Blockly2Hooks: Smart Contracts for Everyone with
the XRP Ledger and Google Blockly

Lucian Trestioreanu®, Wazen M. Shbair*, Flaviene Scheidt de Cristo*, and Radu State*
* University of Luxembourg, SnT, 29, Avenue J.F Kennedy, L-1855 Luxembourg
Email:{lucian.trestioreanu, wazen.shbair, radu.state} @uni.lu

Abstract—Recent technologies such as inter-ledger payments,
non-fungible tokens, and smart contracts are all fruited from
the ongoing development of Distributed Ledger Technologies.
The foreseen trend is that they will play an increasingly visible
role in daily life, which will have to be backed by appropriate
operational resources. For example, due to increasing demand,
smart contracts could soon face a shortage of knowledgeable
users and tools to handle them in practice. Widespread smart
contract adoption is currently limited by security, usability and
costs aspects. Because of a steep learning curve, the handling of
smart contracts is currently performed by specialised developers
mainly, and most of the research effort is focusing on smart con-
tract security, while other aspects like usability being somewhat
neglected. Specific tools would lower the entry barrier, enabling
interested non-experts to create smart contracts.

In this paper we designed and developed Blockly2Hooks, a
solution towards filling this gap even in challenging scenarios such
as when the smart contracts are written in an advanced language
like C. With the XRP Ledger as a concrete working case,
Blockly2Hooks helps interested non-experts from the community
to learn smart contracts easily and adopt the technology, through
leveraging well-proven teaching methodologies like Visual Pro-
gramming Languages, and more specifically, the Blockly Visual
Programming library from Google.

The platform was developed and tested and the results
are promising to make learning smart contract development
smoother.

Index Terms—DLT, XRP, smart contracts, visual programming

I. INTRODUCTION

The recent advances and the growing adoption of the
Distributed Ledger Technology (DLT) show that DLT is here
to stay, with the technology becoming each day more, a part of
the daily life. Inter-ledger payments [1] made their way into
finances [2]], non-fungible tokens (NFT) [3[|-[5]] are already
used in industries like gaming, logistics and more; smart
contracts [6]], [7] are being successfully deployed to tackle
finance, healthcare, gaming, insurance or legal use cases [S§]].
The term "smart contracts” was coined in 1994 by Nick Szabo
who defined them as software programs replicating real-life
contracts and executing their terms while minimizing excep-
tions and the need for trusted intermediaries, e.g. notaries [9],
[10]. Smart contracts [11]] are small pieces of executable code,
oftentimes written in advanced programming languages. They
reside and execute on DLTs like Ethereum (ETH) [12], [13]
or the XRP Ledger (XRPL) [14], [15]. Because they exist
and run on DLT, they are classified as Decentralized Applica-
tions (dApps). Ideally, smart contracts should be autonomous,

immutable and public; their execution should be transparent
and non-reversible. On ETH, the smart contract’s logic is
encoded with Solidity, compiled to bytecode, then executed on
the Ethereum Virtual Machine [16]. Solidity is a high level,
object-oriented programming language designed specifically to
encode smart contracts on the Ethereum blockchai Initially
inspired from JavaScript, it was enriched with elements from
C++ and Python. On XRPL, smart contracts are written in C,
compiled to wasm (a binary format for a stack-based virtual
machineﬂ then deployed and executed on XRPL. However,
the learning curve for smart contract programming is not
smooth. Currently, the smart contracts are mostly written,
debugged and deployed by specialised developers with ad-
vanced technical background. Besides advanced knowledge in
the specialized field, another important reason is that smart
contracts are written in programming languages like C that
can make the process overwhelmingly difficult for non-expert
users. Also, the design of the C language is identified as
impacting the bug rates, program security and complexity [17]].

Smart contracts should be made friendlier and more ac-
cessible to a larger audience like teenagers, non-technical
people, knowledge seekers and the community at large: in a
scenario when smart contracts are deployed on a large scale
in industry, it will be desirable that users and stakeholders can
directly program the conditions of the contract themselves.
Bringing smart contracts closer to the business will unlock
the full potential of smart contracts to creating value for
the society. It is expected that if adopted on a large scale,
the financial impact of smart contracts would be substantial.
However, widespread smart contract adoption is currently
hampered by costs, usability and security [18]. The specialised
programmers needed for smart contract development increase
the cost to deploy a smart contract. To enable widespread
adoption, costs can be decreased by increasing smart contract
usability, currently impacted by the advanced programming
languages used in development that translate into an entry
barrier for the general public. Moreover, when smart contracts
are developed by pure programmers, situations can arise when
the programmer does not fully understand the needs of the
stakeholder, that should be embedded into the contract [19].
The stakeholder needs to test the implementation and provide
feedback to the programmer making the process iterative and

Uhttps://docs.soliditylang.org/en/v0.8.18/, valid in February 2023
Zhttps://webassembly.org/, valid in February 2023

prone to implementation flaws which increases the costs even
further. Currently, there is a general trend towards no-code or
low-code tools [20], for software development to benefit
ubiquitous, daily-business use cases [22]]. The blockchains
whose smart contracts will be more usable and cost-friendly
will see their adoption and user-base grow.

Of the possible solutions, we focused on the well-proven
Visual Programming Languages (VPL) methodology which is
successfully used in schools to teach programming. VPLs, or
block coding, have been defined as programming languages
that enable users to build computer programs through inter-
acting with, and expressing the program through, graphical
elements of the language rather than textual [23]. Oftentimes
such environments are based on boxes, lines and arrows
which interconnect the boxes and represent their relations
and interactions [24]], [25]]. VPLs aim to make programming
more accessible to novices through syntax, semantics and
pragmatics [26). Syntax offers icons, blocks, arrows, forms
and diagrams to enable beginners to easily create well-formed
computer programs. Semantics are helper methods aiming to
convey to the user the meaning and correct usage of the
graphical primitives of the VPL. Pragmatics are possibilities
offered to the user to test and understand the behavior of
pieces of program they create, in different specific situations.
VPLs can be used for a variety of domains like multimedia,
education, gaming or automation, to name a few.

Visual editors for smart contracts can democratize the build-
ing, deployment and management of smart contracts and im-
prove their reliability and security [27], because, like any other
computer program, smart contracts can have sometimes bugs
that can lead to potentially significant financial losses [28]].

What we want to achieve is illustrated in Figure [T} the
complex task to write smart contracts in the C code (Figure [Ta))
and then deploy, test and use them, should be made accessible
to larger audiences through leveraging the advantages of visual
programming (Figure [TB).

In this paper we propose, implement and discuss
Blockly2Hooks, a solution for teaching non-technical audi-
ences how to easily program, test and deploy some of the
most challenging smart contracts like those written in the C
language. To achieve this we use Visual Programming, a well-
proven teaching methodology, and take the XRP Ledger smart
contracts as a concrete case. As Google Blockly offers native
support for the translation of the visual blocks to simpler
languages like JavaScript, Python, PHP, Lua, Dart, and the
possibility to add other languages, other blockchains can be
accommodated on this design, too.

The paper is organised as follows: Section [lI| introduces
the technologies involved. The Blockly2Hooks solution is
presented in Section [} while the current state of the art is
discussed in Section m Finally, we draw our conclusions and
present the avenues for future work in Section [V]

II. BACKGROUND

Here we are describing the most important technologies
involved in Blockly2Hooks, like the XRP Ledger, the Hooks

//Executed when an emitted transaction is successfully

accepted into a ledger
int64_t cbak(uint32_t reserved) {
return 0;

}

//Executed whenever a transaction comes into or leaves
from the account the Hook is set on

int64_t hook(uint32_t reserved) {
TRACESTR("Accept.c: Called.");
accept(SBUF("Accepted!"),1);

_8(1,1);

return 0;

}

(a) XRPL smart contracts, as written by programmers.

—_—
TRACESTR (l .3 Accept.c: Called. #2/

error_code

—————
accept read_ptr _ SBUF (1 "4 Accepted! |

(b) XRPL smart contracts, as developed by non-technical users.

Fig. 1: The design goal of Blockly2Hooks.

smart contracts on XRPL, and the Blockly library for visual
programming offered by Google.

XRPL is characterised as an open-source, permissionless,
and decentralized blockchain which is appreciated for its trans-
action (tx) throughput (1500 tx/s) , speed (transactions
settle in 3-5s) , low fees, and low energy consumption,
all thanks to the consensus protocol involved: the ledger
building process consists of a Byzantine Fault Tolerant "Con-
sensus" and a "Validation" stage, where a majority of the
participating nodes have to agree on the next version of the
ledger. This is not a computationally-intensive process and it
is designed to provide the above mentioned advantages.

XRPL is focused on cross-border payments and has support
for NFTs and for smart contracts which on XRPL are called
Hooks (32

The Hooks have been developed specially for the XRPL.
They are small, efficient pieces of code compiled to web as-
sembly (wasm) modules. Hooks can be written in any language
(compilable to wasm) then they are uploaded to XRPL [33].
They are deployed and work on Layer 1, meaning directly on
the XRPL, and their function is to modify the behavior and the
flow of the transactions. The logic they deploy can be executed
before or after the transactions. Hooks are deliberately made
not to be Turing-Complete, which is undesirable at layer 1

because this would make it impossible to determine when
the program would end. And without predictable maximum
execution times, the XRPL might never advance to the next
ledger. Hooks can store simple data objects like for example
lists: "for all incoming payments, check if the sending account
is in a blacklist (e.g. kept by another hook), and if yes: reject
it”. Other possible hook examples are: “deny transfers less
than 20 XRP”, or “for outgoing transfers, send xy% to a
predefined account”. Typically, Hooks are written in C. While
C is a very efficient programming language, it is not easy to
learn and use for non-developers. Even more, because Hooks
are deliberately not Turing-Complete programs, they use a
modified C language which makes it even more complicated
for non-specialised audience.

An example of an XRPL Hook, called "Carbon Offset
example” [34], is illustrated in Figure 2} The hook in this
example is installed on the Sender account (Bob’s account).
This hook is triggered by outgoing transactions from Bob’s
account: when Bob sends some funds to Alice, the Hook will
trigger a new transaction that will send 1% of the outgoing
amount to a "Carbon Offset” account. It is possible to install
such hooks on other sending user accounts too, such that over
time the "Carbon Offset" account would raise an amount that
can be used to mitigate the effects of carbon emissions on
Global Warming through for example sponsoring reforestation.

The Hook, triggered by outgoing transactions, is installed on the SENDING account

Bob account
(SENDING)

Hook installed
on Bob’s account
Hook logic executed on Alice account
(RECEIVING)

outgoing transaction

Hook generates an

extra transaction
b e e = == = - “CARBON Offset” account
1% of Tx sent

to Carbon account

Fig. 2: Example Hook on the XRP Ledger: "Carbon offset".

VPLs. Scratch is a visual programming language
developed at the MIT Media Lab. Scratch is used by thousands
of kids worldwide to learn how to program and allows them
to share their creations with one another over the Internet.
The approach, its advantages and what made it so successful
is thoroughly explained by the authors in [36]. Nevertheless,
Scratch is not easily customizable, and it only translates to
Java Script. Another VPL example is Droplet but it
is not mature enough, nor widely used. Taleblazer is
a platform for developing Augmented Reality games using
visual programming but it is specialized on gaming. As such,
we found Google Blockly to be more suitable for the purpose:

Blockly is an open-source framework from Google
featuring visual block-based icons and a drag-drop program-
ming environment. Non-expert users can leverage the visual
programming language approach provided by Blockly to build
applications for education, gaming, robotics, or IoT. We chose
Blocky because it can transform visual programs into many

different textual codes, e.g., JavaScript, Php, Python, Dart, and
Lua, and because it is much more versatile and customizable.

III. METHODOLOGY AND RESULT

This section describes Blockly2Hooks, the proposed solu-
tion for bringing smart contracts closer to large, non-expert
audiences. As stated, the goal is to enable everyone interested,
to develop and deploy smart contracts even in challenging
cases such as when the contracts are written in complex
programming languages like C - as currently encountered for
example on the XRP Ledger. We do this through leveraging
the Visual Programming Language (VPL) approach, more
specifically by using the visual programming libraries offered
by Google that are called Blockly.

To achieve this, we first study, map and implement the
functions that we could identify in the XRPL Hooks smart
contracts as visual blocks, using Blockly. This enables the use
of the “Drag & Drop” visual programming approach for smart
contract development. Next, we implement the compiling
of the generated code to Web Assembly (WASM). Finally,
through the push of a button after compilation, we enable
users to easily sign and deploy to the blockchain, i.e. the XRP
Ledger, the smart contract (hook) that they developed using
our Blockly-based VPL.

The proposed system architecture is represented in Figure 3]
and it comprises four major modules:

o The Frontend

¢ The Remote Server for code compilation to web assembly
o The Backend

o The XRPL Hooks Testnet

Hooks C Hooks C

Code _, Code

n de |

NSRSV WEBASSEMBLY
Code

'l XRPL Hooks Amendment LEER)
XRPL HOOK TESTNET

Fig. 3: Blockly2Hooks architecture.

@ . ®

e Signed setHook

transaction

o Transaction Result

These modules are described below:

Frontend. The user builds smart contracts through interact-
ing with a web interface in their browser. The Frontend fea-
tures a visual programming environment where users without
advanced programming skills can drag and drop blocks and
fill in basic data (e.g. amounts) needed to build their desired
Hook Smart Contract. The result is translated to Hooks” C
code and can be seen on the same screen on the Frontend, as
illustrated in Figure []

= Blockly2Hooks HookName #

o

A Home | HooksCatsog [Open [Save [DA%

G Hook Source Code Y

Basic Blocks //Executed when an emitted transaction is
int64_t cbak(int64_t reserved) {
return 0;

}

» Hook's API

P Hook's Macro
//Executed whenever a transaction comes it
int64_t hook(int64_t reserved) {
TRACESTR("Accept.c: Called.”);
accept(SBUF("Accepted!™),1);

e _8(1.1);

Variables

Logic

Ay return 0;
}

5] WASM Compilation Output

WASM Binary Download
AGFZbQEAAAABNTCAGAAEYAV/ 39/ fuF+YAN
/£34BfmACT38B12ABFgF-+AGOAGTAAAWN LbnYCX2CAAQN Lbn YGYWN] ZXBOAAEDZWS

WASM Text Download
((type $FUNCSIGSjiiiii (func (param 132 132 132 132 132)
164))) (type SFUNCSIGSjiij (func i
2BXRyYWNLAAADGACAGAACAWMENTCAGAABCAAABYOAGTAAAQABBOGAGTAAAREYGTC
AAAMGDWVtb3)SAGAEY2JhawADBGhvb25ABArggTCAAAKRGTCAAABBACGCBEEQayA
ANWMIQQALXTCAGAABAX9BAEEAKATEQRBI TgE2AgQgASAANWMIQRBBFEEWQRIBABA
CGKHQAEEKQQEQARpBAUEBEAAQQAGAUEQa] YCBETACWVBGICAAAMAQRALFCIBY2N
1cHQUY20gQ2F sbGVKLATAAEEWCXJBY2NLCHQUYZ0gQ2F SbGVKLGAAQAAACWPBY2N
LCHRIZCEA

2 132) (result
param 32 132 i64)
(result 64))) (import “er (func $trace (param i32 i32

table @ anyfunc) (memory $0 1)

i32 132 i32) (result i64)
(data (i32.const 16) "\"Accept.c: Called.\"\60") (data

Fig. 4: Blockly2Hooks Frontend.

Remote wasm compiler server. This is a remote server
which receives the hooks that have been visually built by
the user in the form of C code, and then compiles them to
wasm, returning either the same hooks but in the wasm format,
or the error(s) encountered during compilation. We chose to
externalise the wasm compiler to keep the user experience
light and smooth, because the wasm compiler involves the
management of complex libraries required to compile the
hooks from the special XRPL’s C language format to the wasm
format. As such, the user needs to fetch and install only the
light code associated to the backend and the frontend.

XRPL Hooks Testnet. This is a parallel XRPL network -
not the production one - where users can learn and experiment
with deploying hooks without a risk to losing real money. The
Hooks Testnet also offers its own Faucet, where users can get
a Hooks Testnet account and "fake" money (fake XRP).

Backend. The Backend is an interface between the Frontend
and the Remote Wasm Compiler. After the Hook Smart
Contract is built, the user compiles the translated C code to
wasm: though the push of a button on the Frontend, the C code
is sent to the Remote Wasm Compiler Server, to be compiled
to wasm. This process is managed by the Backend, which takes
the C code from the Frontend and forwards it to the Remote
wasm compiler. In turn, the Remote Wasm Compiler Server
will return to the Backend the hook as a wasm file or the
compilation error(s). The Backend will forward the received
hook, or the error(s), to the Frontend which will display them
on-screen to the user.

For security reasons, the rest of the process is handled on
the Frontend: after receiving the hook as wasm code, the user
signs the transaction and sends it to the Testnet for deployment.
This must happen on the Frontend because the signing process
involves private credentials which in a real-life scenario should
preferably remain at all times on the user’s machine. After
deploying the signed transaction, the user will get back to the
Frontend the result of the transaction: either success, or failure.

The multi-user architecture is presented in Figure [5] Users
having installed on their local machines the free and open-

WEBASSEMBLY
Remote WASM

CHARLIE

i Backend .<—

Compiler

QIQJ XRPL Hooks Amendment [EEE)
XRPL HOOK TESTNET

Fig. 5: Blockly2Hooks multi-user architecture.

source code consisting of the two Frontend and Backend
Blockly2Hooks modules bundled together, will directly con-
nect to the remote wasm compiler and to the XRPL Hooks
Testnet, and will be instantly able to design and deploy Hooks.

The Blockly2Hooks platform is released as an open-source
project on GitHulﬂ We have integrated some example Hooks
for making it easier to get started and we are looking forward
to adding more examples.

IV. RELATED WORK

Marks identifies different levels of abstraction for smart
contract editors, from syntactic graphical editors such as based
for example on Blocky, through flow-based graphical editors
alike Unreal Engine Blueprint, and to forms to be filled-in for
the simplest cases. It argues that because the necessary level
of abstraction is dependent on the intended audience and use-
case, until the users are there, the abstraction level can only
be guessed. However, new or complex situations are likely to
continue to be tackled by programmers.

An interesting study on the deployment of real-life contracts
as smart contracts on the Ethereum blockchain has been under-
taken in [40], where important challenges like the complexity
of contract clauses and the user privacy are being exposed. The
usage of visual domain-specific languages for smart contract
creation on Ethereum Solidity is studied in [I0], [41]] and a
concrete solution is proposed under the name DasContract.

Actually, most of the previous work on making smart
contract development more accessible to the public has been
focusing on visual editors for Solidity on the Ethereum
blockchain, possibly because this is the most popular smart
contracts platform: Latte [42] is such an example, which also
provides feedback regarding the Gas cost incurred by the
smart contract being built. The authors of employ an
interesting machine learning approach to build a visual pro-
gramming environment for Ethereum smart contracts. A visual
programming solution based on YAWL [44] is proposed by
to build smart contracts for Solidity, while working on a
concrete use case from the construction industry. For a specific
industry client, designed and implemented a VPL-based

3https://github.com/wshbair/blockly2hooks

smart contract programming environment for a legal purchase
agreements use case. Working on the same concrete case of
Solidity and Ethereum, the authors of [46] identify a lack of
smart contract descriptors (descriptors provide the information
required to interact with a smart contract [46[), investigate
the reusing of smart contracts, and propose then implement a
design for smart contract descriptors, a descriptors registry, and
a visual editor based on Google Blockly for creating composite
smart contracts (smart contracts that call and interact with
other smart contracts). The author of [18|] identifies several
requirements for widespread adoption of smart contracts in
business and industry: ease of use, understandability, ease of
testing, secure and error-free, scalable and affordable. End-user
affordability is achieved mainly by replacing the programmers
for smart contract creation [[18]]. Next, it investigates the use
of declarative languages to enable beginners to easily and
securely generate smart contracts, by working on a "Will and
Testament" concrete use case. FlowContract aims to be a
flow-based smart contract editor for Ethereum Solidity, which
however continues to expose lots of low-level programming
elements to the user.

BlocksE] [47] is an online smart contract editor for the
Internet Computerﬂ It is a flow-oriented design which retains
many syntactic elements, as most of the blocks, fields and
variable names making up the visual design come straight
from their text-programming counterparts. Another design is
proposed in [48] for Hyperledger Fabric, however because of
ties to a commercial project only limited work seems to be
open-source and freely available.

Concerning Hooks, the XRPL Lab proposes an online,
browser-based Builder [49]] for the XRPL Hooks which puts
together the hook documentation, hook examples, and the
deployment to the Hooks Testnet. The creation of the smart
contracts is carried over in the C language though, which
ultimately makes Builder a tool for programmers. Same as
Builder, Blockly2Hooks could also eliminate any need for
the users to install code on their machines, i.e. place the
functionalities still present on the user’s machine on the remote
server also, such that users just open their browser to access a
remotely-served web interface from where they do everything.

To the best of our knowledge no other open-source project
addresses visual smart contract development for contracts that
are natively developed with advanced programming languages
such as the modified C language used for the Hook smart
contracts on the XRP Ledger. The environment proposed
by Blockly2Hooks is general enough to accommodate the
development of any kind of smart contract.

V. CONCLUSIONS AND FUTURE WORK

For non-expert audience, developing smart contracts on
Distributed Ledger Technology is currently a kind of mystery,
with the field "reserved" to a narrow segment of seasoned
professionals. In this work we investigated how interested

“https://flowcontracts.com/docs, valid in February 2023
Shttps://blocks-editor.github.io/blocks/, valid in February 2023
Shttps://dfinity.org/, valid in February 2023

audience with low programming skills can learn to develop
smart contracts written even in complex languages such as
the C language. We propose a classic, proven methodology for
teaching programming which is shown to achieve good results:
the Visual block-based icons and a Drag&Drop programming
environment which is successfully used in schools to teach
kids how to program. As a concrete case we used the Hooks
smart contracts deployed on the XRP Ledger, and the visual
programming environment we propose is built on Google’s
Blockly, a comprehensive but in the same time flexible,
friendly and future-proof framework which offers possibilities
for extending and improving the project.

The proposed design can help minimise the development
time and costs, and increase the smart contract security by
reducing the chances for smart contract bugs even for more
tech-savvy users.

Blockly2Hooks was developed and tested and the results
are promising to make learning smart contract development
smoother.

Future work. The platform will be connected to Mainnet
(the XRPL production network where real money are involved)
as soon as the Hooks ammendment will be enabled there. As
such, users will have the possibility to test their hooks on Test-
net before deploying them on Mainnet. Additionally, we plan
focus testing Blockly2Hooks, to gather more feedback from
the community to make the system better and more useful.
E.g., currently Blockly2Hooks is rather a syntactic graphical
editor oriented towards learning smart contract development.
Nevertheless, the platform is flexible enough to accommodate,
in parallel, higher levels of abstraction: e.g., for the next
version of Blockly2Hooks, we consider the implementation of
templates, or macro-blocks, for some of the most sought after
use cases. This will allow enriching the design to include a
Sflow-like programming experience through interconnecting the
macro blocks, treated by the user as black boxes.

ACKNOWLEDGMENT

We thankfully acknowledge the support of the RIPPLE
University Blockchain Research Initiative (UBRI) for our
research.

REFERENCES

[1] L. Trestioreanu, C. Nita-Rotaru, A. Malhotra, and R. State, “Spon:
Enabling resilient inter-ledgers payments with an intrusion-tolerant
overlay,” in 2021 IEEE Conference on Communications and Network
Security (CNS), 2021, pp. 92-100.

[2] The Interledger Foundation, “The interledger foundation,” 2016,
accessed: Feb. 2023. [Online]. Available: https://interledger.org/

[3] L. Ante, “The non-fungible token (nft) market and its relationship with
bitcoin and ethereum,” FinTech, vol. 1, no. 3, pp. 216-224, 2022.

[4] M. Nadini, L. Alessandretti, F. Di Giacinto, M. Martino, L. M. Aiello,
and A. Baronchelli, “Mapping the nft revolution: market trends, trade
networks, and visual features,” Scientific reports, vol. 11, no. 1, p. 20902,
2021.

[5] L. Ante, “Non-fungible token (nft) markets on the ethereum blockchain:
Temporal development, cointegration and interrelations,” Economics of
Innovation and New Technology, pp. 1-19, 2022.

[6] M. Kolvart, M. Poola, and A. Rull, “Smart contracts,” The Future of
Law and etechnologies, pp. 133-147, 2016.

https://interledger.org/

[7]

[8]

[9]

[10]

(1]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

W. Zou, D. Lo, P. S. Kochhar, X.-B. D. Le, X. Xia, Y. Feng, Z. Chen,
and B. Xu, “Smart contract development: Challenges and opportunities,”
IEEE Transactions on Software Engineering, vol. 47, no. 10, pp. 2084—
2106, 2019.

N. Szabo, “The idea of smart contracts,” online, accessed: Feb. 2023.
[Online]. Available: https://nakamotoinstitute.org/the-idea-of-smart-co
ntracts/

N. Szabo, “Smart contracts,” online, accessed: Feb. 2023. [Online].
Available: https://www.fon.hum.uva.nl/rob/Courses/InformationInSpee
ch/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart
.contracts.html

M. Skotnica and R. Pergl, “Das contract - a visual domain specific
language for modeling blockchain smart contracts,” in Advances in
Enterprise Engineering XIII, D. Aveiro, G. Guizzardi, and J. Borbinha,
Eds. Cham: Springer International Publishing, 2020, pp. 149-166.

N. Szabo, “Formalizing and securing relationships on public networks,”
First Monday, vol. 2, 1997.

V. Buterin, “Ethereum whitepaper,” 2014, accessed: Feb. 2023. [Online].
Available: https://ethereum.org/en/learn/

V. Buterin, “Ethereum whitepaper,” 2023, accessed: Feb. 2023. [Online].
Auvailable: https://ethereum.org/en/whitepaper/

XRP Ledger Foundation, “rippled,” online, 02 2021, accessed: Jan.
2023. [Online]. Available: https://github.com/XRPLF/rippled/blob/deve
lop/RELEASENOTES.md

L. Mauri, S. Cimato, and E. Damiani, “A formal approach for the
analysis of the xrp ledger consensus protocol,” in 6th International
Conference on Information Systems Security and Privacy, ICISSP, 02
2020.

Gavin Wood et al.,, “Ethereum: A secure decentralised generalised
transaction ledger,” 09 2017, accessed: Feb. 2023. [Online]. Available:
https://archive.org/details/Ethereum_Yellow_Paper_201709

B. Ray, D. Posnett, P. Devanbu, and V. Filkov, “A large-scale study
of programming languages and code quality in github,” Commun.
ACM, vol. 60, no. 10, p. 91-100, sep 2017. [Online]. Available:
https://doi.org/10.1145/3126905

K. J. Purnell, “Towards declarative smart contracts,” Ph.D. dissertation,
Macquarie University, 2022.

X. Ye and M. Koénig, “From the graphical representation to the smart
contract language: a use case in the construction industry,” in Proceed-
ings of the 38th International Symposium on Automation and Robotics
in Construction (ISARC), C. Feng, T. Linner, 1. Brilakis, D. Castro,
P-H. Chen, Y. Cho, J. Du, S. Ergan, B. Garcia de Soto, J. Gaparik,
F. Habbal, A. Hammad, K. Iturralde, T. Bock, S. Kwon, Z. Lathaj,
N. Li, C.-J. Liang, B. Mantha, M. S. Ng, D. Hall, M. Pan, W. Pan,
F. Rahimian, B. Raphael, A. Sattineni, C. Schlette, I. Shabtai, X. Shen,
P. Tang, J. Teizer, Y. Turkan, E. Valero, and Z. Zhu, Eds. Dubai, UAE:
International Association for Automation and Robotics in Construction
(IAARC), November 2021, pp. 272-279.

Webflow, “The site you want — without the dev time,” 2023, accessed:
Feb. 2023. [Online]. Available: https://webflow.com/about

Bubble.io, “The best way to build marketplaces without code,” 2023,
accessed: Feb. 2023. [Online]. Available: https://bubble.io/

I. N. Oteyo, A. L. S. Pupo, J. Zaman, S. Kimani, W. De Meuter, and
E. G. Boix, “Building smart agriculture applications using low-code
tools: The case for discopar,” in 2021 IEEE AFRICON, 2021, pp. 1-6.
B. Jost, M. Ketterl, R. Budde, and T. Leimbach, “Graphical program-
ming environments for educational robots: Open roberta - yet another
one?” in 2014 IEEE International Symposium on Multimedia, 2014, pp.
381-386.

M. A. Kuhail, S. Farooq, R. Hammad, and M. Bahja, “Characterizing
visual programming approaches for end-user developers: A systematic
review,” IEEE Access, vol. 9, pp. 14 181-14 202, 2021.

S. Bragg and C. Driskill, “Diagrammatic-graphical programming lan-
guages and dod-std-2167a,” in Proceedings of AUTOTESTCON 94,
1994, pp. 211-220.

Wikipedia, “Visual programming language,” 2023, accessed: Feb. 2023.
[Online]. Available: https://en.wikipedia.org/wiki/Visual_programming
_language#cite_note-2

E. Marks, “The case for graphical smart contract editors,” 04 2018,
accessed: Feb. 2023. [Online]. Available: https://medium.com/pennblo
ckchain/the-case-for-graphical-smart-contract-editors-8e72 lcdcde93

V. Dhillon, D. Metcalf, and M. Hooper, The DAO Hacked.
Berkeley, CA: Apress, 2017, pp. 67-78. [Online]. Available: https:
/ldoi.org/10.1007/978-1-4842-3081-7_6

[29]

(30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

Y. Ikeda, Y. Ohki, Z. Marquardt, Y. Kimura, S. Omura, and
E. Yoshikawa, “First demonstration experiment for energy trading sys-
tem edison-x using the xrp ledger,” arXiv preprint arXiv:2212.02044,
2022.

L. Trestioreanu, W. M. Shbair, F. S. de Cristo, and R. State, “XRP-
NDN Opverlay: Improving the communication efficiency of consensus-
validation based blockchains with an NDN Overlay,” arXiv preprint
arXiv:2301.10209, 2023.

I. Amores-Sesar, C. Cachin, and J. Mici¢, “Security analysis of ripple
consensus,” 2020. [Online]. Available: https://arxiv.org/abs/2011.14816
XRPL Labs, “A smart contract proposal for the xrp ledger,” 2022,
accessed: Feb. 2023. [Online]. Available: https://hooks.xrpl.org/

XRPL Labs, “XRPL Hooks amendment,” 2023, accessed: Feb. 2023.
[Online]. Available: https://hooks-testnet-v2.xrpl-labs.com/

XRPL Labs, “Hooks technology preview quickstart,” online, accessed:
Feb. 2023. [Online]. Available: https://github.com/XRPL-Labs/xrpld-h
ooks/tree/hooks-ssvm/hook-api-examples

MIT, “Scratch,” online, accessed: Feb. 2023.
https://scratch.mit.edu/

M. Resnick, J. Maloney, A. Monroy-Hernandez, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and
Y. Kafai, “Scratch: Programming for all,” Commun. ACM, vol. 52, pp.
60-67, 11 2009.

A. Bau, “Droplet: Blocks and text together,” 2023, accessed: Feb. 2023.
[Online]. Available: https://droplet-editor.github.io/

M. S. Lab, “Taleblazer,” 2023, accessed: Feb. 2023. [Online]. Available:
https://education.mit.edu/project/taleblazer/

Google, “Blockly,” online, accessed: Feb. 2023. [Online]. Available:
https://developers.google.com/blockly

W. Egbertsen, G. Hardeman, M. van den Hoven, G. van der Kolk,
and A. van Rijsewijk, “Replacing paper contracts with ethereum
smart contracts,” 2016, accessed: Feb. 2023. [Online]. Available:
https://allquantor.at/blockchainbib/pdf/egbertsen2016replacing.pdf

M. Skotnica, J. Klicpera, and R. Pergl, “Towards model-driven smart
contract systems - code generation and improving expressivity of
smart contract modeling,” in Proceedings of the 20th CIAO! Doctoral
Consortium, and Enterprise Engineering Working Conference Forum
2020, 03 2021. [Online]. Available: https://ceur-ws.org/Vol-2825/

S. Tan, S. S Bhowmick, H. E. Chua, and X. Xiao, ‘“Latte:
Visual construction of smart contracts,” in Proceedings of the
2020 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD °20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 2713-2716. [Online]. Available:
https://doi.org/10.1145/3318464.3384687

D. Mao, F. Wang, Y. Wang, and Z. Hao, “Visual and user-defined smart
contract designing system based on automatic coding,” IEEE Access,
vol. 7, pp. 73 131-73 143, 2019.

W. M. P. van der Aalst, L. Aldred, M. Dumas, and A. H. M. ter
Hofstede, “Design and implementation of the yawl system,” in Advanced
Information Systems Engineering, A. Persson and J. Stirna, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 142-159.

T. Weingaertner, R. Rao, J. Ettlin, P. Suter, and P. Dublanc, “Smart
contracts using blockly: Representing a purchase agreement using a
graphical programming language,” in 2018 Crypto Valley Conference
on Blockchain Technology (CVCBT), 2018, pp. 55-64.

L. Guida and F. Daniel, “Supporting reuse of smart contracts through
service orientation and assisted development,” in 2019 IEEE Interna-
tional Conference on Decentralized Applications and Infrastructures
(DAPPCON), 2019, pp. 59-68.

R. Vandersmith, “How we created blocks: an online drag-and-drop
smart contract editor,” 01 2022, accessed: Feb. 2023. [Online].
Available: |https://levelup.gitconnected.com/how-we-created-blocks-an-
online-drag-and-drop- smart-contract-editor- fe23eff4d933

M. M. Merlec, Y. K. Lee, and H. P. In, “Smartbuilder: A block-based
visual programming framework for smart contract development,” in 2021
IEEE International Conference on Blockchain (Blockchain), 2021, pp.
90-94.

XRPL Labs, “XRPL Hooks builder,” 2023, accessed: Feb. 2023.
[Online]. Available: https://hooks-builder.xrpl.org/develop

[Online]. Available:

https://nakamotoinstitute.org/the-idea-of-smart-contracts/
https://nakamotoinstitute.org/the-idea-of-smart-contracts/
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://ethereum.org/en/learn/
https://ethereum.org/en/whitepaper/
https://github.com/XRPLF/rippled/blob/develop/RELEASENOTES.md
https://github.com/XRPLF/rippled/blob/develop/RELEASENOTES.md
https://archive.org/details/Ethereum_Yellow_Paper_201709
https://doi.org/10.1145/3126905
https://webflow.com/about
https://bubble.io/
https://en.wikipedia.org/wiki/Visual_programming_language#cite_note-2
https://en.wikipedia.org/wiki/Visual_programming_language#cite_note-2
https://medium.com/pennblockchain/the-case-for-graphical-smart-contract-editors-8e721cdcde93
https://medium.com/pennblockchain/the-case-for-graphical-smart-contract-editors-8e721cdcde93
https://doi.org/10.1007/978-1-4842-3081-7_6
https://doi.org/10.1007/978-1-4842-3081-7_6
https://arxiv.org/abs/2011.14816
https://hooks.xrpl.org/
https://hooks-testnet-v2.xrpl-labs.com/
https://github.com/XRPL-Labs/xrpld-hooks/tree/hooks-ssvm/hook-api-examples
https://github.com/XRPL-Labs/xrpld-hooks/tree/hooks-ssvm/hook-api-examples
https://scratch.mit.edu/
https://droplet-editor.github.io/
https://education.mit.edu/project/taleblazer/
https://developers.google.com/blockly
https://allquantor.at/blockchainbib/pdf/egbertsen2016replacing.pdf
https://ceur-ws.org/Vol-2825/
https://doi.org/10.1145/3318464.3384687
https://levelup.gitconnected.com/how-we-created-blocks-an-online-drag-and-drop-smart-contract-editor-fe23eff4d933
https://levelup.gitconnected.com/how-we-created-blocks-an-online-drag-and-drop-smart-contract-editor-fe23eff4d933
https://hooks-builder.xrpl.org/develop

	Introduction
	Background
	Methodology and result
	Related Work
	Conclusions and Future Work
	References

