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Abstract: The construction of exactly-solvable models has recently been advanced by
considering integrable T T̄ deformations and related Hamiltonian deformations in quantum
mechanics. We introduce a broader class of non-Hermitian Hamiltonian deformations in
a nonrelativistic setting, to account for the description of a large class of open quantum
systems, which includes, e.g., arbitrary Markovian evolutions conditioned to the absence
of quantum jumps. We relate the time evolution operator and the time-evolving density
matrix in the undeformed and deformed theories in terms of integral transforms with a
specific kernel. Non-Hermitian Hamiltonian deformations naturally arise in the description
of energy diffusion that emerges in quantum systems from time-keeping errors in a real
clock used to track time evolution. We show that the latter can be related to an inverse
T T̄ deformation with a purely imaginary deformation parameter. In this case, the integral
transforms take a particularly simple form when the initial state is a coherent Gibbs state
or a thermofield double state, as we illustrate by characterizing the purity, Rényi entropies,
logarithmic negativity, and the spectral form factor. As the dissipative evolution of a
quantum system can be conveniently described in Liouville space, we further study the
spectral properties of the Liouvillians, i.e., the dynamical generators associated with the
deformed theories. As an application, we discuss the interplay between decoherence and
quantum chaos in non-Hermitian deformations of random matrix Hamiltonians and the
Sachdev-Ye-Kitaev model.
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1 Introduction

Nonperturbative methods play a key role in physics to unveil phenomena that do not
admit an approximate description in terms of a perturbative expansion in a small coupling
constant [1]. A number of techniques have been developed to describe families of models that
are solvable in a broad sense. Paradigmatic instances include Hamiltonian integrability [2],
Bethe ansatz [3–5], Yang-Baxter integrability [6], quantum inverse scattering method [7],
quantum groups [8], random matrices [9, 10], conformal field theory [11], supersymmetric
methods [12], gauge-gravity dualities [13], and unitary quantum circuits, among many others.

An important advance in this direction is the introduction of infinite families of
deformations of two-dimensional integrable field theories that preserve integrability [14–
17]. In quantum mechanics, this motivates the introduction of families of exactly-solvable
Hamiltonian deformations [18–24]. The latter are of relevance for a system in isolation, that
is described by a time-independent Hermitian Hamiltonian with real eigenvalues. However,
the interaction of a system with the surrounding environment gives rise to decoherence [25]
making the system open, and no longer isolated [26]. The evolution of the quantum state
of an open system can be described by a master equation, in which an effective non-
Hermitian Hamiltonian can be identified. This prompts the consideration of non-Hermitian
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Hamiltonian deformations discussed in this work and the associated infinite family of
solvable dissipative models.

These results should be put in a broader context aimed at finding exactly-solvable
models of complex open quantum systems, which is being pursued by exploiting a variety
of techniques. Among them, we mention exact diagonalization of many-body Liouvil-
lians [27, 28], random matrix theory [29] including non-Hermitian Hamiltonians and bath
operators [30–33], random Liouvillians [34, 35] and quantum channels [36], noisy and fluc-
tuating Hamiltonians [37], mappings between open systems and integrable systems [38],
nonunitary quantum circuits [39–43], etc. The subclass of many-body open systems that
admit a description solely in terms of non-Hermitian Hamiltonians has given rise to an
emergent field, that of non-Hermitian many-body physics, and is comparatively more
developed [44]. Additional efforts rely on the study of gravitational duals in the context of
AdS/CFT for strongly-coupled dissipative quantum systems [31, 45–49]. The use of Krylov
subspace methods provides yet a different approach [50, 51].

From a practical point of view, Hermitian Hamiltonian deformations imply powerful
identities relating the partition function and equilibrium correlation functions of the deformed
and undeformed theories. In the generalized non-Hermitian deformations we introduce
here, the Hamiltonian eigenvalues are complex and their imaginary part is associated
with characteristic time scales that manifest in the dynamics of the deformed theory.
Non-Hermitian deformations thus imply a novel class of identities relating nonequilibrium
properties of the deformed and undeformed theories. In particular, it is possible to relate
the propagators of the deformed and undeformed theories, and thus, the corresponding
time evolutions, using integral transforms with a given kernel. As specific applications, we
discuss the time-dependence of the fidelity, purity, Rényi entropies, logarithmic negativity,
and the spectral form factor (SFF) in non-Hermitian systems. For particular initial states,
such as the coherent Gibbs state and the thermofield double state (TFD), these relations
become particularly transparent and can be compactly expressed in terms of analytical
continuations of the partition function. As non-Hermitian Hamiltonians can be derived from
an open quantum dynamics by conditioning the evolution to the absence of quantum jumps,
we apply the framework of non-Hermitian deformations to explore the role of quantum
jumps in a variety of applications, including the characterization of decoherence times and
the signatures of chaos in open quantum systems.

This manuscript is organized as follows. We first review Hermitian Hamiltonian defor-
mations in section 2 and generalize them to the non-Hermitian case in section 3. In section 4,
we provide a short summary of the basic properties of non-Hermitian quantum dynamics.
Complex deformations are justified in the theory of open quantum systems while their rele-
vance to physical energy-dephasing models is presented in section 5.1. In section 5.2 we study
the spectral properties of the corresponding dynamical generators, presenting numerical ex-
amples from random matrix theory and the Sachdev-Ye-Kitaev (SYK) model. In section 5.3
we study the dynamics of a TFD, under the dynamics generated by a specific class of non-
Hermitian deformations, and characterize the associated Rényi entropies and logarithmic
negativity. In section 5.4 we discuss the deformed SFF in the non-Hermitian setting, defined
as the fidelity between an initial coherent Gibbs state and its time evolution, and use it to
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characterize the dynamic manifestations of quantum chaos in open quantum systems, with
and without quantum jumps. Finally, in section 6 we comment on possible generalizations
of our results at the level of the Liouvillian and summarize our findings in section 7.

2 Hermitian Hamiltonian deformations

An infinite family of exactly-solvable Hamiltonian deformations has been introduced in
quantum mechanics [18, 19]. In particular, given a d-dimensional Hilbert space H and
an isolated quantum system described by a Hamiltonian H0, one considers a deformation
f(H0), where f : R → R is a function parameterized by λ ∈ R with the property that
f(H0) → H0 when λ → 0. In such a case, as the original and deformed Hamiltonians
commute [H0, f(H0)] = 0, they share the same set of eigenvectors, while their eigenvalues
are given by {En} and {f(En)}, respectively.

The partition functions can be written as

Z0(β) =
∫
R

dEe−βE%(E), (2.1)

Zf (β) =
∫
R

dEe−βf(E)%(E) =
∫
R

dEe−βE%f (E), (2.2)

where %(E) and %f (E) are the density of states associated with H0 and f(H0), respectively.
The two are related by

%f (E) = %
(
f−1(E)

)df−1(E)
dE , (2.3)

assuming f to be strictly monotonic, so that it can be inverted.
The Boltzman factor for the deformed system can be written as an integral representa-

tion,
e−βf(E) =

∫
Cf

dβ′e−β′EKf (β, β′) . (2.4)

When E is real, it is appropriate to choose a Laplace transformation to keep the exponent
real and the inverse temperature β′ on a real contour, Cf being the line ∈ [0,+∞) or the
full real axis. The corresponding kernel is

Kf (β, β′) = 1
2πi

∫
C̃f

dE e−βf(E)eβ
′E , (2.5)

with C̃f denoting the contour of the inverse transformation, which, for the Laplace transform,
is the Bromwich contour (γ − i∞, γ + i∞). It is easy to verify that the partition function
of the deformed system is then related to the original, undeformed one through

Zf (β) =
∫
R

dE
∫
Cf

dβ′e−β′EKf (β, β′)%(E) =
∫
Cf

dβ′Z0(β′)Kf (β, β′) . (2.6)

In particular, we are interested in the deformation

g(E) = E + λE2, λ > 0 , (2.7)
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because this spectrum originates from a non-Hermitian Hamiltonian generating an energy
dephasing (ED) evolution [32] in the absence of quantum jumps [52], when the deformation
parameter λ is purely imaginary, as we discuss in section 5.1. Taking the contour C̃g as
(−∞,+∞), the kernel reads

Kg(β, β′) = 1
2πi

∫ +∞

−∞
dE e−βg(E)eβ

′E

= 1
i
√
π4βλ

e
(β−β′)2

4βλ .

(2.8)

The deformed partition function is then obtained from the inverse transformation (2.4) with
integration on Cg being the line (γ − i∞, γ + i∞). Interestingly, the inverse deformation

f(E) = 1
2λ
(√

1 + 4λE − 1
)
, (2.9)

defined such that g(f(E)) = E, is known in the context of AdS/CFT correspondence as
the 1-dimensional T T̄ deformation [18, 19]. Its kernel (2.5) readily follows from the inverse
Laplace transform L−1[e−

√
as;x] = x−3/2e−a/(4x)√a/(2

√
π) [53] that gives

Kf (β, β′) = β

β′
√

4πβ′λ
e
− (β−β′)2

4β′λ . (2.10)

Note that the contours are related as Cg = Cf−1 = C̃f and that Cf is on [0,+∞) while C̃f−1

requires the bi-lateral Laplace transform with a contour on the full real axis (−∞,+∞).
More generally, the kernels of the original and inverse deformations are related through

Kf−1(β, β′) = 1
2iπ

∫
C̃f

dE e−βf
−1(E)eβ

′E

= 1
2iπ

∫
Cf

dx e−βxf ′(x)eβ′f(x)

= β

β′
Kf (−β′,−β), (2.11)

as can be shown using the change of variable E = f(x) and integrating by parts, assuming
that e−βxeβ′f(x) cancels at the edges of Cf .

3 Non-Hermitian Hamiltonian deformations

In the context of deformations, it is also useful to relate the propagator of the deformed
Hamiltonian Uf (t) = e−if(H0)t to the original one U0(t) = e−iH0t. Thus, all time-evolved
quantities in the deformed picture can be related to the undeformed ones. This applies to
the partition function too since Z(β) = Tr[U(−iβ)].

We assume the Hamiltonian H0 =
∑
nEn |n〉〈ñ| is diagonal in the bi-orthogonal basis

with right (left) eigenstates |n〉 (〈ñ|) and En being complex in general [54]. The evolution
operator reads U0 = e−iH0t =

∑
n e
−iEnt |n〉〈ñ|. A generally complex deformation w gives

w(H0) =
∑
nw(En) |n〉〈ñ| and Uw =

∑
n e
−iw(En)t |n〉〈ñ|. In the standard case of a Hermitian
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Hamiltonian, right and left eigenvectors coincide and the spectrum is real. Therefore, the
relation between e−iw(E)t and e−iEt is expected to change depending on whether E is real
or complex.

For a Hermitian Hamiltonian H0, such a relation can be derived even if the deformation
is implemented by a complex function w : C→ C. For real E, it is appropriate to write the
deformed evolution using the Fourier transform, namely

e−iw(E)t =
∫
R
dE′ δ(E − E′)e−iw(E′)t =

∫
R
dt′Kw(t, t′)e−iEt′ (3.1)

with
Kw(t, t′) =

∫
R

dE
2π eit

′E−iw(E)t . (3.2)

We then get the relation between deformed and undeformed propagators

Uw(t) =
∫
R
dt′Kw(t, t′)U0(t′), (3.3)

from which one recovers Zw(E) as in (2.2) and eq. (2.6) using the Wick rotation it′ = β′.
For a non-Hermitian Hamiltonian H0 with a possibly complex spectrum, the rela-

tion (3.1) can be generalized as

e−iw(E)t =
∫
C

dE′

2πi
1

E′ − E
e−iw(E′)t =

∫
R
dt′Kw(t, t′;E)e−iEt′ . (3.4)

This kernel is obtained using
∫∞

0 dt e−ist = 1/(is) for Re(is) > 0 to write

1
i(E′ − E) = Θ(Im(E − E′))

∫ ∞
0

dt e−i(E′−E)t −Θ(Im(E′ − E))
∫ ∞

0
dt ei(E′−E)t

=
∫ ∞
−∞

dt ei(E′−E)t[Θ(−∆E′)Θ(−t)−Θ(∆E′)Θ(t)
]
,

(3.5)

that gives

Kw(t, t′;E) =
∫
C

dE′

2π
[
Θ(−∆E′)Θ(−t′)−Θ(∆E′)Θ(t′)

]
eiE

′t′−iw(E′)t , (3.6)

where ∆E′ = Im(E′) − Im(E) and C is an appropriate contour that includes all the
eigenenergies of the original spectrum, E. Notice that eq. (3.4) is formally equivalent to
eq. (3.1), so that eq. (3.3) is still valid upon the replacement K → K.

Motivated by these observations, we introduce and study families of exactly-solvable
and generally complex deformations of (non-)Hermitian Hamiltonians, bringing forward
their use for the understanding of the effect of decoherence in chaotic quantum systems.
Eq. (3.4) fully generalizes real deformations of Hermitian Hamiltonians to complex ones
and to non-Hermitian Hamiltonians. However, the applications we will consider in section 5
are based on the energy dephasing channel which can be understood as a non-Hermitian
deformation of a Hermitian Hamiltonian. Therefore, eq. (3.1) will be the most relevant in
the following.
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4 Non-Hermitian dynamics

One of the fundamental postulates of quantum physics states that an isolated system is
described by a Hermitian Hamiltonian. As a result, the dynamics it generates is described
by a unitary time-evolution operator. Given the state of an isolated system, this assures
the conservation of probability in the measurement outcomes and restricts the expectation
value of energy to the real numbers. Nevertheless, since the very early days of quantum
theory [55, 56], numerous heuristic attempts to account for dissipative phenomena in nuclear,
atomic and molecular physics, have employed effective non-Hermitian Hamiltonians [44, 57].
In the last two decades, the proposal of parity-time (PT ) symmetry as an alternative to
Hermiticity [58, 59] paved the way for the systematic study of non-Hermitian physics. By
now, it is understood that non-Hermitian Hamiltonians can be rigorously justified when
the dynamics is restricted to a subspace of interest (e.g., making use of projection operator
methods) and in the context of quantum measurement theory, by conditioning quantum
trajectories on given measurement outcomes [44].

Starting from the Schrödinger equation with a non-Hermitian Hamiltonian H

i∂t |ψ(t)〉 = H |ψ(t)〉 (4.1)

one gets
∂tρ(t) = −i

(
Hρ(t)− ρ(t)H†

)
(4.2)

for the corresponding density matrix ρ(t) = |ψ(t)〉〈ψ(t)|.
One can always decompose the Hamiltonian H into a sum of a Hermitian and an

anti-Hermitian term
H = H0 − iΓ0, (4.3)

where H0 = 1
2(H + H†) and Γ0 = 1

2i(H
† −H) are Hermitian. Then, the non-Hermitian

evolution (4.2) becomes

∂tρ(t) = −i[H0, ρ(t)]− {Γ0, ρ(t)}, (4.4)

involving only a commutator for the Hermitian part H0 and an anti-commutator arising
from the anti-Hermitian part −iΓ0. We note that under such dynamics, the trace of the
density matrix is in general not preserved. Nevertheless, one can enforce the property
Tr[ρ(t)] = 1, starting from a normalized initial state, by the addition of a term involving a
time-dependent coefficient

χ(t) = 2Tr[Γ0ρ(t)] . (4.5)

In such a scenario, the dynamics is generated by the nonlinear equation [60]

∂tρ(t) = −i [H0, ρ(t)]− {Γ0, ρ(t)}+ 2Tr[Γ0ρ(t)]ρ(t), (4.6)

with general analytic solution

ρ(t) = e−iHtρ(0)eiH†t

Tr
[
e−iHtρ(0)eiH†t

] . (4.7)
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This kind of evolution characterized by balanced norm gain and loss (BNGL) is known
to arise in PT -symmetric quantum mechanics [60]. In the context of continuous quantum
measurements, the above equation is also known as the nonlinear Schrödinger equation
for null-measurement conditioning [61]. In addition, it has recently been pointed out that
an arbitrary evolution characterized by a time-dependent density matrix ρ(t) admits an
equation of motion characterized by BNGL dynamics [62].

We observe here that pure states remain pure under BNGL dynamics. Indeed, an
initial pure state ρ(0) = |ψ〉〈ψ|, under the evolution (4.6) has Rényi entropy

Sα[ρ(t)] = ln
(
Tr[ρ(t)α]

)
/(1− α) = 0, (4.8)

with α > 0, α 6= 1.
For the undeformed Hermitian Hamiltonian H0 the evolution given by BNGL dynamics

simply yields ρ̃0(t) = U0(t)ρ(0)U †0(t), as the trace is preserved. As shown in appendix A,
the corresponding BNGL dynamics generated by the deformed Hamiltonian w(H0) is given
in terms of ρ̃0(t) as

ρw(t) =
∫
R ds

∫
R ds′Kw(t, s)Kw∗(−t,−s′)U0(s− s′)ρ̃0(s′)∫

R ds
∫
R ds′Kw(t, s)Kw∗(−t,−s′) Tr[U0(s− s′)ρ̃(s′)] . (4.9)

In order to motivate the BNGL equation, which we will use throughout the manuscript,
we shortly describe here its connection with the standard Lindblad dynamics for open
quantum systems.

The embedding of a quantum system in a surrounding environment makes its dynamics
open and not unitary. The time evolution of an open quantum system is generally described
by a master equation of the form [26]

∂tρ(t) = −i[H0, ρ(t)] +D[ρ(t)], (4.10)

where H0 is the system Hamiltonian (including the Lamb shift) and the breaking of unitarity
is induced by the dissipator D[·], which accounts for the interaction with the environment.
A seminal result in the theory of Markovian open quantum systems is that the evolution is
described by the Gorini-Kossakowski-Sudarshan-Lindblad (GKLS) equation that admits
the canonical Lindblad form [26, 63, 64]

∂tρ(t) = −i[H0, ρ(t)] +
∑
α

γα

(
Lαρ(t)L†α −

1
2{L

†
αLα, ρ(t)}

)
, (4.11)

where γα ≥ 0 are the time-independent coefficients, Lα are the jump operators, and H0 is
the Hermitian system Hamiltonian. In the quantum jump approach [61], it is customary to
rewrite the above equation as

∂tρ(t) = −i
(
Heffρ(t)− ρ(t)H†eff

)
+
∑
α

Jα [ρ(t)] , (4.12)

in terms of the effective non-Hermitian Hamiltonian

Heff = H0 −
i

2
∑
α

γαL
†
αLα, (4.13)
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and the jump superoperators

Jα [ρ(t)] = γαLαρ(t)L†α. (4.14)

In the context of continuous quantum measurements the Lindblad master equation can be
seen as the unconditional dynamics of the system, that is as an average over all possible
trajectories in which quantum jumps take place. One can interpret then the BNGL
evolution conditioned on the absence of quantum jump, i.e., disregarding the contribution
from Jα [ρ(t)] for a subensemble of trajectories [61, 65, 66]. The time-evolution is then
exclusively governed by the non-Hermitian Hamiltonian

∂tρ(t) = −i
(
Heffρ(t)− ρ(t)H†eff

)
. (4.15)

Upon normalization, the dynamics becomes trace-preserving and leads to the BNGL
equation (4.6) with Γ0 = 1

2
∑
α γαL

†
αLα.

5 Applications of non-Hermitian deformations

In this section we will introduce and study in detail the energy dephasing channel. This can
be described as a complex, i.e., non-Hermitian, deformation of an Hermitian Hamiltonian.

5.1 Energy dephasing and decoherence time

We consider here the simplest energy dephasing (ED) model, i.e., a dissipator with a single
jump operator Lα = L†α = H0. In this case, the Lindblad form (4.11) reduces to the master
equation describing energy diffusion

∂tρ = −i[H0, ρ]− γ[H0, [H0, ρ]] , γ > 0. (5.1)

We note that the quantum state under energy-dephasing (5.1) evolves as

ρ(t) =
∑
nm

ρnm(0)e−i(En−Em)t−γt(En−Em)2 |n〉〈m|. (5.2)

To characterize the role of decoherence during the time evolution, we consider the purity
P (t) = Tr[ρ(t)2], which is related to the Rényi-2 entropy S2[ρ(t)] as P (t) = e−S2[ρ(t)]. In
the case of ED, it reads

P (t) =
∑
nm

ρnm(0)2e−2γt(En−Em)2
. (5.3)

The corresponding evolution in the absence of quantum jumps is given by the BNGL
equation (4.6) with the deformed Hamiltonian

w(H0) = H0 − iγH2
0 , (5.4)

for which the kernel in eq. (3.2) reads

Kw(t, s) =
√
π

γt
e−(t−s)2/4γt . (5.5)
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With this kernel, the propagator of the deformed theory, and therefore the time evolution
under BNGL, can be explicitly found. We note that the deformation (5.4) is equivalent to
the inverse T T̄ -deformation in eq. (2.7) with a purely imaginary value of the deformation
parameter λ = −iγ. Making use of eq. (4.9), the explicit expression of the evolved state
under BNGL energy dephasing is

ρ(t) =
∑
nm ρnm(0)e−i(En−Em)t−γt(E2

n+E2
m)|n〉〈m|∑

j ρjj(0)e−2tγE2
j

, (5.6)

and the corresponding time-dependent purity equals

P (t) = Tr[ρ(t)2] =
∑
nm |ρnm(0)|2e−2γt(E2

n+E2
m)

(
∑
n ρnn(0)e−2tγE2

n)2 . (5.7)

The last expression has the remarkable feature that whenever the initial state is pure, such
that the factorization ρnm(0) = cn(0)cm(0)∗ holds, then P (t) = 1 (equivalently as shown in
section 4, S2[ρ(t)] = 0). Thus, the evolution preserves the purity of a pure quantum state,
even when it exhibits a dissipative evolution. In particular, in this case, eq. (5.6) reduces to

ρ(t) =
∑
nm cn(0)cm(0)∗e−i(En−Em)t−γt(E2

n+E2
m)∑

n |cn(0)|2e−2tγE2
n

|n〉〈m|. (5.8)

Comparison of the time evolution under ED (5.2) and BNGL (5.6) reveals the role of
quantum jumps. The latter becomes particularly transparent by analyzing the decoherence
time, that can be derived from the purity, as we next show. Specifically, for an initial mixed
state, the decoherence time τD can be extracted from the short-time decay of the purity [28]

P (t) = P (0)
[
1− t

τD

]
+O(t2). (5.9)

For an arbitrary Markovian evolution described by a Lindblad master equation, the deco-
herence time is given by the inverse of the covariance of the Lindblad operators evaluated in
the initial state [37]. For an initial mixed state evolving under ED, it is set by the inverse
of the energy fluctuations in the initial state [30–32]

1
τD

= 4γ
P (0)

(
Tr[ρ(0)2H2

0 ]− Tr[ρ(0)H0ρ(0)H0]
)
. (5.10)

We note 1/τD ≥ 0 and it vanishes only when the initial state is diagonal in the Hamiltonian
eigenbasis, [ρ(0), H0] = 0. This latter case includes the possibility that the initial state is a
(pure) eigenstate of H0 or that ρ0 is a mixed equilibrium state. By contrast, in the case of
BNGL, the decoherence time reads

1
τD

= 4γ
P (0)

(
Tr[ρ(0)2H2

0 ]− P0Tr[ρ(0)H2
0 ]
)
. (5.11)

This expression identically vanishes when the initial state is a pure state describing an
arbitrary coherent superposition of energy eigenstates, i.e., when P (0) = 1 and ρ(0)2 = ρ(0).
In addition, an initial mixed state that is diagonal in the energy eigenbasis has finite τD
and evolves nontrivially under BNGL. In short, the absence of quantum jumps associated
with non-Hermitian deformations alters the value of the decoherence rate and changes the
conditions under which it vanishes.
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5.2 Spectral structure of the dynamical generators

Quantum chaos has historically been founded upon the study of complex Hamiltonian
spectra, which in principle contain all the information required to describe the evolution
of an isolated system [29, 67, 68]. At the same time, a robust theory of open quantum
systems has been established, focusing on the overall dynamical maps that control the
temporal evolution of a subsystem [26]. Thus, the study of the spectral properties of complex
non-Hermitian dynamical generators and maps is of great relevance to the investigation of
the fate of the signatures of quantum chaos in open dynamics [34, 35, 69–75].

In order to study the spectral properties of the dynamical generators discussed in the
previous sections, we fix a vectorization process for all elements of the space of the density
matrices, H∗ ⊗ H. The Hilbert space of all linear superoperators acting on the density
matrices is often referred to as Liouville space. The Liouville space formalism is extensively
used for the study of the spectral properties of quantum channels and open systems [29, 76].
The properties of vectorized matrices have to be treated carefully, as the vectorization
process is basis dependent.

Let
{
|i〉 | i ∈ {1, 2, . . . , d}

}
be the complete eigenbasis of the undeformed Hamiltonian

H0 for the Hilbert space H. Any linear operator ρ=̇{ρij} can be represented as a vector

ρ =
d−1∑
i,j=0

ρij |i〉〈j| → |ρ) =
d−1∑
i,j=0

ρij |i〉 ⊗ |j〉∗ . (5.12)

For this specific choice of horizontal vectorization, any set of linear operators A=̇{aij},
B=̇{bij} acting on the vectorized operator ρ from left and right respectively, can be
represented as a superoperator with the use of the Kronecker product ⊗ of A and the
transpose Bᵀ,

AρB → (A⊗Bᵀ)|ρ). (5.13)

For example, the Liouvillian which generates the unitary evolution of the Hermitian
Hamiltonian H0 is represented as

L = −i[H0, ·]→ L = −i(H0 ⊗ 1− 1⊗Hᵀ
0 ). (5.14)

In what follows, we shall study the spectral properties of the generators of the non-
Hermitian deformations discussed in the previous sections, relating them to the ones of
the associated energy dephasing double bracket Lindbladians. Specifically, we will see that
ED models have their spectrum on a one dimensional locus, reflecting the freedom in the
choice of the ground state of H0. The removal of the quantum jump term, which leads to
the associated non-Hermitian deformation BNGL model, spreads the spectrum in an area
determined by the deforming function. The eigenvalue density on the complex plane is then
rigidly shifted with time by χ(t) in eq. (4.5).

For the sake of illustration, we consider as well the more general complex deformation

w(z) = z − iγzκ . (5.15)

We highlight here some properties that will be useful in the following.
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The state at time t is given by

ρ(t) =
d∑

n,m=1

ρnm(0)e−i(En−Em)t−γ(Eκn+Eκm)t∑d
j=1 ρjj(0)e−2γEκj

|n〉〈m| . (5.16)

The corresponding Liouvillians in the vectorized formalism read

L(κ) = i(1⊗Hᵀ
0 −H0 ⊗ 1)− γ (1⊗ (Hᵀ

0 )κ +Hκ
0 ⊗ 1) + 2γTr(Hκ

0 ρ(t)) (1⊗ 1) , (5.17)

and satisfy the eigenvalue equation

L(κ)|n,m) =
(
i(En − Em)− γ

2 (Eκn + Eκm) + 2γTr(Hκ
0 ρ(t))

)
|n,m), (5.18)

denoting |n,m) ≡ |n〉⊗ |m〉∗. For Hamiltonians with a bounded spectrum (that is, included
in the interval E ∈ (−R,R), with R > 0), the spectrum of L(κ) is bounded, for even κ, by
the boundaries of the three functions

λb =


−γEκ − 2iE + 2γTr(Hκ

0 ρ(t))
−γ

2 (Rκ + Eκ) + i(R− E) + 2γTr(Hκ
0 ρ(t)) ,

−γ
2 (Rκ + Eκ)− i(R+ E) + 2γTr(Hκ

0 ρ(t))
(5.19)

and by the boundaries of the four functions

λb = ±γ2 (Rκ + Eκ)± i(R− E) + 2γTr(Hκ
0 ρ(t)), (5.20)

for odd κ.
When κ is even, one can construct the vectorized canonical Lindblad forms of eq. (4.11),

having the kth power of the undeformed Hamiltonian as a single Lindblad operator

L(κ)
ED = i(1⊗Hᵀ

0 −H0 ⊗ 1)− γ
(
1⊗ (Hᵀ

0 )κ +Hκ
0 ⊗ 1− 2H

κ
2

0 ⊗ (Hᵀ
0 )

κ
2

)
, (5.21)

and compare their spectra with the corresponding generators, after removing the quantum
jumps in eq. (5.17).

Considering the case of BNGL when κ = 2, we see that the spectrum of the ED
Liouvillian L(2)

ED only depends on the energy gaps Enm ≡ En − Em, laying on the parabola
λ = −γ

2E
2
nm + iEnm with a probability distribution given from the density of gaps of the

Hamiltonian H0. Neglecting the time-dependent shift of the spectrum, when the jump
term is removed, the eigenvalues λ are spread on a two dimensional locus defined by the
boundaries of the three parabolas

λb =


−γE2 − 2iE
−γ

2 (R2 + E2) + i(R− E) ,
−γ

2 (R2 + E2)− i(R+ E)
E ∈ (−R,R) , (5.22)

where R is the largest allowed eigenvalue. For simplicity, one can always consider the
spectrum of H0 to be distributed in the interval (−R,R). Every eigenvalue of the L(κ)

spectrum can be thought of as a point on a shifted parabola of the corresponding ED
spectrum, centered on itself, within the domain (−R,R). Finally, the inclusion of a time-
dependent and initial condition-dependent term in the Liouvillian L(2) of eq. (5.17) shifts
the spectrum on the real axis by χ(t) = 2γTr[H2

0ρ(t)].

– 11 –



J
H
E
P
0
1
(
2
0
2
3
)
0
6
0

a b c

d e f

Figure 1. Liouvillian spectra of different non-Hermitian deformations. Spectra of L(κ) with γ = 1
when t→∞, for κ = 1, 2, 3, 4, 5, 6 (gray points) on the complex plain, together with the theoretical
boundaries (dashed black lines) given by eq. (5.19) and eq. (5.20). In all six plots we show the
spectrum of a single random GOE(26) Hamiltonian H0 with σ = 1.

Examples from random matrix theory. Since Wigner’s groundbreaking work on the
neutron excitation spectra of heavy nuclei [77], it has become clear that random matrices can
adequately describe the statistical features of several quantum systems [9, 29]. As paradigms
of quantum chaotic Hamiltonians with bounded spectrum and time-reversal symmetry,
we sample random d-dimensional matrices from the Gaussian orthogonal ensemble, H0 ∈
GOE(d). Specifically, we consider samples of real, orthogonal matrices H = (X +Xᵀ)/2,
where all elements x ∈ R of X are pseudo-randomly generated with probability measure
given by the Gaussian 1

σ
√

2πe
− x2

2σ2 with standard deviation σ [9, 29]. When d or the sample
size is large, the spectral density distribution of such matrices can be approximated by the
semicircle law

c(E) =
√

2dσ2 − E2

πdσ2 (5.23)

so R = σ
√

2d. In figure 1 we show the BNGL spectra of L(κ) when t → ∞ for κ = 1,
2, 3, 4, 5, 6 with the corresponding theoretical boundaries of eq. (5.19) and (5.20). Each
panel has the spectrum of a Hamiltonian drawn from GOE(64), with σ = 1.
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Examples from the Sachdev-Ye-Kitaev model. For the illustration of the relation
between BNGL and ED Liouvillian spectra, we consider the example of a Hilbert space of
dimension d = 2N and the undeformed SYK Hamiltonian of 2N Majorana Fermions with
an all-to-all random quartic interactions in the occupation number representation

H0 = 1
4!

2N∑
k,l,m,n=1

Jklmnχkχlχmχn, (5.24)

obeying the anti-commutation relation {χk, χl} = 2δkl. The factor of two in the latter can
be seen as a rescaling of the operators [78, 79]. The coupling tensor Jklmn is completely
anti-symmetric, and independently sampled from a Gaussian distribution

Jklmn ∈ N
(

0, 3!
(2N)3J

2
)
, (5.25)

where J2 = 1
3!
∑
lmn

〈
J2
klmn

〉
is sometimes set to J = 1 for convenience, cf. ref. [80].

One can represent 2N Majorana Fermions in terms of N Dirac Fermions, obeying the
normal anti-commutation relations {cj , ck} = 0, {cj , c†k} = δjk, cj = 1

2(χ2j−1 + iχ2j)

c†j = 1
2(χ2j−1 + iχ2j)

, (5.26)

which can be further expressed by spin-1/2 operators {σx, σy, σz, I} through a Jordan-
Wigner transformation

χ2j−1 = σz ⊗ · · · ⊗ σz︸ ︷︷ ︸
j−1

⊗ σx ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
N−j

χ2j = σz ⊗ · · · ⊗ σz︸ ︷︷ ︸
j−1

⊗ σy ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
N−j

. (5.27)

In the limit of large number of particles N → ∞, the Hamiltonian spectral density
of H0 has been shown to be a Gaussian, while for finite N the density deviates outside
the support of the Gaussian and is well approximated by a Q-Hermite form [79]. The
ground-state E0, associated with the thermodynamic properties of the system in the low
temperature limit [79, 81, 82], is expected to be proportional to N , due to the fermionic
nature of the model. The spectrum of the ED Liouvillian L(2)

ED in (5.21) only depends on the
energy gaps, laying on the parabola λ = −γ

2E
2
nm + iEnm, with a probability distribution

given from the density of gaps of the Hamiltonian H0. When the jump term is removed,
the eigenvalues λ of L(2) in (5.17) are spread on a two dimensional locus defined by three
boundary parabolas parameterized by the ground-state R = |E0| of H0, rigidly shifted with
time by the trace preservation scalar term in eq. (4.6).

In figure 2 the spectral density of a BNGL, κ = 2, γ = 1 Liouvillian of 26 Majorana
Fermions is plotted, together with the corresponding spectrum of ED. The eigenvalues of
the undeformed SYK Hamiltonian H0 were calculated with exact diagonalization. From
eq. (5.21) it becomes evident that the spectral density of ED is given by the Hamiltonian
spectral density of H0, deformed to a parabola on the complex plane, (−γ

2E
2, E), while the
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Figure 2. Spectral loci of BNGL for the SYK model. Eigenvalue density distribution on the
complex plane (from white to green) of the BNGL, κ = 2 Liouvillian (5.17) and distinct eigenvalues
(orange) of the ED Liouvillian (5.21). In both models the dephasing strength is taken as γ = 1.
The eigenvalues of the undeformed SYK Hamiltonian H0 for 2N = 26 Majorana Fermions were
calculated with exact diagonalization. The spectral density of the BNGL, κ = 2 Liouvilian can be
approximated by the product of two identical Q-Hermite forms, deformed to parabolas (gray solid
lines), centered on the spectral locus of the ED model. The theoretical boundary (dashed grey line)
is given by eq. (5.22).

exclusion of the jump operators spreads the superoperator eigenvalues in a two dimensional
locus. In general, as shown in figure 1 (d,e,f), for even κ, given the spectral density of
the undeformed Hamiltonian, one can construct the corresponding spectral density of the
BNGL by the product of two identical undeformed densities, deformed on their κth power,
centered on the spectral locus of the ED model.

5.3 Correlation dynamics with thermofield double initial state

To further illustrate the relevance of non-Hermitian deformations in quantum dynamics
we next discuss the evolution of correlations of an entangled state describing two identical
copies of a system. We focus on the thermofield dynamics, initially introduced in the study
of statistical field theories at finite temperature [83]. In the search for a formalism where
statistical thermal averages can be calculated without trace operations, the TFD of inverse
temperature β was defined as

|TFD〉 =
d∑

n=1

e−
β
2En√
Z(β)

|n, n〉 . (5.28)

By that time, Bardeen, Carter and Hawking [84] had already introduced “black hole
mechanics”, putting forward the consideration of the surface gravity of an axisymmetric
stationary solution of Einstein equations as an analogue of temperature. Soon after,
thermofield dynamics was used by Israel [85] to formalize the “hot” thermal vacuum
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observed outside the horizon of a single radiating eternal black hole. More recently,
thermofield dynamics has been extensively used in the context of AdS/CFT correspondence
for the description of contemporaneous black hole pairs in disconnected spaces [86, 87].
Furthermore, as we will discuss in more detail in section 5.4, the survival probability of
a TFD in an isolated system is related to the spectral form factor, a powerful tool in
the study of dynamical signatures of quantum chaos [32, 52]. In this section we focus on
quantum informational quantities, namely the Rényi entropy and the logarithmic negativity
of a bipartite system, when an initial TFD is evolving under the dynamics generated by
non-Hermitian Hamiltonian deformations.

In isolation, the dynamics of two identical non-interacting systems is governed by the
Hamiltonian H̃0 = H0 ⊗ 1 + 1 ⊗ H0. In the absence of interactions, the entanglement
between the two copies is preserved. Let us consider the evolution of the whole bipartite
system, obeying the dynamics given by the non-Hermitian deformation H̃ = H̃0 − iγH̃2

0 .
The square of the Hamiltonian H̃0, describing two identical non-interacting systems is

H̃2
0 = H2

0 ⊗ 1 + 1⊗H2
0 + 2H0 ⊗H0. (5.29)

By making use of eq. (4.9) and the kernel in eq. (5.5), the time-dependent density
matrix of an initial TFD (5.28) can be written in the energy eigenbasis of the undeformed
Hamiltonian H0 as

ρTFD(t) =

d∑
n,m=1

e−
β
2 (En+Em)−i2t(Em−En)−4γt

(
E2
n+E2

m

)
d∑

ν=1
e−βEν−8γtE2

ν

|n, n〉〈m,m| . (5.30)

Rényi entropy. To characterize the evolution of quantum correlations in eq. (5.30), we
resort to the Rényi entropy. For α ∈ N, the α-th power of the reduced density matrix, when
the partial trace is taken over the second subsystem, is given by

ρα1 (t) =

d∑
n=1

e−βαEn−8γαtE2
n

(
d∑

ν=1
e−βEν−8γtE2

ν

)α |n〉〈n| . (5.31)

For α ≥ 2, the αth Rényi entropy of the subsystem can be written as

S1,α(t) = 1
1− α ln


d∑

n=1
e−βαEn−8γαtE2

n

(
d∑

ν=1
e−βEν−8γtE2

ν

)α
 . (5.32)
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Using the Hubbard-Stratonovich transformation, the above Rényi entropies can be found in
terms of the partition function of the undeformed theory

S1,α(t) = 1
1− α ln

 1
√
α(32πγt)

1−α
2

∫ ∞
−∞

dye−
y2

32αγtZ0(αβ + iy)(∫ ∞
−∞

dye−
y2

32γtZ0(β + iy)
)α
 . (5.33)

In isolation, the system Rényi entropy remains constant and equal to the initial value

S1,α(0) = 1
1− α ln

(
Z0(αβ)
Z0(β)α

)
. (5.34)

A remarkable fact is that S1,α(t) → 0 at large times. The Rényi-2 entropy (α = 2)
is related to the purity by P1(t) = eS1,2(t) → 1. The first copy of the TFD is becoming
asymptotically a pure state with time, and thus the two copies are disentangled on this
limit and described by a product state.

When the ground state energy is non-negative, the Rényi entropies decrease mono-
tonically. Contrarily to this, as shown in figure 3 for samples of GOE(d) Hamiltonians,
at finite temperature the Rényi entropies can display a single maximum when the energy
spectrum contains negative eigenvalues. For finite low temperature, the Rényi entropies
grow to the maximum value after which they converge to zero monotonically. In that case,
the short time behavior of the Rényi entropy is governed by the exponential of the smallest
negative eigenvalue EM . Specifically, the timescale at which the positive exponents start
vanishing in the argument of eq. (5.32), given by βEM + 8γtME2

M = 0, provides a good
approximation for the maximum of the Rényi entropy

tM = β

8γEM
. (5.35)

For a sample of GOE(d) Hamiltonians the average minimum negative eigenvalue can be
approximated by the radius of the semicircle law of eq. (5.23), 〈EM 〉H = σ

√
2d, and

tM = β

8γσ
√

2d
. (5.36)

The short time behavior in high temperature β → 0 is dictated by the critical timescale
tD at which 8γtD〈H2

0 〉 ' 1 which is connected to the Zeno [88] and decoherence timescales
through tD = 8τD = τ2

Z/(8γ). Specifically, for a sample of GOE(d) Hamiltonians it can be
approximated by

tD = 1
16γσ2d

. (5.37)

Remarkably, the critical inverse temperature at which tM = tD is independent of the
dephasing strength γ and only relies on the characteristics of the Hamiltonian ensemble,
namely

βc = 1
σ
√

2d
. (5.38)

In figure 3 we show the Hamiltonian averages of the second Rényi entropy for a sample of
100 GOE(64) Hamiltonians in rescaled time to illustrate the universality of the above result.
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Figure 3. Rényi-2 entropy of the thermofield double state. Hamiltonian averages of 100 GOE(64)
Hamiltonians in rescaled time. a: at high temperature, β → 0, the Rényi entropies start decaying to
zero after time tD. The two copies of the TFD are effectively being disentangled to a product state.
At low temperatures, the decay comes after the growth to maximum value around a timescale tM ,
until which entanglement increases. The two regimes are separated by the critical temperature scale
1/βc. b: Rényi-2 entropy for β = 0.2. In the rescaled time the structure of the Rényi entropies rely
only on the value of β.

Logarithmic negativity. For an alternative characterization of quantum correlations,
we resort to the logarithmic negativity LN [ρ], proposed as a non-convex entanglement
monotone with an operational interpretation that sets an upper bound to distillable
entanglement [89, 90]. It is defined in terms of the partial transpose ρPT of the bipartite
density matrix as

LN [ρ] = log2(Tr
∥∥∥ρPT

∥∥∥
1
). (5.39)

The logarithmic negativity of the time-evolution of the TFD, in eq. (5.30) reads

LN [ρTFD(t)] = log2

∣∣∣∣∣
d∑

n=1
e−βEn/2−γ4tE2

n

∣∣∣∣∣
2

d∑
ν=1

e−βEν−8γtE2
ν

. (5.40)

The resulting logarithmic negativity carries all the characteristics of the Rényi entropies
calculated earlier, strengthening our results for the evolution of the entanglement properties
of an initial TFD state evolving under BNGL. To check that, one can observe that the
expression (5.32) for α→ 1/2 differs from (5.40) only by a multiplicative factor. We observe
that for the TFD, the logarithmic negativity is related to S1,1/2(t) as LN [ρTFD(t)] =
ln(2)S1,1/2(t) and we defer from a further characterization of it.

Before closing this section, we recall that the above discussion is based on the global
deformation of a bipartite system, initially prepared in a TFD. One could be tempted
to assume that the reduction of entanglement is due to the induced interaction term
H0 ⊗ H0 of eq. (5.29). Nevertheless, even if deforming only the local Hamiltonian, i.e.,
H̃ = H ⊗ 1 + 1 ⊗ H, with H = H0 − iγH2

0 , when the interaction term is absent in the
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Liouvillian, the Rényi entropies and the logarithmic negativity of the TFD state behave
similarly. Specifically, the corresponding expressions for the local deformation are equal to
the ones obtained by the global transformation for half the dephasing strength.

5.4 Deformation of the spectral form factor

In the characterization of quantum chaos in terms of the spectral properties of the Hamilto-
nian describing an isolated quantum system, the correlation between eigenvalues plays a
crucial role. For any initial pure state undergoing unitary evolution, the Fourier transform
of the survival probability (auto-correlation function, two-point correlation function or
fidelity between initial and final state) is a weighted sum of δ−functions positioned at the
eigenvalues of the Hamiltonian. Inversely, the absolute square value of the Fourier transform
of the local density of states is the survival probability of the initial quantum state. When
the probability amplitudes of the initial state are the square root of the Boltzmann factors,
the survival probability is known as the spectral form factor and provides a convenient tool
to characterize dynamical signatures of quantum chaos [88, 91–96]. The partition function
with a complex-valued inverse temperature can be considered as a generalization, involving
a complex Fourier transform instead [80, 88, 97]. The SFF and its generalization exhibit
key features as a function of time that include a decay to a minimum value known as the
correlation hole, a subsequent growth characterized by a ramp linear in time, and saturation
to an asymptotic plateau value. The depth and area of the correlation hole have been shown
to measure the long- and short-range correlations of the energy levels [94]. This behavior is
better appreciated in an ensemble of Hamiltonians, though it can be manifested as well
in a single self-averaging system. The features of the SFF under Hermitian Hamiltonian
deformations have been studied in ref. [98].

In open quantum systems, different quantities have been proposed to characterize the
interplay of quantum chaos and decoherence using spectral properties [29, 30, 32, 34, 52, 96,
99, 100]. An analogue of the SFF is given by the fidelity between a coherent Gibbs state

|ψβ〉 =
d∑

n=1

e−βEn/2√
Z0(β)

|n〉, Z0(β) = Tr[e−βH0 ], (5.41)

and its time-evolution [32, 52]. Provided that the latter is described by a quantum channel
Λ, the state at time t is given by a density matrix ρ(t) = Λ[ρ(0)]. The analogue of the SFF
then reads [32, 52]

F (t) = 〈ψβ |ρ(t)|ψβ〉 = 〈ψβ |Λ [|ψβ〉〈ψβ |]|ψβ〉. (5.42)

In the case of unitary dynamics generated by H0, one recovers the familiar expression

F (t) = |Z0(β + it)/Z0(β)|2. (5.43)

It has been pointed out that decoherence suppresses the dynamical manifestations
of quantum chaos in the ED case of eq. (5.1), i.e., it shrinks the correlation hole of the
proposed SFF [32]. By contrast, the corresponding dynamics of the BNGL equation for the
deformed Hamiltonian w(H0) = H0 − iγH2

0 can enhance the aforementioned signatures of
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quantum chaos [52]. Furthermore, BNGL dynamics leads to an extension of the ramp’s
span while lowering the values of the dip and plateau, providing an experimentally-feasible
physical mechanism for the kind of spectral filtering often used in numerical studies of
many-body systems [52].

Let us recall some results from refs. [32, 52]. The explicit expression of the SFF under
Lindbladian ED (5.1) reads

F (t) = 1
Z0(β)2

d∑
n,m=1

e−β(En+Em)−it(Em−En)−γt(Em−En)2
. (5.44)

Note that this equation also describes the fidelity for an initial TFD, by time rescaling [30–
32]. Importantly, it can be written in terms of the partition function analytically continued
to complex inverse temperature as [30–32]

F (t) =
√

1
4πγt

∫ ∞
−∞

dye−
y2
4γt

∣∣∣∣∣Z0
(
β + i(y + t)

)
Z0(β)

∣∣∣∣∣
2

, (5.45)

thus facilitating its study in cases in which the partition function is readily available, e.g.,
in certain integrable models and conformal field theories. For t � τD, the time-evolving
density matrix is effectively diagonal and

F (t) ∼ Fp = 1
Z0(β)2

∑
n

Nne
−2βEn ≥ Z0(2β)

Z0(β)2 , (5.46)

where Nn is the degeneracy of the eigenvalue En.
By contrast, under the BNGL evolution a direct application of eq. (4.9) yields

F (t) = |
∫
R dsKw(t, s)Z0(β + is)|2

Z0(β)
∫
R ds

∫
R ds′Kw(t, s)Kw∗(−t,−s′)Z0(β + i(s− s′)) . (5.47)

In the special case of w(z) = z − iγz2 it reads [52]

F (t) =

∣∣∣∣∣
d∑

n=1
e−(β+it)En−γtE2

n

∣∣∣∣∣
2

Z0(β)
d∑
j=1

e−βEj−2tγE2
j

. (5.48)

In figure 4 we show examples of the characteristic behavior of the deformed SFF (5.48),
for averages over different Hamiltonian matrices drawn from the Gaussian orthogonal
ensemble when the Hilbert space dimension is d = 256.

The long-time limit of the fidelity, for any γ > 0, reads F (t) ≥ 1/Z0(β) where the
inequality is saturated for systems lacking degeneracies, e.g., exhibiting quantum chaos [52].
By contrast, for γ = 0, the value of Fp under ED is given by eq. (5.46).

The choice of the coherent Gibbs state |ψβ〉 also allows to illustrate, somewhat dra-
matically, the different nature of the dissipative dynamics in the presence and absence of
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Figure 4. The deformed SFF for BNGL in random matrix theory. The time-dependence of the
fidelity between a coherent Gibbs state and its time evolution generalizes the notion of the SFF
of Hermitian Hamiltonians to open quantum systems, including those governed by non-Hermitian
Hamiltonians. Different panels correspond to different temperatures of the initial state. Each panel
shows the evolution under BNGL for κ = 2 and different values of the dephasing strength. The
average is taken over a sample of 1000 GOE(28) undeformed Hamiltonians H0. At infinite and
high temperature, the nonunitary dynamics under BNGL preserves the main features of the SFF,
displaying a decay, a dip, a ramp and a plateau. Deviations from the unitary case (γ = 0), suppress
quantum noise in the neighborhood of the dip as well as in the plateau. Increasing the dephasing
strength γ alters the decay, delaying the appearance of the dip and shortening the ramp, while
keeping the onset of the plateau unaltered. At lower temperatures (when the annealed approximation
is expected to fail), BNGL prolongs the decay, enhancing the dip. As a result the ramp and the
plateau take lower values than in the unitary case.

the quantum jump term. To this end, consider the evolution of the purity for an initial
coherent Gibbs state. Under ED [30, 31],

P (t) =
∑
nm

e−β(En+Em)

Z0(β)2 e−2γt(En−Em)2 =
√

1
8πγt

∫ ∞
−∞

dye−
y2
8γt

∣∣∣∣Z0(β + iy)
Z0(β)

∣∣∣∣2 .
By contrast, as previously mentioned, for an initial coherent Gibbs state evolving under
BNGL, the purity remains equal to unity at all times P (t) = 1. We also note that if the
initial state is mixed, in both cases the purity varies as a function of time, according to (5.3)
and (5.7).

In short, for a coherent Gibbs state in the cases of ED with a single Lindblad operator
and the corresponding evolution with BNGL, we have been able to express the fidelity and
the purity in terms of the partition function of the undeformed Hermitian Hamiltonian
using non-Hermitian deformations.

To explore the extent to which the SFF for eq. (5.1) and BNGL equation differ, let us
assume that H0 is a chaotic Hermitian Hamiltonian with time-reversal symmetry sampled
from H0 ∈ GOE(d). Specifically, in figure 5, we sample 1000 Hamiltonians with d = 32,
choosing dephasing strength γ = 0.2 for different temperatures.
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Figure 5. Energy-Dephasing vs BNGL in Random Matrix Theory. The time-dependence of the
fidelity between a coherent Gibbs state and its time evolution is compared for energy-dephasing
(orange dashed line) and the nonlinear evolution for null-measurement conditioning associated with
BNGL (green dotted line) with γ = 0.2. For the sake of comparison, we also show the SFF of the
corresponding isolated system (black solid line), γ = 0. We consider a sample of 1000 independent
Hamiltonians H0 taken from GOE(25). At long times, the fidelity reaches a plateau with the value
〈Z(2β)/Z2(β)〉 for γ = 0 and 〈1/Z(β)〉 for γ 6= 0.

For the non-Hermitian Hamiltonian deformations defined in eq. (5.15) the deformed
SFF becomes

F (t) =

d∑
n=1

p2
ne
−2Eκnt

d∑
j=1

pje
−2Eκj t

+ 2

d∑
n,m=1
n<m

pnpme
−(Eκn+Eκm)t cos

((
Em − En

)
t
)

d∑
j=1

pje
−2Eκj t

, (5.49)

where pn = e−βEn/Z0(β) are the Boltzmann factors of the undeformed Hamiltonian H0.
The timescale at which all frequencies Em − En have on average been expressed in the

evolution can be approximated by the inverse of the average level spacing ∆, sometimes
referred to as Heisenberg time tH = 2π/∆ [29, 101]. After this time, the cosines of
frequencies whose ratio is irrational cancel each other on average, leading the SFF to its
plateau, while the distribution of the smallest ones, i.e., the level spacing distribution
determines its behavior right before tH . In a quantum chaotic system, level repulsion is
manifested in the ramp which follows the dip of the correlation hole leading the SFF to
saturation. In this context the absence of a correlation hole before the Heisenberg time
is associated with regular dynamics. The mean level spacing for a Hamiltonian sampled
from GOE(d), whose spectrum has not been unfolded, is ∆ = σ

√
8d/(d− 1), and thus the

Heisenberg time, tH = π(d− 1)/(σ
√

2d).
In the non-Hermitian Hamiltonian deformations of eq. (5.15), the dissipative part of

the Liouvillian commutes with the system Hamiltonian, leaving the frequencies in eq. (5.49)
unaffected. Namely, the Hκ

0 part of the deformation affects the depth and area of the
correlation hole. In figure 6 we show the shrinking of the correlation hole with the increase
of the dephasing strength, while the Heisenberg time remains unchanged. In all three panels
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Figure 6. Correlation hole shrinking for different non-Hermitian deformations. Fidelity between
initial and time evolved infinite inverse temperature coherent Gibbs state under the BNGL dynamics
of L(κ), for even κ and characteristic values of the dephasing strength γ. Three different deformations
for κ = 2, 4, 6 are averaged over a sample of 1000 GOE(26) undeformed Hamiltonians H0 with σ = 1.

we show the Hamiltonian averages of 1000 Hamiltonians, sampled from GOE(64) for infinite
temperature β = 0 and different values of the dephasing strength.

6 Liouvillian deformations

Before closing, we discuss the generalization of our results to the case of arbitrary open
quantum dynamics. The evolution of the quantum state is generated by a Liouvillian
L0, which may be diagonalizable or not. For simplicity, we focus on the former case. Let
L0 =

∑
n λn|n)(ñ| be a Liouvillian without any exceptional points [65, 66], diagonal in a

bi-orthogonal basis, after the vectorization process presented in section 5.2, with |n) and
(ñ| being the right and left eigenstates, respectively, of the complex eigenvalue λn [54, 76].
The equation

∂t|ρ(t)) = L0|ρ(t)), (6.1)

is solved by |ρ(t)) = Φ0|ρ(0)), for the dynamical map Φ0 = eL0t =
∑
n e

λnt|n)(ñ|. Extending
the discussion of section 3 to Liouville space, a deformation w gives w(L0) =

∑
nw(λn)|n)(ñ|

and Φw =
∑
n e

w(λn)t|n)(ñ|. As an example, consider the case in which the undeformed
Liouvillian L0 describes a system in isolation. The Liouvillian takes the form (5.14) and is
thus anti-Hermitian. The right and left eigenvectors coincide and the eigenvalues are purely
imaginary, given by the frequencies ωn, which determine the dynamics, λn = −iωn. The
deformed and undeformed propagators can be obtained through a Fourier transform

Φw(t) =
∫
R
dt′Kw(t, t′)Φ0(t′), (6.2)

with
Kw(t, t′) =

∫
R

dω
2π e

it′ω−iw(ω)t. (6.3)

A simple deformation that preserves the Lindblad structure is w(L0) = L0 + γL0
2, γ ∈ R,

starting from a Liouvillian describing an isolated system L0 = −i (H ⊗ 1− 1⊗Hᵀ). In
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this case, one recovers the full energy dephasing dynamics of eq. (5.1). In addition, one
can consider the deformation w(L0) = L0 + γL0

2s with s ∈ N, which leads to the master
equation

∂tρ = −i[H0, ρ] + (−1)sγ[H0, [H0, · · · , [H0, ρ]]], (6.4)

involving a dissipator with 2s nested commutators. While the latter is not manifestly of
Lindblad form, it is solved by the quantum state

ρ(t) =
∑
nm

ρnm(0)e−i(En−Em)t+(−1)sγt(En−Em)2s |n〉〈m|. (6.5)

Therefore, for odd s, the dynamics generalizes the usual case of energy dephasing (s = 1).
For even s, with a bounded spectrum, it has the opposite effect as the time evolution
enhances the coherences in the energy eigenbasis.

This example illustrates the versatility of leveraging the notion of non-Hermitian
Hamiltonian deformations to more general open dynamics. Quantum channel deformations
at other levels are left for future investigations.

7 Conclusions

Integrable and exactly-solvable Hamiltonian deformations constitute a powerful tool among
non-perturbative methods. Using them, equilibrium correlations of the deformed theory
can be found via integral transforms in terms of those in the original theory [18, 19].

In this work, using the theory of open quantum systems, we have motivated the
introduction of non-Hermitian Hamiltonian deformations. In the context of continuous
quantum measurements, the latter describe the dynamics of a subensemble of trajectories
selected according to a measurement record, i.e., the absence of quantum jumps. For
such subensemble, the dynamics is governed by a non-linear non-Hermitian evolution
characterized by balanced norm gain and loss. The spectrum of the deformed non-Hermitian
Hamiltonian is no longer real, but complex-valued. This makes it possible to express
nonequilibrium correlations of the deformed theory in terms of those of the undeformed
theory, using integral equations, i.e., generalizing the relations known in the Hermitian
setting. In doing so, we have elucidated the relation between the time-evolution operators,
density matrices, and the spectral properties of the generators of time evolution in both the
deformed and undeformed theories.

We have explored the energy dephasing channel under both Markovian and BNGL
evolution. We found that the spectral properties are significantly altered, as the Liouvillian
spectrum constitutes a one dimensional locus in the complex plane, while the BNGL
spectrum corresponds to a two dimensional one. As an example, we considered the SYK
model and random Hamiltonians from the GOE. We characterized quantum correlations
starting from a thermofield double state. Remarkably, entanglement and Rényi entropy
display a maximum value under BNGL evolution, scaling with inverse temperature.

As an application of non-Hermitian deformations and building on earlier results, we
considered signatures of quantum chaos, using the survival probability of a coherent Gibbs
state, identifying the effect of quantum jumps. The spectral form factor exhibits a decay,
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dip and plateau. The dip is generally suppressed under energy dephasing, in the presence
of quantum jumps. However, when conditioning the dynamics to the absence of the latter,
we have shown that non-Hermitian evolution of the energy dephasing channel under BNGL
can actually enhance signatures of chaos by broadening the duration of the ramp. This is
contrary to the expectation that decoherence generally suppresses signatures of quantum
chaos. Further, the value of the plateau is fundamentally distinct from the isolated case
and is characterized by the inverse of the partition function in quantum chaotic systems.

Finally, we discuss a possible way to generalize the presented theory of non-Hermitian
deformations to Liouvillians, through the introduction of integral kernels which associate
the deformed and undeformed dynamical maps.

Beyond these findings, non-Hermitian and Liouvillian deformations should find broad
applications in the study of dissipative quantum many-body systems, the interplay between
information scrambling and information loss, black hole physics and unitarity breaking, and
gauge-gravity dualities in open systems.
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A Time evolution under BNGL

From eq. (3.2), we have that

Kw(t, s)∗ =
∫
R

dE
2π e

−isE+iw∗(E)t (A.1)

=
∫
R

dE
2π e

i(−s)E−iw∗(E)(−t) (A.2)

= Kw∗(−t,−s) (A.3)

so that
U †w(t) =

∫
R
dsKw∗(−t,−s)U †0(s) (A.4)

Therefore

ρ̃w(t) = Uw(t)ρ(0)U †w(t) (A.5)

= e−iw(H0)t ρ(0) eiw(H0)†t (A.6)

=
∫
R
ds
∫
R
ds′Kw(t, s)Kw∗(−t,−s′)U0(s)ρ(0)U †0(s′) (A.7)

=
∫
R
ds
∫
R
ds′Kw(t, s)Kw∗(−t,−s′)U0(s)Û †0(s′)U0(s′)ρ(0)U †0(s′) (A.8)

=
∫
R
ds
∫
R
ds′Kw(t, s)Kw∗(−t,−s′)U0(s− s′)ρ̃0(s′). (A.9)
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