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Abstract

The paper proposes a stylized intertemporal macroeconomic model wherein the combination of

decentralized trading and microeconomic uncertainty (taking the form of privately observed and

uninsured idiosyncratic shocks) creates an information problem between agents and generates

indeterminacy of the macroeconomic equilibrium. For a given value of the economic fundamen-

tals, the economy admits a continuum of equilibria that can be indexed by the sales expectations

of firms at the time of investment. The Walrasian allocation is one of these possible equilibria

but it is reached only if firms are optimistic enough. With a weaker degree of optimism, equi-

librium output, employment and real wages will be lower than in the Walrasian equilibrium.

Moreover, the range of possible equilibria will depend positively on the wage elasticity of the

labour supply and on the magnitude of the information problem between buyers and sellers (in

our case, the variance of the idiosyncratic shocks).

Stochastic simulations performed on a calibrated version of the model show that pure demand

expectation shocks may generate business cycle statistics that are not inconsistent with the

observed ones.

Keywords: indeterminacy, non-Walrasian economy, business cycle, animal spirits, continuum of

equilibria

JEL classification: E10, E24



1 Introduction

Business cycle analysts often associate the success or failure of an economic recovery to investors

and/or consumers expectations and degree of confidence. Obviously enough, subjective confi-

dence effects cannot be discussed in standard Walrasian setups wherein the knowledge of the

economy’s “fundamentals” typically suffices to determine a unique equilibrium (trajectory). As

is well-known, the macroeconomic outcome may be affected by “animal spirits” only if there are

market imperfections. Various contributions to the business cycle literature have outlined that

technological externalities and complementarities, imperfect competition and increasing returns

may each cause equilibrium indeterminacy and lead to economic fluctuations purely driven by

agents’ expectations1. Our paper will stress that the very working of a decentralized (competi-

tive) economy, in the absence of a market mechanism comparable to the Walrasian auctioneer,

is sufficient to explain that the equilibrium may depend not only on economic fundamentals but

also on agents’ expectations. In an intertemporal setup, the paper illustrates how decentralised

trading may lead to equilibrium indeterminacy when agents have to make decisions that will

commit them on a market (at least temporarily) while they are imperfectly informed about their

trading opportunities.

The simplest example is a productive capacity choice by a firm that is still uncertain about

future purchase orders. In a Walrasian setup, the very question of this uncertainty is almost

incongruous: for a firm, uncertainty about future market conditions concerns future output

price and not sales volume. When investing, a Walrasian firm indeed knows that at the time of

exchange it will be able to realise all (ex post) profitable transactions at the market price vector.

In a decentralized market where there is no device that always guarantees full information about

the existing trading opportunities between buyers and sellers, a firm may end up with some idle

productive capacity if ex post it receives too few purchase orders in comparison to its optimal

productive capacity; it may leave some orders unfilled in the opposite case. Expectations about

forthcoming orders then affect the firm’s investment decision and thereby the actual level of

transactions, low activity levels resulting from low investments due to pessimistic expectations.
1See Farmer and Benhabib (1999) for a survey of business cycle models with such types of imperfections and

Schmitt-Grohe (1997) for a comparative study of their quantitative implications.



Our objective is to formalise these intuitions in a model that departs as little as possible from a

standard Walrasian intertemporal macroeconomic model. The model economy consists of four

competitive markets (labour, capital, final good and intermediate goods) and only differs from

a Walrasian model in the working of the intermediate goods market. On that market, an infor-

mation problem between buyers and sellers2 exists because intermediate firms experience purely

idiosyncratic technological shocks that are uninsured and only privately observed. These shocks

imply heterogeneous employment and production decisions at the prevailing competitive prices

and wages. In a Walrasian world, those shocks would be inconsequential at the aggregate econ-

omy level: ex post, final firms would always buy a quantity of intermediate goods such that every

intermediate firm sells its optimal production level. This could occur (in the case of centralized

trading but also) in the case of decentralized trading if final firms received all the relevant in-

formation about every intermediate firm’s situation and sent purchase orders accordingly. We

depart slightly from this scenario by analysing the case where final firms send purchase orders to

intermediate firms without knowing every intermediate firm’s optimal production level3. At the

competitive price, an intermediate firm enjoying a good productivity shock may then receive too

few purchase orders, and vice-versa. The possibility of such outcomes makes the intermediate

firm’s investment choice depend on expected forthcoming purchase orders. These expectation

effects are shown to induce indeterminacy of the macroeconomic equilibrium (even with full

employment of a fixed labour supply): the economy possesses a continuum of equilibria that can

be indexed by the demand expectations of the intermediate firms. The Walrasian allocation4

is one of these possible equilibria but it is reached only if firms are optimistic enough. With a
2In a decentralized economy, what an agent has to anticipate includes the anticipations and behaviours of the

other agents. There will be no such sophistications in the present model that will deal with these coordination

problems in a highly stylized way.
3The assumption that idiosyncratic technological shocks are at the root of the information problem between

buyers and sellers should not be interpreted too literally. The existence of an uninsured microeconomic risk is a

key ingredient of our model but the assumption that it bears on productivity is only made for convenience. We

present in Appendix 2 an alternative version of our model where idiosyncratic productivity shocks are substituted

for idiosyncratic demand shocks: it is shown to have the same properties as in the model of the main text.
4In the present model with an idiosyncratic risk for input firms, we call Walrasian the equilibrium in which all

agents fulfill their Walrasian transaction plans at the market prices and wages: in particular, each intermediate

firms sells its profitable output level conditionally on the microeconomic shock it has experienced.
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weaker degree of optimism, equilibrium output, employment and real wages will be lower than

in the Walrasian equilibrium. Moreover, the range of possible equilibria will depend on the mag-

nitude of the information problem between buyers and sellers i.e. here, on the variance of the

idiosyncratic shocks. Once there is no microeconomic shock, there is no informational problem

between agents and the decentralized economy reaches a unique equilibrium, equivalent to the

Walrasian outcome.

The idea that equilibrium indeterminacy may follow from the coordination difficulties raised by

the very working of a decentralized market is not new. Several theoretical contributions on the

subject have been developed independently from (and even before) the stochastic business cy-

cle models with indeterminacy due to imperfect competition, increasing returns or externalities.

Among others, Diamond (1982) stresses the effects of decentralised trading in an economy where

the Walrasian auctioneer is replaced by a stochastic matching process; Bryant (1983) emphasises

coordination problems in a stylised model with complementary intermediate goods and decen-

tralised decision-making; in a non-cooperative game framework, Roberts (1987, 1989) shows

that non-Walrasian market institutions regarding price and quantity determination may imply

multiple equilibria in which prices and wages are set at their Walrasian levels while quantities

vary down from their Walrasian level to zero. Our model (which emphazises the role of imperfect

information in a decentralized exchange process) shares a same basic intuition with the above

mentioned papers even though it models the interactions between agents in an incomparably less

sophisticated way than in Roberts’ or in market games. But advantageously, the simplicity of

our formulation will allow us to explore its quantitative implications in a stochastic/calibrated

business cycle exercice.

The rest of the paper is organised as follows. Section 2 describes the behaviours of agents;

it presents the equilibrium conditions and discusses the result of equilibrium indeterminacy,

first under a general technological assumption, next under the assumption of a Cobb Douglas

production function. In section 3, stochastic simulations performed on a calibrated version of

the model show that pure demand expectation shocks may generate business cycle statistics

that are not inconsistent with the observed ones. Section 4 concludes.
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2 The Economy

We consider an economy where the production of the final good requires two stages. Intermediate

good firms use labour and capital to produce an homogeneous good that is the sole input of

final goods firms. Both types of firms operate under perfect competition. Intermediate firms

experience idiosyncratic technological shocks. These shocks imply heterogeneous employment

and production decisions at the competitive prices and wages. We assume a decentralised trading

process where final firms have to send purchase orders without full information about the shocks

that hit the different input suppliers. An intermediate firm may then run some idle capacities

since the orders it receives may fall short of its Walrasian output level.

Since a final goods firm cannot distinguish among intermediate goods producers, it sends the

same purchase orders qd
t to all input firms. We further assume that all input firms expect the

same purchase orders. This simplification makes all input firms identical before the realization

of the idiosyncratic shocks.

2.1 Behaviours

Intermediate Goods Producers

We assume a continuum of ex ante identical firms, uniformly distributed over the unit interval.

In each firm, factor productivity is random. With kt units of capital and `t units of labour, a

firm produces a quantity of output qt given by:

qt = f(kt, `t, θt),

where θt ∈ [θmin, θmax] , with 0 ≤ θmin < θmax < ∞ .

(1)

θt is a firm specific productivity shock with distribution function G(θ). f is concave and in-

creasing (fk, f` > 0, fkk, f`` < 0 and fk` > 0), with non-increasing returns to scale. Every firm

takes the intermediate goods price pt, the wage rate wt and the interest rate rt as given (the

final good serves as numéraire).

We assume the following sequence of events and decisions. At the beginning of period t, each

intermediate goods producer decides the value of the productive capital stock kt before observing
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the factor productivity shock θt, and given expectations about output demand qd
t , the interme-

diate goods price pt and the wage rate wt. The employment and production decisions of period

t are taken later, once the realized value of θt has been observed by the intermediate firm. We

analyse this sequence of decisions backwards, starting with employment at given capital stock.

Optimal labour demand

Let us first consider the case of an intermediate goods firm that receives a sufficient quantity of

orders and is not sales-constrained. Given a predetermined capital stock kt and a realized value

of the shock θt, the employment decision in period t is then the solution of a standard Walrasian

optimization programme:

max
`t

pt f(kt, `t, θt) − wt `t.

The optimal employment level `w
t must be such that f`(kt, `

w
t , θt) = wt/pt. This implies:

`w
t = `(kt, ωt, θt) and qw

t = q(kt, ωt, θt) , (2)

where ωt is the period t real wage for an intermediate good firm (i.e., ωt = wt/pt) and qw
t is

the corresponding profitable output. Functions ` and q are increasing in both kt and θt and

decreasing in ωt. Let us denote Πw
t the operating surplus corresponding to these employment

and output levels:

Πw
t = pt Πw(kt, ωt, θt) where Πw(kt, ωt, θt) = qw

t − ωt `w
t . (3)

Under our assumptions on f , function Πw is concave in kt and decreasing in ωt.

We now turn to the case of an intermediate goods firm receiving a quantity of orders smaller

than the profitable productive capacity qw
t . The demand for labour then coincides with the

employment level `d
t necessary to produce qd

t , i.e., 5 such that f(kt, `
d
t , θt) = qd

t , or,

`d
t = `d(kt, q

d
t , θt), (4)

5Note that we could introduce the possibility of stocking the unsold production. This would not change our

results qualitatively. Indeed, inventories cannot provide full insurance and cannot eliminate the problem at the

origin of the equilibrium indeterminacy. Inventories would have two types of effect. On the one hand, inventories

would change the supply capacity of the firms: a firm could now sell qw
t plus inventories. But qualitatively,

this would not change anything to the fact that a firm that would receive more orders than its supply capacity

(whatever it is qw
t + inventories or simply qw

t ) would be capacity constrained. On the other hand, if the firm
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where function `d is increasing in qd
t and decreasing in the other two arguments. Let us denote

Πd
t the operating surplus of a sales-constrained firm, that is:

Πd
t = pt Πd

(
kt, qd

t , ωt, θt

)
where Πd

(
kt, qd

t , ωt, θt

)
= qd

t − ωt `d
t (5)

Given our assumptions on f , function Πd is easily shown to be increasing in qd
t and kt, decreasing

in ωt.

As all intermediate goods firms receive the same quantity of orders qd
t , a given firm will be

sales-constrained only in the case where it experiences a productivity shock θt sufficiently high

to imply qw
t = q(kt, ωt, θt) > qd

t . Let us denote by θ̄t the critical value of the productivity shock

such that the corresponding Walrasian production plan matches exactly the quantity of orders

received by a firm:

θ̄t : q(kt, ωt, θ̄t) = qd
t . (6)

If θt is larger (resp. smaller) than θ̄t, the firm is (resp. is not) sales-constrained.

Optimal capital stock

The capital stock is chosen before the realized value of the shock is known to the producer. The

optimal choice takes into account the fact that depending on the realized value of the shock, the

firm may turn out to be sales-constrained (if θ lies in between θ̄ and θmax). Expected profits

maximization can thus be written as follows:

max
kt

∫ θ̄t

θmin

pt Πw (kt, ωt, θ) dG(θ) +
∫ θmax

θ̄t

pt Πd
(
kt, q

d
t , ωt, θ

)
dG(θ) − (rt + δ) kt. (7)

The capital stock kt is determined by the following first-order optimality condition:

rt + δ

pt
=

∫ θ̄t

θmin

Πw
k (kt, ωt, θ) dG(θ) +

∫ θmax

θ̄t

Πd
k

(
kt, q

d
t , ωt, θ

)
dG(θ) , (8)

where function Πw
k (resp. Πd

k) represents the first partial derivative of function Πw (resp. Πd)

with respect to k. The first term on the right-hand side of (8) is the expected marginal revenue of

capital when productivity is low; it is decreasing in kt under the assumption of strictly decreasing

received less orders, it could obviously choose to produce more than sales and so reduce the effect of the sales

contraint. But a firm that has already accumulated large inventories and faces a severe sales constraint is unlikely

to produce at full capacity, even if the inventory cost is limited to the financial capital cost.
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returns to scale. The second term on the right-hand side of (8) represents the expected marginal

revenue of capital when the firm is sales-constrained. This second term is non-negative and

decreasing in kt, increasing in the demand level qd
t . The optimality condition (8) thus determines

the optimal capital stock as a function of factor costs and sales orders. It can be written more

concisely as follows6:

kt = K
(

rt + δ

pt
, ωt, q

d
t , θ̄t, Θ

)
, (9)

where Θ summarises the parameters characterising the distribution of the idiosyncratic shocks.

Function K is decreasing in rt + δ and increasing in qd
t . It depends ambiguously on ωt because

a higher real wage increases the marginal return on capital in the case of a sales constraint and

reduces it in the other case.

In the limit case where θ̄t → θmin, the firm chooses so large a capital stock (relatively to qd
t )

that it will always be in a position to serve the demanded quantity7. This case may occur when

the real wage ωt is low enough to compensate the under-utilization of the productive capital

occurring for all θt > θmin. The opposite limit case (θ̄t → θmax) corresponds to a Walrasian

investment behaviour and will be examined below (see section 2.2).

Final Goods Producers

To keep the model as simple as possible, we assume that the final good production process

uses only intermediate goods. We furthermore assume constant returns to scale and perfect

substitutability between all intermediate goods, that is:

yt =
∫ 1

0
qjt dj , (10)

where yt is the final output level and qjt is the quantity of input j used in production. Perfect

competition between intermediate good producers implies a unique price pjt = pt, ∀ j. With the

production technology (10), the intermediate goods market equilibrium condition will further

imply that pt be equal to the price of the final good8, i.e., pt = 1. Whatever its output level,
6Note that the optimal value of the capital stock is determined even in the constant returns-to-scale case,

provided the probability of a sales-constraint is strictly positive.
7In the limit case where θmin = 0, this would of course imply that qd

t → 0.
8Assuming decreasing returns would break the equality between the intermediate and final good prices but

would not change our results qualitatively.
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a final firm will make zero profits and will accept to serve any final demand level. For a firm

using (10), the total demand for intermediate goods is thus equal to its output level yt.

As said before, we assume that the final goods firm sends the same purchase order qd
t to every

intermediate goods producer, without knowing each individual producer’s productivity level9.

For every intermediate good, there is now a positive probability (equal to Pr(θt < θ̄t)) that the

supply will fall short of the ordered quantity qd
t . This possibility is taken into account by the

final firm when formulating its input demands. Because inputs are perfectly substitutable, the

final firm will order a quantity qd
t of each input such that the total amount qt eventually received

and defined by

qt =
∫ θ̄t

θmin

q(kt, ωt, θ) dG(θ) +
[
1−G(θ̄t)

]
qd
t

satisfies the production constraint yt = qt. This gives qd
t as a function of yt, θ̄t and q(kt, ωt, θ):

qd
t =

yt −
∫ θ̄t

θmin
q(kt, ωt, θ) dG(θ)

1−G(θ̄t)
. (11)

Consumers

A representative infinitely-lived agent consumes, supplies labour, accumulates productive capital

and lends it to input firms. Her total revenue coincides with the total gross domestic income:

wage and interest rate income, plus the firms’ profits10.

Let us denote ct the consumption spending in t, nt the labour supply in t and kt+1 the stock of

capital accumulated by the consumer at the end of period t. Her optimisation programme can

then be written as follows:

max
{ct,nt}t≥1

∞∑

t=1

u(ct)− v(nt)
(1 + ρ)t

,

subject to: kt+1 + ct = (1 + rt) kt + Dt + wt nt, ∀ t ≥ 1 ,

and: lim
t→∞R1,t+1 kt+1 ≥ 0 , k1 given,

9In a centralized or a Walrasian market, the allocation of this total demand across intermediate firms would

coincide with the Walrasian output levels of those firms.
10As the technological shocks experienced by input firms are purely idiosyncratic, they do not induce any

uncertainty for the representative household (or for any household who has diversified perfectly her portfolio

choice). For her, there is thus no market incompleteness.
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where ρ > 0 and R1,t+1 is the discount factor associated to period t+1 (R1,t+1 = Πt+1
s=2 (1+rs)−1)

and Dt stands for the total amount of dividends distributed by intermediate firms:

Dt = pt

[∫ θ̄t

θmin

Πw (kt, ωt, θ) dG(θ) +
∫ θmax

θ̄t

Πd
(
kt, q

d
t , ωt, θ

)
dG(θ) − (rt + δ) kt

]
. (12)

Functions u(·) and v(·) are assumed to be such that: u′(·), v′(·) > 0, u′′()̇ < 0 and v′′(·) > 0.

The representative consumer’s optimal consumption path and labour supply satisfy the usual

first-order conditions: ∀ t ≥ 1,

u′(ct) =
(1 + rt+1)

1 + ρ
u′(ct+1) or ct = c(ct+1, rt+1), (13)

v′(nt) = u′(ct)wt or nt = n(wt, ct), (14)

where given our assumptions on functions u and v, function c is increasing in ct+1 and decreasing

in rt+1 and function n is increasing in wt and decreasing in ct.

2.2 General Equilibrium

The market equilibrium conditions are defined as follows.

On the intermediate goods markets, pt is equal to 1 (hence ωt = wt) and an intermediate firm

for which θ ≤ θ̄t (resp. θ > θ̄t) produces q(kt, ωt, θt) (resp. qd
t ), where θ̄t and qd

t are determined

by (6) and (11) respectively.

On the final good market, the final good supply is equal to the consumption and investment

demands, i.e.,

yt =
∫ θ̄t

θmin

q(kt, ωt, θ) dG(θ) +
[
1−G(θ̄t)

]
qd
t = ct + ∆kt+1 + δ kt, (15)

where ct satisfies the consumer’s optimality conditions.

On the capital market, the demand for capital (9) is equal to the capital stock accumulated by

the households:

K(rt + δ, ωt, q
d
t , θ̄t, Θ) = kt. (16)

Finally, the labour market equilibrium condition implies that labour demand be equal to the

total workforce nt:

nt =
∫ θ̄t

θmin

`(kt, ωt, θt) dG(θ) +
∫ θmax

θ̄t

`d(kt, q
d
t , θt) dG(θ) . (17)
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An intertemporal general equilibrium of this economy is defined by a sequence of vectors of

prices (pt, rt, ωt)t≥1 and quantities
(
qd
t , yt, ct, nt, kt+1

)
t≥1

and of values of θ̄t such that, at given

predetermined capital stock kt, the following conditions are satisfied:

• consumers, intermediate and final goods producers behave optimally (see equations (13),

(14), (4) and (8), (11) respectively) ;

• on the intermediate goods markets, a proportion G(θ̄t) of firms experiences a productivity

shock smaller than or equal to θ̄t (defined by (6)) and produces q(kt, ωt, θt); a proportion

of firms
[
1−G(θ̄t)

]
experiences a higher productivity shock and produces qd

t ;

• there is competitive equilibrium on all the other markets (labour, capital, final goods).

Proposition 1

1. If G(θ) is a degenerate distribution (no microeconomic uncertainty), the equilibrium is

unique and coincides with the Walrasian equilibrium without heterogeneity between inter-

mediate firms.

2. If G(θ) is a non-degenerate distribution, there is a continuum of equilibria, which can be

indexed by intermediate firms’ sales expectations.

3. If G(θ) is a non-degenerate distribution, a Walrasian equilibrium with heterogeneous in-

termediate firms can be obtained provided sales expectations are sufficiently optimistic.
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Proof

1. If the distribution G(θ) is degenerate, one has θmin = θmax. qd
t is then necessarily equal to

the Walrasian output level qw
t (see e.g. (6)), which takes the same value for all intermediate

goods producers. Equations (13) to (17) then define a standard Walrasian equilibrium.

2. In the general case where 0 ≤ θmin < θmax < ∞, at given expectations on ct+1 and rt+1,

there are only six equations to determine the seven unknowns (rt, ωt, θ̄t, q
d
t , yt, nt, kt+1).

Otherwise stated there is a vector of factor prices (rt, ωt) and a vector of quantities

(yt, q
d
t , nt, kt+1) satisfying the equilibrium conditions (6), (11), (14), (15), (16), (17) for

each possible value of θ̄t between θmin and θmax. This is true for every period t. Ob-

viously enough, the interval of equilibrium values of each of the endogenous variables

(rt, ωt, q
d
t , yt, nt, kt+1) is larger, the larger the interval of admissible values for θ̄t, i.e., the

larger the measure of [θmin, θmax].

One can easily check that the stationary equilibrium is also indeterminate.

3. In the presence of idiosyncratic uncertainty, the Walrasian equilibrium can be thought as

coming from a centralized trading process on the intermediate goods market. It would

then be possible to achieve ex post a perfect match between demands and supplies11. Each

intermediate firm would then produce and sell its Walrasian output level q(kt, ωt, θ) and

aggregate output would be uniquely determined by:

yw
t =

∫ θmax

θmin

q(kw
t , ωw

t , θ) dG(θ) (18)

with a Walrasian wage rate satisfying:

n(ωw
t , ct) =

∫ θmax

θmin

`(kw
t , ωw

t , θ) dG(θ) (19)

and a demand for capital kw
t such that:

rt + δ =
∫ θmax

θmin

Πw
k (kw

t , ωw
t , θ) dG(θ). (20)

11Equivalently, we could assume that the final good firm has perfect information about the profitable productive

capacity of each individual intermediate goods producer. Input orders would then be adjusted in such a way that

qd
j ≡ qw

j , ∀ j.
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The same equilibrium values are also obtained in our setup provided sales expectations

are sufficiently optimistic to imply θ̄t ≥ θmax.

QED

The idiosyncratic shocks introduced in point 2 of proposition 1 imply heterogeneous employment

and production decisions at the prevailing competitive prices and wages. In a Walrasian world,

those shocks would be inconsequential at the aggregate economy level: ex post, final firms

would always buy from each intermediate firm a quantity of intermediate goods equal to its

optimal production level. We have departed from this Walrasian scenario by considering the case

where final firms send purchase orders to intermediate firms without knowing every intermediate

firm’s optimal production level. At the competitive price, an intermediate firm enjoying a good

productivity shock may then receive too few purchase orders, and vice-versa. The possibility of

such outcomes makes the intermediate firm’s investment choice depend on expected forthcoming

purchase orders. It is these expectation effects that induce indeterminacy of the macroeconomic

equilibrium: pessimistic sales expectations reduce the demand for capital, which leads to a lower

rental price of capital on the one hand and to a lower labour demand and lower wages on the

other hand. Both evolutions lower the domestic income, low activity levels following from low

investments due to pessimistic expectations.

Points 1 and 3 of Proposition 1 show that the market organization we assumed here is not per

se incompatible with the realization of the Walrasian equilibrium. On the one hand (point 1),

this market organization leads to the unique Walrasian equilibrium in the limit case where there

are no microeconomic shocks: agents then possess all the relevant information and decentralised

trading raises no coordination difficulty. On the other hand (point 3), when there is uncertainty

and therefore imperfect information between agents, the same market organization is able to

reproduce the Walrasian equilibrium provided that agents be optimistic enough.

2.3 An Example

To gain further insights into the properties of the non-Walrasian economy described so far,

let us assume a Cobb-Douglas production function with non-increasing returns to scale. More
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specifically, we assume:

qt = θt `α
t kβ

t , with α + β ≤ 1 . (21)

The detailed expressions corresponding to equations (2) and (4) are given in Appendix 1.

The capital demand equation (8) becomes:

rt + δ

β
=

(wt

α

)−α/(1−α)
k
− 1−α−β

1−α
t h(θ̄t,Θ) , (22)

where h(θ̄t,Θ) =

{∫ θ̄t

θmin

θ
1

1−α dG(θ) +
(
θ̄t

) 1
α(1−α)

∫ θmax

θ̄t

θ−1/α dG(θ)

}
, (23)

and θ̄t =
(wt

α

)α (
qd
t

)1−α
k−β

t . (24)

Because all intermediate goods producers face ex ante the same decision problem and the ag-

gregate capital stock is predetermined, (22) is also the capital market equilibrium condition.

In the Cobb-Douglas case, the labor market equilibrium condition (17) similarly become:

nt =
(wt

α

)−1/(1−α)
k

β/(1−α)
t h(θ̄t,Θ) , (25)

where h(θ̄t, Θ) and θ̄t keep the same definition as in (23) and (24).

The final output supply is given by

yt =
(wt

α

)−α/(1−α)
k

β/(1−α)
t H(θ̄t, Θ) (26)

where H(θ̄t, Θ) =

{∫ θ̄t

θmin

θ
1

1−α dG(θ) +
(
θ̄t

) 1
1−α

∫ θmax

θ̄t

dG(θ)

}
, (27)

Let us further assume that the consumers’ preferences are described by isoelastic functions:

u(ct) =
c1−σ
t

1− σ
with σ ≥ 0 (28)

v(nt) = m
n1+η

t

1 + η
with η ≥ 0,m ≥ 0 (29)

The labour supply function nt is then described by

nt =
(

c−σ
t wt

m

)1/η

(30)
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Lemma 1

Functions h(θ̄t, Θ) and H(θ̄t, Θ) are increasing in θ̄t and such that

h(θ̄t, Θ) < H(θ̄t, Θ), ∀ θ̄t < θmax and

0 ≤ h(θmin, Θ) < H(θmin, Θ) ≤ h(θmax,Θ) = H(θmax,Θ)

Hence, h(θmin, Θ)/h(θmax, Θ) < 1; moreover,

H(θmin, Θ)
h(θmin,Θ)

>
H(θmax,Θ)
h(θmax, Θ)

= 1

Proof

The first-partial derivatives of h(θ̄t, Θ) and H(θ̄t, Θ) with respect to θ̄t are respectively:

∂h(θ̄t,Θ)
∂θ̄t

=
1

α(1− α)
(
θ̄t

) 1
α(1−α)

−1
∫ θmax

θ̄t

(
1
θ

)1/α

dG(θ) ≥ 0;

∂H(θ̄t,Θ)
∂θ̄t

=
1

(1− α)
(
θ̄t

) α
1−α

∫ θmax

θ̄t

dG(θ) ≥ 0

h(θ̄t, Θ) and H(θ̄t,Θ) differ only in their second term, the value of which is smaller in h(θ̄t, Θ)

than in H(θ̄t, Θ). Indeed,

(
θ̄t

) 1
α(1−α)

∫ θmax

θ̄t

θ−1/α dG(θ) =
(
θ̄t

) 1
1−α

∫ θmax

θ̄t

(
θ

θ̄t

)−1/α

<
(
θ̄t

) 1
1−α

∫ θmax

θ̄t

dG(θ)

since (
θ

θ̄t

)−1/α

=
(

θ̄t

θ

)1/α

< 1, ∀ θ > θ̄t

The other results are obvious.

QED

With a Cobb-Douglas production, the aggregate capital/labour ratio (given by the ratio of

equations (22) and (25) only depends on relative factor prices:

kt

nt
=

wt/α

(rt + δ)/β
. (31)

The ratio of equations (26) and (22) and the ratio of equations (26) and (25) give the output-

capital and output-labour ratios respectively:

yt

kt
=

rt + δ

β

H(θ̄t,Θ)
h(θ̄t, Θ)

(32)

yt

nt
=

wt

α

H(θ̄t,Θ)
h(θ̄t, Θ)

(33)
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Let us denote by xss the stationary state value of variable x. In a stationary state, the first

order condition on consumption determined the real rate of interest rss = ρ and consumption is

given by the net output level, i.e.,

css = yss − δkss = kss g(θ̄ss, Θ) (34)

where g(θ̄ss, Θ) is the stationary consumption-capital ratio given (using (32)) by

g(θ̄ss, Θ) =
ρ + δ

β

H(θ̄ss,Θ)
h(θ̄ss, Θ)

− δ. (35)

Inserting (30) into the stationary state expression of (25) and substituting the stationary state

consumption by (34) allow ones to express the stationary state wage rate as a function of the

capital stock and θ̄ss. By using this stationary equilibrium relationship to eliminate the wage

rate into (22), one can then write the stationary state value of the capital stock as an increasing

function of θ̄ss:

kss =
( α

m

)φm
(

ρ + δ

β

)φk

I(θ̄ss, Θ) (36)

where

I(θ̄ss,Θ) =
(
g(θ̄ss, Θ)

)φg
(
h(θ̄ss, Θ)

)φh

with

φm =
α

(1 + η)(1− β)− α(1− σ)

φk = − 1 + η − α

(1 + η)(1− β)− α(1− σ)
< 0

φg = − ασ

(1 + η)(1− β)− α(1− σ)
< 0

φh =
(1 + η)(1− α)

(1 + η)(1− β)− α(1− σ)
> 0

Proposition 2

a) The set of all possible stationary state values of the capital stock kss is defined

by the following interval:

I(θmin, Θ)
I(θmax, Θ)

kw
ss ≤ kss ≤ kw

ss , (37)
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where kw
ss is the stationary state value of the capital stock at the Walrasian equilib-

rium obtained from (36) with θ̄ss = θmax

kw
ss =

( α

m

)φm
(

ρ + δ

β

)φk

I(θmax, Θ)

where I(θmax,Θ) =
(

ρ + δ

β
− δ

)φg
(∫ θmax

θmin

θ1/(1−α) dG(θ))
)φh

.

(37) and the other equations can be combined to obtain the equilibrium interval for

the real wage, output and employment.

b) The interval of indeterminacy is increasing in the wage-elasticity of the labour

supply 1/η.

c) The interval of indeterminacy depends ambiguously on the intertemporal elasticity

of substitution in consumption, 1/σ.

Proof

a) follows directly from the ratio of the expressions of kss in (36) respectively for θ̄ss = θmax and

θ̄ss = θmin.

Note in particular that

I(θmin,Θ)
I(θmax,Θ)

=
(

g(θmin,Θ)
g(θmax,Θ)

)φg
(

h(θmin,Θ)
h(θmax, Θ)

)φh

< 1. (38)

Indeed, the ratio between h(θmin, Θ) and h(θmax,Θ) is smaller than one (see lemma 1) and raised

to a positive power. Moreover, lemma 1 implies that g(θmin, Θ) > g(θmax,Θ): the ratio between

g(θmin, Θ) and g(θmax, Θ) is thus larger than 1 but raised to a negative power. Hence, (38) is

the product of two terms smaller than 1.

b) Obviously enough, the smaller the ratio between I(θmin, Θ) and I(θmax,Θ), the larger the

interval of indeterminacy. Let us show that (38) is increasing in η so that the interval of

indeterminacy is decreasing in η (or increasing in 1/η):

∂

∂η

(
I(θmin, Θ)
I(θmax,Θ)

)
=

I(θmin,Θ)
I(θmax,Θ)

[(
ln

g(θmin, Θ)
g(θmax, Θ)

)
∂φg

∂η
+

(
ln

h(θmin, Θ)
h(θmax,Θ)

)
∂φh

∂η

]
,

which is unambiguously positive since lemma 1 implies the positivity of the first log (see 35)
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and the negativity of the second one and

∂φg

∂η
=

α(1− β)σ
((1 + η)(1− β)− α(1− σ))2

> 0

∂φh

∂η
= − α(1− α)(1− σ)

((1 + η)(1− β)− α(1− σ))2
< 0.

c) The first derivative of (38) with respect to σ is equal to

∂

∂σ

(
I(θmin,Θ)
I(θmax,Θ)

)
=

I(θmin,Θ)
I(θmax, Θ)

[(
ln

g(θmin, Θ)
g(θmax, Θ)

)
∂φg

∂σ
+

(
ln

h(θmin,Θ)
h(θmax, Θ)

)
∂φh

∂σ

]
,

which has an ambiguous sign because the two logs have opposite signs whereas both partial

derivatives are negative:

∂φg

∂σ
= −α

1− α− β + η(1− β)
((1 + η)(1− β)− α(1− σ))2

< 0

∂φh

∂σ
= − α(1− α)(1 + η)

((1 + η)(1− β)− α(1− σ))2
< 0.

QED

Proposition 2 shows the determinants of the interval of indeterminacy in the particular case of

an economy with a Cobb-Douglas technology and isoelastic utility functions. Proposition 2.b is

quite intuitive. In the model economy, a wave of optimism/pessimism shifts capital and labour

demands upwards/downwards. The flatter the labour supply curve (the larger 1/η), the less a

given labour demand shift will affect wages and the more it will affect employment (and thereby

capital demand and output). It is worth noting that indeterminacy remains even in the extreme

case of an inelastic labour supply (η →∞): in such a case indeed,

I(θmin, Θ)
I(θmax,Θ)

=
(

h(θmin,Θ)
h(θmax, Θ)

) 1−α
1−β

< 1.

Employment is then exogenously determined but there is still room for indeterminacy in wages,

capital, output and consumption.

Proposition 2.c about the ambiguous impact of 1/σ is intuitive as well. At given wage, a wave

of optimism that increases the labour demand also reduces the labour supply (since consump-

tion increases and leisure is a normal good). Obviously enough, the larger the labour supply

contraction at given wage, the smaller the quantitative impact of a labour demand increase: the

labour supply shift thus dampens the employment/output fluctuations following from a wave of
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optimism/pessimism. But the size of the labour supply shift depends ambiguously on σ. On

the one hand for a given increase in consumption, a larger σ implies a larger labour supply

shift at given wage. On the other hand, the increase in consumption itself depends negatively

on σ: the larger σ (the smaller 1/σ), the more consumers will choose to smooth consumption

intertemporally and the less consumption will increase.

3 Demand Shocks and Business Cycle Fluctuations

The model developed in the previous sections implies that pure demand expectation shocks

can have real effects. Our objective in this section is to calibrate a model and use numerical

simulations to examine the characteristics of the propagation mechanism associated to such

stochastic demand shocks. We compare these characteristics to those of a typical RBC model,

where fluctuations are triggered by technological shocks, and to those of a model where “animal

spirit” effects arise from the multiplicity of equilibrium trajectories around a deterministic steady

state (i.e. the steady state is a sink).

Two ways of introducing demand expectations effects

The dynamics of an intertemporal general equilibrium model with rational expectations can be

illustrated by the following linearized system borrowed from Benhabib-Farmer (1999):



ĉt+1

k̂t+1

ŝt+1




= Ψ




ĉt

k̂t

ŝt




+ Γ




et+1

ut+1


 (39)

A hat over a variable indicates the percentage deviation from the steady state value; c is a control

variable (typically consumption) while k and s are two state variables, typically the capital stock

and total factor productivity (the Solow residual). e and u represent unanticipated changes

(innovations) in c and s. In standard RBC models, matrix Ψ has as many unstable (resp. stable)

roots as there are control (resp. state) variables. The model then satisfies the Blanchard-Kahn

conditions and has a unique rational expectation equilibrium trajectory, obtained by eliminating

the influence of the unstable root. In such a case the control variable is solely a function of the

state variables k and s. In other words, expectational errors on consumption are solely a function
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of the innovations u; there is no room for independent demand expectations effects e. A variety

of model though have been constructed where the Blanchard-Kahn conditions are violated. The

unique steady state equilibrium is then a sink, which leaves a role for pure demand expectation

effects like e (see the survey in Benhabib-Farmer (1999)).

The demand expectation effect appearing in the non-Walrasian model of the previous section

is of a different nature. There is one extra state variable (sales orders qd), whose effect can be

represented in the above dynamic system in a way similar to that of the technology shock s

and the associated innovation term u. Around any stationary equilibrium corresponding to a

given steady state value qd, stochastic demand fluctuations will generate output fluctuations via

their impact on firms and households behaviors. In other words, we obtain demand expectation

effects even though the model satisfies the Blanchard-Kahn conditions.

In a case with centralized trading, our model boils down to a standard RBC model with Wal-

rasian properties and no demand expectation effects. We will use numerical simulations to

compare a non-Walrasian and a Walrasian version of the model, the former with aggregate

demand shocks, the latter with aggregate productivity shocks.

Model specification and calibration

We extend our model in order to introduce the possibility of aggregate technological shocks and

endogenise labour supply decisions. We assume a Cobb-Douglas production function, which is

an obvious generalization of (21):

qt = At θt (Xt `t)
α k1−α

t , with Xt = γ Xt−1 , γ > 1. (40)

Aggregate productivity is made of two components, a deterministic component Xt assumed to

grow at constant rate, and a random component At determined by the following autoregressive

stochastic process:

At =
(
Ā

)1−µu (At−1)
µu eut where ut ∼ N(0, σ2

u). (41)

The idiosyncratic productivity shock θt is assumed to be distributed uniformly over an interval

[θmin, θmax] centered around one and such that there can be a 40% difference between the most

and the least productive firms.
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Consumers’ preferences with respect to consumption and labour are described by the isoelastic

functions (28) and (29).

For the Walrasian version of the model, we use the same parameter values as in the baseline

model of King-Rebelo (1999), except for the disutility of work, where we use the indivisibility

assumption of Hansen (1985) and set η = 0 (instead of −1). The parameter values used to

simulate the model are reproduced in table 1. In the non-Walrasian version of the model, the

stochastic demand shock is assumed to follow the autoregressive process:

qd
t =

(
q̄ d

)1−µv
(
qd
t−1

)µv

evt where vt ∼ N(0, σ2
v) . (42)

A distinctive feature of the non-Walrasian model is its direct implications in terms of capacity

utilization. The macroeconomic rate of capacity utilization can be defined as the ratio between

the observed and the Walrasian output levels, at given output and factor prices, i.e.,

dt =
yt

yw
t

,

with yw
t given by (18). We choose to set q̄ d at 0.80, so as to obtain an aggregate rate of capacity

utilization equal to d = 0.92 at steady state. The parameters determining the volatility and the

persistence of the demand shocks are given the same values as those of the productivity shocks

in the Walrasian model (that is µv = µu and σv = σu).12 The models are simulated under the

assumption of an exogenous deterministic growth of 0.4% on a quarterly basis.

σ ρ−1 − 1 m η γ α δ µu σu q̄ d θ̄min θ̄max

1 0.984 3.48 0 1.004 0.667 0.025 0.979 0.0072 0.80 0.80 1.20

Table 1: Calibration

Simulation results

The simulation results are summarized in table 2. All variables have been logged and detrended

with the HP filter. The first part of the table gives the standard deviations of the main variables
12A sensitivity analysis (see Appendix 4) makes clear that the simulation results reported in table 2 (column

b) do not depend importantly on the calibration we chose for the demand shock.
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relative to that of output; the second part of the table gives the contemporaneous correlations

with output. Column (a) reproduces the business cycle characteristics of US data reported in

King-Rebelo (1999). The second-order moments generated with our non-Walrasian model and

demand shocks are given in column (b). For comparison, we reproduce in columns (c) the values

obtained with the Walrasian version of our model and aggregate productivity shocks. Except

for idiosyncratic shocks, this version of our model corresponds to a basic RBC model. Column

(d) gives the simulation results obtained without these idiosyncratic productivity shocks (i.e.

with θmin = θmax = 1). Except for the intertemporal elasticity of leisure (η = 0 instead of

-1), the model of column (d) is identical to the baseline RBC model of King-Rebelo (1999).

The last column reproduces the results obtained by Farmer-Guo (1994). In the latter model,

demand expectations can also have real effects, albeit by a quite different channel than in our

non-Walrasian setup. Demand expectation effects in Farmer-Guo (FG hereafter) arise from the

multiplicity of admissible equilibrium trajectories (around a unique steady state) generated by

the increasing returns to scale assumption, while in our non-Walrasian setup there is a continuum

of steady state equilibria but a unique equilibrium trajectory associated to a given steady state.

In order to ease the comparisons between columns (b) and (c), we display and comment in

Appendix 3 figures comparing the impulse response functions of our model in the cases of

aggregate productivity and demand shocks.

Comparing columns (c) and (d) shows that idiosyncratic shocks do not change the cyclical prop-

erties of the Walrasian economy in reaction to productivity shocks. In a non-Walrasian setup

they imply however that pure demand shocks can generate cyclical properties not too far from

those observed in the data (see columns (a) and (b)). A positive demand shock increases invest-

ment demand, which stimulates production (and employment) in all firms with idle profitable

capacities. At the same time, a higher investment demand raises the real interest rates, which

dampens partially the increase in consumption demand following from the income expansion.

The higher labour demand leads to a procyclical increase in real wages. With the chosen cali-

bration, investment and employment are more volatile and more correlated with output in the

non-Walrasian model than in the standard RBC model, while consumption and wages are made

less volatile and less correlated with output. It is worth noting that the same comments apply
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US data Non-Walrasian Walrasian Walrasian* FG (94)

(demand shocks) (RBC+idios. sh.) (basic RBC)

(a) (b) (c) (d) (e)

Relative standard deviation

y 1.00 1.00 1.00 1.00 1.00

c 0.74 0.26 0.43 0.43 0.24

i 2.93 4.38 3.30 3.30 5.13

` 0.99 1.39 0.61 0.62 0.83

w 0.38 0.26 0.43 0.43 0.24

d > 1 1.22 - - -

Contemporaneous correlation with output

y 1.00 1.00 1.00 1.00 1.00

c 0.88 0.56 0.93 0.93 0.78

i 0.80 0.98 0.98 0.98 0.99

` 0.88 0.99 0.96 0.96 0.98

w 0.12 0.56 0.93 0.93 0.78

d > 0 1.00 - - -

* King-Rebelo (1999)’s baseline model with labor indivisibility à la Hansen (1985)

Table 2: Business cycle statistics

to the comparison between the Farmer-Guo model with demand shocks and the standard RBC

model, with the non-Walrasian model being perhaps somewhat closer to the data.

The non-Walrasian model with pure demand shocks thus appears to be capable of generating

interesting business cycle characteristics. It certainly performs as well as the RBC model or

the Farmer-Guo model with increasing returns. Because its main propagation mechanism works

through capacity utilization changes, it furthermore implies a strongly volatile and procyclical

capacity utilization rate, as suggested by available empirical evidence. The literature on RBC

models (a.o. Burnside et al. (1996), Fagnart et al. (1998)) has already stressed that capital

utilization changes can be a strong propagation and amplification mechanism of aggregate tech-
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nological shocks. Capacity utilisation may similarly amplify the effects of pure demand shocks.

The real effects of a given demand shock will be larger the lower the initial value of the economy’s

capacity utilization rate. As figure 1 shows, the sensitivity of output to demand shocks depends

on the macroeconomic rate of capacity utilization (d): the lower d, the larger the volatility of

output relative to that of the demand shock. For a given distribution of shocks, the relative

volatility of output is multiplied by almost 2 when capacity utilization decreases from (almost)

100% to 80%.
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Figure 1: Aggregate capacity utilization and relative output volatility

4 Conclusions

The main result of the paper can be summarized as follows: in an economy where on some mar-

kets firms produce and sell on orders, genuine demand expectations effects (in the investment

decisions of those firms) may appear and create equilibrium indeterminacy if firms are imper-

fectly informed about their trading opportunities when investing. Our indeterminacy result is

thus rooted in the very working of a decentralized market in the absence of a market institu-

tion reproducing the coordinating activity of the Walrasian auctioneer. It does not rely on the

existence of externalities, technological complementarities or increasing returns to scale as is

the case in many other business cycle models with indeterminacy. A quantitative exploration

of the implications of our model shows that it is consistent with an alternative interpretation

of business cycle fluctuations, driven by self-fulfilling demand shocks instead of technological
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shocks.

We want to stress that the market organization we assumed here is not per se incompatible with

the realization of the Walrasian equilibrium. On the one hand, this market organization leads

to the unique Walrasian equilibrium in the limit case where there are no microeconomic shocks:

agents then possess all the relevant information and decentralised trading raises no coordination

difficulty. On the other hand, when there is uncertainty (and therefore imperfect information

between agents), the same market organization is able to reproduce the Walrasian equilibrium

provided that agents be optimistic enough.

The model developed in this paper is admittedly a very stylised one. From a theoretical point

of view, the representation of the information problem between agents should clearly be refined.

From an empirical point of view, various extensions like a more realistic description of the

labour market would be necessary to reproduce more precisely the cyclical properties of actual

economies.
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Appendix 1: Firms’ behaviour with Cobb Douglas technologies

Assume the Cobb Douglas technology qt = θt `α
t kβ

t , α + β ≤ 1.

The employment and production decisions corresponding to a Walrasian behaviour are

`w
t = `(kt, ωt, θt) =

[
α θ

ωt
kβ

t

] 1
1−α

and qw
t = q(kt, ωt, θt) = θt

[
α θt

ωt
k

β/α
t

] α
1−α

(43)

Πw
t then becomes

Πw(kt, ωt, θt) = (1− α) qw
t (44)

with

Πw
k (kt, ωt, θt) = β θ

1/(1−α)
t

(
α

ωt

)α/(1−α)

k
− 1−α−β

1−α
t (45)

In the case of a sales contraint, one has

`d
t = `d(kt, q

d
t , θt) =

[
qd
t

θt

]1/α

(kt)
−β/α (46)

Πd(kt, q
d
t , ωt, θt) = qd

t − ωt`
d
t (47)

and

Πd
k(kt, q

d
t , ωt, θt) = −ωt

∂`d
t

∂kt

=
β

α
ωt

[
qd
t

θt

]1/α

(kt)
−(α+β)/α

A firm then installs a capital stock level kt given by the first order optimality condition given

in the main text (see (22)).

Appendix 2: Alternative modelling with idiosyncratic demand shock

This appendix presents an alternative version of our model where uncertainty follows from id-

iosyncratic demand shock instead of idiosyncratic productivity shocks. θt is now a technological

parameter identical to all intermediate firms, which face idiosyncratic demand uncertainty fol-

lowing from the behaviour of the final firms.

More precisely, we assume that there is a mass N of ex ante identical producers of the final

good, with N much larger than 1 (which is the mass of intermediate firms). With a quantity
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qt of intermediate good, a final good firm produces qt units of final good. In order to simplify

the presentation, we assume that a final firm orders its inputs to only one intermediate firm and

that each intermediate firm is initially uncertain about the number of final firms that will be

its customers during a given period: during period t, an intermediate firm receives input orders

from νt final firms, where νt is a random number with distribution function G(ν) defined over

the interval [νmin, νmax] with 0 ≤ νmin < νmax < N and
∫ νmax

νmin

ν d G(ν) = N.

Optimal labour demand of intermediate good producers

If each final firm orders an input quantity qd
t , an input firm thus receives a global order of qd

t νt

and produces a quantity given by min(qd
t νt, q

w
t ). Variables qw

t `w
t , and Πw

t remain described

by (2) and (3). When the input firm is sales constrained (qt = qd
t νt), its labour demand and

operating surplus become

`d
t = `d(kt, q

d
t νt, θt), (48)

Πd
t = pt Πd

(
kt, qd

t νt, ωt, θt

)
where Πd

(
kt, qd

t νt, ωt, θt

)
= qd

t νt − ωt `d
t (49)

Let us denote by ν̄t the critical value of the demand shock such that the quantity of orders

received by an intermediate firm matches exactly its Walrasian production plan:

ν̄t =
q(kt, ωt, θt)

qd
t

. (50)

An intermediate firm for which νt is smaller (resp. larger) than ν̄t is (resp. is not) sales-

constrained.

Optimal capital stock of intermediate good producers

Expected profits maximization can thus be written as follows:

max
kt

∫ ν̄t

νmin

pt Πd
(
kt, qd

t ν, ωt, θt

)
dG(ν) +

∫ νmax

ν̄t

pt Πw(kt, ωt, θt) dG(ν) − (rt + δ) kt. (51)

The capital stock kt is determined by the following first-order optimality condition:

rt + δ

pt
=

∫ ν̄t

νmin

Πd
k

(
kt, qd

t ν, ωt, θt

)
dG(ν) +

∫ νmax

ν̄t

Πw
k (kt, ωt, θt) dG(ν) , (52)

where function Πw
k (resp. Πd

k) represents the first partial derivative of function Πw (resp. Πd)

with respect to k. The first term on the right-hand side of (52) is the expected marginal revenue
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of capital when the firm is sales-constrained. This term is non-negative and decreasing in kt,

increasing in the demand level qd
t νt. The second term on the right-hand side of (52) represents

the expected marginal revenue of capital when the firm operates at its Walrasian level. Like (8),

the optimality condition (52) thus determines the optimal capital stock as a function of factor

costs and sales orders: more concisely,

kt = K

(
rt + δ

pt
, ωt, q

d
t , ν̄t, Ξ

)
, (53)

where Ξ summarizes the parameters characterising the distribution function of the idiosyncratic

demand shock.

Input demand of a final firm

When νt, the number of final firms which are customers of a given intermediate firm, is smaller

(resp. larger) than ν̄t, the input orders are all fulfilled (resp. are filled up to a quantity qw
t ).

In aggregate, the final output supply Qt following from the order of a quantity qd
t by each final

firm is thus given by

Qt =
∫ ν̄t

νmin

qd
t ν dG(ν) +

∫ νmax

ν̄t

q(kt, ωt, θt) dG(ν). (54)

At the final good market equilibrium, the final output supply Qt must match the final output

demand yt. Final good market clearing thus requires that final firms (which make zero profit at

any final output level) order an input quantity qd
t such that

qd
t =

yt −
∫ νmax

ν̄t
q(kt, ωt, θt) dG(ν)

∫ ν̄t

νmin
ν dG(ν)

. (55)

Consumers

Except for the definition of Dt, the section describing the consumers’s behaviour is identical to

the one of the main text.

General equilibrium

The market equilibrium conditions can be defined as in the main text mutatis mutandis.

On the intermediate goods markets, pt is equal to 1 (hence ωt = wt) and an intermediate firm for

which ν ≥ ν̄t (resp. ν < ν̄t) produces q(kt, ωt, θt) (resp. qd
t ν), where ν̄t and qd

t are determined

by (50) and (55) respectively.
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On the final good market, the final good supply is equal to the consumption and investment

demands, i.e.,

yt =
∫ ν̄t

νmin

qd
t ν dG(ν) + q(kt, ωt, θt) [1−G(ν̄t)] = ct + ∆kt+1 + δ kt, (56)

where ct satisfies the consumer’s optimality conditions.

On the capital market, the demand for capital (53) is equal to the capital stock accumulated by

the households:

K

(
rt + δ

pt
, ωt, q

d
t , ν̄t, Ξ

)
= kt. (57)

Finally, the labour market equilibrium condition implies that labour demand be equal to the

total workforce nt:

nt =
∫ ν̄t

νmin

`d(kt, q
d
t ν, θt) dG(ν) + `(kt, ωt, θt)

∫ νmax

ν̄t

dG(ν) . (58)

An intertemporal general equilibrium of this economy is defined by a sequence of vectors of

prices (pt, rt, ωt)t≥1 and quantities
(
qd
t , yt, ct, nt, kt+1

)
t≥1

and of values of ν̄t such that, at given

predetermined capital stock kt, the following conditions are satisfied:

• consumers, intermediate and final goods producers behave optimally (see equations (13),

(14), (48) and (52), (55) respectively) ;

• on the intermediate goods markets, a proportion G(ν̄t) of firms experiences a sales shortage;

a proportion of firms [1−G(ν̄t)] produces qw
t ;

• there is competitive equilibrium on all the other markets (labour, capital, final goods).

It is then obvious to see that the model with idiosyncratic demand shocks exhibits the same

type of equilibrium indeterminacy as the model of the main text. If G(ν) is a non-degenerate

distribution, there is a continuum of equilibria. Indeed, with 0 ≤ νmin < νmax < N , at given

expectations on ct+1 and rt+1, there are only six equations to determine the seven unknowns

(rt, ωt, ν̄t, q
d
t , yt, nt, kt+1). Otherwise stated there is a vector of factor prices (rt, ωt) and a vector

of quantities (yt, q
d
t , nt, kt+1) satisfying the equilibrium conditions (50), (55), (14), (56), (57),

(58) for each possible value of ν̄t between νmin and νmax.
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Appendix 3: Impulse response functions of a technological and a pure demand

shock
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Figure 2: Impulse response functions to productivity vs demand shocks

The figures above display the impulse response functions (IRF) of a productivity and a pure

demand shock (models (c) and (b) respectively). For the sake of comparison, these IRFs have

been constructed by calibrating the size of the two shocks so as to produce the same output

response in the first period. As the first graphic shows, this requires a demand shock larger

than the technological shock because the demand shock only affects the output of the sales

constrained firms whereas the technological shock affects all firms. As explained in the main

text, investment and labour are more volatile in response to a demand shock whereas real wages

(and consumption) are less volatile.
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Appendix 4: Sensitivity analysis

This appendix shows how the standard deviation and the correlation with output of employ-

ment, investment and wages (and thus consumption) are affected by the volatility and the serial

correlation of the demand shocks. The variance of the shock has almost no effet on the simulated

moments. Its persistence reduces slightly the volatility and the cross correlation of employment

and investment; its effect on the volatility and the cross correlation of the real wage (and thus

consumption) is a bit stronger but remains weak.
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Figure 3: Volatility of investment, labour and the real wage as a function of the volatility and
the persistence of the demand shocks
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Figure 4: Output correlation of investment, labour and the real wage as a function of the
volatility and the persistence of the demand shocks
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