
1

An Intrusion Detection System Against Rogue
Master Attacks on gPTP

Alessio Buscemi∗, Manasvi Ponaka ‡, Mahdi Fotouhi∗, Florian Jomrich†, Christian Koebel†, Thomas Engel∗
∗‡ Faculty of Science, Technology and Medicine, University of Luxembourg, †Honda R&D Europe (Germany) GmbH

∗{name.surname}@uni.lu, †{Name_Surname}@de.hrdeu.com, ‡{name.surname.001}@student.uni.lu

Abstract— Due to the promise of deterministic Ethernet
networking, Time Sensitive Network (TSN) standards are gaining
popularity in the vehicle on-board networks sector. Among these,
Generalized Precision Time Protocol (gPTP) allows network
devices to be synchronized with a greater degree of precision than
other synchronization protocols, such as Network Time Protocol
(NTP). However, gPTP was developed without security measures,
making it susceptible to a variety of attacks. Adding security
controls is the initial step in securing the protocol. However,
due to current gPTP design limitations, this countermeasure is
insufficient to protect against all types of threats. In this paper,
we present a novel supervised Machine Learning (ML)-based
pipeline for the detection of high-risk rogue master attacks.

Index Terms—Time Sensitive Networking, Cybersecurity, Con-
nected Vehicles, Automotive Ethernet

I. INTRODUCTION

Cyber attacks against in-vehicle networks have been disre-
garded for many years due to the necessity for the adversary
to have physical access to the vehicle, thus making the attack
scenario unrealistic. However, the recent advancements in
the field of Connected Automated Mobility (CAM) raise
serious concerns regarding the security of in-vehicle networks.
A number of wireless attacks against vehicles have been
carried out successfully by researchers [1]–[3]. In 2015, Miller
and Valasek [3] drove a Jeep Cheerokee off the road by
exploiting the remote injection of Controller Area Network
(CAN) messages through the infotainment system, thus showing
the devastating potential of wireless attacks.

As Original Equipment Manufacturers (OEMs) transition
from traditional networks towards automotive Ethernet to
provide a wide range of new automotive services [4], cyberse-
curity concerns become increasingly important. This further
emphasises the need to secure gPTP. gPTP – IEEE 802.1AS
[5] – is the automotive profile of Precision Time Protocol (PTP)
– IEEE 1588 [6], the time synchronization protocol of TSN.

For clock dissemination, gPTP employs a master-slave
architecture. The slave clocks are synchronized to the Grand
Master (GM), which is the root timing reference clock.
The GM communicates synchronization information to the
clocks on its network segment. The GM is not fixed but is
elected dynamically in accordance with the Best Master Clock
Algorithm (BMCA). This method ranks the clocks based on
their characteristics, such as priority number, class etc. The
clock with the highest ranking becomes the GM iteratively.
After the GM is elected, a synchronization master clock is
chosen for each network segment in the system.

It is to be noted that, in the case of a static configuration,
the GM is preliminary set by the user and does not change.
Hence, the BMCA cannot be used. Nonetheless, not allowing
the GM to be chosen by the network in an automated fashion
poses concerns regarding the network robustness (i.e. if the
GM node is disrupted, the whole network experiences a Denial
of Service (DoS)). For this reason, in this work, we assume a
scenario in which the GM is chosen dynamically.

A Boundary Clock (BC) transmits precise time to the other
segments to which it is linked. In gPTP, management and
synchronization are accomplished through the following packets
i) Event messages – time-related information that is utilized
to synchronize clocks across the network (Sync, Follow_Up,
Delay_Req, and Delay_Resp), ii) General messages – used
to compensate communication medium delays (Pdelay_Req,
Pdelay_Resp, and Pdelay_RespFollow_Up), iii) Announce
messages —- used to build a clock hierarchy and elect the GM
based on the BMCA (Announce).

This work is a first attempt to investigate Intrusion Detection
System (IDS) for gPTP based on real-world attacks conducted
on a physical testbed. We introduce a novel IDS capable of
detecting a class of rogue master attacks [7]. A rogue master
attack is an attack in which an adversary exploits the BMCA
to acquire the GM position and send malicious synchronization
messages. An IDS monitors network traffic for suspicious
activity and issues alerts when such activity is discovered. IDS
provide additional security by detecting attacks which bypass
hard coded security controls.

The contributions of this work can be summarized as follows:

• We analyze the impact that rogue master attacks have on
the clocks of the target slaves. Based on this evaluation,
we design a set of features aiming at distinguishing the
behavior of the clock in normal and attack scenarios;

• We present a novel IDS capable of detecting rogue master
attacks gradually which causes false time in the End
Station (ES);

• We analyze strengths and weaknesses of the presented
approach and discuss possible improvements towards the
commercial usage of IDS for TSN.

II. BACKGROUND AND RELATED WORK

In this section, we introduce key concepts to the comprehen-
sion of the work and results in the manuscript. First, we present
a detailed explanation of the synchronization mechanism

Copyright © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.
2023 IEEE Vehicular Technology Conference (VTC2023-Spring)



0 200 400 600 800 1000 1200
Observations

103

102

101

100
0

100

101

102

103

O
ff

se
t(

ns
)

Clock's offset behavior after change in GM

Figure 1. Clock time offset between slave and GM after a new GM is elected.

between slaves and GM. Then, we address relevant research
on in-vehicle IDS.

A. Clock synchronization

A gPTP network is composed of two types of nodes, ES
and bridges. ES have only one port connected to the network,
while bridges typically have multiple ports. Each port in the
network can be slave, i.e. its role is to receive packets, or
master, i.e. its role is to send packets. The ES can assume
one of two roles, GM or slave. All the ES, except for the GM,
have one port in slave status. In bridges, the ports serve to
connect to the ES and to other bridges.

To spread its reference clock, the GM periodically sends
Sync and Follow_up messages through its master ports to all
the nodes that are directly connected to it. These packets then
transit in the rest of the network passing from master to slave
ports.

The bridges receiving these packets need to correct the
received synchronized time by adding a CorrectionF ield. The
CorrectionF ield is computed by taking into consideration i)
the forwarding delay, i.e. the residence time incurred at the
bridge, and ii) the transit delay, i.e. the time needed for the
information to propagate through the communication path from
the GM to the ES or the bridge. PTP clock synchronization
assumes that the network delay between slaves and their master
is symmetric.

The clock time offset is the difference between the time
of the slave and the GM. When an ES takes the role of
the GM master, the slaves needs to firstly synchronize to it.
In the synchronization phase, there are high fluctuations in
the offset between the two nodes, which is reduced with the
additional sending of synchronization packets. According to
the PTP standard, two clocks are synchronized if the offset
is consistently between -100 and 100 ns. Figure 2 shows an
example of synchronization process between a slave and a
GM.

To avoid confusion between a) the offset in the timestamp
contained in malicious Sync packets, and b) the offset between
the slave’s clock and the GM’s clock (see Section II-A),
hereafter we will refer to the former as timestamp offset, and
the latter as clock offset.

0 200 400 600 800 1000 1200
Observations

25000

22500

20000

17500

15000

12500

10000

Fr
eq

ue
nc

y 
(p

pb
)

Clock's behavior after change in GM

Figure 2. Example of a slave clock relative frequency when a new GM is
elected.

Despite aiming at providing high time precision, the quartz
clock embedded in each commercial hardware has its own
unique default frequency. It follows that, based on the informa-
tion regarding propagation delay and offset, the slave clocks
continuously adjust their frequency to be synchronized with
the GM. Therefore, synchronizing with a GM implies that the
frequency of the slave clock drifts from its nominal output
frequency. The difference between the actual frequency and the
nominal frequency can be defined as the relative frequency. The
relative frequency can be measured in parts per million (ppm)
or parts per billion (ppb). Figure 2 shows an example of the
clock relative frequency when a new GM is elected. Similarly
to the offset, after an initial synchronization phase characterized
by a highly volatile behavior, the relative frequency stabilizes
around a specific value.

In this work, we investigate the impact that rogue master
attacks have on the offset and relative frequency of slave clocks.

B. In-vehicle IDS
IDS for in-vehicle networks have been widely studied in

the recent years. They are popular because they do not require
substantial changes to the communication protocol, and add
low or no overhead to the communication stream. IDS can be
primarily divided into signature-based and anomaly-based [8].

Signature-based systems establish a taxonomy of known
attacks and scan the CAN traffic to find a match with any
of them [9]. Anomaly-based systems, instead, observe the
Electronic Control Units (ECUs) and the traffic in search of
behaviors that deviate from the usual nature of the network [10]–
[12]. Anomaly-based IDSs generally achieve lower detection
performance than the signature-based ones but are capable of
detecting unknown attacks.

Features typically exploited by in-vehicle IDS are based on
i) physical characteristics of the ECUs’ clocks, ii) timing of
the transiting packets, iii) features-based, i.e. specific patterns
are extracted from the traffic and the ECUs.

In this work, we propose a prototype of signature IDS which
exploits features extracted from the ES clocks.

III. ATTACK

In this section, we describe the threat model and provide de-
tailed information regarding the rogue master attacks performed



Table I
EXAMPLE OF ROGUE MASTER ATTACK WHERE AN OFFSET OF 100 NS IS

ADDED TO EACH Sync PACKET.

Sync packet n. Original Ts Tampered ts

1 T1 F1 = T1 + 100 ns
2 T2 = T1 + σ1,2 F2 = T2 + 2*100 ns
3 T3 = T2 + σ2,3 F3 = T3 + 3*100 ns

...
N TN = TN−1 +

σn,n−1

FN = TN−1 + n*100 ns

in this work.

A. Threat Model

The threat model is the one of an internal attacker, i.e. an
adversary capable of manipulating legitimate traffic in the
network and/or generating its own traffic while making it
appear legitimate to the attacked nodes. To simulate an attacker
with such capabilities, in this work we employ ptpatk, a tool
built by us, which is based on LinuxPTP (version 3.1-00116-
g24220e8) (see [7]). LinuxPTP is an open-source repository
for the development of PTP on Linux [13].

B. Rogue Master Attack

In the rogue master attack, the malicious slave appears to
be time-aware and enters the gPTP domain by replying to the
Pdelay_req packets that have been correctly received from
the switch.

The malicious node listens to the network for
Pdelay_req packets and creates tampered Pdelay_resp
and Pdelay_resp_follow_up. Additionally, the malicious
node generates Pdelay_resp and Pdelay_resp_follow_up
packets. In order for the domain to be effectively joined,
the adversary must have the switches calculate a minimal
propagation delay.

After joining the domain, the adversary works toward the
goal of obtaining the position of GM. The malicious node
transmits high-priority Announce packets in an attempt to
convince other nodes in the domain that its clock is the most
accurate available clock; if successful, it is selected as the
GM. After the malicious node has reached the state of GM,
it can send tampered gPTP packets aiming at a diverse set of
hijackings.

In this work, we examine a special instance of a rogue
master attack in which the adversary transmits arbitrary
timestamps to the slaves in the form of Sync/Follow_up
packets. We consider the case in which the adversary starts
the attack immediately after gaining the GM position. The
consecutive Sync packets sent by GM contain a timestamp
with a predefined offset in order to progressively induce false
time in the slave. For a better comprehension, let us assume
an adversary who keeps adding 100 ns to the timestamp of
each new Sync. Being σi,j the time interval between the Sync
packet i and Sync packet j, the tampered timestamp will drift
from the original timestamp, as shown in Table I.

For the sake of readability, hereafter we will refer to an
attack which continuously adds an offset of x ns to the Sync
packets as a seq +x attack. For instance, if the adversary aims
at adding extra 1000 ns to the timestamp of each Sync packet,
we refer to it as a seq +1000 ns attack.

IV. IDS

In this section, we describe the characteristics of our novel
IDS. In our case study, each ES has its own instance of the
IDS. The local IDS continuously observes the clock of the ES
thanks to the information provided by its daemon, with the
aim of identifying unusual behavior. The detection pipeline is
divided into two parts:

• Phase 1 – it starts when there is a GM change and the slave
ES is trying to synchronize, as described in Section II-A.

• Phase 2 – it occurs when the slave is already synchronized
with the GM.

A. Phase 1

The pseudocode of Algorithm 1 describes the steps of Phase
1. The algorithm requires i) a daemon D mounted on the ES,
which handles the incoming gPTP traffic at software level
and monitors its clock, ii) an integer S defined by the user,
which corresponds to the size of the window considered for
the change of phase, iii) a ML-model M1, which serves as the
intrusion detector, previously trained on clock data collected
during synchronization.

First, a list L is initialized (line 1). This list (or any other
mutable data structure) will contain the measurements related
to the slave clock. Then, the synchronization loop starts (line
2). Every time a new clock measurement is collected from the
slave’s daemon, it is transmitted to the IDS along with the GM
address (line 3). Subsequently, a check on the GM is performed
(line 4). If the GM has changed, Phase 1 is reinitialized (line 5).
Otherwise, the clock measurement is added to L (line 7), and
a window W containing the last S clock’s offsets is extracted
(line 8). The window W is then used to assess whether the
synchronization is still taking place (line 1). If not, the loop is
exited.

After the synchronization phase is complete, a sample
is extracted in accordance with the process described in
Section IV-C. This sample is fed to the intrusion detection
classifier (line 10), which predicts whether an intrusion occurred
during the synchronization or not (line 11). If an attack is
detected, a warning is issued. Otherwise, Phase 2 is started
(lines 12-16).

B. Phase 2

Phase 2 requires in input, i) the daemon D, ii) the window
size S, iii) the last window W extracted in Phase 1, iv) a
previously trained ML model M2, which serves as intrusion
detector.

Similarly to Phase 1, while the GM does not change, clock
measurements are extracted from the daemon and appended
to L (lines 1-3). Then, iteratively, a sample is extracted
from the last window W and passed to M2 (lines 4-6).



Differently from Phase 1, if an attack is detected, an alert
is not immediately issued. By contrast, the sample is passed
to a database anomaly_DB (lines 7-9). At every new entry,
an evaluation is made on the database to determine whether
an intrusion is taking place and, if it is the case, issue an
alert (line 10-12). In other words, instead of considering the
prediction related to a single window, the IDS conducts its
final evaluation on a number of samples. This approach aims
at reducing false alarms.

IDSs for safety-critical applications typically prioritize recall
(the % of real attack instances detected by the model over the
total number of real attack instances) above precision (the
% of real attack instances over the total number of attacks
instances detected by the model) [14]. However, given that
one of the primary use-cases of gPTP is in-vehicle networking,
false alarms are non-negligible.

Let us consider an IDS with an accuracy lower than 100%,
e.g. 99.8%. In light of the fact that a fresh clock measurement
is around 125 ms, the IDS would evaluate eight samples
per second. Consequently, we would anticipate an alert to
be triggered approximately every minute. Whether the alerts
would be addressed to the drivers themselves, external operators
or Security Operation Center (SOC) (a plausible scenario for
Connected Automated Vehicles (CAVs)), a reaction could be
initiated, thereby potentially disrupting the vehicle’s normal
functioning. In Section V-E we discuss in detail pros and cons
of this approach.

Finally, if no attack has been detected and the GM changes,
Phase 1 is started again.

C. Features Engineering

In intrusion detection, ML classifiers should be trained using
data which represents the inherent differences between the
behavior of the system’s components in normal time and
under attack. In this work, we initially considered two different

Algorithm 1
Input: Daemon D, Window Size S, Model M1
Output: Prediction P

1: L ← []
2: while is_syncing(W ) do
3: clock_measurement, GM ← D.get_clock_data()
4: if GM .has_changed() then
5: Phase1()
6: end if
7: L.append(clock_measurement)
8: W ← last_clocks(L, S)
9: end while

10: sample ← extract_features(clock_list)
11: P ← predict(M1, sample)
12: if P == ’Attack’ then
13: send_warning()
14: else
15: Phase2(W , L, S)
16: end if

sources for the extraction of such features, the gPTP traffic
and the behavior of the slaves’ clocks. Given that rogue master
attacks aim at false time and desynchronization, which are
two aspects directly affecting a slave’s clock, we decided to
focus our investigation towards this source. In this regard, we
considered the clock offset and relative frequency, which are
described in Section II-A.

Regarding Phase 1, we observed that the behavior of the
clock can vary greatly even between different instances of
normal gPTP traffic (as described in Section II-A). Nonetheless,
it typically takes longer for a slave to synchronize with the
GM if it is under attack. Additionally, it seems that, during the
attack, the fluctuations in the offset and frequency are generally
wider than they are at normal time.

For what concerns Phase 2, we observed that:

• Even when they are under attack, the slaves still exhibit
fluctuations in the offset clock that are comparable to the
behavior that is expected of them. This shows that the
clocks manage to maintain the synchronization despite
the offset added by the adversary in the Sync packets’
timestamp;

• During an attack, the normal behavior of the clock
is interrupted by abrupt changes in the offset, which
sometimes lead to temporary desynchronization. Based on
the analysis of a number of attacks which add different
magnitudes of offset to the Sync packets’ timestamp, we
observed that the higher the offset added by the adversary,
the wider are these oscillations.

• The slave’s frequency greatly depends on the GM. Con-
sidering that each node has its own default frequency,
different GMs cause different relative frequency in the
slave. Given that the purpose of a rogue master attack is
to grant the GM position to a node which normally would
not achieve it, the frequency can be a clear indicator of
an attack;

Algorithm 2
Input: Daemon D, Window Size S, last_window W , Model

M2
Output: Prediction P

1: while not GM .has_changed() do
2: clock_measurement, GM ← D.get_clock_data()
3: L.append(clock_measurement)
4: W ← last_clocks(L, S)
5: sample ← extract_features(L)
6: P ← predict(M2, sample)
7: if P == ’Attack’ then
8: anomaly_DB.append(P )
9: end if

10: if attack_detected(anomaly_DB) then
11: send_warning()
12: end if
13: end while
14: Phase1(D, W , S)



0 200 400 600 800 1000 1200
Observations

6

4

2

0

2

4

6
O

ff
se

t(
ns

)
Normal clock behavior

Figure 3. Time series of a slave clock offset, as observed during a data
collection session in which no attack is performed.

0 200 400 600 800 1000 1200
Observations

101

100
0

100

101

102

O
ff

se
t(

ns
)

C lock behavior under attack, seq 1000 ns

Figure 4. Time series of a slave clock offset, as observed during a data
collection session in which a rogue master continuously adds 1000 ns to the
Sync packets timestamp.

• Similarly to the offset, there are sudden oscillations in the
clock relative frequency when the slave is under attack.

Figure 3 and Figure 4 illustrate the differences between the
clock’s offset at normal time and during a seq +1000 ns attack.
Figure 4 highlights that, during the attack, the oscillations are
comparable to the normal behavior, but sudden increase occur
occasionally.

Figure 5 and Figure 6 show the differences between the
clock’s relative frequency at normal time and under a seq+
1000 ns attack. The first aspect to be noticed is that the relative
frequency fluctuates around a different mean. In addition,
similarly to the offset, occasionally the frequency displays
wide sudden oscillations.

0 200 400 600 800 1000 1200
Observations

20410

20405

20400

20395

20390

R
e
la

ti
ve

 F
re

q
u

e
n

cy
 (

p
p

b
)

Normal clock behavior

Figure 5. Time series of a slave clock relative frequency, as observed during
a data collection session in which no attack is performed.

0 200 400 600 800 1000 1200
Observations

28000

27950

27900

27850

27800

27750

27700

Fr
eq

ue
nc

y

Clock behavior under attack, seq 1000 ns

Figure 6. Time series of a slave clock relative frequency, as observed during
a data collection session in which a rogue master continuously adds 1000 ns
to the Sync packets timestamp.

Following the findings presented in this subsection, we
designed the following set of features for both phases, i)
Frequency related features – mean, standard deviation (std),
maximum, minimum, ii) Offset related features – std, mean
and median of the absolute values, maximum, minimum.
Furthermore, for Phase 1, we also consider the duration. In
fact, we have empirically discovered that, typically, during a
rogue master attack the synchronization phase lasts slightly
longer than in a normal scenario.

V. PERFORMANCE EVALUATION

In this section, we describe the environment in which the
evaluation of our IDS was carried out, and we evaluate the
results that were obtained.

A. Scenarios

In this work, we consider an automotive scenario in which
the IDS requires a complete mapping of the relative frequency
of each slave clock according to each possible GM.

In this scenario, the IDS can be trained to identify relative
frequencies which are unexpected, thus raising a suspicion
of anomaly. As demonstrated by the results presented in
Section V-E, features built on the clock frequency highly
contributes to the detection performance. However, this scenario
presents two limitations:

• Continuous Update – clocks are subject to environmental
conditions, e.g. temperature, as well as decay [15]. For this
reason, the frequency references have to be continuously
updated;

• Scalability – Let us assume that each ES in the network
is a legitimate candidate for the GM position. Then, in a
in-vehicle gPTP network with N ECU attached, the IDS
would need to include N (N − 1) slave/GM frequency
combinations.

For these reasons, in this work we also evaluate the
IDS under the assumption that a mapping of the slave/GM
frequencies is not possible.



B. Testbed

We built a physical testbed based with real gPTP-capable
switches. For the ES Accelerated Processing Units (APUs),
we have used LinuxPTP (version 3.1-00116-g24220e8), an
open-source repository for the development of PTP on Linux
[13]. Finally, to ensure that our evaluation of the attacks relies
only on the internal clocks of the testbed, we have blocked the
access of the devices to external time resources, such as NTP.
The hardware components of the physical testbed are listed as
follows:

• Three gPTP capable Netgear switches (GS716Tv3 ProSafe
16-port Gigabit Ethernet Smart Switch, 6.3.1.19-39,
B1.0.0.4) [16].

• Four APUs apu2e4 [17] each with three Intel Ethernet
Controller i210 and running Ubuntu 16.04.

Further information regarding the employed testbed is
provided in [7].

C. Dataset

To test the IDS, we collected clock measurements for a
total time of 2000 min (∼ 33 hours) for each APU in the
testbed. Specifically, the data was collected in 400 sessions of
5 min each, 100 for each of the three considered attacks (seq
+100, seq +1000, seq +1000), and 100 representative of the
normal network behavior. At the beginning of each session,
the LinuxPTP daemons are started on all APUs. Then, the data
is collected and stored into logs, or traces.

The traces corresponding to a normal scenario were gathered
by allowing the APUs to elect the GM via the BMCA at any
time without changing any of the APUs’ specifications. For
what concerns the attack scenarios, the default configuration
of one APU was altered to force the other APUs to elect it as
GM. Specifically, priority1 and priority2 were lowered in
order to guarantee higher priority to the malicious APU. This
APU was then used to carry out the attack in all tests.

Following a preliminary analysis, we found that training
the classifiers on the samples related to seq +1 ns and seq
+10 ns attacks significantly reduces the recall of the models.
This is specially true for the model trained on samples with
only offset features. In fact, the behavior of the attacked clock
appears to change little from its usual activity. For this reason,
we decided to discard these traces and re-train the models with
samples related to attacks adding 100 or more ns. We defer
the analysis of attacks that introduce a timestamp offset of less
than 100 ns to future research.

D. Model

To test our tool, we employ a Random Forest (RF) model.
The choice of RF classifier was motivated by its robustness to
outliers and good prediction performance achievable with less
tuning and lower computational resources compared to other
classifiers. These characteristics makes RF a good candidate
for integration in ECUs. As described in Section IV-C, we
opted to test our pipeline using two sets of models for each
node:

Table II
PRECISION AND RECALL ACHIEVED BY ALL THE CONSIDERED MODELS.

All features Without frequency
Phase 1 Phase 2 Phase 1 Phase 2

Precision 98.1% 99.8% 99.5% 99.3%
Recall 96.4% 99.9% 94.5% 44.8%

• 2 models trained on all features, one for Phase 1 and one
for Phase 2;

• 2 models trained excluding frequency-related features, one
for Phase 1 and one for Phase 2;

For each of these models, we performed a Grid Search tuning
of the hyperparameters.

E. Results

We define all samples belonging to attack traces as positives,
and all samples belonging to normal traces as negatives. In this
work, we consider two metrics, the recall and the precision
(described in Section IV-B). Table II illustrates the average
recall and precision obtained on all ES when classifying each
sample independently, i.e. one sample per trace for Phase 1,
and N samples per trace for Phase 2, where N is the number
of windows extracted. The table also serves as a comparison
between the performance of the models trained on all features
and the models trained without considering frequency-related
features.

Both models were able to attain high levels of precision
and recall throughout Phase 1, which demonstrates that the
samples are consistently identified correctly. According to the
table, the performance of the model trained on all features is
even higher for Phase 2. By contrast, when features related
to the frequency are not considered, we can observe a clear
degradation in the recall. This difference in performance can
be explained by two factors:

• as mentioned in Section IV-C, in spite of the attack, the
slave is able to retain its usual behavior most of the time
with respect to the offset (except for some sudden wide
oscillations);

• by contrast, the relative frequency is highly representative
of the behavior of slave clocks when a new GM is elected.

Nonetheless, despite a low recall, the model achieves a high
True Negative Rate (TNR) (the proportion of normal samples
recognized as negatives out of the total normal samples) of
98.6%. This means that the confidence of the classifier when
predicting the normal traces is high.

As anticipated in Section IV-B, the IDS does not issue an
alert after a single positive sample, but it stores the sample in
a database. Then, when an alert threshold (which is based on
a predefined heuristic) is overcome, a warning is triggered. In
this work, the alert threshold is determined by the percentage
of positives samples out of the total classified samples in a
trace. As an example, if the threshold is set to 20%, if 20% or
more of the samples in the trace are labeled as positives, an
alert is triggered, otherwise not.



0% 20% 40% 60% 80% 100%
Threshold

0%

20%

40%

60%

80%

100%

Pr
ec

is
io

n

Phase 2

device
2
3
4
metric
precision
recall

Figure 7. Detection precision and recall according to different alert thresholds.

Figure 7 illustrates how precision and recall vary according
to the threshold in the target devices. As expected, the higher
the threshold, the higher is the precision and the lower is the
recall. In particular, precision and recall of more than 90% are
achieved when the threshold is between 5% and 10%.

It is to be noted that this approach is suitable only for
an offline IDS, i.e. an IDS where the trace is processed
after the attack event. Therefore, it is more applicable for
forensic investigation, rather than timing detection and reaction.
Nevertheless, we believe that the presented results provide
valuable insights for the definition of a threshold heuristic for
online IDS.

VI. CONCLUSION

In this work, we investigated the potential of IDS on gPTP,
the time synchronization protocol candidate for automotive
TSN. We implemented a complete prototype on a real gPTP-
enabled testbed, under the assumption that each node can host
an IDS or can send data to a central IDS module within the
vehicle. The threat model is the one of an adversary who can
obtain the role of GM and send Sync packets with a timestamp
which is gradually drifting from the original timestamp.

Initially, we studied the gPTP traffic and the behavior of the
clocks under attack with the aim of identifying sources for the
extraction of features. Our research reveals that the frequency
and offset of the clocks are useful indicators of attacks. Based
on this information, we built a two-phase intrusion detection
pipeline.

The results show that, when the offset added to each Sync
packet by the adversary is ≥ 100 ns, an IDS can detect the
attacks with precision and recall up to 99%.

Future work includes evaluating the performance of IDSs
against a wider pool of attacks, e.g. spoofing, DoS etc. on
gPTP. In this regard, the characteristics of the gPTP traffic
should be analyzed more in depth to identify new ways of

fingerprinting the normal behavior of the network with high
accuracy.

Finally, as described in Section I, the rogue master attack
cannot be executed if the GM is static. Given the importance
of having a dynamic GM to ensure system availability, we urge
that the scientific community and manufacturers investigate
changes to the BMCA in order to minimize the possibilities
for an attacker to acquire an GM position in an automotive
scenario.

ACKNOWLEDGMENT

This work was supported by the BRIDGES grant, funded
by the Luxembourg National Research Fund (FNR), and by
Honda R&D Europe (Germany) GmbH.

REFERENCES

[1] C. Miller and C. Valasek, “Adventures in automotive networks and
control units,” Def Con, vol. 21, no. 260-264, pp. 15–31, 2013.

[2] S. Jafarnejad, L. Codeca, W. Bronzi, R. Frank, and T. Engel, “A car
hacking experiment: When connectivity meets vulnerability,” in 2015
IEEE Globecom Workshops (GC Wkshps), IEEE, 2015, pp. 1–6.

[3] C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger
vehicle,” Black Hat USA, vol. 2015, no. S 91, 2015.

[4] M. Bertoncello, G. Camplone, P. Gao, et al., “Monetizing car data—new
service business opportunities to create new customer benefits,” McKinsey
& Company, 2016.

[5] IEEE SA, “IEEE Standard for Local and Metropolitan Area Networks–
Timing and Synchronization for Time-Sensitive Applications,” Standard,
2019.

[6] IEEE Std 1588™-2019, “IEEE Standard for a Precision Clock Synchro-
nization Protocol for Networked Measurement and Control Systems,”
IEEE SA, Standard, 2019.

[7] M. Fotouhi, A. Buscemi, A. Boualouache, F. Jomrich, C. Koebel, and T.
Engel, “Assessing the Impact of Attacks on an Automotive Ethernet Time
Synchronization Testbed,” 2023 IEEE Vehicular Networking Conference
(VNC), 2023.

[8] C. Young, J. Zambreno, H. Olufowobi, and G. Bloom, “Survey of
automotive controller area network intrusion detection systems,” IEEE
Design & Test, vol. 36, no. 6, pp. 48–55, 2019.

[9] M. Müter, A. Groll, and F. C. Freiling, “A structured approach to anomaly
detection for in-vehicle networks,” in 2010 Sixth International Conference
on Information Assurance and Security, IEEE, 2010, pp. 92–98.

[10] A. Taylor, N. Japkowicz, and S. Leblanc, “Frequency-based anomaly
detection for the automotive CAN bus,” in 2015 World Congress on
Industrial Control Systems Security (WCICSS), IEEE, 2015, pp. 45–49.

[11] Y. Hamada, M. Inoue, H. Ueda, Y. Miyashita, and Y. Hata, “Anomaly-
based intrusion detection using the density estimation of reception
cycle periods for in-vehicle networks,” SAE International Journal of
Transportation Cybersecurity and Privacy, vol. 1, no. 11-01-01-0003,
pp. 39–56, 2018.

[12] H. Lee, S. H. Jeong, and H. K. Kim, “OTIDS: A novel intrusion detection
system for in-vehicle network by using remote frame,” in 2017 15th
Annual Conference on Privacy, Security and Trust (PST), IEEE, 2017,
pp. 57–5709.

[13] linuxptp, ptp4l. [Online]. Available: http://linuxptp.sourceforge.net/.
[14] G. Kumar, “Evaluation metrics for intrusion detection systems-a study,”

Evaluation, vol. 2, no. 11, pp. 11–7, 2014.
[15] K.-T. Cho and K. G. Shin, “Fingerprinting Electronic Control Units

for Vehicle Intrusion Detection,” in 25th USENIX Security Symposium
(USENIX Security 16), Aug. 2016, pp. 911–927.

[16] Netgear. “A New Generation of Gigabit Smart Switches.” (2019),
[Online]. Available: https://www.downloads.netgear.com/files/GDC/
datasheet/en/GS716Tv3-GS724Tv4-GS748Tv5.pdf?_ga=2.213794839.
222651013.1652102686-21276228.1652102686.

[17] P. Engine, apu2e4, May 2016. [Online]. Available: https://pcengines.ch/
apu2e4.htm.


