
Software Model for Robot Programming and
Example of Implementation for Navigation System

Samira Chaychi
Department of Computer Science University of

Luxembourg
Esch-sur-Alzette, Luxembourg

samira.chaychi@uni.lu

Denis Zampunieris
Department of Computer Science University of

Luxembourg
Esch-sur-Alzette, Luxembourg

denis.zampunieris@uni.lu

Sandro Reis
Department of Computer Science

University of Luxembourg
Esch-sur-Alzette, Luxembourg

sandro.reis@uni.lu

Abstract—In this paper, we are going to consider a current
challenge in a robotic software system. We consider a problem,
which is the lack of separation of concerns in robotic systems,
and propose a software model to address the problem and resolve
the current challenges. The core purpose of this paper is to
demonstrate the advantages of using separation of concerns
principles to create a well-ordered model of independent compo-
nents that address separated concerns individually. Considering
the problem, we developed a software model with the help of
a proactive engine to address the challenges. We use robotic
operating systems to help us to implement the robot simulator.

Keywords—software design, separation of concerns, proac- tive
computing, navigation

I. INTRODUCTION

From a programmer’s perspective, the current robotic
systems and software applications do not offer sufficient
software development methodology. Most of the applications
are not flexible to change, reuse, or maintain, which are the
most critical points in software systems. So to tackle these
problems, Separation of Concerns (SoC) [4] could help the
software systems.

SoC is a methodology to separate computer programs into
distinct sections. In this methodology, each section addresses a
separate concern: a set of information concerning a computer
program’s code. Applying the separation of concerns in a code
gives more levels of freedom for some aspects of the pro-
gram’s purpose for simplification and maintenance of code. A
program that integrates SoC well is called a modular program
[7]. When concerns are separated, there are more opportunities
for a module to upgrade, reuse, and develop independently
[4]. The main purpose of this paper is to demonstrate the
advantages of using separation of concerns principles in re-
solving the current challenges in a robotic software system.
The purpose of the SoC principle is to permit the creation of
a well-ordered model of independent components which are
addressing a separate concern. Therefore, to have a software
model considering the SoC principle, we propose a model for
developing a robotic software system using a Proactive Engine

(PE) [3].

The PE is the implementation of a rule-based proactive
system. It includes the power of object-oriented principles
and the power of rule-based systems. The proactive engine
consists of a rule engine, a database, and rules. It is a
middleware system that can be attached to other systems
either directly or through a shared database. A combination of
the proactive rules is called a scenario. A scenario is a set of
rules where each rule is responsible only for a single action.
Scenarios vary in features, structure, and complexity and can
be applied in various areas and situations. The complexity of
scenarios varies depending on the number of rules [8].

In this project, we use Robotic Operating Systems (ROS)
to help us to implement the robot simulation. ROS is an open-
source operating system containing message-passing between
processes, package management, device control, etc. In addi-
tion, running the code through multiple computers is possible.
The main goal of this operating system is the reusability of
code in the robotic field [5] [10].

This introduction section is followed by the problem state-
ment section, where we present the current challenges in the
development of robotic software systems. Then, we move to
the literature review section, where we are going to present
a paper that developed a new navigation solution and another
paper that addresses the lack of separation of concern within
robotic systems. Next, we are going to explain our new
proposed model, and then we will present the development
of our model in the example of implementation section and
advantages of our proposed model and at the end conclusion
and future work.

II.

In this paper, the problem we will consider is the lack of
separation of concerns in most robotic software systems.

Since the earliest of times, from the point of view of

PROBLEM STATEMENT

75

2023 9th International Conference on Automation, Robotics and Applications

978-1-6654-8920-1/23/$31.00 ©2023 IEEE

the researcher in software engineering, the main challenges
are in terms of modifications. They try to design a software
system that allows easy extension and/or modification of the
code. However, Developing the software model leads to the
complexity of the software project. This complexity is because
of a large variety of dependencies and communication between
different parts of the system. Therefore the software system is

going to be large, complex, and even close to confusing
pieces of code that are not easily optimizable. In addition,
many other possible problems can occur due to the interaction
between different modules. To address these problems,
developers must break down the project into independent
tasks.

Fig. 1. Proposed Model

Reusability of software allows the developer to use the
existing pieces of a software system to develop a new system
which helps to reduce the time and effort to create a new one
rather than programming a complete software system from
scratch [9]. Therefore, modules in software systems should be
independent of each other in order to have a reusable system.
Most of the software system requires maintenance at some
phase in the project. Another common challenge in a software
system is maintaining the code during the development of
the code or later. Most of the projects need to be updated
during the developing time and need to fix bugs after some
years. Therefore, maintaining and updating the code should
not be ignored in order to have a better software system. To
address these problems, developers need to have separate tasks

to maintain a system.
Therefore, considering all the points, separation of concerns

is a key objective in the development of a software system. In
this paper, the main objective that we will tackle is the lack
of separation of concerns by using PE, which uses proactive
scenarios that allow separating concerns.

III. LITERATURE REVIEW

Researchers introduced a new navigation solution, Naviga-
tion2 [2], which builds on the prosperous heritage of ROS

navigation. This project uses a behavior tree for arranging
and managing new methods and tasks for having dynamic
environments, which can apply to a wide variety of sensors.
They proposed a new, fully open-source navigation system
called Navigation2. Navigation2 uses a configurable behavior
tree to arrange and manage three main navigation tasks:
Planner, Controller, and Recovery [2]. At some point, the
core members of developers of the Navigation2 project
wanted to extend the design to fulfill a specific goal. They
extended the design in several steps and analyzed each one,
but in the end, they reached a point where the new design not
only did not fulfill the objectives but also did it with a
complex design, so they decided to stay in the current
design [6]. In our paper, we are going to show that we can
extend the project without having extra complexity.

Researchers at the University of Luxembourg introduced
a possible new model for designing and implementing
software in robotic systems. To address the lack of separation
of concerns, they used PE to allow them to use proactive
behavior and rule-driven programming to define proactive
scenarios to have a better separation of concerns in the robotic
system. Proactive scenarios are sets of condition-action rules.
The researchers in this project managed to move the
functionalities from the robot side toward the proactive
engine such that they could implement them in separate

76

scenarios. Therefore, they reach the objectives of having
separate concerns [1]. We would like to implement the same
concept in a ROS framework, which is a great simulation tool
because the real robot’s and the simulation’s outcome are pretty
much the same in this framework, and the code used for the
simulation can be transferred to a real robot.

IV. PROPOSED MODEL

In this paper, we propose a software model for
navigation that not only fulfills the objectives but also has better
separation of concerns. For the development of the robot
software system, we used Proactive Engine. The PE is the
implementation of a rule-based proactive system. It includes the
power of object-oriented principles and the power of rule- based
systems. The proactive engine consists of a rule engine, a
database, and rules. It is a middleware system that can be
attached to other systems either directly or through a shared
database. In this proposed model, we consider each objective one
scenario to have a better separation of concerns. The PE has
several scenarios; a scenario is a set of condition action rules.
They are running in parallel, and each scenario is not aware of
the existence of the other scenarios [1]. In our proposed model,
we are going to have a connection between ROS and PE through
a database. As you see our design in figure (1), data from ROS
will be sent to the database, and the PE will use the requested
data based on its needs, in figure (2), you will see the detailed
design of PE. Our PE design consists of several kinds of
scenarios: Strategy, Planners, Controllers, Recoveries, and
Decision Making (DM).
A. Strategy Scenario

The strategy scenario is in charge of selecting a planned
strategy based on some conditions and rules from the envi-
ronment or input from the user. The selected strategy will be
stored in the local storage, and other scenarios like controller,
planer, and recovery will access it to activate the related
scenarios. The strategy scenario has several different strategies to
control the robot’s behavior; by selecting a different strategy, we
will have a different behavior without changing any code in the
system. Different strategies can apply to the system at runtime
without having to relaunch the system.
B. Planner

The Planner module is in charge of computing the path and
has a meta-planner scenario that reads the planned strategy from
local storage and activates the corresponding scenario. There is
a possibility of having several algorithms to im- plement the
Planner -we will have one scenario for each algorithm- but we
expect to activate only one Planner scenario at a time.

C. Controller

The Controller module is in charge of controlling the
robot’s movement and reacting to the environment. In our
implementation Controller has a meta-controller scenario that
reads the planned strategy from local storage and activates the
corresponding scenarios, depending on the expected behavior
of the robot. According to the strategy, there is the possibility
of activating several Controller scenarios at a time. In [11]
researchers designed a nonlinear MPC Controller for a navi-
gation system and compared it with the TEB controller which
is based on a method called Timed Elastic Band, and this
is the same method that navigation2 used. Also, we would like
to have a comparison with the navigation controller in our
next paper.
D. Recovery

The Recovery module is in charge of handling failure and
has a meta-recovery scenario to activate the corresponding
scenarios in the Recovery. We can have several scenarios
based on the robot’s expected behavior that we want in a
system. One scenario for each recovery behavior will be
activated if it corresponds to the chosen strategy.
E. Decision Making

The DM will receive data from the Controller, Planner,
and Recovery modules. The DM receives recommendation
commands (with a priority) from those types of scenarios,
decides on a final command, and sends it via the database
for the robot to perform. In our software system, the other
scenarios do not know about the existence of the DM scenario.
Each scenario makes its own decisions by making a command
recommendation and then sending its result to the DM
scenario indirectly via the database. Each command
recommendation has its own priority assigned at creation time,
given by the scenario that creates it. One of the advantages
of assigning a priority to the scenario then is that when we
add more scenarios to the system, we do not need to adapt
the DM. It will work seamlessly with the new scenarios and
command recommendations they create.

V.

IMPLEMENTATION

In our implementation, as shown in figure (1) we have a

connection between ROS and PE through a MySQL database.

As you see in the design of our implementation in the ROS

part,

we

have

subscriber

and

publisher

nodes.

Subscriber

nodes

receive

the

required

data

from

the

robot

and

will

write

it

in

the database, and the publisher node will read data

from the

database

and

send

it

to

the

robot

to

perform.

77

Fig. 2. Navigation model with PE

As you see the detailed design of PE in figure (2), all
scenarios are running in parallel and independent, and they
are not aware of existing of each other to communicate. We
consider the localization robot that aims to reach the goal point
and avoid obstacles. In our PE implementation, the strategy
scenario, as you see in the proposed model, has several pre-
defined strategies to control the robot’s behavior in the strategy
scenario to choose from. For instance, one strategy can be, go to
the goal point and avoid obstacles, and the other could be,
go to the goal point and do not consider obstacles. Also, another
strategy could be checking the robot’s battery level and changing
the robot’s direction to the charging station, if needed. All these
different behaviors can change at runtime without relaunching
the system. For example, if the battery level is low, the robot will
change the direction to go to the battery station and behave
differently. Conversely, if the robot is not considering obstacles
at runtime, the strategy can easily be changed to have a robot that
considers obstacles in the environment. Our system can choose a
different scenario based on the system’s conditions and rules. The

data these conditions need can come from the environment or
input from the user. As you see in figure (2) feedback loop
shows that the decision- making scenario can send a command
to the strategy scenario to change the planned strategy at a
run time.

The strategy scenario will store the planned strategy in
local storage, and the meta scenarios can access this data.
Therefore, the corresponding scenarios from the Planner and
Controller will be activated by the meta scenarios of the
Planner and Controller. All active scenarios are running in
parallel and independent of each other and making a
command recommendation based on their own algorithm.

The main goal of the Planner module is to compute
the path based on the start and goal points and go to the
goal point. In our implementation, the scenario ”turn&move”
will be activated, and the robot will try to reach the goal point.
There is a possibility of having several algorithms for
the Planner; then, we could have other behaviors like; first,

78

turn, and then move forward. We expect to activate only one
Planner scenario at a time, and the scenario that is activated is the
one that corresponds to the strategy chosen.

The main task of the Controller module is to control the
robot’s movement. In our implementation, we
have ”avoid&move to the left” and ”avoid&move to the
right”; also ”battery level checking”. The chosen scenarios could
be changed at run time based on some conditions.

The Recovery module, like Planner and Controller, has a
meta-recovery scenario to activate the corresponding scenar-
ios, we are working to implement some recovery scenarios as
well, but for the moment, we have not implemented any yet.
Finally, we have the DM scenario; this scenario reads
recommendation commands and priority levels created by the
Controller, Planner, and Recovery scenarios and will make
the final decision based on the priority and type of each active
scenario. In the end, the DM will send the final command to
the robot to perform. In our implementation, we assigned
priority for all the scenarios in Planner, Controller, and
Recovery at creation time. So we can easily add more
scenarios to Planner, Controller, and Recovery without having

to adapt the DM scenario.
VI. ADVANTAGES

In our implementation, we consider each objective one
scenario; we break down all the pieces into independent tasks
without interacting with each other. They are running in
parallel, and each scenario is not aware of the existence of
other scenarios. Therefore, our implementation has better
separation of concerns [1].

Another challenge that we consider in this paper is extend-
ing the code, making it more complex. In our implementation,
we can add different algorithms for different types of robots and
platforms without changing the current code or needing extra
settings and configuration. Therefore, extending the code in our
implementation will not make it more complex. For example, in
our example implementation, we have less complexity in a
system for computing the path and controlling the robot since
there are separate scenarios for each, and we can extend them
easily.

Also, our implementation has different rules and strategies
that can apply to the robot’s behavior at runtime without
relaunching the system again. As we mentioned in the im-
plementation of PE, the advantage of having a feedback loop
makes it possible to choose a different strategy to have a
completely different behavior without changing any piece of
code in the system at runtime.

VII. CONCLUSIONS AND FUTURE WORK

We considered a problem: the lack of separation of
concerns in robotic systems and, more specifically, in the
navigation project. We proposed a software model to address
the prob- lem and resolve the current challenges in
developing robotic software systems. With the help of the
proactive engine, the proposed software system has both
powers of object-oriented principles and rule-based systems.
For easy programming of each scenario, a scenario is
allocated to only one objective on the robot. Therefore, we
have a software system that integrates the separation of
concerns well. We presented a basic implementation of the
entire design and will add the recovery behaviour and
complete it soon. In future work, we will compare our
system’s performance with other existing systems like [2]
using software metrics both at compile time and runtime.

REFERENCES

[1] A. Frantz, D. Zampunieris, ”Separation of Concerns Within Robotic
Systems Through Proactive Computing,” 2020 Fourth IEEE
Interna- tional Conference on Robotic Computing (IRC), 2020, pp.
197-201, doi:10.1109/IRC.2020.00039

[2] S. Macenski, F. Mart´ın, R. White, J. Clavero. The Marathon
2: A Navigation System. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2020.

[3] D. Zampunieris, “Implementation of efficient proactive computing
us- ing lazy evaluation in a learning management system (extended
ver- sion),”IGI Publishing, vol. 3, no. ISBN 0863411711, pp. 103–
109, 2008.

[4] https://en.wikipedia.org/wiki/Separation of concerns

[5] Stanford Artificial Intelligence Laboratory et al. (2018). Robotic
Oper- ating System. Retrieved from https://www.ros.org

[6] https://github.com/ros-planning/navigation2/issues/565

[7] P. Laplante, “What every engineer should know about software
engi- neering, ”CRC Press, pp. ISBN 978–0 849 372 285, 2007.

[8] D. Shirnin, S. Reis, D. Zampunieris, ”Experimentation of proac-
tive computing in context aware systems: Case study of human-
computer interactions in e-learning environment,” 2013 IEEE
Interna- tional Multi-Disciplinary Conference on Cognitive
Methods in Situa- tion Awareness and Decision Support
(CogSIMA), 2013, pp. 269-276,
doi:10.1109/CogSIMA.2013.6523857

[9] Moko, Anasuodei & Ojekudo, & Akpofure, Nathaniel. (2021). Soft-
ware Reusability: Approaches and Challenges. International
Jour- nal of Research and Innovation in Applied Science. 06. 142-
146. 10.51584/IJRIAS.2021.6510.

[10] M. Quigley et al., ”ROS: an open-source Robot Operating System,”
in ICRA workshop on open source software, 2009, vol. 3, no. 3.2:
Kobe, Japan.

[11] Quang, Hiep Do et al. “Design a Nonlinear MPC Controller for
Autonomous Mobile Robot Navigation System Based on ROS.”
Interna- tional Journal of Mechanical Engineering and Robotics
Research (2022).

79

