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Abstract

Visual place recognition is a key to unlocking spatial
navigation for animals, humans and robots. While state-of-
the-art approaches are trained in a supervised manner and
therefore hardly capture the information needed for gener-
alizing to unusual conditions, we argue that self-supervised
learning may help abstracting the place representation so
that it can be foreseen, irrespective of the conditions. More
precisely, in this paper, we investigate learning features
that are robust to appearance modifications while sensitive
to geometric transformations in a self-supervised manner.
This dual-purpose training is made possible by combining
the two self-supervision main paradigms, i.e. contrastive
and predictive learning. Our results on standard bench-
marks reveal that jointly learning such appearance-robust
and geometry-sensitive image descriptors leads to competi-
tive visual place recognition results across adverse seasonal
and illumination conditions, without requiring any human-
annotated labels1.

1. Introduction
Visual Place Recognition (VPR) is central for localizing

- i.e. estimating the pose of - a camera in a scene [35, 19],
with applications ranging from autonomous driving to aug-
mented reality. In practice, VPR is most often framed as
an image retrieval task in which the goal is, given a query
image, to retrieve one or several images depicting the same
place - likely under different conditions - from a reference
database [25]. Changes in conditions can correspond to a
variety of factors such as changes in viewpoint, presence
of occluding and/or dynamic objects and changes in sea-
sonal, illumination or weather conditions. Therefore, rec-
ognizing places under different conditions is a challenging
task, yet essential for enabling the deployment of more re-

1This work was funded by the Luxembourg National Research Fund
(FNR), under the project reference BRIDGES2020/IS/14755859/MEET-
A/Aouada, and by LMO (https://www.lmo.space).
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Figure 1. ACM-Net Training Strategy: Three views are gener-
ated from an input image. The Appearance Module in green (top)
maps the original and appearance-augmented views into close rep-
resentation vectors {z0, z1}. The Geometry Module in blue (bot-
tom) predicts the transformation φ applied between the original
and third views.

liable vision-based applications in the real world.
Research in neuroscience has shown that biological in-

telligence in place recognition lies on a strong ability to
create abstract representations of observed places so that
they can be foreseen and recognized under different cir-
cumstances [51]. At the root of such mechanism are men-
tal representations of places called cognitive maps [25]. In
particular, a key role of cognitive maps is to facilitate gen-
eralization of sparse knowledge (e.g., a place seen only dur-
ing day-time) to novel experiences (e.g., night-time) [51].
Therefore, this generalization capability requires achieving
a sufficient level of abstraction in the place representation
so that it is not required to be re-learned from scratch when
non-critical visual information changes [51].
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State-of-the-art VPR methods have focused on achiev-
ing invariance to both environmental conditions and view-
point changes in image representations, the latter being
for recognizing places observed under unprecedented an-
gles [11, 24]. However, we argue that such viewpoint in-
variance may be detrimental in the process of distinguish-
ing between different places. Moreover, recent works have
shown that favoring a more general equivariance in image
representations may be more beneficial than seeking only
invariance [50, 7, 30].

Unlike supervised learning techniques that eventually
end up learning shortcuts from a finite set of labelled
data [14] and therefore hardly generalize to unseen con-
ditions, Self-Supervised Learning (SSL) strategies seem
closer to the human way of learning [23]. In practice, they
are designed to obtain image representations that are sen-
sitive and/or robust to given image transformations with-
out requiring any type of manual annotation. While only
a few works have investigated SSL for VPR [12, 42], we
herein propose to combine the two main SSL paradigms,
i.e., Contrastive Learning (CL) [6] and Predictive Learning
(PL) [20], to obtain image representations that are both ro-
bust to appearance changes and sensitive to geometric trans-
formations. By doing that, our goal is to learn features suit-
able for visual place recognition under appearance changes.

In this paper, we propose ACM-Net, an Artificial Cog-
nitive Mapping Network for learning abstract place repre-
sentations generalizable to unseen conditions. More pre-
cisely, we leverage self-supervised learning for addressing
the lack of knowledge about testing conditions when train-
ing the model on reference images with low appearance
variability. The place representation abstraction is achieved
by contrastive learning: feeding the model with appearance
augmentations and teaching it to bring representations of
the same place close to each other. To ensure discriminative
representations between different places and regularize the
CL-based training, we apply geometric transformations to
reference images and use a predictive learning framework
to classify the representation based on the applied transfor-
mation.
Contributions. Our contributions are two-fold:
(1) A novel model for Visual Place Recognition un-
der extreme condition changes, ACM-Net, that leverages
both contrastive and predictive self-supervised learning ap-
proaches.
(2) An evaluation confirming the competitiveness of ACM-
Net compared to state-of-the-art approaches on stan-
dard benchmarks featuring different conditions (day/night,
weather, seasons), among which the very challenging
Alderley Dataset [27].
Paper organization. The rest of the paper is organized as
follows. Relevant work on SSL and VPR is reviewed in
Section 2. ACM-Net is presented in Section 3, while ex-

perimental evaluation demonstrating the validity of our ap-
proach is reported in Section 4. Section 5 concludes the
paper and presents future works.

2. Related Work
2.1. Self-Supervised Learning

Self-supervised methods aim at learning visual features
from large-scale unlabeled images. They are of high interest
when experiencing a wide variety of real scenarios and en-
vironmental conditions such as in autonomous driving. To
learn visual features from unlabeled data, a pretext task is
often designed for the network to solve so that it is trained
by optimizing an objective function related to the task [20].
The objective function can be applied on network predic-
tions (predictive learning) or directly in the representation
space to constrain its topology (contrastive learning). SSL
is therefore a way to provide image representations with
some desired properties such as sensitivity and robustness
to given transformations.

Predictive Learning. PL allows for indirectly incorpo-
rating inductive biases into image representations based on
some subsequent network output [20]. Related pretext tasks
range from image colorization [55] to jigsaw puzzle solv-
ing [31] and include rotation prediction [15]. In the latter,
Gidaris et al. propose a pretext task consisting in predicting
the angle of a 2D rotation applied to an image [15]. Built
on the intuition that a network cannot recognize the rotation
that was applied to the image if it is not aware of the con-
cept of the depicted object, the learned features are relevant
for a downstream image classification task.

Contrastive Learning. CL acts directly on image rep-
resentations by applying a contrastive loss that takes into
accounts cross-relations between batch elements. A gen-
eral framework for contrastive learning of visual represen-
tations, named SimCLR [6], has recently been introduced.
This simple framework requires neither specialized archi-
tectures [2] nor memory banks [54, 28]. The method, in-
deed, consists first in sampling two different data augmen-
tations from the same family of augmentations. Then each
augmentation is applied to an original image to obtain two
correlated views. A base encoder and a projection head are
then trained using a contrastive loss that we also leverage in
one branch of ACM-Net, to maximize agreement between
representations of these two views and minimize agreement
with views originating from different images. Since train-
ing convergence of CL models may be difficult to achieve,
and thus to regularize the training, ScatSimCLR [21] ad-
ditionally regresses the augmentation parameters for each
view. In ACM-Net, the CL training is regularized by adding
a separate PL branch.



Combining Predictive and Contrastive Learning. CL
aims at inducing invariance to some content-preserving
transformations while being distinctive to such content
changes. On the other side, PL is mostly used to incor-
porate sensitivity, and ideally equivariance, to given trans-
formations into representations. While some authors have
pointed out the richer information contained in more equiv-
ariant representations in comparison with more invariant
ones [50, 7], some others have demonstrated that encour-
aging the network to be invariant to certain transformations
while equivariant to other transformations is more efficient
than seeking only one of the two properties [33, 49]. For
instance, Winter et al. [53] have proposed an AutoEncoder-
based framework to learn representations that are both ro-
bust and sensitive to rotations. Specifically, an encoder
maps a rotated image to a more invariant latent representa-
tion from which the decoder infers the original image with-
out rotation. In parallel, a second branch seeks equivariance
by predicting the rotation angle. Similarly, Feng et al. [10]
propose to learn features robust to the rotation of the input
picture by separating the features into two parts: one part
serving for rotation prediction (so-called equivariant fea-
tures), and one part on which a contrastive loss is applied to
penalize discrepancies originating from different rotations
(invariant features). Inspired by these methods, our pro-
posed ACM-Net seeks invariance to appearance augmenta-
tions through CL and sensitivity to image rotations through
PL to be relevant for VPR downstream task.

2.2. Self-Supervised Learning for Visual Place
Recognition

As mentioned in Section 2.1, SSL seems particularly
suitable for VPR due to its natural way to circumvent the
lack of representativity in training data inherent to unpre-
dictable test-time conditions and scenarios. Despite this,
only a few methods have been developed to this day. For
instance, Tang et al. [42] have proposed to disentangle
appearance-related and place-related features using a gen-
erative adversarial network with two discriminators. How-
ever, this type of method may suffer from unstable training.
SeqMatchNet [12] is a CL-based method that leverages se-
quences of video frames in the contrastive loss to robustify
image representations for VPR. This work argues that such
sequential information is available in most practical cases,
and extending our work to image sequences may be consid-
ered in future work.

From a larger perspective, Mithun et al. [29] use sets of
corresponding images (i.e. depicting the same place under
different conditions) as an additional form of supervision
to improve image representations for VPR. On a closely
related topic, Thoma et al. [43] propose to relax the hard
constraints on geo-tags used for weakly-supervised train-
ing of image representations. By contrast with both previ-

ous works, we don’t use any labels and generate in a self-
supervised manner pairs of corresponding images. Vena-
tor et al. [46] learn appearance-invariant local descriptors
through SSL to match query and retrieved images. This can
be considered as a post-processing step for our method.

3. Proposed ACM-Net
Our main goal is to allow the model to learn features that

are robust to extreme appearance changes while meaningful
for the VPR task. We are, thus, interested in abstracting the
image representation enough so that it is sensitive to the ge-
ometric information characterizing the place depicted in the
picture but agnostic on the environmental conditions under
which the place is observed. To achieve that, we incorpo-
rate sensitivity and robustness inductive biases into image
representations through self-supervised learning strategies.

3.1. Problem Formalization

Following the traditional approach [25], we frame the
VPR problem as an image retrieval task, where, given
a query image q depicting a place Pq, a representation
a.k.a. descriptor zq of that image is computed. It is then
compared to the descriptors {zi}i=1..NR

of reference im-
ages {xi}i=1..NR

, where NR is the size of the reference
database. The comparison is done using a given similar-
ity metric (e.g., cosine similarity). This inference stage is
illustrated in Figure 2.

During the training, the model only has access to ref-
erence images that we assume unlabelled. Moreover, the
environmental conditions under which the query image is
acquired are not necessarily similar to the ones featured in
the reference database, making the problem very challeng-
ing, even sometimes for human eyes.

3.2. Preliminaries: Sensitivity & Robustness

Our method aims at extracting image features that are
robust to appearance and sensitive to geometry at the same
time. In mathematical terms, these correspond to the no-
tions of invariance and equivariance, respectively.
From a formal perspective, given G a generic group of
transformations and g an element of G, we denote by φ(I)

g

and φ(O)
g , respectively, the actions of g into the input and

output spaces of a function F : I → O. Therefore, the
following definitions hold:

Definition 1 F is invariant to G if and only if

∀g ∈ G,∀x ∈ I, F(φ
(I)
g x) = F(x). (1)

Definition 2 F is equivariant to G if and only if

∀g ∈ G,∀x ∈ I, F(φ
(I)
g x) = φ

(O)
g F(x). (2)
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Figure 2. Overview of ACM-Net. Training Stage: from an original image x1,0, augmented versions with a modified appearance x1,1 and
different orientations (x1,0◦ ,x1,90◦ , x1,180◦ , x1,270◦) are generated. Representations of the first two images are brought closer thanks to a
contrastive learning framework to achieve appearance robustness. In parallel, original and rotated images are passed through a classification
network sharing the same encoder to predict the applied transformation and achieve geometric sensitivity. Note that our method does not
rely on any manual annotation. Inference Stage: The representations from query and reference images are compared based on similarity
measure then the closest k reference images constitute the image retrieval output.

Note that invariance is a special case of equivariance when
φ

(O)
g = I, the identity mapping, ∀g ∈ G.

In practice, considering an encoder model E for extract-
ing features from an image x, we seek robustness to any
appearance transformation TA:

∀TA,∀i ∈ [1;NR], E(TAxi) ≈ E(xi), (3)

and, at the same time, sensitivity to a certain group of geo-
metric transformations GG:

∀TG ∈ GG,∀i ∈ [1;NR], E(TGxi) ≈ T ′GE(xi), (4)

where T ′G ≈ TG. The different possible groups of transfor-
mations are investigated in Section 4.

3.3. Model Architecture

Our pipeline exploits both CL for encouraging invari-
ance to appearance changes and PL for encouraging equiv-
ariance to geometric image augmentations. This hybrid
approach is consistent with the Equivariant Contrastive
Learning framework proposed in [7]. The overall architec-
ture of the proposed ACM-Net is presented in Figure 2.

At training time, ACM-Net is composed of two branches
sharing the weights of an encoder model E . The first branch,
denoted Appearance Module, takes as inputs the original
image xi and an augmented version with modified appear-
ance TAxi, then applies a contrastive learning loss in the
representation space to bring the two descriptors closer. The
second branch, denoted Geometry Module, uses rotated ver-
sions of the original image, R(n◦)xi, and predicts the angle
of the rotation n.

Appearance Module. The first branch, divided into two
sub-branches (see Figure 1), is similar to SimCLR [6] with
shared encoder E and MultiLayer Perceptron (MLP) PA

mapping between the image domain and the latent rep-
resentation space where the contrastive loss is applied.
Given original images xi along with their augmented ver-
sions TAxi, the weights of the two networks are learned
using a contrastive loss. This loss, formalized in Sec-
tion 3.4, ensures that the descriptor of each version, e.g.,
E(PA(xi)), is similar to the descriptor of its corresponding
view, E(PA(TAxi)), while distant from the other descrip-
tors. The intuition behind this module is to force the en-
coder model E to learn features agnostic on the conditions
(e.g. illumination, weather, season) under which the place
was initially observed.

Geometry Module. The second branch is made of the
same shared encoder E and a prediction MLP PG to clas-
sify different rotated versions of the original image R(n◦)x
according to the rotation angle n. Leveraging a classical
cross-entropy loss, the goal of this module is to force the
encoder model E to learn geometry-aware features that are
relevant for place recognition.

Combined together, the use of the two modules aims at
disentangling appearance and geometry of input images in
their representation to allow for visual place recognition un-
der appearance changes.
The architecture used at test time to compute image descrip-
tors is the encoder E followed by projector network PA (see
Figure 2, right part).
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Figure 3. Examples of augmentations leveraged by ACM-Net. Top row (a): an original input batch from Oxford RobotCar v2 dataset, (b)
pixel-level augmentations for appearance changes, (c) random rotations applied on the original image.

3.4. Model Loss

Note: For the sake of clarity, we herein introduce more
specific notations for denoting images and their aug-
mented/rotated versions.

To guide our model towards both its invariance and
equivariance objectives, we use a combination of con-
trastive and predictive losses.
Given a random batch of N reference images B =
{xi,0}i=1..N corresponding to N different places, we ap-
ply one random appearance transformation to each image.
By so doing, we create N additional images {xi,1}i=1..N .
These 2N images constitute the contrastive batch BC =
{xi,j}i=1..N,j∈{0,1} that is fed into the Appearance Mod-
ule. Furthermore, we also apply rotations of 0◦, 90◦, 180◦

and 270◦ to each original image. As a result, we create the
predictive batch of 4N images BP = {xi,j◦}i=1..N,j∈Θ4 ,
where Θ4 = {0, 90, 180, 270}. BP is fed into the Geome-
try Module.

Contrastive loss. The contrastive batch BC contains N
positive pairs of images (xi,0,xi,1) depicting the same
place, the rest being negative pairs corresponding to dif-
ferent places. We use NT-Xent loss [6] that leverages posi-
tive samples, and is based on the cosine similarities between
the obtained image representations z.,. = PA(E(x.,.)), ex-
pressed as

s(zi,j , zk,l) =
zi,j · zk,l
‖zi,j‖‖zk,l‖

, (5)

where · is the dot product.
Specifically, the contrastive loss is defined as

LC =
1

2N

N∑
i=1

`0→1(i) + `1→0(i), (6)

where

`a→b(i) = −log
exp(s(zi,a, zi,b)/τ)∑N

k=1 1k 6=i

∑1
j=0 exp(s(zi,a, zk,j)/τ)

,

(7)
with τ denoting a temperature parameter that controls the
strength of penalties on pairs of non-corresponding im-
ages [47] and 1k 6=i being equal to 1 if k 6= i, and 0 oth-
erwise.

The contrastive loss aims at making representations of
the same place under different conditions similar to each
other, while forcing representations of different places to be
different.
Predictive loss. The predictive batch BP contains four ro-
tated views of each place. The task of this branch is to pre-
dict the rotation angle for each of the 4N pictures. We frame
this as a classification problem with 4 classes corresponding
to 0◦, 90◦, 180◦ and 270◦ rotation angles. The predictive
loss is therefore the standard cross-entropy loss:

LP = −
N∑
i=1

∑
j∈Θ4

c(xi,j) · log(z̃i,j), (8)

where z̃i,j = Softmax(PG(E(xi,j))) ∈ R4 is the predic-
tion, log() the element-wise natural logarithm, · the dot
product and c(xi,j) ∈ R4 the groundtruth with elements
equal to 0 except the nth element equal to 1 if the true rota-
tion is (n− 1)× 90◦.

Overall loss. The final loss is the combination of the con-
trastive loss for appearance robustness and predictive loss
for geometry sensitivity:

L = LC + λ.LP , (9)



Data Augmentation Type Probability
Planckian Jitter 0.8

Color Jiggle 0.5
Plasma Brightness 0.5
Plasma Contrast 0.3

Gray scale 0.3
Box Blur 0.5

Channel Shuffle 0.5
Motion Blur 0.3

Solarize 0.5
Table 1. List of data augmentations applied to the images on-the-
fly during training. We also set a probability for each one of them.

where λ is a weighting factor to balance the two terms.

4. Experimental Evaluation
4.1. Datasets

The Nordland dataset [40]: records a 728 km long train
journey connecting the cities of Trondheim and Bodø in
Norway. It contains four long traversals, once per season,
with diverse visual conditions. The dataset has 35768 im-
ages per season with one-to-one correspondences between
them. We follow the dataset partition proposed by Olid et
al. [32] with test set made of 3450 photos from each season.

The Alderley dataset [27]: records an 8 km travel along
the suburb of Alderley in Brisbane, Australia. The dataset
contains two sequences: the first one was recorded during
a clear morning, while the second one was collected on
a stormy night with low visibility, which makes it a very
challenging benchmark. The dataset contains 14607 images
for each sequence and each place have 2 images. We train
our approach on the day sequence and test on the night se-
quence.

The Oxford RobotCar Seasons v2 dataset [44]: is
based on the RobotCar dataset [26], which depicts the city
of Oxford, UK. It contains images acquired from three cam-
eras mounted on a car. There are 10 sequences correspond-
ing to 10 different traversals carried out under very different
weather and seasonal conditions. The rear camera images
of the overcast-reference traversal (6954 images) are used
as a basis for reference training images, to which we add
1906 rear camera images from other traversals following the
v2 train/test split. These additional images cover different
environmental conditions but only a subset of places (not
full traversals). The test set contains 1872 images from all
traversals except overcast-reference, without overlap with
training images.

4.2. Evaluation

The evaluation on both Nordland and Alderley datasets
uses the recall R@N measure, which consists in the pro-
portion of successfully localized query images when con-

Method Nordland Summer/Winter
R@1 R@5 R@10

NetVLAD [1] 7.7 13.7 17.7
SFRS [13] 18.8 32.8 39.8
SuperGlue [38] 29.1 33.5 34.3
DELG [4] 51.3 66.8 69.8
Patch-NetVLAD [16] 46.4 58.0 60.4
TransVPR [48] 58.8 75.0 78.7
ACM-Net (Ours) 53.0 73.8 80.2

Table 2. Quantitative results on Nordland dataset. Best results are
in bold. Second best results are in italic.

Method Alderley Day/Night
NetVLAD [1] 3.35
CIM [9] 7.82
Patch-NetVLAD [16] 7.99
Seqslam [27] 9.90
Retrained NetVLAD [41] 15.8
AFD [41] 21.0
ACM-Net (Ours) 25.2

Table 3. Quantitative results on Alderley dataset. Best result is in
bold.

sidering the first N retrievals. If at least one of the top
N reference images is within a tolerance window around
the query’s ground truth correspondence, the query image
is deemed succesfully localized. The tolerance window is
set to two frames distant from the query before and after, so
that the window contains 5 pictures. Following the common
approach for NordLand [3, 17, 16], images of the winter se-
quence are used as queries, while the summer sequence is
used as reference.

For RobotCar-Seasons v2, we follow the Patch-
NetVLAD [16] approach and utilize the 6-DoF pose of the
best-matched reference picture as prediction of the query’s
pose. Since we don’t compute any pose, our image retrieval
method is not comparable with pose estimation methods
such as MegLOC [34].

4.3. Implementation details

Encoder model E . We use ResNet50 [18] as the back-
bone, with pre-training on ImageNet using the Timm library
[52]. The last classification layer is discarded so that the
model is only used for the feature extraction.

Rotation predictor PG. We use a simple 1-layer percep-
tron with layer normalization and ReLU activation.

Projector PA We use a simple 1-layer perceptron with
batch normalizations and ReLu activation. The dimension
of the output (i.e., image descriptor) is 1024.



Figure 4. R@10 on Nordland Summer/Winter dataset with Geom-
etry Modules relying on different groups of transformations.

Appearance Augmentations. Following domain gener-
alization approaches, our model leverages numerous pixel-
level data augmentations to trigger appearance invariance
bias in the model. The list of pixel-level augmenta-
tions for appearance modification is provided in Table 1,
while examples of such augmentations are provided in Fig-
ure 3. The chosen set of variations empirically achieved
good performance whereas other tested combinations were
less favourable. We use the Kornia [37] library for self-
supervised data augmentation.

Geometric Augmentations. Our training strategy en-
courages information about rotations to be retained in the
image representation rather than guaranteeing strict equiv-
ariance. However, in practice, we observe that the average
cosine similarity between representations of rotated views
(referred to as equivariant measure in [7]) tends to 0 (i.e.,
90◦ angle) when the dedicated module is added (see Table
4). Moreover, the choice of this particular group of geo-
metric transformations is the outcome of experimentations
whose results are presented in Figure 4. In particular, it
shows that the best performance is achieved with the cyclic
group of 90◦rotations, compared to the groups of 2D affine
transformations, 2D projective transformations, and 2D ro-
tations.

Model training. The model is trained for 1000 epochs us-
ing Adam optimizer [22] and a batch size of 64. Although
contrastive learning usually requires larger batch size [5],
using Adam optimizer allowed us to obtain good results
with a smaller batch size. A learning rate of 0.003 had the
best performance with this optimizer. The temperature pa-
rameter τ is set to 0.01 and the loss factor λ is set to 1 in
our experiments.

Module R@10 Equiv. meas.[8]
Pre-trained encoder 28.2% 0.339
Appearance Module 75.8% 0.189
Geometry Module 52.3% 0.093
Combined modules (ACM-Net) 80.2% 0.139

Table 4. ACM-Net analysis on Nordland summer/winter.

Inference. Prior to the inference stage, we pass the set of
reference images to the Appearance Invariant Module of the
trained model: E → PA → L2−normalization and thus
build a reference descriptor bank. A k-Nearest Neighbor
search based on cosine similarity to find the closest refer-
ences to the query image.

4.4. Results

Tables 2, 3 and 5 show the results of ACM-Net along
with other approaches on the three previously described
datasets: partitioned Nordland, Alderley Day/Night and
RobotCar-Seasons datasets.

The results demonstrate that our method outperforms, by
a large margin, standard baselines such as NetVLAD [1]
and even local feature-based methods such as Super-
Glue [38]. It outperforms Patch-NetVLAD [16] on Nord-
land dataset (Table 2) and competes with it on Robotcar
Seasons v2 (Table 5), despite the fact that Patch-NetVLAD
leverages multi-scale descriptors whereas we rely on a sin-
gle global descriptor. Only the transformer-based architec-
ture TransVPR [48] presents a higher performance as com-
pared to ACM-Net. We note, however, that our model is
based on simple ConvNet and MLP elements that can be
upgraded to improve the performance. Finally, it is worth
noting that we achieve state-of-the-art results on the very
challenging Alderley dataset (Table 3).

Qualitative results are presented in Figure 5 (Nordland
dataset) and 6 (Alderley). More qualitative results are in-
cluded in supplementary materials. One can see exam-
ples of queries and best retrieved images, along with Grad-
CAM [39] activations. These visualizations demonstrate
that ACM-Net, even if trained without any labels, was able
to learn features meaningful for outdoor localization tasks
such as skylines for instance.

We focused our study on learning global visual represen-
tations that are robust to appearance changes and suitable
for VPR. Our results demonstrate that it is possible to learn
a model relying on constrastive self-supervision for robust-
ness to appearance changes while being able to perceive the
geometric structure of the input image by enforcing geo-
metric prediction.

4.5. Discussion on Potential Limitations

Global image descriptors are usually less robust to view-
point variations but more robust to condition changes than
local descriptors [25]. In our method, we make the repre-



day conditions night conditions
dawn dusk OC-summer OC-winter rain snow sun night night-rain

m .25 / .50 / 5.0 .25 / .50 / 5.0 .25 / .50 / 5.0 .25 / .50 / 5.0 .25 / .50 / 5.0 .25 / .50 / 5.0 .25 / .50 / 5.0 .25 / .50 / 5.0 .25 / .50 / 5.0
deg 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10 2 / 5 / 10

AP-GEM [36] 1.4 / 14.2 / 65.9 9.6 / 29.4 / 82.9 2.4 / 19.1 / 80.5 3.6 / 20.3 / 78.1 4.4 / 21.5 / 86.0 4.5 / 15.8 / 75.9 1.8 / 7.5 / 58.2 0.0 / 0.2 / 6.8 0.1 / 1.2 / 15.8
DenseVLAD [45] 4.5 / 24.3 / 79.6 12.5 / 38.9 / 89.1 3.8 / 27.4 / 90.8 4.1 / 27.1 / 85.6 5.4 / 29.0 / 91.4 6.7 / 25.5 / 85.1 3.2 / 11.0 / 67.1 1.4 / 2.7 / 23.2 0.6 / 5.2 / 29.8
NetVLAD [1] 2.2 / 16.8 / 73.3 11.4 / 31.0 / 85.9 3.2 / 21.5 / 90.9 4.1 / 22.6 / 84.0 4.2 / 22.2 / 89.4 5.2 / 20.1 / 80.8 2.4 / 10.4 / 70.3 0.2 / 1.2 / 9.1 0.3 / 0.9 / 8.8
DELG global [4] 1.6 / 10.9 / 66.4 8.9 / 23.9 / 81.3 2.1 / 16.5 / 77.6 3.5 / 18.5 / 73.6 3.9 / 20.5 / 87.9 3.6 / 13.5 / 73.5 1.0 / 6.4 / 59.6 0.2 / 0.7 / 7.6 0.1 / 1.6 / 13.8
DELG local [4] 1.7 / 10.4 / 78.3 2.5 / 7.3 / 76.8 1.1 / 8.9 / 84.2 1.2 / 9.1 / 83.2 1.2 / 4.5 / 76.8 3.5 / 10.9 / 80.8 3.3 / 12.6 / 85.2 1.4 / 7.6 / 38.6 2.4 / 11.9 / 53.0
SuperGlue [38] 4.3 / 24.6 / 84.8 12.7 / 40.3 / 88.6 5.0 / 31.5 / 95.0 4.5 / 30.2 / 88.6 5.9 / 30.1 / 91.8 7.0 / 25.4 / 87.2 3.3 / 17.1 / 83.9 0.5 / 2.2 / 27.9 0.9 / 5.4 / 31.8
Patch-NetVLAD [16] 4.8 / 72.5 / 86.2 13.5 / 72.0 / 89.5 5.3 / 80.9 / 94.5 6.3 / 71.3 / 89.8 5.9 / 79.3 / 92.1 7.8 / 75.9 / 87.9 4.8 / 67.3 / 83.4 0.5 / 12.4 / 24.9 1.0 / 19.0 / 30.8
TransVPR [48] 18.5 / 52.0 / 95.6 10.7 / 44.7 / 100.0 12.3 / 45.5 / 99.1 1.2 / 36.6 / 99.4 15.1 / 50.7 / 99.5 14.0 / 42.8 / 99.1 13.4 / 34.4 / 91.1 0.9 / 4.9 / 30.5 0.0 / 1.0 / 10.3
ACM-Net (Ours) 8.4 / 26.9 / 88.1 5.1 / 25.9 / 89.8 7.1 / 32.7 / 84.4 0.6 / 22.6 / 91.5 12.7 / 42.9 / 93.7 8.8 / 31.2 / 90.2 8.9 / 22.3 / 76.8 0.0 / 2.3 / 14.0 0.0 / 3.0 / 14.8

Table 5. Quantitative results on RobotCar Seasons v2 dataset. Best results are in bold. Second best results are in italic.

Summer Reference Winter Query Grad-CAM Activation 

Figure 5. Visual Grad-CAM activation of input query winter
image, along with retrieved summer image from the Nordland
dataset.

sentation even more robust to condition variations so that
extreme cases, such as those depicted in Nordland or Alder-
ley datasets, can be overcome. However, directly using our
descriptors on datasets featuring strong viewpoint variations
between reference and query images (for a given place) may
lead to limited performance. It is worth noting that this
assumption has not been tested yet. Furthermore, seeking
equivariance to more generic camera motions (not only roll
angle variations) may be beneficial to learn more geometry-
aware features.

Day Reference Night Query Grad-CAM Activation 

Figure 6. Visual Grad-CAM activation of input query night image,
along with retrieved day image from the Alderley dataset.

5. Conclusions

In this paper, we introduced a novel method for visual
place recognition under strong appearance changes. To
achieve that, our self-supervised ACM-Net has the advan-
tage of not relying on any form of human supervision. In
practice, it learns appearance-robust and geometry-sensitive
features that can then be directly used as abstract place rep-
resentations for visual place recognition. Extensive exper-
imental validation demonstrates the validity and efficiency
of our approach. Future work will focus on seeking equiv-
ariance to 3D geometric transformations via view synthesis.
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