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Abstract
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Modeling and Predicting the
Resilience of Ecosystems

by Tiago Alexandre DE JESUS SOUSA

The study and monitoring of natural ecosystems are among the most critical chal-
lenges of the current century in the context of climate change. The advancements
in Earth Observation programs, either remote sensing or in-situ, have allowed us
to assess, understand and monitor the natural ecosystems and man-made environ-
ments, in addition to improve our understanding related to the impact of human
activities on the resilience of Earth ecosystems. In turn, those Earth Observation
programs generate a significant amount of homogeneous, multi-format and mul-
tiple source data, fundamental for the analysis of ecosystem resilience and other
Earth Observation applications. The intent of this thesis was to create an approach
to develop systems analysing the resilience of ecosystems using Model-Driven En-
gineering (MDE) and Artificial Intelligence (AI). Foremost, in an MDE context, our
proposed approach allows to model the requirements for ecosystem resilience analy-
sis, supported with a dedicated metamodel. This requirements model is used conse-
quently to generate skeleton applications for the collection and optimisation of Earth
Observation data as well as artificial neural networks for the information extraction
for the specified properties of interest in a given ecosystem. Then, a final step is the
analysis of the computed values to conclude on the resilience of the ecosystem with
respect to the properties under study. Finally, in this thesis, we illustrate our pro-
posed approach with a case study focusing on the field of Al for social good with a
case study targeting a system capable of analysing the resilience of the Luxembourg
territory with respect to the Paris agreements on the reduction of greenhouse gases
emissions.
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Chapter 1

Introduction

Fifty years ago, the United Nations Conference on the Human Environment in Stock-
holm raised awareness on the impact of human activities on Earth’s ecosystems.
Since then, the environment has become a pressing global issue for the first time,
and multiple efforts have been made to ensure the sustainability of human life on
Earth.

Among the most important efforts, the advancements in Earth observation (EO) re-
mote sensing programs such as Landsat or Sentinel have allowed us to assess, under-
stand and monitor the natural ecosystems and man-made environments, in addition

to improve our understanding related to the physical characteristics of Earth.

Moreover, in the last decades, satellites have proven to be effective to monitor the
impact of human activities and assess the status and evolution of resilience in natural
ecosystems. Human activities are among the most critical threats to the functioning
of natural ecosystems. Anthropogenic climate change, biodiversity reduction and
exploitation of natural resources, are among others, the most significant threats to
critical changes in the resilience of ecosystems. Rising greenhouse gas emissions
have triggered climate change and put the resilience of natural ecosystems and the
human societies that depend upon them at risk at an unprecedented rate.

Hence, the continuous research and development in Earth observation technologies,
such as remote sensing or in-situ, to monitor the changes on Earth as well as the im-
pact of human activities on the resilience of ecosystems have lead to the generation
of significant volumes of data concerning our planet.

Due to the advancements in Earth observation technologies and instruments along
with the exponential demand for Earth observation data, the complexity of the gen-
erated data increased. Thus, such increase in Earth observation data complexity has
created a need for tools and methods to efficiently collect and analyse the complex
data. Therefore, the development of software systems for the collection and process-
ing of large volumes of complex data and the usage of artificial intelligence meth-
ods to analyse and extract information have become indispensable in the domain of
Earth observation.
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1.1 Problem Statement

Despite significant advancements in Earth observation technologies and instruments,
either remote sensing satellites or in-situ, it remains complex to analyse the resilience
of ecosystems or to undertake Earth observation in general.

Typically, in order to analyse and study the resilience of ecosystems with Earth ob-
servation data, multiple activities are required. The activities involve different de-
velopment processes such as the specification of the dataset requirements (remote
sensing or in-situ), the definition of the ecosystem to study, the entity to evaluate on
the ecosystem, as well as the property of interest to observe to infer the resilience of
the ecosystem. Moreover, to extract resilience information from Earth observation
multi-sources, which may have multi-dimensional spatial and temporal structures
evolving through time, the application of artificial intelligence algorithms becomes
essential, creating an additional constraint for the ecosystem resilience analysis.

Accordingly, the complexity of analysing the resilience of natural ecosystems with
Earth observation technologies and instruments is mainly attributable to the high
number of Earth observation data sources and high volumes of generated data for
different regions of the globe.

Therefore, in this context, the application of software engineering development life-
cycle principles, model-driven engineering techniques, and artificial intelligence al-
gorithms can help reduce the complexity associated with Earth Observation for the

ecosystem resilience analysis.

Thus, to decrease the complexity, the usage of modeling approaches in model-driven
engineering comes in as an adequate solution for the specification, design and devel-
opment of a structured software system to undertake ecosystem resilience analysis
using Earth observation data. Additionally, with the recent advances in artificial
intelligence techniques, more specifically in deep learning, multiple algorithms can
be applied to extract information from high volumes of data among different Earth
observation data sources.

In this context, our research question is: what could be a model-driven software engi-
neering method for the development of systems analysing the resilience of ecosystems using
artificial intelligence and earth observation data?
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1.2 Objectives

The principal objectives related to the subject of this thesis were the following:

* Study the literature on the modeling of ecosystems in a software engineering
and model-driven engineering context. Additionally, study the literature on
remote sensing and artificial intelligence for Earth observation.

* Proposition of an approach to develop software systems analysing the resilience
of ecosystems using model-driven engineering and artificial intelligence.

¢ Definition of a case study on a system analysing the resilience of the Luxem-
bourg territory with respect to the recent Paris agreements on the reduction of
greenhouse gas emissions.

1.3 Outline

We finish this introduction with an outline of the following chapters of this thesis.

In the second chapter, we present the relevant background and related work with
respect to our contribution. We present the concepts related to ecosystems, remote
sensing, modeling and artificial intelligence. Due to the interdisciplinary context
of this thesis, some concepts are introduced at a greater extent compared to others.

Thus, concepts related to remote sensing and artificial intelligence are more detailed.

We introduce in the third chapter our proposed approach for ecosystem resilience anal-
ysis. Thus, we present in detail the different activities of our approach, namely the
requirements specification, the intelligent observers generation and the final analy-

sis activity.

Once we finish the presentation of our approach, we present in the fourth chap-
ter the case study on a system analysing the resilience of the Luxembourg territory
with respect to the recent Paris agreements on the reduction of greenhouse gas emis-
sions. The three different activities of our proposed approach are presented in the
approach. Hence, we present the requirements specification for the case study as
well as an overview of the collected and optimised Earth observation datasets (re-
mote sensing and in-situ). In addition, we present in detail the artificial intelligence
architecture designed to extract information for the ecosystem resilience analysis
with a remote sensing dataset. Finally, we present the ecosystem resilience analysis
results of the case study.

We end the thesis with a conclusion in the fifth chapter and a presentation of the
future work in the sixth chapter.
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Chapter 2

Background & Related Work

In this chapter, we present the background and the related work of our contribution
for the Ecosystem Resilience Analysis approach. We start by introducing and defining
the different concepts used to produce our contribution, as well as how the concepts
are used throughout this thesis. Additionally, at the end of each concept section, we

present the associated related work.

2.1 Ecosystem

Based on [1], an ecosystem can be defined as a biological system composed of all
the organisms (plants, animals, fungi, et cetera) found in a particular physical en-
vironment (air, water, soil) within an Earth-System context, interacting with it and
each other. Since ecosystems are defined within or between a network of interacting
organisms, an ecosystem can be of any size and composed of sub-ecosystems.

Ecosystems, as dynamic entities, are controlled and impacted by external and inter-
nal factors. External factors, as for example climate, influence the general structure
of an ecosystem and how organisms behave. Internal factors such as disturbance,
succession or decomposition influence the availability of resources within an ecosys-
tem. Thus, internal factors are responsible for the resources required for organisms’

growth, reproduction and maintenance.

With repeated variations in ecosystems caused by negative disturbances from both
the external and internal factors, the ability of ecosystems to regenerate and create
essential ecosystem processes to maintain an equilibrium can be impacted.

To measure variations in ecosystems, two parameters are fundamental:

* Resistance: Ability of an ecosystem to hold the general structure and processes
in equilibrium when exposed to disturbances.

* Resilience: Ability to recover to equilibrium as a response to disturbances and
perturbations.
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2.1.1 Resilience

First introduced in [2] to describe the recover of natural systems as a response to
natural or human impacts, resilience has been defined in ecological literature as:

1. The required time for an ecosystem to return to an equilibrium or steady-state
following a perturbation [3].

2. "The capacity of a system to absorb disturbance and reorganise while undergo-
ing change so as to still retain essentially the same function, structure, identity,
and feedbacks" [4]

Among the different sources of disturbances, human factors are one of the most
important [5]. Human factors affect ecosystems with pollution, deforestation or with
the burning of fossil fuels, releasing carbon dioxide (CO;) into the atmosphere and
changing the balance of the climate system. With climate change, new disturbances
are created, progressively deteriorating ecosystems.

In case of important disturbances in a given ecosystem, the equilibrium can be im-

pacted to such a degree that the ecosystem may completely lose its resilience.

Recently, with the advancements of studies regarding human-induced climate change,
resilience has been defined in the "Sixth Assessment Report" [6] of the United Nations
Intergovernmental Panel on Climate Change (IPCC) as “not just the ability to maintain
essential function, identity and structure, but also the capacity for transformation”.

Therefore, it is fundamental to create approaches to study and monitor ecosystem
resilience. Furthermore, with rapid environmental changes, such approaches shall
allow the analysis of how disturbances affect the essential ecosystem processes.

2.1.2 DREF Framework

In this thesis, we propose an approach to develop systems for Ecosystem Resilience
Analysis (ERA) using model-driven engineering coupled with artificial Intelligence.
We focus on the concept of ecosystem resilience that we define as "a property of an
ecosystem that is considered to improve capabilities over time with respect to some
given properties of interest", based on the Formal Framework for Dependability and
Resilience from a Software Engineering Perspective (DREF) [7]. Despite the fact that
it is a framework associated with the software engineering domain, its abstract and
generic terminology defined mathematically allow us to use it in this thesis.

Therefore, in this section, we describe the DREF concepts that are used throughout
this thesis. In DREF, the most basic concepts are the entities and the properties. Enti-
ties are defined as "anything that is of interest to be considered" while properties are
defined as the basic concepts that are used to characterise entities such as an infor-

mal requirement or a mathematical property. In the context of our thesis, we can
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restrict our focus on any entities that are ecosystems while the concept of properties
is restricted to characterise ecosystem components (biotic or abiotic).

Moreover, DREF proposes the concept of satisfiability, which is used to evaluate if
a given property is satisfied by an entity, and the concept of observer is used to rep-
resent subjectivity for the evaluation of satisfiability. For each observer, there is an
observation function which will give the satisfiability. Furthermore, the concept of
nominal satisfiability is defined in DREF as a satisfiability function "used to represent
the expected satisfiability". Since tolerance margins may be necessary to evaluate
satisfiability, in DREF, an additional concept is introduced called tolerance threshold.
Thus, tolerance threshold is defined as another satisfiability function, used to repre-
sent the lower bound specifying the "tolerance margin for the satisfiability functions
w.r.t. a nominal satisfiability function". Finally, DREF introduces the concept of evo-
lution axis, defined as a "set of values that are used to index a set of entities or a set
of properties".

In the context of our thesis, the concepts of satisfiability, nominal satisfiability, tolerance
threshold and evolution axis are used as proposed in DREF. However, the concept of
observer is extended and it is used as an abstraction of a data source providing Earth
observation data to evaluate if a given property is satisfied by an entity in a given
period of time, as presented in Chapter 3.

2.2 Remote Sensing

The term “remote sensing”, first used in 1960, refers to the science of acquiring in-
formation about objects or areas from a distance. As defined in [8], remote sensing
is a "field of study associated with extracting information about an object without
coming into physical contact with it”.

Remote sensing started with the invention of the camera in 1816 by Joseph Nicéphore
Niépce, which lead to the development of photography in the following years. With
photography, the process to acquire a permanent image was invented.

Soon after, the first aerial photograph of a French village was taken in 1858, inside a
hot air balloon by Gaspard-Félix Tournachon, commonly known by his pseudonym
"Nadar". With this picture, the era of remote sensing had started. In the follow-
ing years, remote sensing images were captured mostly using cameras mounted in
pigeons, kites and hot air baloons.

With the beginning of the First World War, remote sensing emerged as a key mil-
itary asset, used for aerial surveillance and reconnaissance purposes with cameras
mounted on airplanes. During the Second World War, further developments were
made, producing new camera sensors and photo interpretation equipment. With
such advancements, the field of remote sensing began to be used for other purposes,
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such as geology, agriculture, forestry and cartography. Later on, with the launch of
the Landsat-1 [9] satellite in 1972, the first satellite designed to observe the Earth,

remote sensing has been integrated in satellites.

Since then, remote sensing has allowed to observe and detect changes in the most
remote regions of the Earth. Nowadays, the term remote sensing refers to the usage
of satellite and their sensors to observe the Earth.

In the context of ecosystem resilience analysis, remote sensing provides useful spatial
and temporal Earth observation data to identify, study and monitor ecosystems (at-
mosphere, soil and oceans) and the evolution of their resilience.

NADAR. élevant la Photographie a la hauteur de I'Art

FIGURE 2.1: Caricature of aerial photography "Nadar raising photogra-
phy to the height of Art", signed Honoré Daumier.

2.2.1 Principles

In order to observe the surface of the Earth, satellite sensors shall acquire informa-
tion about the different objects on the surface without any physical contact with it.
However, energy sources and radiation principles influence the ability of sensors to
acquire informations and produce satellite imagery. In the following sections, we
introduce the basic physics principles of remote sensing.

Electromagnetic Radiation

The basic principle of remote sensing is through electromagnetic radiation, where
the Sun is the primary source. Electromagnetic radiation is one form of energy
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propagation and consists of waves of the electromagnetic field propagating through
space at the speed of light and being reflected by all objects.

An electromagnetic radiation is composed of a perpendicular electrical field ampli-
tude (E) and a magnetic field amplitude (B), oscillating perpendicular to each other
and traveling at a constant speed of 3 X 10°m/s known as the speed of light (c), see
Figure 2.2.

FIGURE 2.2: Illustration of an Electromagnetic Radiation.

Electromagnetic radiation has two important parameters, namely wavelength and

frequency.

- Wavelength: Denoted as A, and measured in a factor of meters, it refers to the

length of a wave cycle, measuring the distance between two sequential crests.

- Frequency: Denoted as v and normally measured in hertz (Hz), it refers to the
number of cycles of a wave passing a fixed point per unit time.

As shown in Equation 2.1, both parameters are related to each other, as the frequency
of a wave is conversely proportional to its wavelength. As thus, the shorter the
wavelength, the higher the frequency and vice-versa.

A= (2.1)

c
v
The different intensities of the electromagnetic radiation wavelength and frequency,
are separated into multiple ranges or regions in the electromagnetic spectrum, de-
picted in Figure 2.3.

The electromagnetic spectrum is divided into several ranges of electromagnetic radi-
ation waves covering many orders of magnitude, from extremely small wavelengths
known as cosmic rays to longer wavelengths such as microwaves.

Depending on a given satellite sensor, radiation energy is collected within different
ranges of the electromagnetic spectrum. In remote sensing each collected range in

the electromagnetic spectrum is referred to as a “spectral band”.
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FIGURE 2.3: The Electromagnetic Spectrum.
The divisions between the ranges and the six colors are not perfectly
distinct.

¢ Gamma rays have the smallest wavelengths and the most energy of any other

wave in the electromagnetic spectrum.

¢ X-rays range in wavelength from 0.01 nm to 10 nm and are able to pass through

many different types of materials.

* Ultraviolet range in wavelength from 1 nm up to 380 nm, which remains in-

visible to the human eye.

* Visible spectrum refers to the electromagnetic waves visible with the human
eye. The visible spectrum region is divided into six wavelength intervals, rep-

resentative of a particular color:

Violet: From 380 nm up to 450 nm.

Blue: From 450 nm up to 495 nm.

Green: From 495 nm up to 570 nm.

Yellow: From 570 nm up to 590 nm.

Orange: From 590 nm up to 620 nm.
— Red: From 620 nm up to 750 nm.

* Infrared ranges from approximately 750 nm up to 0.01 mm in wavelength,

divided into three main regions.
— Near Infrared (NIR): From 750 nm up to 140 nm.
— Shortwave Infrared (SWIR): From 140 nm to 3000 nm.

— Thermal Infrared: From 3000 nm up to 0.01 mm.
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e Microwaves ranges from approximately 1cm up to 1 m and are mostly used
for satellite communication due to their high frequency, in the context of re-

mote sensing.

Atmospheric Influences

As mentioned before, the Sun is the primary source of electromagnetic radiation.
However, before the electromagnetic radiation from the Sun reaches the surface of
the Earth, some regions of the electromagnetic spectrum can be absorbed or scattered
[10], and therefore only a subset of the presented electromagnetic radiation ranges
are used for remote sensing.

Absorption refers to the loss of energy at various wavelengths due to molecules
in the atmosphere. The electromagnetic radiation is absorbed in the Earth’s atmo-
sphere by gases, such as:

¢ Carbon Dioxide (CO,) absorbs radiation in the thermal infrared region of the
electromagnetic spectrum.

* Ozone (O3) absorbs most of the radiation in the ultraviolet region of the elec-
tromagnetic spectrum.

* Water Vapor (H,0) absorbs radiation from the thermal infrared and microwave

ranges, depending on the location and time of the year.

In contrast to absorption, electromagnetic radiation can be scattered. Scattering
refers to the redirection of the electromagnetic energy by particles such as aerosols
in the atmosphere. There are three different types of scattering that impact electro-

magnetic radiation (see Figure 2.4).

* Rayleigh Scatter is a scattering caused when the particles and molecules in the
atmosphere are smaller in diameter than the radiation wavelengths.

* Mie Scatter is a scattering caused when the particles in the atmosphere are
similar in diameter compared with the radiation wavelengths. Examples of the

major causes of mie scatter include water vapors, dust, pollen, among others.

* Nonselective Scatter is a scattering caused when the particles in the atmo-
sphere are larger in diameter compared with the radiation wavelengths. For
instance, water droplets in clouds are an example of nonselective scatter.

Surface Reflectance

When the electromagnetic radiation is not absorbed or scattered due to atmospheric
influences, three possible forms of energy interactions can occur when the radiation
reach and interact with the Earth’s surface.
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FIGURE 2.4: Types of Electromagnetic Scattering.

Therefore, depending on the wavelength, material or the characteristics of the Earth’s
surface, the following interactions can take form:

¢ Absorption occurs when the radiation energy is absorbed into the target.

* Reflection occurs when the radiation energy rebounces off the target, redirect-
ing it.
¢ Transmission occurs when the radiation energy goes through the target.

In remote sensing, the most interesting energy interaction is reflection as it allows
to obtain property informations related to the reflected surface target and therefore,
distinguish between the different surfaces.

Additionally, reflection can be categorised in two different types (see Figure 2.5),
each one representing how the energy is reflected from a target:

(A) Specular Reflection refers to the "mirror-like" reflection when the target sur-
face is smooth, directing the wavelength energy in a single direction. Specular
reflection occurs for example on lake surfaces with calm bodies of water.

(B) Diffuse Reflection refers to the scattering of wavelength energy when reflected
on rough surfaces. Thus, wavelength energy is reflected almost uniformly in
all directions. Diffuse reflection occurs for example on trails.

(A) Specular Reflection. (B) Diffusive Reflection.

FIGURE 2.5: Types of Surface Reflection Interactions.

Therefore, with reflection, electromagnetic radiation energy can rebounce off the tar-
get in two different ways. Depending on the type of reflection, either specular or dif-
fusive, reflectance will change. Reflectance is defined as the percentage of incoming
wavelength energy, reflected from the surface. As thus, depending on the reflectance
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characteristics of the target, a satellite sensor can distinguish the surface and there-
fore, obtain surface property informations and collect EO data.

Figure 2.6 shows the typical reflectance signature curves for different types of target
surfaces, such as grass, snow, dry soil and water.
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FIGURE 2.6: Spectral reflectance signature curves for grass, snow, dry
soil and water surfaces. Data from the USGS Spectral Library [11].

2.2.2 Sensors

In order to collect data from Earth processes and create satellite imagery, satellite
sensors require electromagnetic radiation to be reflected. Therefore, satellite sensors
are differentiated in two types, namely active and passive (depicted in Figure 2.7).

Active sensors emit their own pulse of energy towards the target of interest. In turn,
the sensor measures and detects the changes in the reflected radiation signal. The
advantage of active sensors is that remote sensing data can be collected during the
day or night, since active sensors are not dependent on electromagnetic radiation
sources such as the Sun. The disadvantage concerns the amount of energy to gener-
ate on orbit to be able to "illuminate" targets.

Passive sensors do not emit their own pulse of energy. Instead, passive sensors
rely on both sunlight radiation that has been reflected from the Earth and thermal
radiation in the visible and infrared regions of the electromagnetic spectrum (see
Figure 2.3). Therefore, passive sensors can only measure and detect reflected radi-
ation signals when external energy is available. In other terms, passive sensors are
dependent of the Sun, illuminating the Earth.
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(A) Active Sensors. (B) Passive Sensors.

FIGURE 2.7: Types of Remote Sensing Sensors.
© National Aeronautics and Space Administration (NASA)

Resolution

To distinguish between the different satellite sensors, either active or passive, reso-
lutions are important characteristics as they influence the representation of the re-
flected or emitted energy into imagery data. Therefore, imagery data captured with
satellite sensors are characterised with four types of resolution.

Spatial resolution is defined as the size of pixels in an image representing the size of
the Earth’s reflected surface. For instance, if a satellite sensor has a spatial resolution
of 200 meters, one pixel represents a surface area of 200 meters X 200 meters on
Earth. Thus, the higher the resolution, a larger level of details can be observed on
the Earth’s reflected surface.

Nowadays, the spatial resolutions of satellite sensors vary from:
* High resolution: spatial resolution smaller than 2 meters.
¢ Medium resolution: spatial resolution between 2 meters and up to 30 meters.
¢ Low resolution: spatial resolution larger than 30 meters.

Spectral resolution is defined as the ability of the satellite sensor to measure and
record the reflectance of a target on different wavelengths. For instance, if the the
spectral resolution is low, the sensor covers more regions of the spectrum, and there-

fore, more details are obtained.

Temporal resolution is defined as the interval of time (often reported in days) be-
tween the collection of data by the satellite sensor over the same Earth region. There-
fore, the higher the temporal resolution, the higher is the amount of satellite imagery
in a small interval of time. Temporal resolution is one of the most important charac-
teristics of satellite sensors as it allows to monitor, analyse and detect subtle changes
on the same area of the Earth’s surface.

Radiometric resolution is defined as the ability of the sensor to discriminate differ-
ences in reflected or emitted energy. Therefore, the higher the radiometric resolu-
tion value, the more variation in reflection or emitted energy is captured, producing
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more details in satellite imagery. The details are expressed in levels of brightness
with respect to the bit-depth of the satellite sensor.

An example of different levels of radiometric resolution is shown in Figure 2.8.

(C) 8 values (3 bit) (D) 16 values (2 bit)

FIGURE 2.8: Differences in Radiometric Resolution.

2.2.3 Remote Sensing for Ecosystem Observation

With hundreds of Earth observation satellites currently in orbit, remote sensing has
provided significant data sources for the observation and understanding of ecosys-
tems and their constant evolution. Since the launch of Landsat in 1972, the Era of
remote sensing has driven forward our understanding of Earth-system processes.

The advancements in the last 50 years of Earth observation satellite sensors in terms
of spatial, temporal, spectral and radiometric resolutions has enabled the obser-
vation, monitoring and classification in space and time dimensions of terrestrial,
aquatic and climatic environments. Examples include the study and assessment of
species diversity and their conservation [12], the observation and estimation of forest

biomass [13] and carbon monitoring [14], among others.

Additionally, in the context of understanding climate change, the scientific, soci-
etal and economic interests on remote sensing for ecosystem observation has trans-
formed the investigation of climate processes [15] as well as the study and assess-
ment of human activities and their increasing impact on Earth [16].
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However, despite the advancements in remote sensing, there are remaining chal-
lenges for ecosystem observation such as development of software for ecosystem
observation and monitoring, gathering of remote sensing data, data analysis and
scale issues, as presented in [17]. In Chapter 3, we present a software engineer-
ing approach which tackles some of the current challenges with remote sensing for
ecosystem observation.

2.2.4 Related Work

In this section, we present a few of the related works done in the domain of remote

sensing for ecosystem observation.

Cohen et al. present in [18] the role of remote sensing, more specifically with the
Landsat satellites, to acquire Earth observation data for ecological investigations and
applications. Their summary on the role of Landsat for ecosystem observation show
the application of the 30 year old record of spatial and temporal remote sensing data
to identify and monitor land cover, to study the biophysical attributes of vegetation
as well as to analyse the fragmentation and structure of forests with respect to bio-
diversity. Moreover, the authors describe the different case studies of Landsat data
to study both the state and the dynamics of ecosystems. Examples of the presented
case studies are the study of temporal ecosystem dynamics, evaluation of vegetation
spatial patterns and mapping of large areas for ecology monitoring.

Goetz et al. present in [19] the advances in remote sensing and their implications for
the monitoring and measuring of carbon stocks. In particular, the authors focus on
the application of remote sensing, specifically with light detection and ranging sen-
sors (LiDAR) for the monitoring of biomass in order to create a baseline estimation
for carbon stocks, which could be used to improve the estimation of other terrestrial
sensors measuring carbon changes. Likewise, the authors described the complex-
ity of using LiDAR sensors for accurate carbon measurements in areas covered by
clouds. Since LiDAR transmits energy in the near-infrared region of the electromag-
netic spectrum, atmospheric influences as presented in Section 2.2.1 can absorb or
attenuate the energy transmitted.

Lausch et al. introduce in [20] the application of remote sensing for the understand-
ing of forest health. To overcome the complexity associated with the terrestrial mon-
itoring of forest health, the authors provided an overview on how remote sensing
data can help with the repetitive and objective monitoring of forest health indica-
tors on different spatial and temporal scales and with a rapid and cost-effective
method. In an additional paper [21], Lausch et al. presented a the requirements
for the creation of multi-source forest health monitoring, where the usage of the dif-
ferent remote sensing sensor resolution characteristics (presented in Section 2.2.2)
is indicated as an important solution to reduce the gaps in data, which occur with

terrestrial sensors.
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2.3 Modeling

Throughout the history, modeling has been crucial for the development of society,
as it allowed to create simplified versions of something that is real.

From early civilisations who used some forms of modeling to create small-sizes of
architecture plans, to ancient Greek astronomers and cosmologists such as Ptolemy,
who used modeling and mathematics to demonstrate their hypothesis regarding the
motion of the celestial bodies [22].

Additionally, modeling has proven to be fundamental in engineering and sciences,
as a way of coping with the reality through abstractions and simplifications. For in-
stance, modeling is crucial in the field of computer sciences, where it is an essential
part of the specification, design and development of a software system. According
to the Object Management Group (OMG), "modeling is the designing of software appli-
cations before coding" [23].

Hence, in this section, we present the concepts related to modeling in a software

engineering and model-driven engineering context.

2.3.1 Software Engineering

"The major cause of the software crisis is that the machines have
become several orders of magnitude more powerful!” [24]

— Edsger W. Dijkstra, Turing Award (1972)

In the early days of computer science, the process of writing software was cumber-
some and was not seen as a dedicated type of engineering. In the late 1960s, many
software projects failed due to the difficulties to produce large, correct, efficient, pre-
dictable and verifiable computer programs. The difficulties, mainly due to the in-
creased complexity of hardware and project requirements were a source of budget
overruns and delays. Therefore, the increase of complexity in software development
lead to the "software crisis” in 1968.

To address the “software crisis”, discussions took place at the NATO Software Engi-
neering Conferences which lead to the creation of the Software Engineering field in
1969 to establish methodologies and best practices for the development of software
[25].

As defined by Sommerville [26], SE is an engineering discipline covering all aspects
of software production, from requirements analysis and definition to operation and
maintenance. With the evolution of SE in the last 50 years, new techniques, processes
and methodologies have emerged, creating the basis of today’s SE.
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Nowadays, SE is ubiquitous and has impacted human life, with software systems
being the backbone of our technology. The type of software systems are diverse, and
as thus, not every software process can be applied to develop each type of software
system. Nevertheless, as presented in [26], despite the different software processes,
the following four central SE activities must be present in every software process:

* Specification: A set of software functionalities and software constraints must
be specified.

* Development: A software complying with the specification must be produced.

e Validation: A software must be validated to ensure the compliance with the
specification.

¢ Evolution A software must mature to comply with specification updates.

These activities are just a subset of the possible activities that may be included in soft-
ware processes but constitute the major activities in every Software Development
Life Cycle (SDLC) approaches. A SDLC is a streamlined abstract representation of a
software processes.

An example of a SDLC approach is the Waterfall model [27], depicted in Figure 2.9.
In this approach, the software development process is sequential and the progress
flows downwards through the different phases as a waterfall. The outcome of a
phase represents the input for the succeeding phase sequentially.

The sequential phases of the Waterfall model, reflecting the central SE activities pre-
sented previously, are:

* Requirements definition: A complete and comprehensive description of the
software functionalities and software constraints must be defined in a require-
ments document.

* System and software design: In this phase, the requirements specification
from the preceding phase is studied and a solution to define the elements of
a software system such as the architecture must be prepared to develop the
actual software system.

¢ Development and unit test: The different components of the software system
are produced and validated with respect to both the requirements specification
and the solution design from the preceding phases.

¢ Integration and system testing: The different elements constituting the soft-
ware system are integrated and evaluated to determine if the software produc-
tion complies with the requirements.

* Operation and maintenance: Once the software system is delivered, update
solutions must be distributed to correct failures or errors. Additionally, with
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FIGURE 2.9: The Waterfall model.

the discovery of new system requirements, new adaptations must be intro-

duced to enhance the software system.

In this thesis, a requirements definition approach for the Ecosystem Resilience Analysis
is proposed in the context of the Software Development Life Cycle. Additionally, we
propose an automation towards the SE development activity.

2.3.2 Model-Driven Engineering

With the purpose of reducing the complexity of SE development and maintenance,
the Model-Driven Engineering (MDE) methodology [28] has emerged as a promis-
ing solution to leverage automation and abstraction on the SE development life-
cycle. MDE aims to use engineering techniques where models are the first-class cit-
izens to enable the development at higher levels of abstraction by employing con-
cepts closer to the domain of problems, instead of using the concepts offered by
programming languages.

The concept of a model in the context of SE has been defined as "an abstraction of a
(real or language-based) system allowing predictions or inferences to be made" [29].
In other terms, a model is a representation of a system under study with the purpose
of providing information about the represented system.
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To leverage automation in software development, MDE promotes the concept of
model transformations to transform models from one form to another. A model transfor-
mation, is a mapping function taking a source model as input and generating a target
model, with respect to a set of transformation rules. Different model transformation
languages have been proposed for the definition of transformation rules, such as
F-Alloy [30] or the QVT family [31], standardised by the OMG.

However, to make automation a reality, models passed through model transformations
must conform to a metamodel. The concept of metamodel is used to define a model of a
model. A metamodel is an abstraction model defining the syntax and the semantics of a
language with the purpose of specifying a modeling language to be expressed with
the models at different levels of abstraction.

In general, model transformations can be classified in four different categories: a

* Endogenous transformation: the metamodel of the source and the target model
are equal.

* Exogenous transformations: the metamodel of the source and target model are
different.

* In-place transformation: the source model is copied to the target model.
* Out-place transformation: the target model is created from scratch.

In this thesis, we present a MDE approach for the modeling of requirements for
Ecosystem Resilience Analysis, with a dedicated metamodel defining the syntax and the
semantics to be followed with compliant models. Additionally, we propose the au-
tomated generation of software skeletons through model transformations for the col-
lection and optimisation of datasets, as well as the computation of resilience values,
compliant with model requirements.

2.3.3 Unified Modeling Language

With the the evolution of the SE field, multiple modeling methodologies and object-
oriented programming languages began to appear. However, software engineers
had difficulty finding a clear, visual and universal modeling language among many
similar modelling methodologies.

As a result of an effort to unify distinct and leading modeling methodologies, to
create a universal SE modeling language, the Unified Modeling Language (UML)
[23] is created. Due to the important industry support, it became de facto an Object
Management Group standard in 1997.

Based on three different modeling notations [32, 33, 34] for object-oriented software
development, UML is created with four different goals:

1. Representation of complex software systems through modeling concepts.
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2. Establish extensibility and specialisation to extend the core concepts.
3. Be independent from programming languages and software processes.
4. Provide a modeling language usable by humans as well as machines.

With the introduction of new extensions brought to the specification standard, the
Unified Modeling Language became a semi-formal language allowing the specifica-
tion, modeling, visualization and documentation of software system artifacts [23],
with different types of diagram models at different levels of abstraction. Currently,
UML supports fourteen diagram types divided into two different categories, namely
the structural diagrams and the behavioral diagrams.

Structural diagrams depict the structure or the static view of a system. Thus, di-
agrams in this category are used to represent a general outline of a system, with
respect to the structure of objects such as their attributes, relationships and opera-
tions, among others.

Behavioral diagrams depict the internal dynamic behaviour of a system, describing
how the system interacts with itself and others.

¢ Structural diagrams: ¢ Behavioral diagrams:

— Class diagram - Use case diagram
- Activity diagram
— Profile diagram
— State machine diagram

- Component diagram — Interaction diagram:

- Deployement diagram + Sequence diagram
_ Object diagram + Communication diagram
+ Interaction overview dia-
— Package diagram
gram
- Composite structure diagram + Timing diagram

Due to the scope of this thesis, we only present the class diagram. For an extended
presentation of the different diagrams, please refer to the specification [23].

As the backbone of object-oriented software systems, the class diagram is one of the
most used structural diagrams to represent the general outline of a system. A class
diagram can be composed with the following (non-exhaustive) concepts:

Class: A class is an abstract representation of the type of an object, reflecting the

structure and behaviour of the main elements within the system. It contains attributes

and operations with different levels of visibility (public (+), protected (#),
private (—) and package (~)).
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User

+ name : String
+ age : Int
+ email : String

# updateEmail( email : String ) : String

FIGURE 2.10: Example of a UML class.

Multiplicity: To indicate the number of class instances participating in the different
relationships, the concept of multiplicity is used. Multiplicity is denoted together
with relationships and the values can be expressed as:

e Zero or one, with the [0..1] notation.
¢ Exactly one, with the [1] notation.

® One or more, with the [1..*] notation.
* Many, with the [0. .*] notation.

¢ Exact number, expressed for example with [2], denoting that exactly two class

objects participate in the relationship.

Relationship: Relationships are used to represent the relationship between the dif-

ferent classes in a class diagram. There exists five different relationship types:

* Inheritance / Generalisation: Refers to a "is-a” relationship, where a “child”

class inherits its type from a “parent” class.

User

+ name : String
+ age : Int
+ email : String

# updateEmail( email : String ) : String

Admin
updateUser : Percentage

+ deleteUser(email: String) : String

FIGURE 2.11: Example of UML class inheritance / generalisation.

* Association: Refers to a logical connection between two classes.

* Aggregation: Refers to a “part of” relationship, where a class is the result of
being aggregated with another class, creating therefore a more complex object.

It is a special type of association.
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User 1 1 Account

assigned Account

FIGURE 2.12: Example of UML class association.

Car 2.% Doors

FIGURE 2.13: Example of UML class aggregation.

* Composition: Refers to a type of aggregation relationship with the difference
being that the aggregated class cannot exist without the aggregator class.

Human | 1 Brain

FIGURE 2.14: Example of UML class composition.

¢ Dependency: Refers to the dependency of a class with respect to another class.

Student dependsOn Thesis
+grade: Imt Lo

# hasMaster(thesis) : boolean

FIGURE 2.15: Example of UML class dependency.

Enumeration: An enumeration is a data type with instances representing user-defined
data types.

DataType: A datatype is similar to a class data type, with the difference being that
it cannot own sub DataType instances. It is used to define and represent value types

in a respective domain.

In this thesis, we focus specifically on UML class diagrams for the abstract modeling
of requirements for Ecosystem Resilience Analysis with a dedicated metamodel defining
the domain model for the proposed software system approach. Moreover, UML
class diagrams are once again used for the representation of the metamodel with a
model instance.

2.3.4 Ecosystem Modeling

In the context of ecosystems, modeling has shown to be an important tool in the
study of ecological systems with the construction and analysis of mathematical mod-
els for ecological processes. Modeling approaches allows the creation of analytical
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and simulation systems with different levels of abstractions to study and understand
ecological processes with the intent of predicting the dynamics of real ecosystems.
Additionally, modeling creates opportunities to study and understand ecological
processes that would be costly or impractical to perform on a real ecosystem due to
"logistical, political, or financial reasons" [35].

Another advantage of modeling resides in the fact that a simulation of an ecological
process that would take centuries in reality can be done almost instantaneous with
the help of computers.

Due to the "ability" of models to explain phenomena and make predictions, multi-
ple applications of ecosystem modeling have been found in fields such as agricul-
ture [36], natural resource management [37] or environmental health risk assessment
[38].

2.3.5 Related Work

In this section, we present the related work in the domain of ecosystem modeling
in the context of software engineering. Based on our research, only a few works are
available and relevant for this thesis.

Dufour-Kowalski et al. proposes in [39], an open-source software framework for for-
est growth modeling. The authors presented a state-of-the-art regarding the model-
ing software and frameworks for the application domains of forestry, ecology, agri-
culture and plants, together with their limitations. Based on the current modeling
solutions, the authors found limitations regarding the creation, reusability and sim-
plification of models in a software engineering context.

Therefore, the proposed software framework focused on the development of a soft-
ware system for the reusability and simplification of model creation. With the ob-
jective of reducing the challenges faced by forest growth modellers, the open-source
software framework has been produced with the following functionalities:

* A graphical user interface environment for model development, modification

and integration.
* Reusable libraries of generic model components and data structures.

¢ A documented simulation environment for the execution, analysis and testing

of models.

In [40], a presentation is given regarding the crucial role of modeling for both sci-
ence and ecology. As the authors noted, with the advancements in computation, the
development of models enabled to "mimic nature, generate questions, complement
field experiments and observations", which would not be possible to undertake in
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nature itself. Either because it would not be practical, or because it would take cen-
turies. Additionally, in [41], Seidl argues that to study the ecosystem, ecologists
must embrace "modeling and empirical research as two powerful and often comple-
mentary approaches in the toolbox of 21st century ecologists". Moreover, the author
noted the importance of software for ecosystem modeling as a convenient tool to
"access and apply models in recent years".

Finally, Scheller et al. present in [42] how ecology related software tools and ecologi-
cal models are usually produced in an incremental manner, for a single purpose. As
thus, such software tools and models cannot address new hypotheses.

Therefore, a new approach is proposed for the development of a software systems
for the modeling of ecosystems. The focus of the paper is to illustrate the advan-
tages of following software engineering modeling techniques such as UML and the
software development life cycle process. The re-engineering of LANDIS, an object-
oriented model of forest landscape disturbance and succession [43] is used as a case-study
to illustrate the improvements related to the application of software engineering

modeling techniques for ecosystem modeling.
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2.4 Artificial Intelligence

"Every aspect of learning or any other feature of intelligence can in
principle be so precisely described that a machine can be made to
simulate it.” [44]

— John McCarthy, Turing Award (1971)

Artificial Intelligence (AI) refers to the simulation of human intelligence processes
demonstrated by machines programmed to mimic human cognitive behaviour and
actions. In [45], Al is referred as "any system that perceives its environment and

takes actions that maximise its chance of achieving its goals".

Despite being an important field of study within computer science since 1956 [44],
with an important number of academic research and usage in the industry, a univer-
sal definition of the term "Artificial Intelligence” has not been defined. Since literature
has many different and related definitions of Al, there exists four possible goals to

pursue in Al, as observed in [45]:

— Systems that think like humans. — Systems that think rationally.

— Systems that act like humans. — Systems that act rationally.

As thus, a system with characteristics respecting such goals, can be classified as “arti-
ficially intelligent”. Therefore, to compare the ability of “artificially intelligent” systems

to think in relation to humans, Al-based systems can be grouped into four distinct
types:

* Reactive: Has no memory and only responds to different stimuli. This is the
most basic type of Al, where an Al-based system was produced with a pre-

dictable output based on the received input.

¢ Limited memory: Uses memory to learn and improve its responses over time.
This type of Al is the most used today and is similar to how neurons work in

a human brain.

* Theory of mind: Understands the needs and emotions of other intelligent en-
tities and interacts with them, adjusting behaviour. This type is known as the
next frontier of Al as it replicates the human ability to attribute mental states to

itself and others.

¢ Self-aware: Has memory and self-awareness. This type of Al equals human
intelligence with the same needs and emotions.
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2.4.1 Machine Learning

With the evolution of computing and the availability of large amounts of data, a
subset of Al emerged, called Machine Learning (ML). As defined in [46], "Machine
Learning is the study of computer algorithms that allow computer programs to au-
tomatically improve through experience”.

With ML, the focus became the usage of artificial intelligence for the solving of prac-
tical problems, where sets of data are used as input to extract patterns in order to
create predictions. With predictions, a function approximation allows the generalisa-
tion from the passed data and therefore, learn from it [47].

To learn from data, there exists multiple categories of ML approaches. Due to the
scope of this thesis we present only the two most widely used categories:

* Supervised Learning: Refers to the learning of a function mapping both the
inputs and the desired outputs [45] from a subset of labeled data, known as
training data. With the production of an inferred function, using the training

data, predictions can be made to associate outputs with new inputs.

¢ Unsupervised Learning: Refers to the ability to learn without labeled training
data [45]. In this approach, the training data is used as input to identify hidden
features and to learn patterns from the data.

2.4.2 Artificial Neural Networks

At the core of the different ML approaches, we have ANNSs. First proposed in 1943
[48], Artificial Neural Networks are a set of algorithms modeled after the human
brain and used to perceive complex patterns in sets of data in order to make deci-

sions.

The structure of an ANN, depicted in Figure 2.16, is composed of a set of connected
nodes with structures called artificial neurons (Figure 2.17) in three different types
of layers, namely the input layer, the hidden layer and the output layer.

A neuron, represents the basic unit of a neural network composed of a set of inputs,
a set of weights and an activation function, producing an output from its inputs.

Formally, each neuron receives a set of x vector feature values as its input and com-
putes a predicted y output. Additionally, each unit has a set of w and b parameters,
with w defined as a column vector of weights and b defined as a bias (b).

Both parameters are updated during the learning process. At each stage of the train-
ing interaction, the neuron computes a weighted sum of the values of x with respect
to the current w vector of weights and finally, the bias is added to the summation of
the multiplied values, giving v.
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FIGURE 2.17: Structure of an Artificial Neuron.

Therefore, the simple computation process behind a trivial neuron can be modeled
mathematically as follows:

Y =wixy+waXpg+ -+ wyx, +b (2.2)

When those computations are concluded, the result can be passed to an activation
function to help with the normalisation of the output.

Activation functions can be divided into two different types, namely the linear and
non-linear activation functions. One the one hand, with a linear activation function,
a neuron is a simple regression model and therefore, very limited and merely suit-
able for ordinary problems such as prediction or regression. On the other hand, the
non-linear activation functions are the most used since they allow the creation of

complex mappings between both the inputs and output.
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Hence, the neuron model can be modelled mathematically in the following way:

y=¢(wix; + wyxy + -+ - + wyx, + b) (2.3)

Additionally, the use of non-linear activation functions in a neural network model
helps to relay the information backwards in a process called backpropagation [49],
depicted in Figure 2.18.

Since backpropagation relays the information backward to compute the gradient, it
helps consequently with the gradient descent [50, 51], which is an iterative optimisa-
tion algorithm used to find a local minimum of a differentiable function, (see Figure
2.20).
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FIGURE 2.18: Backpropagation of the errors (55“1 to control the

weights through the neural network.

Different non-linear activation functions are used in neural network models such as

the sigmoid, defined as ¢(x) = 1:7 which has a very simple derivative and a great

impact on the speed of the backpropagation learning [52]. Other examples of non-

linear activation functions are the hyperbolic tangent function which has a similar

structure compared to the sigmoid function and is defined as ¢(x) = % and the
rectified linear unit (ReLU), defined as ¢(x) = max(0, x), which is extremely com-
putationally efficient by only outputting zero for negative inputs, and consequently,
it is extensively used in neural networks. Nevertheless, because of the zero-hard

rectification, it “does not capture negative information” [53].

For the learning of a neural network, there should be in a place a function to evaluate
the best suited set of weights to be used, namely the objective or loss function [51]. Due
to the fact that at the heart of a neural network exists an optimisation problem to be
solved, a method to evaluate the modelling performance of the algorithm on a given
set of data is required.

Therefore, in the context of optimising the learning performance of a neural network,
loss functions are applied to evaluate the best set of weights during the training
of neural networks. To evaluate, loss functions determine the loss (distance error)
between the current output and the expected output. In simple words, when the
loss function outputs a very high number, it implies that a high number of false
predictions is occurring in the model and therefore, the tuning of parameters such
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FIGURE 2.19: Sigmoid, hyperbolic tangent and rectified linear unit
activation functions plotted in a [-2,2] domain.

as the number of layers, neurons, activation function et cetera, should occur. As
thus, loss functions define how well the neural network is predicting with respect to
a given set of data.

Multiple loss functions are used in neural networks and much like the activation
functions, loss functions can be divided into two different types, in particular the
binary classification losses and regression losses. Binary classification loss functions
are mainly used in predictive modelling problems with two different labels, where

the target values are in the set 0, 1.

One of the most used loss functions in binary classification problems is the cross-
entropy, defined as:

N
Hy(q) = -5 S i log (p (y:)) + (1= 1) -Tog (1 = p (1)) 2.4)
i=1

where y is the label value in the corresponding target, p(y) is the prediction proba-
bility and N is the number of points considered. Thereby, the binary cross-entropy
computes an average score of the differences between the target and predicted prob-
ability distributions.

Regression loss functions are used instead to predict a finite quantity and conse-
quently different loss functions are taken into account for that purpose. One of the
most commonly used and simple regression loss functions are the mean absolute er-
ror (MAE) and the mean squared error (MSE), which computes the sum of squared

distances between the target variable and the predicted values.
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Gradient Descent

During the training of a neural network, we are trying to find the best solution for an
optimisation problem by determining the parameters with the best output in terms
of the objective function. During this process, gradient descent occurs by computing
the gradient of the loss function by taking the first-order partial derivatives with
respect to the parameters and subsequently, updating the parameters with respect to
the gradient, giving the direction of the steepest ascent. Therefore, in every iteration
of the process, the parameters are updated in the opposite direction of the gradient
computed for the cost function.

Finally, to reach the descent point, a learning rate parameter should be specified to
define the step size to be updated for the purpose of attaining the (local) minimum.
This cycle process is repeated until a minimum is reached, which however is not
guaranteed to occur due to convergence.

Wy

wr
w3

Wy

FIGURE 2.20: Example of a gradient descent to solve an optimisation
problem.

With the evolution of the Machine Learning field, multiple ANNs architectures have
been created. Each new ANN architecture has been designed following the same
principles as depicted in Figure 2.16, but with the purpose of being more efficient
for different problems and tasks.

Due to the scope of this thesis, we present only a subset of the most used ANN
architectures in the remote sensing field.

Autoencoders

First introduced in 1986 [54], an autoencoder is an unsupervised learning architecture
with the aim of reducing the dimensionality of inputs by recreating them.

The architecture of an autoencoder is composed of two components, namely the
encoder and the decoder and has the unique characteristic of having the same dimen-

sions on both the input and output layers.
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On one side, the encoder maps the input into the code, encoding the input data and
storing it in the hidden layer. On the other side, the decoder decodes the information
stored in the hidden layer allowing the autoencoder to approximately reconstruct
the output and thereby, preserving the most intrinsic aspects of the data. An archi-

tecture example is depicted in Figure 2.21.

Input Output
Layer Layer

Encoder Decoder

FIGURE 2.21: Example of an autoencoder architecture.

Generative Adversarial Networks

Another popular application of deep learning on remote sensing data is through
generative models, namely Generative Adversarial Networks (GANSs) [55].

GAN:Ss are an example of an unsupervised learning architecture, using two different
neural networks competing with each other in a zero-sum game situation, where one
agent’s gain is another agent’s loss, with the purpose of modeling and generating
new data instances that resemble the feed training data.

Therefore, given a set of data instances X and a set of labels Y, one neural network
works as the Generator, capturing the joint probability p(X, Y) to generate new data
instances in the domain while the other neural network, the Discriminator captures
the conditional probability p(Y|X) to discriminates between different kinds of data

instances.
To put it simply, a GAN architecture works in the following manner:

1. The generator takes a noise sample from the latent space, which is a simpler
representation of a data point.

2. With the latent space sample, the generator generates a fake sample of data.
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3. The generated sample is fed into the discriminator alongside a real sample of
data, taken from the training dataset.

4. The discriminator returns a prediction with a probability of values between
0 and 1, where 0 means that data is definitely fake and 1 meaning that the
received sample of data is definitely authentic.

Hence, with the adversarial training of GANs, the Generator progressively generates
data closer to the training data distribution, making it an effective architecture for
data augmentation [56]. However, if one neural network is better than the other, the
GAN will not converge [55], making the training process harder.
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FIGURE 2.22: Generative Adversarial Network Architecture.

Convolutional Neural Networks

First introduced in 1989 to recognize handwritten zip code digits [57], Convolutional
Neural Networks (CNNs) are an example of supervised learning methods, with an
architecture inspired by the organisation of the visual cortex and similar to the con-
nectivity pattern of neurons in the Human brain. CNNs rely on annotated data to
compute the loss cost and consequently, backpropagate the errors to update the gra-

dients of each parameter of the network.

In general, the architecture of a CNN (shown in Figure 2.25) is comprised of one
or multiple convolutional layers, one or multiple pooling layers which are followed
by one or more fully connected layers, used to create a prediction. Since it contains
multiple layers between the input and output layers, CNNs are in fact a special type
of artificial neural networks, more formally it is a Deep Neural Network (DNN),

most commonly applied to analyse and classify visual imagery in different fields.

Among the different architectures, CNNs [57] are the most dominant application of
deep learning, a subfield of machine learning presented in Section 2.4.3.

The building blocks of a CNN are described below:

¢ Convolutional Layer: Mathematical operation applied to the input data to
filter and reduce the information to produce a feature map, a summarised set of
the most descriptive information. The filter in the convolutional layer is called
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a kernel and depending on the application, can have diverse dimensions such
as 2 x 2 or 3 x 3. Figure 2.23 shows an example of a convolutional operation.

o[1[1]1]o]0]o]
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FIGURE 2.23: Two-dimensional convolution operation, where a ker-
nel matrix (K) “slides” (from top-left to bottom-right) over the the
target input matrix (I) to produce an elementwise multiplication.
As a result, it will be summing up the results into a single output
pixel, in a matrix (C).

* Pooling Layer: Operation applied on a feature map to reduce its dimensions.
Pooling layers summarise the information contained in a feature map with the
intent of reducing the number of parameters to learn during the training as
well as the amount of computations to perform. Figure 2.24 shows an example
of common pooling operations.
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(b) Average-Pooling

FIGURE 2.24: Example of two common pooling operations in CNNs,
used to downsampling the feature maps obtained from the
convolution layer.
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¢ Fully-Connected Layer: With the 3-dimensional matrix outputs from the pre-
vious pooling or convolutional layers, the fully-connected layer first flattens
in steps the received information and creates a single vector with a size cor-
responding to the trained target classes. In the last step, the vector is used to
give the final probability for each class.

[l Convolutional Layer Max pooling Layer

Fully-Connected

14x14x16

7x7x32

-q

7x7x64

3x3x64

Softmax

14x14x32

28x28x1 28x28x16

Input Feature Extraction Classification

FIGURE 2.25: Convolutional Neural Network Architecture.

Since CNNss are very effective architectures in reducing the number of parameters
without losing on the quality of trained models, research on convolutional neural
networks has progressed rapidly and created many different CNN architectures be-
ing used nowadays, for different types of tasks and problems.

Due to the intrinsic convolutional characteristics of reducing the input image dimen-
sionality while retaining information capable to learn abstract and effective features,
CNN s have been adopted as a solution for a wide range of Earth observation prob-
lems [58, 59, 60].

2.4.3 Deep Learning

First introduced in 1986 [61], the term "Deep Learning” referred to the usage of mul-
tiple layers to build more complex functions in order to compose shallow artificial
neural networks. Nevertheless, the training of such deep neural network architec-
tures was impractical due to limitations in hardware.

With the advances in hardware allowing more processing power and the improve-
ments in data collection since early 2000s, the modern era of Deep Learning (DL)
begun. DL is a subfield of machine learning and it is currently the most applied
type of artificial intelligence due to the application of feature learning. Feature learn-
ing refers to the set of techniques allowing a system to automatically discover and
learn the abstract representation of data. Such techniques allows a system to learn
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complex functions mapping the input to the output directly from data, without re-
quiring and being dependent on human decisions impacting the data. As thus, DL

algorithms do not require human instructions to perform a given task.

To automatically discover and learn the abstract representation in data, deep learn-
ing algorithms use “deep” layers in artificial neural network architectures. In other
terms, artificial neural networks are stacked, so the output of the first becomes the
input of the second and so on. Consequently, as the number of layers in the network
is increased, the descriptive power of the network is likewise improved.

Therefore, as opposed to traditional neural networks, composed of a few hidden
layers, the architectures of modern Deep Learning networks can be composed with
hundreds of layers, each one with thousands of outputs (hidden units) traversing
the network. The number of outputs in each layer of the network is referred as
the width and the number of layers is referred as the depth. Both are an example of
hyperparameter variables in DL, determining the capacity to learn and the structure
of the network.

The advancements in artificial neural network architectures allowed the description
of arbitrarily complex functions in high dimensions, making it efficient on differ-
ent fields such as climate science, medical image analysis, computer vision, natural

language processing, among many others.

Artificial Intelligence

Machine Learning

Deep Learning

FIGURE 2.26: Relationship between Al, ML & DL.
ML is a subset of Al whereas DL is a subset of ML algorithms.

2.4.4 Related Work

In this section, we present the related work in the context of artificial intelligence for

ecosystem observation.

Camps-Valls et al. present in [62] a comprehensive approach to apply artificial in-
telligence, more specifically deep learning, for Earth sciences. The authors present
how the advancements in deep learning, congruent to the success in the domain of

computer vision, have proven to be effective to extract information from complex
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and homogeneous data in the remote sensing field. Additionally, a presentation is
given about the different families of neural networks such as convolutional neural
networks, autoencoders, generative adversarial networks or recurrent neural net-
works together with different use cases and applications for ecosystem observation.
Examples of the applications include remote sensing image classification, semantic
segmentation, object detection or ecosystem simulation.

Ma et al. [63] present a detailed review regarding the rise of deep learning in remote
sensing applications. The authors present how deep learning algorithms have been
applied for remote sensing image analysis tasks including image registration, scene
classification, object detection, land use and land cover (LULC) classification and

segmentation, among many others.

Lary et al. [64] present how the different modeling capabilities of machine-learning
methods have resulted in an extensive application for solving problems in geo-
sciences and remote sensing for the study of as land, ocean and atmosphere ecosys-
tems. Moreover, it is shown that new applications of genetic algorithms in the geo-
science and remote sensing domain has demonstrated to be an efficient approach
to generate practical prediction equations, in cases where artificial neural networks
are considered as black-box models since their behaviour may be complicated to
understand in certain situations.

Rolnick et al. [65] present how the application of machine learning methods can help
combat climate change. In their paper, the authors identify the important problems
where the application of machine learning approaches can have an high impact and
therefore, tackle climate change problems together with other fields in processes
involving not only mitigation to reduce greenhouse gas emissions but also in the

adaptation to unavoidable consequences.

Stewart et al. [66] demonstrate the complexity to associate machine learning algo-
rithms to remote sensing data for Earth observation. In their paper, the authors show
that the main complexity is due to the variance in the data collection methods and
the processing of geospatial metadata. Since Earth observation data may contain
multiple spectral bands, coordinate systems and resolutions, the processing is com-
plex and creates issues to apply machine learning methods for remote sensing appli-
cations. Hence, the authors present a new framework to integrate Earth observation
data into the PyTorch [67] deep learning ecosystem, simplifying the preprocessing

of geospatial imagery.
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Chapter 3

Ecosystem Resilience Analysis

The analysis of ecosystem resilience requires a large quantity of data, and based on
our literature review, we have found that main source of observations for Ecosystem
Resilience Analysis is supported by Earth observation data [18, 21]. Despite the great
number of Earth observation sources of data, either remote sensing or in-situ, we
found three primary problems with the exploitation of the Earth observation data
for Ecosystem Resilience Analysis.

1. Earth observation data may contain multiple multiple resolution bands, coor-
dinate systems, resolutions, formats, et cetera. These different and complex
characteristics of multi-source and homogeneous data create issues to create a
specification of requirements for the Ecosystem Resilience Analysis process.

2. Since natural ecosystems are evolving and dynamic entities, a precise specifi-
cation of data requirements is necessary not only to collect the most adapted
source of data, but also to select the most adequate method to extract informa-
tion regarding the resilience of ecosystems.

3. To undertake Ecosystem Resilience Analysis, complex and repetitive tasks are
required to be done regarding the collection and pre-processing of Earth ob-

servation data.

We found that with the help of modeling approaches, complexity could be reduced
in order to create not only a precise specification of requirements for the Ecosys-
tem Resilience Analysis process but also to automate the processes regarding the data
collection and optimisation. Additionally, we found that the usage of artificial in-
telligence algorithms, more specifically deep learning, can be an effective method
to extract information from complex and homogeneous data in the context of Earth
observation. Examples of the applications include image classification, land use and
land cover classification, semantic segmentation, object detection, image fusion or

ecosystem simulation, among many others [62, 64, 65, 66, 68].

Hence, in this chapter, we present our software engineering approach !, created with

! This approach has been submitted to the MDE Intelligence Workshop on Artificial Intelligence and
Model-driven Engineering.
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the objective of allowing the development of software systems for the ecosystem
resilience analysis. The proposed Ecosystem Resilience Analysis approach follows a
model-driven engineering perspective coupled with artificial intelligence (MDE4AI).
The approach is formalised using the BPMN 2.0 standard [69] as shown in Figure 3.1

In the following sections, we present the three tasks of the approach and the five

generated artifacts.

Requirements \/
Meta-Model

) Intelligent Ecosystem
Requirements Observers Resilience
Specification Generation Analysis

Requirements NN Dataset Raw DREF
Model Architecture Data Graph

FIGURE 3.1: Our proposed Business Process for the
Ecosystem Resilience Analysis.

3.1 Requirements Specification

In this section, we focus on the first activity of software engineering, namely the
requirements engineering phase in a MDE context.

With the technology advancements in remote sensing satellite sensors over the last
decades [70] and the progress of machine learning approaches applied to remote
sensing data [62], the requirements specification for Earth observation have become

quite complex.

On one side, the complexity is attributable to the high-dimensional and diverse re-
mote sensing data generated from the satellite sensors. As presented in Section 2.2.2,
satellite sensors can have, among other characteristics, different resolutions in the
spatial, spectral, radiometric and temporal dimensions, creating a wide range of

possible requirements for a stakeholder.

On the other side, the characteristics of remote sensing generated data such as the
number of spectral bands impacts the reliability of traditional artificial intelligence
architectures, which have been developed with the conventional three channel RGB

imagery data [66].

Therefore, to benefit from the potential of artificial intelligence methods on remote
sensing datasets as well as in-situ generated datasets, a clear and precise require-

ments specification is necessary to select the most adapted data from the correct
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satellite sensor or in-situ source, for a given objective in the stakeholder domain.
The requirements specification phase becomes even more complex when a stake-
holder, such as a data scientist, requires the analysis of an ecosystem resilience. Not
only due to the dynamic nature of ecosystems but also because not every satellite
sensor nor in-situ sources can observe with the same level of detail every ecosystem
property, either because of atmospheric influences or because of surface reflectance,
as explained in Section 2.2.1.

Nonetheless, with modeling approaches, complexity can be reduced through ab-
stractions and simplifications as presented in Section 2.3. Since modeling has proven
to be crucial in the specification, design and development of a software systems, in
this section we present a compliant UML (see Section 2.3.3) metamodel for the mod-
eling of requirements for software systems analysing the resilience of ecosystems.

With the metamodel shown in Figure 3.2, we aim to allow the modeling of the dif-
ferent requirements for the entities under study, the properties of interest and finally,
the observers collecting the data.

In the following subsections, we describe and illustrate the different concepts of the
metamodel. The definition of the three fundamental concepts of entities, properties
and observers are made within the DREF framework [7], as presented in Section 2.1.2.
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3.1.1 Entities

An Entity is defined as "anything that is of interest to be considered" [7]. In this ap-
proach, we restrict our focus on any entities that are ecosystems, namely terrestrial,
aquatic or climatic environments.

Therefore, the concept of Ecosystem in the metamodel is a specialisation of an Entity,
with the goal of defining the ecosystem to study.

Additionally, the concept of GeoSegment is proposed to allow the specification of a
geographic delimitation of the ecosystem to analyse. Hence, with the GeoSegment,
data scientists can define a set of coordinates points on the Entity of interest where
the ecosystem resilience analysis should be performed.

Moreover, since ecosystems may be spatially fragmented, the concept of sub-ecosystem
is introduced, to allow the study of properties in specific sub-ecosystems, as part of
a larger ecosystem Entity.

Running Example

As an example of the different concepts, we can say that the territory of Luxembourg
is an Ecosystem, a specialisation of an Entity of interest, with the delimitation of the
territory borders as a set of GeoSegments such as 5.67405195478, 49.4426671413,
197 6.24275109216, 50.1280516628. To illustrate the concept of sub-ecosystem, we
can define the "Griinewald” forest in central Luxembourg as the sub-ecosystem, with
the delimitation defined with a GeoSegment with the following values: 6.194487,
49.658628, 6.218090, 49.669683.

A UML model instance of the example described above is shown in Figure 3.3. The
model instance is compliant with the dedicated metamodel shown in Figure 3.2.

Case Study :Requirements Model

description = "An example of requirements modeling following the ERA approach.”

Luxembourg :Entity sub-Ecosystem Griinewald Forest :Ecosystem

ROI ROI
:GeoSegment :GeoSegment

FIGURE 3.3: Example of modeling the Entity concepts (in green).
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3.1.2 Properties

A Property is defined as "the concept characterising an entity" [7]. In the context of
ecosystems, a Property can be biotic components such as plants, animals, and other
organisms, as well as abiotic components, the non-living chemical and physical parts
of the ecosystem environment. Abiotic components affect the ability of organisms
to survive and their functioning which are characterised by physical and chemical
factors such as water, radiation, light, humidity, temperature, atmosphere, or soil,

among others.

In the metamodel, there is one Property named propertyOfinterest being the main
property against which we analyse the resilience of the ecosystem under study (see
Section 3.3).

Due to the complex nature of ecosystems, an Entity may be related to multiple prop-
erties of interest. Additionally, a Property may be decomposed in multiple properties.
Consequently, we provide the concept of weight, allowing to give more importance
to a Property over other ones. The ability to specify a weight to a Property is im-
portant since multiple Properties may be relevant with respect to each other for the
Ecosystem Resilience Analysis but they might have different impacts in the ecosys-
tem. For instance, a Property of interest might be for example the greenhouse gas in
the atmosphere, decomposed in multiple properties such as carbon dioxide (CO,),
methane (CH,) and nitrous oxide (N,O), gases that accumulate in the atmosphere.
Since methane (CH,) has a "global warming potential 86 times stronger per unit
mass than CO2 on a 20-year timescale" [71], its weight shall be more important in the
study of the Ecosystem Resilience Analysis, compared to other gases.

Moreover, a Property may have many NominalSatisfiability values associated with it,
allowing the specification of a set of expected nominal satisfiability values. Addi-
tionally, a NominalSatisfiability may have an associated ToleranceThreshold value, al-
lowing the specification of an upper bound margin value for the comparison with
the computed satisfiability of a Property.

Using the concepts of NominalSatisfiability and ToleranceThreshold on a Property, the
proposed system can compare the specified requirements and the computed satisfi-

ability values of the Property of interest, as we will present in Section 3.2.

Additionally, to allow the specification of NominalSatisfiability requirements in dif-
ferent intervals of date and time for a given Property, we introduce the concept of
Index. With the Index concept, the NominalSatisfiability requirements are indexed in a
determined date and time.

During the ecosystem resilience analysis, the satisfiability of a Property is evaluated
at the specified date and time of an Index, with respect to the NominalSatisfiability and
ToleranceThreshold. To represent the set of Index requirements in a time axis for the

ecosystem resilience analysis, we propose the concept of EvolutionAxis.
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Running Example

In the previous example (see Figure 3.3), we have illustrated the different require-
ments for the concepts of Entities. We now extend the previous example with the
specification of requirements related to the Property concept and the associated con-
cepts of NominalSatisfiability, ToleranceThreshold and Index.

Hence, we specify the total CO, absorption in the "Griinewald" forest Ecosystem as
the Property of interest, with a weight of 1.0. Moreover, we specify that the collected
satisfiability values for CO, absorption shall be compared with a NominalSatisfiabil-
ity value of 651.945, representing as estimation of the potential of the forest area to
absorb more carbon from the atmosphere than it releases.

To estimate the NominalSatisfiability value of 651.945, we have computed the area of
the "Griinewald" forest (186.27 hectare) multiplied by the average typical absorption
rates in temperate regions of 3.5 tonnes, as defined in [72]. Since we use an average
for the computation of the NominalSatisfiability value, we specify a ToleranceThreshold
of 20%, to represent an error margin. Finally, since we are specifying a requirement
for a determined time, we use the concept of Index. As thus, the specified Nominal-
Satisfibiality is associated with an Index, having the date of 08/08/2022 and a time of
00:00 in a UTC zone offset of +1, which is later used to evaluate the satisfiability of
the Property at the Index date and time in the Ecosystem Resilience Analysis.

Once again, a UML model instance of the example described above is shown in

Figure 3.4.
Case Study :Requirements Model
description = "An example of requirements modeling following the ERA approach.”
Luxembourg :Entity | —sub-Ecosystem— Griinewald Forest :Ecosystem
ROI ROI
:GeoSegment :GeoSegment propertyOfinterest
CO2 Absorption :Propert
:ToleranceThreshold -Nomi IZSOZtZ fiabilit P pery
:NominalSatistiability | | ame = "Total CO2 absorption in
value =20 value = 651.945 the Griinewald Forest"
weight = 1.0
:Index

date = 2022, 8, 8
time=0,0,0,1

FIGURE 3.4: Example of modeling the Property concepts (in orange)
with the Entity concepts (in green).
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3.1.3 Observers

An Observer is an abstraction of a data source providing data for the evaluation of
a related Property in a given period of time. Therefore, we propose the concept of
DateTime, with the intent of allowing the specification of an interval with a start and
an end date during which data shall be collected.

Furthermore, we propose the concept of TimeMargin, allowing the specification of a
time margin for the collection of the data by the system in both the start date and
end date of the observation interval. Thus, with the concept of TimeMargin, data
scientists may specify a tolerance of time and thus, increase the probability of finding
interesting data sources with the system under development. For instance, remote

sensing data may not be updated daily over a given region of interest.

Since Earth observation data may come from multiple sources, in the dedicated
metamodel, we introduce two different concepts allowing the specification of data
characteristics to be collected with in-situ or remote sensing data. With the Tempo-
ral concept, data scientists can specify the data acquisition interval, convenient for
both the remote sensing and in-situ data sources. With the Spectral concept, which
is directed towards the specification of remote sensing data, the specification of the
required spectral bands to be collected with the data source can be easily defined.

Running Example

We illustrate now the concepts of Observers. In our running example, the Property of
interest that we have specified is the total CO, absorption in the Griinewald forest.
Therefore, with the DateTime concept, we specify that we shall collect data (in-situ or
remote sensing) starting from the 1st January 2022 until the 1st August 2022. More-
over, we specify a TimeMargin with a value of 7, and a unit of "day", to allow a tol-
erance margin of 7 days , with the intent of being less restrictive for the collection of
data. Finally, we specify with the Spectral concept that the data to collect shall have
the red, green and blue spectral bands, making it a specification oriented towards a

remote sensing Observer, since in-situ data does not contain a spectral resolution.

The model instance respecting the dedicated metamodel (see Figure 3.2) is shown in
Figure 3.5, updated with the concept of Observers described above.

3.2 Intelligent Observers Generation

In the previous section, we have presented the requirements engineering phase re-
sulting in a dedicated metamodel for the modeling of requirements. With the pro-
posed metamodel, stakeholders are able to model the Ecosystem Resilience Analysis
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Case Study :Requirements Model

description = "An example of requirements modeling following the ERA approach."

Luxembourg :Entity | —sub-Ecosystem— Griinewald Forest :Ecosystem
ROI ROI
:GeoSegment :GeoSegment propertyOfinterest
2022 CO2 Absorption :Property

:ToleranceThreshold

e e Al name = "Total CO2 absorption in

yalueisi20 value = 651.945 the Griinewald Forest"
5 weight = 1.0
.

:Index Start :DateTime
date = 2022, 8, 8 co2 Absorption Qate =2022,1,1
time=0,0,0,1 r -Observer time=0,0,0, 1
Revisit :Temporal End :DateTime
resolution =5 d_ate =2022,8,1
unit = day time=0,0,0,1

Red :Spectral Blue :Spectral
band = Red band = Blue
Green :Spectral
— Margin
R et :TimeMargin
margin =7 i
unit = day

FIGURE 3.5: Example of modeling the Observers concepts (in blue),
the Property concepts (in orange) and the Entity concepts (in green).

requirements in the system under development using the presented concepts such
as entities, properties and observers.

However, as presented in the Section 2.3.1, once the requirements are specified, a
software system complying with the requirements specification must be produced.
In our proposed approach, data is fundamental to comply with the requirements
and undertake Ecosystem Resilience Analysis. Therefore, the system shall collect au-
tomatically the data to enable the resilience analysis of the specified properties of

interest.

Additionally, since artificial intelligence has demonstrated a great potential to ex-
tract valuable information from remote sensing data [68], the software system shall
generate intelligent skeletons of neural network architectures to make use of the col-
lected data with artificial intelligence architectures, to evaluate the resilience of the
properties of interest on the specified entities.
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Therefore, in this section, we present how the adequate information is extracted from
the specified requirements with informal model transformations (see Figure 3.7).
As presented in Section 2.3.2, MDE promotes the concept of model transformations
to transform models from one form to another to leverage automation in software
development. Hence, we leverage automation with model transformations to use
the specified requirements with the functionalities of the system, namely the data
collection and data optimisation methods.

Finally, we present how the proposed system extracts information for the Ecosystem
Resilience Analysis from the specified properties with the collected data.

3.2.1 Collection

Earth observation data can be acquired with multiple sources, mainly categorised in
remote sensing data and in-situ data. With the proposed system approach, the data
collection functionality retrieves multi-source datasets available to the general pub-
lic such as open data platforms, government websites or from open-source reposito-
ries, to name a few.

Accordingly, using model transformations, the system extracts the specified data re-
quirements among the entities, properties and observers concepts. With the GeoSegment
requirement, the system identifies the area of the entity of study. Hence, with the
specified area, the system retrieves sources of data where data collection is available
for the specified entity area.

Moreover, with the specified set of properties, the system searches specific data allow-
ing the resilience analysis with the explicit properties of interest, in the defined entity
area. Finally, with the concepts of observers, the system uses the specified start and
end date and time to lookup for data respecting the time interval. If a time tolerance
is given with the concept of TimeMargin, the start and end events are computed in
compliance with the specified time tolerance.

Furthermore, the Temporal concept is used in the data collection functionality to re-
trieve data sources respecting the specified acquisition time interval, particularly

useful for the collection of daily updated data for example.

Moreover, due to the fact that biggest source of Earth observation data comes from
remote sensing sources, if the Spectral concept is specified, the system searches for
remote sensing data satisfying not only the previous requirements, but also data

collected with satellite instruments having the specified spectral bands.

Finally, if the system does not retrieve data satisfying all the model requirements,
the usage of artificial intelligence for the generation of synthetic datasets can be ap-
plied using generative adversarial network (GAN) architectures, as presented in the
section 2.4. An example where the usage of GANSs can be helpful is in cases where
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the data is limited in the start and end DateTime specified or when there is a "gap" of
data covering the specified Ecosystem.

Requirements Model Model Tranformations

| Entity || Property || Observer | Dataset Collection _I__, Dataset Collection
| Spectral || Temporal | | NNA Generation I » | NN Architecture

FIGURE 3.6: Illustration of how the specified requirements are used
through model-transformations to extract the required information in
order to collect a dataset and generate a neural network architecture.

3.2.2 Optimisation

Once data is collected with the system, an additional functionality is proposed to
improve the quality of the retrieved data and consequently, increase the reliability
of the data for the ecosystem resilience analysis using artificial intelligence.

Based on our research, Earth observation data can be rather heterogeneous with mul-
tiple sources (optical, radar, laser, et cetera), file formats, data types, resolutions and
coordinate systems [73]. Furthermore, with the high dimensionality of Earth obser-
vation data, the interpretation of the data with artificial intelligence can be complex
due to the large amount of features and observations.

As dimensionality increases, the volume of space grows so fast that the amount of
data required to densely sample it to use with artificial intelligence methods in-
creases exponentially, resulting in the “curse of dimensionality” [74], first coined by
Richard E. Bellman in 1966 to refer to the intractability of certain algorithms in high

dimensionality.

Therefore, to remedy the curse of dimensionality, the system applies a widely used
unsupervised machine learning method called Principal Component Analysis (PCA).
With this method, the objective of the system functionality to optimise the collected
data is two-fold:

1. The PCA method is used to reduce the noise in the collected data.

2. The PCA method attempts to reduce the data dimensionality to decrease the
data complexity.

PCA is based on projection methods, used to represent the partition of the data vari-
ation and to observe the underlying trends in the features of the data, as well as the
clusters and outliers. As such, the important information contained in the dataset is

extracted and summarised in a set of indices named “principal components”, allowing
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PN Dimensionality Reduction

WV

() (b)

FIGURE 3.7: Simple illustration of the Principal Component Analysis

(PCA) method on the reduction of complexity. (a) represents data

points in a 3D space before PCA dimension reduction, (b) represents
data points after the application of PCA dimension reduction

the reduction of noise and the reduction of dimensionality. Other than that, it allows

the analysis, among others, of multicollinearity and missing values in the dataset.

As a result of the application of the PCA method, the complexity of the collected
data is reduced. Additionally, if remote sensing data is specified in the require-
ments model with the Spectral concept, the application of PCA is used to select only
the specified spectral bands among the set of bands present in the collected remote
sensing dataset. This phase is important for remote sensing datasets. Compared
to traditional vision datasets, where images are captured in three channels (RGB),
satellite sensors as presented in Section 2.2.2 capture from several tens to a few hun-
dreds of spectral bands in the electromagnetic spectrum, increasing not only the data
diversity and complexity but the required storage capacity for analysis.

For instance, the Hyperion satellite collects Earth observation data using 242 hyper-
spectral bands within the electromagnetic spectrum with its imaging spectrometer
[75], creating thousands of complex files to analyse, where each file can take up to
several gigabytes for a single scene.

Consequently, the application of PCA can lead to a considerable reduction of com-
putational complexity [76] on the usage of high dimensional remote sensing data
such as hyperspectral imagery with artificial intelligence architectures.

3.2.3 Information Extraction

After collection and possible optimisation of a given dataset, the system uses the
dataset to extract information regarding the retrieved satisfiability values on the
specified set of Properties.
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However, depending on the dataset, the extraction of information can involve addi-
tional work. Therefore, if the dataset must be processed to be exploited, we propose
the generation of artificial intelligence architectures.

As already presented in Section 2.4.4, the application of artificial intelligence algo-
rithms have shown potential to address problems related to Earth sciences [62, 65,
64].

Thus, we propose the generation of CNNs, GANs and Autoencoders architectures,
with the intent of exploiting the dataset and thereby, extract the values on the Prop-
erties of interest.

As a result, the proposed generation functionality of the different artificial intelli-
gence architectures allows the computation of the Property satisfiability values for
the ecosystem resilience analysis, even with datasets requiring additional processing
such as remote sensing datasets or unprocessed in-situ datasets. For use cases where
articial intelligence is not required, the system can generate mathematical linear re-
gressions on a given dataset in order to predict future observations for example.

With the system generation, we aim to reduce the time and complexity that can
occur during the creation from scratch of the different proposed architectures for
Earth observation problems.
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3.3 Ecosystem Resilience Analysis

In the previous sections, we presented not only a dedicated metamodel for the mod-
eling of requirements, but also the collection, optimisation and information extrac-

tion functionalities for multi-source data, namely remote sensing and in-situ.

With the proposed system functionalities, the necessary artifacts for the last phase of
our proposed approach, namely the ecosystem resilience analysis, are consequently
automatically generated.

Thus, to analyse the ecosystem resilience, we propose a final system functionality
to create an evolution graph with the computed values of the properties of interest,
compliant and based on the DREF resilience framework [7].

3.3.1 Evolution Graph

To generate the DREF evolution graph, the stakeholder requirements model, com-
pliant with the proposed metamodel, is once again used. Therefore, model trans-
formations are applied to extract the specified requirements regarding the properties
of interest, the indexed nominal satisfiability values and the associated tolerance thresh-
olds, for the analysis of resilience. Moreover, the property values obtained with the
artifacts generated with the system functionalities presented in the Section 3.2 are
drawn in the evolution graph.

Additionally, to allow the assessment of the ecosystem resilience evolution over time
in relation to the computed satisfiability values of a property, the indexed nominal
satisfiability and the associated tolerance thresholds values corresponding to a given
property are also drawn in the evolution graph.

Finally, with the intent of allowing additional use cases with the generated ecosys-
tem resilience analysis data, the proposed system exports not only the evolution
graph but the generated raw data as well.

3.3.2 Analysis

To analyse the ecosystem resilience with respect to the specified properties of interest,
the stakeholder reviews the evolution graph generated by the proposed system.

Thus, the stakeholder can determine if the computed satisfiability values of a prop-
erty are converging towards the specified nominal satisfiability values or within the
tolerance threshold, to analyse if the properties of interest values are indeed impacting
the ecosystem resilience or not.

Eventually, the generated raw data can be used with geographic information sys-
tems to allow different usage applications.
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Chapter 4

Case Study

4.1 Introduction

In this chapter, we present a complete case study in order to experiment and illus-
trate our proposed Ecosystem Resilience Analysis approach.

Hence, to illustrate the requirements specification and the multiple Ecosystem Re-
silience Analysis activities of our approach, we focus on the field of Al for social good
with a case study targeting a system capable of analysing the resilience of the Lux-
embourg territory, using software engineering, model-driven engineering and arti-
ficial intelligence methods. The case study is relevant to the compliance with the
Paris Agreement on the reduction of greenhouse gases emissions, setting a global
framework to avoid dangerous climate change by limiting global warming. Since
the model transformations have not been implemented in the proposed approach,
due to time constraints of this thesis, the “Intelligent Observers Generation” is not ap-
plied automatically through the presented model transformations for the dataset
collection and optimisation. Instead we propose a "manual” approach in the context
of this thesis.

As a result of the Paris Agreement, nearly 200 countries ratified the targets to hold
by 2050 the average global temperature increase to below 2°C and to pursue efforts
to limit the temperature increase to below an ambitious 1.5°C, above pre-industrial

levels.

Among the different climate change mitigation plans, the most imperative mitiga-
tion focus on the increase of the carbon sequestration and on the reduction of CO,
emissions generated in the process of energy production and consumption. For in-
stance, since the Third Industrial Revolution which began in the "50s in the 20th
century, CO, emissions have increased drastically, as shown in Figure 4.1.

With the increase of CO, emissions, the parties involved in the Paris Agreement are
responsible for the implementation at national level of climate change mitigation

plans, but do not face sanctions in case of breaches.
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The aim of our case study is to focus on the Luxembourg territory resilience analysis
to CO, with the intent of predicting at the target dates (2030, 2050) the Luxembour-
gish compliance with the Paris Agreement.

Therefore, we concentrate on the capacity of the Luxembourgish territory to capture
and store atmospheric CO, (CO, absorption/sequestration) with the computation
of the land cover in the Luxembourgish territory in 2021. With land cover, we aim
to compute an estimation of the potential of the territory to absorb CO, and addi-
tionally, we concentrate on the evolution of the national CO, emissions, from 1990
to 2020, to predict and analyse the future ecosystem resilience and the compliance
with the Paris Agreement.

T T T T T T T T
—— Annual CO2 emissions |

14.0M

12.0M

10.0 M

8.0M -

6.0M [ n

CO, Emissions (ton)

40M .

20M 4

0.0 M 1 1 1 1 1 1 1 1
1950 1960 1970 1980 1990 2000 2010 2020

Years

FIGURE 4.1: Annual carbon dioxide (CO,) emissions since 1945 un-
til 2020, from fossil fuels and industry in Luxembourg. Source: The
Global Carbon Project fossil CO, emissions dataset [77]

4.2 Requirements Specification

With the requirements elicitation of this case study, we want to illustrate the usage
proposed system approach with multi-source data, in particular with a remote sens-
ing dataset and an in-situ dataset. Therefore, we specify the following requirements
for the ecosystem resilience analysis:

(i) The ecosystem resilience shall be analysed from the 1st January 1990 until the
13th December 2050 (UTC +1 timezone) in the Luxembourgish territory.

(ii) The property of interest shall be the total CO; net emissions in Luxembourg.
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(iif) To analyse the resilience of the Luxembourgish ecosystem with the property of
interest, the CO, emissions and CO; sequestration properties in Luxembourg
shall be evaluated.

(iv) CO, emissions shall be evaluated from 1st January 1990 until the 13th De-
cember 2020 using an in-situ dataset containing at least updated weekly data.
Starting from the 14th December 2020, the satisfiability values of CO, emis-
sions shall be predicted until the 13th December 2050.

(v) The dataset for the CO, emissions can contain data with a time margin of 1
week.

(vi) For the target year of 2030, the values of CO, emissions in Luxembourg shall
be evaluated with a nominal satisfiability of 7094002.8, corresponding to the
CO, target value of —40% for 2030, with respect to CO; levels from 1990. Ad-
ditionally, a tolerance margin of 10% shall be allocated to the specified nominal
satisfiability.

(vii) For the target year of 2050, the values of CO, emissions in Luxembourg shall
be evaluated with a nominal satisfiability of 2364667.6, corresponding to the
CO, target value of —80% for 2050, with respect to CO; levels from 1990. Ad-
ditionally, a tolerance margin of 20% shall be allocated to the specified nominal
satisfiability.

(viii) To analyse the property of interest evolution from 2020 until 2029, the values
of CO, emissions in the date interval shall be evaluated with a nominal satisfi-
ability of 9458670.4. Moreover, a tolerance margin of 20% shall be allocated to
the specified nominal satisfiability.

(ix) The CO, sequestration property shall be evaluated with data between the 1st
January 2021 until the 13th December 2021, using remote sensing data contain-
ing at least the RGB band information.

(x) The dataset for the CO, sequestration property shall have a maximum revisit
time of 5 days.

(xi) The CO, sequestration shall be computed for the year 2021 using a land cover
classification technique, where each hectare of forest in the territory is equal to
3.5 tonnes of CO, sequestration, the average typical absorption rates in tem-
perate regions, as defined in [72].

(xii) From 2021 until 2050, a prediction shall allow the evaluation of the future CO,
satisfiability values, with respect to the land cover classification for the CO,
sequestration and the historical CO, emissions.

To comply with our dedicated requirements elicitation metamodel (Figure 3.2), the
requirements were modeled with a metamodel instance using the Unified Modeling
Language (presented in Section 2.3.3), as shown in Figure 4.2.
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FIGURE 4.2: Requirements Model for the Luxembourgish ecosystem
resilience analysis to CO,
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4.3 Intelligent Observers Generation

In this activity of our approach, the requirements model shown in Figure 4.2 would
be used as input through model transformations, as presented in Section 3.2.

However, since model transformations have not been implemented in the proposed
approach, automation will not be applied in this activity of the approach. Instead,
we will present how the system would behave with model transformations but the
actual process will be manual in the context of this thesis.

4.3.1 Dataset Collection for the CO, Absorption

With the requirements associated with the CO, sequestration/absorption Property
in the Luxembourgish Ecosystem, the system functionality would search for datasets
respecting our specified requirements as mentioned in Section 4.2.

Since we have defined a Temporal requirement of 5 days and the red, green and blue
Spectral requirements for the Observer of the CO, sequestration Property, the system
collection functionality would assign the Sentinel-2 [78] mission as the most ade-

quate remote sensing data source since it respects all the specified requirements.

The Sentinel-2 is an earth observation mission from the European Copernicus Pro-
gramme that provides systematic coverage with 13 spectral bands and a temporal
(revisit) time as low as 5 days with 2 satellites under cloud-free condition, over the
following areas:

e Continental land surfaces, with latitudes 56° South and 82.8° North.
¢ European Union islands.

¢ Additional islands greater than 100 km®

¢ Coastal waters up to 20 km from the shore.

¢ The Mediterranean Sea.

¢ Others, based on requests from the member states of the European Union or
from the Copernicus Services.

More specifically, the sensor in the Sentinel-2 covers the following spectral bands:

Hence, a Sentinel-2 dataset compliant with the requirements associated with the CO,
sequestration Property was collected (manually), based on the equivalence between
the requirements and the characteristics of the data captured with the Sentinel-2

SENSOr.
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Spatial Central
Band Resolution | Wavelength

(meter) (nanometer)
B01 - Aerosols 60 443
B02 - Blue 10 490
B03 - Green 10 560
B04 - Red 10 665
BO5 - Red edge 1 20 705
B06 - Red edge 2 20 740
B07 - Red edge 3 20 783
B08 - NIR 10 842
BO8A - Red edge 4 20 865
B09 - Water vapor 60 945
B10 - Cirrus 60 1375
B11-SWIR 1 20 1610
B12 - SWIR 2 20 2190

TABLE 4.1: Bands covered with the Sentinel-2 multispectral imager
sensor, with their corresponding spatial resolution and central wave-
length.

4.3.2 Dataset Optimisation for the CO, Absorption

Since the primary objective of the Sentinel-2 mission is to provide high resolution
satellite data for climate change and land cover and land use monitoring, the dataset
associated with the mission contains more spectral bands than the specified red,

green and blue (RGB) bands in the requirements.

Hence, we have optimised the dataset by reducing its dimensionality and complex-
ity with the application of the Principal Component Analysis method (see Section
3.2.2), calculating a projection of the original data into the spectral bands defined
in the metamodel instance. Thus, the number of spectral dimensions in the dataset
were reduced and as a result, the potential to generalize with a neural network ar-
chitecture was increased [79]. The result can be seen in Figure 4.3.

4.3.3 Information Extraction for the CO, Absorption

Due to the fact that the optimised Sentinel-2 dataset required a neural network archi-
tecture for the land cover classification to extract information regarding the potential
of the Luxembourgish territory for CO, absorption, we have created a CNN archi-

tecture.

ResNet Architecture

For this task, we have decided to use a special case of a CNN architecture, namely a
Deep Residual Network (ResNet), first introduced in 2015 by Sun et al. [80] and used
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FIGURE 4.3: The map of Luxembourg, using the collected and op-
timised Sentinel-2 data, using only the red, green and blue bands,
combined as natural colors. For visualisation purposes, the bounding
regions not part of the territory of Luxembourg have been removed.

for deep learning computer vision applications such as object detection or image
segmentation, among others.

The main difference between a "traditional" CNN and a ResNet architecture is that
the latter has been created to correct the “vanishing gradient” [81] problem that may
occur in CNNs with thousands of convolutional layers. As presented in Section 2.4.2,
during the training of a neural network the weights are being updated to make the
loss function find a value as small as possible, with the intent of creating the best
set of weights to improve the prediction or classification. However, if the neural
network contains many layers in the architecture, the "vanish gradient" occurs dur-
ing the backpropagation process, when the gradient becomes extremely small and
disappears, constraining the optimisation process during the training of the neural
network. ResNet CNN architectures solve this problem with shortcut connections
(presented shortly) and therefore are widely used.

There exists various ResNet variants, which follow the same architecture concept
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but instead, have a different numbers of layers (depth). Variants of ResNet in-
clude ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-110, ResNet-152, ResNet-
164, ResNet-1202. To extract information for the CO, Absorption Property in our case
study, we have decided to use the ResNet-152 variant, containing 152 layers.

At the core of a ResNet architecture exists the concept of residual block, with shortcut
connections. Residual blocks are the essential building blocks of ResNet architec-
tures and the difference between a ResNet and a traditional CNN.

Residual blocks, compared to other network layers, feed not only the next layer but
also the next two or three layers, bypassing a few layers in between with shortcut
connections as depicted in Figure 4.4.

Such concept allows the training of much deeper neural networks without vanishing

gradient problems, and hence, are preferred for image tasks.

X

shortcut connection
(identity)
F(xX)+x

layer 1 —— g(x) —— layer2 ——@—— a(x)
add

=1

activation activation

F(x)

FIGURE 4.4: Illustration of a skip connection in a residual block. In-
spired by "Deep Residual Learning for Image Recognition” [80].
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ResNet-152 Architecture for Land Cover

To undertake the land cover classification, we have applied a ResNet-152 architec-
ture as it achieves the best accuracy among ResNet variants [80].

The model of the architecture, represented in Figure 4.12, has been first designed
with PyTorch [67] (illustrated in Listings 4.1, 4.2 and was later implemented using
the Fastai [82] deep learning library, not only due to its high-level components but
also because of its ease of use, flexibility and performance.

To train the architecture, we have used the EuroSAT [83] dataset and deep learning
benchmark for Land Use and Land Cover (LULC) classification tasks.

FIGURE 4.6: Sample image of the Eurosat dataset [83].

The dataset contains images from European countries captured with the Sentinel-2
satellite in 13 spectral bands (presented in Table 4.1). More specifically, the dataset
is generated with 27000 labeled and geo-referenced image patches with a measure
of 64 x 64 pixels, with 2000 to 3000 images per class, distributed among 10 different
classes, given in Table 4.2.

With the EuroSAT dataset selected, we started the training of the model architecture,
which had 60255296 total trainable parameters and a cross entropy loss function for
the classification task. Since the dataset contains 27000 images across 10 different
land use and land cover classes, we began by splitting the dataset into two different
subsets with a 90/10 split rule, splitting the original dataset into a training dataset
with 24300 images and into a validation dataset with 2700 images, only used for later
model validation. A batch sample of the images in the training dataset is shown in
Figure 4.7.

To speed up the learning process of the 60255296 parameters in the architecture, we
have applied transfer learning to our model. Transfer learning is a machine learning
technique where we reuse a model - more specifically its final weights - previously
trained on other domains and apply it on our own model, in another domain. The
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Classes Description

Industrial Building Areas for machine sheltering and
working.

Residential Buildings Areas for human sheltering.

Annual Crop Areas occupying the soil and yielding
harvests for limited months.

Permanent Crop Areas occupying the soil and yielding
harvests for several consecutive years.

River Areas with flowing watercourse to-
wards the ocean, sea, or lake.

Sea & Lake Areas surrounded by water.

Herbaceous Vegetation Areas with herbaceous plants, reaching
their full height and producing flowers
within one year.

Highway Areas for human traveling.

Pasture Areas of land for domesticated live-
stock.

Forest Areas of land covered with trees.

TABLE 4.2: Land Use and Land Cover classes and their description in
the EuroSAT dataset.

benefit of applying this technique is two-fold. First, it allows to reduce the training
time on a new model and second, it can result in lower generalisation errors [51].

For this case-study, we have applied transfer learning with a neural network model
previously trained for a large image classification challenge called ImageNet [84],
consisting of more than a 1000000 images among 1000 different classes. Given the
important number of image classes in the neural network model for ImageNet, it
can effectively serve as a generic model to begin the training of our own model,

composed of only 10 classes of images.

Thus, with the pre-trained ImageNet model acting as a starting point, we started the
training of our architecture with transfer learning. We first "froze" our model and only
trained the last 2 layers with the weights of the ImageNet model, during 5 epochs (one
complete pass of the training dataset with the ResNet-152 architecture). After only 5
epochs, we reached a top accuracy of 98%, a training loss of 0.6% and an error rate
of 2%, as referenced in Table 4.3.

epoch | train_loss | valid_loss | accuracy | error_rate | time

0 0.162469 | 0.129777 | 0.958148 | 0.041852 | 02:39
0.132108 | 0.103005 0.968148 | 0.031852 | 02:29
0.069783 | 0.097046 | 0.971111 | 0.028889 | 02:29
0.028569 | 0.083158 | 0.981111 | 0.018889 | 02:29
0.006590 | 0.081798 | 0.980000 | 0.020000 | 02:33

QI =

TABLE 4.3: Training results after applying transfer learning and train-
ing the last few layers of our model for 5 epochs.
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Industrial Sealake River

Seal.ake AnnualCrop Residential

Residential Seal.ake Pasture

FIGURE 4.7: Batch sample of the images contained in the training
EuroSAT subset.

With such results, we had confidence to improve even further the model. Hence, we
applied a method to find the optimal learning rate for our model with the objective
of improving the learning by reducing the loss during training. This optimisation
step is important because if the learning rate is too slow, the model will take a long
time to learn, and if it is too high, the model may never locate the function minima
through the gradient descent optimisation, as presented in Section 2.4.2.

After applying the method to find the optimal learning rate, the model was trained
with different learning rate values. At the end, we found that the best learning rate
would be between 10~ and 10_4, as shown in Figure 4.8.

Using 107" as the learning rate for the first layer in our model and 10™* for the fol-
lowing layers, we trained our model architecture during 20 epochs and we obtained
the results referenced in Table 4.4.

With 98.5556% of accuracy, a training loss of 0.5% and an error rate of 1.4% after
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FIGURE 4.8: Learning rate finder result.

training our model, we reached a State-of-the-Art model accuracy using the RGB

images in the EuroSAT dataset.

Hence, compared to the accuracy scores on the original EuroSAT paper [83], we

obtained a top-1 classification accuracy in the 90/10 training split rule in the dataset

benchmarking. Additionally, compared to other State-of-the-Art models present in

the online and up-to-date benchmarking leaderboard’ such as [85], we also achieved

a top-1 accuracy with respect to other AI models on the EuroSAT benchmark, using

only RGB images.
epoch | train_loss | valid_loss | accuracy | error_rate | time
0 0.008711 | 0.080200 | 0.981852 | 0.018148 | 02:27
1 0.010479 | 0.083087 | 0.981111 | 0.018889 | 02:28
2 0.006459 | 0.080294 | 0.983333 | 0.016667 | 02:30
3 0.005026 0.076134 | 0.985556 | 0.014444 | 02:34
18 0.000658 | 0.104153 | 0.982222 | 0.017778 | 02:30
19 0.000172 | 0.104982 | 0.982593 | 0.017407 | 02:25

TABLE 4.4: Training results for our model with transfer learning and

an optimised learning rate.

To better illustrate the robustness and performance of our model in the classification

of land use and land cover, we plotted a confusion matrix, show in Figure 4.9.

IState-of-the-Art leaderboard for the EuroSAT benchmarking is available in the following URL:
https://paperswithcode.com/sota/image-classification-on-eurosat


https://paperswithcode.com/sota/image-classification-on-eurosat
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Moreover, a sample of the classification results on the validation subset is shown in
Figure 4.10 and the top losses are shown in Figure 4.11.

Confusion matrix

AnnualCrop 288 0 0 0 0 2 8 0 1 0
Forest 0 0 0 0 0 0
HerbaceousVegetation - 0 0 2 0 0 0
Highway - 0 1 0 0 1 0
Industrial 0 0 0 1 0 0
T
§
<
Pasture 1 1 5} 0 0 192 0 0 0 0
PermanentCrop - 5 0 7 0 0 0
Residential A 0 0 0 0 1 0
River - 2 0 0 4 0 0
SeaLake - 0 0 0 0
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FIGURE 4.9: Confusion matrix of our model for land use and land
cover classification.
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FIGURE 4.10: Sample of the classification results on the validation
subset with our trained model.
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FIGURE 4.11: Top losses obtained during classification on the valida-
tion subset with our trained model.
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FIGURE 4.12: Representation of the ResNet-152 architecture used for
land cover classification.
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import torch

from torch import nn

class ResidualBottleneckBlock(nn.Module):

def

def

__init__(self, in_channels, out_channels, downsample):
super().__init__()
self.downsample = downsample
self.convl = nn.Conv2d(in_channels, out_channels//4, kernel_size
=1, stride=1)
self.conv2 = nn.Conv2d(out_channels//4, out_channels//4,
kernel_size=3, stride=2 if downsample else 1, padding=1)
self.conv3 = nn.Conv2d(out_channels//4, out_channels,
kernel_size=1, stride=1)
self.shortcut = nn.Sequential()
if self.downsample or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1,
stride=2 if self.downsample else 1),
nn.BatchNorm2d (out_channels)
)

self.bnl = nn.BatchNorm2d(out_channels//4)
self.bn2 = nn.BatchNorm2d(out_channels//4)
self.bn3 = nn.BatchNorm2d(out_channels)
forward(self, input):

shortcut = self.shortcut(input)

input = nn.RelLU() (self.bnl(self.convl(input)))
nn.ReLU() (self.bn2(self.conv2(input)))
nn.ReLU() (self.bn3(self.conv3(input)))
input = input + shortcut

input

input

return nn.RelLU() (input)

LISTING 4.1: Listing with the package imports and the
implementation of the ResNet Residual Block,
inspired by [80].
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class ResNet(nn.Module):
def __init__(self, in_channels, residualBlock, repeat):

super().__init__()

self.layer® = nn.Sequential(
nn.Conv2d(in_channels, 64, kernel_size=7, stride=2, padding=3),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.ReLU())

filters = [64, 256, 512, 1024, 2048]

self.layerl = nn.Sequential()

self.layerl.add_module(’conv2_1', residualBlock(filters[0], filters[1],
downsample=False))

for i in range(l, repeat[0]):

self.layerl.add_module(’conv2 %d’'%(i+1,), residualBlock(filters[1],

filters[1l], downsample=False))
self.layer2 = nn.Sequential()
self.layer2.add_module(’conv3_1’, residualBlock(filters[1], filters[2],
downsample=True))
for i in range(l, repeat[1]):

self.layer2.add_module(’'conv3_%d’ % (i+1l,), residualBlock(filters[2],

filters[2], downsample=False))
self.layer3 = nn.Sequential()
self.layer3.add_module(’conv4_1", residualBlock(filters[2], filters[3],
downsample=True))
for i in range(l, repeat[2]):

self.layer3.add_module(’'conv2 %d’ % (i+l,), residualBlock(filters[3],

filters[3], downsample=False))
self.layer4 = nn.Sequential()
self.layer4.add_module(’conv5_1", residualBlock(filters[3], filters[4],
downsample=True))
for i in range(l, repeat[3]):

self.layer4.add_module(’conv3_%d’'%(i+1,), residualBlock(filters[4], filters

[4], downsample=False))
self.gap = torch.nn.AdaptiveAvgPool2d(1)
self.fc = torch.nn.Linear(filters[4], outputs)

def forward(self, input):
input = self.layer0(input)
input = self.layerl(input)
input = self.layer2(input)
input = self.layer3(input)
input = self.layerd(input)
input = self.gap(input)
input = torch.flatten(input, start_dim=1)
input = self.fc(input)
return input

resnetl52 = ResNet(3, ResidualBottleneckBlock, [3, 8, 36, 3])

LISTING 4.2: Listing with the implementation of the ResNet-152
architecture, inspired by [80].
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Applying the Model on the Collected & Optimised Dataset

After the training and validation of our ResNet-152 model for land use and land
cover classification, we could start the classification on the collected and optimised
Sentinel-2 dataset for the Luxembourgish territory. However, since the optimised
dataset had a size of 7366 x 6850 X 3 and our model accepted only inputs with the
size of 64 X 64 X 3, we were required to create small image "patches" with the size of
the model input.

Thus, with the Python code” in Listing 4.3, we created 106114 image patches to clas-
sify the land cover of Luxembourg with our ResNet-152 model. A sample of the
generated image patches is shown in Figure 4.13.

import numpy as np

from patchify import patchify
from PIL import Image

import cv2

image = Image.open(’'./lu.tif’)
print(image.format, image.size, image.mode)

lu_np = np.array(image)
patches = patchify(lu_np, (64,64, 3), step=64)
for i in range(patches.shape[0]):
for j in range(patches.shape[l]):
single_patch_img = patches[i, j, 0, :, :, :]
if not cv2.imwrite(’./patches/’ + ’'image_’ + '_’'+ str(i)+str(j)+’.jpg’,
single_patch_img):
raise Exception("Image_cannot_be_written.")

LISTING 4.3: Listing with the image patch implementation for the
collected dataset.

With the generated image patches, we used the trained model to predict the land
use and land cover classes (presented in Table 4.2) on the collected and optimised

Sentinel-2 dataset, with images covering the Luxembourgish territory.

After classifying the 106114 image patches, the results (referenced in the Table 4.5)
shown that = 25.65% of the image patches had the land use and land cover class
classification with the Forest class. Since the Luxembourg territory has an area of
2586km2, our model classified that ~ 663km” of the area were forests.

Among the biggest classification "surprises" were the number of classified images
with the SealLake land use and land cover class. After investigation, we found that

The patchify library imported on line number 2 is an open-source library to split images into
small and overlappable patches. The library can be found in the following URL: https://pypi.org/
project/patchify/



https://pypi.org/project/patchify/
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FIGURE 4.13: Generated image patches with a size of 64 x 64 x 3 from
the collected Sentinel-2 dataset covering the territory of Luxembourg.
Patches used to predict land cover with our ResNet-152 model.

thousands of image patches were created with a black color. During the patch gener-
ation, portions of the original dataset were filled with a black color since originally,
portions of the image did not contain any pixel information. Thus, by adding a black
color in the 3 channels of the image a perfect square image with full pixel informa-
tion was available.

Hence, patch images with a size of 64 X 64 X 3 were perfectly created. An illustration
of the problem is shown in Figure 4.14. The downside of the method was the number
of wrong classifications with the Sealake land use and land cover class.

Therefore, if we do not include the number of misclassified Sealake classes to esti-
mate the total area of forests in Luxembourg, we achieve a total of ~ 35.62% of forest
areas or a total of ~ 921km” in the territory.
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TABLE 4.5: Land Use and Land Cover (LUL) results after using the
trained model to classify LULC on the collected dataset.

FIGURE 4.14: Illustration of the patch generation issue where a black
color was added to allow the export of square image patches.

Class Amount
AnnualCrop 4520
Forest 27223
HerbaceousVegetation | 12128
Highway 503
Industrial 289
Pasture 6321
PermanentCrop 5125
Residential 17111
River 3187
SealLake 29707
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Based on [72], the typical CO, absorption rates in temperate regions are 3.5 tonnes
per hectare of forest. With respect to the results of our model, we can estimate a total
of = 921km” or ~ 92100 hectare of forests in the Luxembourgish territory.

Thus, we assume a maximum of 322350 tonnes of CO, absorbed by the Luxembour-

gish forests.

4.3.4 Dataset Collection for the CO, Emissions

With the requirements associated with the CO, Emissions Property in the Luxem-
bourgish Ecosystem, the system functionality of the proposed system would search
for datasets respecting our specified requirements as mentioned in Section 4.2.

We have defined a start DateTime requirement to search for data from midnight of
the 1st January 1990 until the midnight of the 13th December 2020, our end DateTime
requirement for the Observer. Additionally, we specified a Temporal requirement of
7 days, meaning that data shall have been collected at least every week during the
period of time between the start and end DateTime requirements.

Due to those Observer requirements for the the CO, Emissions, the system collec-
tion functionality would retrieve an open-access dataset within the European Envi-
ronment Agency data platform, which is compliant with the specified requirements.
The retrieved dataset, shown in Figure 4.15, contains weekly updated values corre-
sponding to the CO, emissions in the Luxembourgish territory from the 1st January
1990 until the end of the year 2020
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FIGURE 4.15: Evolution of CO, emissions with data from the col-
lected dataset from the European Environment Agency.
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4.3.5 Dataset Optimisation for the CO, Emissions

Since the dataset from the European Environment Agency data platform contained only
weekly observation numerical values in relation to the CO, emissions in Luxem-

bourg, further optimisations were not necessary to be made.

4.3.6 Information Extraction for the CO, Emissions

To predict the satisfiability values of CO, emissions from the 14th December 2020 un-
til the 13th December 2050, we have applied a linear regression technique, namely a
least squares method allowing the generation of new observations for the ecosystem
resilience analysis. Hence, the regression has been applied with respect to the rela-
tionship between the year and the CO, emissions variables in the collected dataset.

Since we are predicting the Luxembourgish compliance to the Paris Agreement, only
adopted on the 12th December 2015, we have only take into account the evolution
of the emissions since the adoption date (2015-2020) for the prediction of the satisfi-

ability values in the future.

The prediction of the CO, emissions until 2050 is shown in Figure 4.16.
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FIGURE 4.16: Predicition of the CO, emissions from 2020 until 2050.
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The information extraction for the CO, absorption Property has allowed to estimate
a maximum of 322350 tonnes (322.35 kilotonne) of CO, absorbed by the Luxembour-
gish forests, based on the collected remote sensing information from 2020.

If we take into account that maximum value for the CO, absorption, we can integrate
it to compute an additional prediction regarding the net CO, emissions from 2020
until 2050. The prediction of the net CO, emissions until 2050 is shown in Figure
4.17.
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FIGURE 4.17: Predicition of the Net CO, emissions from 2020 until
2050.

Hence, we can clearly see how important are forests for CO, absorption and how
they help in the moderation of the Earth’s carbon balance.
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4.4 Ecosystem Resilience Analysis Results

In this section, we present the result of the ecosystem resilience analysis in relation
with the property of interest of our case study, namely the total CO, net emissions
in Luxembourg.

With the generation of the DREF [7] evolution graph shown in Figure 4.18, we
have compiled the information extraction from both the Properties of the case study,
namely the CO, absorption and CO, emissions. Hence, with the results from the
previous activity of our proposed Ecosystem Resilience Analysis approach, we can de-
termine a possible compliance with the Paris Agreement from 2020 until 2029, with

net CO, emissions values respecting the target of —20% compared to 1990 levels.

As shown in the Figure 4.18, the computed satisfiability respected the tolerance mar-
gin assigned from 2020 until 2030. After 2025, the system predicted a more important
decrease of CO, net emissions compared to the target of —20% for the interval of 2020
until 2030, where the satisfiability values were predicted to be below the specified
nominal satisfiability.

However, with the target of —40% of CO, net emissions from 2030 until 2050, we
can verify with the generated DREF evolution graph a nonconformity with respect
to the 10% of tolerance margin specified in the requirements model.

As thus, the target for 2030 appears to be only attainable in 2045, when the predicted
satisfiability values respects the tolerance margin specified for interval of time be-
tween 2030 and 2050. However, the nominal satisfiability value assigned from 2030
until 2050 is not accomplished. Likewise, we predict a noncompliance with the nom-
inal satisfiability corresponding to the Paris Agreement target for 2050.

As a consequence of the predicted satisfiability values for the total CO, net emissions
property, we can estimate at most a reduction of 40% in relation to 1990 levels for
2050.

Thus, we can conclude that the ecosystem may not be resilience to the CO, net emis-
sions at the Paris Agreement targets of 2030 and 2050.
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Chapter 5

Conclusion

In this thesis, we have presented our approach for the development of systems
analysing the resilience of ecosystems using Earth observation multi-source data
such as remote sensing or in-situ, following a model-driven engineering approach
coupled with artificial intelligence (MDE4AI) methods.

We have presented how the requirements engineering phase in a model-driven en-
gineering context can be associated for the specification of Earth observation multi-
source data. Therefore, we have created a dedicated metamodel for the specification
of requirements, allowing stakeholders to model the Ecosystem Resilience Analysis re-
quirements in the system under development using the presented concepts such as
entities, properties and observers. Such requirements are in turn used in subsequent
activities of the approach for the development of systems analysing the resilience
of ecosystems. Additionally, with the specification of requirements, we have shown
how the requirements can be used through model transformations to automate the
collection of Earth observation datasets as well as their optimisation.

Based on the recent success of the application of artificial intelligence methods on
Earth observation data, we have presented how the generation of different neural
network architectures such as convolutional neural networks or generative adver-
sarial networks can be automatised to extract informations from the multi-source
collected data. Hence, with the proposed Ecosystem Resilience Analysis approach, the
software system generates intelligent skeletons of neural network architectures to
make use of the collected data with artificial intelligence architectures, to evaluate
the resilience of the properties of interest on the specified entities. Lastly, we have
presented a final system functionality to create an evolution graph with the com-
puted values of the properties of interest, compliant and based on the DREF resilience
framework.

With the intent of illustrating and experimenting our proposed Ecosystem Resilience
Analysis approach, we have presented a case study targeting a system capable of
analysing the resilience of the Luxembourg territory, relevant to the compliance with
the Paris Agreement on the reduction of greenhouse gases emissions.
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Chapter 6

Future Work

In this thesis, our main contribution was the development of an approach for the
Ecosystem Resilience Analysis. Currently, we have created a dedicated metamodel
for the requirements specification associated with Earth observation multi-source
data for the development of systems analysing the resilience of ecosystems. Hence,
stakeholders can create models for the Ecosystem Resilience Analysis requirements,
compliant with the metamodel. Moreover, in the proposed approach, we describe
informally how model transformations can be used to automate the data collection,
optimisation and information extraction on Earth observation multi-source data.
However, due to time constraints, some limitations have been setup and hence, the
automation via model transformations in a model-driven engineering context has
not been implemented yet during this thesis. Thus, as a first future work, the model
transformations will be formalised and implemented, to allow the complete automa-
tion of our approach and consequently, a step towards a complete model-driven en-

gineering method.

Additionally, during the thesis, we found opportunities for improvements regard-
ing the generation of artificial neural networks for information extraction. First, we
found that genetic algorithms can be coupled with artificial neural networks to accel-
erate and automating the learning process to solve problems such as remote sensing
image classification and land use and land cover. Hence, as future work, we would
like to allow the generation of genetic algorithms for the classification of remote

sensing imagery.

Second, despite the powerful capabilities of current machine learning architectures,
the usage of Earth observation data such as remote sensing datasets can lead to
important increases in computation times. Hence, we have identified another fu-
ture work related to the machine learning aspect of our approach. Therefore, we
plan to add the functionality to apply transfer learning to the proposed architec-
tures with the usage of public pre-trained models, compliant with the stakeholder

requirements.

Finally, once we have implemented the functionality to apply transfer learning in the

proposed architectures, we intend to propose new remote-sensing scene-classification
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methods based on vision transformers. First recognised as the state-of-the-art mod-
els in natural language processing, vision transformers have demonstrated recently
great capabilities in image classification with their multi-head self-attention mech-
anism as the main building block of the neural network, allowing the capture of

contextual representations between images.
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