertation:

• Multilingual Fine-Grained Named Entity Recognition: Our findings from Chap-
ter 3 did show that Transformer-based models perform well on this task.
However, we only considered English data in our study. As there is also a
Turkish version of the EWNERTC dataset that we used, it would be interesting
to investigate how well Turkish models such as BERTurk [125], and multilingual
models such as mBERT [3] or XLM-RoBERTa [119] would perform in this
task. We would also be interested in addressing other languages, but that
would require significant effort as these kinds of datasets are scarce and require
sizeable effort to create. Finally, we would like to determine to what extent
the choice of domain impacts the model performance in other languages.

• Applying Domain-specific Models to Fine-Grained Named Entity Recognition
For our study on FGNER from Chapter 3, we used the general-purpose BERT,
RoBERTa, and XLNET models which were trained on broad corpora. However,
some of the subsets that were featured in that study contain many domain-
specific words that do not necessarily appear in those corpora. As such,
we suggest to investigate the performance of domain-specific models such as
FinBERT or SciBERT(cf. Section 2.1.3.4) applied to appropriate subsets.

• Translation-based Chatbots: In our study regarding multilingual chatbots in
Chapter 5, we considered two implementation strategies: monolingual chatbots
combined with a language selector, and a single chatbot trained on multilingual
data. As a third strategy, we can consider a combination of a monolingual and
a translation tool such as the recently released NLLB-model [126]. For instance,
we found that the English chatbot we trained yielded the highest performance.
Depending on the quality of the translations, this strategy might lead to better
results than our own approaches. In addition, as there was no BERT model for
the Luxembourgish language available at the time of the study, we decided to
use mBERT to train the monolingual chatbots. However, with the release of
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our LuxemBERT model, we could train them with language-specific language
models instead to increase the performance of these models.

• Improvement of LuxemBERT : We already trained and presented multiple
Luxembourgish BERT models in Chapters 6 and 7, all of which perform well
on a variety of NLP tasks. However, while we considered the close relationship
between the German and the Luxembourgish languages when augmenting, we
did not consider the influence of the French language on Luxembourgish. A
large number of Luxembourgish words have their roots in the French language,
in particular nouns, adjectives, and verbs. In addition to translate function
words from German to Luxembourgish, we could translate certain content
words from German to French, resulting in a new pre-training corpus for a
Luxembourgish language model. We would be interested in determining if this
new augmentation technique would result in further performance increases.

• Generalise Our Data Augmentation Method to any Low-Resource Language:
In Chapter 6, we showed that our data augmentation scheme is to an extent
useful in the case of the Luxembourgish language. It would be interesting to
apply this technique to other language pairs to train low-resource languages.
Obvious examples include Latvian/Lithuanian to train a Latvian BERT model
or Afrikaans/Dutch for an Afrikaans model, which are the language pairs
investigated by Wu et al. [43]. We can broaden our scope to build a repository
that includes numerous low-resource and endangered languages. This would be
an arduous, yet valuable undertaking in an effort to preserve these languages.

• Domain-specific Language Models in a Low-resource or Multilingual Setting: In
this dissertation, we found that there is a general lack of language models for
low-resource languages as well as differences in performance when applying a
general-purpose language model to different domains. Following these findings,
we can mitigate these issues by building either multilingual or low-resource
language models trained on domain-specific data. The data augmentation
technique we used for creating Luxembourgish data can be expanded by
including domain-specific vocabulary in our translation scheme. For instance,
we could apply this modified data augmentation technique to financial textual
data written in a high-resource language to create adequate data for a low-
resource language. This way, we could complement already existing models
such as FinBERT for the financial domain, significantly benefiting the NLP
community at large.
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List of Published Models and Datasets

Published Models:

• LuxemBERT, the first Luxembourgish BERT model, available at https://
huggingface.co/lothritz/LuxemBERT (2022)

• Lb_mBERT, a Luxembourgish BERT model derived from multilingual BERT,
available at https://huggingface.co/lothritz/Lb_mBERT(2023)

• Lb_GottBERT, a Luxembourgish BERT model derived from GottBERT,
available at https://huggingface.co/lothritz/Lb_GottBERT (2023)

Published Datasets:

• Banking Client Support Dataset for Intent Classification and Slot Filling, avail-
able at https://github.com/Trustworthy-Software/BCS-dataset (2021)

• Luxembourgish POS dataset for Part-of-Speech Tagging, available at https:
//github.com/Trustworthy-Software/LuxemBERT (2022)

• Luxembourgish NER dataset for Named Entity Recognition, available at https:
//github.com/Trustworthy-Software/LuxemBERT (2022)

• Luxembourgish RTL News Classification dataset for Text Classification, avail-
able at https://github.com/Trustworthy-Software/LuxemBERT (2022)

• Luxembourgish WNLI, translated from WNLI [61] , available at https://
github.com/Trustworthy-Software/LuxemBERT (2022)

• Luxembourgish Sentence Negation for negating sentences, available at https:
//github.com/Trustworthy-Software/LuxemBERT/tree/main (2023)

• Luxembourgish RTE, translated from RTE [34], available at https://github.
com/Trustworthy-Software/LuxemBERT/tree/main (2023)

• Luxembourgish SST-2, translated from SST-2 [26], available at https://
github.com/Trustworthy-Software/LuxemBERT/tree/main (2023)

• Luxembourgish Sentiment Analysis for sentiment analysis, available at https:
//github.com/Trustworthy-Software/LuxemBERT/tree/main (2023)
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