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Abstract

Global warming forces the automotive industry to reduce real driving emissions and thus,
its CO2 footprint. Besides maximizing the individual efficiency of powertrain compo-
nents, there is also energy-saving potential in the choice of the driving strategy. Thus,
model predictive control based advanced driver assistance systems to reduce the energy
consumption during driving gains a significant interest in the literature. However, this
results in a complex control system with many parameter dependencies that could pos-
sibly affect the energy efficiency of the vehicle. Most of these parameters are subject to
uncertainties. Thus, the important question remains how these parameter uncertainties
affect the energy efficiency of the system and how a driver assistance system should be
designed to be robust against these uncertainties. To answer this question this thesis ap-
plies variance-based sensitivity analyses to design an appropriate driver assistance system
and to quantify the influences of the uncertain system and controller parameters.

First, a detailed vehicle and powertrain model of a battery electric vehicle is evolved
and verified on component test benches. The parameter uncertainties and their sensitivi-
ties were investigated on typical urban and interurban commuter routes using quantitative
variance-based sensitivity analysis methods. Based on these findings an economic non-
linear model predictive control eco-cruise control is derived which takes the identified
parameter dependencies into account. The developed economic nonlinear model predic-
tive control system is evaluated on artificial drive cycles and compared to a linear model
predictive control approach as often outlined in the literature.

Afterwards, the closed loop control system, consisting of the developed economic non-
linear model predictive control and the detailed vehicle model, is analyzed on typical
urban and interurban commuter routes using variance-based sensitivity analysis. The
findings and parameter dependencies are outlined and discussed. It has been shown, that
vehicle parameters as well as controller parameters impact the energy consumption and
the driving time of the vehicle. It has been outlined that if the as influential identified
parameters are optimized, an average energy-saving potential on the investigated routes
of 10.5 % exists by only increasing the driving time of 0.7 %.
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For the symbol list and the equations throughout this thesis the following conventions
were considered:
Constants in normal font, e.g. π, e
Units in normal font, e.g. V, A, Hz
Scalar variables in normal italics, e.g. i, I

Vector variables in bold italics, e.g. i, I

Complex variables are underlined, e.g. i, I

Amplitudes and estimated values with a circumflex, e.g. î, Î

Mean values with a macron, e.g. ī, Ī

Sets are outlined with uppercase calligraphic letters, e.g. U

In addition to that the following rules apply:

• Time varying values are depicted with lower case letters.

• Average values (e.g. RMS) and time constant values are outlined with capital letters.
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εŜG
Tj
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i Mean of the absolute Elementary Effect of parameter i -
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p Pole pairs of the electrical drive -
PAC RMS AC power measurement W
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PEErr,D2 Diode D2 reverse recovery losses W
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UUV , UUW , UV W RMS phase-to-phase voltage measurements V
V (·) Variance operator -
vego Vehicle velocity m/s
vmax Maximum allowed legal speed m/s
x State vector of a dynamic system -
x0 Initial system state vector -





1 Introduction
This thesis presents the quantification of influencing factors on the energy efficiency of a longitudinal
controlled Battery Electric Vehicle (BEV) using sensitivity analysis methods. Besides this, the sensi-
tivity analysis is used to develop an Economic Nonlinear Model Predicitive Control (ENMPC) for the
longitudinal control of the vehicle, which is robust against parameter changes.

This chapter is structured as follows. Section 1.1 outlines the research context. In Section 1.2, the
problem statement and the motivation for conducting this study are given. The aim and scope are pre-
sented in Section 1.3 and the scientific contribution of this thesis is outlined in Section 1.4. At least in
Section 1.5, the outline of the thesis is presented.

1.1 Context of the Study

Global warming caused by industrialization, the immense use of fossil fuels and the associated green-
house gas emissions is one of the most severe problems. In the 2015 Paris climate agreement [1], nearly
all countries pledged to limit global warming to a maximum of 1.5 ◦C compared to the pre-industrial era.
To achieve this goal, current CO2 emissions must be massively reduced. For example, Germany adopted
its intentions in this regard in 2016 in its Climate Protection Plan 2050 [2]. Here, CO2 emissions must be
reduced by up to 95 % by 2050. Since the transport sector accounts for 21.76 % [3] of global greenhouse
gas emissions, of which 18 % are caused by road traffic, a significant climate protection potential exists
here.

One approach to reducing emissions in the transportation sector is to replace internal combustion engines
with battery-electric drives. Due to the improved efficiency of the electric drive, this leads to an improve-
ment in the CO2 footprint of the vehicle and makes local emission-free operation possible. In Germany,
however, it is currently not possible to completely reduce the overall CO2 emissions of an electric vehicle
during operation due to the composition of the electricity supply mix. CO2 emissions for the production
of electricity amounted to 485 g/kWh on average in 2021 in Germany [4]. The example of a VW up! with
a Worldwide Harmonised Light Vehicles Test Procedure (WLTP) consumption of 12.9 kWh/100km cor-
responds to emissions of 6.25 kg/100km compared to 10.1 kg/100km for the same vehicle with a gasoline
engine. Therefore, the emissions caused by the transport sector will only be reduced to a limited extent
by replacing internal combustion engines with battery-electric drives.

Nevertheless, there are many other aspects that can reduce the energy consumption of vehicles, in-
cluding environmental conditions, such as the weather or road surface conditions, the driving style of
the driver and the vehicle itself [5]. Especially for BEVs with long recharge times and lower ranges than
internal combustion engines saving energy during operation plays a crucial role. Thus, the development of
energy-efficient driving strategies to reduce fuel consumption has gained significant industrial interest [6].
Energy-efficient driving, commonly referred to as eco-driving, describes the reduction of fuel consumption
by operating the vehicle along its energy-optimal velocity trajectory. It can be processed by a human
driver using learned patterns to achieve low energy consumption, for example, through smooth acceler-
ation or deceleration and maintaining a constant speed. Furthermore, eco-driving is capable of reducing
traffic fatalities and can reduce the risk of traffic accidents [6]. However, without exact knowledge of the
energy-optimal operating points of the vehicle and the upcoming driving situation, a human driver can
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only reach a sub-optimal driving strategy.

The digitization of modern vehicles has led to a rapid increase in the real-time information available
through Car2X technologies. In addition to the vehicle’s inertial sensor system, ultrasound, radar, cam-
era and LiDAR-based environmental sensors provide information about the vehicle’s surrounding area.
Furthermore, networking with infrastructure and map data providers makes it possible to obtain real-
time information about traffic, speed limits, and the current route profile, for example. Likewise, the
available computing capacity in modern vehicles has increased tremendously so that even more complex
algorithms can be realized without violating real-time capability.

With these sensor and computational capabilities, modern Advanced Driver Assistance System (ADAS)
are developed. It exists a wide range of different ADAS functions. Simple, purely informal systems such
as traffic sign recognition provide the driver with additional information to perform the driving task more
effectively. In addition, numerous ADAS functions take over a part or even the entire driving task from
the driver. This can be limited to the longitudinal or lateral control of the vehicle but can also involve
both. For this purpose, the system is able to control the brake and engine for longitudinal control and the
active steering for lateral control based on the environmental and vehicle information. Well-established
longitudinal control systems are Cruise Control (CC), Adaptive Cruise Control (ACC) and Cooperative
Adaptive Cruise Control (CACC). All of these systems automate the vehicle’s throttle and brake control
to affect the vehicle’s velocity trajectory. CC systems optimize the speed trajectory without considering
the traffic ahead. As an extension, ACC systems include one or more vehicles in front and optimize
their own speed and the distance to the vehicles to ensure safe driving. CACC systems combine several
vehicles into a group by using vehicle-to-vehicle communication and the group is controlled according to
different optimization criteria. However, all of the approaches are capable of including energy-efficient
driving as an optimization criterion.

Due to the large amount of available information and the computational capabilities of modern vehicles,
especially the development of advanced eco-driving algorithms has gained significant research interest.
However, an eco-driving algorithm faces multiple design objectives, where some of them are contradic-
tory. For instance, the trade-off between the driving time and the required energy will lead to contrary
optimization goals. Furthermore, the ADAS controller needs to consider constraints, e.g., actuator limits
or boundaries for a safe driving scenario. Thus, Model Predictive Control (MPC) is mainly used in the
literature since it is able to consider constraints and operate close to them. Furthermore, this algorithm
is capable of combining contrary goals in the controller design.

However, several powertrain components such as battery, inverter and drive are involved to operate
the vehicle at the desired velocity trajectory. Consequently, designing an energy-efficient top-level con-
troller which considers the powertrain behavior sufficient and is still real-time capable is a difficult task.
The resulting closed-loop system consisting of the top-level controller and the vehicle leads to a complex
system with plenty of parameters and dependencies.

1.2 Problem Statement and Motivation

The development of modern battery technologies is progressing rapidly. Nevertheless, battery systems
currently available on the market and used in series-produced vehicles do not achieve the same usual
ranges and charging times as a comparable combustion engine vehicle. Due to the high weight, volume
and cost requirements of a battery system, vehicles cannot be equipped with batteries of any size. Thus,
an efficient operation of the vehicle plays a major role in addition to the above-mentioned environmental
aspects also with regard to an increase in range. Consequently, besides the actual trends in battery
research, the research and development focus emphatically on eco-driving strategies to increase the range
of BEVs.
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The most promising approach for this multi-objective target of eco-driving are MPCs, where the most re-
cent developments of eco-driving algorithms are presented in Chapter 2. The controller approaches range
from simplified LMPCs to Nonlinear Model Predictive Controls (NMPCs) and stochastic approaches.
Furthermore, these controllers have already been successfully applied to internal combustion engines,
hybrid vehicles and electric vehicles.

However, all of the approaches mentioned above are complex closed-loop control systems with a large
number of system and controller parameters, which all possibly influence the system behavior. This raises
the question which parameters of the vehicle and the powertrain should be considered in the controller
and how parameter uncertainties affect the performance of the resulting eco-driving algorithm. This
question is still unanswered in the literature and a quantification of these parameter dependencies has
not been done.

Quantification of parameter influences is denoted in the literature as sensitivity analysis. Several quali-
tative and quantitative methods exist to analyze mathematical models regarding their parameter sensi-
tivity. The most popular and promising methods are the qualitative Morris parameter screening [7] and
the quantitative variance-based sensitivity analysis, first introduced by Sobol [8]. In particular, in the
context of analyzing the energy efficiency of BEVs, several studies exist (e.g., [9,10]) which highlight the
potential of these statistical investigations. However, analyses on vehicle level usually simplify the un-
derlying powertrain components due to reducing the computational effort or because of a lack of detailed
knowledge of each powertrain component. In contrast, evaluations on the component level (e.g., [11–13])
do not consider dependencies on system level. Further, as far as the author is aware, currently known
analyses of BEVs are limited to pre-recorded speed profiles at vehicle level or predefined operating points
at component level. The degree of freedom of an optimized speed trajectory by an eco-driving approach
has thus not been considered further in the analyses performed so far.

For the above reasons, the motivation of this thesis is to combine a detailed vehicle and powertrain
model with an ENMPC-based eco-driving algorithm which can, compared to other sensitivity analyses,
additionally utilize the degree of freedom of the vehicle speed. Furthermore, the sensitivity analysis of
this detailed vehicle model enables the possibility of determining the relevant parameters which should be
included in the controller design. Thus, there exists high potential to optimize the controller design. Ad-
ditionally, the closed-loop sensitivity analysis provides insights into the system behavior to quantify the
parameter influences that affect the optimization result, which enables precisely improving the controller
robustness and performance.

1.3 Aim and Scope

This thesis aims to quantify the influence of system and controller parameters on the energy efficiency
and the control behavior of an ENMPC-controlled vehicle.

In order to reach the objectives of this study, the following research questions will be addressed:

1. How should a suitable model for a quantitative sensitivity analysis be designed and validated?

2. How should a sensitivity analysis be designed to obtain reliable and resilient sensitivity results?

3. Which parameters are important and which can be neglected?

4. How can these parameter dependencies be quantified?

5. How can the time dependence of technical processes be treated in a sensitivity analysis?

6. How is the vehicle’s energy consumption affected by parameter uncertainties when driving pre-
defined velocity profiles?
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7. How should the eco-driving controller be designed using the knowledge about parameter impor-
tances?

8. How does the proposed eco-driving controller perform in various driving situations?

9. Which parameter uncertainties influence the closed-loop eco-driving most and should be considered
to improve the robustness of the proposed ENMPC?

The first research question is answered by adapting well-known models of all vehicle components, includ-
ing the longitudinal motion, battery, inverter and electrical drive models, to meet the requirements for
accuracy and computation time. All proposed component models are validated on test benches to ensure
that the proposed simulation models have sufficient accuracy for the sensitivity analysis.

To answer research questions 2-5, a literature review on sensitivity analysis has been done to choose
appropriate sensitivity analysis methods. In particular, the consideration of time-dependent processes
poses a special challenge that is considered in this application. Since the sensitivity results are estimates
based on Monte-Carlo (MC) simulations, methods for ensuring convergence of the estimators are also
outlined and discussed in this thesis. The question of which parameters are important and which can
be neglected is answered using a qualitative screening technique to reduce the computational effort. In
contrast, the quantification of parameter influences is ensured by using generalized Sobol indices.

Question 6 is addressed by an open-loop sensitivity analysis of the proposed vehicle using predefined
velocity profiles on representative routes for the use case of commuting in an urban and interurban envi-
ronment.

The results of this open-loop sensitivity analysis are used to answer research question 7. They are
used to identify relevant parameters which should be considered in the controller design. The resulting
controller is an ENMPC which optimizes the speed trajectory to improve the energy efficiency of the
vehicle. To avoid disturbing traffic influences in the results, no preceding vehicles are considered in this
controller approach. However, an integration of preceding vehicles is possible in the presented control
concept. The proposed ENMPC optimizes the vehicle speed considering the vehicle dynamics, the pow-
ertrain condition, road geometries and traffic sign information. Its performance is evaluated in various
driving situations to answer research question 8.

The most interesting question, which closed-loop parameters have the most significant impact on en-
ergy efficiency, is answered by a sensitivity analysis of the vehicle with active ENMPC. Here, the relevant
parameters are identified and improvements to the controller are discussed to achieve the best possible
energy savings potential of this optimized system. Especially, the measurement or estimation errors of
vehicle parameters such as the vehicle mass are discussed.

1.4 Significance of the Study

The main contributions of this thesis to the field of ENMPC based longitudinal motion of a BEV as well
as the novel approach of sensitivity analysis of a closed-loop eco-driving system are highlighted in the
following:

1. Building detailed models on component and vehicle level which are optimized regarding accuracy
and computation time.
The vehicle and powertrain models are developed to represent the energy consumption accurately.
Furthermore, the computation time is reduced to a minimum without losing accuracy to fit as a
basis for the sensitivity analysis.
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2. Development of a sensitivity analysis framework that is capable of performing screenings as well
as variance-based sensitivity analyses and which considers temporal dependencies.
A suitable sensitivity framework is developed, which consists of the sample generation, a Morris
screening and the variance-based sensitivity analysis using generalized Sobol indices which consid-
ers temporal dependencies. Furthermore, the framework is expanded with two methods to ensure
convergence of the sensitivity estimators, which is crucial for reliable sensitivity analysis results.

3. Using sensitivity analysis results as a foundation for an eco-driving algorithm.
The development of the ENMPC is based on the results of the open-loop sensitivity analysis. This
novel approach ensures that all relevant parameters are considered in the controller and that this
important decision is based on quantified results.

4. Real-time capable ENMPC approach.
The presented ENMPC and its implementation strategy of using only the relevant parameters
inside the optimization problem together with the fast HPIPM solver lead to a real-time capable
controller.

5. Closed-loop sensitivity analysis of an ENMPC based eco-driving algorithm.
The novel sensitivity analysis approach applied to a closed-loop eco-driving algorithm and the
associated identification of relevant parameters opens up new potential for optimization.

6. Quantification of parameter influences.
The novel approach of a variance-based sensitivity analysis enables quantifying parameter influ-
ences in such a complex system and connecting the effects on the energy efficiency with their
cause.

7. Focusing on the most relevant parameters for controller improvements.
The proposed sensitivity analysis opens the possibility of identifying the most relevant parameters
even in complex systems. Consequently, researchers or developers are able to focus on the most
relevant parameters to improve the controller performance efficiently.

1.5 Outline of the Thesis
In Chapter 2, the actual state of the art and state of the research related to eco-driving and sensitivity
analysis and their applications is presented.

Chapter 3 presents the theory of sensitivity analysis. It includes an overview of modern sensitivity
analysis methods and outlines a summary of the used methods of Morris and Sobol. Furthermore, the
sensitivity analysis process consists of the sample generation, estimation of the sensitivity indices and
ensuring convergence.

In Chapter 4, the theory of MPC-based control approaches is presented. Especially the differences
between LMPC, NMPC and ENMPC are outlined.

Chapter 5 presents the detailed and computation time optimized models of the BEV, consisting of a
battery, inverter, electric drive, gearbox, vehicle and environmental model. Furthermore, the drive cycles
which are used for the evaluation of the energy consumption of the BEV are outlined.

In Chapter 6, the open-loop sensitivity analysis of the BEV is outlined. The complete process, in-
cluding the definition of the parameter distribution, performing a Morris screening and a variance-based
sensitivity analysis as well as ensuring convergence of the estimates, is presented and discussed.

Chapter 7 focuses on the development of the proposed ENMPC using the results of the open-loop sen-
sitivity analysis. Furthermore, the performance of this controller at artificial and real drive cycles is
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outlined.

In Chapter 8, the closed-loop sensitivity analysis of the BEV is outlined. Based on the results, also
possible controller improvements are discussed.

The thesis concludes in Chapter 9 with the findings, a discussion of the contributions and an outlook for
future research in this area.



2 State of the Art
The following chapter presents the literature review on the current state of the art. For this purpose,
current approaches to energy-efficient driving are discussed and their field of application and limitations
are shown. Furthermore, an overview of sensitivity analysis methods is given and existing applications
of sensitivity analyses on technical systems are presented.

2.1 Energy-Efficient Driving
Energy-efficient driving describes the process of maneuvering a vehicle over a certain distance with the
lowest possible energy consumption by adjusting the speed trajectory. In order to achieve this goal, the
vehicle driver or a corresponding assistance system must recognize and observe a wide range of boundary
conditions. This chapter explains the boundary conditions to which energy-efficient driving is subject.
Furthermore, a current overview of the existing literature in the field of assistance systems is given, which
adapts the speed trajectory of the vehicle under consideration of boundary conditions in order to move
the vehicle as energy-optimal as possible.

2.1.1 Influences on the Energy Consumption

The influences on the energy efficiency can be divided into four categories: Construction-related vehicle
characteristics, selected route and environmental influences, traffic-related boundaries and driving behav-
ior.

The construction-related vehicle characteristics are defined during the construction of the vehicle. This
includes vehicle mass, vehicle aerodynamics, and tire selection. All these factors influence the vehicle’s
driving resistance and thus determine the required wheel-side drive energy that must be provided by the
powertrain. This required energy is provided by one or more energy storage units within the vehicle.
Depending on the type of drive, the energy, which is usually provided chemically, must be converted and
transformed into a mechanical propulsion power at the wheel. The efficiency of this conversion with all
the components involved plays a decisive role in the energy consumption of the vehicle. Furthermore,
auxiliary consumers, such as air conditioning or lights, must also be supplied from these energy storage
units and contribute to the overall consumption of the vehicle.

In addition to the construction-related vehicle characteristics, the environment, as well as the selected
driving route, also influence the energy consumption of the vehicle. Different weather conditions, e.g.,
fog or rain, influence the driven velocity and the road surface characteristics. Furthermore, the use of
auxiliary consumers, like using the lights or air conditioning, is affected by the environmental conditions.
Additionally, they influence the thermal conditions and efficiency of powertrain components. The sta-
tionary boundary conditions such as speed limits, curve radii, intersections or traffic lights affect the
choice of the optimal vehicle speed. Furthermore, road slopes and the road surface condition influence
the driving resistances.

The traffic environment of the vehicle sets dynamic boundary conditions. In such a situation, the vehicle
speed must be individually adapted to this environment.

7
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The above-mentioned boundary conditions provide the framework for the driver to adjust the vehicle
speed to influence energy consumption positively. However, energy-optimal driving depends on three
different factors: Will, knowledge and skills. Specifically, this means that in addition to the will to re-
duce energy consumption through his driving style, the vehicle driver must also have the appropriate
knowledge about energy-efficient driving and be able to apply it. Due to the multitude of influencing
factors mentioned above, this task can therefore often only be performed suboptimally by an individual
and leads to wasted saving potential. Consequently, numerous energy-efficient driver assistance systems
have been developed in the past for different drive concepts and boundary conditions to either support
the driver in this task or to relieve him of this task altogether. A comprehensive literature review of these
eco-driving systems will be given in the next section.

2.1.2 Assistant Systems for Energy-Efficient Driving

In this section, the literature review on energy-efficient or eco-driving systems is presented. Since the
focus is on the energy-efficient longitudinal control of vehicles, only systems that can perform the longi-
tudinal control task partially or fully automatically are listed here. The evaluation is done concerning
its methodological as well as application-related properties and limitations and is evaluated accordingly.
Therefore, a distinction is made between the following properties or evaluation criteria:

• Control approach:
The literature review focus on MPC-based control approaches as it seems to be the most promising
approach in the recently published literature. All MPC-based approaches have in common that an
optimization problem, including constraints and a cost objective, is solved. However, the choice
of the optimization problem class influences the control approach’s complexity and the real-time
capability. Therefore, a distinction is made here between linear, nonlinear, economic and stochastic
methods. Furthermore, this subitem evaluates whether the presented algorithms have real-time
capability since this is a major concern for a practical application.

• Control objective:
The origin of assistance systems is not to optimize energy efficiency but to increase the comfort and
safety of the driver or passengers. Nevertheless, promising approaches in the field of eco-driving
exist there as well. Therefore, this evaluation discusses which optimization goal is being pursued.

• Driving use case:
The use case for which the investigated systems are designed determines the complexity of the
longitudinal control task. While the complexity on highways and rural roads is rather low, it
increases significantly in urban areas. Due to the high traffic density and the variety of traffic
control systems, high demands are placed on the optimization.

• Driving constraints:
Here, the constraints considered for optimized longitudinal vehicle guidance are discussed. This
includes, for example, the consideration of a legally prescribed maximum speed, curve radii, traffic
lights or intersections, or a slower moving vehicle in front.

• Environmental information:
Ambient information is typically required to realize predictive energy-optimal longitudinal control.
This can be, for example, information about road gradients and curve radii in the form of map
data. This is often additionally supplemented by the measurement of the vehicle in front with
different sensor systems. Modern approaches also use Car2X interfaces to communicate with other
vehicles or the infrastructure.

• Powertrain type:
The used drive technology significantly impacts the design of the optimization problem. The
distinction between trucks and cars is mainly reflected in the different weights as well as in the
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purpose of use. For conventional drives and hybrid vehicles, there is also an additional degree
of freedom of gear selection. Likewise, some approaches for hybrid vehicles also involve power
management for efficient energy distribution. In the case of electrically driven vehicles, the gear
selection and active power management are usually omitted. However, a significant advantage of
hybrid and electric vehicles is the considerable recuperation potential.

• System realization:
In addition to the formulation of the optimization system, the corresponding implementation is
also part of it. At this point, it is evaluated whether it is a simulation study or whether the
presented assistance system has been implemented in a vehicle on real hardware capable of real-
time computation.

• System evaluation:
Evaluation of systems, whether simulative or under real traffic conditions, represents an integral
part of a system assessment. Basic functionality is often demonstrated on artificial driving cycles
or driving profiles, whereas some studies have tested the systems on representative routes or in
real road traffic.

The above points are discussed in more detail below and the literature is separated into these categories.
Furthermore, a summary of the considered topics can be found in Table 2.1.

Control approaches

The first approaches on energy-efficient longitudinal control of vehicles date back to the work of Gilbert [14]
and Schwarzkopf [15]. In [14], the first fuel economic CC system and in [15], an optimal control based
on Pontryagin’s maximum principle considering varying terrain was introduced. The first ACC approach
using MPC was introduced in [16] with the focus on collision avoidance to prevent accidents with the
preceding traffic. In [17], a predictive eco-CC system using slope information for a heavy-duty truck
used in North America was presented. The first ACC systems using LMPC were outlined in [18,19]. [18]
developed an ACC for a gasoline smart vehicle including the gear shift logic directly into the optimization
problem by using an Mixed Logical Dynamics (MLD) prediction model description where the nonlinear-
ities are approximated using a piecewise affine model. In contrast, [19] compensates the nonlinearities of
the vehicle model by an inverse model. To reduce the required computation time, an explicit LMPC-based
ACC algorithm was presented in [20,21], which calculatess the computationally intensive solution of the
Optimal Control Problem (OCP) offline beforehand and stores it as a lookup table in the controller. Fur-
thermore, the presented ACC system is Stop&Go capable and can be parameterized for different vehicles.
However, [20, 21] do not focus on energy efficiency.

In addition to these initial approaches, various eco-driving solutions have been published in the past
decade. Due to the steadily increasing computing power in vehicles, besides linear optimization problems
also nonlinear, economic and stochastic ones gained more and more interest.

Recent LMPC publications are [22–26]. In [22], an LMPC-based eco-ACC system for a commercial
vehicle is presented where the ride comfort, driver permissible tracking range of preceding vehicles and
rear-end safety are formulated as linear constraints. The approach of [23] outlines an eco-CC system for
a commercial vehicle but is not acting closed-loop on the vehicle. It only provides an optimized vehicle
trajectory for energy-efficient driving to the driver. In [24,25], a novel LMPC approach is presented where
the powertrain characteristics of a Smart ED BEV are modeled as a lookup table and integrated into
a convex OCP using separable programming and linear constraints. Furthermore, the prediction model
of [24, 25] is formulated and discretized in the space domain instead of the time domain, resulting in
a speed-independent prediction horizon length. In addition, the longitudinal vehicle motion is modeled
using a kinetic energy representation, which omits the need of a nonlinear prediction model. In [26], the
advantages of state and space domain modeling are combined, resulting in a nonlinear model description.
However, the presented models are linearized to obtain an NMPC approach.
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Due to the nonlinear vehicle characteristics, many NMPC-based approaches have been presented to
overcome the limitations of LMPCs. In [27], an NMPC-based ACC system is presented, which utilizes
real-time traffic information of traffic speed and density using Car2X technologies. Another NMPC ap-
proach is outlined in [28] using the information of up and down slopes in an eco-ACC to improve the fuel
consumption of an Internal Combustion Engine (ICE) vehicle. The concept is extended in [29], where
the NMPC prediction model is formulated based on experimentally obtained driving data to estimate
the acceleration or deceleration profile of preceding vehicles. In addition, it was extended to include
traffic lights for the urban use case. In [30], the presented NMPC of [29] is evaluated simulative for 100
different vehicles using the AIMSUM microscopic traffic simulator and real-time capability is shown. An
NMPC full range ACC including Stop&Go capability is postulated in [31] and in [32], a novel algorithm
for switching between the ACC and CC is outlined. Other approaches of NMPC-based ACC systems are
found in [33, 34], where in [33], the preceding vehicle is predicted assuming a constant velocity without
acceleration. [34] proposed a real-time capable dynamic programming approach for solving the OCP. A
novel combination of two independent NMPCs with individual optimization targets is described in [35].
The first NMPC ensures energy-efficient driving, whereas the second defines an optimal velocity for pass-
ing through the traffic lights in a green wave. Another example of a Car2X application is given in [36],
where an NMPC-based CACC system is proposed. The communication between two consecutive driving
vehicles is used to estimate the preceding vehicle motion more precisely to improve the energy efficiency
of the following vehicle. A further approach using Car2X technology can be found in [37], where the
NMPC for calculating the optimal vehicle velocity is solved online in the cloud. In the vehicle itself, an
NMPC is used to control the velocity. A novel NMPC prediction model for a BEV was introduced in [38]
using hyperfunctions to model traffic and road geometry data. The most recent NMPC-based formula-
tions can be found in [39–42]. In [39], a novel real-time capable NMPC combining eco-ACC and safety
requirements for congested traffic situations is introduced. In [40], an NMPC-based CC for an Hybrid
Electric Vehicle (HEV) is introduced, where the focus is on comparing the C/GMRES and Newton/GM-
RES solvers regarding real-time capability. Since the parameterization of an optimization problem could
be a difficult task, [41] presents a novel auto-tune approach for an NMPC-based eco-driving algorithm.
The optimization of HEVs is still a current area of research. In [42], an approach combining the different
degrees of freedom of an HEV into one optimization problem is presented. It consists of optimizing
the speed in relation to the preceding vehicle, the energy management between the ICE and the electri-
cal drive system by also optimizing the gear ratio of the Continious Variable Transmission (CVT) gearbox.

Since the traffic behavior in front of the vehicle is non deterministic, several Stochastic Model Pre-
dictive Control (SMPC) approaches exist. In [43], the SMPC is used to control the complex system
of driver and vehicle in an ACC system. The driver behavior is modeled as a stochastic system using
Markov chains which is updated online by applying a simple learning algorithm to it. However, the
vehicle dynamics are modeled deterministically. A CACC system based on a linear SMPC is presented
in [44], where the optimization goal is to minimize the piecewise linear approximation of the vehicle’s
fuel consumption map. The preceding vehicle is modeled using a conditional Gaussian model based on
the current measurement and upcoming traffic light signals. A novel SMPC ACC approach to control a
BEV is presented in [45,46]. The preceding vehicle is modeled by a stochastic representation and chance
constraints are used to regulate the relative distance between the vehicles. To achieve real-time capability,
the algorithm is formulated using Pontryagin’s Minimum Principle. Additionally, a novel risk-sensitive
formulation of uncertainties is included in this eco-ACC control concept.

For the approaches mentioned above, several algorithms to solve the proposed OCPs are used. The
solving strategies could be divided into three different categories: Dynamic Programming (DP), offline
solutions and online solutions using iterative solving strategies for OCPs. DP is a technique based on
Bellman’s principle of optimality [47]. The main advantage of this strategy is that each OCP whether
linear or nonlinear, can be solved. However, the calculation demand rises extensively for growing prob-
lem sizes. Nevertheless, several approaches of the above-discussed literature use DP as a solution and
are outlined in [34, 37]. One promising approach of offline solutions is the explicit MPC. However, this
solution is limited to linear or convex OCPs, where the state space can be divided into polyhedral sets
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where each set of the state space consists of an affine projection of the actual state vector to the control
sequence. The affine projections and the boundaries of these polyhedral sets can be calculated offline
and stored in a lookup table for the use in an online algorithm. The approaches [20, 21] uses such an
explicit formulation. Most of the approaches presented above use different types of online solution al-
gorithms based on interior-point or active-set methods. The well-known C/GMRES algorithm is used
in [28–30,35,38,41,45,46]. However, several other algorithms are used to solve the optimization problem.
In [24,25], the quadprog algorithm is used. Ipsolve was used by [44] and NPSOL was used by [27]. CVX-
GEN and Cplex were used by [27] and [23]. Further, a Dantzig-Wolfe active set algorithm was applied
in [22]. Another promising class of algorithm for real-time capability for nonlinear OCP are Sequential
Quadratic Programmings (SQPs) which are used by [36,42]. However, several authors have not outlined
which solvers are used to compute the OCP [17,19,26,31–33,39,43].

Control objective

In the following, the control objective of the different approaches is discussed. The main distinction here is
between energy efficiency and other optimization goals. In the presented literature, only a few sources are
outlined where the optimization goal has not an energy-efficient motivation. The approaches [20,21,31,32]
outline ACC following solutions where the optimization goal is mainly a smooth and safe following be-
havior optimally targeting the desired headway.

The other discussed literature focus on eco-CC or eco-ACC driving. They mainly differ in the driving
use cases, the considered constraints, the vehicle type and which environmental information are used.

Driving use case

Highways and rural roads represent less complex driving situations, whereas the complexity in urban
areas increases significantly and many boundary conditions have to be considered. Thus, the presented
literature is divided into separate driving use cases. MPC algorithms for highway use are presented
in [17,20–27,31,32,37,40] and for rural use in [17,18,20,21,23–25,31–33,37–40,45,46]. The more complex
task of optimizing driving in the city use case is outlined in [19–22,26,28–32,34–37,39,41,42,44], whereas
only [20,21,26] consider Stop&Go scenarios.

Driving constraints

The driving constraints determine the limits within which the velocity trajectory can be optimized and
which information is used for this purpose. Especially for urban areas, considering intersections and
traffic lights is of interest. Since most of the presented papers are eco-ACC approaches considering the
traffic around the vehicle plays an important role and is considered in [18,20–22,24–33,36,37,39,42–46].
Besides the traffic around the vehicle, also the legal speed limits are considered as a boundary to achieve
a legal driving by [18, 24–30, 34–46]. Furthermore, to improve a safe driving, the maximum curvature
speed is considered by [23–25, 38, 41, 45, 46]. Especially for the urban environment, the approaches
of [23,28–30,35,44] also consider intersections or traffic lights in their optimization problem.

Environmental information

To enable predictive behavior of the controller, information about the further course of the route and
the surrounding traffic of the vehicle must be provided, depending on the scope of the MPC. Digital
map data for the supply of elevation and slope data, as well as curve radii and traffic sign information
are used in [17–19, 23–26, 28–32, 34, 35, 37–41, 44–46]. Information about the preceding vehicle, which is
usually measured by sensors, is used in [18–22, 24, 26–33, 36, 37, 39, 42–46, 48]. More advanced assistance
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systems also use Car2X communication, for example, to communicate with the traffic light control system
of a city or with another vehicle in the course of a CACC algorithm. Car2X communication is used
by [23,27,30,35,37,44].

Powertrain and vehicle type

Depending on the powertrain or vehicle type, different degrees of freedom for the optimization exists.
Therefore, the powertrain type of the studied literature is divided into commercial vehicles and passenger
cars with ICE, HEVs and BEVs. Since the application of eco-driving algorithms on commercial vehicles
has significant economic potential, the work of [17,23,49] focus on energy-optimal driving of commercial
vehicles. However, most of the work is related to passenger cars. In [18, 19, 27–32, 36, 41, 44] approaches
for vehicles with ICEs are presented. Mostly, the exact vehicle type is not specified in the corresponding
literature. Regarding the ICE vehicles, only [18, 27] outlined which vehicle was used. In [27], an Audi
A8L and in [18], a Smart is used. The publications [33, 35, 39, 40, 42, 43] focus on optimizing an HEV
powertrain. Not all types of vehicles are outlined. However, in [39] and [40] the usage of a Toyota Prius is
stated. The most recent sources focus more on optimizing BEVs. [24,25,45,46] used a Smart ED and [37]
utilized a Nissan Leaf. In [26,34], no further details about the test vehicle are given. [20,21] presented a
generic approach for passenger cars that should work on all powertrain types. However, it was tested on
an Audi S8 with ICE. In [33], whether the powertrain type nor the vehicle was given.

System realization

The system realization shows how far the eco-driving concept has been transferred into practice or whether
it has currently only been validated simulatively. Most of the approaches presented in the literature are
validated simulatively. These are [17–19,22,26–35,37–46]. However, a few approaches are also validated
within a test vehicle [20,21,23–25] or on a test bench setup [36].

System evaluation

To obtain a reliable conclusion about the control behavior and the saving potential of the eco-driving
algorithms, suitable drive cycles must be defined and used. To evaluate the general performance of the
proposed concepts, in [18,19,22,24–26,29–33,36,38–40,42–44] artificial drive cycles are used. However, to
obtain realistic energy-saving potentials in [23,27,28,34,35,37,41,45,46] real driving scenarios are used.
In [41], an urban route through São Carlos and in [34], a city scenario in Columbus, Ohio is presented.
A rural route from Landshut to Kaiserslautern is outlined in [37]. The eco-ACC algorithms proposed
in [45,46] are tested on a test track of a tire manufacturer. In [27], a rural and highway route from Palo
Alto to San Jose is outlined as realistic driving scenario and [23] used an interurban 12.9 km long test route.

The literature discussed above regarding the various requirements for an eco-driving algorithm and its
evaluation is summarized in Table 2.1. In summary, the literature review shows that there is already a
wide variety of different approaches to eco-driving. Nevertheless, these approaches differ significantly in
their respective fields of application and the methodology used. In particular, the choice of the optimiza-
tion problem, the scope and the accuracy of the prediction model, as well as the considered constraints
are often determined from empirical values or assumptions to solve the task. Furthermore, only artificial
driving cycles are often used in the evaluation of fuel economy, which usually does not reflect the real use
of the vehicle.

For these reasons, there is a need for further research at this point, which will be answered in this
thesis. Thus, the related research questions, as already outlined in Section 1.3, need to be answered.
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Table 2.1: Literature Review on energy-efficient longitudinal control approaches. Legend:
 =yes, #=No, H#=partially, ?=information not given
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2.2 Sensitivity Analysis

Sensitivity analysis studies systems in terms of their response to parameter variations. The variation of
parameters here can cause differently intense reactions of the output. Likewise, there may be interactions
between individual parameters in the investigated system so that the examined model output reacts
nonlinearly to the parameter variations when they are excited together. Sensitivity analysis plays an
important role in evaluating systems in terms of their robustness to parameter variations. Furthermore,
sensitivity analysis methods can identify influential parameters and distinguish them from non-influential
ones. The MPC-based eco-driving approaches are complex closed-loop control systems with a large num-
ber of system and controller parameters which all possibly influence the system behavior. Therefore,
quantifying these influences on the energy consumption and the driving behavior is an important task
and can be answered using sensitivity analysis.

Some promising approaches for systematic sensitivity analysis of technical systems exist in the literature.
A basic overview of the history and classification of these methods is given in Section 2.2.1. Furthermore,
Section 2.2.2 presents technical applications and the associated benefits of sensitivity analysis but also
discusses further research needs in relation to energy-efficient driving.

2.2.1 Local and Global Methods of Sensitivity Analysis

Sensitivity analysis methods can be divided into two approaches: Local and global. Local methods are
characterized by their limited exiting area around a specific working point. Usually, they are designed
as an One-At-a-Time (OAT) experiment where only one factor at one time is varied. Typical evaluation
measures for local sensitivity methods are difference and differential quotient. The limited area around
the actual working point of local methods forces the results to get falsified when the models are non-
linear and the operating point of the analysis is too far away from the operating point of the system.
Furthermore, local methods that belong to an OAT design are not able to identify interactions between
parameters since only one parameter at one time is varied. To overcome this constraint global sensitivity
analysis methods has been developed.

The mathematical foundation of local sensitivity analysis methods was laid in the 80s [51, 52]. A good
overview of the earliest publication can be found in [53]. However, due to the ease of implementation and
interpretation of the results, 34 % of current publications on sensitivity analysis and its application still
use local OAT methods [54].

One common global sensitivity analysis approach is to graphically analyze the parameter dependen-
cies using scatterplots. However, such graphical methods are limited. The influence of parameters is only
determined qualitatively and interactions between parameters usually cannot be detected. Furthermore,
the clarity decreases significantly for an increasing number of assessed parameters. Popular nongraphical
methods for global sensitivity analysis are regression and correlation analyses, where the coefficients serve
as an evaluation measure. However, they are limited to some model restrictions and produce only accu-
rate results on linear or monotonic models. A good overview of these conventional methods is given in [55].

To compensate for the disadvantages of local methods and graphical evaluation, new methods were
published in the early 1990s that allow global sensitivity analysis even for nonlinear models. The most
common global sensitivity analysis methods are analyzing the variance of the corresponding model out-
puts. Here, the variance of the individual parameter influences is set in relation to the total variance of
the output. Thus, the proportion caused by a parameter can be quantified. With this kind of description,
it becomes possible to make a quantitative statement about the direct influence of a parameter and ad-
ditionally its interactions with other parameters on the output. The foundation for these variance-based
sensitivity analysis methods was laid by Sobol [8], where a unique solution scheme for the Analysis Of
Variance (ANOVA)-based model description was given. Here, the direct influence of one parameter is
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called first order or main effect. Interaction effects between parameters can be quantified using the total
order effect. For very few or only very simple models, the integrals from [8] can be determined analyti-
cally. Consequently, the integrals must be approximated by a Monte Carlo simulation for more complex
models. In the literature, two different MC strategies are developed.

The first approach is based on a spectral analysis scheme where the input parameters are exited with a
specific fundamental frequency. The parameter input space is covered using this fundamental frequency
and a specific sampling rate. The calculation of the sensitivity indices is based on a Fourier analysis
which is done after the simulation. The first publication of this Fourier Amplitude Sensitivity Test
(FAST) method can be found in [56] for calculating the total effect, whereas in [57], an extended FAST
method is presented to analyze also the interaction effects. In [58, 59], strategies for a more efficient
covering of the input parameter space by the FAST methods are proposed.

The second approach directly estimates the sensitivity indices using MC simulations. A comprehen-
sive review on current estimation techniques for first order and total effects is given in [60]. The sampling
scheme significantly influences the convergence rate of the estimators. Consequently, several strategies
for an efficient sample generation are outlined in the literature [61–65]. Since the MC simulations are
computationally extensive, often a qualitative screening method is used in advance to separate important
from unimportant parameters. The most promising approach for such a preselection is given by Mor-
ris [7]. Morris proposed a modified OAT design to calculate difference quotients locally but repeated the
procedure with different starting points to cover the analyzed parameter space more completely. Thus, a
semi-global qualitative screening method is available for analyzing complex models.

The methods discussed above do not consider temporal or functional model outputs. However, tech-
nical applications usually include time dependencies in their model description. First approaches which
apply variance-based sensitivity analysis to functional outputs are given in [66–68]. A general frame-
work for treating temporal dependencies was first presented by Alexanderian [69] using generalized Sobol
indices.

2.2.2 Technical Applications of Sensitivity Analysis Methods

The methodological work is mainly limited to the evaluation of academic test models. However, several
applications of variance-based sensitivity analysis on technical systems have been presented in the past.

In [70], a variance-based sensitivity analysis is performed using FAST to investigate two different Kalman
filters for the kinematic and position estimation of a moving object. Another early investigation is pre-
sented in [71], where the dynamic response of a nuclear turboset is analyzed using Morris screening and
the Sobol indices are calculated using the FAST algorithm. The first experimentally assessment of a
controlled system based on Design of Experiment (DoE) using a Latin-Hypercube sampling was pre-
sented in [72]. Especially for such large and complex models, sensitivity analysis is used both for model
analysis and as parameterization support. In [73], it is evaluated if a Morris screening-based method
can replace the variance-based sensitivity analysis to reduce the computational effort in computing the
sensitivity indices of complex distributed watershed models. A similar investigation was made in [74],
where three different global sensitivity analysis methods are compared to access the most relevant pro-
cesses in wastewater treatment systems. The assessed methods are standardized regression coefficients,
Morris screening and extended-FAST variance-based sensitivity analysis with the goal of factor fixing
and factor prioritization in a model with 21 model outputs and 79 inputs. Another publication related
to civil engineering was given in [75], where a derivative-based sensitivity measure is applied to a com-
plex reservoir simulator model. Furthermore, the comparison of linear regression, Morris screening and
variance-based sensitivity analysis to assess building energy models was presented in [76]. The analysis
of charge transport models is given in [77]. They typically consist of at least 10 undefined or ill-defined
parameters. In this publication, Sobol indices are used to evaluate the impact of ill-defined parameters
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to fix the non-influential parameters to a specific value and to prioritize the estimation of the most in-
fluential parameters. The first direct application of Morris screening and the calculation of Sobol indices
for systems with functional outputs was presented in [78]. Here, the methods were applied to an IR
photo-diode front-end model.

The above-outlined publications do not directly belong to the assessment of vehicles or vehicle com-
ponents but outline the potential of sensitivity analyses in technical applications. However, there exists
a small number of recent publications where components or vehicles are investigated using sensitivity
analysis. In [79], a Morris screening for analyzing parameter dependencies in a battery equivalent circuit
of a Lithium-ion (Li-ion) battery is presented. A single particle Li-ion battery model with electrolyte
was analyzed in [12]. The focus was to identify the nonimportant parameters to simplify the model and
to identify the most relevant parameters to focus on them for parameter estimation research and thus
to improve the model quality. In [13, 80, 81] electrical drive systems of propulsion systems for vehicles
are investigated. An only qualitative OAT screening was done in [80] by varying the assessed parameters
50 % around their nominal values with the goal of reducing the complexity of thermal models for electric
machines in integrated starter-generators. In [13,81], a Morris screening and a variance-based sensitivity
analysis were performed to quantify the influence of measurement and manufacturing uncertainties on
the torque accuracy of electric drive systems for BEVs.

The influence of environmental factors, e.g., wind, rolling resistance and temperature, on the energy
consumption of a BEV at vehicle level was investigated in [82] using a simple OAT design. This work was
expanded by a statistical assessment of the same environmental factors in [83]. However, the used statis-
tical methods are not directly mentioned in the publication. Another recent sensitivity analysis of energy
demand estimation of a BEV was outlined in [10], where no detailed considerations of the powertrain are
included. The powertrain components are simplified using static power maps where further dependencies
were neglected. A plug-in hybrid heavy vehicle analysis for optimal energy management was outlined
in [84] using a simple OAT design. A similar study was done in [85] to improve an efficient loss model
of a commercial electric vehicle. Likewise, the sensitivity analysis uses a simple OAT design where the
most important parameters are varied by 5 % from their nominal parameters and the increase in range
is evaluated. The most complete and systematic analyses at the vehicle level are given in [9,86]. In [86],
real driving data from buses were collected during operation in Finland and a sensitivity analysis of the
energy uncertainty regarding the ambient temperature, the applied DC-power, the aggressivity of the
drive and the stops per kilometer were investigated using Scatterplots and Sobol indices. Based on this
work, in [9], a surrogate model is presented to predict the energy demand of electric city buses in varying
driving conditions in real time. The proposed surrogate model is analyzed regarding the robustness of
parameter changes using a variance-based sensitivity analysis where the ambient temperature, the rolling
resistance and the payload are determined as the most influential parameters for the energy demand
estimation.

The aforementioned application examples outline the great potential of sensitivity analyses. However, the
publications of sensitivity analyses at vehicle level did not include detailed powertrain models, whereas
the component-level evaluations did not consider dependencies at the system level. The outlined investi-
gations were carried out using pre-recorded velocity profiles at vehicle level and specific working points or
load profiles at component level. In particular, combining an eco-driving sensitivity analysis evaluation
at vehicle level using detailed component models is still an open research topic. Furthermore, temporal
dependencies are often not considered precisely in the discussed literature. In addition, most of the ap-
plications of variance-based sensitivity analysis using an MC-based estimation of the sensitivity indices
did not outline an assessment of the approximation error for the used estimators. However, analyzing
the convergence of the estimators is crucial for providing reliable sensitivity analysis results.

Therefore, there is a need for further research in the sensitivity analysis of eco-driving systems, pri-
marily for the application in BEVs. At first, a detailed simulation model must be created, which includes
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the components of the powertrain and the vehicle. This model must meet the requirements of a sensitivity
analysis. This includes, on the one hand, that the examined output variables of the model must be repre-
sented as accurately as possible. On the other hand, the model must be optimized in terms of computing
time to be able to calculate the required model runs of the MC simulation in a reasonable amount of
time. Furthermore, the extension of the classical Sobol indices concerning temporal dependencies has to
be considered. Moreover, methods have to be integrated to assess the approximation errors of the used
estimators of the Sobol indices.

2.3 Conclusions
In this chapter, a comprehensive review of the actual state of the art of eco-driving and sensitivity analysis
was given. At first, the influences on the energy consumption of vehicles were discussed. In addition, a
literature review of eco-driving algorithms was presented. It has been shown that numerous of already
published eco-driving approaches exist but with different use cases and for different types of vehicles.
Also, the considered constraints vary for most approaches. In addition, it has been outlined that the
evaluation of the system has mostly been done on artificial test tracks, which do not always allow an
expressive statement about the energy efficiency of the proposed algorithms.

The second part of this chapter consists of a review of sensitivity analysis methods and their appli-
cation to technical systems. A review of local and global sensitivity analysis methods was presented and
their advantages and disadvantages were discussed. It was outlined that the most recent publications for
quantitative sensitivity analysis focus on variance-based methods like the Sobol indices and FAST. Fur-
thermore, recent publications for considering systems with temporal or functional outputs were outlined
and discussed. At least a review on the application of several sensitivity analysis methods to technical
applications was done. It was outlined that several publications exist outside of the automotive appli-
cation using sensitivity analysis for model reduction and model analysis, which highlights the method’s
potential. However, it was shown that, in particular, in the examination of automotive systems and
closed-loop control systems, only a few publications exist. Furthermore, it can be stated that most of
the publications do not entirely cover the analysis of a BEV and did not provide sufficient approxima-
tion quality measures for the MC-based sensitivity measures. Consequently, actual research needs were
derived and outlined at the end of this chapter.





3 Sensitivity Analysis
Sensitivity analysis, in general, deals with the question of how an output of interest of a model reacts to
changes or uncertainties in the input parameters of this model. The main questions that arise are:

1. Which parameter has which amount of influence on the output, and how are they ranked to each
other?

2. Which parameters have negligible influence on the output and can be neglected?

3. Are there interactions between input parameters, and thus the model behaves nonlinearly?

Especially in complex models with plenty of input parameters the answer to this questions becomes very
important and not easy to answer.

The easiest and first used approach to Sensitivity Analysis is known as the local approach. Usually,
only minor changes around a nominal working point are evaluated by varying only one input parameter
at each evaluation. These attempts are called OAT approaches and their mathematical foundation was
laid in the 1980s [51, 52], mainly based on difference and differential derivatives. However, the local
method provides only suitable results in small areas around the nominal values for nonlinear models.
Also, the analysis of nonlinearities or interactions among different input factors is impossible. To over-
come these limitations, a new class of Global Sensitivity Analysis [7,8] methods have been developed that
cover the entire parameter space and are also capable of analyzing nonlinearities and interaction effects.
Also, they are not limited to some kind of model, nor a priory knowledge of the models is needed.
Besides their local or global validity, the methods can also be divided into screening and variance-based
methods. The main difference between these approaches is the possibility of quantifying sensitivities.
Screening methods are used to qualitatively evaluate the sensitivities of input parameters, whereas
variance-based techniques are able to quantify the contribution of each parameter to the output vari-
ance. Practice has often shown that only a few inputs are influential [87]. Thus, screening methods
are mainly used to answer the question of which parameters are noninfluential and can be neglected
in a variance-based quantitative setting. This two-step approach is caused by the computational costs
of variance-based sensitivity setups. Using screening methods to identify noninfluential parameters to
exclude them from the variance-based sensitivity analysis causes a significant improvement in the com-
putational effort.

Figure 3.1 outlines an overview of sensitivity analysis methods used in the literature. Screening can be
done using supersaturated design [88] and sequential bifurcations [89]. If the number of experiments is in
the same order as the number of inputs, fractional factoring RIII or RIV design [90] can be used. How-
ever, all of these proposed screening methods make assumptions about the underlying model behavior
and only outline the first order effects. Morris screening [7], on the other hand, is model-independent
with acceptable computational cost and outlines, in addition, the estimates of the main and total order
effects.

Also, several methods are outlined in the literature for the quantitative variance-based sensitivity analy-
ses. For linear and monotonic models, linear or rank regression models can be considered. Nevertheless,
as shown in Figure 3.1, most of the proposed methods are also applicable to more complex models. The
techniques of metamodeling [91, 92] and smoothing [93] are used to reduce the complexity and thus the
computation time of the investigated model by substituting the original model with easier representations
with nearly similar behavior. To work directly with the developed models without using substitutes or
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Figure 3.1: Overview of Sensitivity Methods [87]. d denotes the number of input parameters

surrogates only FAST [56], eFAST [57] and Sobol-MC [8] are suitable but with higher computational
costs. However, if the models are well designed for fast computing, the Sobol quasi-MC algorithms’
direct usage is realizable. The difference between Sobol quasi-MC and the Sobol-MC method is the type
of sampling strategy. Sobol quasi-MC uses low discrepancy sequences for improving the convergence of
the estimators, whereas Sobol-MC methods use pseudorandom numbers.

To conclude the above depicted summary, it can be outlined that the used sensitivity methods should be
Sobol quasi-MC for the quantitative analysis and the Morris screening for the qualitative analysis. The
choice has the following reasons:

• Model independence

• Capacity to capture the full range of influence of each input factor

• Appreciation of interaction effects among input factors

• Suitable computational effort in combination with a screening method and a properly designed
system model

In addition to the classical variance-based sensitivity analysis, the functional or temporal dependency
of technical processes needs to be considered when analyzing physical systems. Thus, the Generalized
Sobol indices [69], as an extension to the work of [8], are used throughout this thesis. Furthermore, the
sensitivity indices are computed using conditional expectation values and the integrals for calculating
them need to be estimated in a MC simulation. Also, the convergence of the estimators needs to be
ensured.
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3.1 Morris Screening

Morris screening [7] offers an efficient method for qualitatively estimating the influences of parameters
on a model output. The main idea is based on the elementary effect

EEi = f(x1, x2, . . . , xi−1, xi + ∆, xi+1, . . . , xk) − f(x)
∆ (3.1)

for a given model y = f(x) with y as the model output and x = [x1, x2, . . . , xk] as the parameter
input vector, where x denotes a randomly drawn sample out of the random variable vector X in the
k-dimensional unit hypercube

Ωk = {x | 0 ≤ xi ≤ 1; i = 1, . . . , k}. (3.2)

This is no loss of generality as the transformation from the unit hypercube to another probability dis-
tribution and input space can be easily achieved using the corresponding inverse Cumulative Distribu-
tion Function (CDF). Due to the addition of the variation ∆ to the i-th parameter in the numerator
and the use in the denominator, the elementary effect can be understood as a partial difference quo-
tient. ∆ is defined as the step size over a p-level grid in the input parameter space Ω. The step size
∆ ∈ { 1

p−1 , 2
p−1 , . . . , 1 − 1

p−1 } needs to be specified for the analysis. It has been shown that if p is even, a
good choice is ∆ = p

2(p−1) [7, 94] as it guarantees an equal-probability sampling.

In [7] also a novel scheme for defining the trajectory through the input parameter space is proposed
while reducing the effort of model runs. For a given randomly sampled starting vector x∗ from the vector
X in the p-level grid, the first trajectory point x(1) is obtained by increasing one or more components by
∆. The second trajectory point is generated by only increasing or decreasing the i-th component of x(1),
resulting in x(2) = x(1) + ei∆ or x(2) = x(1) − ei∆ where i is randomly chosen from the set {1, 2, . . . , k}
and ei denotes the unit vector. The next trajectory point is then calculated with x(3) = x(2) + ej∆
or x(3) = x(2) − ej∆ and the constraint i ̸= j. This ensures that each new trajectory point will point
in another direction in the input parameter space. This scheme will be continued up to x(k+1). The
proposed trajectory produces one elementary effect for each parameter. But, using only one elementary
effect for each parameter does not provide a satisfactory covering of the input parameter space. Thus, the
calculation of elementary effects is done for r different input trajectories with varying starting points x∗

resulting in Nm = r(k + 1) needed simulation runs. In practice, it has been shown that p = 4 and r = 10
are typical values for producing valuable results [95–97]. A typical sampling scheme of this OAT-design
for p = 4 and r = 2 in the two-dimensional input parameter space is outlined in Figure 3.2. It can be seen
that r = 1 will not sufficiently cover the input parameter space, but with an increasing number of r, a
better state-space exploration is achieved. Furthermore, the expansion to r trajectories will qualitatively
determine nonlinear model dependencies.

As sensitivity measures the mean µi, the mean of the absolute values µ∗
i and the standard deviation

σi of the elementary effects are considered. The measures

µi = 1
r

r∑
j=1

EEj
i (3.3)

and

σi =

√√√√ 1
r − 1

r∑
j=1

(EEj
i − µi)2 (3.4)

were first presented in [7]. µi assesses the overall influence of the i-th parameter on the output, whereas
σi is an effective measure to estimate nonlinear or interaction effects in the model. However, using the
proposed measure µi has the disadvantage that type II errors can occur, which can result in failing to
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Figure 3.2: Example trajectories for a Morris screening for k = 2, p = 4, ∆ = 2
3 and r = 2. The

blue points outlining the trajectory for r = 1 and the red points for r = 2.

identify factors with considerable influence on the output. The measure

µ∗
i = 1

r

r∑
j=1

|EEj
i |, (3.5)

first introduced by [98], avoids type II errors by using the absolute values of the elementary effects.

The measures presented above are used to rank the importance of the parameters. Small values of
µ∗

i in relation to other parameters indicate a minor influence on the output and the related parameters
can be neglected in the quantitative sensitivity setup. In contrast, large values, in comparison to the
other parameters, express a significant influence and the related parameters need to be considered in the
quantitative setup. Furthermore, σi outlines the presence of nonlinearities in the model and thus provides
a qualitative insight into the model structure.

3.2 Variance-Based Sensitivity Analysis

In a variance-based sensitivity analysis the variance of one or more model outputs is considered as a
measurement for the analysis. The basis for this kind of analysis is a classical uncertainty analysis.
The uncertainties of model inputs or parameters are treated as random variables and represented with
their corresponding Probability Density Function (PDF). The variance and the distribution of the model
output is then computed using a MC-simulation considering the uncertainties of the input parameters as
outlined in Figure 3.3. However, a classical uncertainty analysis only outlines the variance of the outputs
but no conclusion of the cause of this uncertainty can be drawn. This gap is closed by the variance-
based sensitivity analysis. It allows the quantification of the influences of each parameter uncertainty
on the output variance. In addition, it enables the detection of interactions between input parameters
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Figure 3.3: Variance-based sensitivity analysis overview

and outlines possible nonlinearities in the model. These quantitative model insights could then be used
to focus on the most important parameters in the research or development process to influence the
uncertainty of the investigated model outputs at most. The theoretical background of this methodology
is explained in the next sections.

3.2.1 Sobol Indices

The generalized description and proof of the model-independent variance-based global sensitivity mea-
sures was first published by Sobol in [8].For a better understanding of variance-based sensitivity measures,
it is described in summary below.

Considering a square-integrable model y = f(x) in the unit hypercube Ωk where y denotes the system
variable to be analyzed with x = [x1, x2, . . . , xk] as the input vector with xi describing the realization
of the i-th input parameter. The random variable vector X contains the independent input parameters,
which are uniformly distributed with Xi ∼ U(0, 1). This is not a loss of generality, but it simplifies
the calculations since the PDFs in the integrands can be neglected when calculating the expectation
values. The unit hypercube Ωk can be transformed to each desired PDF using the corresponding Inverse
Cumulative Distribution Function (ICDF) so that these calculations are identical to the results in the
transformed space.

The basic idea behind a variance-based sensitivity analysis is to decompose a function f(x) into a sum
of 2k terms using a High-Dimensional Model Representation (HDMR) to

y = f(x) = f0 +
k∑

i=1
fi(xi) +

k∑
i=1

k∑
i<j

fij(xi, xj) + . . . + f12...k(x1, x2, . . . , xk). (3.6)

Here, f0 describes a constant term without any dependencies on the input vector. Furthermore, the k
terms fi(xi) express first-order functions with dependencies on only one input parameter xi. This scheme
can be continued up to

(
n
k

)
= n!

k!(n−k)! terms representing n-th order functions with dependencies on n

input parameters. In general, the decomposition in (3.6) is not unique, but in [8], it is shown that if the
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integrals of each term

1∫
0

fi1,i2,...,is
(xi1 , xi2 , . . . , xis

)dxiw
= 0 with 1 ≤ i1 < i2 < · · · < is ≤ k, iw ∈ {i1, i2, . . . , is} (3.7)

with respect to any of their depending variables are zero, then all terms of the decomposition are orthog-
onal in pairs, i.e.,

1∫
0

fi(xi)fj(xj)dxidxj = 0 ∀i ̸= j. (3.8)

As a consequence, the functional decomposition scheme (3.6) is unique.

The remaining question of how to calculate the functions fi1,i2,...,is
can be answered by using the calcu-

lation of conditional expectation values. Given the definition of the conditional expectation value

E(Y | Xi) =
∫

· · ·
∫

Ωk

f(x)d{x\xi} = f0 + fi(xi) (3.9)

for Y with Xi fixed to some known value leads to

fi(xi) = E(Y | Xi) − f0 = E(Y | Xi) − E(Y ) (3.10)

for the first-order function terms. Using the conditional expectation values for Y with Xi and Xj fixed
defined by

E(Y | Xi, Xj) =
∫

· · ·
∫

Ωk

f(x)d{x\xi, xj} = f0 + fi(xi) + fj(xj) + fij(xi, xj), (3.11)

the second-order function terms

fij(xi, xj) = E(Y | Xi, Xj) − fi(xi) − fj(xj) − f0

= E(Y | Xi, Xj) − E(Y | Xi) − E(Y | Xj) − E(Y ) (3.12)

can be obtained similarly. Assuming independence of the input parameters, the calculation of the condi-
tional expectation values can be generalized to the Euclidean space

Rk = {x | −∞ ≤ xi ≤ ∞; i = 1, . . . , k} (3.13)

with

E(Y | Xi) =
∫

· · ·
∫

Rk

f(x)
k∏

m=1
m ̸=i

pm(Xm)d{x\xi} (3.14)

E(Y | Xi, Xj) =
∫

· · ·
∫

Rk

f(x)
k∏

m=1
m ̸=i,m̸=j

pm(Xm)d{x\xi, xj}, (3.15)

where pm(Xm) denotes the PDF of the m-th parameter. Likewise, this scheme can be continued up
to the k-th order term f12...k(x1, x2, . . . , xk). With the proposed uniqueness and independence of each
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functional term in (3.6), the variance of the model output is calculated by

V (Y ) =
∫

· · ·
∫

Rk

(f(x) − f0)2
k∏

m=1
pm(Xm)dx

=
k∑

i=1
Vi +

k∑
i=1

k∑
i<j

Vij + . . . + V12...k, (3.16)

where the variances are defined by

Vi = V (fi(xi)) =
∞∫

−∞

f2
i (xi)pi(Xi)dxi (3.17)

Vij = V (fij(xi, xj)) =
∞∫

−∞

∞∫
−∞

f2
ij(xi, xj)pi(Xi)pj(Xj)dxidxj (3.18)

...

V12...k = V (f12...k(x1, x2, . . . , xk)) =
∫

· · ·
∫

Rk

f2
12...k(x1, x2, . . . , xk)

k∏
m=1

pm(Xm)dx. (3.19)

Normalizing (3.16) by V (Y ) leads to

1 =
k∑

i=1

Vi

V
+

k∑
i=1

k∑
i<j

Vij

V
+ . . . + S12...k

V
=

k∑
i=1

Si +
k∑

i=1

k∑
i<j

Sij + . . . + S12...k, (3.20)

which represents a normalized decomposition of the sources of variance. Si denotes the first-order Sobol
indices and quantifies the influence of a single parameter Xi on the output of interest. Sij are called
second-order effects and indicate the interaction between two parameters Xi and Xj . This scheme can
be continued up to the effects of k-th order.

To describe the overall effect of one parameter Xi on the output, including all interactions and non-
linear effects, another useful measure exists. The total effect

STi = Si +
k∑

j=1
j ̸=i

Sij + . . . + S12...k (3.21)

sums up all sensitivity measures of one parameter Xi, including all high order interactions on the output
of interest and thus serves as a comprehensive measure for the overall influence of this parameter.

Using the variance decomposition presented in (3.16) and the relations in (3.10), (3.17), (3.12) and
(3.18), Vi and Vij can be calculated with

Vi = V (E(Y | Xi)) −�����V (E(Y ))︸ ︷︷ ︸
=0

(3.22)

Vij = V (E(Y | Xi)) − V (E(Y | Xi)) − V (E(Y | XJ)) −�����V (E(Y ))︸ ︷︷ ︸
=0

, (3.23)

where the higher-order terms of the HDMR can be determined similarly. However, as shown in Section
3.2.3, the integrals for calculating the statistical moments need to be estimated. Due to the computa-
tionally expensive task of this estimation, it is only suitable to consider the first order and total order
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effects. Therefore, only the first-order and total effects are further discussed in the following.

As derived above and shown in [8, 60], the first-order indices can be calculated by the relation of the
conditional expectation value VXi(EX∼i(Y | Xi)) and the overall variance V (Y ) described by

Si = VXi
(EX∼i

(Y | Xi))
V (Y ) . (3.24)

For better readability and emphasis of the calculation scheme of the conditional expectation values, an
extended syntax is used furthermore. X∼i denotes the vector of all parameters except Xi. The inner
expectation operator outlines the averaging over all possible values of X∼i while keeping Xi fixed and
the outer variance is taken over all Xi. As (3.24) outlines, Si is a normalized index as VXi

(EX∼i
(Y | Xi))

varies between zero and V (Y ).

The total effect is calculated using [60,99]

ST i = EX∼i
(VXi

(Y | X∼i))
V (Y ) = 1 − VX∼i

(EXi
(Y | X∼i))

V (Y ) . (3.25)

An obvious explanation is to consider that VX∼i
(EXi

(Y | X∼i)) is the first-order effect of X∼i. Con-
sequently, V (Y ) − VX∼i

(EXi
(Y | X∼i)) must contain all terms in the variance decomposition of (3.16),

which include Xi.

The indices can be interpreted as the expected reduction of variance. The numerator of the first-order
effects VXi

(EX∼i
(Y | Xi)) describes the partial reduction of variance in the output Y if Xi would be fixed

to some defined value. Furthermore, the numerator of the total effect EX∼i
(VXi

(Y | X∼i)) is the amount
of variance that would be left if all factors but Xi are fixed. The ordering of the sensitivity measures
quantifies their contribution to the overall variance. In other words, small sensitivity measures have only
a small influence on the variance of the output, whereas big measures have a significant influence on the
output. Moreover, the sensitivity measures have some general properties which are useful for analyzing
the structure of the model:

• Due to (3.20) the condition
∑k

i=1 Si ≤ 1 holds.

• Due to (3.21) the condition
∑k

i=1 STi ≥ 1 holds.

• If
∑k

i=1 Si = 1 the model is additive.

• If 1 −
∑k

i=1 Si ≫ 0 the model has nonlinear behavior or interacting parameters.

• If STi
≈ Si no interactions exists. This implies also additivity of the model.

• If STi
≈ 0 the parameter has no influence on the output.

3.2.2 Generalized Sobol Indices

The major drawback of the HDMR described in (3.6) is the neglection of state and time dependencies
regarding physical systems. These dependencies will expand the underlying model to

y(t) = f(x, x0, t, u(t)), (3.26)

where x0 denotes the initial system state. Furthermore, the system consists of a control vector u =
[u1, u2, . . . , uc] with c as the number of control inputs. The proposed extension by x0, t and u(t) leads
to state and time-dependent sensitivity indices. As already outlined in [13], the dependency of x0 and
u(t) can be ensured by covering all of the relevant operating points of the physical system. In this thesis,
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this is ensured by defining representative drive cycles concerning the use case of the vehicle as outlined
in Section 5.2. Thus, (3.26) simplifies to

y(t) = f(x, t). (3.27)

and can also be written as a second-order ANOVA-like decomposition

f(x, t) = fU (xU , t) + fU∼(xU∼ , t) + fU,U∼(x, t) (3.28)

with the complete index set X = {1, . . . , k}, the subset U = {i1, i2, . . . , is} ⊂ X and the complementary
subset U∼ = {j1, j2, . . . , js} = X \U . The corresponding parameter vectors are xU = [xi1 , xi2 , . . . , xis ]
and xU∼ = [xj1 , xj2 , . . . , xjs

]. The variance of this decomposition is defined by

V (f, t) = VU (f, t) + VU∼(f, t) + VU,U∼(f, t), (3.29)

where VU = Vi holds if the subset U contains only one element. In this case, (3.29) is equal to (3.16).
The subset containing only the i-th parameter will be denoted as Ui.

As outlined in (3.24) and (3.25), the Sobol indices are usually calculated as point-in-time indices. For
the scalar case with VUi

= Vi, the sensitivity indices can be expressed with

Si(f, t) = VUi
(f, t)

V (f, t) (3.30)

STi(f, t) = VUi
(f, t) + VUi,U∼(f, t)

V (f, t) (3.31)

for each t ∈ [0, T ]. There are several problems using only these point-in-time estimations [69]:

• Pointwise in time indices ignore all time correlations of the process.

• The variance of the process varies in time which skews the relative importance across time.

The first results of sensitivity analyses on functional or vector outputs have been produced in [66–
68]. However, a general framework for solving the above-mentioned issues for processes with temporal
dependencies was first introduced by [69]. The proposed generalized Sobol indices use covariance operators
to take the process evolution over time into account. Also, the second issue regarding the skewing is solved
by this approach. The generalized indices are defined by

SG
i (f, T ) =

∫ T

0 VUi(f, t)dt∫ T

0 V (f, t)dt
(3.32)

SG
Ti

(f, T ) =
∫ T

0 (VUi(f, t) + VUi,U∼(f, t))dt∫ T

0 V (f, t)dt
, (3.33)

which can be simply computed with the approximation

SG
i (f, T ) ≈

∑N
m=1 wmVUi

(f, tm)∑N
m=1 wmV (f, tm)

(3.34)

SG
Ti

(f, T ) ≈
∑N

m=1 wm(VUi(f, tm) + VUi,U∼(f, tm))∑N
m=1 wmV (f, tm)

(3.35)

in a numerical setup with weights {wm}N
m=1 for each node {tm}N

m=1. The special case of equal weights
and uniform time steps is suggested in [100] for time-dependent processes and is used throughout this
thesis. It is worth mentioning that VUi

(f, t) is equal to VXi
(EX∼i

(Y | Xi)) for a specific time step t in
the process. Similarly, VUi(f, t) + VUi,U∼(f, t) is equal to EX∼i(VXi(Y | X∼i)) for a specific time step.
Thus, the integrals of (3.32) and (3.33) can be easily solved by using the results of the numerators of the
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first order (3.24) and the total order (3.25) effect for each discrete time step tm. The same applies for
the denominator using the overall variance V (Y ) for a specific time step.

3.2.3 Estimation of the Sensitivity Indices

As the conditional expectation values in (3.24) and (3.25) cannot be directly calculated in an MC sim-
ulation, they must be numerically estimated. It was already outlined in Section 3.2.1 that estimating
the integrals is a computationally expensive task. However, especially for the first-order and the total-
order effects, there exist several estimation strategies that are capable of estimating both effects in one
simulation setup [60]. As a consequence, only the first-order and total-order effects are considered in the
estimation to keep the computation time within acceptable limits.

In the following an overview is given how the sample data for the MC is generated and how the samples
are used to calculate the estimates of the conditional expectation values V̂Xi(EX∼i(Y | Xi)) for the first
order and ÊX∼i(VXi(Y | X∼i)) for the total order effects.

The starting points are two independent and uniform sampling matrices in the unit hypercube

A =


a11 a12 · · · a1k

a21
. . . ...

... . . . ...
aN1 · · · · · · aNk

 with ajg ∈ RN×k (3.36)

B =


b11 b12 · · · b1k

b21
. . . ...

... . . . ...
bN1 · · · · · · bNk

 with bjg ∈ RN×k (3.37)

as proposed in [60], where the index g ∈ {1, 2, ..., k} denotes the parameter of interest and the index
j ∈ {1, 2, ..., N} denotes the number of simulations. The distribution of each parameter can be trans-
formed from the uniform distribution in the unit hypercube to any other probability distribution using
its ICDF.

Furthermore, a third dataset

A(i)
B =


a11 · · · b1i · · · a1k

a21 b2i

...
...

...
...

aN1 · · · bNi · · · aNk

 (3.38)

is obtained from matrix A where the i-th column is replaced by the i-th column from matrix B. Also,
the possibility exists to build the third dataset with

B(i)
A =


b11 · · · a1i · · · b1k

b21 a2i

...
...

...
...

bN1 · · · aNi · · · bNk

 (3.39)
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by replacing the i-th column of matrix B with the i-th column of matrix A. However, [60] has shown
that the points of A and hence of A(i)

B are better distributed than the points of B and B(i)
A when using

quasi-random sequences. Thus, only the matrix triplets A, B and A(i)
B are considered throughout the

thesis. Since the matrices A and A(i)
B have the coordinates X∼i in common, the change from A to A(i)

B
can be seen as a step in the Xi direction. The same explanation can be given by moving from B to A(i)

B
as a step along the X∼i direction. Thus, the information provided by these data triplets consist of all
the needed information to estimate the first order and total order sensitivity indices.

The estimation itself, especially for computational improvements, is still a current research subject
and multiple estimators for the first-order and total-order sensitivity indices exist. As the estimators
mainly differ in their convergence behavior based on the used MC sample size and thus in the needed
computation time, a set of different estimators is used and compared throughout the thesis. They are
outlined in Table 3.1 for the estimates of the conditional expectation values V̂Xi

(EX∼i
(Y | Xi)) and

ÊX∼i
(VXi

(Y | X∼i)). The denominators of (3.24) and (3.25) are estimated using the sample vari-

Table 3.1: First order and total order estimators

V̂Xi
(EX∼i

(Y | Xi)) Author

1
N

∑N
j=1 f(A)jf(B(i)

A )j − f 2
0 Sobol [8]

V (Y ) − 1
2N

∑N
j=1

(
f(B)j − f(A(i)

B )j

)2
Jansen [101]

1
N

∑N
j=1 f(B)j

(
f(A(i)

B )j − f(A)j

)
Saltelli et. al. [60]

ÊX∼i
(VXi

(Y | X∼i))

1
2N

∑N
j=1

(
f(A)j − f(A(i)

B )j

)2
Jansen [101]

1
N

∑N
j=1 f(A)j

(
f(A)j − f(A(i)

B )j

)
Sobol [102]

ance [94]

V̂ (Y ) = 1
N − 1

N∑
i=1

(Y − Y )2. (3.40)

Since the estimators outlined in Table 3.1 use the matrices A, B and A(i)
B as inputs, it can be seen

from (3.36), (3.37) and (3.38) that the needed simulation runs for the proposed MC setup are Ns =
N(k + 2).

Using the above outlined estimators, the Sobol indices can be calculated by

Ŝi(t) = V̂Xi
(EX∼i

(Y (t) | Xi))
V̂ (Y (t))

(3.41)

ŜTi(t) = ÊX∼i(VXi(Y (t) | X∼i))
V̂ (Y (t))

(3.42)
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for a specific point in time t. Similarly, the estimates of the generalized Sobol indices are defined by

ŜG
i (T ) =

∫ T

0 V̂Xi
(EX∼i

(Y (t) | Xi))dt∫ T

0 V̂ (t)dt
(3.43)

ŜG
Ti

(T ) =
∫ T

0 ÊX∼i
(VXi

(Y (t) | X∼i))dt∫ T

0 V̂ (t)dt
. (3.44)

The sampling strategy of the matrices A, B and A(i)
B highly affects the convergence behavior of the

proposed and used estimators. Furthermore, it is essential to ensure the convergence and the confidence
of the proposed estimators. Thus, the sampling strategy and how to ensure convergence will be discussed
in the following sections.

3.2.4 Sampling Strategies

In general, the problem in an MC simulation is the approximation of the integral of a function with∫
Ωk

f(x)dx ≈ 1
N

N∑
i=1

f(xi) (3.45)

as the average of the function evaluated at a set of points xi. The choice of these randomly selected
points has a significant impact on the convergence of (3.45). Thus, the question needs to be answered
how the sampling matrices A and B need to be drawn to provide a fast convergence of the corresponding
estimators. The process of generating input sequences for MC simulations has been intensively studied.
Since samples cannot be generated randomly in computer experiments several methods exist that ap-
proximate the statistical randomness using deterministic and repeatable processes. This class of random
number generators is called pseudorandom generators. Popular pseudorandom number generators are
the Mersenne-Twister [103], the Advanced Randomization System [104] and the SplitMix [105] generator,
to mention just a few. However, the distribution of the points in a pseudorandom generator, especially
for small N , is not optimal for a good convergence. As it can be seen from Figure 3.4, in a pseudoran-
dom setup exists clusters and gaps in the input parameter space. Thus, the clustered areas are usually
overestimated and the gaps are underestimated in the corresponding statistical analysis. Due to these
inhomogeneities, the convergence rate of the estimates calculated with pseudorandom sequences is only

1√
N

[94].

A good measure of the lumpiness of a drawn sequence is the star discrepancy defined for a given set
P = {x1, . . . , xN } as [106]

D∗
N (P) = sup

x∈Ωk

∣∣∣∣A([0, x), N, P)
N

− λk([0, x))
∣∣∣∣ . (3.46)

Here, A([0, x), N, P) denotes the number of sample points covered by a k-dimensional hypervolume rang-
ing from the origin to x and λk outlines the k-dimensional Lebesque measure. Thus, the star discrepancy
can be seen as a maximum deviation between the assumed points of an equally distributed set and the
drawn samples using a random number generator.

It can be outlined that if the discrepancy could be minimized, the convergence rate of the estimates
for a random number sequence tends towards 1

N [107]. Thus, several low-discrepancy sequences have
been developed and presented in the literature, like the sequences of Faure [61], Niederreiter [62], Hal-
ton [63] and Sobol [64, 65]. A good review of low-discrepancy sequences can be found in [108]. They all
have in common that, in contrast to the pseudorandom numbers, they are generated deterministically
but with respect to the condition of equal distribution across the input parameter space. A comparison
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Figure 3.4: Comparison of pseudorandom (Mersenne-Twister) and low-discrepancy (Sobol) sam-
pling of sample size N = [100, 300, 1000] and their corresponding discrepancies D∗

N

of the used Sobol sequences and the Mersenne-Twister-Algorithm, including the corresponding discrep-
ancy values, is outlined in Figure 3.4. It is obvious that the Sobol sequences cover the state space more
equal without gaps or clusters than the pseudorandom sequences. Furthermore, it is shown in [109] that
Sobol sequences [64, 65] outperform crude MC sampling. Thus, the sample data used throughout this
thesis is generated using Sobol sequences. The MC simulations which are performed with low-discrepancy
sequences are then called quasi-MC simulations.

3.2.5 Ensuring Convergence of the Estimators

It was already outlined in the previous sections that the sensitivity indices need to be estimated. However,
no rule of thumb exists on how big the MC simulation sample size must be to ensure a satisfactory
convergence of the proposed estimators. Since the real values of the sensitivity indices are not available
during a complex MC simulation, a reliable convergence indicator based on the sampled simulation data
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is needed. Otherwise, it could not be proved that the sensitivity analysis results are correct and by which
amount the estimation errors compromise the results. Thus, in the following, two independent methods
are presented to ensure convergence and to analyze the remaining error of the estimators. Both methods
are based on the fact that the estimators, as outlined in Section 3.2.3, are consistent, which means that

lim
N→∞

Ŝi(t) = Si(t) (3.47)

lim
N→∞

ŜTi
(t) = STi

(t) (3.48)

hold for the Sobol indices and

lim
N→∞

ŜG
i (T ) = SG

i (T ) (3.49)

lim
N→∞

ŜG
Ti

(T ) = SG
Ti

(T ) (3.50)

hold for the generalized Sobol indices. The Sobol indices are computed as point in time indices for a
specific point t. In contrast, the generalized Sobol indices include all the former points of the time interval
[0, T ] in one scalar sensitivity measure. Thus, the proposed convergence algorithms need to be considered
separately for the Sobol indices and the generalized Sobol indices.

The former method is based on the law of big numbers to calculate a scalar convergence measure, whereas
the second method uses bootstrap resampling to calculate the confidence intervals of the sensitivity in-
dices.

Law of Big Numbers

As already outlined in (3.47) to (3.50), the estimated values tend towards their real values for large sample
sizes N . However, for the classical Sobol indices, there still exists a time dependency in the measurements.
As the proposed convergence measure should provide a scalar indicator, the time dependency of this point
in time indices needs to be removed. This is done by computing the mean over the interesting time interval
[t1, tn] with

Ŝi = 1
n

n∑
m=1

Ŝi(tm) (3.51)

ŜTi
= 1

n

n∑
m=1

ŜTi
(tm). (3.52)

Accordingly, (3.51) and (3.52) represent a scalar measure for each computed sensitivity index.

In contrast, the generalized Sobol indices from (3.43) and (3.44) already take the time dependency
into account and thus the scalar measures for a specific point in time T are defined by

ŜG
i = ŜG

i (T ) (3.53)

ŜG
Ti

= ŜG
Ti

(T ). (3.54)

The corresponding convergence errors can now be computed using the consistency property of the es-
timators. Thus, the proposed measures Ŝi, ŜTi

, ŜG
i and ŜG

Ti
are estimated for different sample sizes

N1 < N2 < ... < Nm = N . The error measures are then obtained from

ε
Ŝi,j

= max
l

∣∣∣Ŝi,j − Ŝi,l

∣∣∣ (3.55)
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ε
ŜTi,j

= max
l

∣∣∣ŜTi,j
− ŜTi,l

∣∣∣ (3.56)

ε
ŜG

i,j

= max
l

∣∣∣ŜG
i,j − ŜG

i,l

∣∣∣ (3.57)

ε
ŜG

Ti,j

= max
l

∣∣∣ŜG
Ti,j

− ŜG
Ti,l

∣∣∣ (3.58)

with j ∈ {1, 2, ..., m} and l ∈ {j −5, j −4, ..., j, j +1, ..., m}. It means that for every sensitivity index Ŝi,j ,
ŜTi,j

, ŜG
i,j and ŜG

Ti,j
with the corresponding sample size Nj , the maximum deviation to the five smaller

and all larger sample sizes is calculated. For a better understanding, Figure 3.5 underlines the relations
between the sample sizes and the different indices. Finally, to get a single scalar measure for each class

N1 N2 N3 N4 N5 N6 N7 N8 Nm = N
0.34

0.36

0.38

0.4
Ŝi,l, ŜTi,l

with l ∈ {j − 5, j − 4, ..., j, j + 1, ..., m}

j

j
−

5

j
−

4

j
−

3

j
−

2

j
−

1

j
+

1

j
+

2

m

Ŝi,j , ŜTi,j

Ŝ
i,

Ŝ
T

i

Figure 3.5: Exemplary estimation result for Ŝi,j , ŜTi,j with different sample sizes [N1, Nm] for
parameter i. The process is the same for ŜG

i,j and ŜG
Ti,j

.

of sensitivity indices, the mean over all parameters

εŜj
= 1

k

k∑
i=1

ε
Ŝi,j

(3.59)

εŜTj
= 1

k

k∑
i=1

ε
ŜTi,j

(3.60)

εŜG
j

= 1
k

k∑
i=1

ε
ŜG

i,j

(3.61)

(3.62)

εŜG
Tj

= 1
k

k∑
i=1

ε
ŜG

Ti,j

(3.63)

is computed with k as the number of parameters.

Because of (3.47) to (3.50), it is evident that the proposed measures Ŝi,j , ŜTi,j , ŜG
i,j and ŜG

Ti,j
tend

to zero for increasing sample sizes. Accordingly, the convergence of the estimators is ensured if

εŜj
≤ εmax, εŜTj

≤ εmax (3.64)
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and

εŜG
j

≤ εmax, εŜG
Tj

≤ εmax (3.65)

holds, where εmax is a specific error bound. If no sample exists where the error measures undercut the
defined error bound, the used sample size was chosen too small and needs to be enlarged. If the measures
are below the given error bound, the sample size is suitable for the objective of the sensitivity analysis.

Bootstrap Resampling

Bootstrap resampling, first introduced by [110], is a well-known technique to compute confidence intervals
for point estimations. A good overview of actual bootstrap methods is given in [111] and [112]. Further-
more, several approaches exist in the literature to compute bootstrap resamples, especially for sensitivity
analysis [111, 113]. Throughout this thesis, bootstrap resampling is used to calculate the confidence in-
tervals for the estimated sensitivity indices Ŝi(t), ŜTi

(t), ŜG
i (t) and ŜG

Ti
(t) and is outlined in the following.

In bootstrap resampling, the simulation results of sample size N are assumed to be the basic popu-
lation. From this basic population, a random sample of size Nb ≤ N is drawn randomly with repetition.
This resampling is repeated B times. For each bootstrap sample, the sensitivity measures Ŝb

i (t), Ŝb
Ti

(t),
ŜG,b

i (t) and ŜG,b
Ti

(t) are calculated. Using the estimated mean and standard deviation of these bootstrap
samples

µŜb
i
(t) = 1

B

B∑
b=1

Ŝb
i (t) (3.66)

σ̂Sb
i
(t) =

√√√√ 1
B − 1

B∑
b=1

(Ŝb
i (t) − µŜb

i
(t))2, (3.67)

the confidence intervals can be calculated. Consequently, the estimated mean and standard deviation of
Ŝb

Ti
(t), ŜG,b

i (t) and ŜG,b
Ti

(t) are calculated analogously to (3.66) and (3.67). In [113], it is proved that the
estimated mean and standard deviation using bootstrap resampling is asymptotically normal distributed
and consistent, which can be formalized by

lim
B→∞

µŜb
i
(t) = E(Ŝb

i (t)) = Sb
i (t) (3.68)

lim
B→∞

σ̂Sb
i
(t) =

√
E((Ŝb

i (t))2) − E(Ŝb
i (t))2 = σSb

i
(t). (3.69)

Definitions (3.68) and (3.69) are also valid when calculating the bootstrap samples for Ŝb
Ti

, ŜG,b
i and ŜG,b

Ti
.

The properties (3.68) and (3.69) enable the derivation of reliable confidence intervals if the number of
bootstrap samples B is large enough.

3.3 Conclusions
In this chapter, the theoretical foundation of sensitivity analysis is presented. As an introduction, state-
of-the-art sensitivity methods are presented, and their advantages and disadvantages are discussed. The
decision for the Morris screening as a qualitative and for the Sobol indices as a quantitative method is
justified. The theory of Morris Screening and the corresponding sampling scheme, as well as the sensitivity
measures based on the elementary effects, are outlined. Furthermore, the process of a variance-based
sensitivity analysis as an extension to an uncertainty analysis is outlined. The derivation of the Sobol
indices based on the HDMR is summarized, and the interpretation of the first order and total order indices
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is discussed. Besides the Sobol indices, the generalized Sobol indices are presented and discussed to deal
with the time dependency of physical processes. In addition, the estimation process of the sensitivity
indices using different estimators is depicted. This includes comparing different sampling strategies and
their impacts on the convergence of the estimators and the assurance of convergence using the law of big
numbers and bootstrap resampling.





4 Model Predictive Control
In the following chapter, the concept of MPC is explained in more detail. The evaluation of known control
methods, such as PID or state space controllers, refers to individual characteristics of the control loop
such as overshoot, settling time, poles, bandwidth or resonance overshoot. In many practical applications,
the controller performance cannot be described in such characteristics, or other quantities are of interest.
This drawback is addressed in MPC by using an optimization criterion

min
u

J(x, u) (4.1)

as the optimization target of the control problem considering the system states x and the control inputs u.

Furthermore, MPCs are capable of predicting the states of the controlled system and thus are capa-
ble of reacting more distinctly to upcoming changes or measured disturbances. Another major advantage
of this method is that state and manipulated variable constraints can be considered directly in the op-
timization problem and the controller is able to operate close to these constraints. Therefore, using an
MPC approach for solving the complex task of energy-efficient longitudinal control of a BEV is a promis-
ing approach. The large number of publications, as summarized in Chapter 2, reinforces the suitability
of MPC-based methods for energy-efficient longitudinal control.

In this chapter, a general introduction to MPC is given. The concept of receding horizon strategy to
transfer the OCP to an MPC is presented. Furthermore, different types of MPC are discussed including
LMPC, NMPC and ENMPC.

4.1 Optimal Control

MPC is based on designing and solving an OCP. Optimality in this context always refers to an existing
cost function that is optimized. The predictive behavior of the OCP is achieved by using a dynamic
model of the plant behavior in the form

ẋ = dx
dt

= f(x, u) (4.2)

with x ∈ Rn states and u ∈ Rm inputs.

The optimization objective is described by the cost function of the OCP and can be expressed for con-
tinuous time by

J(x, u) =
tend∫
0

Jc(x(τ), u(τ), τ)︸ ︷︷ ︸
Lagrange term

dτ + Jf (x(tend), tend)︸ ︷︷ ︸
Mayer term

. (4.3)

It consists of the integral Lagrange part defined by the cost function term Jc(·) and the Mayer term Jf (·)
at the end of the prediction horizon tend. The Lagrange term is used to describe control objectives that
should be achieved during the prediction before the end of the prediction horizon is reached. In contrast,
the Mayer term expresses the control objective at the end of the prediction horizon.

37
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Compared to the conventional Linear Quadratic Regulator (LQR), the OCP further considers constraints
on inputs and states using equality and inequality constraints expressed by

gj(x(t), u(t)) = 0 ∀j ∈ {1, 2, . . . , ng} (4.4)
hj(x(t), u(t)) ≤ 0 ∀j ∈ {1, 2, . . . , nh} (4.5)

with ng equality and nh inequality constraints.

The complete OCP, including the above-presented properties, is described by

J∗(x0)= min
u

J(x0, u) (4.6a)

s.t. ẋ = f(x, u) (4.6b)
x(0) = x0 (4.6c)
gj(x(t), u(t)) = 0 ∀j ∈ {1, 2, . . . , ng}, t ∈ [0, tend] (4.6d)
hj(x(t), u(t)) ≤ 0 ∀j ∈ {1, 2, . . . , nh}, t ∈ [0, tend] (4.6e)

with J∗(x0) as the optimal solution cost. The optimal input trajectory for the prediction horizon of the
OCP is then obtained by

u∗(t) = arg min
u

J(x0, u) t ∈ [0, tend). (4.7)

The strategy or algorithm for solving the OCP of (4.6) depends on the type of the optimization problem,
whether it is linear or nonlinear or if it contains constraints. However, generally, the methods to solve an
OCP can be assigned to three categories:

• Dynamic programming is one commonly used solving strategy of OCPs. It breaks the problem
into smaller sub-problems based on Bellman’s principle of optimality [47]. This can be done
analytically via the derivation of a particular equation whose solution yields the optimal value
(see Hamilton-Jacobi-Bellman or Riccati equations for e.g. linear-quadratic problems), or also
numerically.

• Indirect methods mostly use variants of Pontryagin’s maximum principle [114]. Here, an ab-
stract optimality criterion provides the sufficient conditions of the maximum principle in the form
of a boundary value problem, which is solved analytically or numerically utilizing a subsequent
discretization.

• Direct methods first discretize the problem and thereby transform the optimal control problem
into a static optimization problem. This problem is then solved with suitable numerical methods,
e.g. SQP methods [115]. The advantage of direct discretization is that no prior knowledge of the
solution structure and no estimates regarding critical points are necessary.

In the rest of the thesis, direct methods are used to solve the presented optimization problems. There-
fore, the optimization problem (4.6) must be discretized. Commonly used discretization schemes for the
prediction model are the methods of Euler [116], Heun [117] or Runge-Kutta [118].

Furthermore, the resulting discrete OCP needs to be transformed to an Nonlinear Program (NLP) in the
form

min
w

Φ(w) (4.8a)

s.t. g1(w) ≤ 0 (4.8b)
g2(w) = 0 (4.8c)
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by collocation, single shooting or multiple shooting methods [119,120] so that it can be solved using fast
optimization solver, e.g., SQP.

4.2 Receding Horizon Control Strategy

The OCP calculates the optimal control sequence u∗(tk) for a given start time tk and a given prediction
model. However, in practice, the prediction model underlies uncertainties or simplifications are made to
reduce the complexity. Thus, the prediction model is not able to predict the behavior of a real plant
exactly. Furthermore, external disturbances can occur that influence the plant. Consequently, the optimal
control sequence u∗(tk) computed at time tk would not result in an equal plant behavior compared to
the prediction model. To convert the OCP into a closed-loop MPC scheme, the receding horizon strategy
is introduced. An overview of this scheme is outlined in Figure 4.1. The optimal control problem is not

Figure 4.1: Receding horizon principle

solved ones but repetitively with a sampling rate of ∆t. At every time step, the initial state x0 of the
OCP is measured and the OCP is solved. Afterward, the first component of the optimal solution vector
is fed to the plant as control action. In the next time step tk+1, the optimization problem is solved again
with the new measured initial state and the control action is updated again with this new solution.

4.3 Different Types of Model Predictive Control

In the following, the most common types of MPCs are introduced and the differences are outlined. Since
the implementation of an MPC must be discrete, the discrete formulations are presented below.
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4.3.1 Convex Model Predictive Control

A common MPC formulation is a linear or convex MPC that uses Quadratic Programming (QP)-based
OCP to solve the optimization problem. The convexity of this approach is characterized by a quadratic
cost function, a linear model and a polyhedral constraint set. The main motivation for this linear
approximation is the ease of solving the OCP and low computation times, which supports real-time
capability. A typical convex MPC can be defined by

min
u

N−1∑
k=0

[u′
kRuk + x′

kQxk] + x′
N QN xN (4.9a)

s.t. xk+1 = Axk + Buk, ∀k ∈ {0, 1, . . . , N − 1} (4.9b)
xk ∈ X ∀k ∈ {0, 1, . . . , N − 1} (4.9c)
uk ∈ U ∀k ∈ {0, 1, . . . , N − 1} (4.9d)
xN ∈ Xf (4.9e)
x(0) = x0 (4.9f)
Q ⪰ 0, QN ⪰ 0, R ≻ 0 (4.9g)

for a given prediction horizon length N . To ensure convexity of the optimization problem, the weighting
matrices Q and QN must be positive semidefinite and R is positive definite. Furthermore, the sets X
and Xf are invariant compact sets and the set U denotes the feasible input sequences.

4.3.2 Nonlinear Model Predictive Control

For processes with nonlinear behavior or where the linear approximation causes too large prediction er-
rors, the class of NMPC is commonly used in literature. Besides the possibility of including nonlinear
prediction models, the constraints and the cost function are also able to consider nonlinearities [121]. Due
to the steadily increasing computational capabilities of modern computers, as well as the development of
efficient and fast algorithms for solving NMPC, the practical applicability of these systems even for fast
system dynamics and the calculation on embedded systems has increased significantly.

A general NMPC formulation can be outlined by

min
u

N−1∑
k=0

Jc(xk, uk) + Jf (xN ) (4.10a)

s.t. xk+1 = f(xk, uk) ∀k ∈ {0, 1, . . . , N − 1} (4.10b)
gj(xk, uk) = 0 ∀j ∈ {1, 2, . . . , ng}, ∀k ∈ {0, 1, . . . , N − 1} (4.10c)
hj(xk, uk) ≤ 0 ∀j ∈ {1, 2, . . . , nh}, ∀k ∈ {0, 1, . . . , N − 1} (4.10d)
x(0) = x0 (4.10e)

for a given prediction horizon length N . In contrast to the LMPC, the cost function terms Jc(·) and Jf (·),
the system model f(xk, uk), as well as the constraints gj(·) and hj(·) could contain nonlinear descriptions.
This leads to a controller formulation that is highly flexible for solving more complex control problems.

4.3.3 Economic Model Predictive Control

The concept of ENMPC has gained significant attention in the last years. LMPC and NMPC approaches
usually use quadratic cost function for tracking a reference or reaching a predefined setpoint. However,
tracking a predefined reference trajectory as close as possible is often not the solution that requires the
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fewest resources. Thus, the idea of describing an economic objective, such as the energy consumption of
the vehicle, directly in an MPC gets attractive [122].

The main difference between the above presented NMPC and the ENMPC is that the ENMPC uses
a terminal stage cost describing the economics of the process that must not be quadratic or achieve some
reference tracking [123]. Moreover, the terminal cost of the cost function represents a direct or indirect
reflection of the economics of the optimized process. Thus, the ENMPC is not operating the plant at
some predefined steady state but rather optimizing the economics by choosing the optimal system state.
In practice, the economic terminal cost is often combined with a reference tracking MPC. For instance,
this combination can be formulated to a cost function of the form

Jc(xk, uk) = u′
kRuk + x′

kQxk (4.11)
Jf (xN ) = le(xN ) (4.12)

where le(·) describes the economic cost component objective [124] and J(·) outlines the trajectory error.
This economic cost function substitutes the NMPC cost function of (4.10).

4.4 Conclusions
MPC is a promising approach for developing predictive, energy-efficient longitudinal controllers for BEV.
In this chapter, the concept of MPC based on the solution of an OCP has been presented. Furthermore,
the receding horizon control strategy has been introduced to transfer the OCP to an MPC to obtain a
closed-loop control. Furthermore, the most commonly used and real-time capable MPCs for longitudinal
control are discussed. These concepts include the LMPC, which is described by a convex optimization
problem leading to a good solvability but with the drawback of approximations in the prediction model.
Instead, NMPC approaches include nonlinearities in the controller design and are capable of predicting
and reacting more precisely to nonlinear plants. At least the concept of ENMPC has been presented where
the stage cost of the LMPC or NMPC controller consists of an economic penalization of the process in
contrast to a standard reference tracking.





5 Detailed Modeling of the BEV and
the Environment

Appropriate models of the vehicle and its powertrain components are required as a basis for sensitivity
analysis and controller development. For the sensitivity analysis, accurate models are needed that rep-
resent the variables of interest as precisely as possible. Uncertainty in the models could otherwise lead
to falsified sensitivity analysis results. Thus, special attention must be paid to the simulation models
in terms of accuracy and appropriate parameterization and validation. Since the presented sensitivity
analysis methods require a large number of model runs, another focus of the modeling is on optimizing
the computation time.

The presented models represent the detailed physical description of the vehicle and enable realistic sim-
ulations of longitudinal dynamic behavior and fuel consumption. Furthermore, they serve as a basis for
the development of the MPC. However, in practice, the models used in the MPC must be kept as simple
as possible to achieve real-time capability of the proposed algorithms.

In this work, the early-stage prototype of the proTRon Evolution battery-electric research vehicle of
the University of Applied Sciences Trier serves as the basis for the models and their evaluation. A sketch
of the vehicle is outlined in Figure 5.1. The project focuses on sustainable mobility, considering the com-

Figure 5.1: Sketch of the proTRon Evolution research vehicle

plete product life cycle. Due to this fact, the vehicle body is primarily made of natural fiber-reinforced
plastics to reduce emissions in the manufacturing process. To keep the energy consumption in driving
operations as low as possible, a target weight of 550 kg is planned while, at the same time, complying
with the crash safety requirements relevant for approval. Furthermore, all mechanical driving resistances
are forced to be as small as possible. This is achieved using tires with low rolling resistance properties
with dimensions 115/80R15 to reduce the rolling resistance coefficient. Additionally, the aerodynamic

43
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drag coefficient and the vehicle’s frontal area are minimized during the development process using Com-
putational Fluid Dynamics (CFD) simulations, resulting in low aerodynamic resistance. The powertrain
of the vehicle includes a single-wheel drive on each wheel of the rear axle with EMRAX 188 Permanent
Magnet Synchronous Machines (PMSMs). They are powered by a series of 76 40 Ah Winston WB-
LYP40AHA lithium iron phosphate accumulators with a nominal voltage of 251 V. A novel transmission
concept is used in the vehicle, consisting of a belt drive and a planetary gear with optimized losses within
a small installation space close to the wheel. The main specification of the vehicle is outlined in Table 5.1.

The powertrain architecture and the used simulation setup are outlined in Figure 5.2 and represent

Table 5.1: Main specification of the proTRon Evolution test vehicle
Description Value

Maximum continuous power 30 kW
Maximum motor torque 60 Nm
Maximum driving speed 100 km/h
Planned minimum cruising range 100 km
Battery capacity 10 kWh / 40 Ah
Battery technology LiFeYPO4

Kerb weight 550 kg
Admissible total weight 970 kg
Transmission ratio 5.85
Tire dimensions 115/80R15

BEV model

Battery

Drive Gearbox

Vehicle

Inverter Drive Gearbox

Economic NMPC

Input parameters for
sensitivity analysis

Inverter

Environmental model

Analyzed model outputs
Left rear drive

Right rear drive

Figure 5.2: Simulation setup of the proTRon Evolution

the basis for the simulative analyses in this thesis. The model consists of the BEV model, including
detailed powertrain component models of the battery, inverter, drive and gearbox. Furthermore, an en-
vironmental model is included to represent the changeable environment of the vehicle while driving and
interaction points for the sensitivity analysis are provided. The modeling of the vehicle, as well as its
components and the environmental model, are described in this chapter.
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5.1 Modeling and Parameter Determination of the
Electric Vehicle

As depicted in Figure 5.2, the BEV model consists of a longitudinal motion model and a detailed power-
train model. The powertrain is divided into the battery and two drive units for driving each rear wheel
separately. An inverter, a PMSM and a gearbox constitute one drive unit. A detailed explanation of the
different model parts is outlined in this section.

5.1.1 Longitudinal Motion and Gearbox Model

The longitudinal motion model considers the mechanical forces acting on the vehicle’s center of gravity and
a gearbox model transferring the electric drives’ mechanical energy to the wheels. The force equilibrium
acting on the vehicle, as outlined in Figure 5.3, is described by

 

Figure 5.3: Driving resistances

FL + FR = Fa + Fr + Fs + Fair, (5.1)

where FL and FR are the forces of the left and right rear driving wheel and are powered via the two
drive units. The driving resistance forces are composed of the acceleration resistance force Fa, the rolling
resistance force Fr, the slope resistance force Fs and the air resistance force Fair.

The acceleration resistance force is caused by Newton’s second law. It is expressed with

Fa = meq · aego, (5.2)

where meq denotes the equivalent mass, including the inertia of the rotating parts of the powertrain,
which belong to their kinetic energy and aego describes the acceleration of the vehicle.

The dynamic deformation of the tire causes the rolling resistance force and usually depends on numerous
variables. The most important are the vehicle speed vego, the tire pressure pT , the tire temperature ϑT

and the road surface conditions [125]. According to this, the rolling resistance force is described by

Fr = cr(vego, pT , ϑT ) · mv · g · cos(α) with vego > 0, (5.3)

where cr is the rolling resistance coefficient, g the gravitational acceleration and α the slope angle of the
road. The dependency of cr on the vehicle speed, the tire pressure and the tire temperature is outlined in
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Figure 5.4: Dependencies of the rolling resistance coefficient for vego, pT and ϑT [125]

Figure 5.4. Nevertheless, based on the assumption that the tire pressure is set correctly and vego < 30 m/s
(5.3) can be simplified, which leads to

Fr = cr · mv · g · cos(α) with vego > 0. (5.4)

Similarly, the resistance force caused by the road slope

Fs = mv · g · sin(α) (5.5)

describes the additional force when driving up or downhill.

Furthermore, moving through the surrounding air will cause an aerodynamic resistance force due to
the friction of the air on the vehicle’s surface. Moreover, the pressure difference between the front and
the rear of the vehicle contributes to the aerodynamic resistance force. Also, turbulences caused by
the wheel housing, the exterior mirrors, window housings, antennas and other attachments influence the
aerodynamic resistance. In general, the aerodynamic behavior of a vehicle is complex and is computed
using numerical methods like CFD. However, the approximation of the aerodynamic resistance force by

Fair = 1
2cw · Av · ρair · v2

ego (5.6)

is well known in practice and produces valuable results. In (5.6), cw denotes the aerodynamic drag coef-
ficient, which is usually identified using CFD simulations or experimental wind tunnel experiments. The
flowed surface of the vehicle can be simplified as the projection onto an equivalent rectangular surface
with the frontal area Av, and the density of the surrounding air is represented by ρair.

Substituting (5.2), (5.4), (5.5) and (5.6) into (5.1) leads to

FL + FR = meq · aego + cr · mv · g · cos(α) + mv · g · sin(α) + 1
2cw · Av · ρair · v2

ego. (5.7)

The traveled distance of the vehicle sego is obtained by

sego(t) =
t∫

0

vego(τ)dτ (5.8)
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for a given driving time t.

The conversion from the longitudinal motion model and the associated forces to the rotational model of
the drivetrain is achieved by the law of levers. The resulting transformation of the longitudinal driving
forces FL and FR to the corresponding drive shaft torques ML and MR of the wheels is given by

ML = FL · rw (5.9)

for the left rear wheel and

MR = FR · rw (5.10)

for the right rear wheel, where rw describes the radius of the corresponding wheels. Assuming that the
same torque is applied on the left and the right wheels, the needed driving force in (5.1) can be described
by

FL + FR = ML + MR

rw
= 2MD

rw
with ML = MR. (5.11)

The gearbox of one drive unit consists of a belt drive and a planetary gear and is outlined in Figure 5.5.
It is modeled using a constant gear ratio ig and a working point-dependent efficiency map ηgb(ωm, Mem).

Figure 5.5: Drive unit of the proTRon Evolution

This leads to

MD = Mem · ig · ηgb(ωm, Mem), (5.12)

describing the transition from the mechanical torque of the electric drives Mem to the torques MD applied
to the wheels. The efficiency map was measured on the Drive Testbench 2 (DTB2) for a corresponding
drive unit prototype and is outlined in Figure 5.6. For further details regarding the test bench, see
Appendix A.2.2.
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Figure 5.6: Measured efficiency of the gearbox of one drive unit consisting of belt drive and
planetary gear.

5.1.2 Battery Model

To better understand how a modern Li-ion accumulator works and how the proposed battery model fits
the processes that take place inside a cell, the functional scheme is introduced in advance. In Figure 5.7,
the basic functional scheme of one Li-ion cell for the discharge process is given.

Figure 5.7: Functional scheme of a Lithium ion battery cell during discharging [126].

The cell consists of two different electrodes, which represent a galvanic cell. Since the location of the
oxidation and reduction process depends on the direction of electron flow or, in other words, if the cell
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is charged or discharged, it is common to define the electrode names for the discharging process. Thus,
the negative electrode is defined as the anode and the positive electrode as the cathode. In modern cells,
the anode usually consists of a copper foil and a carbon layer on this foil where natural or synthetic
graphite is used as it undergoes only a small change of volume during charging and discharging. The
positive electrode is typically made out of aluminum and a metal oxide layer applied to it. Commonly
used oxides are LiCoO2, LiMn2O4 and LiFePO4 [127], to mention just a few. Both electrodes are covered
in an electrolyte consisting of lithium salt and organic solvents, which are ion conductive. The Solid
Electrolyte Interphase (SEI) layer is formed at the interface between the electrolyte and the graphite
electrode. It protects the electrode material from the corrosive effect of the electrolyte but at the same
time remains conductive to lithium ions. Furthermore, the positive electrode also contains such a barrier
which is usually called conducting interphase. To avoid short circuits inside the cell, both electrodes are
separated using a semipermeable, lithium-ion conductive membrane as a separator. Lithium is used since
it has a high normal potential of E0 = −3.045 V and is the lightest of all metals. Thus, high gravimetric
energy and power densities can be achieved in the galvanic cell [126].

During the discharge process, intercalated lithium is oxidized in the anode. The released electrons are
transferred to the cathode via the external circuit. On the other hand, the lithium ions are released
from the graphite electrode and diffuse through the SEI layer, the electrolyte, the separator and the
conducting interphase to the cathode, where they are finally reduced with the electrons and intercalated
in the metal oxide. The aforementioned processes of electron flow and the transition of the lithium ions
during discharge results in several electrochemical overvoltages causing the cell voltage on the terminals
to drop a certain amount which characterizes the loss behavior of the cell.

If a voltage greater than the open-circuit voltage is applied to the terminals, the processes described
above are reversed, and the cell is recharged. The reduced lithium at the anode is stored again in the
graphite matrix. Since it is not the focus of this work and modeling, a detailed description of the electro-
chemical relationships and processes within the individual layers is not provided here. However, a good
overview can be found in [127–129].

Modeling the behavior of a modern Li-ion accumulator can be divided into different complexities and
different levels of model knowledge. White box models based on reaction kinetics [130,131] or physically
motivated equivalent circuit models [132] provide a detailed basis for understanding the electrochemical
processes. However, the complexity of such models also significantly increases the computational cost and
parameterization is often only possible with high effort. In contrast, black-box models, such as neural
networks [133] and Markov chains [134], are used. They are easy to train or parameterize from existing
measurement data. However, the major drawback of this modeling is the missing representation of phys-
ical relationships. To reduce the complexity without losing the general physical interpretability of the
models, simple equivalent circuit models have been established. These range from a simple representation
with a constant voltage source and internal resistance [135] to electrical RC networks [136]. Also, more
complex equivalent circuits, including Warburg impedances or nonlinear elements [137, 138], are used in
the literature.

The above-outlined modeling techniques are summarized in Table 5.2 and their related properties are
listed. As it can be seen, the equivalent circuit models serve as a good compromise between accuracy,
physical interpretability, parameterizability and computation time. Thus, an equivalent circuit represen-
tation of the battery model is used throughout the thesis and is presented in the following.

In the vehicle, a series connection of 76 LiFeYPO4 prismatic cells with 40 Ah of the type Winston
WB-LYP40AHA, as outlined in Figure 5.8, is used. The corresponding equivalent circuit model that is
used is outlined in Figure 5.9. It consists of a voltage source uocv, a series resistor Rs representing the
ohmic losses in the battery cell and two RC elements describing the cell dynamics. The series resistance
mainly represents the conductive behavior of the electrolyte in the cell and is not frequency-dependent.
One RC element models the charge transfer on average frequencies, whereas the other RC element de-
scribes the slow diffusion processes at low frequencies. For the proposed equivalent circuit network, the
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Table 5.2: Comparison of different modeling techniques
Parameter Accuracy Complexity Physical

representation
Good
parameterizability

Physical +++ +++ ++ -
(White Box) (>50 parameters)

Equivalent circuits ++ ++ + ++
(Grey Box) (2-30 parameters)

Empirical + – — +++
(Black Box) (2-3 parameters)

(a) One cell [139] (b) Inside of a cell [140]

Figure 5.8: Winston WB-LYP40AHA cell

terminal voltage is calculated using Kirchhoff’s mesh rule with

uk = ncell(uocv − uRs − uRC1 − uRC2), (5.13)

where ncell denotes the number of cells connected in series. Using Kirchhoff’s junction rule, the differential
equations for the required voltage drops uRC1 and uRC2 are obtained by

u̇RC1 =
ib − uRC1

R1(SoC,ib,ϑb)

C1(SoC, ib, ϑb) (5.14)

u̇RC2 =
ib − uRC2

R2(SoC,ib,ϑb)

C2(SoC, ib, ϑb) . (5.15)

Furthermore, the voltage drop on the series resistance is defined by

uRs
= Rs(SoC, ib, ϑb)ib. (5.16)
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uocv(SoC)

Rs(SoC, ib, ϑb)

uRs

C1(SoC, ib, ϑb) C2(SoC, ib, ϑb)

R1(SoC, ib, ϑb)

uRC1

R2(SoC, ib, ϑb)

uRC2 ucell

Figure 5.9: Electrical equivalent circuit model of the battery

Since the electrochemical reaction kinetics strongly depends on the actual cell operation point [127,129], it
must be considered in the equivalent circuit model. Thus, as already outlined in (5.14), (5.15) and (5.16),
the parameters Rs, R1, R2, C1 and C2 depend on the actual State of Charge (SoC), defined by

SoC = QSoC

Qb(ϑb) , (5.17)

the battery current ib and the battery temperature ϑb. Here, QSoC represents the actual stored electrical
charge, whereas Qb is the maximum available electrical charge of one cell. Furthermore, the open-circuit
voltage uocv depends on the actual SoC and Qb is influenced by ϑb. Thus, the identification process of
the battery equivalent circuit model needs to be done for each working point.

Furthermore, a thermal model of the used cell is developed and outlined in Figure 5.8. The cell mainly
consists of the reactive components inside the cell, a plastic cell housing and the metallic battery ter-
minals, which serve as the contact points of the anode and the cathode. Considering these components,
Figure 5.10 outlines the used model for the thermal behavior of a battery cell. In Figure 5.10a, the
cross-section of one cell is outlined. The red part in this scheme consists of the battery housing and the
reactive part of the cell, including the anode, cathode, separator and electrolyte. In contrast, the yellow
part describes the metallic connection of the cell core to the terminals. The corresponding heat capacities

Core

Terminals

(a) 2D thermal model

ϑb

Pv,b

Cc

Rthct

Ctϑt

Rthta

ϑair

Rthca

(b) Equivalent circuit model

Figure 5.10: Thermal equivalent circuit model of the battery
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are assigned to the two areas of the cell. Cc describes the heat capacity of the cell core, whereas the heat
capacities of the two terminals are combined in one heat capacity Ct. The dominant heat transfers to
the surrounding air take place between the battery core and ambient air through Rthca

and between the
terminals and ambient air through Rthta . Likewise, Rthct represents the remaining heat transfer between
the cell core and the terminals. Given the battery loss Pv,b, caused by the ohmic losses on Rs, R1 and
R2, the thermal behavior can be described by

ϑ̇b =
Pv,b − ϑb−ϑair

Rthca
− ϑb−ϑt

Rthct

Cc
(5.18)

and

ϑ̇t =
ϑb−ϑt

Rthct
− ϑt−ϑair

Rthta

Ct
(5.19)

using Kirchhoff’s junction rule for the equivalent circuit model outlined in Figure 5.10b.

Parameter Identification

The chemical processes of the battery are enclosed inside the housing of a battery cell and spatially
distributed over the electrodes and the electrolyte. Thus, internal battery parameters, such as overvolt-
ages of the chemical reactions and inner cell temperatures, cannot be measured directly. Especially for
the proposed equivalent circuit modeling approach, the electric circuit’s voltages and parameters do not
belong directly to physical components. Consequently, the equivalent circuit parameters, the open-circuit
voltage and the available battery capacity need to be identified using only the information available from
the outside of the battery. These are the battery voltage, battery current and temperatures of the ter-
minals and the housing.

Two different identification techniques are commonly used in the literature to identify the equivalent
circuit parameters: The Electrochemical Impedance Spectroscopy (EIS) [137,141,142] and current pulse-
based identifications [143–147]. The EIS method performs parameter identification in the frequency
domain. For this purpose, the battery is excited with a sinusoidal current for different frequencies, and
the voltage is measured. Thus, a complex impedance can be calculated for each measured frequency and
displayed in a Nyquist diagram. Due to a sinusoidal small-signal excitation, the energy input into the
system is low so the operating point, concerning the SoC and the battery temperature, does not shift.
However, if the dependence on the actual battery current is also to be investigated, an operating point-
dependent DC-current is superimposed on the small signal. The long measurement duration, especially at
low frequencies of an EIS, leads to a shift of the operating point concerning SoC and battery temperature.

To overcome the issue of these working point shifts, current pulse-based identifications in the time domain
can be used. For this purpose, the battery is excited with a bidirectional pulse of a specific height and
duration with a waiting time in between. The height of the pulse corresponds to the actual DC-current
working point. Due to the bidirectional character of the identification and the short measurement time,
temperature and SoC remains nearly constant during the identification. Furthermore, the rectangular
pulses stimulate all frequencies of the battery cell. Thus, an identification without a working point shift
is also possible for high currents and low frequencies. The parameters are then identified using a least-
square algorithm [148].

Since the battery model, as outlined in Figure 5.9, should cover the working point dependency regarding
battery current, SoC and temperature, it is essential to ensure that the operating point is as stable as
possible during identification. Thus, the identification procedure for the used battery cell is done using
current pulse profiles rather than impedance spectroscopy.
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The battery identification is done for a single battery cell using the battery test bench as outlined
in Appendix A.1. Figure 5.11 shows the working points of the battery used for the identification process.

Figure 5.11: Working points used for model identification. Each color represents one measure-
ment cycle. According to [149].

The four colors represent one measurement cycle done at a constant SoC ∈ [15, 38, 62, 85]% where each
line denotes one current pulse cycle. The used current profile, as outlined in Figure 5.12, consists of a

Figure 5.12: Current pulse measurement series. According to [149].

bidirectional current pulse with a pulse length of 10 s and four different currents ib ∈ [15, 30, 45, 60]A.
To allow the dynamic processes in the battery to equalize, a wait of 20 minutes is made after each bidi-
rectional pulse. The current height of each pulse represents one load current working point. After one
current pulse measurement cycle, the temperature is changed to the next temperature operating point
ϑb ∈ [0, 10, 20, 30, 40]◦C and the terminal voltage response is measured again for the current pulses. This
scheme is done for each temperature and SoC working point. The SoC working point change is done by
charging the cell up to 100 % SoC and then discharging it to the target SoC. A waiting time of one hour
is kept between the SoC changes to secure the equalization of the dynamic processes. Finally, the identi-
fication of the equivalent circuit parameters Rs, R1, R2, C1 and C2 is done using a least-square algorithm.
The identified parameters are outlined in Figure 5.13.
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(a) Rs (b) R1

(c) R2 (d) C1

(e) C2

Figure 5.13: Electrical battery parameters, according to [149].

The open-circuit voltage uocv and its dependency on the SoC also need to be identified. Thus, the
terminal voltage of the battery is measured during a charge and discharge of the battery cell from 0 %
to 100 % SoC and vice versa. The recorded terminal voltages are averaged and result in the identified
open-circuit voltage as outlined in Figure 5.14a. During the identification process of the open-circuit
voltage at different temperatures also, the temperature dependency of the maximum available battery
capacity Qb was determined and is outlined in Figure 5.14b.
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(a) Open circuit voltage (b) Battery capacity

Figure 5.14: Battery capacity and open circuit voltage, according to [149].

Model Validation

The validation of the parameters is performed on different working points than the identification to ensure
that nonlinear dependencies are considered correctly. Figure 5.15 depicts the working points employed
for this purpose. The red lines denote the same pulse current profiles used for the identification but at

Figure 5.15: Working points used for model validation. Black denotes the working points used
for identification and red outlines the points for validation. According to [149].

different working points. The two most distant measurements from each other are exemplarily outlined
in Figure 5.16. In general, it can be seen that the simulation model’s voltage response shows a good
coincidence with the measurements. Especially, the dynamic behavior of the response shows a good cor-
respondence to the measurement. Furthermore, the open-circuit voltage during non-load phases in the
current profile coincides with the measurements.

To assess the accuracy of the identified model, Table 5.3 outlines the Root Mean Squared Error (RMSE)
of each validation measurement between the simulated and the measured terminal voltage response. It
can be summarized that the presented parameterization of the equivalent circuit model satisfactorily
reproduces the battery behavior. The thermal parameters of the battery cell were determined in the
previous work of [150]. They are investigated by identifying the heat capacities of the used battery ma-
terials. Furthermore, the thermal equivalent resistances were experimentally determined. The identified
parameters in this work are used throughout this thesis and outlined in Appendix B.
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Figure 5.16: Exemplary evaluation measurements for two different working points.

Table 5.3: RMSE of battery model evaluation measurements
Nr ϑb SoC RMSE Relative RMSE

1 5 ◦C 26 % 13.22 mV 0.4 %
2 20 ◦C 26 % 8.84 mV 0.27 %
3 35 ◦C 26 % 3.31 mV 0.1 %
4 5 ◦C 74 % 14.58 mV 0.44 %
5 20 ◦C 74 % 11.08 mV 0.34 %
6 35 ◦C 74 % 6.03 mV 0.18 %

Mean 9.51 mV 0.29 %
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5.1.3 Inverter Model

The following section focuses on modeling the power losses and the thermal behavior of the inverter. In
the proposed system, a Voltage Source Inverter (VSI) with an Infineon FS820R08A6P2 power module
is used. The circuit diagram of the power electronics is outlined in Figure 5.17. On the left side of the
circuit diagram, the connection to the battery is shown with the corresponding DC-link voltage uDC

and DC-link current iDC . Also, the virtual ground terminal with the potential UDC/2 is depicted. The
AC side of the inverter is built up by an Insulated Gate Bibolar Transistor (IGBT) full bridge with an
antiparallel free-wheeling diode on each IGBT device. The output terminal voltages uU , uV , uW with their
corresponding currents iU , iV , iW represent the interface to the electric drive. To generate a frequency

iDC

uDC

uDC

2

uDC

2

T1

T2

T3

T4

T5

T6

D1

D2

D3

D4

D5
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iU uU
iV uV

iW uW

Figure 5.17: VSI equivalent circuit

and amplitude variable AC voltage from the DC-link voltage, the IGBTs must be switched according to
a defined pattern using a Pulse Width Modulation (PWM). Due to the PWM, the losses in the inverter
consist of conduction and switching losses and depend on the used modulation scheme [151]. In the
analyzed inverter, a sine modulation with zero offset is used to improve the voltage utilization [152].
Nevertheless, as the focus is on modeling the loss behavior and not on improving the switching patterns
of the inverter, the modulation methods are not discussed in detail in this thesis. However, a good
overview is provided in [151] and [152]. Due to the symmetric structure of the inverter and the used
modulation scheme, the IGBTs and diodes are loaded identically in one fundamental wave period but
with a shift in time. Thus, the power dissipation considerations can be reduced to one IGBT and one
diode and are applied to all semiconductors afterwards.

Conduction Losses

The calculation of the conduction losses is carried out for the IGBT and diode pair T1, D2 in Figure 5.17.
As semiconductors, the IGBTs and the diodes have a current-dependent on-state resistance which causes
a corresponding voltage drop and thus produces conduction losses at the devices. The relationship,
known as forward characteristics, is shown in Figure 5.18 for the IGBT and the diode of the used power
electronics module. Using the forward characteristics, the conduction power losses of the IGBT and the
diode

pc,T1 = uCE(iT1 , ϑj,T ) · iT1 (5.20)
pc,D2 = uF (iD2 , ϑj,D) · iD2 (5.21)
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(a) IGBT (b) Diode

Figure 5.18: Forward characteristics of the used IGBT module [153]

can be calculated for each working point of the semiconductors. Also, the temperature dependencies of the
junction temperature of the transistor ϑj,T and the diode ϑj,D are considered. An analytical formulation of
this nonlinear behavior can be achieved by the approximation with a second-order polynomial [154,155]

p̃c,T1 = ac,T (ϑj,T ) · iT1 + bc,T (ϑj,T ) · i2
T1

(5.22)
p̃c,D2 = ac,D(ϑj,D) · iD2 + bc,D(ϑj,D) · i2

D2
(5.23)

using ac,T (ϑj,T ), bc,T (ϑj,T ) and ac,D(ϑj,D), bc,D(ϑj,D) as junction temperature-dependent fitting coeffi-
cients.

The conduction losses of each device are only present during their conduction phases which depend
on the used modulation method. These conduction phases can be described by their relative turn-on
times [151]

βT1 = βU (φ) (5.24)
βD2 = 1 − βU (φ) (5.25)

for T1 and D2, which are directly related to the applied modulation function. The sine modulation with
zero offset can be approximated by adding third-order harmonics to the standard sine modulation [156].
This leads to

βT1 = 1
2 + M1

2 cos(φ) + M3

2 cos(3φ) (5.26)

βD2 = 1
2 − M1

2 cos(φ) − M3

2 cos(3φ) (5.27)

with M1 and M3 as the corresponding modulation indexes. The modulation index M1 is defined as

M1 =

√
u2

d + u2
q

uDC/2 , (5.28)
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with
√

u2
d + u2

q describing the amplitude of the applied voltage vector. For the proposed sine modulation,
M1 ∈ [0, 2√

3 ] holds. The ratio between the modulation indexes

ξM = M3

M1
= 0.20635 (5.29)

is applied according to [156] to obtain good approximation results of the modulation with zero offset.
The output current

iU = ÎN cos(φel + φ) (5.30)

at the inverter AC terminal is assumed to be sinusoidal without harmonics. Extending (5.30) with the
modulation functions (5.26) and (5.27) leads to

iT1 = βT1(φ)iU (φ) (5.31)
iD2 = βD2(φ)iU (φ), (5.32)

which describe the currents through the semiconductors based on their relative turn-on times. The aver-
aged power dissipation within one fundamental period can be calculated as integral over the instantaneous
power

Pc = 1
2π

2π∫
0

pc(τ)dτ. (5.33)

Inserting (5.31) and (5.22) in (5.33) and (5.32) and (5.23) in (5.33) results in

Pc,T1 = 1
2π

ac,T (ϑj,T )

π
2 −φ∫

− π
2 −φ

βT1(τ)iU (τ)dτ + bc,T (ϑj,T )

π
2 −φ∫

− π
2 −φ

βT1(τ)iU (τ)2dτ

 (5.34)

Pc,D2 = 1
2π

ac,D(ϑj,D)

π
2 −φ∫

− π
2 −φ

βD2(τ)iU (τ)dτ + bc,D(ϑj,D)

π
2 −φ∫

− π
2 −φ

βD2(τ)iU (τ)2dτ

 . (5.35)

Because the semiconductor pair T1 and D2 are only conducting during the positive half-wave of the
terminal current iU , the integration limits are defined within the interval − π

2 − φ ≤ τ ≤ π
2 − φ. Solving

the integrals finally leads to the conduction losses for the IGBT

Pc,T1 = ac,T (ϑj,T )ÎN

2

(
1
π

+ M1

4 cos(φ)
)

+ bc,T (ϑj,T )Î2
N

(
1
8 + M1

3π
cos(φ) + M3

15π
cos(3φ)

)
(5.36)

and similarly for the diode

Pc,D2 = ac,D(ϑj,D)ÎN

2

(
1
π

− M1

4 cos(φ)
)

+ bc,D(ϑj,D)Î2
N

(
1
8 − M1

3π
cos(φ) − M3

15π
cos(3φ)

)
. (5.37)

The phase shift between the voltage and the current vector can be calculated with

cos(φ) = idud + iquq√
i2
d + i2

q

√
u2

d + u2
q

(5.38)

using the known dq currents and voltages.
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Switching Losses

The calculation of the switching losses is carried out similarly to the conduction losses on the IGBT
and diode pair T1, D2 from Figure 5.17. The switching losses of the IGBT occur during switch-on and
switch-off due to the transition from the blocking to the conducting state and vice versa. For the diode,
the switching losses are mainly related to the reverse recovery effect during the transition from the on-
state to the off-state. The energies for one switching event are given in the corresponding semiconductor

(a) IGBT (b) Diode

Figure 5.19: Switching energies in dependency of the load current of the used IGBT module [153]

datasheet, as outlined in Figure 5.19, for the used module. In [151,155–157], a linear dependency of the
switching energy on the current in the form

wsw,lin = ksw,T,D · iU (φ) (5.39)

is assumed. However, as seen in Figure 5.19, the switching losses neither for the IGBT nor the diode
behave linearly. Therefore, the switching loss behavior is modeled with a second-order polynomial in the
form

w̃Eon,T1 = aEon · iU + bEon · i2
U + cEon (5.40)

w̃Eoff,T1 = aEoff · iU + bEoff · i2
U + cEoff (5.41)

w̃Err,D2 = aErr · iU + bErr · i2
U + cErr (5.42)

for the turn-on and turn-off energy losses w̃Eon,T1(iU ), w̃Eoff,T1(iU ) of the IGBTs and for the reverse
recovery losses w̃Err,D2(iU ) of the diodes. For the used sine modulation each semiconductor is switched
on and off one time during one fundamental wave period. Thus, a linear dependency of the switching
frequency fs on the switching power losses

p̃Eon,T1 = w̃Eon,T1(φ) · fs (5.43)
p̃Eoff,T1 = w̃Eoff,T1(φ) · fs (5.44)
p̃Err,D2 = w̃Err,D2(φ) · fs (5.45)
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exists. Averaging the switching losses over one fundamental wave period with

PEon,T1 = 1
2π

π
2 −φ∫

− π
2 −φ

p̃Eon,T1(τ)dτ (5.46)

PEoff,T1 = 1
2π

π
2 −φ∫

− π
2 −φ

p̃Eoff,T1(τ)dτ (5.47)

PErr,D2 = 1
2π

π
2 −φ∫

− π
2 −φ

p̃Err,D2(τ)dτ (5.48)

leads to the global switching losses

PEon,T1 = fs

(
cEon

2 + aEonÎN

π
+ bEonÎ2

N

4

)
(5.49)

PEoff,T1 = fs

(
cEoff

2 + aEoff ÎN

π
+ bEoff Î2

N

4

)
(5.50)

PErr,D2 = fs

(
cErr

2 + aErr ÎN

π
+ bErr Î2

N

4

)
. (5.51)

In addition to the polynomial fit, also the temperature dependency of the switching losses is considered
with the temperature coefficients αT for the IGBT and αD for the diode. Furthermore, the switching
losses in the datasheet are only given for a specific working point. Particularly, the nonlinear dependency
on the blocking voltage [158] needs to be considered. Expanding (5.49) to (5.51) with the aforementioned
dependencies leads to

PEon,T1 = fs

(
uDC

uref,T

)κT
(

1 + αT (ϑj,T − ϑref,T )
)(

cEon

2 + aEonÎN

π
+ bEonÎ2

N

4

)
(5.52)

PEoff,T1 = fs

(
uDC

uref,T

)κT
(

1 + αT (ϑj,T − ϑref,T )
)(

cEoff

2 + aEoff ÎN

π
+ bEoff Î2

N

4

)
(5.53)

PErr,D2 = fs

(
uDC

uref,D

)κD
(

1 + αD(ϑj,D − ϑref,D)
)(

cErr

2 + aErr ÎN

π
+ bErr Î2

N

4

)
(5.54)

with κT and κD as nonlinear blocking voltage dependency exponent. Uref,T and Uref,D describe the
voltage of the specific blocking voltage working point given in the datasheet on which the switching losses
for the IGBT and the diode are measured.

According to the introduced switching and conduction losses, the total losses of the inverter can be
calculated with

Pinv = 6 (Pc,T1 + Pc,D2 + PEon,T1 + PEoff,T1 + PErr,D2) (5.55)

by adding the individual losses and multiplying them by the number of semiconductors involved.
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Thermal Model

The thermal behavior of the used inverter module is mainly defined by the thermal paths between
the cooling water and the IGBTs and the diodes. These thermal paths can be divided into one thermal
resistance Rthjw,T between the cooling circuit and one IGBT and one thermal resistance Rthjw,D between
the coolant and one diode. Because the thermal paths of the semiconductors are equal for each IGBT
and diode, the model can be simplified. This leads to the equivalent circuit model shown in Figure 5.20.
Rthjw,T /6 and Rthjw,D/6 combine all parallel paths of the IGBTs and of the diodes to one thermal

Pv,T

Rthjw,T

6

Pv,D

Rthjw,D

6

ϑwg,in+ϑwg,out

2

Figure 5.20: IGBT thermal equivalent circuit model

resistance. This is valid because of the symmetric load distribution among each semiconductor device.
Therefore, also the thermal losses of each semiconductor are distributed equally. The main advantage
of an equivalent circuit diagram model of the thermal behavior is the ease of parameterization of the
models [159]. For the module used in the inverter, the thermal resistances are directly given in the
datasheet [153]. Using the proposed model, the junction temperatures of the semiconductors ϑj,T and
ϑj,D can be calculated with

ϑj,T = Pv,T

Rthjw,T

6 + ϑwg (5.56)

for the IGBTs and with

ϑj,D = Pv,D

Rthjw,D

6 + ϑwg (5.57)

for the diodes, where ϑwg denotes the temperature of the coolant.

The relationship between the heat flow Q̇ and the corresponding coolant temperature of the inlet ϑin and
the outlet ϑout can, in general, be calculated with

Q̇ = ṁcp(ϑwg)(ϑout − ϑin) (5.58)

assuming channel flow [160], where ṁ denotes the mass flow of the used coolant. Applying (5.58) to the
equivalent circuit in Figure 5.20 results in

Pv,T + Pv,D = ρwg(ϑwg)V̇wgcp,wg(ϑwg)(ϑout − ϑin) (5.59)
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as the relationship between the power dissipations Pv,T , Pv,D of the module and the water temperatures
ϑout, ϑin at a given flow rate V̇wg of the coolant. Also, the temperature dependency of the coolant density
ρwg and the specific heat capacity cp,wg from the coolant temperature ϑwg is considered. Due to the
minor temperature increase expected between the inlet and outlet temperature, the coolant temperature
is assumed as

ϑwg = ϑwg,in + ϑwg,out

2 . (5.60)

Model Validation

As the proposed models are mean value fundamental wave models, there are some restrictions regarding
their validity. They are only accurate with respect to the following conditions [158]:

• Neglection of IGBT and diode switching times

• Assumption of constant junction temperatures over time. This is valid for
ωel ≥ 50 Hz

• Neglection of switching frequency ripple in alternating current (sinusoidal current)

• Switching frequency is significantly higher than the fundamental wave frequency

All the above points hold for the use case of a drive system of an electric vehicle. Nevertheless, the
assumption of constant junction temperatures is only valid above a certain vehicle speed vmin where the
condition ωel ≥ 50 Hz is satisfied. The minimum vehicle speed can be calculated by

vmin = rw50 Hz
pig

, (5.61)

with the wheel radius rw, the pole pairs p of the electrical drive and the corresponding gearbox ratio
ig. For the vehicle under investigation, this leads to a minimum speed of 5.37 km/h. However, this er-
ror is suitable because the major part of the vehicle speed lies above this boundary in a typical application.

The validation of the proposed inverter model is done using Drive Testbench 1 (DTB1). An overview of
the test bench can be found in Appendix A.2.1. The model is evaluated regarding its accuracy in terms
of efficiency. Accordingly, the efficiency of the inverter is measured and compared to the efficiency of
the inverter model for the same static working points. They depend on the torque of the electrical drive
Mem, the angular velocity of the drive ωm and the coolant inlet temperature ϑwg,in of the inverter.

The measured efficiency of the inverter is outlined in Figure 5.21 and the simulated efficiency is depicted
in Figure 5.22. To better evaluate the accuracy of the simulation model, the absolute difference

εηinv
= ηinv,m − ηinv,s (5.62)

with ηinv,m as the measured and ηinv,s as the simulated efficiency is shown in Figure 5.23 and serves as
an absolute error measurement.

The measured and simulated inverter efficiencies for different coolant inlet temperatures outline a slight
dependence on the coolant inlet temperature. Furthermore, it can be seen that the efficiency of the in-
verter, except for low vehicle speeds, lies above 87 %. The absolute model error highlights that in a wide
operational area, the absolute error lies below 3 %. The error grows in the area of small velocities and,
in general, for small power conversions of the inverter. However, due to the measurement uncertainties
of the power analyzer, which are more considerable in the low power areas of the map, it cannot be dis-
tinguished if the growing errors are caused by the measurement uncertainties or due to modeling issues.
Further details of the used measurement system and the associated measurement errors can be found in
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Appendix A.2.3. Nevertheless, it can be concluded that the proposed inverter model is suitable for the
sensitivity analyses due to its low absolute error throughout the entire working space of the inverter.

(a) 25 ◦C (b) 30 ◦C

(c) 40 ◦C (d) 50 ◦C

Figure 5.21: Measured inverter efficiency for different coolant inlet temperatures ϑwg,in.

(a) 25 ◦C (b) 30 ◦C

(c) 40 ◦C (d) 50 ◦C

Figure 5.22: Simulated inverter efficiency for different coolant inlet temperatures ϑwg,in.
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(a) 25 ◦C (b) 30 ◦C

(c) 40 ◦C (d) 50 ◦C

Figure 5.23: Inverter efficiency model deviation for different coolant inlet temperatures ϑwg,in.

5.1.4 Electrical Drive Model

The following section presents the modeling and validation of the electrical drive. The electric drives used
in the vehicle are EMRAX 188 axial flux PMSMs. A common practice of modeling these three-phase
machines is the approach of using a fundamental wave model [152,161,162]. However, the operation with
a VSI causes current harmonics inside the electric drive. Furthermore, the resulting magnetic field in the
air gap is, due to constructive reasons, usually not a pure sinusoidal field [163]. Thus, additional nonlinear
iron losses will occur and reduce the accuracy of a simple fundamental wave model. Consequently, several
approaches were presented in the literature to include nonlinear losses into the fundamental wave model
to improve the accuracy [161,163–165]. Furthermore, the iron saturation in the magnetic paths needs to
be considered, resulting in a current or working point dependency of the inductances and the magnetic
flux of the drive [161,162]. The presented models are also optimized regarding computation time for the
use in the sensitivity analyses.

For a better understanding of the used model, the evolution from a basic linear fundamental wave model
to a calculation time-optimized nonlinear model, including iron losses, is presented and discussed below.
Furthermore, the validation of the identified drive parameters is presented in this section.

Reduced to the principal electrical effects, a PMSM can be modeled as a machine consisting of three
concentrated stator windings and a permanent magnet located at the rotor. Figure 5.24 shows the
equivalent stator circuit.
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Figure 5.24: Equivalent stator circuit

The law of inductance [166]

ui = −dΨ
dt

(5.63)

indicates that each change of magnetic flux Ψ in the stator windings results in an induced voltage in the
opposite direction. Based on this fundamental law, the stator voltage equation for a three-phase machine
can be described by [161,162,167]

ua = Rsia + dΨa

dt
(5.64)

ub = Rsib + dΨb

dt
(5.65)

uc = Rsic + dΨc

dt
(5.66)

In addition, due to the star connection of the three stator phases,

ia + ib + ic = 0 (5.67)

holds. The non-orthogonality of the three stator windings is difficult to model and control. Therefore,
it is common in the literature to convert the three-phase system into a rotating stator fixed orthogonal
two-phase system with the corresponding coordinates d and q [13, 152, 157, 167, 168]. This amplitude
invariant transformation, known as Park transformation and first introduced in [169], given by

xd

xq

x0

 = 2
3


cos(φel) cos(φel − 2π

3 ) cos(φel − 4π
3 )

− sin(φel) − sin(φel − 2π
3 ) − sin(φel − 4π

3 )

1/2 1/2 1/2




xa

xb

xc

 , (5.68)

describes the conversion from the string values xa, xb, xc to the direct and quadrature values xd, xq. The
transformation depends on the electrical rotor angle

φel = p · φm, (5.69)

which is a multiple of the mechanical rotor angle φm for drives with more than one pole pair p. The
transformation can be simplified if it can be assumed that the three-phase system is symmetric. The
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condition for symmetry of the system is outlined in (5.67). Thus, (5.68) simplifies to

xd

xq

 = 2
3

 cos(φel) cos(φel − 2π
3 ) cos(φel − 4π

3 )

− sin(φel) − sin(φel − 2π
3 ) − sin(φel − 4π

3 )




xa

xb

xc

 , (5.70)

neglecting the x0 component.

The corresponding inverse transformation from the rotor-based orthogonal system to the stator-based
three-phase system is described by

xa

xb

xc

 =


cos(φel) − sin(φel)

cos(φel − 2π
3 ) − sin(φel − 2π

3 )

cos(φel − 4π
3 ) − sin(φel − 4π

3 )


xd

xq

 . (5.71)

Applying the Park transformation to (5.64), (5.65) and (5.66) results in

ud = Rsid + dΨd

dt
− ωelΨq (5.72)

uq = Rsiq + dΨq

dt
+ ωelΨd (5.73)

in dq-coordinates with

Ψd = Ψpm + Ldid (5.74)
Ψq = Lqiq, (5.75)

where Ψpm describes the magnetic flux of the permanent magnet and Ld and Lq denote the direct and
quadrature inductance. As outlined in the equations above, the induced voltage is based on two physical
effects. The first effect is the change of the magnetic flux in the corresponding rotor inductances Ld and
Lq. The second effect is caused by the rotation of the rotor

ωel = dφel

dt
(5.76)

and, as a result, a change in the magnetic flux in the stator windings during this rotation. Substitut-
ing (5.74) and (5.75) into (5.72) and (5.73) leads to the voltage equations

ud = Rsid + Ld
did

dt
− ωelLqiq (5.77)

uq = Rsiq + Lq
diq

dt
+ ωel(Ldid + Ψpm), (5.78)

which can be expressed as equivalent circuits for each coordinate as outlined in Figure 5.25. The
corresponding space vector diagram in Figure 5.26 outlines the relations between the electric and magnetic
quantities in the different coordinate systems. Moreover, the angular relationships between the electric
quantities in the different coordinate systems are displayed. The magnitude of the induced voltage in the
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id
Rs Ld

ωelΨqud

iq
Rs Lq

ωelΨd
uq

Figure 5.25: Linear PMSM equivalent circuits

Figure 5.26: Space vector diagram for motor mode in dq-coordinates. blue vectors denotes the
voltages and red vectors the currents. Black vectors outlined magnetic fluxes.

stator windings uind, caused by the rotation of the magnetic field, is defined by

uind = |ωel

√
Ψ2

d + Ψ2
q|. (5.79)

The cosine of the angle φ between the stator current is and the stator voltage us

cos(φ) = P

S
= idud + iquq√

i2
d + i2

q

√
u2

d + u2
q

(5.80)

is the effective power factor and describes the percentage amount of electrical energy that is converted in
the system.

The generated torque in the air gap of the electrical machine is given by [152,161,162]

Mair = 3
2p( Ψpmiq︸ ︷︷ ︸

Linear part

+ (Ld − Lq)idiq)︸ ︷︷ ︸
Reluctance part

. (5.81)

It indicates that the torque is composed of a linear part and a reluctance part. With the linear part, the
torque can be directly controlled using iq. For symmetric machine constructions (Ld = Lq), the reluctance
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part will be zero. However, if the machine is constructed asymmetrically (Ld < Lq), a negative current
id results in an additional torque that achieves higher power densities of the electric drives. Furthermore,
the permanent magnet flux could be less compared to symmetrically constructed drives and eddy current
losses can be reduced [152]. Consequently, modern drives, particularly for automotive applications, are
often constructed asymmetrically.

However, the construction of modern drives for high power densities causes the iron to saturate and
behaves nonlinearly [161, 162]. To include these working point-dependent saturation effects, (5.77) and
(5.78) are extended to

ud = Rsid + dLd(id, iq)id

dt
− ωelLq(id, iq)iq (5.82)

uq = Rsiq + dLq(id, iq)iq

dt
+ ωel(Ld(id, iq)id + Ψpm(iq)). (5.83)

The working point dependence is characterized by the dependence of Ld, Lq and Ψpm on the currents
id and iq. Figure 5.27 outlines these dependencies for the EMRAX 188, which were identified using the
DTB1 as outlined in Appendix A.2.1). Likewise, (5.81) is extended to

(a) Direct inductance Ld (b) Quadrature inductance Lq

(c) Magnetic flux Ψpm

Figure 5.27: Working point-dependent drive parameters.

Mair = 3
2p [Ψpm(iq)iq + (Ld(id, iq) − Lq(id, iq))idiq] (5.84)

to consider the saturation effects.

As the models need to be optimized regarding computation time, the drive model is not exited with
a PWM modulated voltage. Instead, the averaged phase voltages are applied to the phases of the sys-
tem, which result in constant dq-currents without harmonics. Furthermore, the time constants of the
electrical circuits, consisting of the stator winding resistance Rs and the inductances Ld or Lq, are ne-
glected and constant current working points are assumed. This is reasonable since the electrical time
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constants are much smaller than the time constant of the mechanical system. Therefore, dLd(id,iq)id

dt = 0
and dLq(id,iq)iq

dt = 0 hold for constant current working points and (5.82) and (5.83) simplify to

ud = Rsid − ωelLq(id, iq)iq (5.85)
uq = Rsiq − ωel(Ld(id, iq)id + Ψpm(iq)). (5.86)

Nevertheless, besides the ohmic losses described in the fundamental wave model, additional losses exist,
which can be summarized as iron losses. They consist of eddy current losses in the conductive stator
and rotor iron parts. Furthermore, hysteresis or re-magnetization losses occur in the sheet packs of the
machine. They are mainly caused by the harmonics of the exiting magnetic field of the machine. The loss
mechanisms of soft magnetic metals have been studied in detail in [170,171]. Often, additional parasitic
effects, such as the non-sinusoidal supply of the drive by PWM-based inverters [172], are also added to
the iron losses. There exist several publications for the analytic calculation of iron losses. One common
analytical approach is the Steinmetz-equation [173]

Pi,v = kfαB̂β (5.87)

with f as the excitation frequency, B̂ as the amplitude of the magnetic flux density and k, α and β
as magnet material-dependent parameters. The classic Steinmetz equation is only valid for drives with
sinusoidal quantities. Especially for PWM-controlled machines, also harmonics exist and the Steinmetz
approach becomes less accurate. Due to the nonlinear behavior of the iron, the harmonics cannot be
calculated separately using a Fourier analysis [174]. Thus, a modified Steinmetz equation [174]

Pi,v = fr(kfα−1B̂β) (5.88)

was postulated, using the frequency of the excitation described by fr. Nevertheless, the excitation needs
to be known. To overcome this issue, the generalized Steinmetz equation [175]

Pi,v = 1
T

∫ T

0
k1

∣∣∣∣dB

dt

∣∣∣∣α |B(t)|β−αdt (5.89)

was presented in the literature. However, [176] claimed about the accuracy of the generalized Steinmetz
equation and introduced an enhanced generalized Steinmetz equation.

Consequently, it can be noted that describing the iron losses of an electric drive analytically is still
a research topic and has not finally been solved. Furthermore, the magnet material of the used EMRAX
188 machine and the internal machine geometry are unknown. Thus, the exact course of the magnetic
flux density inside the machine is not known for calculating the iron losses using a Steinmetz equation
approach. Therefore, in this thesis, the iron losses are not calculated analytically. Instead, two equivalent
iron loss resistances are used, which will be added to the fundamental wave model and identified at the
DTB1.

Estimating the iron losses with two additional resistances instead of analytically calculating them is a
well-known technique in the literature [161,163,164,177,177,178]. However, often they are modeled using
the same iron-loss resistance for the d and q axis [164,177,178] or only for static working points [177–179].
In [163], these issues are addressed and an approach using two separate iron resistances for each axis for
the static and dynamic use case is outlined. This approach is used in this thesis to model and identify
the iron losses of the EMRAX 188 and is presented in advance.

Figure 5.28 outlines the equivalent circuits in dq-coordinates for the static use case according to [163]. ζd

and ζq represent the iron losses which depend on the actual machine working point in Mem and ωel. For
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Figure 5.28: Saturation- and iron loss-dependent PMSM equivalent circuits.

a better identification procedure of the iron loss resistances, in [163] synthetic iron loss parameters

ξd = ω2
elLd

ζd
(5.90)

ξq = ω2
elLq

ζq
(5.91)

are introduced to neglect the dependence of ω2
el in the identification process. The voltage equations of

the iron loss equivalent circuits are described by

ud = (Rs + ξqLd)id − ωelLqiq + ξqΨpm (5.92)
uq = (Rs + ξdLq)iq + ωelLdid + ωelΨpm (5.93)

using the synthetic iron loss parameters instead of the real iron loss resistances. For better readability
the working point dependent saturation effects of Ld, Lq and Ψpm are not outlined in the equations.
However, they still exist and shown in Figure 5.28. The corresponding iron loss parameters ξd and ξq are
identified with

ξd = ω2
elLd

ζd
= uq − ωelLdid − Rsiq − ωelΨpm

Lqiq
(5.94)

ξq = ω2
elLq

ζq
= ud − Rsid + ωelLqiq

Ldid + Ψpm
(5.95)

on the DTB1. The identified iron losses for both axis are outlined in Figure 5.29. The corresponding air
gap torque of the machine is also influenced by the iron losses and is extended to

Mair = 3
2p

[
Ψpm

(
iq − uq

ξq

ω2
elLq

)
+ (Ld − Lq)

(
id − ud

ξd

ω2
elLd

)(
iq − uq

ξq

ω2
elLq

)]
. (5.96)

Besides the electrical properties of the drive, also the temperature dependency of the electrical drive
needs to be considered. Thus, the temperature dependency of the stator resistance is modeled using

Rs = Rs,ϑ0 [1 + αcu(ϑst − ϑ0,cu)] (5.97)

with Rs,ϑ0 as the stator resistance at the reference temperature ϑ0,cu. αcu denotes the temperature
coefficient of copper and ϑst the actual stator temperature. The temperature dependency of the magnet
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(a) Direct axis iron loss parameter ξd (b) Quadrature axis iron loss parameter ξq

Figure 5.29: Working point-dependent iron losses.

material of the rotor is modeled similarly by

Ψpm = Ψpm,ϑ0 [1 + αpm(ϑro − ϑ0,pm)], (5.98)

with Ψpm,ϑ0 as the reference magnetic flux at the reference temperature ϑ0,pm. The temperature coeffi-
cient of the used magnet material is denoted by αpm. The power losses in the electric drive system can
then be determined as ohmic losses at the winding resistances Rs and the iron loss resistances ζd and
ζq.

Model Validation

The proposed drive model is validated using the DTB1 testbench (see Appendix A.2.1). The model is
evaluated regarding its accuracy in terms of efficiency. Accordingly, the efficiency of the drive is measured
and compared to the efficiency of the drive model for the same static working points. They depend on the
torque of the electrical drive Mem, the angular velocity of the drive ωm and the coolant inlet temperature
ϑwg,d of the drive.

The measured efficiency of the EMRAX 188 drive is outlined in Figure 5.30 and the simulated effi-
ciency is depicted in Figure 5.31.

To better evaluate the accuracy of the simulation model, the absolute difference

εηem = ηem,m − ηem,s (5.99)

with ηem,m as the measured and ηem,s as the simulated efficiency is shown in Figure 5.32 and serves as
an absolute error measurement.

The measured and simulated drive efficiencies for different coolant inlet temperatures outline a slight
dependence on the coolant inlet temperature. The reduced efficiency with increasing temperature is
caused by the temperature dependency of the copper winding and the permanent magnet of the drive.
Copper has a positive temperature coefficient which results in an increased resistance of the stator wind-
ings and thus more losses. On the other hand, the magnet material has a negative temperature coefficient
which results in less magnetic excitation with increasing temperatures and thus, more current is needed
for applying the same torque. But, in general, it can be noted that the drive efficiency, except for low
torques, lies above 86 %. The absolute model error highlights that in a wide operational area, the ab-
solute error lies below 3 % for all temperatures. The error grows in the area of small torques and, in
general, for small power conversions of the drive. However, due to the measurement uncertainties of the
power analyzer, which have more considerable influences in the low power areas of the map, it cannot
be distinguished if the growing errors are caused by the measurement uncertainties or due to modeling
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issues. Further details of the used measurement system and the associated measurement errors can be
found in Appendix A.2.3. However, it can be concluded that the proposed models, concerning their low
absolute error throughout the entire working space of the drive, are suitable for sensitivity analysis.

(a) 25 ◦C (b) 30 ◦C

(c) 40 ◦C (d) 50 ◦C

Figure 5.30: Measured drive efficiency for different coolant inlet temperatures ϑwg,d.

(a) 25 ◦C (b) 30 ◦C

(c) 40 ◦C (d) 50 ◦C

Figure 5.31: Simulated drive efficiency for different coolant inlet temperatures ϑwg,d.
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(a) 25 ◦C (b) 30 ◦C

(c) 40 ◦C (d) 50 ◦C

Figure 5.32: Drive efficiency model deviation for different coolant inlet temperatures ϑwg,d.

5.2 Modeling of the Environment

The energy consumption of the vehicle is no fixed value and is influenced by several environmental
conditions, such as the road profile, weather and traffic situation. Consequently, these environmental
conditions need to be considered in the simulation model. In the literature, several environmental mod-
eling approaches exist and will be discussed in the following. Furthermore, the used drive cycles for the
use-case of the proTRon Evolution are presented. Since the investigation of this thesis does not include
the surrounding traffic, it will neither be included in the environmental model nor discussed here.

To quantify the energy consumption of vehicles in the certification process and to be able to determine the
corresponding taxation, standardized test cycles such as the New European Driving Cycle (NEDC) [180]
were therefore introduced in the European area and the WLTP [181] as its global successor. However,
for better comparability, the influencing factors of environment, driving distance and different drivers
are systematically excluded in these test procedures by specifying the speed and operating conditions.
To improve the validity of these driving cycles, non-binding test cycles exist based on real measured
driving collectives. The most well-known European test cycles are the ARTEMIS-cycles [182, 183] and
the modem-Hyzem-cycles [184]. Nevertheless, these cycles also use a fixed velocity profile and cannot
consider the degree of freedom in the driving speed to optimize energy efficiency. Consequently, modeling
the environment using only a drive cycle representation is unsuitable for evaluating a longitudinal model
predictive control.

To avoid the drawbacks mentioned above, the proposed environmental model includes additional in-
formation about the road slope, the curvature and the legal speed limit of the driven road. A speed
profile is not given in the environmental model as it will be optimized by the longitudinal control algo-
rithm. Nevertheless, a manually driven profile is also recorded to compare the driven routes optimized
by the MPC with the profile driven by a human driver.
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The proposed drive cycles are intended to cover the urban and interurban use case of a typical daily
commute to work around the German city Trier where the proTRon Evolution is designed for. Fig-
ures 5.33 and 5.34 outline the drive cycles on a map and depict the corresponding legal speed limits
vmax, curve radii rc, road slope α and the elevation h for the driven routes.

The resolution of the data, especially the elevation data, can highly affect the accuracy of the energy
prediction model. Furthermore, classical Digital Elevation Model (DEM) data is roughly gridded with
30 m resolution and needs to be interpolated [10]. To avoid this inaccuracy, the road information is
extracted from the HERE autonomous driving map database [185]. It provides accurate measurements
of the required road information in a satisfactory resolution.

The four drive cycles are intended to cover several influences on typical commuting routes. To ac-
count for the impact of commuting distances, all selected routes are of different lengths. Furthermore,
the elevation profile varies for the chosen routes. It can be seen that the elevation profile is more distinct
for drive cycles 1 and 2 than for drive cycles 3 and 4 since the regions outside the river valley are low
mountain ranges. Accordingly, drive cycles 1 and 2 are also curvier than drive cycles 3 and 4. The
expected driving speed is also different. Drive cycles 1-3 consist only of urban and rural roads and thus,
the average legal speed limits are lower than the average legal speed limit of drive cycle 4, which contains
highway sections. It is important to mention that the start and endpoints of the route are at the same
altitude, which avoids the insertion or extraction of potential energy on the system and thus, falsifying
the results of the proposed sensitivity analysis.
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(a) Drive cycle 1

(b) Drive cycle 2

Figure 5.33: Drive cycle overview of drive cycle 1 and 2.
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(a) Drive cycle 3

(b) Drive cycle 4

Figure 5.34: Drive cycle overview of drive cycle 3 and 4.
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5.3 Conclusions
In this chapter, the modeling of the vehicle and the environment has been presented. The presented
models consist of the longitudinal motion model of the vehicle and detailed models of the underlying
powertrain components including gearbox, battery, inverter and electrical drive. Each model has been
optimized in terms of computation time and accuracy to met the requirements of the sensitivity analyses,
especially concerning power dissipation and energy efficiency. To provide accurate models, the parameter
of the components has been determined on the battery and drive test benches and the accuracy of the
models have been proven for each powertrain component.

To generate realistic driving scenarios also an environmental model has been presented in this chap-
ter. It consists of the route profile, the legal speed limit and curve radii provided by the HERE database
and is able to map realistic route scenarios into the simulation. To met the use-case of the proTRon
Evolution, four different routes has been presented, denoted as drive cycle 1 to drive cycle 4, describing
typical interurban commuter routes. Due to the high model accuracy, the proposed model is suitable
for generating reliable sensitivity analysis results regarding the energy consumption and efficiency of the
vehicle. Furthermore, the optimization regarding computation time will reduce the computation effort of
the sensitivity analysis, as presented in Chapters 6 and 8, to a reasonable level.



6 Sensitivity Analysis of the Open-Loop
Longitudinal Control

The models presented in the previous chapter consist of many parameter dependencies which could possi-
bly influence the energy consumption of the vehicle. Developing an MPC which considers all the nonlinear
and complex model dependencies will result in a complex controller design that would be difficult to solve
and possibly not real-time capable. Consequently, the parameters which affecting the energy efficiency
and the energy consumption of the vehicle should be known and integrated into the controller design.
Thus, an open-loop sensitivity analysis is presented in this chapter to analyze the proposed vehicle model
systematically and to extract the information on which parameters should be integrated into the con-
troller design. In this open-loop setup, the vehicle model is simulated using the fixed velocity profiles on
each of the four drive cycles which represents the driving behavior of a human driver as already outlined
in Section 5.2.

For the sensitivity analysis at first, the PDFs for the investigated parameters need to be defined. Af-
terwards, a Morris screening is performed to separate influential from non-influential parameters and
to determine the parameter set for the subsequent variance-based sensitivity analysis. The generalized
Sobol indices are estimated and the convergence is proven and outlined using the law of big numbers and
bootstrap resampling. Correspondingly, the results of the open-loop analysis are presented and the most
influential parameters are discussed. At least, the influences of uncertain PDF definitions on the outputs
of interest are investigated.

6.1 Definition of the Input Parameter Distributions

To analyze the parameter dependencies using a sensitivity analysis, the distributions of the input param-
eters, using their corresponding PDFs, need to be defined. The analyzed parameters can be divided into
four categories for the open-loop sensitivity analysis: Battery, inverter, drive, and vehicle. The type of
parameter uncertainty is divided into two classes: Absolute and relative errors. Absolute errors inject
the new parameter value of their corresponding PDF sample directly to the parameter itself, e.g.,

Ppto ∼ U(a, b), (6.1)

for the change in the power demand of the auxiliary consumers. In contrast, relative errors inject only
a relative deviation of the corresponding parameters, which are denoted in the following with e(·) where
the dot indicates the parameter that is affected relatively. The relative deviation of the battery series
resistance Rs,b, for example, can be expressed by

eRs,b
= (1 + εr)Rs,b with εr ∼ N (µ, σ2) (6.2)

with eRs,b
describing the relative variation caused by the drawn sample value εr of its corresponding PDF.

The investigated parameters of the open-loop analysis are outlined in Table 6.1 and will be discussed in
the following.

79
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Table 6.1: Distributions of parameters for the open-loop sensitivity analysis.
Name Description Type of

error
Distribution Parameter Values Units

B
at

te
ry

eRs,b Deviation of series resistance Rs relative Normal µ, σ 0, 0.05/3 −

eC1 Deviation of capacitance C1 relative Normal µ, σ 0, 0.05/3 −

eR1 Deviation of resistance R1 relative Normal µ, σ 0, 0.05/3 −

eC2 Deviation of capacitance C2 relative Normal µ, σ 0, 0.05/3 −

eR2 Deviation of resistance R2 relative Normal µ, σ 0, 0.05/3 −

euocv Deviation of open circuit voltage relative Normal µ, σ 0, 0.05/3 −

ϑb Variation of start temperature absolute Uniform a, b 20, 40 ◦C

Rthca Variation of thermal resistance Rthca absolute Normal µ, σ 2.6, 0.13/3 Ω

Rthct
Variation of thermal resistance Rthct

absolute Normal µ, σ 0.37, 0.02/3 Ω

Rthta
Variation of thermal resistance Rthta

absolute Normal µ, σ 1.05, 0.05/3 Ω

Cc Variation of thermal capacitance Cc absolute Normal µ, σ 2544.2, 127.21/3 F

Ct Variation of thermal capacitance Ct absolute Normal µ, σ 8.072, 3.4/3 F

In
ve

rt
er

eat Deviation of forward characteristics IGBT
relative Normal µ, σ 0, 0.05/3 −

ebt
relative Normal µ, σ 0, 0.05/3 −

ead Deviation of forward characteristics diode
relative Normal µ, σ 0, 0.05/3 −

ebd
relative Normal µ, σ 0, 0.05/3 −

eaErr Deviation of reverse recovery
characteristics diode

relative Normal µ, σ 0, 0.05/3 −

ebErr
relative Normal µ, σ 0, 0.05/3 −

ecErr
relative Normal µ, σ 0, 0.05/3 −

eaEon

Deviation of turn on losses IGBT
relative Normal µ, σ 0, 0.05/3 −

ebEon
relative Normal µ, σ 0, 0.05/3 −

ecEon
relative Normal µ, σ 0, 0.05/3 −

eaEoff

Deviation of turn off losses IGBT
relative Normal µ, σ 0, 0.05/3 −

ebEoff
relative Normal µ, σ 0, 0.05/3 −

ecEoff
relative Normal µ, σ 0, 0.05/3 −

ϑw,in Variation of water inlet temperature absolute Uniform a, b 0, 60 ◦C

D
ri

ve

eRs,EM Deviation of winding resistance Rs relative Normal µ, σ 0, 0.03/3 −

eLd
Deviation of direct inductance Ld relative Normal µ, σ 0, 0.0133/3 −

eLq Deviation of quadrature inductance Lq relative Normal µ, σ 0, 0.015/3 −

eΨpm Deviation of magnetic flux Ψpm relative Normal µ, σ 0, 0.025/3 −

eξq Deviation of quadrature iron losses ξq relative Normal µ, σ 0, 0.05/3 −

eξd
Deviation of direct iron losses ξd relative Normal µ, σ 0, 0.05/3 −

ϑro Variation of rotor temperature ϑro absolute Uniform a, b 40, 80 ◦C

ϑst Variation of stator temperature ϑst absolute Uniform a, b 40, 80 ◦C

V
eh

ic
le mv Variation of the vehicle mass absolute Birnbaum–Saunders β, γ 652.11, 0.074 kg

Ppto Variation of auxiliary consumers absolute Uniform a, b 250, 750 W

ϑa Variation of ambient temperature absolute Normal µ, σ 12.26, 8.53 ◦C

pair Variation of ambient pressure absolute Normal µ, σ 98427.7, 843.09 Pa

cr Variation of rolling resistance absolute Uniform a, b 0.01, 0.015 −

In general, all parameters which are available in the vehicle model of Chapter 5 and are influenceable
due to fluctuations in the production or during operation of the vehicle are investigated in the open-loop
analysis. Parameter deviations caused by physical effects such as measurement errors or production vari-
ations are assumed to be Gaussian distributed which is a legitimate assumption since physical processes
whose real PDFs are unknown usually converge to a normal distribution due to the central limit theo-
rem [186, 187]. Because manufacturers of components mainly specify only the maximum errors of their
products in the datasheets, these errors are treated in the PDFs as 3σ values, ensuring that 99.7 % of
the samples lie inside the defined maximum error. Since the cooling circuit of the vehicle was not finally
defined during this thesis, all component temperatures are treated independently. However, this opens
the possibility of considering the influences of the component temperatures separately.

The battery model is examined regarding the parameters of the equivalent electric circuit model, the
thermal model parameters and the battery temperature at the start of the corresponding drive cycle.
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As shown in Table 6.1, all battery parameters, except the battery start temperature, are assumed to be
Gaussian distributed. The 3σ values of these parameters are set to 5 % according to assumed production
fluctuations of the battery. The battery start temperature depends highly on the ambient and operating
conditions of the vehicle. It can be influenced, for example, by parking the vehicle outside or in a garage
or by the produced waste heat while charging the battery and is assumed to be uniformly distributed.

The inverter parameters consist of the conduction and switching loss parameters of the IGBTs and
the diodes, as well as the water inlet temperature of the component. Similarly, as for the battery param-
eters, the inverter parameters are modeled with Gaussian distributions and 3σ = 5 % due to production
fluctuations. The water inlet temperature depends on the cooling cycle layout and the available cooling
power. However, as mentioned above, the cooling cycle was not finally defined during this thesis. Thus,
the water inlet temperature distribution is assumed to be uniformly distributed, where the upper limit
is defined by the maximum allowed water inlet temperature of the inverter manufacturer.

The drive parameters of the EMRAX 188 consist of the electrical equivalent circuit parameters, in-
cluding iron losses and the temperatures of the stator and the rotor of the drive. A similar examination
of a drive system but focusing on the torque accuracy of a PMSM has already been done in previous
works [13,81] where the distributions of the drive parameters are examined using Finite Element Method
(FEM) simulations. However, as the EMRAX 188 drive used in the proTRon Evolution is a purchased
part, no details regarding the used magnet material or the internal geometry of the magnetic paths are
available. Thus, a detailed examination of the machine parameter dependencies as done in [13, 81] is
impossible. Therefore, the proposed parameter distributions of these works are also used in this thesis to
describe the electrical parameter distributions of the drive. As for the inverter, the rotor and the stator
temperatures are assumed to be uniformly distributed.

Parameters that influence the longitudinal motion at the vehicle level are summarized in Table 6.1 in the
vehicle section. They consist of the variation in the mass of the vehicle, the power demand of the auxiliary
consumers, the ambient temperature, the ambient pressure and the rolling resistance. The vehicle mass
is composed of the vehicle tare weight and the occupants in the vehicle. In [188], the occupancy rate
of vehicles in Germany was investigated. This investigation is used to estimate the distribution of the
vehicle mass with 550 kg tare weight and an additional weight corresponding to the occupation of the
vehicle with an assumed occupant weight of 70 kg. The resulting distribution can be estimated with a
Birnbaum-Saunders distribution with the parameters outlined in Table 6.1. The auxiliary power demand
is not known in the actual development phase of the vehicle. But as the energy efficiency is the most
important development goal of the project and the vehicle will not have many auxiliary consumers, the
auxiliary power is assumed to be uniformly distributed in the interval [250 W, 750 W], which is lower as,
e.g., in [10]. The remaining parameters of the vehicle are affected by environmental conditions, which
are mostly the influence of the weather that will cause variations in the ambient temperature ϑa and the
air pressure pair. Furthermore, it affects the rolling resistance cr whether the road surface is dry or wet.
The environmental parameters ϑa and pair are modeled using data from the German Weather Service
for one year, from 30/6/2020 to 30/6/2021 and from 6 am to 8 pm per day at the weather station Trier
Petrisberg. For the temperature evaluation, data set [189] is used. It consists of temperatures measured
2 m above ground in a 10 min interval. The air pressure is evaluated using data set [190], which contains
the air pressure on station height sampled in a 1 h interval. Figure 6.1 outlines the histograms for the
ambient temperature and air pressure data and their Gaussian distribution fits, which are used for the
sensitivity analysis. The rolling resistance distribution is defined according to [191] where it is stated
that the rolling resistance increases up to 60 % when the condition changes from a dry to a wet surface.
However, the exact change in the rolling resistance depends also on the tire type. To the author’s best
knowledge, no exact values are known for the used tires of the proTRon Evolution. Thus, a maximum
increase of 50 % of the nominal rolling resistance coefficient cr = 0.01 of a dry surface to cr = 0.015 for a
wet surface is assumed.
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(a) Distribution of the ambient temperature ϑa (b) Distribution of the ambient air pressure pair

Figure 6.1: Histograms and their fit to a Gaussian distribution of the environmental parameters
based on the data of the German Weather Service [189,190].

6.2 Morris Screening
The first step in the open-loop analysis is to perform a Morris screening to distinguish important from
unimportant parameters. This is necessary to reduce the number of parameters used in the variance-
based sensitivity analysis to achieve reasonable computation times. The Morris screening is performed
for the four drive cycles presented in Section 5.2. Since the study aims to analyze the energy consumption
of the vehicle, the battery energy required in a drive cycle Eb and the power losses of the powertrain Pl

are considered in the further analysis.

The parameter input space is discretized with p = 4 and a step size of ∆ = 2/3 is chosen. As recom-
mended in [95–97], r = 10 trajectories are simulated. This setup leads to a total number of simulations
for the Morris screening and the investigated parameters of Table 6.1 of Nm = r(k+1) = 10(39+1) = 400.

The results of the Morris screening for the four drive cycles regarding the consumed battery energy
Eb are outlined in Figure 6.2. Similarly, the power losses of the powertrain Pl are depicted in Figure 6.3.
Since the Morris screening is only a qualitative method, the absolute values of µ∗ and σ are not essential.
To obtain valuable information about the relation of parameters and their interactions, the relative rela-
tion between µ∗ and σ is more interesting. For the consumed battery energy Eb in Figure 6.2, statement
σ ≪ µ∗ holds for all parameters. It indicates a mostly linear dependency between the analyzed parame-
ters. Thus, it can be said that the parameters with high values of µ∗ affect the consumed battery energy
most but probably do not interact with other parameters. In contrast, Figure 6.3 outlines that interac-
tions between parameters of the output Pl can be assumed since µ∗ ≈ σ holds for most of the parameters.

Furthermore, Figures 6.2 and 6.3 outline that only a few of the investigated parameters have high values
of µ∗ and σ in relation to the other studied parameters. Consequently, only these parameters need to be
considered for the open-loop variance-based sensitivity analysis and thus, an extensive parameter reduc-
tion can be performed. It needs to be mentioned that the Morris screening serves only as a qualitative
rating of the parameter importance. Because of the small number of trajectories with r = 10 used for the
screening, the ranking of the importance of parameters that are close to each other (see e.g. ϑa and ϑb

in Figure 6.2c) could be differ to the quantitative variance-based sensitivity analysis. Nevertheless, many
parameters can be identified as non-influential and excluded from the variance-based sensitivity analysis.
The remaining parameters are outlined in Table 6.2.
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(a) Drive cycle 1 (b) Drive cycle 2

(c) Drive cycle 3 (d) Drive cycle 4

Figure 6.2: Open-loop Morris screening for the consumed battery energy Eb

Table 6.2: Reduced parameter set for the open-loop variance-based sensitivity analysis.
Name Description Type of

error
Distribution Parameter Values Units

Battery euocv Deviation of open circuit
voltage

relative Normal µ, σ 0, 0.05/3 −

ϑb Variation of start temper-
ature

absolute Uniform a, b 20, 40 ◦C

Drive ϑro Variation of rotor temper-
ature ϑro

absolute Uniform a, b 40, 80 ◦C

Vehicle

mv Variation of the vehicle
mass

absolute Birnbaum–Saunders β, γ 652.11, 0.074 kg

Ppto Variation of auxiliary con-
sumers

absolute Uniform a, b 250, 750 W

ϑa Variation of ambient tem-
perature

absolute Normal µ, σ 12.26, 8.53 ◦C

pair Variation of ambient pres-
sure

absolute Normal µ, σ 98427.7, 843.09 Pa

cr Variation of rolling resis-
tance

absolute Uniform a, b 0.01, 0.015 −

Assuming a sample size for a variance-based sensitivity analysis of N = 5000, which will be proofed to
be sufficient in Section 6.3.1 for the open-loop analysis, the initial Morris screening significantly reduces
the computational effort. Calculating the sensitivity measures for all parameters from Table 6.1 would
require Ns = N(k + 2) = 5000(39 + 2) = 205000 simulation runs, whereas the reduced set of parameters
from Table 6.2 would require only Ns = N(k + 2) = 5000(8 + 2) = 50000 simulation runs. Therefore, the
reduced parameter set requires only a quarter of the resources without losing significance.
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(a) Drive cycle 1 (b) Drive cycle 2

(c) Drive cycle 3 (d) Drive cycle 4

Figure 6.3: Open-loop Morris screening for the total drive power losses Pl

6.3 Variance-Based Sensitivity Analysis
The variance-based sensitivity analysis for the open-loop setup is done for the reduced parameter set in
Table 6.2. As already outlined in Section 3.2.5, the calculated sensitivity measures using the estimators of
Jansen, Sobol and Saltelli need to be verified regarding their convergence and accuracy. Thus, besides of
presenting the results of the open-loop sensitivity analysis, the approximation accuracy of the estimators
will be presented and discussed in the following.

6.3.1 Evaluation of the Approximation Accuracy

The approximation error is evaluated using the methods presented in Section 3.2.5. Since the convergence
behavior depends not only on the sampling strategy and the used estimators but is also influenced by
the investigated system and the corresponding outputs, each of them need to be analyzed separately.
Furthermore, according to (3.26), the investigated model changes when another drive cycle is analyzed.
Consequently, the approximation accuracy of the estimated generalized first order effects ŜG

i and total
effects ŜG

Ti
need to be evaluated for different sample sizes N ∈ [100, 5000] for each of the drive cycles,

estimators and outputs of interest. Figures 6.4 and 6.5 outline the results of the estimators of the
generalized first order and total order indices for the consumed battery energy Eb for different sample
sizes.
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(a) Drive cycle 1 (b) Drive cycle 2

(c) Drive cycle 3 (d) Drive cycle 4

Figure 6.4: Generalized first order indices for different estimators and different sample sizes for
the open-loop variance-based sensitivity analysis of the consumed battery energy Eb.

In general, it can be seen that all estimators show convergence behavior according to the law of big
numbers if N tends to have higher sample sizes. The same statement also holds for the convergence
behavior of the estimates of the powertrain losses Pl, as outlined in Figures 6.6 and 6.7. However, it can
be seen that the estimators from Jansen, Saltelli and Sobol for the generalized first order indices show
clearly distinct convergence. The estimator from Sobol seems to have a bad convergence as the values
are not stabilizing even for larger sample sizes. The estimator of Saltelli behaves better than the Sobol
estimator but also shows unstable estimates. It can be clearly seen that the Jansen estimator shows
the fastest convergence for the first order effects. Also, for smaller sample sizes, the estimates from the
Jansen estimator do not vary much compared to the other estimators.
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(a) Drive cycle 1 (b) Drive cycle 2

(c) Drive cycle 3 (d) Drive cycle 4

Figure 6.5: Generalized total indices for different estimators and different sample sizes for the
open-loop variance-based sensitivity analysis of the consumed battery energy Eb.

Likewise, for the generalized total indices estimates, as shown in Figures 6.5 and 6.7, it can be clearly
seen that the Jansen estimator provides more stable estimates than the Saltelli estimator. Also, it is
worth mentioning that the driven drive cycle does not significantly impact the convergence.

However, plotting the sensitivity indices for different sample sizes provides only a qualitative assessment
of the convergence behavior but is not suitable for quantifying the convergence of the different estimators
and drive cycles. To overcome this issue, the scalar error measures, as outlined in (3.62) and (3.63),
are calculated and shown in Figure 6.8 for the consumed battery energy Eb and in Figure 6.9 for the
powertrain losses Pl. Furthermore, the maximum permissible error εmax = 0.01, according to (3.65), is
depicted as a quantitative convergence evaluation for different sample sizes N .

In general, the convergence errors εŜG
j

and εŜG
Tj

of the consumed battery energy Eb and the power-
train losses Pl show that the convergence error tends towards zero for higher sample sizes. However,
the first order estimates converge more slowly than the total order estimates. In addition, the different
drive cycles do not affect the convergence significantly. Thus, the choice of the correct estimator is more
crucial than the influence of the chosen drive cycle. Comparing the first order estimation errors of Eb

and Pl shows that the estimators for the power losses behave more equal than for the consumed battery
energy. It can be observed that the first order estimators of Sobol and Saltelli do not achieve the required
convergence error of εmax = 0.01 within the maximum sample size N = 5000.
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(a) Drive cycle 1 (b) Drive cycle 2

(c) Drive cycle 3 (d) Drive cycle 4

Figure 6.6: Generalized first order indices for different estimators and different sample sizes for
the open-loop variance-based sensitivity analysis of the powertrain losses Pl.

The Jansen estimator clearly outperforms the other estimators and reaches the predefined convergence
error goal. For the total order estimators, it is evident that the Jansen estimator is also far superior com-
pared to the Saltelli estimator for both outputs. The Jansen estimator also provides reasonable estimates
of the generalized total order indices for small sample sizes. This analysis clearly shows that the Jansen
estimators for the first order and total indices are superior compared to the other investigated estimators
for the open-loop analysis.

The above-discussed convergence errors provide a good quantitative scalar measure to compare the es-
timators against each other. However, to quantify the accuracy of each estimated parameter also the
confidence intervals for each parameter of the first order and total effects are calculated using bootstrap
resampling (see Section 3.2.5). For the open-loop analysis, the bootstrap samples of size Nb = 5000 are
drawn randomly B = 50 times. Using these bootstrap resamples, the 95 % confidence intervals are calcu-
lated for the estimators and outlined as red error bars in the sensitivity analysis results in Figures 6.10
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and 6.12.

(a) Drive cycle 1 (b) Drive cycle 2

(c) Drive cycle 3 (d) Drive cycle 4

Figure 6.7: Generalized total indices for different estimators and different sample sizes for the
open-loop variance-based sensitivity analysis of the powertrain losses Pl.

(a) First order effects εŜG
j

(b) Total effects εŜG
Tj

Figure 6.8: Convergence error of the first order and total generalized Sobol indices for the con-
sumed battery energy Eb.

With the information provided by the scalar error measurements εŜG
j

and εŜG
Tj

and the bootstrap resam-
pling, the performance of the estimators and their estimation accuracy are quantified. It has been proven
that the Jansen estimators provide sufficient sensitivity estimates for the open-loop sensitivity analysis.
Thus, only the results of the Jansen estimators are presented in the following.
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(a) First order effects εŜG
j

(b) Total effects εŜG
Tj

Figure 6.9: Convergence error of the first order and total generalized Sobol indices for the total
powertrain losses Pl.

6.3.2 Sensitivity Analysis Results

The variance-based sensitivity analysis results using the reduced parameter set of Table 6.2 for the con-
sumed battery energy Eb are outlined in Figure 6.10. To better understand and compare the four different
drive cycles, Figure 6.11 additionally depicts the trajectories in the powertrain efficiency map and the
distributions of the vehicle speed vego and the applied torque Mem of the manually driven drive cycles
for nominal parameter values. From Figure 6.10a, it can be seen that the average energy consumption
is different for the four investigated drive cycles. This is expected since the four drive cycles have dif-
ferent lengths and route profiles. Drive cycle 3 has the lowest average energy consumption as it is the
shortest drive cycle with a primarily flat route profile and low average velocities, as Figure 6.11c shows.
Drive cycle 2 has the highest average energy consumption, which is reasonable because it consists of the
longest driven route with a distinct slope profile. Furthermore, according to Figure 6.11b, it was driven
with the highest average velocity compared to the other drive cycles. Drive cycle 1 and drive cycle 4
have approximately the same average energy consumption. Since drive cycle 1 is longer and has a hillier
slope profile, it could be expected that the average energy consumption should be higher than for drive
cycle 4. However, drive cycle 4 consists in contrast to the other drive cycles of a highway section and
thus has a higher average speed than drive cycle 1. This leads to higher energy consumption despite a
shorter distance. Furthermore, it is evident that the examined parameters cause significant variance in
the required battery energy.

As shown in Figure 6.10d,
∑

ŜG
i ≈

∑
ŜG

Ti
holds for all four drive cycles, which indicates a linear param-

eter dependency of the investigated parameters on the output Eb. This coincides with the results of the
qualitative Morris screening shown in Figure 6.2. It proves the assumption that in the case of σ ≪ µ∗,
no interaction effects between parameters exist for the consumed battery energy.

Comparing the generalized first order and total order effects of Figures 6.10b and 6.10c, it can be outlined
that ŜG

i ≈ ŜG
Ti

holds, which indicates that the first order and total effects are nearly equal. Furthermore,
the 95 % confidence intervals are outlined in these figures as red error bars. The confidence of the ap-
proximation is much better for the total effects rather than the first order effects, which coincides with
the convergence errors outlined in Figure 6.8. Since the first order and total order effects are equal for
the output Eb, it is sufficient to analyze only the more confident total effects.

The generalized total order effects ŜG
Ti

outline that only a few parameters are responsible for the variance
of the drive cycles shown in Figure 6.10a. The variation of the vehicle mass mv, the rolling resistance cr,
the auxiliary consumers Ppto and the battery temperature ϑb are the four dominant parameters in this
open-loop setup. The share of the vehicle mass deviation on the consumed battery energy is higher for
drive cycles 1 and 2 than for drive cycles 3 and 4. The difference can be explained by the longitudinal
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(a) Histograms (b) First-order effects with 95 % confidence interval

(c) Total effects with 95 % confidence interval (d) Sum of effects

Figure 6.10: Generalized Sobol indices and histograms for the consumed battery energy Eb.

motion forces acting on the vehicle. Since the acceleration resistance force Fa acting on the vehicle be-
haves equally in all four drive cycles, the rolling resistance force Fr and the slope resistance force Fs are
influenced by the slopes of the drive cycles. This results in different powertrain working points according
to the mass distribution and the slope profile of the drive cycles. Consequently, since drive cycles 1 and
2 consist of the most volatile slope profile, the change in mass has the highest effect compared to the less
hilly drive cycle 3 whereas the impact caused by the mass change is the smallest in drive cycle 4 as it is
nearly flat.

The ranking of the remaining parameters can be explained by considering the required battery power
during driving

Pb = Pa + Pr + Ps + Pair︸ ︷︷ ︸
driving resistances

+ Ppto︸︷︷︸
auxilliary power

+ Pl︸︷︷︸
powertrain losses

=vego[meq · aego + cr · mv · g · cos(α) + mv · g · sin(α) + 1
2cw · Av · ρair · v2

ego]

+ Ppto + Pl (6.3)

consisting of the driving resistances, as described in (5.1), the auxiliary power losses Ppto and the pow-
ertrain losses Pl. The driving resistance losses vary during driving according to the driven velocity and
the slope profile of the drive cycle. Also, the powertrain losses differ according to the demanded power
of the actual vehicle speed and slope and the efficiency of the powertrain. Only the auxiliary power is
assumed to be constant during driving. Consequently, the dependence of the auxiliary power on the
variance of Eb is influenced by the driving time relative to the energy consumption caused by the driving
resistances and the powertrain losses. Thus, it is evident that the auxiliary power demand in drive cycle
3 has the most significant influence on the required battery energy compared to the other drive cycles
since the total consumption in this driving cycle is the lowest. The more significant impact of drive cycle
1 than drive cycle 4, even though their energy consumption is almost identical, can be explained by the
different driving times, as shown in Table 6.3. Since the driving time of drive cycle 1 is significantly



6.3 Variance-Based Sensitivity Analysis 91

(a) Drive cycle 1 (b) Drive cycle 2

(c) Drive cycle 3 (d) Drive cycle 4

Figure 6.11: Trajectories of the manually driven drive cycles for nominal parameter values in the
powertrain efficiency map ηpt. The boxplots on the axes outline the distribution of
the vehicle speed vego and the output shaft torque Mem of one drive.

higher compared to drive cycle 4, the energy demand of the auxiliary consumers is higher than in drive
cycle 4. Therefore, a variation of the required power of the auxiliary consumers impacts the variance of
the required battery energy even more. Since the energy consumption and the driving time of drive cycle
2 are the largest, it is obvious that the auxiliary consumer power consumption variation has the lowest
influence compared to the other drive cycles.

The total order effects for ϑb behave nearly similar except for drive cycle 3. Since the battery tem-
perature impacts the internal resistances of the equivalent circuit model (see (5.14) and (5.15)), the
powertrain losses of (6.3) will vary when the battery temperature changes. However, as drive cycle 3
consists of low average velocities and an almost flat route profile, the average power losses are small com-
pared to the other drive cycles (see Figure 6.12a). Therefore, the battery current is also correspondingly
lower. The battery losses are proportional to i2

b and therefore disproportionately lower than in the other
driving cycles, which is reflected in a lower influence of the battery temperature.

From the total order effects, it can also be seen that the ambient temperature ϑair influences the needed
battery energy, which is caused by influencing Pair of (6.3). Nevertheless, it can be seen that the impact
of the ambient temperature is relatively small compared to the other parameters discussed above.

The results of the second output of interest, the overall powertrain losses Pl, are shown in Figure 6.12.
Figure 6.12a outlines that the investigated parameters and their distributions cause significant variance in
the power losses for each drive cycle. Furthermore, it can be seen that the distributions are not normally
distributed but are skewed to the right. Figure 6.12d depicts that

∑
ŜG

i ̸=
∑

ŜG
Ti

holds for all drive
cycles, indicating the presence of nonlinear or interaction effects between parameters. This underpins
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Table 6.3: Driving times and energy consumption for the four drive cycles with nominal param-
eter values as outlined in Appendix B.

Drive cycle Energy consumption Driving time

1 4.29 kWh 53.53 min

2 6.33 kWh 56.28 min

3 2.14 kWh 33.99 min

4 4.36 kWh 39.07 min

the assumption of the open-loop Morris screening, as outlined in Figure 6.3, of the presence of nonlinear
effects since µ∗ ≈ σ holds for most of the investigated parameters in the Morris screening. It can be
observed that the non-linearity is more distinct for drive cycles 1 and 2 than for drive cycles 3 or 4.
However, as the calculation of driving losses, as described in Section 5.1, is not trivial and is subject

(a) Histograms (b) First order effects with 95 % confidence interval

(c) Total effects with 95 % confidence interval (d) Sum of effects

Figure 6.12: Generalized Sobol indices and histograms for the total drive power losses Pl.

to many different influencing factors, it is impossible to make a general statement on the cause of the
differences in the driving cycles. It can be assumed that the hilly road gradient profile of drive cycles 1
and 2 and the associated shift in the operating points of the powertrain emphasize nonlinear effects more
than in drive cycles 3 and 4.

In contrast to the consumed battery energy, only the parameters mv and ϑb are dominant, which can be
seen from the generalized first order effects as well as the total order effects. Both parameters are also
affected by nonlinear effects, which can be seen since ŜG

i ̸= ŜG
Ti

holds for both parameters for drive cycles
1 and 2. Nevertheless, from Figure 6.12d, it can be inferred that approximately 80 % of the variance
is caused by first order and the remaining variance by nonlinear effects. Thus, considering mv and ϑb
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independently can still strongly influence the power losses Pl.

6.3.3 Influence of Changes in the PDFs

The outcome of a sensitivity analysis is influenced by the stimulating PDFs in the MC simulations. Thus,
the effect of changing the distribution of the most influential parameters is investigated in this section. To
analyze how sensitive the open-loop analysis reacts to changes in the corresponding PDFs, the open-loop
sensitivity analysis is repeated with the new setting as outlined in Table 6.4. The changed parameters

Table 6.4: Changed PDF setting for analyzing the influence of different distributions on the
results of the open-loop variance-based sensitivity analysis. The changed parameters
of Table 6.2 are marked in red.

Name Description Type of
error

Distribution Parameter Values Units

Battery euocv Deviation of open circuit
voltage

relative Normal µ, σ 0, 0.05/3 −

ϑb Variation of start temper-
ature

absolute Normal µ, σ 30, 10/3 ◦C

Drive ϑro Variation of rotor temper-
ature ϑro

absolute Uniform a, b 40, 80 ◦C

Vehicle

mv Variation of the vehicle
mass

absolute Birnbaum–Saunders β, γ 652.11, 0.074 kg

Ppto Variation of auxiliary con-
sumers

absolute Normal µ, σ 500, 250/3 W

ϑa Variation of ambient tem-
perature

absolute Normal µ, σ 12.26, 8.53 ◦C

pair Variation of ambient pres-
sure

absolute Normal µ, σ 98427.7, 843.09 Pa

cr Variation of rolling resis-
tance

absolute Normal µ, σ 0.0125, 0.0025/3 −

correspond to the parameters with the most significant influences. However, only the parameters for
which no data are available for an exact determination of the distribution densities were selected. There-
fore, the mass of the vehicle mv is not considered at this point. The distributions of the investigated
parameters are changed from uniform to normal distributions while retaining the same mean values as
in the uniform distributions. Furthermore, the lower and upper bounds of the uniform distributions are
set to the 3σ bounds in the normal distributions.

The results of the open-loop sensitivity analysis with the changed distributions are outlined in Fig-
ure 6.13 for the consumed battery energy Eb and in Figure 6.14 for the powertrain losses Pl. Comparing
the histograms of Figures 6.10a and 6.13a, there could be only a slight change in the variance observed.
Consequently, the change of the PDFs does not have a significant impact on the variance of Eb. However,
it can be seen from Figures 6.10b and 6.13b that the ranking of the Sobol indices has changed as the
influences of ϑb, cr and Ppto are smaller compared to the original setup. This is reasonable because the
distributions of ϑb, cr and Ppto have been changed from uniform to normal distributions. This leads
to a smaller number of outliers and extreme values near the limit of the distribution density function.
Despite this significant change in the exciting distribution densities and the associated changes in the
Sobol indices, it is still possible to separate the most influential parameters from the others. Only their
order has changed slightly and none of the less important parameters have become dominant. Therefore,
the sensitivity analysis can provide meaningful results for the output Eb even if the distribution densities
are not precisely defined due to missing data.

The variance of Pl is more influenced than for Eb. Especially the skewing of the distribution is not
so distinctive in Figure 6.14a as in Figure 6.12a. Furthermore, it can be outlined that the variance with
the changed parameter set is a bit smaller than for the original parameter set.
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(a) Histograms (b) First order effects with 95 % confidence interval

(c) Total effects with 95 % confidence interval (d) Sum of effects

Figure 6.13: Generalized Sobol indices and histograms for the consumed battery energy Eb for
the changed distributions according to Table 6.4.

(a) Histograms (b) First order effects with 95 % confidence interval

(c) Total effects with 95 % confidence interval (d) Sum of effects

Figure 6.14: Generalized Sobol indices and histograms for the total drive power losses Pl for the
changed distributions according to Table 6.4.

It can be assumed that the change to normal distributions reduces the average losses because the marginal
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areas of the examined parameters are weighted less. Thus, unfavorable operating conditions are avoided
more. Furthermore, it can be seen that the change in distribution densities has no significant effect
on the model properties when comparing Figures 6.12d and 6.14d. Comparing the first order effects in
Figures 6.12b and 6.14b, it can be seen that only the weighting of mv and ϑb changed and the dominant
parameters remain also clearly distinguishable for the output Pl.

6.4 Conclusions
In this chapter, the complex simulation model of the BEV on predefined drive cycles has been analyzed
using the proposed sensitivity analysis methods Morris screening and generalized Sobol indices. In the
first step, the PDFs of the 39 investigated parameters were defined. Next, a Morris screening was per-
formed to reduce the computational cost of a variance-based sensitivity analysis. The influential from the
non-influential parameters were separated, which resulted in a reduced parameter set for the variance-
based sensitivity analysis. Consequently, the calculation time for the variance-based sensitivity analysis
has been reduced by a factor of four.

The variance-based sensitivity analysis has been performed for the consumed battery energy Eb and
the powertrain losses Pl using generalized Sobol indices as they consider the temporal dependency of
technical processes. However, since the Sobol indices are determined using MC simulations, they need
to be estimated. The convergence of the estimators depends on the sample size used in the MC simula-
tion. Thus, the convergence has been proven using the two proposed methods of Chapter 3 based on the
law of big numbers for computing the scalar convergence measures and using bootstrap resampling for
calculating the confidence intervals. Accordingly, the chosen sample size of N = 5000 was suitable for
providing reliable sensitivity analysis calculations.

Based on these analyses, it has been outlined that the investigated parameters cause significant vari-
ances in the examined outputs Eb and Pl. However, it has been shown that only a small subset of the 39
investigated parameters, consisting of the vehicle mass mv, the battery temperature ϑb, the rolling resis-
tance coefficient cr and the auxiliary consumer power Ppto, are responsible for the variance of the outputs.

Since the type and shape of the PDFs influence the output of the sensitivity analysis and for the deter-
mination of several PDFs has been no data available, the influence of such blurred distribution has also
been investigated in this chapter. It has been shown that the change in the PDFs of the most influential
parameters has a significant effect and would cause the ranking of the parameters to change. However,
it is still possible to separate the most influential from the non-influential parameters.

The investigations in this chapter serve as valuable insights into model dependencies and are used in
the next chapter to design a controller which is capable of recognizing the most important parameters
and is robust against parameter changes.





7 Model Predictive Energy-Efficient
Longitudinal Control

The controller design of an MPC is subject to many degrees of freedom but also some constraints depend-
ing on the chosen implementation. However, the main advantage of predicting a model and considering
constraints in the optimization problem is common to all designs. They all include the definition of a
prediction model, a cost function with the corresponding weight factors, the consideration of constraints
as well as the proper choice of a prediction horizon. However, the choice of the type of optimization
problem, whether it is a convex or non-convex optimization, highly affects the complexity and the effort
to solve the problem. This leads to a design conflict between the accuracy of the prediction model and
the real-time capability of the controller. Consequently, the MPC should be designed carefully to achieve
an acceptable compromise between these contrary design goals.

To prevent the controller design from being based on intuition, the results from Chapter 6 are used
in the following to consider the most important influences of parameter variations in the controller de-
sign. Furthermore, as outlined in Chapter 5, the complex models serve as a basis for the well-founded
derivation of an appropriate prediction model. The resulting concept of an ENMPC presented in the fol-
lowing is moreover investigated regarding its performance in the second part of this chapter. Furthermore,
the real-time capability and the influence of different prediction horizon lengths are examined to ensure
practical applicability. In the literature often quadratic or convex optimization problems are outlined
to achieve real-time capability but with loss of accuracy in the prediction model. Therefore, the pro-
posed controller, which is generally a more complex approach, is compared to the quadratic optimization
problem approach from [48].

7.1 Economic NMPC Controller Design

In the following, the development of the ENMPC, including the prediction model, the cost function,
constraints and reference trajectory generation, is presented and discussed.

7.1.1 Prediction Model

To realize an energy-efficient longitudinal control of the BEV, the prediction model of the ENMPC should
contain all relevant loss information of the vehicle and the powertrain. However, including all details of
the models presented in Chapter 5 in the prediction model of the ENMPC will lead to a highly nonlinear
prediction model with a large number of states. Consequently, such a controller would not be real-time
capable and therefore unsuitable for practical application. Thus, a simplified prediction model is pre-
sented in the following, which requires only a few states and still considers all driving resistances and
powertrain losses.

MPCs use the prediction model to predict the future evolution of the state trajectory. Since the distance
traveled by the vehicle depends on the driven velocity, the maximum distance covered by the prediction
horizon varies with speed for a time-dependent prediction model. To obtain a prediction horizon of equal
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length and independent of speed, the prediction model presented here is not modeled time-dependent but
distance-dependent. Another important advantage of this domain change is that the route data, which
is usually provided as a function of the vehicle position by the map data provider, can be directly used
in the controller. The domain change is performed using the relation [24,27]

d
dt

= d
ds

ds

dt
= d

ds
v. (7.1)

Considering the results of the open-loop sensitivity analysis of Chapter 6, it could be outlined that the
energy consumption and the power losses of the vehicle are sensitive to changes in the vehicle mass mv

and the rolling resistance coefficient cr. Furthermore, the energy consumption is also significantly influ-
enced by variations in the battery temperature ϑb and the auxiliary power demand Ppto. Consequently,
the dependencies of mv, cr, ϑb and Ppto must be considered to be measurable or estimable inputs in the
prediction model. However, in addition to the results of the open-loop sensitivity analysis, which only
shows the sensitivity to parameter changes, the absolute shares of losses are also an important indicator
for establishing a meaningful prediction model. Figure 7.1 outlines the individual shares of the energy
consumption and power dissipation for static vehicle speeds and without slope influences for the nominal
simulation parameters, as outlined in Appendix B. To underpin the dependence on parameter changes

(a) Energy consumption (b) Power losses

Figure 7.1: Static energy consumption and power losses for the nominal simulation parameters
as outlined in Appendix B with α = 0◦.

of the most influenceable parameters, the shares of the energy consumption and power dissipation with
a more worse vehicle setup (ϑb = 10 ◦C, mv = 850 kg, cr = 0.015 and Ppto = 750 W) are outlined in
Figure 7.2. It can be clearly seen that the change of these parameters influences the energy consumption
significantly and causes an increase in the energy consumption, especially for higher velocities, up to 69 %.

It can also be determined that besides the vehicle’s driving resistances, the auxiliary power consumption,
the battery temperature and the different powertrain components contribute non-negligible to the energy
demand of the vehicle. Depending on the vehicle speed, the gearbox, drive and inverter losses cause up to
47 %. Since these components are not significantly influenced by changes in the parameters investigated
in the open-loop sensitivity analysis, they can be simply modeled using a lookup table approximation to
keep the prediction model simple. Furthermore, the time constants of these components are rather small
compared to the time constant of the driving resistances and thus such a quasi-static approximation is
valid.

In contrast, the battery dynamics are slow and have large time constants. From the investigated battery
parameters, as already outlined in Figure 5.13, the time constant τ1 = R1C1 lies between 0.7 s and 1.2 s
and the time constant τ2 = R2C2 lies between 50 s and 92 s, depending on the actual working point of
the battery. Due to this slow state evolution of the battery, the dynamics need to be considered in the
model. However, as seen in Figure 7.1 and Figure 7.2, the losses on R1 contribute only rarely to the
energy consumption. Thus, they will be neglected in the prediction model to achieve real-time capability
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(a) Energy consumption (b) Power losses

Figure 7.2: Static energy consumption and power losses for nominal simulation parameters α =
0◦ but changed the most influencable open-loop parameters to ϑb = 10 ◦C, mv =
850 kg, cr = 0.015 and Ppto = 750 W.

of the proposed ENMPC and only the dominant time constant τ2 is considered.

Nevertheless, investigating static operating points, as discussed above, does not fully cover the behavior
of the vehicle dynamics. In particular, the slow battery dynamics cannot be fully considered therein.
Furthermore, the operating points required for a change in vehicle speed caused by the acceleration re-
sistance force are not considered and the influence of the road gradient is neglected. Consequently, it is
of great interest to also analyze the loss shares in the four driving cycles. Since the total energy required
in the driving cycles is different, Figure 7.3 outlines the normalized loss energies for the four drive cycles
with the nominal simulation parameters. Furthermore, Figure 7.4 shows the normalized loss energies
with nominal simulation parameters but changed the most influenceable open-loop sensitivity analysis
parameters to ϑb = 10 ◦C, mv = 850 kg, cr = 0.015 and Ppto = 750 W. From these two Figures, it can
be outlined that the shares of the power losses are not entirely different compared to the static working
points. Furthermore, it shows the rise of battery losses and rolling resistance losses compared to the other
losses for the worse parameter setup in Figure 7.4. Another important finding is that the loss distributions
behave not that differently for the four different drive cycles. Only for drive cycle 3 a smaller amount of
the battery and air drag losses could be observed. This is reasonable since the average velocity of this
drive cycle is low and it has no distinct slope profile. Thus, the resulting low power demand on this drive
cycle causes lower battery currents and therefore, lower battery losses. Also, the lower velocity results in
fewer air drag losses.

The above-outlined investigations can now be used to formulate a suitable controller prediction model
which will cover all relevant loss mechanisms, parameter influences and system dynamics. At first, the
driving resistances have to be considered in the prediction model. Accordingly, the longitudinal motion
model, as described in Section 5.1.1, and the transformation (7.1) lead to

d
ds

vego =
Mc

ig

rw
− crmvg cos(α) − mvg sin(α) − 1

2 ρaircwAv2
ego

meqvego
, (7.2)

representing the distance-dependent velocity as the first state of the controller design.

To predict the energy consumption of the vehicle and to be able to penalize it in the cost function,
the consumed battery energy Eb is used as the second state. The state evolution is given by

d
ds

Eb = uocvibncell

vego
, (7.3)



100 7 Model Predictive Energy-Efficient Longitudinal Control

Figure 7.3: Normalized energy losses of the four drive cycles for the nominal simulation param-
eters.

where the open-circuit voltage uocv is assumed to be constant over the prediction horizon. The battery
current can be determined with

PDC(Mc, vego) + Ppto = ibncell(uocv − uRC − ibRs), (7.4)

using a battery equivalent circuit model with only one RC element, as explained above. Furthermore,
PDC(Mc, vego) denotes the DC-power requested by the inverters and Ppto outlines the power demand of
the auxiliary consumers. Solving the quadratic equation leads to

ib =ncell(uocv − uRC)
2Rsncell

−
√

−ncell(ncell(uRCuocv − u2
RC − u2

ocv) + 4Rs(Ppto + PDC(Mc, vego)))
2Rsncell

(7.5)

for the battery current.

To ensure real-time capability and thus, practical applicability of the controller, the complex and nonlin-
ear behavior of the drive and inverter is not transferred directly into the prediction model as this would
result in an overly complex controller design. Since the open-loop sensitivity analysis outlines that the
battery parameters are the only significantly affected powertrain parameters, the inverter and drive, as
well as the gearbox losses, can be modeled without considering parameter changes. Thus, the required
DC-power is modeled as a lookup table as outlined in Figure 7.5. To use the DC-power map efficiently,
it is approximated using a second-order polynomial of the form

PDC(Mc, vego) ≈ 227.2 − 1.12Mc + 60.04vego + 0.37M2
c + 20.67vegoMc + 1.21v2

ego, (7.6)

which will be used in the controller design.

The voltage drop uRC is calculated by

d
ds

uRC =
ib

C1,c
− uR1,c

C1,cR1,c

vego
, (7.7)

and serves as the third system state for the controller design. To keep the controller simple, the parame-
ters are assumed to be constant over the prediction horizon and only the dominant RC element consisting
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Figure 7.4: Normalized energy losses of the four drive cycles for the nominal simulation pa-
rameters but changed the most influencable open-loop parameters to ϑb = 10 ◦C,
mv = 850 kg, cr = 0.015 and Ppto = 750 W.

of R2 and C2 of the battery model is considered with R1,c = R2 and C1,c = C2.

According to (7.2)-(7.7), the nonlinear state-space model can be fully described by

d
ds


vego

Eb

uRC

 =


Mc

ig
rw

−crmvg cos(α)−mvg sin(α)− 1
2 ρaircwAv2

ego

meqvego

uocvibncell

vego

ib
C1,c

−
uR1,c

C1,cR1,c

vego

 , (7.8)

with

u = Mc = 2Mem (7.9)

as the control input.

7.1.2 Additional Constraints on the Optimization Problem

To stay within the limitations of the powertrain, further inequality constraints need to be included in the
optimization problem. The gearbox of each drive system at the rear wheels is designed for a maximum
engine torque of Mem = 30 Nm for driving as well as recuperation. Since the torque is equally distributed
to both rear-wheel drive systems, this leads to the inequality constraint

Mmin ≤ Mc(s) ≤ Mmax with s ∈ [0, Sp) (7.10)

with Mmin = −60 Nm and Mmax = 60 Nm.

In addition, the maximum applicable torque is limited according to the maximum battery current bound-
aries, especially for high speeds. As outlined in Section 5.1.2, the used batteries are capable of a maximum
of 120 A continuous battery current for charging and discharging. This maximum battery current leads
to a cut-off in the DC-power map PDC , which is shown in Figure 7.6. The limitation of the maximum
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Figure 7.5: DC-power map

Figure 7.6: DC-power map with battery current limitation

DC-power is achieved by an additional constraint on the control input Mc. It can be described as a linear
inequality constraint with

Mc(s) ≤ 97.01 − 2.173vego(s) with s ∈ [0, Sp), (7.11)

which indirectly considers the battery current limitation.

Furthermore, another constraint is introduced, which considers the maximum allowed speed depending
on the position and prevents exceeding it. Accordingly, it is introduced as a linear inequality constraint
by

vego(s) ≤ vmax,mpc(s) with s ∈ [0, Sp], (7.12)

with vmax,mpc as the maximum allowed speed. The determination of vmax,mpc will be presented in Sec-
tion 7.1.5.

In (7.8), the states consist of a singularity for vego = 0 m/s. To avoid this singularity, the vehicle
speed is also constrained on its lower bound. Furthermore, the optimization problem should be bounded
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to ensure solvability and stability [192], which leads to the constraints
5

−300000

−50

 ≤ x(s) ≤


vmax,mpc(s)

300000

50

 with s ∈ [0, Sp], (7.13)

including vmax,mpc(s) as an upper bound for the first system state of the prediction model.

7.1.3 Cost Function

In general, the cost function of an optimal control problem consists of two different terms. The term at
the end of the prediction horizon belongs only to the states of the prediction model x(Sp) and is called
the Mayer term. Furthermore, the states x and inputs u are considered continuously throughout the
prediction horizon in the Lagrange term [193]. The general cost function can then be described by

J(x, u) =
Sp∫
0

fint(x(s), u(s), s)︸ ︷︷ ︸
Lagrange term

ds + fSp(x(Sp), Sp)︸ ︷︷ ︸
Mayer term

(7.14)

for a distance-dependent prediction horizon, which will be minimized in the optimization problem where
fend and fint consists of the considered penalizations.

The control objective for the use case of energy-efficient driving includes contrary goals. The controller
should drive the vehicle in the most achievable energy-efficient way that is possible. However, penalizing
only the amount of needed energy in the cost function would lead to a controller driving very slowly to
avoid, e.g., a lot of air drag resistance. Consequently, the driving time would increase significantly, which
would not be accepted by the drivers. Therefore, also the deviation from the maximum allowed vehicle
speed vmax,mpc needs to be considered, which leads to the target cost function

J(x, u) =
Sp∫
0

[ac · (vego(s) − vmax,mpc(s))2 + bc · (Mc(s) − Mref (s))2]ds

+ cc · Eb(Sp) + dc · (vego(Sp) − vmax,mpc(Sp))2. (7.15)

In this economic cost function, the energy consumption during driving is considered using the penaliza-
tion factor cc of the consumed battery energy Eb at the end of the prediction horizon length Sp. The
tracking of the vehicle speed close to vmax,mpc is considered in the Lagrange as well as in the Mayer term
and is penalized by ac and dc.

A longitudinal motion controller of a vehicle requires to be comfortable, which means it should out-
put only smooth setpoint changes causing no high acceleration or jerk of the vehicle. Since an ENMPC
design incorporates not directly a smooth behavior of the control variable, the deviation of the control
variable Mc from the reference torque Mref in the Lagrange term is penalized, which leads to a smoother
and more comfortable controller behavior. The required reference torque is considered by calculating the
amount of torque that is needed to drive the vehicle at a constant speed and zero acceleration using the
longitudinal motion model of (7.2) which results into

Mref = rw

ig
(crmvg cos(α) + mvg sin(α) + 1

2ρaircwAv2
ego). (7.16)
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7.1.4 Summarized Optimization Problem

The complete optimization problem, considering the prediction model, the additional constraints and
the cost function, as described in the previous sections, is summarized in the following. The problem
formulation for the ENMPC, which is implemented in the simulation, is described by

min
Mc

Sp∫
0

[ac · (vego(s) − vmax,mpc(s))2 + bc · (Mc(s) − Mref (s))2]ds

+ cc · Eb(Sp) + dc · (vego(Sp) − vmax,mpc(Sp))2 (7.17a)

s.t. d
ds


vego

Eb

uRC

 =


Mc

ig
rw

−crmvg cos(α)−mvg sin(α)− 1
2 ρaircwAv2

ego

meqvego

uocvibncell

vego

ib
C1,c

−
uR1,c

C1,cR1,c

vego

 (7.17b)

x(0) = x0 (7.17c)
Mmin ≤ Mc(s) ≤ Mmax s ∈ [0, Sp) (7.17d)
Mc(s) ≤ 97.01 − 2.173vego(s) s ∈ [0, Sp) (7.17e)

5
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 ≤ x(s) ≤


vmax,mpc(s)

300000

50

 s ∈ [0, Sp], (7.17f)

which contains the cost function to be minimized and considers the nonlinear model and the inequality
constraints. Furthermore, the initial guess x(0) = x0 for the prediction and the constraints to bound the
optimization problem are included.

To implement this continuous formulated optimization problem, it is discretized using a fourth-order
Runge-Kutta algorithm with a prediction step size of 10 m. The ENMPC is implemented in the simulation
using the open-source frameworks CasADi [194] and acados [195, 196], containing the fast HPIPM [197]
solver for nonlinear optimization problems to achieve real-time capability. Since the length of the predic-
tion horizon highly affects the complexity and thus the computation time of the optimization problem,
the influence of different prediction horizon lengths for the proposed solution will be further investigated
and discussed in Section 7.2.3.

7.1.5 Speed Reference Generation

Besides the energy-efficient driving requirements, the constraint regarding the vehicle speed, as already
outlined in (7.12), must be considered by the controller. In the following, the determination of the max-
imum allowed vehicle speed vmax,mpc is presented.

Since the traffic in front of the vehicle is not considered in this thesis, two causes have left that influence
the maximum vehicle speed on a given route. First, the controller must obtain the legal speed limit vmax

to drive the vehicle inside the regulatory boundaries. The information on the maximum allowed vehicle
speed for a given route is provided by the map data provider as already outlined in Section 5.2.

The second boundary which needs to be considered is the maximum speed when driving a curve to
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avoid too high lateral accelerations and ensure safe driving. The average driving speed for a given curve
radius rc was investigated using field experiments with drivers of passenger cars in [198]. The resulting
relation between the curve radius and the average driven curve speed, considered as the maximum allowed
curve speed vl,max, is outlined in Figure 7.7. To ensure that both required speed limits are considered

Figure 7.7: Average driving speed in curves for a given curve radius rc based on field experiments
with drivers of passenger cars. According to [198]

in the constraint of the ENMPC, the easiest way would be to process them using a minimum operator.
However, this would lead to discontinuities in the reference trajectory and would make the optimization
problem harder to solve or, in some special cases, infeasible. For this reason, the reference trajectory is
smoothed using the discrete optimization problem [48]

min
vmax,mpc

Np∑
i=1

(vmax,ref (k + i|k) − vmax,mpc(k + i|k))2 (7.18a)

s.t. vmax,mpc(k + i + 1|k) − vmax,mpc(k + i|k) ≤ rmax ∀i ∈ {1, 2, . . . , Np} (7.18b)
vmax,mpc(k + i|k) ≤ vmax,ref (k + i|k) ∀i ∈ {1, 2, . . . , Np}. (7.18c)

The cost function (7.18a) of the optimization problem ensures that the maximum allowed velocity is
tracked closely. Furthermore, the constraint (7.18b) allows only a change in the optimization variable in
one prediction step of rmax and the constraint (7.18c) ensures that the optimization variable is always
smaller or equal to the maximum allowed vehicle speed. This optimization ensures a smooth evolution
even when the reference trajectories for the legal speed limit or the maximum allowed curve speed contain
discontinuities.

7.2 Simulations on the Closed-Loop Energy-Efficient
Longitudinal Control

It is essential to investigate the developed ENMPC regarding its performance and capability. To evaluate
the performance of the presented ENMPC, different scenarios and the reaction of the controller to them
are discussed in the following. First, the response of the controller to changes in the speed setpoint as well
as changes in the road gradient will be evaluated. Furthermore, the influence of the prediction horizon is
investigated. Finally, the performance of the controller in the four drive cycles is examined and compared
to the manually driven drive cycles.
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7.2.1 Reaction to Speed Setpoint Changes

The reference velocity, composed of the maximum allowed legal speed and the maximum allowed cur-
vature speed, plays a crucial role for a safe and legal longitudinal operation of the vehicle. Thus, the
reaction to speed setpoint changes plays an important role in the controller design. It needs to be ensured
that the controller will not overshoot the hard constraint of the maximum allowed speed and should also
transits smoothly from one velocity setpoint to the next.

In Figure 7.8, an artificial speed setpoint profile is given, which includes different speed setpoints vmax,ref ,
as well as rising and falling gradients of different heights.

Figure 7.8: Controller reaction to changes in the reference speed vmax,ref for different values of
the economic cost function tuning factor cc.

This profile is used to ensure the correct behavior of the presented controller. The reaction to the speed
setpoint changes is evaluated with a prediction horizon of Sp = 400 m and a discretization of 10 m.
Furthermore, the controller is assessed for four different values of the economic cost function parameter
cc. In general, it can be seen that the hard constraint is kept for rising as well as for falling gradients of
the speed setpoint. Especially for higher velocities, the influence of the economic cost function parameter
cc gets more visible. Higher values of cc result in a lower final speed of the vehicle to save energy.
Consequently, cc would also influence the driving time by additionally lowering the energy consumption
as the consumed battery energy Eb shows.
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Figure 7.9 shows an enlarged view of the velocity change to a higher velocity and the acceleration process
in the distance interval sego ∈ [2700 m, 3700 m].

Figure 7.9: Controller reaction to a positive change in the reference speed vmax,ref in the time
distance interval sego ∈ [2700 m, 3700 m] of Figure 7.8 for different values of the
economic cost function tuning factor cc.

Each of the four controller settings behaves very similarly regarding the applied torque profile Mc and
varies only in the height of the applied torque. This results in a lower final velocity of the controller
for higher values of cc. The lower final velocities are evident since the controller reduces the amount of
needed energy by driving slower and thus reducing the aerodynamic resistance of the vehicle. In general,
the controller generates a smooth torque setpoint profile which will lead to a comfortable driving behavior
without a lot of jerk and high accelerations. However, shortly before the reference speed change, a slight
chattering of the torque profile could be observed.

The enlarged view of the deceleration process for distance interval sego ∈ [5400 m, 6100 m] is shown in Fig-
ure 7.10. It is well illustrated that the reaction of the controller starts immediately as the speed setpoint
change gets visible at the end of the prediction horizon, independent of the cost function parameteriza-
tion. The evolution of the controller output Mc is nearly identical for the different parameterizations.
However, it is interesting to observe that the setting with ac = 15 needs the lowest braking torque since
the vehicle is already slower than in the other configurations at sego = 5600 m when the speed setpoint
change gets visible. In general, as well as for a rising speed setpoint, the controller output behaves pri-
marily smooth for the falling speed setpoint. However, in the controller output, chattering is also present.
Furthermore, it can be seen from the consumed battery energy Eb that the controller with ac = 15 has
consumed about 4 % less energy than the controller with ac = 0 at the end of this artificial drive cycle.



108 7 Model Predictive Energy-Efficient Longitudinal Control

Figure 7.10: Controller reaction to a negative change in the reference speed vmax,ref in the time
distance interval sego ∈ [5400 m, 6100 m] of Figure 7.8 for different values of the
economic cost function tuning factor cc.
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7.2.2 Reaction to Slope Changes

Slope changes in the driven route are disturbances that act on the controller during operation. Thus, the
controller should react appropriately to these disturbances in a comfortable manner for the passengers of
the vehicle and are investigated in the following using an artificial slope change profile. In the presented
controller design, the course of the slope is provided by the HERE map data and is known throughout
the prediction horizon.

Figure 7.11 outlines the controller behavior for the artificial slope change profile for four different settings
of the economic cost function tuning factor cc.

Figure 7.11: Controller reaction to changes in the road slope α for different values of the eco-
nomic cost function tuning factor cc.

The reaction to slope changes is evaluated with a prediction horizon of Sp = 400 m with a discretization of
10 m and the reference speed vmax,ref remains constant at 80 km/h. For ac = 0, the velocity is kept with a
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slight deviation from the reference velocity. The deviation grows when cc increases. This is obvious since,
as already discussed in the previous section, increasing economic penalization results in a slower driven
velocity to reduce the driving resistances. The rise in cc also leads to a less energy consumption Eb of
up to 6.7 % for the investigated values of cc. However, the lower velocity also causes a higher driving time.

Figure 7.12 outlines an enlarged view of the uphill slope in the distance interval sego ∈ [2000 m, 4100 m]
of the profile shown in Figure 7.11.

Figure 7.12: Controller reaction to an uphill slope of α in the distance interval sego ∈
[2000 m, 4100 m] of Figure 7.11 for different values of the economic cost function
tuning factor cc.

The four controller settings behave nearly similar for this uphill slope but with the aforementioned dif-
ference in velocity. However, only a slight change in velocity could be observed when the slope change
occurs since the controller smoothly adapts its applied torque to the new disturbance without significantly
affecting the velocity.
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The enlarged view of the downhill slope of the distance interval sego ∈ [4000 m, 6200 m] is outlined
in Figure 7.13.

Figure 7.13: Controller reaction to a downhill slope of α in the distance interval sego ∈
[4000 m, 6200 m] of Figure 7.11 for different values of the economic cost function
tuning factor cc.

For the downhill slope, the same disturbance suppression as for the uphill slope could be observed. As
the potential energy of the vehicle is converted to kinetic energy when driving downhill, the vehicle would
possibly accelerate beyond the legal speed limit. As this is modeled as a hard constraint in the controller
design, the controller reliably ensures that this constraint is kept. Furthermore, the controller shows a
smooth behavior in applying the torque to the powertrain of the vehicle.
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7.2.3 Reaction to Prediction Horizon Changes

The prediction horizon of an MPC is an important parameter and should be wisely chosen. If it is chosen
too small, the advantage of MPCs in adequately predicting the system behavior and generating a globally
optimal solution is severely limited. Consequently, in the proposed controller setup, the controller could
recognize slope and reference velocity changes too late and thus, no appropriate or optimal solution could
be provided. However, a larger prediction horizon leads to a more complex optimization problem and
therefore, to longer computation times which could jeopardize the real-time capability of the controller.
Thus, the influence of different prediction horizon lengths is presented and discussed in the following.

Figure 7.14 outlines the reaction of the controller to changes in the reference speed vmax,ref for dif-
ferent length of the prediction horizon between Sp = 100 m and Sp = 1500 m with a discretization of
10 m.

Figure 7.14: Controller reaction to changes in the reference speed vmax,ref for different prediction
horizon lengths Sp with a discretization of 10 m.

It can be clearly seen that higher prediction horizon lengths cause the controller to react earlier to the
speed reference changes. This is obvious as the controller recognizes the reference velocity changes earlier
if the prediction horizon is longer. However, Figure 7.14 also depicts that the trajectories for Sp ≥ 400 m
behave similarly so that a further increase of the prediction horizon shows no effect. In contrast, if the
prediction horizon is too small, which can be seen for Sp = 100 m and sego ≥ 6000 m, the controller
is not able to find a solution for the constrained optimization problem. This leads to undesired and
unpredictable behavior of the controller and should be avoided.
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Also, the influence of the prediction horizon on slope changes is further investigated and outlined in
Figure 7.15.

Figure 7.15: Controller reaction to changes in the road slope α for different prediction horizon
lengths Sp with a discretization of 10 m.

It is shown that the impact of different prediction horizons behaves similarly to speed setpoint changes.
It can be observed that the vehicle trajectories for Sp ≥ 400 m are nearly equal. Since only the speed
reference is modeled as a hard constraint in the controller design, short prediction horizons do not cause
infeasibility of the optimization problem during slope changes.

The artificial driving cycles analyzed above give a good idea of how the controller behaves in clearly
defined scenarios. However, also the impact of the prediction horizon on the controller performance re-
garding energy efficiency in the four drive cycles (see Section 5.2) needs to be analyzed. Furthermore, an
assessment of the real-time capability of the controller is still pending. To answer these questions, the four
drive cycles were simulated with the ENMPC using different prediction horizon lengths and their impact
on the energy consumption, the driving time and the computation time of the optimization problem was
investigated. The results are averaged over the four driving cycles and outlined in Figure 7.16, where the
ENMPC was solved using acados [196] within Matlab R2020a on an Intel Core i7-8550U processor with
a maximum frequency of 3.8 GHz.
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(a) Mean energy consumption (b) Mean computation time

(c) Mean driving time

Figure 7.16: Investigation of different prediction horizon lengths Sp on the controller perfor-
mance averaged over the four different drive cycles.

It is shown that the mean energy consumption and driving time converge to nearly constant values for
prediction horizons greater than 400 m. Furthermore, it can be seen that the mean computation time
increases not linearly with the prediction horizon length. Therefore, the prediction horizon should be
kept as small as possible to achieve real-time capability of the controller. Consequently, a prediction
horizon of 400 m is used throughout this thesis.

7.2.4 Controller Performance at the Drive Cycles

In the previous sections, the ENMPC has been presented and the performance has been evaluated using
artificial test profiles for slope and speed changes. At these cycles, it could be demonstrated that the
controller shows a suitable behavior for the use as an energy-efficient longitudinal controller for a BEV.
However, these profiles do not represent realistic use cases for the vehicle. Therefore, in this section the
controller performance driving the four drive cycles is evaluated using the nominal vehicle parameters
(see Appendix B) and the cost function parameters ac = 6, bc = 100, cc = 100 and dc = 15.

The resulting trajectories in the powertrain efficiency map, which were simulated closed-loop for each
drive cycle, are outlined in Figure 7.17. They also contain boxplots, which highlight the distributions of
the output shaft torque of one drive Mem and the velocity of the vehicle vego. In comparison with the
open-loop trajectories, as outlined in Figure 6.11, it can be generally seen that the amount of applied
torque by the ENMPC is lower than for the manually driven drive cycles. Furthermore, the closed-loop
trajectories are mostly do not reach the power envelope of the powertrain whereas the open-loop tra-
jectories, in particular for drive cycle 1, 2 and 4 are often close to the power envelope. Moreover, the
open-loop trajectories seem to be more randomly distributed as they are chosen manually by the driver
whereas for the closed-loop trajectories the ENMPC uses similarly paths if transitioning from one speed
setpoint to another. In particular, in the closed-loop trajectories of drive cycle 4 with an indistinct slope
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(a) Drive cycle 1 (b) Drive cycle 2

(c) Drive cycle 3 (d) Drive cycle 4

Figure 7.17: Closed-loop trajectories of the drive cycles for nominal parameter values in the
powertrain efficiency map ηpt. The boxplots on the axes outline the distribution of
the vehicle speed vego and the output shaft torque Mem of one drive.

profile, the similar transition paths gets visible.

Nevertheless, the trajectory profiles alone do not fully describe the controller behavior. Consequently, a
comparison of the manually driven and the ENMPC driven drive cycles is given in Table 7.1.It can be
seen that the proposed controller is capable of saving 5.1 % of energy on average by only increasing the
average driving time by 1.1 %. However, the amount of energy that can be saved and the variation in
driving time depends on the driven route and cannot be generalized. It can be seen that on hilly roads
(drive cycles 1 and 2), the highest energy saving potential exists but with an increase of the driving time
up to 8 %. In contrast, on the investigated routes with a less distinct slope profile (drive cycles 3 and
4), the energy-saving potential is more minor. Nevertheless, in drive cycle 4, the ENMPC is capable of
saving 3.7 % of energy by simultaneously reducing the driving time by 1.5 %. Only in drive cycle 3 the
ENMPC worsens the energy consumption by 1.4 % but reduces the driving time by 6.8 %.

The smooth behavior of the controller, which could already be observed in the artificial test profiles
in the previous sections, could also be validated for the investigated drive cycles. It can be clearly seen
that the maximum acceleration of the vehicle is significantly reduced to an average of 0.86 m/s2, which
is 57.7 % less compared to the manually driven routes. The same behavior could be observed for the
maximum deceleration of the vehicle, which is reduced to an average of −1.25 m/s2 and is 46.5 % lower
compared to manually driven routes.

As already seen in Figure 7.17, Table 7.1 also outlines a significant reduction of the maximum and
minimum applied torque of −21 % and −33.3 %, which underpins, together with the lower minimum and
maximum acceleration values, the smooth behavior of the proposed ENMPC.
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Table 7.1: Comparison of the manual driven (open-loop) and ENMPC (closed-loop) controller
regarding energy consumption, driving time, velocity, acceleration and applied torque.

Drive cycle

1 2 3 4 Average

Energy consumption

Manual 4.29 kWh 6.33 kWh 2.14 kWh 4.36 kWh 4.28 kWh

ENMPC 3.98 kWh 5.99 kWh 2.17 kWh 4.20 kWh 4.06 kWh

Change −7.2 % −5.3 % +1.4 % −3.7 % −5.1 %

Driving time

Manual 53.5 min 56.3 min 34.0 min 39.1 min 45.7 min

ENMPC 54.1 min 60.8 min 31.6 min 38.5 min 46.3 min

Change +1.1 % +8.0 % −6.8 % −1.5 % +1.1 %

Average velocity

Manual 46.79 km/h 61.80 km/h 45.42 km/h 61.02 km/h 53.76 km/h

ENMPC 46.29 km/h 57.20 km/h 48.83 km/h 61.89 km/h 53.55 km/h

Change −1.1 % −7.4 % +7.5 % +1.4 % +0.1 %

Maximum acceleration

Manual 2.25 m/s2 1.89 m/s2 1.91 m/s2 1.96 m/s2 2.00 m/s2

ENMPC 0.83 m/s2 0.93 m/s2 0.76 m/s2 0.93 m/s2 0.86 m/s2

Change −63.1 % −50.8 % −60.0 % −57.0 % −57.7 %

Minimum acceleration

Manual −2.43 m/s2 −2.34 m/s2 −1.95 m/s2 −2.48 m/s2 −2.30 m/s2

ENMPC −1.19 m/s2 −1.36 m/s2 −1.03 m/s2 −1.43 m/s2 −1.25 m/s2

Change −51.0 % −41.9 % −47.2 % −45.7 % −46.5 %

Maximum torque Mem

Manual 30.00 Nm 30.00 Nm 30.00 Nm 30.00 Nm 30.00 Nm

ENMPC 28.82 Nm 20.94 Nm 18.53 Nm 22.35 Nm 22.66 Nm

Change −3.9 % −30.2 % −25.5 % −24.5 % −21.0 %

Minimum torque Mem

Manual −28.07 Nm −30.00 Nm −23.18 Nm −30.00 Nm −27.81 Nm

ENMPC −20.48 Nm −24.83 Nm −10.85 Nm −15.40 Nm −17.89 Nm

Change −27.0 % −17.2 % −53.2 % −35.7 % −33.3 %
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7.2.5 Comparison of the Economic NMPC Approach With a Convex
Optimization Approach

Considering the battery dynamics in the presented controller concept has led to an ENMPC approach.
To reduce the complexity and achieve real-time capability, MPCs are often formulated using convex op-
timization, which leads to an LMPC design. For this reason, the ENMPC is compared with the LMPC
approach from Schwickart [48] which is summarized in the following and is adapted to the proTRon
Evolution test vehicle. For details beyond this summary, the reader is referred to [48].

For comparability with the presented ENMPC approach in (7.17), the optimization problem outlined
in [48] is reformulated in a continuous representation. Furthermore, the controller output is changed
from the longitudinal traction force acting on the body of the vehicle to the engine output shaft torque,
which results in an additional scaling in the prediction model. The optimization problem is described by

min
Mc(s),ucons(s)

Sp∫
0

[qs,s · (êkin(s) − êkin,ref (s))2 + rs,s · (Mc(s) − Mref (s))2]ds

+ le,s · Êbat(Sp) + q̄e,s · (êkin(Sp) − êkin,ref (Sp))2 (7.19a)

s.t.

d
ds

 êkin

Êbat

 =

Mc
ig

rw
− crmvg cos(α) − mvg sin(α) − ρaircwAêkin

meq

ucons

 (7.19b)

x(0) = x0 (7.19c)
0 ≤ êkin(s) s ∈ [0, Sp) (7.19d)
Mmin ≤ Mc(s) ≤ Mmax s ∈ [0, Sp) (7.19e)
Mc(s) ≤ g3êkin(s) + g4 s ∈ [0, Sp) (7.19f)
ucons(s) ≥ aj êkin(s) + bjMc(s) + cj ∀j ∈ {0, 1, . . . , 4} s ∈ [0, Sp). (7.19g)

Cost function (7.19a) is similar to the ENMPC cost function, which includes a penalty on the speed
reference, the consumed battery energy over the prediction horizon as well as a deviation from the
reference torque trajectory. However, the optimization considers an additional optimization variable
ucons which is used together with the second state of (7.19b) and the inequality constraint (7.19g)
to include a static power consumption map inside the optimization problem using the technique of
separable programming [199] to achieve a convex optimization problem formulation. In addition, the
optimization variable Mc is constraint using (7.19e) and (7.19f). The torque constraints are outlined in
Figure 7.18. They are adapted to the powertrain capabilities of the proTRon evolution. In Figure 7.18,
the maximum available torque for acceleration and deceleration is enclosed by the maximum power
envelopes for acceleration and deceleration and marked in blue and red. However, the two gearboxes of
the vehicle are only capable of transferring a maximum engine torque of 60 Nm in both directions, which is
denoted by (7.19e). Additionally, the power envelope for positive torques is approximated by (7.19f). The
generation of the kinetic energy reference êkin,ref is done in the same way as for the ENMPC described
in Section 7.1.5, where the reference speed is converted into a kinetic energy equivalent by

êkin,ref = 1
2meqv2

max,mpc. (7.20)

To compare the nominal controller behaviors of the ENMPC and the LMPC, the reactions of both
controllers on slope changes and reference speed changes are outlined in Figures 7.19 and 7.20, where the
cost function of the LMPC is parameterized
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Figure 7.18: Constraints of the optimization problem regarding to power limitations.

Figure 7.19: Controller reaction to changes in the road slope α for different prediction horizon
lengths Sp with a discretization of 10 m.
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with qs,s = 2, rs,s = 200 × 104, le,s = 20 × 106 and q̄e,s = 25.25. Generally, it can be denoted that
the LMPC reacts more harshly in both situations than the ENMPC. Especially for slope changes, it can
be observed that the tracking error of the LMPC of the reference velocity is more prominent than for
the ENMPC. Furthermore, slope changes are not suppressed in the linear approach as good as with the
nonlinear ENMPC approach.

In Figure 7.20, a more direct reaction of the LMPC to speed reference changes compared to the ENMPC
can be observed. It can be seen that the controller reacts later to the reference velocity change and thus,
the applied torque needs to be larger. Consequently, it also results in a higher energy consumption than
in the ENMPC approach and the controller behaves less smooth. Another drawback is the absence of

Figure 7.20: Controller reaction to changes in the reference speed vmax,mpc for different predic-
tion horizon lengths Sp with a discretization of 10 m.

a constraint in the proposed LMPC of [48], which considers the maximum allowed speed as an upper
boundary. Consequently, the legal speed limit is exceeded, especially for deceleration maneuvers, which
is avoided in the ENMPC design.

To compare the performance on the four drive cycles also the LMPC has been simulated on these drive
cycles. The results, compared to the ENMPC, are outlined in Table 7.2. It can be seen that the linear
approach consumes 5.8 % more energy on average but also reduces the driving time by 6.6 % on average.
This is reasonable because the LMPC reacts more harshly to environmental changes and has no constraint
on the maximum allowed velocity. The lack of this constraint causes the LMPC to drive with a higher
average speed, especially when the reference speed is reduced only for a small distance. This behavior
could be observed, particularly when driving curves which leads to a too high curvature speed and is
avoided by the ENMPC approach. The harsh controller reaction of the LMPC could also be seen from
the maximum and minimum acceleration values outlined in Table 7.2, which are significantly higher than
for the ENMPC. It needs to be noticed that the proTRon Evolution, due to its low tare weight of 550 kg,
is a special use case for a longitudinal controller where the compared LMPC of [48] was not initially
designed for. Nevertheless, both controllers are suitable as longitudinal controllers of the BEV.
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Table 7.2: Comparison of the LMPC and ENMPC controller regarding energy consumption,
driving time, velocity, acceleration and applied torque.

Drive cycle

1 2 3 4 Average

Energy consumption

ENMPC 3.98 kWh 5.99 kWh 2.17 kWh 4.20 kWh 4.06 kWh

LMPC [48] 4.28 kWh 6.45 kWh 2.19 kWh 4.49 kWh 4.35 kWh

Change +7.5 % +7.7 % +0.9 % +6.9 % +5.8 %

Driving time

ENMPC 54.1 min 60.8 min 31.6 min 38.5 min 46.3 min

LMPC [48] 50.2 min 54.5 min 30.8 min 36.1 min 42.9 min

Change −7.2 % −10.4 % −2.5 % −6.2 % −6.6 %

Average velocity

ENMPC 46.29 km/h 57.20 km/h 48.83 km/h 61.89 km/h 53.55 km/h

LMPC [48] 49.89 km/h 63.83 km/h 50.11 km/h 66.09 km/h 57.48 km/h

Change +7.8 % +11.6 % +2.6 % +6.8 % +7.2 %

Maximum acceleration

ENMPC 0.83 m/s2 0.93 m/s2 0.76 m/s2 0.93 m/s2 0.86 m/s2

LMPC [48] 1.76 m/s2 2.01 m/s2 1.08 m/s2 1.71 m/s2 1.64 m/s2

Change +112.0 % +116.1 % +42.1 % +83.9 % +88.5 %

Minimum acceleration

ENMPC −1.19 m/s2 −1.36 m/s2 −1.03 m/s2 −1.43 m/s2 −1.25 m/s2

LMPC [48] −1.99 m/s2 −2.14 m/s2 −1.06 m/s2 −2.37 m/s2 −2.30 m/s2

Change +67.2 % +57.4 % +2.9 % +65.8 % +48.3 %

Maximum torque Mem

ENMPC 28.82 Nm 20.94 Nm 18.53 Nm 22.35 Nm 22.66 Nm

LMPC [48] 29.99 Nm 29.71 Nm 22.53 Nm 29.92 Nm 28.04 Nm

Change +4.1 % +41.9 % +21.6 % +33.9 % +25.4 %

Minimum torque Mem

ENMPC −20.48 Nm −24.83 Nm −10.85 Nm −15.40 Nm −17.89 Nm

LMPC [48] −29.99 Nm −29.99 Nm −13.16 Nm −26.61 Nm −24.94 Nm

Change +46.4 % +20.8 % +21.3 % +72.8 % +40.3 %
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7.3 Conclusions
This chapter has outlined the development of an ENMPC approach for the energy-efficient longitudinal
motion control of a BEV. To achieve real-time capability also for a nonlinear approach, the optimization
problem has been kept as simple as possible. To include all important parameter dependencies into the
prediction model of the controller without unnecessarily increasing the problem size, the open-loop sen-
sitivity analysis results of Chapter 6 and nominal simulations on the four drive cycles have been used.
It has been led to a prediction model using a lookup table approximation for the electrical drive and
inverter power demands and is combined with a battery dynamics model. Furthermore, the longitudinal
motion model has been integrated to predict the vehicle behavior and an economic cost function has been
presented to achieve energy-efficient driving behavior of the controller.

The proposed controller has been simulatively tested on artificial test scenarios as well as on the four
drive cycles to evaluate the performance of the controller. It has been shown that the ENMPC is capable
of saving 5.1 % of energy on average by only increasing the driving time by 1.1 % on average compared
to the manually driven routes.

Since the complexity of an ENMPC approach is high and it is difficult to solve, the controller has
also been compared to a less complex quadratic optimization problem. It has been shown that the pro-
posed ENMPC behaves, in general, more smoothly and is capable of saving up to 5.8 % energy on average.

It can be summarized that the proposed ENMPC outperforms the LMPC by considering all parameters
which are identified as relevant by the open-loop sensitivity analysis. Furthermore, it has been shown
that the chosen complexity of the controller using the acados [196] and HPIPM [197] implementation is
real-time capable and thus, applicable on real vehicle hardware.





8 Sensitivity Analysis of the
Closed-Loop Energy-Efficient
Longitudinal Control

Applying the ENMPC presented in the previous chapter results in a complex closed-loop controlled
system consisting of many parameter dependencies which could influence the energy consumption of the
vehicle. In the following investigation, a sensitivity analysis of the vehicle model is performed closed-
loop together with the ENMPC on each of the four drive cycles from Section 5.2. In contrast to the
open-loop analysis, the vehicle operation gains the degree of freedom of free driving speed selection.
However, the system complexity also increases significantly, which becomes noticeable by an increase to
54 parameters to be examined. Besides the vehicle parameters, the controller contains several tuning
parameters and measured quantities. Setting these tuning parameters and the accuracy of the measured
or estimated quantities could significantly influence the energy consumption of the vehicle. Consequently,
these dependencies need to be considered in the closed-loop investigation. Due to the free choice of the
vehicle speed by the ENMPC, the driving time could also be influenced and thus it is also investigated
throughout this chapter.

For the closed-loop sensitivity analysis at first, the PDFs for the investigated parameters need to be de-
fined. Afterward, a Morris screening is performed to separate influential from non-influential parameters
and to determine the parameter set for the subsequent variance-based sensitivity analysis. The general-
ized Sobol indices are estimated and the convergence is proven and outlined using the law of big numbers
and bootstrap resampling. Correspondingly, the results of the closed-loop analysis are presented and the
most influential parameters are discussed.

Accordingly, based on the findings of the closed-loop sensitivity analysis, an optimal parameter setup
for an energy-optimal driving of the BEV is proposed and conclusions for a proper vehicle setup are
drawn.

8.1 Definition of the Input Parameter Distributions
For the closed-loop simulations, the PDFs of the open-loop analysis from Section 6.1 were adopted and
additionally expanded to the controller related parameters that also will be investigated. The resulting
parameter set for the closed-loop sensitivity analysis is outlined in Table 8.1. In the last section of the
table, the 15 additional controller parameters are outlined. The only tunable controller parameter inves-
tigated is the energy penalization parameter cc in the cost function. It could be used by the driver or the
application engineer to adapt the controller even to a better reference speed tracking or to improve the
energy savings.

All other parameters outlined in the table relate to measured or estimated quantities that need to be
known in the controller. The parameters which cannot directly be measured in the vehicle and need
to be estimated from other information sources, e.g., the SoC of the battery, are outlined as estimation
errors.

123



124 8 Sensitivity Analysis of the Closed-Loop Energy-Efficient
Longitudinal Control

Table 8.1: Distributions of parameters for the closed-loop sensitivity analysis.
Name Description Type of

error
Distribution Parameter Values Units

B
at

te
ry

eRs,b Deviation of series resistance Rs relative Normal µ, σ 0, 0.05/3 −

eC1 Deviation of capacitance C1 relative Normal µ, σ 0, 0.05/3 −

eR1 Deviation of resistance R1 relative Normal µ, σ 0, 0.05/3 −

eC2 Deviation of capacitance C2 relative Normal µ, σ 0, 0.05/3 −

eR2 Deviation of resistance R2 relative Normal µ, σ 0, 0.05/3 −

euocv Deviation of open circuit voltage relative Normal µ, σ 0, 0.05/3 −

ϑb Variation of start temperature absolute Uniform a, b 20, 40 ◦C

Rthca Variation of thermal resistance Rthca absolute Normal µ, σ 2.6, 0.13/3 Ω

Rthct
Variation of thermal resistance Rthct

absolute Normal µ, σ 0.37, 0.02/3 Ω

Rthta
Variation of thermal resistance Rthta

absolute Normal µ, σ 1.05, 0.05/3 Ω

Cc Variation of thermal capacitance Cc absolute Normal µ, σ 2544.2, 127.21/3 F

Ct Variation of thermal capacitance Ct absolute Normal µ, σ 8.072, 3.4/3 F

In
ve

rt
er

eat Deviation of forward characteristics IGBT
relative Normal µ, σ 0, 0.05/3 −

ebt
relative Normal µ, σ 0, 0.05/3 −

ead Deviation of forward characteristics diode
relative Normal µ, σ 0, 0.05/3 −

ebd
relative Normal µ, σ 0, 0.05/3 −

eaErr Deviation of reverse recovery
characteristics diode

relative Normal µ, σ 0, 0.05/3 −

ebErr
relative Normal µ, σ 0, 0.05/3 −

ecErr
relative Normal µ, σ 0, 0.05/3 −

eaEon

Deviation of turn on losses IGBT
relative Normal µ, σ 0, 0.05/3 −

ebEon
relative Normal µ, σ 0, 0.05/3 −

ecEon
relative Normal µ, σ 0, 0.05/3 −

eaEoff

Deviation of turn off losses IGBT
relative Normal µ, σ 0, 0.05/3 −

ebEoff
relative Normal µ, σ 0, 0.05/3 −

ecEoff
relative Normal µ, σ 0, 0.05/3 −

ϑw,in Variation of water inlet temperature absolute Uniform a, b 0, 60 ◦C

D
ri

ve

eRs,EM Deviation of winding resistance Rs relative Normal µ, σ 0, 0.03/3 −

eLd
Deviation of direct inductance Ld relative Normal µ, σ 0, 0.0133/3 −

eLq Deviation of quadrature inductance Lq relative Normal µ, σ 0, 0.015/3 −

eΨpm Deviation of magnetic flux Ψpm relative Normal µ, σ 0, 0.025/3 −

eξq Deviation of quadrature iron losses ξq relative Normal µ, σ 0, 0.05/3 −

eξd
Deviation of direct iron losses ξd relative Normal µ, σ 0, 0.05/3 −

ϑro Variation of rotor temperature ϑro absolute Uniform a, b 40, 80 ◦C

ϑst Variation of stator temperature ϑst absolute Uniform a, b 40, 80 ◦C

V
eh

ic
le mv Variation of the vehicle mass absolute Birnbaum–Saunders β, γ 652.11, 0.074 kg

Ppto Variation of auxiliary consumers absolute Uniform a, b 250, 750 W

ϑa Variation of ambient temperature absolute Normal µ, σ 12.26, 8.53 ◦C

pair Variation of ambient pressure absolute Normal µ, σ 98427.7, 843.09 Pa

cr Variation of rolling resistance absolute Uniform a, b 0.01, 0.015 −

C
on

tr
ol

le
r

cc Energy related cost function parameter absolute Uniform a, b 0, 6 -

eϑa,mpc Error of ambient temperature measurement relative Normal µ, σ 0, 0.05/3 −

pair,mpc Error of air pressure estimation absolute Normal µ, σ 98427.7, 843.09 Pa

cr,mpc Error of rolling resistance estimation absolute Uniform a, b 0.01, 0.015 −

mv,mpc Error of vehicle mass estimation relative Normal µ, σ 0, 0.1/3 −

euocv,mpc Error of open circuit voltage estimation relative Normal µ, σ 0, 0.1/3 −

eRs,mpc Error of battery series resistance estimation relative Normal µ, σ 0, 0.1/3 −

eR1,mpc Error of battery RC-resistance estimation relative Normal µ, σ 0, 0.1/3 −

eC1,mpc Error of battery RC-capacitance estimation relative Normal µ, σ 0, 0.1/3 −

eα,mpc Error of slope measurement relative Normal µ, σ 0, 0.05/3 −

ePpto,mpc Error of auxiliary power estimation Relative Normal µ, σ 0, 0.05/3 W

ecurv,mpc Error of curvature measurement relative Normal µ, σ 0, 0.05/3 −

eSoC,mpc Error of SoC estimation relative Normal µ, σ 0, 0.10/3 −

eϑb,mpc Error of battery temperature estimation relative Normal µ, σ 0, 0.1/3 −

eIb,mpc Error of battery current measurement relative Normal µ, σ 0, 0.05/3 −
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Parameters that can directly be measured, e.g., the battery current Ib, are outlined as measurement
errors. The distributions of these errors are assumed based on how difficult the specific quantity can
be measured or estimated. For example, the battery-related parameter fluctuations are considered to
be 3σ = 0.1/3 since only current, voltage and temperature can be measured externally and all internal
parameters must be determined from these. This leads to a more difficult identification than, for example,
the measurement of the battery current, whose acquisition is not a major technical challenge.

8.2 Morris Screening
The first step in the closed-loop analysis is to perform a Morris screening to distinguish important from
unimportant parameters, similar to the Morris screening in the open-loop analysis outlined in Section 6.2.
In the closed-loop setup the consumed battery energy Eb and the powertrain losses Pl are considered to
analyze the energy consumption and the power losses of the vehicle during operation.

The parameter input space is discretized with p = 4 and a step size of ∆ = 2/3 is chosen. As recom-
mended in [95–97], r = 10 trajectories are simulated. This setup leads to a total number of simulations
for the Morris screening and the investigated parameters of Table 6.1 of Nm = r(k+1) = 10(54+1) = 550.

The results of the Morris screening for the four drive cycles regarding the consumed battery energy
Eb are outlined in Figure 8.1. Similarly, the power losses of the powertrain Pl are depicted in Figure 8.2.

For the consumed battery energy Eb, as outlined in Figure 8.1, it can be observed that the statement
σ ≪ µ∗ holds. It indicates a mostly linear dependency between the analyzed parameters. Thus, it can be
said that the parameters with high values of µ∗ affect the consumed battery energy most but probably do
not interact with other parameters. In contrast, Figure 8.2 outlines that interactions between parameters
of the output Pl can be assumed since µ∗ ≈ σ holds for most of the parameters. In comparison to the
open-loop Morris screening of Section 6.2, the parameter influences changed slightly. The error of the
open-circuit voltage euocv and the variation of pair are less influential, whereas the rotor temperature ϑro

should be considered.

Figures 8.1 and 8.2 outline that only a subset of the investigated parameters still has high values of
µ∗ and σ in relation to the other studied parameters. Also, a subset of the added controller parameters
is identified as important. Consequently, only these parameters need to be considered in the closed-loop
variance-based sensitivity analysis and thus, an extensive parameter reduction can be performed. The
remaining parameters are outlined in Table 8.2.

Assuming a sample size for a variance-based sensitivity analysis of N = 5000, which will be outlined
as sufficient in Section 8.3.1 for the closed-loop analysis, the initial Morris screening significantly reduces
the computational effort. Calculating the sensitivity measures for all parameters from Table 8.1 would
require Ns = N(k + 2) = 5000(54 + 2) = 280000 simulation runs, whereas the reduced set of parameters
from Table 8.2 would require only Ns = N(k + 2) = 5000(13 + 2) = 75000 simulation runs. Therefore,
the reduced parameter set requires only a quarter of the resources without losing significance.
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(a) Drive cycle 1 (b) Drive cycle 2

(c) Drive cycle 3 (d) Drive cycle 4

Figure 8.1: Closed-loop Morris screening for the consumed battery energy Eb

(a) Drive cycle 1 (b) Drive cycle 2

(c) Drive cycle 3 (d) Drive cycle 4

Figure 8.2: Closed-loop Morris screening for the total drive power losses Pl
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Table 8.2: Reduced parameter set for the closed-loop variance-based sensitivity analysis.
Name Description Type of

error
Distribution Parameter Values Units

Battery ϑb Variation of start
temperature

absolute Uniform a, b 20, 40 ◦C

Inverter ϑw,in Variation of water inlet
temperature

absolute Uniform a, b 0, 50 ◦C

Drive ϑro Variation of rotor
temperature ϑro

absolute Uniform a, b 40, 80 ◦C

Vehicle

mv Variation of the vehicle
mass

absolute Birnbaum–Saunders β, γ 652.11, 0.074 kg

Ppto Variation of auxiliary
consumers

absolute Uniform a, b 250, 750 W

ϑa Variation of ambient
temperature

absolute Normal µ, σ 12.26, 8.53 ◦C

cr Variation of rolling
resistance

absolute Uniform a, b 0.01, 0.015 −

Controller

cc Energy related cost func-
tion parameter

absolute Uniform a, b 0, 6 -

cr,mpc Error of rolling resistance
estimation

absolute Uniform a, b 0.01, 0.015 −

mv,mpc Error of vehicle mass esti-
mation

relative Normal µ, σ 0, 0.1/3 −

ePpto,mpc Error of auxiliary power
estimation

Relative Normal µ, σ 0, 0.05/3 W

ecurv,mpc Error of curvature
measurement

relative Normal µ, σ 0, 0.05/3 −

8.3 Variance-Based Sensitivity Indices
The variance-based sensitivity analysis for the closed-loop setup is done for the reduced parameter set in
Table 8.2. As already outlined in Section 3.2.5, the calculated sensitivity measures using the estimators
of Jansen, Sobol and Saltelli need to be verified regarding their convergence and accuracy. However, since
the scalar measures provide a very good measure of convergence, in the following, the evaluation of the
individual sensitivity measures for different sample sizes as in the open-loop analysis is omitted.

In contrast to the open-loop investigation, the ENMPC offers another degree of freedom by adapting
the velocity during the drive cycle instead of keeping it fixed to predefined values. Thus, besides the
consumed battery energy Eb and the powertrain losses Pl, the influence on the driving time td is also
investigated.

The closed-loop analysis results, as well as the results for ensuring convergence, are presented and dis-
cussed in the following.

8.3.1 Evaluation of the Approximation Accuracy

The approximation error is evaluated using the methods presented in Section 3.2.5. Since the convergence
behavior depends not only on the sampling strategy and the used estimators but is also influenced by
the investigated system and the corresponding outputs, each of them needs to be analyzed separately.
Furthermore, according to (3.26), the investigated model changes when another drive cycle is analyzed.
Consequently, the approximation accuracy of the estimated generalized first order effects ŜG

i and gen-
eralized total effects ŜG

Ti
need to be evaluated for different sample sizes N ∈ [100, 5000] for each of the

drive cycles, estimators and outputs of interest.
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As already mentioned above, only the results of the scalar error measures εG
Ŝj

and εG
ŜTj

are presented.
These are outlined in Figures 8.3, 8.4 and 8.5 for the consumed battery energy Eb, the powertrain losses
Pl and the driving time td. Generally, it can be seen that the convergence errors εG

Ŝj
and εG

ŜTj

of each

(a) First order effects εŜG
j

(b) Total effects εŜG
Tj

Figure 8.3: Convergence error of the first order and total generalized Sobol indices for the con-
sumed battery energy Eb.

(a) First order effects εŜG
j

(b) Total effects εŜG
Tj

Figure 8.4: Convergence error of the first order and total generalized Sobol indices for the total
powertrain losses Pl.

of the three model outputs tend towards zero for higher sample sizes. However, the first order estimates
converge more slowly than the total order estimates. It can also be outlined that the driven drive cycle
is not significantly influencing the convergence behavior of the estimators. Instead, the choice of the
estimator is crucial to achieving valuable convergence rates with adequate sample rates. It can be clearly
seen that the Jansen estimators for the first and for the total order indices outperform the other esti-
mators. Furthermore, they reach the predefined convergence error goal εmax ≤ 0.01 for each analyzed
model output. This analysis clearly shows that the Jansen estimators for the first order and total indices
are superior to the other investigated estimators for the closed-loop analysis. Thus, only the results of
the Jansen estimators are presented in the following.

The above-discussed convergence errors provide a good quantitative scalar measure to compare the esti-
mated parameters against each other. However, to quantify the accuracy of each estimated parameter, the
confidence intervals for each parameter of the first order and total effects are calculated using bootstrap
resampling (see Section 3.2.5). For the closed-loop analysis, the bootstrap samples of size Nb = 5000 are
drawn randomly B = 50 times. Using these bootstrap resamples, the 95 % confidence intervals are cal-
culated for the estimators and outlined as red error bars in the sensitivity analysis results in Figures 8.6,
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(a) First order effects εŜG
j

(b) Total effects εŜG
Tj

Figure 8.5: Convergence error of the first order and total generalized Sobol indices for the driving
time td.

8.7 and 8.8.

8.3.2 Sensitivity Analysis Results

The variance-based sensitivity analysis results using the reduced parameter set of Table 8.2 for the con-
sumed battery energy Eb are outlined in Figure 8.6. From Figure 8.6a, it can be seen that, compared to

(a) Histograms (b) First-order effects with 95 % confidence interval

(c) Total effects with 95 % confidence interval (d) Sum of effects

Figure 8.6: Generalized Sobol Indices and histograms for consumed battery energy Eb.

the open-loop investigations of Figure 6.10a, the histograms for the closed-loop setup are shifted to the
left, which underpins the performance evaluation of Section 7.2.4 that the proposed ENMPC is capable
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of saving energy on the four drive cycles. Furthermore, for the closed-loop analysis, the parameter depen-
dencies of the consumed battery energy Eb behave linearly since Figure 8.6d outlines that

∑
ŜG

i ≈
∑

ŜG
Ti

holds. Thus, it is obvious that ŜG
i ≈ ŜG

Ti
holds and therefore, only the total order indices because of their

smaller confidence intervals will be discussed in the following. The generalized total order indices ŜG
Ti

,
as shown in Figure 8.6c, of the vehicle parameters are nearly the same as for the open-loop analysis in
Figure 6.10c. They are a bit smaller since the sensitivity indices a normalized to one and the controller
parameters also show a minor influence on the variance of the battery energy. It can be noted that the
controller parameters, including measurement and estimation errors, only influence the variance of Eb by
a maximum of 2 % in drive cycle 4. For the other drive cycles, the influence is even less compared to the
parameters belonging to the vehicle itself or the parameters which can be influenced during operation. It
can be concluded that only the different setting of the cost function parameter cc has a significant impact
on the energy efficiency of the ENMPC and can change the variance of the energy consumption by a
maximum of 2 %. However, as it will be seen throughout this chapter, the change of the cost function
parameter cc also significantly influences the driving time, which could possibly not be accepted by the
users of the car.

The results of the closed-loop analysis for the powertrain losses Pl are shown in Figure 8.7. Figure 8.7a

(a) Histograms (b) First-order effects with 95 % confidence interval

(c) Total effects with 95 % confidence interval (d) Sum of effects

Figure 8.7: Generalized Sobol Indices and histograms for the total drive power losses Pl.

outlines the distributions of the power losses for each drive cycle. Compared to the open-loop results
in Figure 6.12a, it can be outlined that the histograms are also shifted to the left as for the consumed
battery energy. This coincides with the results of Section 7.2.4 that the proposed ENMPC achieves an
energy-efficient driving and thus reducing also the losses in the powertrain during operation. Figure 8.7d
depicts a more nonlinear behavior of the closed-loop analysis than for the open-loop analysis since

∑
ŜG

Ti

is more significant for the closed-loop compared to the open-loop analysis. Because
∑

ŜG
i ̸= ŜG

Ti
, the

generalized first order and total order effects need to be analyzed separately. Starting with the total
order indices, they outline that the influence of the change in the vehicle mass mv in relation to the
battery start temperature ϑb has decreased compared to the open-loop analysis. Thus, it seems that the
ENMPC is capable of reducing the influence of a changing vehicle mass due to different occupancy rates.
A reduction in the influence of a changing battery temperature could also be observed but only for drive
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cycles 1 to 3. The total order effect of the battery temperature ϑb remains high for drive cycle 4. This
is reasonable, as drive cycle 4 is not consisting of a driving profile with a distinct slope and curvature
profile. Furthermore, the average velocity of this drive cycle is even higher as it contains highway sections
and thus, as already outlined in Figure 8.7a, it consists of high average losses. Consequently, the losses
at the internal battery resistances, due to high battery currents, are more influenced in this drive cycle.
In addition, the lack of a distinct road profile reduces the amount of freedom for the ENMPC to improve
the velocity trajectory of the vehicle as it sticks to the reference speed requirement in (7.15).

Moreover, the investigated controller parameters significantly influence the variance of the powertrain
losses. From the generalized total order effects, it can be outlined that the mass estimation error of the
controller is the most influential parameter. Furthermore, all other estimation errors in the controller,
except the air pressure estimation, have a non-negligible influence. The controller’s tuning parameter
cc also has a non-negligible effect, but, as will be shown later, it also impacts the driving time, which
partially amortizes the reduction in losses.

Comparing the generalized first order indices of Figure 8.7b with the generalized total order indices
of Figure 8.6c, it can be seen that all controller parameters show interactions with other parameters
since

∑
ŜG

i ̸= ŜG
Ti

holds for these parameters. Furthermore, the mass of the vehicle mv and the rolling
resistance coefficient cr are also interacting with other parameters. Only the battery start temperature is
not significantly interacting with other parameters since

∑
ŜG

i ≈ ŜG
Ti

holds for this parameter. However,
the amount of nonlinearity regarding the powertrain losses is only a maximum of 1 −

∑
ŜG

i = 25.3 %
for drive cycle 1, as Figure 8.7d outlines. Consequently, the first order effects of the power losses are
responsible for 74.7 % of the variance. Thus, focusing only on the first order effects is more suitable since
the source for the amount of variance is clearly attributable to one parameter.

Since the required driving time strongly affects the acceptance of driver assistance systems, the influence
of the parameter variations on the driving time td is also examined in the following. The closed-loop
sensitivity analysis results for the driving time are outlined in Figure 8.8. Figure 8.8a outlines the distri-

(a) Histograms (b) First-order effects with 95 % confidence interval

(c) Total effects with 95 % confidence interval (d) Sum of effects

Figure 8.8: Generalized Sobol Indices and histograms for the total driving time td.

butions of the driving times for each drive cycle. It is obvious that the average driving time for each drive
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cycle is different since they have different lengths. However, it can also be seen that the variations of the
investigated parameters significantly influence the driving time. As Figure 8.8d outlines,

∑
ŜG

i ≈
∑

ŜG
Ti

holds for the driving time and thus, ŜG
i ≈ ŜG

Ti
holds also. Consequently, only the generalized total order

indices for the driving time will be discussed in the following because of their smaller convergence inter-
vals. From Figure 8.8, it can be seen that the influence of the individual drive cycles on the distribution
of the sensitivity indices is marginal for the driving time. Furthermore, it outlines that most of the
variance is caused by the rolling resistance of the vehicle (up to 46.3 %) and the estimation of the rolling
resistance by the controller (up to 38.1 %). Another significant influence is caused by the tuning factor
cc of the ENMPC by up to 13.7 %. Additionally, the vehicle mass variation influences the variance of the
driving time by up to 9 % and their estimate by up to 2.9 %. The curvature measurement also affects the
variance of the driving time up to 5.8 %.

From the above-outlined results of the closed-loop sensitivity analysis, it can be concluded that only
a small part of the parameters causes most of the variance of the three investigated outputs. The vari-
ation in the mass of the vehicle, the rolling resistance, the battery start temperature as well as in the
auxiliary consumers are responsible for the majority of the variance of the consumed battery energy Eb.
Furthermore, it is shown that the setting of the controller tuning parameter cc has only a small influence
on the consumed battery energy Eb but influences the driving time significantly. Consequently, the tuning
parameter of the cost function seems not to be a good choice for improving the energy efficiency of the
controller without worsening the driving time significantly. Based on these results, it should be focused
on the optimization of the vehicle mass and the rolling resistance of the vehicle. In addition, the auxiliary
power demand should be reduced and the battery start temperature should be adapted, which will also
lead to a reduced variance of the battery energy. Furthermore, it should be focused on the estimation of
the mass of the vehicle, the rolling resistance coefficient and the curvature within the ENMPC to reduce
the variance in driving time.

The sensitivity analysis outlines how the variation of each parameter affects the variance and how the
variance decreases if this parameter is fixed to a particular value within its PDF. Furthermore, the most
influential parameters have been identified and quantified using this variance-based sensitivity analysis.
However, this method is not able to make a statement which parameter value of each investigated pa-
rameter is the optimal one to optimize the energy consumption but also the driving time. Consequently,
this is discussed in the next section.

8.4 Controller Improvements

In this chapter, the results of the closed-loop sensitivity analysis presented above are converted into
an ideal parameter setup for the four driving cycles. Since some parameters, such as the battery start
temperature, cannot be influenced by the controller but only by the driver, recommendations for action
are presented. Furthermore, the validity of the sensitivity analysis is confirmed for each of the most
influential parameters.

The condition
∑

ŜG
i ≈

∑
ŜG

Ti
holds for Eb and td. Consequently, the percentage share of the variance of

an output for one parameter σxi can be specified as

σxi =
√

Si

√
V (y) (8.1)

according to (3.20). Consequently, the sensitivity analysis results and their effects must always be con-
sidered in relation to the determined standard deviation of the model outputs. Therefore, in addition
to considering absolute changes in the required battery energy or driving time, their relative change, in
relation to the standard deviation, is also considered in the following sections.
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8.4.1 Nominal Parameter Influences

Influence of the Vehicle Mass

The mass of an electric vehicle does not change during a trip, unlike an internal combustion engine, which
becomes lighter due to burning fuel. However, the total mass of a BEV can also vary depending on the
number of people transported and the load condition. Therefore, two different cases are compared in
the following. The minimum case for the proTRon Evolution comprises a kerb weight of 550 kg and a
driver with 70 kg, resulting in a total weight of 620 kg. The case with four occupants leads to a maximum
vehicle weight of 830 kg.

The first two rows of Table 8.3 outline the nominal values ynom of the consumed battery energy Eb

and the driving time td for mv = 620 kg. In rows three and four, the nominal values for mv = 830 kg
are depicted. The rest of the parameters retain the nominal values as shown in Appendix B. Lines five
and six show the change in energy consumption and travel time for the two different parameters. It can
be clearly seen that the change in vehicle mass causes a significant increase in energy consumption of up
to 12.8 % in all driving cycles. On the other hand, the driving time only increases in absolute terms by
a maximum of 2.23 % in driving cycle 1. Comparing the values with the Sobol indices of the sensitivity
analysis from Figures 8.6 and 8.8, it can be seen that the sensitivity index for the vehicle mass differs
on average by a factor of three between energy consumption and driving time. As explained above,
however, the absolute difference is more extensive. This can be explained because, as shown in (8.1),
the sensitivity indices always refer to the standard deviation of the study. Here, the energy consumption
has a larger standard deviation in relation to ynom than the travel time. This is shown in Table 8.3
with

√
V (Y )

ynom
. Therefore, the absolute deviation is correspondingly larger. If the change is related to the

standard deviation of the two variables, as shown in Table 8.3 in the last two rows, it is evident that the
difference is not that large and gets closer to the ratio of the sensitivity indices. Nevertheless, a direct
conversion of the sensitivity indices referring to the variance into absolute changes is not possible, as this
observation shows. Nonetheless, the significant influence on energy consumption and a minor influence
on travel time are in accordance with the sensitivity analysis results.

Table 8.3: Influence of a change in the vehicle mass mv on the four drive cycles.
Drive cycle 1 Drive cycle 2 Drive cycle 3 Drive cycle 4

ynom

√
V (Y )

ynom
ynom

√
V (Y )

ynom
ynom

√
V (Y )

ynom
ynom

√
V (Y )

ynom

mv,1 = 620 kg
4.19 kWh 5.72 % 6.26 kWh 4.88 % 2.27 kWh 5.77 % 4.37 kWh 4.79 %

54.21 min 1.43 % 60.61 min 1.11 % 31.45 min 1.56 % 38.40 min 1.19 %

mv,2 = 830 kg
4.72 kWh 5.07 % 6.93 kWh 4.41 % 2.52 kWh 5.19 % 4.73 kWh 4.42 %

55.42 min 1.40 % 61.44 min 1.10 % 31.99 min 1.54 % 38.91 min 1.18 %√
V (Eb) 0.24 kWh 0.31 kWh 0.13 kWh 0.21 kWh√
V (td) 0.77 min 0.67 min 0.49 min 0.46 min

Eb(mv,2)
Eb(mv,1) +12.80 % +10.67 % +11.06 % +8.37 %
td(mv,2)
td(mv,1) +2.23 % +1.37 % +1.73 % +1.34 %

Eb(mv,2)−Eb(mv,1)√
V (Eb)

+223.92 % +218.69 % +191.72 % +174.99 %
td(mv,2)−td(mv,1)√

V (td)
+156.03 % +123.20 % +110.59 % +112.25 %



134 8 Sensitivity Analysis of the Closed-Loop Energy-Efficient
Longitudinal Control

Influence of the Rolling Resistance

The rolling resistance can change during a change in the road surface profile or can vary due to dry
and wet surfaces. Since the sensitivity analysis outlines the rolling resistance coefficient cr as one of
the most relevant parameters, it is investigated here for cr = 0.01 and cr = 0.015. The results are
outlined in Table 8.4. Line seven of Table 8.4 shows that the change in the rolling resistance leads to a
significant increase in energy consumption. However, the travel time is also not insignificantly affected.
Nevertheless, it can be seen that the absolute change of the travel time is smaller than the change of
the energy consumption, although the sensitivity index of the travel time is larger than that of the
energy consumption. If the change is related to the standard deviation, as shown in the last two rows
of Table 8.4, it can be clearly seen that the relative change of the travel time is larger than that of the
energy consumption. Altogether, despite the smaller standard deviation of the travel time, this leads to
the fact that both examined variables are significantly influenced.

Table 8.4: Influence of a change in the rolling resistance cr on the four drive cycles.
Drive cycle 1 Drive cycle 2 Drive cycle 3 Drive cycle 4

ynom

√
V (Y )

ynom
ynom

√
V (Y )

ynom
ynom

√
V (Y )

ynom
ynom

√
V (Y )

ynom

cr,1 = 0.01
4.19 kWh 5.72 % 6.26 kWh 4.88 % 2.27 kWh 5.77 % 4.37 kWh 4.79 %

54.21 min 1.43 % 60.61 min 1.11 % 31.45 min 1.56 % 38.40 min 1.19 %

cr,2 = 0.015
4.58 kWh 5.22 % 6.79 kWh 4.50 % 2.50 kWh 5.22 % 4.78 kWh 4.38 %

56.39 min 1.38 % 62.27 min 1.08 % 32.76 min 1.50 % 39.55 min 1.16 %√
V (Eb) 0.24 kWh 0.31 kWh 0.13 kWh 0.21 kWh√
V (td) 0.77 min 0.67 min 0.49 min 0.46 min

Eb(cr,2)
Eb(cr,1) +9.45 % +8.47 % +10.46 % +9.35 %
td(cr,2)
td(cr,1) +4.03 % +2.74 % +4.16 % +3.02 %

Eb(cr,2)−Eb(cr,1)√
V (Eb)

+165.36 % +173.56 % +181.36 % +195.47 %
td(cr,2)−td(cr,1)√

V (td)
+281.40 % +246.65 % +266.34 % +252.82 %
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Influence of the Auxiliary Consumers

The auxiliary power demand Ppto varies with the power demand of the auxiliary consumers, e.g., using the
lights or heating the vehicle. The change in Ppto is investigated here for Ppto = 250 W and Ppto = 750 W
and the results are outlined in Table 8.5. An interesting observation is that the controller does not change
the velocity to avoid additional auxiliary power demand due to higher driving times. Consequently, the
consumed battery energy is increased by up to 12.9 % when the auxiliary power demand increases, but the
driving time remains nearly the same, which is outlined in lines seven and eight of Table 8.5. Figures 8.6
and 8.8 underpin this observation since the Sobol indices are significant regarding the consumed battery
energy Eb but approximately zero regarding the driving time td for Ppto.

Table 8.5: Influence of a change in the auxiliary consumers power demand Ppto on the four drive
cycles.

Drive cycle 1 Drive cycle 2 Drive cycle 3 Drive cycle 4

ynom

√
V (Y )

ynom
ynom

√
V (Y )

ynom
ynom

√
V (Y )

ynom
ynom

√
V (Y )

ynom

Ppto,1 = 250 W
3.93 kWh 6.09 % 5.97 kWh 5.12 % 2.12 kWh 6.16 % 4.17 kWh 5.09 %

54.21 min 1.43 % 60.61 min 1.11 % 31.45 min 1.56 % 38.40 min 1.19 %

Ppto,2 = 750 W
4.44 kWh 5.39 % 6.56 kWh 4.66 % 2.41 kWh 5.43 % 4.57 kWh 4.58 %

54.22 min 1.43 % 60.62 min 1.11 % 31.45 min 1.56 % 38.40 min 1.19 %√
V (Eb) 0.24 kWh 0.31 kWh 0.13 kWh 0.21 kWh√
V (td) 0.77 min 0.67 min 0.49 min 0.46 min

Eb(Ppto,2)
Eb(Ppto,1) +12.90 % +9.91 % +13.46 % +9.38 %
td(Ppto,2)
td(Ppto,1) +0.02 % +0.01 % +0.00 % +0.00 %

Eb(Ppto,2)−Eb(Ppto,1)√
V (Eb)

+211.95 % +193.50 % +218.66 % +187.38 %
td(Ppto,2)−td(Ppto,1)√

V (td)
+1.39 % +0.47 % +0.00 % +0.00 %
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Influence of the Battery Start Temperature

The battery start temperature can be influenced in various ways. The greatest influence is a change
caused directly by the ambient temperature. However, exposure of the vehicle to direct sunlight can
also affect the battery temperature. Furthermore, the battery can heat up during a charging process
because of the charging losses. As the following investigation shows, it is not an increase in temperature
that is critical for the energy consumption, but a reduction. It should be mentioned that the battery
temperature cannot be increased arbitrarily since aging processes in the battery increase significantly
above a temperature of 45 ◦C [200]. From Table 8.6, it can be seen that a change in the battery start
temperature substantially influences the energy consumption of the vehicle in all drive cycles. It can be
clearly outlined that a lower battery temperature results in increasing losses and thus, in an increased
energy demand. However, the driving time is not affected by a change in the battery temperature, which
is underpinned by the sensitivity analysis results of Figures 8.6 and 8.8.

Table 8.6: Influence of a change in the battery start temperature ϑb on the four drive cycles.
Drive cycle 1 Drive cycle 2 Drive cycle 3 Drive cycle 4

ynom

√
V (Y )

ynom
ynom

√
V (Y )

ynom
ynom

√
V (Y )

ynom
ynom

√
V (Y )

ynom

ϑb,1 = 10 ◦C
4.66 kWh 5.14 % 7.00 kWh 4.36 % 2.42 kWh 5.40 % 4.83 kWh 4.33 %

54.32 min 1.43 % 60.62 min 1.11 % 31.45 min 1.56 % 38.40 min 1.19 %

ϑb,2 = 40 ◦C
3.96 kWh 6.05 % 5.93 kWh 5.16 % 2.21 kWh 5.90 % 4.15 kWh 5.04 %

54.20 min 1.43 % 60.61 min 1.11 % 31.45 min 1.56 % 38.40 min 1.19 %√
V (Eb) 0.24 kWh 0.31 kWh 0.13 kWh 0.21 kWh√
V (td) 0.77 min 0.67 min 0.49 min 0.46 min

Eb(ϑb,2)
Eb(ϑb,1) −15.07 % −15.38 % −8.59 % −14.22 %
td(ϑb,2)
td(ϑb,1) −0.22 % −0.01 % +0.00 % +0.00 %

Eb(ϑb,2)−Eb(ϑb,1)√
V (Eb)

−293.30 % −352.45 % −159.09 % −328.65 %
td(ϑb,2)−td(ϑb,1)√

V (td)
−15.48 % −0.99 % +0.02 % +0.00 %
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Influence of the Controller Tuning Parameter

The controller tuning parameter cc is intended to allow the driver or the application engineer to tune
the controller behavior, whether it should save more energy or stick to the maximum allowed vehicle
speed. The sensitivity analysis has shown that the influence of this tuning factor is small compared to
the vehicle parameters themselves. However, there is still an influence that should not be neglected.
Table 8.7 outlines that for cc = 6, the energy consumption can be reduced by up to 1.18 % by only
worsening the driving time by 1.11 %. Consequently, besides using an ENMPC to reduce the energy
consumption, in the investigated controller parameterization, cc is the only parameter that significantly
influences the energy consumption.

Table 8.7: Influence of a change in the controller tuning parameter ac on the four drive cycles.
Drive cycle 1 Drive cycle 2 Drive cycle 3 Drive cycle 4

ynom

√
V (Y )
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√
V (Y )
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√
V (Y )
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√
V (Y )
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cc,1 = 0
4.19 kWh 5.71 % 6.26 kWh 4.88 % 2.27 kWh 5.77 % 4.37 kWh 4.79 %

54.21 min 1.43 % 60.61 min 1.11 % 31.45 min 1.56 % 38.40 min 1.19 %

cc,2 = 6
4.16 kWh 5.75 % 6.20 kWh 4.93 % 2.25 kWh 5.81 % 4.32 kWh 4.84 %

54.42 min 1.43 % 61.09 min 1.10 % 31.80 min 1.54 % 38.71 min 1.18 %√
V (Eb) 0.24 kWh 0.31 kWh 0.13 kWh 0.21 kWh√
V (td) 0.77 min 0.67 min 0.49 min 0.46 min

Eb(cc,2)
Eb(cc,1) −0.62 % −0.95 % −0.68 % −1.18 %
td(cc,2)
td(cc,1) +0.38 % +0.78 % +1.11 % +0.82 %

Eb(cc,2)−Eb(cc,1)√
V (Eb)

−10.96 % −19.56 % −11.85 % −24.62 %
td(cc,2)−td(cc,1)√

V (td)
+25.58 % +70.50 % +70.92 % +68.69 %

Influence of the Estimated Controller Parameters

In addition to the state feedback, further inputs are required by the controller for the prediction, which
must either be directly measured or estimated. As the sensitivity analysis has shown, the accuracy of
these parameters affects the control result or energy consumption and driving time. Exemplary, the
influence of the inaccuracy of the estimated rolling resistance cr,mpc is investigated. For this purpose,
the estimated rolling resistance is simulated with cr,mpc = 0.01 and with cr,mpc = 0.015. However, the
real rolling resistance of the vehicle remains constant with cr = 0.01. Table 8.8 shows that the incorrect
assumption of the rolling resistance increases the absolute energy consumption by up to 1.74 %. At the
same time, the controller reduces the driving time by up to 3 %. Since in this work the optimization of
the energy consumption is the focus, this example clearly shows that the controller parameters of the
sensitivity analysis, which are evaluated as significant, should be measured or estimated as accurately as
possible to avoid a suboptimal controller behavior.
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Table 8.8: Influence of a change in the estimated value of cr,mpc on the four drive cycles.
Drive cycle 1 Drive cycle 2 Drive cycle 3 Drive cycle 4
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√
V (Y )
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√
V (Y )
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cr,mpc = 0.01
4.19 kWh 5.72 % 6.27 kWh 4.88 % 2.27 kWh 5.77 % 4.37 kWh 4.79 %

54.21 min 1.43 % 60.61 min 1.11 % 31.45 min 1.56 % 38.40 min 1.19 %

cr,mpc = 0.015
4.23 kWh 5.66 % 6.35 kWh 4.81 % 2.30 kWh 5.68 % 4.44 kWh 4.70 %

54.61 min 1.47 % 59.31 min 1.14 % 30.51 min 1.61 % 37.56 min 1.22 %√
V (Eb) 0.24 kWh 0.31 kWh 0.13 kWh 0.21 kWh√
V (td) 0.77 min 0.67 min 0.49 min 0.46 min

Eb(cr,mpc=0.015)
Eb(cr,mpc=0.01) +1.08 % +1.36 % +1.54 % +1.74 %
td(cr,mpc=0.015)
td(cr,mpc=0.01) −2.96 % −2.15 % −3.00 % −2.18 %

Eb(cr,mpc=0.015)−Eb(cr,mpc=0.01)√
V (Eb)

+18.82 % +27.84 % +26.72 % +36.37 %
td(cr,mpc=0.015)−td(cr,mpc=0.01)√

V (td)
−206.74 % −193.69 % −192.06 % −182.93 %

8.4.2 Optimal Vehicle Setup

In the previous section, the influence of the most significant parameters of the closed-loop sensitivity
analysis is outlined. It has been shown that each of these parameters significantly influences the energy
efficiency of the BEV. An optimal parameter set can now be derived from these findings. To have the most
significant effect on energy consumption, the following were defined as optimal parameters: mv = 620 kg,
cr = 0.01, Ppto = 250 W, ϑb = 40 ◦C, ac = 6 and cr,mpc = cr. The resulting change with this optimized
parameter set compared to the nominal parameter set (see Appendix B) is shown in Table 8.9.

Table 8.9: Comparison of the nominal parameter set with the optimal parameter set of the
closed-loop ENMPC.

Drive cycle

1 2 3 4 Average

Energy consumption

Nominal parameter 4.19 kWh 6.27 kWh 2.27 kWh 4.37 kWh 4.28 kWh

Optimal parameter 3.70 kWh 5.61 kWh 2.06 kWh 3.93 kWh 3.83 kWh

Change −11.7 % −10.5 % −9.3 % −10.1 % −10.5 %

Driving time

Nominal parameter 54.21 min 60.61 min 31.45 min 38.40 min 46.17 min

Optimal parameter 54.38 min 61.07 min 31.78 min 38.70 min 46.48 min

Change +0.3 % +0.8 % +1.0 % 0.8 % +0.7 %

It can be clearly seen that the optimized parameters result in a significant overall energy-saving potential
of 10.5 % on average for all four drive cycles. Despite these significant savings, the driving time increases
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by only 0.7 % on average.

To achieve this energy-saving potential in practice, the vehicle mass should be reduced as much as
possible by not carrying unnecessary loads during a trip. Furthermore, tires and road surfaces with
low rolling resistance coefficients should be chosen. The road surfaces are, in general, not influenceable.
However, setting the correct tire pressure could significantly influence the rolling resistance coefficient
of the tires, as Figure 5.4 underpins. Reducing the power demand of the auxiliary consumer by, e.g.,
switching off the air conditioning, would also be beneficial for the energy consumption of the vehicle.
Another significant influence is denoted by the battery start temperature. This parameter can directly
be influenced by the driver, e.g., parking the vehicle in a garage to avoid icy starting conditions of the
battery. The controller-related parameters ac and cr,mpc also affect the energy demand and driving time.
As the previous investigations have shown, parameter ac can be used to improve the energy efficiency
of the ENMPC by only slightly increasing the driving time. Also, the estimated rolling resistance cr,mpc

should be determined as precisely as possible to avoid drawbacks in the optimality of the controller.

8.5 Conclusions
In this chapter, the complex simulation model of the BEV on predefined drive cycles has been analyzed
closed-loop together with the ENMPC using the proposed sensitivity analysis methods Morris screening
and generalized Sobol indices. In the first step, the PDFs of the 54 parameters to be investigated were
defined. Next, a Morris screening was performed to reduce the computational cost of a variance-based
sensitivity analysis. It has separated the influential from the non-influential parameters, which resulted
in a reduced parameter set for the variance-based sensitivity analysis. Consequently, the calculation time
for the variance-based sensitivity analysis has been reduced by a factor of four.

The variance-based sensitivity analysis has been performed for the consumed battery energy Eb, the
powertrain losses Pl and the driving time td using generalized Sobol indices as they consider the temporal
dependency of technical processes. However, since the Sobol indices are determined using MC simula-
tions, they need to be estimated. The convergence of these estimators depends on the sample size used
in the MC simulation. Thus, the convergence has been proven using the two proposed methods of Chap-
ter 3 based on the law of big numbers for computing the scalar convergence measures and using bootstrap
resampling for calculating the confidence intervals. Accordingly, the chosen sample size of N = 5000 was
suitable for providing reliable sensitivity analysis calculations.

Based on these analyses, it has been shown that only a small subset of the 54 investigated parame-
ters are responsible for the variance of the outputs. Furthermore, an investigation of these influential
variables on the energy consumption and the driving time has been done in this chapter which underpins
the findings of the sensitivity analysis. It has been outlined that an optimized parameter setup of the
vehicle and controller parameters leads to an energy saving potential of 10.5 % on average at the four
drive cycles by only increasing the driving time by 0.7 % on average.





9 Conclusion and Outlook
This thesis presents the use of variance-based sensitivity analysis and screening methods to analyze and
improve the energy-efficient longitudinal vehicle control of a BEV. For this purpose, the work was divided
into four main parts.

At first, a computation time optimized complete vehicle model of an electric vehicle was developed.
In order to obtain meaningful sensitivity analysis results, the presented model includes detailed models of
the powertrain in addition to the modeling of the longitudinal vehicle dynamics. The powertrain models
consist of a battery, an inverter, a motor and a transmission model whose modeling accuracy with regard
to energy consumption was evaluated on component test benches. Thus, a complex vehicle model was
developed in this thesis which meets the requirements for the sensitivity analysis.

The second part consists of performing a sensitivity analysis to the developed vehicle model on four
different drive cycles which represents typical commuter routes. The velocity of the vehicle for this sensi-
tivity analysis was prerecorded on the four presented drive cycles using a human driver for the open-loop
investigation. To execute the sensitivity analysis, firstly, the PDFs of the examined input parameters
were defined. Afterwards, a Morris screening was done to identify non-influential parameters to reduce
the computational effort for the subsequent MC-based analysis. Based on this reduced parameter set a
quantitative variance-based sensitivity analyses was performed to identify the most influential parameters
using generalized Sobol indices.

In the third part, the information of the open-loop sensitivity analysis were used to decide which parts
need to be included in the controller design. Based on these information a novel ENMPC approach was
presented for the longitudinal control of the BEV. It has been shown, that the ENMPC controller is
capable of saving energy in artificial driving situations as well as on the four realistic drive cycles up
to 7.2 % in comparison to the manual driven vehicle. Furthermore, the proposed controller is real-time
capable for future implementations on real automotive vehicle hardware.

The last part outlined the investigation of the closed-loop sensitivity analysis on the ENMPC controlled
BEV. Here, in the same way as for the open-loop analysis, first a Morris screening was performed for
parameter reduction and then the generalized Sobol indices were calculated. In contrast to the open-loop
analysis, the vehicle speed was determined by the ENMPC and the controller-related parameters were
included in the sensitivity analysis. It has been shown that only a small subset of the 54 investigated sys-
tem parameters are significantly influencing the energy consumption of the vehicle. It was outlined that
there exists a significant variance on the energy consumption where optimizing all dominant parameter
can save 10.5 % energy on average at the four drive cycles.

It can be concluded that the sensitivity analysis of such complex systems generates valuable insights
into model characteristics and is able to identify the most important parameters. Based on these infor-
mation the researcher or engineer can focus on the most relevant parameters during controller design and
optimization of the system. This enables shorter development times and well-founded decisions in the
controller design and optimization phase. Furthermore, the proposed sensitivity analysis outlined how
measurement or estimation errors of input quantities of the controller would affect the energy efficiency.

For future research a more precise determination of the PDFs for the input parameters of the model
could be considered which would increase the accuracy of the provided results. However, as it has al-
ready been shown, deviations in the most relevant parameter distributions did not affect the results of
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the sensitivity analysis significantly. To reduce the computation time another future research topic is
the development of surrogate models. Furthermore, the development of methods for the treatment of
statistically dependent input parameters should be carried out.

Beside of improvements of the sensitivity analysis, the presented eco-CC algorithm could be extended to
an eco-ACC system considering the preceding vehicle. Furthermore, the possibility of Car2X communi-
cation with e.g. traffic-lights could be a promising extension of the proposed algorithm to enhance the
possible use cases.

The implementation of the proposed ENMPC algorithm on a real-time capable automotive hardware
on the proTRon Evolution can be aimed to take the step towards industrial implementation.



A Testbenches

A.1 Battery Testbench
The battery test bench was built up and used in [201] and [149] to parameterize the used battery cell.
However, a short overview of the test bench will be given here. Figure A.1 outlines the schematic
structure of the test bench. Furthermore, Figure A.2 provides an overview of the components. It consists
of a DC-current source capable of supplying currents up to 60A. An IGBT is attached in parallel to the
current source to control the battery current ib. If the cell is charged, condition iq < Is is valid. For
discharging the battery, condition iq > Is holds. The resulting battery current is then ib = Is − iq with
iq ∈ [0 A, 120 A]. The UniControl [202] controls the IGBT and measures the actual battery current and

UniControl

A

Control-PCXCP

V

Temperature 
Measurements

USB

Figure A.1: Battery test bench configuration

terminal voltage and transfers it using Universal Measurement and Calibration Protocol (XCP) to the
Control-PC. The battery is encapsulated in a climate chamber to vary the temperature working point
precisely. The temperature ϑb is recorded using thermocouples on the battery housing and directly at
the terminals. Further information about the battery testbench can be found in [149,201].
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(a) Climate chamber (b) Battery cell with attached thermo-
couples

(c) Measurement setup

Figure A.2: Battery test bench overview [149]

A.2 Drive and Inverter Test Benches

The drive and inverter test benches are used to parameterize and evaluate the developed models in
Section 5.1.4 and Section 5.1.3. During this work, two different configurations of drive and inverter test
benches were built and presented in the following two sections. The first test bench consists of a direct
coupling between the load machine and the device under test, whereas the second test bench consists
of a complete drive system of the proTRon Evolution. The direct coupling is suitable for parameter
identification and model verification due to the stiff connection between the load and the device under
test. However, the second test bench is used to test and evaluate the complete drive system of the
vehicle.
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A.2.1 DTB1: Direct Coupling

The DTB1 is a typical testbench configuration to measure and test electrical drives and inverters. The
schematic structure is depicted in Figure A.3. The device under test, marked by the red frame, consists of
the inverter (hofer PE250) and the PMSM M1 (EMRAX 188). The inverter is supplied by a bidirectional
DC-Source capable of feeding energy back into the mains. The PMSM M1 is directly coupled to the load
machine M2 using a torque measuring shaft. Also, the inverter of the load machine is able to feed energy

A

A

A

A

V

V V V

Control / Measurements

Control / Measurements

Control / Measurements

Figure A.3: Drive and inverter test bench configuration

back into the mains. This makes it possible to approach all quadrants of the electric drive system during
the operation. In addition, the configuration of the test bench allows not only to measure steady-state
working points but also dynamic working points with varying speeds, e.g., drive cycles. The test bench

Figure A.4: Direct coupling of drive and inverter setup

is equipped with several measurement equipment. To measure the electrical quantities very accurately,
a power analyzer is used. In this setup, the DC voltage UDC , the current IDC and also the AC voltages
UUV , UUW , UV W and currents IU , IV , IW are measured. Therefore, it is possible to precisely determine
the AC and DC power. Furthermore, the inverter’s internal software variables can be measured directly
using XCP. The mechanical torque Tm and velocity ωm are measured using the torque measuring shaft
from which the mechanical power can be calculated. With this measurement configuration, the test
bench system is capable of measuring all quantities needed for the accurate measurement of component
efficiencies. Figure A.4 shows the real structure of the assembled system. On the left, the engine of the
device under test M1 can be seen. This device is coupled via the torque measurement shaft with the load
machine M2 on the right.
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A.2.2 DTB2: Complete Drive System

The DTB2 consists mainly of the same parts as the DTB1. The difference is mainly that the drive M1 is
not directly coupled with the load device M2. Instead, the gearbox of the proTRon Evolution is assembled
between them. Also, a second torque measuring shaft at the output of the gearbox is assembled. With
the two torque measuring shafts, the mechanical power at the input shaft and the output shaft of the
gearbox can be measured. The schematic structure of the DTB2 is depicted in Figure A.5 and the real

A

A

A

A

V

V V V

Control / Measurements Control / Measurements

Control / Measurements

Figure A.5: Drive and inverter test bench configuration with gearbox

system is shown in Figure A.6.

Figure A.6: Drive and inverter test bench with gearbox

A.2.3 Measurement Errors

To determine the accuracy of the evaluation of the models presented in Sections 5.1.1, 5.1.4 and 5.1.3,
the measurement errors of the test benches have to be estimated. The quantities of interest are the
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efficiencies of each component

ηinv = PAC

PDC
(A.1)

ηem = Pem

PAC
(A.2)

ηds = Pem

PDC
(A.3)

ηgb = Pw

Pem
(A.4)

ηsys = Pw

PDC
(A.5)

where ηinv describes the efficiency of the inverter and ηem the efficiency of the PMSM. ηds denotes the
system efficiency, including the PMSM and the inverter. The efficiency of the gearbox is expressed with
ηgb and the overall system efficiency with ηsys. The effective powers of the DC side PDC and the AC side
PAC of the inverter and the mechanical power Pem must be calculated using the measured quantities.
The effective DC power is described by

PDC = UDCIDC , (A.6)

where UDC depicts the True Root Mean Squared (TRMS) voltage and IDC the TRMS current of the DC
side. The effective AC power for a symmetric three-phase system is calculated using

PAC = 3UACIAC cos(φ) (A.7)

with UAC describing the TRMS voltage and IAC the TRMS current of the AC side. cos(φ) outlines the
electrical phase angle between UAC and IAC . Using the measurement of the shaft torque of the PMSM
Pem and the angular velocity ωm, the mechanical power Pem is expressed by

Pem = Memωm. (A.8)

The torque at the gearbox output can be calculated similarly using

Pw = Mwωw, (A.9)

where Mw is the measured output torque of the gearbox and ωw is the measured angular velocity of the
gearbox output shaft.

Measurement Error Estimation

The efficiencies outlined in (A.1) to (A.5) are subject to measurement errors. To estimate the maximum
measurement errors, linear error propagation, as described in [203], is used. In general, the linear error
propagation for two independent measured variables can be expressed by

∆z =
∣∣∣∣∂f(x, y)

∂x
∆x

∣∣∣∣+
∣∣∣∣∂f(x, y)

∂y
∆y

∣∣∣∣ , (A.10)

where ∂f(x,y)
∂x denotes the partial derivative of the function f(x, y) with respect to x and ∂f(x,y)

∂y the partial
derivative with respect to y. ∆z is the absolute maximum error of the function value. Transferring the
concept of linear error propagation to the efficiency measurements, the maximum error of the inverter
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efficiency ∆ηinv can be calculated by

∆ηinv = ±
(∣∣∣∣ ∂ηinv

∂UAC
∆UAC

∣∣∣∣+
∣∣∣∣∂ηinv

∂IAC
∆IAC

∣∣∣∣+
∣∣∣∣∂ηinv

∂φ
∆φ

∣∣∣∣+
∣∣∣∣ ∂ηinv

∂UDC
∆UDC

∣∣∣∣+
∣∣∣∣∂ηinv

∂IDC
∆IDC

∣∣∣∣)
= ±3

(∣∣∣∣IAC cos(φ)
UDCIDC

∆UAC

∣∣∣∣+
∣∣∣∣UAC cos(φ)

UDCIDC
∆IAC

∣∣∣∣+
∣∣∣∣−UACIAC sin(φ)

UDCIDC
∆φ

∣∣∣∣
+
∣∣∣∣UACIAC cos(φ)

U2
DCIDC

∆UDC

∣∣∣∣+
∣∣∣∣UACIAC cos(φ)

UDCI2
DC

∆IDC

∣∣∣∣) . (A.11)

Similarly, the efficiency errors for the PMSM

∆ηem = ±
(∣∣∣∣ ∂ηem

∂Mem
∆Mem

∣∣∣∣+
∣∣∣∣∂ηem

∂ωm
∆ωm

∣∣∣∣+
∣∣∣∣ ∂ηem

∂UAC
∆UAC

∣∣∣∣+
∣∣∣∣∂ηem

∂IAC
∆IAC

∣∣∣∣+
∣∣∣∣∂ηem

∂φ
∆φ

∣∣∣∣)
= ±1

3

(∣∣∣∣ ωm

UACIAC cos(φ)∆Mem

∣∣∣∣+
∣∣∣∣ Mem

UACIAC cos(φ)∆ωm

∣∣∣∣
+
∣∣∣∣ Memωm

U2
ACIAC cos(φ)∆UAC

∣∣∣∣+
∣∣∣∣ Memωm

UACI2
AC cos(φ)∆IAC

∣∣∣∣+
∣∣∣∣ 2Memωm sin(φ)
UACIAC(cos(2φ) + 1)∆φ

∣∣∣∣) (A.12)

and the drive system efficiency

∆ηds = ±
(∣∣∣∣ ∂ηds

∂Mem
∆Mem

∣∣∣∣+
∣∣∣∣∂ηds

∂ωm
∆ωm

∣∣∣∣+
∣∣∣∣ ∂ηds

∂UDC
∆UDC

∣∣∣∣+
∣∣∣∣ ∂ηds

∂IDC
∆IDC

∣∣∣∣)
= ±

(∣∣∣∣ ωm

UDCIDC
∆Mem

∣∣∣∣+
∣∣∣∣ Mem

UDCIDC
∆ωm
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∣∣∣∣ Memωm

U2
DCIDC

∆UDC

∣∣∣∣+
∣∣∣∣ Memωm

UDCI2
DC

∆IDC

∣∣∣∣) (A.13)

are calculated. The efficiency measurements for the gearbox can be calculated by

∆ηgb = ±
(∣∣∣∣ ∂ηgb

∂Mem
∆Mem

∣∣∣∣+
∣∣∣∣∂ηgb

∂ωm
∆ωm

∣∣∣∣+
∣∣∣∣ ∂ηgb

∂Mw
∆Mw

∣∣∣∣+
∣∣∣∣∂ηgb

∂ωw
∆ωw

∣∣∣∣)
= ±

(∣∣∣∣ Mwωw

M2
emωm

∆Mem
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∣∣∣∣ Mwωw

Memω2
m

∆ωm

∣∣∣∣+
∣∣∣∣ ωw

Memωm
∆Mw

∣∣∣∣+
∣∣∣∣ Mw

Memωm
∆ωw

∣∣∣∣) (A.14)

using only mechanical quantities. The overall system efficiency ∆ηsys is similar to the drive system
efficiency ∆ηds and is calculated with

∆ηsys = ±
(∣∣∣∣∂ηsys

∂Mw
∆Mw

∣∣∣∣+
∣∣∣∣∂ηsys

∂ωw
∆ωw

∣∣∣∣+
∣∣∣∣ ∂ηsys

∂UDC
∆UDC

∣∣∣∣+
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∂IDC
∆IDC

∣∣∣∣)
= ±

(∣∣∣∣ ωw

UDCIDC
∆Mw

∣∣∣∣+
∣∣∣∣ Mw

UDCIDC
∆ωw

∣∣∣∣+
∣∣∣∣ Mwωw

U2
DCIDC

∆UDC

∣∣∣∣+
∣∣∣∣ Mwωw

UDCI2
DC

∆IDC

∣∣∣∣) . (A.15)

The errors of the measured quantities depend on the used measurement equipment and their correspond-
ing measurement errors. This will be outlined below in more detail for each measured physical value. For
a better overview, all measurement errors are summarized in Table A.1.

Current measurement errors

Current measurements occur in the test benches for measuring the quantities IDC , IU , IV and IW .
However, the measurement process is equal for all quantities. The currents are measured using current
transducers. Thus, the current measurement process contains two stages. First, the current will be trans-
formed by the current transducer and then sampled by the power analyzer. Therefore, the measurement
errors need to be considered separately. The maximum error of the current transducer ∆ICT can be
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Variable Description 0H
z.

..
10

H
z

10
H

z.
..

2k
H

z

2k
H

z.
..

10
kH

z

10
kH

z.
..

10
0k

H
z

Unit

εCT,f Measurement error of the current transducer 0.0015 0.01 0.2 2.5 %

εI,P A,mv
Measurement value dependent current

measurement error of the power analyzer 0.02 0.015 0.03 0.2 %

εI,P A,mr
Measurement range dependent current

measurement error of the power analyzer 0.06 0.03 0.06 0.4 %

εU,P A,mv
Measurement value dependent voltage

measurement error of the power analyzer 0.02 0.02 0.03 0.1 %

εU,P A,mr
Measurement range dependent voltage

measurement error of the power analyzer 0.06 0.03 0.06 0.2 %

Variable Description Value Unit

εCT,c Constant measurement error of the current transducer 0.01 %

Io Current offset of the current transducer 0.03 A

εT MS,n Velocity measurement error of the torque measuring shaft 0.2 %

εT MS,M Torque measurement error of the torque measuring shaft 0.1 %

εP LC
Error of the analog

input of the Programmable Logic Controller (PLC) 0.05 %

Table A.1: Measurement errors



150 A Testbenches

expressed with

∆ICT = εCT,f Imr + εCT,cImv + Io, (A.16)

where εCT,f denotes the measurement range dependent error and is also dependent on the frequency of
the measured signal. εCT,c represents a constant measurement error over all frequencies. The measure-
ment errors εCT,f and εCT,c are given in [204] and are also outlined in Table A.1. Due to the physical
measurement principle of the current transducers, they are also afflicted with an offset Io. Imr represents
the selected measurement range of the current measurement and Imv outlines the actual measurement
value.

The current measurement error in the power analyzer ∆IP A can be expressed similarly with

∆IP A = εI,P A,mvImv + εI,P A,mrImr. (A.17)

Here, no constant term needs to be considered and the two error indicators εI,P A,mv and εI,P A,mr are
frequency-dependent as described in [205]. The proposed errors for both measurement stages then sum
up to the total error of the current measurements

∆I = ∆ICT + ∆IP A. (A.18)

The resulting AC and DC current measurement errors differ only in the chosen measurement range and
can be outlined as

∆IDC = εCT,f Imr,DC + εCT,cImv + Io + εI,P A,mvImv + εI,P A,mrImr,DC (A.19)
∆IAC = εCT,f Imr,AC + εCT,cImv + Io + εI,P A,mvImv + εI,P A,mrImr,AC , (A.20)

where Imr,DC and Imr,AC denote the measurement ranges for the DC and AC measurements. For the
proposed application, Imr,DC = 66.5 A and Imr,AC = 200 A are chosen.

Voltage measurement errors

The voltage measurement is used to measure the quantities UDC , UUV , UUW and UV W and is only
affected by the errors of the power analyzer. The corresponding measurement error can be expressed
by

∆U = εU,P A,mvUmv + εU,P A,mrUmr (A.21)

with εU,P A,mv and εU,P A,mr as frequency-dependent measurement errors related to the actual measure-
ment value and the corresponding measurement range. The values are given in [205].

As for the current measurement, the resulting AC and DC voltage measurement errors also differ only in
the chosen measurement range and can be outlined as

∆UDC = εU,P A,mvUmv + εU,P A,mrUmr,DC (A.22)
∆UAC = εU,P A,mvUmv + εU,P A,mrUmr,AC , (A.23)

where Umr,DC and Umr,AC denote the measurement ranges for the DC and AC measurements. For the
proposed application, Imr,DC = 400 V and Imr,AC = 400 V are chosen.
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Torque measurement errors

The torque measurement is also a two-stage process. The torque itself is measured in the torque mea-
surement shaft and converted into an analog signal. In the second stage, the analog signal is processed by
the PLC. The error produced by the torque measurement shaft depends only on the torque measurement
range Mmr and is calculated with

∆MT MS = εT MS,M Mmr, (A.24)

where εT MS,M denotes the relative error given in [206].

Similarly, the error of the analog input of the PLC depends only on its measurement range Umr, PLC.
Thus, it can be expressed by

∆MP LC = εP LCUmr,P LCαT MS,T , (A.25)

where εP LC denotes the relative error and αT MS,T the scaling of the input as outlined in [207]. Accord-
ingly, the total error of the torque measurement

∆M = ∆MT MS + ∆MP LC (A.26)

is the sum of all related errors. The torque measurement errors differ in their measurement ranges Mmr,m

and Mmr,w and their corresponding scalings αT MS,T,m and αT MS,T,w. This is expressed by

∆Mem = εT MS,M Mmr,m + εP LCUmr,P LCαT MS,T,m (A.27)
∆Mw = εT MS,M Mmr,w + εP LCUmr,P LCαT MS,T,w (A.28)

for the PMSM and the wheel torque measurement. For the proposed application, Mmr,m = 100 Nm,
Mmr,w = 500 Nm, αT MS,T,m = 10 Nm/V and αT MS,T,w = 50 Nm/V are chosen.

Velocity measurement errors

The velocity measurement is equal to the torque measurement and also a two-stage process. Thus, the
measurement error of the velocity depends only on the measurement range wmr of the torque measuring
shaft and can be calculated by

∆ωT MS = εT MS,ωωmr, (A.29)

where εT MS,ω denotes the relative error of the velocity measurement given in [206]. The PLC error can
be calculated similarly as for the torque measurement with

∆ωP LC = εP LCUmr,P LCαT MS,ω, (A.30)

where only αT MS,ω needs to be considered with the corresponding scaling. Likewise, the individual errors
sum up to the total error Total error of the velocity measurement

∆ω = ∆ωT MS + ∆ωP LC (A.31)

of the velocity measurement. Also, the velocity measurements differ only in their measurement ranges
ωmr,m and ωmr,w and the corresponding scalings αT MS,ω,m αT MS,ω,w. The resulting errors can be
calculated with

∆ωm = εT MS,ωωmr,m + εP LCUmr,P LCαT MS,ω,m (A.32)
∆ωw = εT MS,ωωmr,w + εP LCUmr,P LCαT MS,ω,w (A.33)
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for the PMSM and the wheel velocity measurement. For the proposed application, ωmr,m = 628 rad/s,
ωmr,w = 209.34 rad/s, αT MS,ω,m = 62.8 rad

Vs and αT MS,ω,w = 20.934 rad
Vs are chosen.

Efficiency errors

The maximum possible efficiency measurement errors for the different measurement configurations, as
outlined in (A.11) to (A.15), are depicted in Figures A.7 to A.11. If electrical quantities are involved, it

(a) DC . . . 10 Hz (b) 10 Hz . . . 2 kHz

(c) 2 kHz . . . 10 kHz (d) 10 kHz . . . 100 kHz

Figure A.7: Inverter efficiency measurement errors for different measurement frequencies

must be distinguished between different measurement frequencies of these quantities because the mea-
surement errors of the power analyzer are giving according to frequency ranges of the measured signal.
This is outlined in the corresponding subfigures for each measurement configuration. For the sake of
completeness, the complete measurement range of the current transducers up to 100 kHz is displayed.
However, the frequency dependency is only important for the AC side and the frequencies higher than
2 kHz are less important since the most amount of energy is included in the fundamental wave of the
PMSM. From this error analysis, it can be seen that the maximum possible errors are in the areas of low
power measurements, which are, in general, low torque or low-speed working points. In the other working
points, the measurement errors are significantly decreasing. Considering that the worst-case errors are
shown and that these will be considerably smaller in practice, the measurement accuracies in the test
bench design are sufficient.
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(a) DC . . . 10 Hz (b) 10 Hz . . . 2 kHz

(c) 2 kHz . . . 10 kHz (d) 10 kHz . . . 100 kHz

Figure A.8: Drive efficiency measurement errors for different measurement frequencies

(a) DC . . . 10 Hz (b) 10 Hz . . . 2 kHz

(c) 2 kHz . . . 10 kHz (d) 10 kHz . . . 100 kHz

Figure A.9: Drive System efficiency measurement errors for different measurement frequencies
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Figure A.10: Gearbox efficiency measurement errors for different measurement frequencies

(a) DC . . . 10 Hz (b) 10 Hz . . . 2 kHz

(c) 2 kHz . . . 10 kHz (d) 10 kHz . . . 100 kHz

Figure A.11: System efficiency measurement errors for different measurement frequencies
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Table B.1: Nominal vehicle parameters
Name Description Type Values Unit

mv Vehicle mass including one passenger Scalar 620 kg

meq Vehicle equivalent mass Scalar 639 kg

cr Rolling resistance coefficient Scalar 0.01 −

cw Aerodynamic drag coefficient Scalar 0.262 −

Av Frontal area Scalar 2.036 m2

ρair Ambient air pressure Scalar 984.23 hPa

ϑair Ambient temperature Scalar 20 ◦C

rw Wheel diameter Scalar 0.283 m

ig Gear ratio Scalar 5.85 −

ϑg Measured gearbox efficiency Matrix See Figure 5.6 %

Ppto Auxiliary power consumption Scalar 500 W

155
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Table B.2: Nominal battery system parameters
Name Description Type Values Unit

Rs Working point dependent series resistance Matrix See Figure 5.13a Ω

R1 Working point dependent parallel resistance Matrix See Figure 5.13b Ω

R2 Working point dependent parallel resistance Matrix See Figure 5.13c Ω

C1 Working point dependent parallel capacitance Matrix See Figure 5.13d F

C2 Working point dependent parallel capacitance Matrix See Figure 5.13e F

ncell Number of battery cells Scalar 76 −

uocv Open circuit voltage Vector See Figure 5.14a V

Qb Battery capacity Vector See Figure 5.14b Ah

Rthca Thermal resistance between case and ambient Scalar 0.37 K/W

Rthct Thermal resistance between case and terminal Scalar 2.6 K/W

Rthta
Thermal resistance between terminal and ambient Scalar 1.05 K/W

Cc Thermal capacitance of the core Scalar 2544.24 Ws/K

Ct Thermal capacitance of the terminals Scalar 68.07 Ws/K

ϑair Ambient temperature Scalar 20 ◦C
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Table B.3: Nominal inverter parameters
Name Description Type Values Unit

fs Inverter switching frequency Scalar 16 kHz

ac,T Transistor conduction losses linear coefficient Vector See Figure B.1a V

bc,T Transistor conduction losses quadratic coefficient Vector See Figure B.1a Ω

ac,D Diode conduction losses linear coefficient Vector See Figure B.1b V

bc,D Diode conduction losses quadratic coefficient Vector See Figure B.1b Ω

uref,T Transistor reference blocking voltage working point Scalar 400 V

αT Transistor switching losses temperature coefficient Scalar 0.0018 −

ϑref,T Transistor switching losses reference temperature Scalar 150 ◦C

aEon Transistor switch on losses linear coefficient Scalar 3.17 × 10−5 Vs

bEon Transistor switch on losses quadratic coefficient Scalar 7.24 × 10−9 Vs/A

cEon Transistor switch on losses constant coefficient Scalar 0.0014 Ws

aEoff Transistor switch off losses linear coefficient Scalar 4.9 × 10−5 Vs

bEoff Transistor switch off losses quadratic coefficient Scalar 1.7 × 10−8 Vs/A

cEoff Transistor switch off losses constant coefficient Scalar 0.0029 Ws

κT Transistor nonlinear blocking voltage dependency exponent Scalar 1.3 −

uref,D Diode reference blocking voltage working point Scalar 400 V

αD Diode switching losses temperature coefficient Scalar 0.004 −

ϑref,D Diode switching losses reference temperature Scalar 150 ◦C

aErr Reverse recovery losses linear coefficient Scalar 4.13 × 10−5 Vs

bErr Reverse recovery losses quadratic coefficient Scalar −3.85 × 10−8 Vs/A

cErr Reverse recovery losses constant coefficient Scalar 0.0015 Ws

κD Diode nonlinear blocking voltage dependency exponent Scalar 0.6 −

Rthjw,T Thermal resistance between transistor junction and coolant Scalar 0.145 K/W

Rthjw,D Thermal resistance between diode junction and coolant Scalar 0.206 K/W

ϑwg,in Coolant inlet temperature Scalar 30 ◦C

V̇wg Coolant flow rate Scalar 6.5 l/min
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Table B.4: Nominal drive parameters
Name Description Type Values Unit

p Number of pole pairs Scalar 10 −

Rs,ϑ0 Series resistance at reference temperature Scalar 16 Ω

Ld Working point dependent direct inductance Matrix See Figure 5.27a µH

Lq Working point dependent quadrature inductance Matrix See Figure 5.27b µH

Ψpm,ϑ0 Magnetic flux of the permanent magnet Vector See Figure 5.27c mV s

ξd Working point dependent direct axis iron loss parameter Matrix See Figure 5.29a rad2/As3

ξq Working point dependent quadrature axis iron loss parameter Matrix See Figure 5.29b rad2/As3

αcu Copper temperature coefficient Scalar 0.0039 −

ϑ0,cu Reference temperature stator winding Scalar 20 ◦C

αpm Magnet temperature coefficient Scalar −0.0021 −

ϑ0,pm Magnet reference temperature Scalar 20 ◦C

ϑst Stator temperature Scalar 25 ◦C

ϑro Rotor temperature Scalar 25 ◦C

(a) IGBT (b) Diode

Figure B.1: Temperature dependent conduction loss coefficients for IGBT and diode
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