
Cardiovascular risk prediction - a systems medicine approach 
 

 

Ingrid Gergei1*, Thomas Pfau2,3*, Bernhard K. Krämer1, Jochen G. Schneider4 

Thanh Phuong Nguyen2,7, Winfried März1,5,6, Thomas Sauter2 

 

 

 

 

1. Vth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, 

Germany 

2. Université du Luxembourg, Department of Life Sciences and Medicine, Luxembourg 

3. Aalto University, Aalto Scientific Computing, Espoo, Finland 

4. Université du Luxembourg, Luxembourg Centre for Systems Biomedicine, Luxembourg 

5. Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 

Graz, Austria 

6. Synlab Holding Deutschland GmbH, Augsburg and Mannheim, Germany 

7. Megeno S.A, Esch sur Alzette, Luxembourg. 

*    these authors contributed equally 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Address for correspondence: 

 

Prof. Dr. Thomas Sauter 

Université du Luxembourg 

Department of Life Sciences and Medicine 

6 avenue du Swing 

L-4367 Belvaux. 

Tel: (+352) 46 66 44 6296 

Email: thomas.sauter@uni.lu 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 17, 2023. ; https://doi.org/10.1101/2023.03.16.23287363doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.03.16.23287363
http://creativecommons.org/licenses/by-nc/4.0/


Abstract 
 

Background. Guidelines for the prevention of cardiovascular disease (CVD) have recommended 

the assessment of the total CVD risk by risk scores. Current risk algorithms are low in sensitivity 

and specificity and they have not incorporated emerging risk markers for CVD. We suggest that 

CVD risk assessment can be still improved. We have developed a long-term risk prediction model 

of cardiovascular mortality in patients with stable coronary artery disease (CAD) based on newly 

available machine learning and on an extended dataset of new biomarkers. 

 

Methods. 2953 participants of the Ludwigshafen Risk and Cardiovascular Health (LURIC) study 

were included. 184 laboratory and 21 demographic markers were ranked according to their 

contribution to risk of cardiovascular (CV) mortality using different data mining approaches. A self-

learning bioinformatics workflow, including seven different machine learning algorithms, was 

developed for CV risk prediction. The study population was stratified into patients with and without 

significant CAD. Thereby, significant CAD was defined as a lumen narrowing of 50 % or more in 

at least one of the coronary segments or a history of definite myocardial infarction. The machine 

learning models in both subpopulations were compared with established CV risk assessment 

tools. 

  

Results. After a follow-up of 10 years, 603 (20.4%) patients died of cardiovascular causes. 95 (%) 

patients without CAD deceased within ten years and 247 (13.2 %) patients with CAD within 5 

years. Overall and in patients without CAD, NT-proBNP (N-terminal pro B-type natriuretic peptide), 

TnT (Troponin T), estimated cystatin c based GFR (glomerular filtration rate) and age were the 

highest ranked predictors, while in patients with CAD, NT-proBNP, GFR, CT-proAVP (C-terminal 

pro arginine vasopressin) and TNT were highest predictive. In the comparison with the FRS, 

PROCAM and ESC risk scores, the machine learning workflow produced more accurate and 

robust CV mortality prediction in patients without CAD. Equivalent CV risk prediction was obtained 

in the CAD subpopulation in comparison with the Marschner risk score. Overall, the existing 

algorithms in general tend to assign more patients into the medium risk groups, while the machine 

learning algorithms tend to have a clearer risk/no risk assignment. The framework is available 

upon request. 

 

Conclusion. We have developed a fully automated and self-validating computational framework 

of machine learning techniques using an extensive database of clinical, routinely and non-routinely 

measured laboratory data. Our framework predicts long-term CV mortality at least as accurate as 

existing CVD risk scores. A combination of four highly ranked biomarkers and the random forest 

approach showed the best predictive results. Moreover, a dynamic computational model has 

several advantages over static CVD risk prediction tools: it is freeware, transparent, variable, 

transferable and expandable to any population, types of events and time frames. 

 

Keywords. Cardiovascular risk prediction, risk scores, data mining, machine learning, 

computational science, bioinformatics. 
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Introduction 

 
Cardiovascular disease (CVD) is still the leading cause of death (1). Worldwide, 17.6 million 

people died from cardiovascular disease in 2016 of which ischemic heart disease and stroke 

together accounted for 85.1% of all deaths (1). Studies in the past have shown that at least 50% 

of CVDs would be possible to prevent by tracking unhealthy lifestyle and optimizing risk factors 

(2, 3). 

 

In the past, more than 100 different risk scores have been developed (10). According to US 

American and European guidelines for cardiovascular disease prevention, the intensity of drug 

treatment in primary prevention depends on the assessment of an individual’s CV risk (4, 5). For 

patients with lower CV risk and in a primary prevention setting, the European guideline 

recommend the use of the SCORE system (6); further risk assessment systems, including the 

Framingham Risk Score (FRS) (7) and the PROCAM Risk Score (8) are available. For patients 

with high to very high CVD risk, the Marschner risk score (9) has been suggested.  

 

Investigations which compared different risk scores have revealed that one of three calculators 

might classify a patient in a wrong category (11). Moreover, few of the risk calculators were 

validated sufficiently (10-12). 

 

The diversity and limitations of the available risk equations has prompted us to develop a 

cardiovascular risk assessment tool based on a novel workflow using machine learning, which 

calculates each individual´s CVD risk rapidly, accurately and in a fully automatized way using 

laboratory and clinical data. We have performed our analysis in a large cohort of patients initially 

presenting for coronary angiography. We hypothesized that a bioinformatics approach might 

enhance cardiovascular risk prediction in comparison to conventional statistical methods and 

might be easier to implement in laboratory and clinical information systems. 

 

 

Materials and Methods 

 

Study design 

We studied participants of the Ludwigshafen Risk and Cardiovascular Health (LURIC). The study 

protocol has been published (13). In brief, 3316 participants of German ancestry were enrolled 

between July 1997 and January 2000. Only patients with a coronary angiogram were included. 

Coronary artery disease (CAD) was assessed by coronary angiography based on maximal luminal 

narrowing upon visual assessment. All participants were followed over a median observation 

period of 9.9 years. Written informed consent was obtained from each participant prior to inclusion. 

The study was in accordance with the Declaration of Helsinki and approved by the ethics 

committee at the Medical Association of Rheinland-Pfalz (Ärztekammer Rheinland-Pfalz). 
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Laboratory test 

 

Blood was drawn in the morning hours at the Heart Centre Ludwigshafen, Germany, immediately 

centrifuged to obtain EDTA plasma and stored at -80°C for later analysis. A set of 184 metabolic 

markers were considered in the current analyses. Estimated glomerular filtration rate was 

determined based on cystatin C levels using the Chronic Kidney Disease Epidemiology 

Collaboration formula (14). The biomarker methodology and results from the LURIC study have 

been published previously (13, 15). 

 

 

Clinical definitions 

 

A set of 21 clinical markers was used. They included BMI, waist-to-hip ratio, smoking, family 

history of myocardial infarction, diabetes mellitus defined as HbA1c > 6.5%, clinical measurements 

such as blood pressure, heart rate, left ventricular ejection fraction determined by 

echocardiography and the use of commonly used drugs ACE inhibitors, Angiotensin II receptor 

blockers, β-blockers, calcium channel blockers, diuretics, statins, antidiabetic drugs, platelet 

inhibitors and gout-treatment. 

 

Exclusion Criteria 

 

Since the aim of this study was to predict cardiovascular endpoints, patients who died of non-

cardiovascular diseases (363 patients) were excluded, except, if they died after a period of more 

than 10 years (10 patients), as these patients can be considered as 10-year survivors for the 

purpose of this study. This left 2953 patients for inclusion in this study. 

 

Endpoint, subgroups and risk algorithm 

 

The endpoint was defined as cardiovascular death due to cardiac causes (myocardial infarction, 

sudden cardiac death, death due to heart failure, death after intervention to treat coronary artery 

and other deaths due to coronary artery disease) and stroke. The study population was further 

stratified into patients with and without significant CAD. Thereby, significant CAD was defined as 

a lumen narrowing of 50 % or more in at least one of the coronary segments or a history of definite 

myocardial infarction. 

 

CVD risk prediction in patients without CAD was compared with the CVD risk assessment tools 

recommended for asymptomatic persons, including the ESC Score (6), Framingham Risk 

Score(7), and the PROCAM Risk Score (8). In patients with CAD, the CV risk prediction was 

compared with the Marschner risk score (9) which was validated in patients with high to very high 

risk. In addition to qualitative comparisons of the existing risk scores, the category free net 

reclassification improvement, NRI(>0), and integrated discrimination improvement was used for 

comparison in patients without and with CAD (22)  
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Principal Component Analysis of metabolic markers 

For the Principal Component Analysis (PCA) the data (2953 patients) was normalized and adapted 

as follows: Outliers above the 99th percentile and below the 1st percentile were replaced by the 

respective percentile value. This mainly adjusts extreme outliers, which we assume to be due to 

technical issues. The adjusted data were translated to a 0-1 scale, with 0 representing the 

minimum and 1 the maximum value. This was necessary to allow comparisons of weights of the 

principal components to determine the influence of any specific variables. The subjects were then 

grouped into four age groups: 35-45, 45-55, 55-65, 65-100 years. Within each age group the 

median patient (i.e. medians for all variables) was calculated for both survivors and deceased 

patients. The PCA was performed using these median patients. To reduce the complexity any 

loading except the top five loadings (highest absolute loadings) were set to zero for plotting. 

 

 

Machine Learning Workflow  

The overall processing workflow is visualized in figure 1. To generate and evaluate the model 

predictors, the input data was randomly split into a training and a validation dataset, the latter 

containing a random selection of 10% of the deceased patients, and an equally sized random set 

from the surviving patients. The deceased patients were selected such that the distribution of 

survival times was approximately the same as the distribution of survival times in the training data. 

The remaining data was weighted according to the class sizes, to address the imbalance, and the 

weighted data was used to train the models. To estimate the quality of the generated models, we 

decided to run our workflow 200 times, using different random selections for training and validation 

sets in each run. This allows us to provide a lower boundary for the quality of the generated models 

and gives an indication of the dependency of the prediction on the selected datasets. All results 

shown for the machine learning algorithms are the means of 200 runs (with added standard 

deviations, where applicable). The input data were all patients and the subgroups of patients 

without and with CAD as detailed above.  

Ranking plasma and clinical markers 

In general, a higher number of markers improves predictive power. However, it can similarly lead 

to overfitting if too many variables are taken into consideration, i.e., the patients/variables ratio 

becomes too small. We therefore tested the effect of the number of markers selected on the 

prediction accuracy and evaluated the improvement based on the Akaike Information Criterion 

(AIC) (16). To select the markers, we used three different ranking methods available in the WEKA 

library (17-19). The chosen methods were Correlation, information gain and information gain ratio 

(20). The ranking was performed in replicates of balanced sets to address the imbalance of 

classes, i.e., several survivors equal to the number of deceased patients were randomly selected 

from the survivors’ subgroup. 1000 rankings were conducted and combined using the sum of ranks 

of a marker from each ranking as score. The lower the final score the higher the marker was 

ranked in each ranking. To test the effect of increasing marker set sizes, as detailed above, we 

generated marker sets of up to 30 markers for each ranking method and used them as input to 

the model generation. 
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Generation of prediction models 

Multiple prediction methods were tested on each generated marker set. These included logistic 

regression, a polynomial and a radial basis function support vector machine, random forest and 

random tree methods as well as a naive Bayes predictor and a rule-based predictor as 

implemented in the WEKA library (17, 20, 21). For each ranking method, models were constructed 

based on the top ranked markers. Based on the respective marker set, ten sub-models were 

generated, each trained using 30% of the processed training data. The final class prediction was 

performed by averaging the predictions from the individual sub-models. The combination of 

multiple models allows us to avoid overfitting to individual samples, which is an issue given the 

relatively small number of samples in the study. 

 

Creation of RISK estimators 

Since the machine learning algorithms used build models that determine a probability of a specific 

patient belonging to a particular class, our approach to create a risk estimator is based on this 

probability. In detail: We first obtained the probabilities for CV mortality from the respective 

predictor for each patient. Patients are then sorted by ascending probability. Each patient is 

weighted according to the outcome status. Due to the underrepresentation of patients with a 

cardiovascular (CV) death, any patient belonging to that category has a larger weight than a 

patient without a fatal event. The patients are then divided into ten equally weighted groups, in the 

order of their presence on the sorted list. This leads to groups of less patients, when there is a 

higher percentage of CV deaths, and to groups with more patients, if there is a lower percentage 

of CV deaths. For each of the groups, we then calculated the percentage of members in the group 

who died from CV events and calculated the average of the group’s minimum and maximum 

probability as determined by the model. These average and percentage combinations were used 

as anchor points to fit a quadratic curve that was then used as a risk estimator using Apaches 

Commons™ - Math curve fitting tools. Other types of curves (exponential and linear as well as 

higher order polynomials), where also tested, but a quadratic model yielded the best fit. A more 

detailed explanation can be found in the Supplemental Data (Table S1, S2 and Figure S1). 

 

Implementation 

The prediction framework was implemented in Java building on the WEKA library (17). The 

evaluation scripts were implemented in Matlab. Statistical analyses were performed in SPSS 25.0 

statistical package (SPSS Inc., Chicago, IL, USA) and R 3.4.1. The code is available upon request. 

 

Results 
 

Initial principal component analysis 

First, we conducted a simple PCA analysis using the blood plasma biomarkers (see figure 2). We 

observed a good separation of the median values of survivors and deceased patients from 
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different age groups. This separation was the stronger the younger the patients were, and grew 

weaker in older patients. We also found that individual patients aged below 50 separated well on 

this PCA. 

 

The results of the PCA indicated that we could indeed find separating properties even with a small 

number of variables in an unsupervised hypothesis-free way. On the basis of these initial 

investigations, we decided to test multiple supervised machine learning techniques to generate 

models for survival and to establish risk estimators. 

 

 

Risk of CV mortality overall 

Baseline characteristics of the overall study population are given in supplementary table S3. 603 

patients deceased of CV causes, whereas 2350 patients survived within ten years of follow-up. 

Patients who deceased were predominantly male, significantly older and had higher systolic blood 

pressure, more diagnosed diabetes mellitus type II and a history of previous myocardial infarction. 

Patients who died had significantly more severe CAD (more than 50 percent lumen narrowing in 

three vessels) whereas more patients who survived had more often no or less CAD. 

 

We tested three different ranking schemes in combination with seven different predictors and 

calculated for each approach the accuracy, AIC and area under the curve (AUC). Overall, we 

found that the InfoGain ranking scheme provided the best results (supplemental figure S1 A and 

B). Using this ranking scheme we obtained AUC values for the selected prediction algorithms with 

the best result obtained for the Random Forest predictor with an average AUC of 0.78 (±0.05), 

followed by the random tree (0.77±0.05), the rule based approach (0.77±0.05), logistic regression 

(0.76±0.05) and the radial basis function SVM with 0.76±0.05. Overall, the different machine 

learning approaches generated qualitatively very similar predictors and we therefore decided to 

use a selection of these for further comparison. Since random trees are a subclass of random 

forests we decided not to use it for further analysis and restricted our further work to the remaining 

four (diverse) methods. 

 

The ranking results of the first 30 markers according to the InfoGain scheme is shown in 

supplementary figure S2 A.  We found that using more than four predictors leads to a 

comparatively high increase in effort and cost (based on the Akaike Information Criterion - AIC), 

without further improving the accuracy of the generated models14. This can also be observed in 

supplemental figure 2 B, which shows an increasing AIC for larger marker counts whereas no gain 

in accuracy was obtained (also shown in supplemental figure 1).  

 

Based on this selection criterium the four highest ranked markers with the strongest association 

to cardiovascular mortality were: NT-proBNP (N-terminal pro-BNP), followed by TNT (Troponin 

T), GFR (estimated glomerular filtration rate) and age. 

 

To determine the discrimination power we performed average Kaplan-Meier plots of the four 

predictors (logistic regression, random forest, rigor rule based, support vector machine) which 

produced good separations between survivors and deceased (supplementary figure S3). 
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The results of our workflow with a combination of InfoGain ranking and four different predictors 

are given in supplementary figure S4. All predictors have assigned more deaths to the high-risk 

group and more patients who have survived were assigned to the low-risk group. In general, there 

were no significant difference between each predictor. 

 

 

Risk of CV mortality in patients without CAD 

Baseline characteristics of the subpopulation without CAD are given in supplementary table S4. 

In the subpopulation without CAD 95 patients deceased and 761 survived for at least ten years. 

Patients who died were again significantly older, had a lower left ventricular ejection fraction 

(LVEF), had more diagnosed diabetes mellitus type II and had higher degrees of lumen narrowing 

11-59%. No patient had a previous myocardial infarction or severe coronary vessel disease 

(defined as lumen narrowing > 50% in one or more coronary vessels). 

We observed that the InfoGain ranking still yielded the best results (supplementary figure S5). 

Again, using four markers providing good AUCs (0.835±0.1014 for random forests). The markers 

which were ranked highest were equal to the obtained ranking in the overall population. From 

highest to lowest: NT-proBNP (N-terminal pro-BNP), followed by TNT (Troponin T), GFR 

(estimated glomerular filtration rate) and age (figure 3).  

After creating a risk predictor based on the results of a combination of InfoGain ranking and four 

different predictors we compared the predicted risks with established risk assessment tools. 

(Figure 4). Overall, we observed, that the machine learning approaches assign a larger number 

of true at risk patients to the high risk group than existing scores (figure 4B). Simultaneously, the 

existing algorithms in general tend to assign more patients into the medium risk groups, while the 

machine learning algorithms tend to have a clearer risk/no risk assignment (figure 4B/D), reflecting 

a higher specificity of the machine learning approaches. This is to be expected, given that the 

machine learning algorithms were trained on a two-class prediction. Overall, the machine learning 

models trained in this study miss fewer at risk patients and are better in determining high risk 

patients compared to existing scores. This is also reflected in the NRI and IDI scores, when the 

model predictions are compared to ESC, FRAMINGHAM and PROCAM respectively. Here, the 

machine learning approach achieves a NRI(<0) of  0.86/0.91/0.85 and an IDI of 20.84/21.92/18.17 

for ESC/FRAMINGHAM/PROCAM respectively. 

 

Risk of CV mortality in patients with CAD 

We wished to compare our method to the Marschner score for prediction in patients with higher 

degrees of CAD. Since the Marschner score predicts six years risk, we built a five years score 

from our data.  

Baseline characteristics of patients with CAD are given in supplementary table S5. 247 patients 

with CAD deceased due to cardiovascular causes and 1618 survived within five years. Patients 
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who died were significantly older, had more diagnosed diabetes mellitus type II and had a lower 

LVEF. Patients who deceased had more vessel disease compared to the survivors (3 VD vs. 1-2 

VD). 

The ranking of the markers is shown in supplementary figure S6. The four highest ranked markers 

were: NT-proBNP (N-terminal pro-BNP), GFR (estimated glomerular filtration rate), CT-proAVP 

(C-terminal pro arginine vasopressin) and TNT (Troponin T). 

The resulting AUC at 0.79±0.05, using InfoGain and a random forest approach, is lower in 

comparison to the AUCs observed in patients without CAD (supplementary figure S7). Four 

markers provided the best tradeoff between cost and accuracy and we used those models for the 

comparison with the Marschner score.  

Both the established Marschner score and our automatically generated score achieved 

qualitatively similar results, with a slight advantage of an average of 80% (present workflow) vs 

75% (Marschner) of high-risk patients dying within five years (supplementary figure S8 C). Again, 

the automated scores showed a smaller number of patients assigned to a medium risk, while the 

Marschner score assigned 10-20% risk to almost 50% of the total population. The automatically 

generated risk predictors generate a more bimodal distribution of predicted risks (supplementary 

figure S8 A/B), with a higher percentage of survivors being classified as low risk compared to the 

Marschner score (supplementary figure S8 5D). However, the improvement, with respect to NRI 

and IDI is less pronounced, with an NRI of 0.57 and an IDI of 10.25. 

Unfortunately, the general risk prediction method is not directly comparable to any existing risk 

score. Our outcome comprises the hard endpoint CVD death, while most risk scores predict a 

larger range of CVD-related endpoints, and scores, which predict probabilities of CVD death, are 

commonly restricted to subpopulations. For example, the FRAMINGHAM, ESC and PROCAM risk 

scores were designed to be applied to asymptomatic patients, while the Marschner score was built 

for patients with CAD. In contrast, our general score predicted CV death irrespective of the CAD 

status of the patient. 

 

Discussion 
 

This study of long-term prediction of fatal CV events has several important findings. First, four or 

less laboratory markers are sufficient to predict long-term CV mortality in stable coronary artery 

disease patients. Second, machine learning techniques are superior to standard linear statistical 

models in prediction of long-term CV mortality. Finally, we present here several prediction models, 

for both five- and ten years prediction in patients without and with CAD, respectively, which shows 

that our approach can easily be applied to other research questions, and we provide the scripts 

used for model generation and evaluation online. 
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Risk factors  

 

We have selected our risk markers out of an array of 184 biomarkers and 21 clinical markers and 

ranked each marker on their contribution of causing CV mortality. The ranking was obtained by a 

combination of three different ranking schemes in combination with seven different predictors. For 

each approach the AUC, accuracy and AIC was determined and compared for the best prediction 

power. In the overall study population and the subpopulation without CAD we have found the same 

key set of clinical and laboratory markers as major indicators of ten-year CV mortality, which were 

ranked from the highest to the lowest as followed: NT-proBNP (N-terminal pro-BNP), followed by 

TNT (Troponin T), GFR (estimated glomerular filtration rate) and age. The markers differed slightly 

for patients with CAD where NT-proBNP, GFR, CT-proAVP and TNT were the highest predictive 

markers for 5-years CVD mortality. We found that markers associated with hemodynamic status 

such as NT-proBNP and CT-proAVP were higher ranked in patients with CAD. In general, renal 

dysfunction was consistently associated with CVD mortality, in the overall and each subpopulation. 

Surprisingly, with the exception of age, there were no clinical or anthropometric variables among 

the top-ranked predictors in each of our models. Our data are in accordance with a previously 

published study which examined 30 novel biomarkers in a population cohort with 538 incident 

cardiovascular events and 10-years follow-up (23). The strongest associations were found for NT-

proBNP, C-reactive protein, and sensitive troponin I from which a biomarker score was developed. 

 

In consequence, we found that risk factors differed across the subpopulations explored and time 

periods. Therefore, we suggest that the ranking of the markers is a critical step before training a 

predictor. In addition, a fixed reduced set of markers makes overfitting less likely. We postulate 

that the InfoGain ranking scheme achieved the best results for all tested predictors and we further 

suggest that age, the estimation of GFR, a main cardiac markers like TNT and a hemodynamic 

marker such as NT-proBNP are sufficient in prediction of overall CV-mortality. 

 

 

 

Comparison to existing Risk Scores 

 

We have compared our risk prediction model with existing risk assessment models, including the 

FRS, PROCAM and ESC-Score.  

 

First, all machine learning algorithm have allocated patients who have died to a higher risk group 

in comparison to the conventional risk scores. Vice versa, patients who have a high risk are more 

likely being classified in a high risk group by a machine learning algorithm than by a conventional 

risk score and might be referred more likely to a further treatment.  

 

Second, patients who have survived have been allocated more often into a lower risk category by 

machine learning algorithm in comparison to the other examined risk scores. Hence, a patient who 

has a low risk is more likely classified in a low-risk group than by another risk score. We therefore 

postulate that risk assessment based on machine learning methods is preferable over risk models 

derived from conventional statistical methods. 
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In general, the machine learning algorithm achieved a higher reliability by classifying survivors 

more frequently as low and deceased patients more frequently as higher risk persons. The 

percentage of patients assigned to the medium risk category was lowest for the machine learning 

algorithms.  

 

It is important to note that e.g. PROCAM predicts a different outcome (both myocardial infarction 

and death due to CVD) than the outcome used in this study (death due to CVD). The same is true 

for the FRS, which predicts the risk of myocardial infarction. Therefore, the classification according 

to risk is skewed in these two predictors, leading to a higher number of patients being classified 

into the medium category. However, considering that the classifications of FRS and PROCAM 

would shift many patients to the survival groups, it is obvious that this would lead to a very small 

number of patients being classified to the high risk group, indicating that the models suggested in 

this study are more likely to detect patients who are at risk. 

The only risk score directly comparable to our models is the ESC score, which had the same end 

point, and which clearly shows a weaker ability to distinguish between high and medium risk 

patients. 

 

However, comparing machine learning algorithm with the Marschner score in patients with CAD 

has shown equivalent results. The Marschner Score has classified patients as good as the 

developed machine learning algorithm. 

 

In conclusion we conclude that the combination of an InfoGain ranking scheme with a random 

forest predictor has performed the best. Our proposed prediction scheme has assigned patients 

accurately in their true risk group, achieved the highest sensitivity and accuracy independently if 

deaths or survival is predicted and further independently of the subpopulation and time period that 

is observed. 

 

 

Benefits of dynamic risk assessment 

 

In the past decades CVD risk assessment has been realized by the development of risk charts 

and calculators. Each risk score estimates CV risk using a different set of markers, different time 

frames and clinical endpoints. A comparison of 25 different risk calculators in 128 hypothetical 

patients showed that the risk categories agreement between pairs of calculators was only 67%. 

Further, the pairs of calculators which assigned a different category to the same patient were 

approximately one third (12). Furthermore, few of the risk calculators were insufficiently validated 

which may yield problems when the risk assessment model is applied to a population substantially 

different from the study cohort (10).  

 

The comparison of CV death rates across European countries reveals a substantial variation (24, 

25). The highest CV mortality burden is found in central and eastern European countries compared 

to Northern, Southern and Western countries. While genetic and environmental factors, such as 

nutrition and lifestyle, have a high impact on CV disease we have developed a dynamic model, 

which can directly be adapted to each study. We have achieved this goal by creating a CV risk 

prediction model which is scoring according to the contribution of CV mortality in the population. 
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Further the model is comparing different risk prediction algorithms with each-other in multiple runs 

and offers the best prediction algorithm for a distinct population. Overfitting is avoided by multiple 

runs in a ten-fold cross validation approach. Further, our approach offers the possibility to estimate 

the overall quality of the prediction based on the robustness of the performed runs. We anticipate, 

that when training the predictors on the whole data set our results would improve or at least stay 

within the quality presented here.  

 

 

 

Limitations 

 

Many analysis techniques do not cope well with missing data. Other methods can commonly infer 

the missing data by imputation. To achieve a consistent way how missing values are treated, we 

replaced missing values in all datasets by the median values of the available values. 

Samples have been drawn in patients initially presenting to a tertiary cardiac center for coronary 

angiography and some laboratory values might be elevated by increased emotional stress prior to 

examination or ischemic heart disease. Subsequent treatments, procedures and discharge 

medication may have influenced our long-term mortality rates. Further, we have focused on fatal-

CV events only.  

 

The patient cohort used might have influenced the effectiveness of other risk predictors, and thus 

present a bias towards the generated scores. However, since the main aim of this study was to 

establish an easy protocol for risk predictor generation, we expect that our results would hold in 

other studies if the found markers are determined in those studies. 

 

 

Conclusion 
 

We have developed a CV prediction model based on machine learning techniques using a 

comprehensive database of clinical, routinely and non-routinely measured laboratory data. The 

machine learning algorithm achieved a higher reliability by classifying survivors more frequently 

as low and deceased patients more frequently as higher risk persons. The percentage of patients 

assigned to the medium risk category was lowest for the machine learning algorithms in 

comparison to the other examined risk scores.  Further, we created a fully automatic and self-

validating framework, which is easily applied to a broad spectrum of populations, clinical endpoints 

and time periods of follow-up and made this framework available online. 
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Figure 1. Overview of the predictor generation process. The upper part illustrates the attribute 

ranking which is performed on the whole data set. The data is then split into validation and training 

sets and the predictors are trained with data from the training set. For each predictor type 10 

predictors are generated each using 30% of the training data from both survivor and dead classes.  

The final predictor is then built by averaging the results of the individual ten predictors and 

validated using the validation data. 
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Figure 2. Principal component analysis using the medians of four different age groups (35-45, 45-

55, 55-65, and 65-100). Purple: Survivors medians, Blue: Deceased persons´ medians. The 

medians separate well. The individual patients plotted are patients aged below 50 (orange x – 

survivors, red stars - deceased), for whom a good separation is achieved. Interestingly, the 

differences in the medians between survivors and deceased drop with higher age. 

 

 

Figure 3. Ranking results of the first 30 markers by the info gain scheme in patients without CAD. 
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Figure 4: Comparison of established and generated risk predictors.CV mortality of patients 

without CAD. The risk estimators indicated low (<10%), medium (10-20%) and high (>20%) risk. 

All values are based on averages of the patients from the individual validation sets (8 dead and 9 

surviving patients for each replication). A shows the average classification of patients by the 

scorers on the validation sets. For comparability the bars were adjusted such that all groups (low, 

medium, high) are scaled to the largest group in any of the predictors (here, a total of ~10 patients 

assigned to the survivor group by the random forest predictor). B shows the average percentage 

of validation patients without CAD who died being classified into either low/medium or high risk by 

the predictors. C shows the average percentage of deaths of the validation patients who died 

classified to low/medium/high risk category by the predictors. D shows the average relative 

classification of validation patients without CAD that survived.  
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Supplementary Data 

 

Description of the Risk estimator generation: 

Assume that we have 1000 patients. 300 off those are in the CVD dead group and 700 survived. The trained predictors assign 

a probability to be in the CV death group to each patient. In addition. a weight is assigned to each patient according to whether 

they belong to the majority (survivor) or minority group. The majority group gets a weight of one. while the minority group gets 

a weight of #MajorityGroup/#MinorityGroup.  

 

Supplement Table S1. An example of assigned probabilities and weights. 

  P2 P3 P5 P6 P7 P8 P9 P10 P11 P12 P13 P15 P16 P17 ... PN 

P(CVD) 0.25 0.77 0.41 0.86 0.14 0.21 0.12 0.01 0.87 0.36 0.92 0.15 0.36 0.41  0.86 

Class CVD S S CVD S S S S CVD S CVD S CVD S  S 

Weight 7/3 1 1 7/3 1 1 1 1 7/3 1 7/3 1 7/3 1   1 

 
Ten patient groups will be generated based on these assignments. Given. that we have a total of 700 surviving patients and 

300 patients who deceased. each group will have patients with a total weight of 140 (700/10 + 700/300*300/10). The groups 

are filled starting from the lowest assigned probabilities. until the weight of 140 is reached. Then the next group is filled. This 

leads to each group having a minimum and maximum probability. Lets assume. that the distribution looks as follows: 

 

Supplement Table S2. Assumption of the distribution 

Group 1 2 3 4 5 6 7 8 9 10 

Probabilities 0 - 0.140 
0.141 - 
0.25 

0.251 - 
0.37 

0.371 - 
0.46 

0.461 - 
0.54 

0.541 - 
0.62 

0.621 - 
0.72 

0.721 - 
0.81 

0.811 - 
0.91 

0.911 - 1.0 

S to CVD ratio 130 to 4 120 to 9 107 to 14 80 to 28 60 to 34 53 to 37 45 to 41 33  to 46 18 to 52 7 to 57 

CVD% 2.9% 7% 11.6% 25.9% 36.2% 41.1% 47.7% 54.4% 74.3% 89.1% 
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Given this data. the following base points will be used to fit a quadratic curve: 
 

X 0.07 0.19 0.31 0.415 0.5 0.58 0.67 0.765 0.86 0.96 

Y 0.029 0.07 0.116 0.259 0.362 0.411 0.477 0.544 0.743 0.891 

 
In addition the point 0/0 is added to the curve in order to achieve a sensible intercept. 
 
This results in the following quadratic fit: 

 
Quadratic fit with y = ax + bx^2 where a = 0.3143 and b = 0.6226. which will be used to determine the percentage risk for a 
patient based on the predicted probability. 
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Supplement Table S3. Baseline characteristics of overall study population. 

  
Survivors 
N=2350 

Deaths 
N=603 

p-value 

Clinical data    

Age [years] 61 (61-62) 69 (69-70) <0.01 

Sex [male] 1604 (68.3) 441 (73.1) 0.02 

BMI [kg/m²] 27.2 (27.0-27.4) 26.9(26.5-27.5) n.s. 

Waist-hip ratio 0.96 (0.96-0.96) 0.98 (0.97-0.98) 0.02 

BPsys [mmHg] 138 (137-140) 145 (143-148) <0.01 

BPdia [mmHg] 81 (81-82) 80 (79-81) n.s. 

HF [beats/min] 67 (66-67) 69 (68-71) <0.01 

Smoker 488 (20.8) 94 (15.6) 0.01 

DM II 782 (33.3) 360 (59.7) <0.01 

MI 877 (37.3) 328 (54.4) <0.01 

pMI 437 (18.6) 113 (18.7) n.s. 

LVEF [%] 67 (67-69) 46 (44-53) <0.01 

    

Coronary angiography    

no stenosis 497 (21.2) 39 (6.5) 0.01 

0-10% stenosis 91 (3.9) 22 (3.7) n.s. 

11-49% stenosis 253 (10.8) 47 (7.8) 0.04 

1 VD 451 (19.2) 106 (17.6) n.s. 

2 VD 442 (18.8) 108 (17.9) n.s. 

3 VD 584 (24.9) 267 (44.3) 0.01 

    

Laboratory data    

Cholesterol [mg/dL] 192 (191-194) 186 (183-192) 0.01 

LDL-C [mg/dL] 137 (134-139) 133 (131-137) n.s. 

HDL-C [mg/dL] 38 (38-39) 36 (36-37) <0.01 

Triglycerides [mg/dL] 146 (143-150) 146 (141-152) n.s. 

HbA1c [%] 5.9 (5.9-6) 6.4 (6.3-6.4) <0.01 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 17, 2023. ; https://doi.org/10.1101/2023.03.16.23287363doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.16.23287363
http://creativecommons.org/licenses/by-nc/4.0/


    

Medication    

ACE 1138 (48.4) 403 (66.8) <0.01 

ARB 96 (4.1) 41 (6.8) 0.01 

B-Blockers 1550 (66.0) 331 (54.9) <0.01 

CCB 329 (14) 128 (21.2) <0.01 

ADD 137 (5.8) 100 (16.6) <0.01 

Statins 1110 (47.2) 274 (45.4) n.s. 

ASS 1677 (71.4) 426 (70.7) n.s. 

Diuretics 475 (20.2) 312 (51.7) <0.01 

GT 10 (0.4) 7 (1.2) 0.03 

Continuous data presented as median [interquartile range] and as relative frequencies. Mann–Whitney U test was performed for 

continuous variables and chi-square test for categorical variables. BMI. body mass index; BPsys. blood pressure systolic; BPdia. blood 

pressure diastolic; HF, heart rate; DM II, diabetes mellitus type II; MI, myocardial infarction; pMI, premature MI defined for male under 55 

years and female under 60 years of age; LVEF, left ventricular ejection fraction; VD, vessel disease; LDL-C, low-density lipoprotein 

cholesterol; HDL-C, high density lipoprotein cholesterol; HbA1C, glycated hemoglobin; ACE, angiotensin-converting-enzyme inhibitor; 

ARB, Angiotensin II receptor blockers; CCB, Calcium channel blockers; ADD; anti-diabetic drugs; Statins, HMG-CoA reductase inhibitors; 

Diuretics, diuretic drugs; GT, gout treatment. 
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Supplement Table S4. Baseline characteristics of patients without CAD. 

  
Survivors 

N=761 
Deaths 
N=95 

p-value 

Clinical data    

Age [years] 60 (59-61) 69 (66-72) <0.01 

Sex [male] 406 (53.4) 49 (51.6) n.s. 

BMI [kg/m²] 27.0 (26.6-27.4) 27.4 (26.3-28.1) n.s. 

Waist-hip ratio 0.94 (0.93-0.95) 0.96 (0.93-0.97) n.s. 

BPsys [mmHg] 136. (135-139) 141 (137-146) n.s. 

BPdia [mmHg] 81 (80-82) 77 (75-79.75) <0.01 

HF [beats/min] 67.75 (67-69) 72(68-75) 0.03 

Smoker 136 (17.9) 16 (16.8) n.s. 

DM II 190 (25.0) 53 (55.8) <0.01 

MI 0 (0) 0 (0)  

pMI 0 (0) 0 (0)  

LVEF [%] 70 (70-72) 61 (44-67) 0.01 

    

Coronary angiography    

no stenosis 496 (65.2) 38 (40) 0.01 

0-10% stenosis 91 (12.0) 22 (23.2) 0.01 

11-49% stenosis 174 (22.9) 35 (36.8) 0.01 

1 VD 0 (0) 0 (0)  

2 VD 0 (0) 0 (0)  

3 VD 0 (0) 0 (0)  

    

Laboratory data    

Cholesterol [mg/dL] 199 (197-202) 184 (177-199) 0.01 

LDL [mg/dL] 128 (126-132) 119 (108-129) 0.02 

HDL [mg/dL] 41 (41-43) 36 (34-40) <0.01 

Triglycerides [mg/dL] 139 (133-147) 146 (128-166) n.s. 

HbA1c [%] 5.9 (5.9-6) 6.2 (6.1-6.6) <0.01 
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Medication    

ACE 264 (34.7) 55 (57.9) <0.01 

ARB 30 (3.9) 9 (9.5) 0.02 

B-Blockers 346 (45.5) 33 (34.7) n.s. 

CCB 110 (14.5) 26 (27.4) <0.01 

ADD 24 (3.2) 9 (9.5) <0.01 

Statins 139 (18.3) 18 (19.0) n.s. 

ASS 336 (44.2) 42 (44.2) n.s. 

Diuretics 155 (20.4) 53 (55.8) <0.01 

GT 1 (0.1) 1 (1.1) n.s. 

Continuous data presented as median [interquartile range] and as relative frequencies. Mann–Whitney U test was performed for 

continuous variables and chi-square test for categorical variables. BMI. body mass index; BPsys. blood pressure systolic; BPdia. blood 

pressure diastolic; HF, heart rate; DM II, diabetes mellitus type II; MI, myocardial infarction; pMI, premature MI defined for male under 55 

years and female under 60 years of age; LVEF, left ventricular ejection fraction; VD, vessel disease; LDL-C, low-density lipoprotein 

cholesterol; HDL-C, high density lipoprotein cholesterol; HbA1C, glycated hemoglobin; ACE, angiotensin-converting-enzyme inhibitor; 

ARB, Angiotensin II receptor blockers; CCB, Calcium channel blockers; ADD; anti-diabetic drugs; Statins, HMG-CoA reductase inhibitors; 

Diuretics, diuretic drugs; GT, gout treatment. 
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Supplement Table S5. Baseline characteristics of the highCAD subpopulation. 

  
Survivors                  
N=1618 

Deaths                       
N=247 

p-value 

Clinical data    

Age [years] 63(63-64) 69 (68-71) <0.01 

Sex [male] 1252 (77.4) 199 (80.6) n.s. 

BMI [kg/m²] 27.2 (26.9-27.4) 26.6 (25.9-27.4) n.s. 

Waist-hip ratio 0.97 (0.97-0.97) 0.98 (0.98-0.99) n.s. 

BPsys [mmHg] 140 (139-142) 145 (141-148) n.s. 

BPdia [mmHg] 81 (80-82) 79 (77-82) n.s. 

HF [beats/min] 66 (66-67) 71 (69-72) <0.01 

Smoker 359 (22.2) 41 (16.6) n.s. 

DM II 648 (40.1) 166 (67.2) <0.01 

MI 1114 (68.9) 176 (71.3) n.s. 

pMI 525 (32.5) 54 (21.9) <0.01 

LVEF [%] 66 (59-63) 42 (37-45) <0.01 

    

Coronary angiography    

no stenosis 2 (0.12) 5 (2.0) n.s. 

0-10% stenosis 2 (0.12) 0 (0)  

11-49% stenosis 28 (1.7) 5 (2.0)  

1 VD 449 (27.8) 47 (19.0) 0.01 

2 VD 449 (27.8) 47 (19.0) 0.01 

3 VD 686 (42.3) 143 (57.9) 0.01 

    

Laboratory data    

Cholesterol [mg/dL] 186 (185-190) 185 (178-194) n.s. 

LDL [mg/dL] 141 (139-144) 134 (129-142.5) 0.01 

HDL [mg/dL] 36 (36-37) 35 (33-37) 0.03 

Triglycerides [mg/dL] 149 (145-154) 148 (138-156) n.s. 

HbA1c [%] 6 (6-6.1) 6.7 (6.5-7) <0.01 
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Medication    

ACE 961 (59.4) 176 (71.3) <0.01 

ARB 75 (4.6) 14 (5.7) n.s. 

B-Blockers 1216 (75.2) 129 (52.2) <0.01 

CCB 239 (14.8) 45 (18.2) n.s. 

ADD 136 (8.4) 54 (21.9) <0.01 

Statins 997 (61.6) 118 (47.8) <0.01 

ASS 1360 (84.1) 183 (74.1) <0.01 

Diuretics 414 (25.6) 136 (55.1) <0.01 

GT 10 (0.6) 4 (1.6) n.s. 

Continuous data presented as median [interquartile range] and as relative frequencies. Mann–Whitney U test was performed for 

continuous variables and chi-square test for categorical variables. BMI. body mass index; BPsys. blood pressure systolic; BPdia. blood 

pressure diastolic; HF, heart rate; DM II, diabetes mellitus type II; MI, myocardial infarction; pMI, premature MI defined for male under 55 

years and female under 60 years of age; LVEF, left ventricular ejection fraction; VD, vessel disease; LDL-C, low-density lipoprotein 

cholesterol; HDL-C, high density lipoprotein cholesterol; HbA1C, glycated hemoglobin; ACE, angiotensin-converting-enzyme inhibitor; 

ARB, Angiotensin II receptor blockers; CCB, Calcium channel blockers; ADD; anti-diabetic drugs; Statins, HMG-CoA reductase inhibitors; 

Diuretics, diuretic drugs; GT, gout treatment. 
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Supplement Figure S1. Accuracy and area under the curve (AUC) of the three tested ranking schemes in combination 

with seven different predictors in the overall study population. The InfoGain ranking scheme and four predictors yield the 

best results. 
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Supplement Figure S2. A. Ranking results of the overall study population of the first 30 markers by the info gain scheme. B. 

Akaike Information Criterion (AIC) increased with increased marker taken into the model.  
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Supplement Figure S3. Kaplan-Meier plot of the patients predicted for CV mortality and survivors in the overall study population. The 

predictors used are A. logistic regression; B. Random Forest; C. Rigor rules and D. Support vector machine (radial basis function kernel). 

The dashed lines indicate the standard deviations at each potential event time. The ‘REAL_KAPLAN_CURVE’ represents the population 

curve not divided into classes and is shown for comparison..  

A B 

D C 
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Supplement Figure S4: Comparison figure for the general risk scores generated on the complete data set. The risk estimators indicated 

low (<10%). medium (10-20%) and high (>20%) risk. All values are based on averages of the patients from the individual validation sets 

(21 dead and 21 surviving patients for each replication). A shows the average classification of patients by the scorers on the validation 

sets. For comparability the bars were adjusted such that all groups (low. medium. high) are scaled to the largest group in any of the 

predictors (here. a total of ~23 patients assigned to the survivor group by the random forest predictor). B shows the average percentage 

of validation patients with CAD who died being classified into either low/medium or high risk by the predictors. C shows the average 

percentage of deaths of the validation patients who died classified to low/medium/high risk category by the predictors. D shows the average 

relative classification of validation patients with CAD that survived. 
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Supplement Figure S5. Area under the curve (AUC). Accuracy and Akaike Information Criterion (AIC) of the three tested ranking schemes 

in combination with seven different predictors in patients without CAD. Ranking according to the InfoGain scheme. 
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Supplement Figure S6. Ranking results of the first 30 markers by the info gain scheme in patients with CAD. 
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Supplement Figure S7. Area under the curve (AUC). Accuracy and Akaike Information Criterion (AIC) of the three tested ranking schemes 
in combination with seven different predictors in patients without CAD. Ranking according to the InfoGain scheme. 
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Supplement Figure S8: Comparison figure for the risk scores generated in patients with CAD. The risk estimators indicated low (<10%). 

medium (10-20%) and high (>20%) risk. All values are based on averages of the patients from the individual validation sets (21 dead and 

21 surviving patients for each replication). A shows the average classification of patients by the scorers on the validation sets. For 

comparability the bars were adjusted such that all groups (low. medium. high) are scaled to the largest group in any of the predictors (here. 

a total of ~23 patients assigned to the survivor group by the random forest predictor). B shows the average percentage of validation 

patients with CAD who died being classified into either low/medium or high risk by the predictors. C shows the average percentage of 

deaths of the validation patients who died classified to low/medium/high risk category by the predictors. D shows the average relative 

classification of validation patients with CAD that survived. 
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