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Abstract—Proliferating applications of unmanned aerial vehicles
(UAVs) impose new service requirements, leading to several chal-
lenges. One of the crucial challenges in this vein is to facilitate
the autonomous navigation of UAVs. Concretely, the UAV needs
to individually process the visual data and subsequently plan its
trajectories. Since the UAV has limited onboard storage constraints,
its computational capabilities are often restricted and it may not
be viable to process the data locally for trajectory planning.
Alternatively, the UAV can send the visual inputs to the ground
controller which, in turn, feeds back the command and control
signals to the UAV for its safe navigation. However, this process
may introduce some delays, which is not desirable for autonomous
UAVs’ safe and reliable navigation. Thus, it is essential to devise
techniques and approaches that can potentially offer low-latency
solutions for planning the UAV’s flight. To this end, this paper
analyzes a multi-access edge computing aided UAV and aims to
minimize the latency of the task processing. More specifically, we
propose an offloading strategy for a UAV by optimally designing the
offloading parameter, local computational resources, and altitude
of the UAV. The numerical and simulation results are presented
to offer various design insights, and the benefits of the proposed
strategy are also illustrated in contrast to the other baseline
approaches.

I. INTRODUCTION

The past few years have witnessed significant research atten-
tion for the development of unmanned aerial vehicles (UAVs)
and their applications in academia and industries. In the envi-
sioned 6G non-terrestrial networks (NTN), UAVs are going to
play a prominent role [1] owing to the multiple new applications
such as aerial relays, flying base stations (BSs), pollution mon-
itoring, and internet-of-things (IoT). The potential of UAV ap-
plications is also evident by the ongoing standardization efforts
from 3GPP, IEEE, and ITU [2]. Traditional applications of UAVs
have a limited range of communication due to the adoption of
short-range network access technologies such as WiFi. To en-
hance this range, cellular-connected UAVs are being extensively
researched where a UAV is considered to be connected to a radio
access network (RAN) such as LTE or 5G. For example, 3GPP
in its Release 15 studied LTE-supported UAVs, while Releases
17 and 18 discuss 5G enhancements for UAVs [2]. To further
advance UAV applications, safe and reliable UAV navigation
beyond visual line-of-sight (LoS) is critical. For beyond visual
LoS (BVLoS) navigation, it requires the UAV to autonomously
govern its trajectory, which in turn requires the constant visual
inputs of the flying environment. In particular, with the help
of an onboard camera, image/video data can be exploited to
identify any obstacles. Moreover, UAV can receive real-time
inputs from ground control about the new no-fly zones based on
which UAV is required to update the trajectory by implementing
dynamic geofencing algorithms. However, all these tasks require
extensive processing and storage capabilities at UAV which
eventually increase the power consumption and hence reduce the

flight time. To address this issue, such complex task processing
can be offloaded to multi-access edge computing (MEC) servers
which subsequently send the processed data back to UAV [3].

MEC, on the other hand, is an emerging technology that can
bring cloud facilities near the edge of a network that can provide
efficient and rapid data processing capabilities with energy effi-
ciency [4]. As such, the application of MEC is particularly useful
for delay-sensitive services, including UAV flight control. In fact,
one of the crucial challenges for a UAV includes its safe and
reliable operation in the highly regulated air-space. Therefore,
autonomous flight control of UAV becomes a time-sensitive
mechanism to ensure compliance with the strict guidelines of the
aviation authorities. To this end, the MEC support can enable
the low latency solution for UAV’s autonomous flight control.

Various research works have focused on leveraging MEC
technique in the context of UAV networks [5]–[11]. In [5],
the authors introduced a cloudlet mounted on a UAV for
MEC operations where mobile users with limited processing
abilities on the ground utilize the computational resources of
the UAV for computational offloading. For such a design, the
joint optimization of bit allocation and path planning of UAV
is tackled based on successive convex approximation method.
The authors in [6] analyzed a UAV-MEC system and studied
joint resource and workflow scheduling for IoT networks. It
has been considered that a UAV first powers the IoT devices
and then those devices send the sensed data to a UAV for
computation and processing. Elie et al. in [7] investigated UAV-
aided computation offloading for IoT while considering the
stringent requirements of latency and reliability to optimize UAV
placement, offloading decisions, and radio and computational
resources. A joint resource allocation and trajectory optimization
problem has been examined in [8] where multiple UAVs are
exploited as a parallel computational server for offloading the
data from IoT users. Further, work in [9] optimized the latency
for a UAV-enabled MEC system where UAVs are considered to
cache, process, and deliver virtual reality content. The authors
in [10] considered a learning-based framework for resource
allocation in UAV-MEC for industrial IoT systems. In [11],
joint resource and trajectory optimization is studied to address
security concerns in UAV-MEC systems.

Common to all the above works is that they considered edge
computation at UAVs. However, for some applications, it may
not be viable for UAVs to be equipped with computational
resources-rich hardware owing to limited onboard space, power
consumption, and flight time. To address this issue, some work
considered the offloading of UAV data to a terrestrial MEC
server [12]–[14]. For example, in [12], the authors considered
an MEC offloading scenario, especially focusing on the security
issue of the physical layer. Ye et al. in [13] studied an ad
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hoc network scenario where a UAV first collects the data from
the ground users and then transmits it to the MEC server for
offloading. The authors in [14] attempted to maximize the energy
efficiency of the UAV, which is offloading task to the terrestrial
MEC unit, by optimizing the UAV’s mobility and computation
dynamics. Nevertheless, all these works considered LoS dom-
inant large-scale fading for their analyses while ignoring the
small-scale fading which may arise in dense urban scenarios due
to multipath from high-rise buildings and other flying vehicles
[15].

Motivated by the aforementioned discussion and different
from the existing works, in this paper, we investigate a new
application of MEC-assisted UAV for autonomous flight control.
More specifically, it is considered that a UAV is equipped with
cameras to acquire visuals from its surroundings. By processing
the visual data, the UAV can identify the potential obstacles
and accordingly its trajectory can be planned. However, due
to limited onboard processing capability, the UAV relies on an
MEC server at the edge to process visual input. Based on the
received processed data, UAV can autonomously update its tra-
jectory by constantly monitoring the surrounding environment.
Nevertheless, for real-time trajectory planning and UAV’s safe
navigation, processing, offloading, and computation delay have
to be minimized. To this end, this work analyzes a MEC-aided
UAV and aims to minimize the latency for task processing.
Importantly, we propose an offloading strategy for a UAV by
optimally designing the offloading parameter, local computa-
tional resources, and altitude of UAV. The proposed strategy is
also compared with the other baseline approaches such as local
computation, edge computation, and binary offloading through
the numerical and simulation results.

II. SYSTEM DESCRIPTION

We consider a 5G-connected UAV system for autonomous
flight control. A representative illustration of the application
is shown in Fig. 1. Herein, a UAV is connected to a ground
control station using a gNB and is responsible for defining
the initial trajectory or waypoints. Ground control is necessary
for UAV applications for safety and emergency situations. It is
assumed that the UAV’s flight mission includes fixed starting
and endpoints. UAV needs to autonomously figure out the
appropriate trajectory for navigating through these points. For
this, the UAV is equipped with a camera/sensors to obtain visual
inputs from the surrounding environment. Visual data are then
processed locally at the UAV and at the edge to obtain the
new trajectory. To enable such an application for 5G-connected
UAV, we address the problem of latency minimization for MEC
offloading and computation design. Since we aim to optimally
allocate the local computational resources at UAV while also
designing the offloading policy, we explicitly focus on the
uplink transmission between UAV and MEC server. UAV is also
capable of some computational processing as it can be equipped
with a lightweight processor [14]. In contrast, MEC server has
abundant computational resources and transmission capabilities;
therefore, the time consumed for edge processing and downlink
uploading is assumed to be negligible compared to the local
computation time [16]. This is also based on the reasoning that
the processed data size (new waypoints for the trajectory) can be
significantly smaller than the input task (visual data) and thus,
transmission time from a sophisticated MEC server would take
negligible time. Moreover, as widely adopted in the literature
[12], [13], MEC and gNB are assumed to be co-located. Further,
it is considered that the data is processed by parallel computing,
i.e., local and edge computations happen simultaneously. For
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Fig. 1: System model.

uplink offloading, the UAV is considered to be equipped with
a single antenna due to onboard space limitations. Furthermore,
after acquiring sufficient visual inputs, UAV can hover at a fixed
location and is able to adjust its altitude for data offloading to
obtain new trajectories for minimizing the latency cost towards
computation and processing.

A. Channel Model
To characterize the air-to-ground (A2G) propagation, we

adopt a model that accounts for both large-scale and small-
scale fading. In particular, for the UAV, the large-scale fading
model depends on the altitude, distance, and elevation angle,
which are dominant factors for A2G propagation. As such, the
elevation angle ϕu,m between the UAV and the MEC server can
be expressed as ϕu,m = arctan

(
h
rm

)
, with h and rm being,

respectively, the UAV’s adjustable altitude and the horizontal
distance between the UAV’s projection on the ground and MEC,
as shown in Fig. 1. Further, based on the elevation angle, the
LoS probability between the UAV and the MEC is given by [17]

P(ϕu,m) =
1

1 + C exp (−B(ϕu,m − C))
, (1)

where B and C are environment-dependent constants. Following
the above formulations, the path-loss exponent can be given
by [18], [19] α(ϕu,m) = P(ϕu,m)eu + fu, where eu and fu
are constants which depend on the propagation environment
i.e., urban, suburban, dense urban, etc. The channel coefficient
gu,m between the UAV and the MEC is assumed to follow
Nakagami-m distribution to characterize the small-scale fading.
Accordingly, the channel gain follows the Gamma distribu-
tion with probability density function (PDF) as f|gu,m|2(x) =(

mu,m

Ωu,m

)mu,m
xmu,m−1

Γ(mu,m) exp (−mu,mx) , where mu,m is a fad-
ing severity parameter and Ωu,m is the average fading power
[20]. Nakagami-m distribution is a generalized model and can
represent various fading scenarios. For instance, it can also
encapsulate the Rician fading by setting its parameter as mu,m =(
1−

(
K

k+1

)2)−1

[21], where K is a Rician factor. Note that

such a channel model incorporating large- and small-scale fading
is commonly adopted in the literature [9].

B. Computation Model
We consider a computation model based on the partial of-

floading strategy. In such an approach, the UAV can exploit its
computational resources to compute the data locally while also
leveraging the resource-rich terrestrial MEC. More specifically,
it is assumed that the UAV offloads the β portion of the data to
the MEC server while the remaining (1−β) is computed locally.
We consider the full granularity in data partitioning such that



the data can be divided into any subset size [22]. Following the
dynamic voltage scaling (DVS) model [22], the execution time
for the local computation TUL at the UAV and the offloading
time TUO can be, respectively, given by [13], [16]

TUL =
(1− β)c

fLC
and TUO =

βXb

B log2 (1 + Λu,m)
, (2)

where c represents the required central processing unit (CPU)
cycles to process the Xb bits of task, fLC denotes the
UAV’s CPU frequency in cycles per second. Let Λu,m =

Pod
−α(ϕu,m)
u,m

|gu,m|2
σ2
o

, with σ2
o = BNo being the variance of

additive white Gaussian noise (AWGN), No is noise power
spectral density and Po denotes the offloading power.

C. Energy Consumption
The total energy consumption of UAV can be written as [23]

Eu,p =

∫ t+Tp

t

Pu,p (v(t)) dt+
1

2
mu

(
v2(t+ Tp)− v2(t)

)
+mug (h(t+ Tp)− h(t)) + PcTp. (3)

In (3), the first term corresponds to propulsion-related con-
sumption while the second and third terms indicate kinetic
and potential energy, respectively. The last term accounts for
communication-related consumption. The propulsion power Pu,p

in 3 can be modeled by [24]

Pu,p (v(t)) = P0

(
1 +

3v2(t)

u2
tip

)
+

1

2
d0ρsAv3(t)

+ Pi

(√
1 +

v4(t)

4v40
− v2(t)

2v20

) 1
2

, (4)

where v(t) is the velocity of the UAV, while the other modeling
parameters in (4) are dependent on the weight of the UAV, air
density, and rotor disc area, as defined in [24]. Moreover, the
power consumption for the local computation at UAV can be
given by [22] PLC = kf3

LC, where k is a coefficient whose value
depends on the chip architecture. Hence, the energy consumption
to compute the (1− β)Xb bits locally can be calculated, using
the execution time TUL in (2), as

ELC = c(1− β)kf2
LC. (5)

Remark: From TUL in (2), it can be witnessed that increase in
local computation frequency fLC can reduce the local computa-
tion time. In contrast, the rise in fLC leads to increased energy
consumption, as deduced from (5). Therefore, there exists an
underlying trade-off between the computation time and energy
consumption; thus, it is crucial to optimize the fLC under the
limited energy budget of UAV.

III. PROBLEM FORMULATION

Since parallel computing has been considered for task pro-
cessing, based on the local computation time TUL and the
offloading time TUO in (2), the total latency cost towards the
computation can be given by

TL = max (TUL, TUO) . (6)

For the autonomous control of UAV, the delay has to be mini-
mized while optimally designing the offloading, computational
resources, and UAV placement. More specifically, we minimize

the total latency TL by jointly optimizing the offloading param-
eter β, local computation frequency fLC, offloading power Po,
and UAV’s altitude h. To this end, the resulting problem can be
formulated as

(P) : min
β,fLC,Po,h

max

(
c(1− β)

fLC
,

βXb

B log2 (1 + Λu,m)

)
s.t.

βPoXb

B log2 (1 + Λu,m)
+ c(1− β)kf2

LC ≤ Eu − Eu,p, (7a)

0 ≤ β ≤ 1, (7b)
hmin ≤ h ≤ hmax, (7c)
0 ≤ fLC ≤ fmax

LC , (7d)
0 ≤ Po ≤ Pmax

o . (7e)

In the above formulation, the constraint (7a) represents the
energy causality constraint which ensures that the energy con-
sumption for the local computation, offloading, and propulsion
is less than the total energy Eu at the UAV. The constraint (7b)
determines the portion of data to be offloaded, and it takes values
between 0 and 1. It is worth noting that the formulated problem
also encapsulates the local computation (β = 0) and the full
offloading (β = 1) as the special cases. The bound in (7c), where
hmin and hmax represent the minimum and maximum altitudes
of the UAV, restricts the altitude of the UAV to avoid conflict
with terrestrial or other air-borne vehicles. Furthermore, fmax

LC
and Pmax

o in (7d) and (7e), respectively, denote the maximum
computational frequency at UAV and peak offloading power.
Note that all the parameters are conveyed to a central controller
or cloud manager at gNB [12] which executes the optimization
process and sends the optimal parameters to UAV and GCS via
feedback or control links through adequate signalling.

IV. PROPOSED SOLUTION

The problem (P) appears to be non-convex with respect to the
optimization variables, and thus its solution is not straightfor-
ward. To overcome this, we decouple the original optimization
problem and iteratively solve it as follows.

A. Optimal Altitude of UAV
Recalling that after receiving the visual inputs, the UAV of-

floads/computes the data for processing to receive new trajecto-
ries. For this, the UAV at any given time instant hovers at a fixed
location and is able to adjust its altitude within the permissible
altitude range. Also, note that UAV can not manoeuvre horizon-
tally to avoid any no-fly zones or obstacles before it is updated
with the new waypoints. Therefore, we explicitly consider the
vertical placement of UAV to minimize the latency. In a UAV
communication network, the LoS probability is an important
parameter that highly impacts the system’s performance. As
perceived from (1), the LoS probability is mainly determined
by the altitude of the UAV, for a fixed horizontal distance.
Apparently, the rise in altitude increases the angle of elevation,
resulting in an increased LoS probability and hence reduced
path loss. In other words, the optimal altitude of UAV can be
obtained by minimizing the path-loss. Mathematically, this can
be expressed as follows:

min
h

d−(P(ϕu,m)eu+fu)
u,m , (8)

s.t. (7c) (9)

The primary aim of (8) is to optimally place the UAV in such a
way that the angle of elevation ensures highest LoS probability
leading to minimal path loss.
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Fig. 2: Latency versus offloading parameter.

B. Resource Allocation
Following that, to deal with the non-convexity of the prob-

lem (P), we first apply the change of variable as Ru,m =
log2 (1 + Λu,m). For further simplification, we define another
metric as: κ(β, fLC, Ru,m) = max

(
c(1−β)Xb

fLC
, βXb

BRu,m

)
. Subse-

quently, (P) can be reduced as

(P1) : min
β,fLC,Ru,m

κ(β, fLC, Ru,m)

s.t.
βXb(2

Ru,m − 1)d
α(ϕu,m)
u,m σ2

o

BRu,m|gu,m|2
+ c(1− β)kf2

LCXb ≤ Ẽu,

(10a)
0 ≤ Ru,m ≤ Rmax

u,m, (10b)
(7b), (7d), (10c)

where Rmax
u,m = log2

(
1 + Pmax

o d
−α(ϕu,m)
u,m

|gu,m|2
σ2
o

)
and Ẽu =

Eu −Eu,p. On carefully observing the objective function (P1),
the latency can be minimized while keeping other variables
fixed, by judiciously designing β such that TUL = TUO, i.e.,

c(1− β)

fLC
=

βXb

BRu,m
. (11)

This observation can also be validated using Fig. 2. The
parameters to plot this figure are given in Section V. As a
consequence, optimal offloading parameter can be obtained as

β∗ =
cBRu,m

fLC + cBRu,m
. (12)

On invoking β∗ in (P1), it can be reformulated as

(P2) : min
fLC,Ru,m

cXb

fLC + cBRu,m

s.t.
cXb

(
2Ru,m − 1

)
d
α(ϕu,m)
u,m

σ2
o

|gu,m|2

fLC + cBRu,m

+
ckf3

LC

fLC + cBRu,m
≤ Ẽu, (13a)

0 ≤ Ru,m ≤ Rmax
u,m (13b)

(7d). (13c)

Further, minimization problem (P2) can be simply reduced to

(P3) : max
fLC,Ru,m

fLC + cBRu,m

s.t. (7d), (13a), (13b). (14)

Algorithm 1 Proposed Optimization Framework
Initialization: Define all parameters of the system and Ωo, error.
while error ≤ ϵ do

h∗ ← solve (8)
// Given the value of all the height variables, next step is to find
value of computation and communication resources
Ω∗ ←solve (P3) to find fLC, Ru,m, h
// Calculate the error, error = Ω∗ − Ωo

Return h∗, f∗
LC, R

∗
u,m

It is clear that (P3) is still non-convex while considering the
joint optimization of fLC and Ru,m. However, it is noteworthy
that the objective (and the corresponding constraints) become
convex while solely optimizing one variable and keeping the
other fixed, and vice-versa. In this context, we propose an
alternating iterative algorithm to solve (P3). The sub-problems,
i.e., for the case where one parameter is optimized while keeping
the other fixed, and vice-versa; can be solved iteratively with the
help of the standard convex optimization solvers, such as CVX
[25]. The overall solution is summarized as in Algorithm 1.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the con-
sidered system while employing the proposed algorithm using
the numerical and simulation results. For this, various system
parameters are set [5], [22] as k = 10−28, c = [1 × 104, 10 ×
104], B = 10 MHz, fmax

LC = 500 MHz,C = 0.5,B = 20, Xb =
[10, 100] Mb, eu = −1.5, fu = 3.5,mu,m = 3,Ωu,m =
1, rm = 180 m, hmin = 50 m, hmax = 200 m, Pmax

o = −20 dB,
No = −174 dBm/Hz, Ẽu = 1× 104 Joules.

In Fig. 3(a), we demonstrate the latency performance against
the number of cycles required at UAV for computation of Xb bits
of data, i.e., c. In particular, we also compare the performance
of our proposed strategy with the other baseline approaches
such as 1) Edge computing; 2) Local computation; 3) Binary
offloading. The case of edge computing accounts for the full
offloading (β = 1) where all the data is computed at the edge.
In contrast, the second case of local computation corresponds
to β = 0 when the data is computed locally. In comparison,
binary offloading considers the computation either locally or at
the edge. As evident from the pertinent curves, the proposed
scheme outperforms the other baseline approaches in terms of
latency. Also, the gap between the proposed and any other
schemes grows significantly as the number of cycle requirements
increases. Essentially, for the lower c, the performance is closer
to the local computation, while for the higher c, it is closer
to the edge computation. This can be associated with the fact
that higher cycle requirements would increase the computational
latency of UAV, and thus, in that case, a large portion of data
would be offloaded. Local computation is more favorable for the
lower c as it consumes less time.

Fig. 3(b) examines the variations in latency against the com-
putational data size while keeping the number of computation
cycles c as fixed. Since the offloading time would be less for the
lower amount of data, the performance of the proposed approach
is closer to the edge computation. This is rational and intuitive
since offloading to the edge in such a case can save computation
time as the number of computation cycles required is kept fixed.
Further, for the large Xb, the proposed scheme’s performance is
aligned with the local computation, as offloading a large amount
of data is more time-consuming. Clearly, the proposed scheme
outperforms the other approaches.
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Fig. 3: (a) Latency versus number of required cycles; (b) Latency versus data size; (c) Convergence of algorithm.

Finally, we demonstrate the convergence of the proposed
algorithm in Fig. 3(c). It can be seen that the algorithm’s
convergence time varies depending on the simulation parameters.
The results show that the algorithm converges faster when the
number of cycle requirements is low. On the other hand, more
iterations are required to converge to the best solution for a
large number of cycle requirements because of its extensive
computation requirements. For instance, a five times increase
in the number of cycles requirements leads to around a 20%
increase in convergence time.

VI. CONCLUSION

We investigated a latency minimization problem for a MEC-
assisted UAV system. Under the developed approach, the joint
optimization of power, placement, and computational resources
leads to efficient flight management of the UAV. In comparison
with the other baseline approaches, it is shown that the proposed
scheme can potentially minimize the latency while judiciously
allocating the task to the edge or the local processor under the
limited energy resources. In essence, the proposed framework
can be potentially useful for enabling the autonomous-flight
control of a 5G-connected UAV. For future work, the proposed
approach can be extended to a more generalized scenario to
study the impact of interference from other terrestrial and flying
nodes.
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