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explosion on social media hinders effective pandemic response
and increases public confusion about who and what preventive
measures to trust [2]. One widely accepted solution to combat
infodemic is known as cascade prediction. Its purpose is to
learn the popularity of messages given its early adopters.
Accurate prediction can help people catch hot information that
deserves attention and assist healthcare department identify
misinformation that will require fast response to control the
impact in advance.

Research on cascade prediction has been sustained, with a
large number of prediction models developed. Earlier models
rely on hand-crafted features extracted from demographic
profiles of early adopters [3], [4] and the subgraphs composed
of early adopters and their relationships [5]. The recent ad-
vances of representation learning techniques lead to end-to-end
representation-based prediction models [6], [7]. Particularly,
the application of graph neural networks (GNN) allows to
simulate cascading effects over social networks, and further
improves the performance of cascade prediction [5]. In spite of
the various diffusion patterns exploited, the works mentioned
so far have not considered the spillover effect of a user’s
exposed information over social media on his/her behaviour
of forwarding a message and becoming part of its diffusion,
which we call info-exposure spillover effect for short. We say a
user is exposed to a message if the user posted the message or
perceives it from his friends on social media. Here, we adopt
the definition of behaviour spillover effect which intuitively
means “the observable and causal effect that a change in
one behaviour has on a different, subsequent behaviour” [8].
For example, tweets about unemployment and job-searching
may make a user who read them perceive the severity of the
pandemic and thus more likely retweet tweets about preventive
measures like stay-at-home.

We hypothesise the existence of this info-exposure spillover
effect according to the previous studies related the COVID-19
pandemic. Park et al. [9] demonstrate that information with
medically oriented thematic framework has a wider spillover
effect on COVID-19 issues in a Twitter context. Racist infor-
mation can have a spillover effect on the mistrust of medical
system [2] and lead to a lack of trust in the information
released by these systems. In this paper, we focus on the
messages related to COVID-19 preventive measures consid-
ering their importance in the combat against the pandemic.
We collected a dataset from Twitter and successfully validated
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I. INTRODUCTION

The outbreak of the COVID-19 pandemic leads to an out-
break of information in major online social networks (OSNs),
including Twitter, Facebook, Instagram, and YouTube [1],
which is called infodemic. On one hand, due to physical
isolation and social distancing, people spent much more time
on OSNs, engaging in expressing opinions, catching up-to-
the-minute development of the pandemic and even looking
for medical support and knowledge to ease mental depression
and seek psychological comfort. This new change in infor-
mation perception makes OSNs become an essential com-
munication channel for healthcare departments and medical
staff to disseminate official p olicies a nd p rofessional advice
about effective measures to prevent the spread of COVID-19
virus, e.g., wearing masks, vaccination and social distancing.
Misinformation and false news also take advantage of social
media to spread with unprecedented speed and volume. Large-
scale dissemination of misinformation significantly misleads
people and causes public panic. As a result, this information
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the existence of the info-exposure spillover effect of users’
exposed messages on their decision to retweet messages re-
lated to preventive measures. This allows us to extend existing
state-of-the-art cascade prediction models relying on GNNs.
According to our evaluation on our dataset, our extended
models can increase the cascade prediction performance up
to 23% in COVID-19 messages related to preventive mea-
sures. Meanwhile, we observed that the use of info-exposure
spillover effect can also increase the accuracy in predicting
the popularity of other COVID-19 related messages.

II. RELATED WORK

Cascade prediction has become attractive after studies shed
light on some key properties of information cascades that can
be predicted [3], [10]. In general, the cascade prediction meth-
ods can be divided into two classes: macro-level prediction and
micro-level prediction. Micro-level prediction aims to predict
users who will be activated during the information diffusion,
while macro-level cascade prediction directly calculates the
final size of targeted cascades.

The idea of most micro-level methods are based on the
Independent Cascade model (IC) [11], which calculates the
probability of influence between every pair of users [12].
These methods rely on a number of assumptions that overly
simplify the real situation such as the complete observation of
diffusion processes [13]. Although Deepinf [14] uses an end-
to-end deep learning method to overcome such assumptions,
micro-level methods generally do not perform well in predict-
ing cascade future size as they require simulating the entire
diffusion process. In this paper, as our target is popularity
prediction, we opt for macro-level methods.

Macro-level prediction methods can be divided into three
categories as a result of technological evolution, i.e., statis-
tical prediction model, machine learning-based methods and
deep learning-based methods. The development of macro-level
prediction starts with statistical models such as SEISMIC [15]
and Weibull [10]. Then, the advancements of machine learning
lead to methods using manually designed features extracted
from text content, temporal and demographic information,
and network structure [10], [3], [4]. Deep learning-based
methods overcome the deficiency of machine learning-based
methods of constructing manual features and capture effective
features automatically. DeepCas [16] and DeepHawkes [17]
use Recurrent Neural Networks (RNNs) to capture cascading
sequences in place of manually designed features. However,
RNNs are limited in capturing structural information. This
limitation is addressed by graph neural networks (GNNs) [18].
Intuitively, GNNs update the representation of each node by
recursively aggregating the representations of its neighbours.
In this way, the iterated node representation summarises both
structural and representation information in neighbourhoods.
CasCN [19] utilises a dynamic Graph Convolutional Network
(GCN) to learn the structural information of the cascade.
CoupledGNN [20] (CGNN) effectively addresses cascade pre-
diction with two GNNs, capturing the cascading effect which

indicates that the activation of one user will successively
trigger its neighbours.

Although deep learning-based methods have achieved rela-
tively good results in cascade prediction, little research has
been conducted to incorporate textual content into cascade
prediction. Textual content, an important part of social media,
may contain information that are related to the diffusion of
messages. Thus, we narrow the focus in this article to macro-
level cascade prediction by extending the existing models to
explore online textual content.

III. PRELIMINARIES

A. Problem definition

In this section, we will give the formal definition of the
popularity prediction problem studied in this paper which takes
into account both social networks and online textual contents.

When a message m is firstly posted by a user, it will be
perceived by the user’s followers who will adopt the message
and relay the message. This cascading process will continue on
the social network until no further sharing occurs. We denote
the observed diffusion cascade of m at in the time window
T by CT

m = {u1, u2, . . . , unm
T
}, i.e., the set of users who

adopted m in time window T . Note that nmT is the number
of the adopters of m in time window T . We use graph G =
(V, E) to denote the social network where V is the set of
nodes representing users and E ⊂ V × V is the set of edges
indicating the relationships between users. Compared to the
previous works on cascade prediction, we take into account
the online textual messages posted by users. Specifically, for
a user v ∈ V , given a time period, we use Mv to denote the
messages posted by user v and M to denote the set of all
messages, i.e., M = ∪v∈VMv .

Online textual content-aware cascade prediction. Given the
cascade of message m in time window T (i.e., CT

m), social
network G = (V, E) and the messages posted by users in V ,
i.e., ∀v∈VMv , the purpose of the problem is to predict the
final popularity of m at time ∞, i.e., nm∞.

As mentioned previously, we focus on the diffusion of the
messages related to COVID-19 preventive measures in this
paper and the user generated messages are also related to
the COVID-19 pandemic. We will make use of the info-
exposure spillover effects of users’ exposed information on
their decision on relaying preventive measure messages to
solve the cascade prediction problem. The result of this paper
may be applicable to other types of information if similar
spillover effect also exists.

B. General Framework of GNNs

The purpose of Graph neural networks (GNN) is to calculate
a representation of a graph. Compared to graph embedding
works such as node2vec [21] and DeepWalk [22], one ad-
vantage of GNN is that it allows to integrate node attributes
into the learning process. GNN is implemented with multiple
layers. At each layer, a node’s embedding is updated by
combining the representation of their neighbours calculated

2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

456



in the previous layer. Intuitively, a k-layer GNN calculates a
representation for each node by combining the attributes of the
nodes within k hops. We adopt the formal definition in [18]
and give the general definition of the `-th layer for a node
v ∈ V as follows:

a`v = Aggregate({h`u : u ∈ N (v)})
h`+1
v = Combine(h`v, a

`
v)

where h`v is the representation vector of node v at the `-th
layer and N (v) denotes the neighbours of node v. Function
Aggregate and Combine are instantiated in many variants of
GNN so as to capture different features of nodes’ neighbour-
hoods. With the representation vector of every node at the k-th
layer, then the representation of the graph G can thus be calcu-
lated by a function as follows: hG = Readout({hkv : v ∈ V}).
The Readout function can be simply implemented as the
mean of nodes’ vectors or other complex pooling functions.

IV. DATA COLLECTION AND PRE-PROCESSING

Twitter, one of the most prominent online social media
platform, has been used extensively during the COVID-19
pandemic. We chose the Greater Region (GR)1, a region with
a popularity of high mobility, as the targeted area. This section
presents how we build the dataset, construct the cascades and
build the social graph for our analysis and experiments.

A. Data collection

In our dataset, we collect two types of data: i) the COVID-
19 related tweets posted or re-tweeted by GR users; ii)
the social networks of GR users recording their following
relationships. In what follows, we elaborate the three steps
we followed to gather these data.
Step 1. Tweet collection. At this step, we collect a set of seed
users in GR who actively participate in COVID-19 discussions
and the tweets they originally posted or retweeted. Instead of
searching by keywords, we refer to a publicly available dataset
which contains the IDs of COVID-19 related tweets [23]. We
extract the tweet IDs posted between January 22, 2020) and
July 18, 2020. This period covers the first wave of the pan-
demic. Through these IDS, we downloaded the corresponding
tweet. Due to the ambiguity of locations of tweet posters,
we use the geocoding APIs, Geopy and ArcGis Geocoding
to regularise locations associated with tweets. For example, a
user input location Moselle is transformed to a preciser and
machine-parsable location: Mosselle, Lorraine, France. Based
on the regularised locations, we filter the downloaded tweets
and remove those posted by users out of GR. In total, we
obtain 144,961 tweets from 8,872 GR users.
Step 2. Social network construction. We construct the social
network of a large number of GR users at this step. We use an
iterative approach to gradually enrich the social network. For
each seed user, we obtain his/her followers and only retain
those who have a mutual following relation with the seed

1The Greater Region of Luxembourg is composed of the Grand Duchy
of Luxembourg, Wallonia, Saarland, Lorraine, Rhineland-Palatinate and the
German-speaking community of Belgium.

user, because such users are more likely to reside in GR.
We then download new users’ locations from their profile
data and only add users from GR to the social network. We
also add edges if users in the network have following relation
with the newly added users. After the first round, we continue
going through the newly added users by adding their mutually
followed friends that do not exist in the current social network.
This process will continue until no new users can be added. In
our collection, it takes 5 iterations before termination. We take
the largest weakly connected component of the social network.
After this step, we collected a total of 12,256,152 users and
21,203,130 following relationships. Since the majority of users
in the network are relatively inactive, we construct a subgraph
by removing all users who post or retweet less than 2 tweets.
Note that we keep some of such inactive users when the
remaining network are no longer connected after the removal
of these users. In the end, we obtain a social network with
21,339 users and 214,962 edges.

B. Cascade construction and experiment data selection

We construct cascades from our tweet dataset and the
social network built previously based on the definition in
section III-A. A total of 60,035 cascades are built and we
remove cascades with less than 3 users, following the existing
works [16], [20]. Eventually, 82.38% of cascades are removed
and we ended up with 10,579 cascades. The average size of
these cascades is 4.78. We use C to denote the set of all
selected cascades. From C, we construct the set of cascades
corresponding to messages related to preventive measures,
denoted by CPM , based on the keywords listed in Table I.

V. SPILLOVER EFFECTS IN COVID-19 PREVENTIVE
MEASURE INFORMATION DIFFUSION

In this section, we will validate our hypothesis that the
information exposed to a user has a spillover effect on his/her
behaviour of adopting a message related to COVID-19 pre-
ventive measures. We first briefly describe the method we
use to measure the hypothesised info-exposure spillover effect
and then give the detailed experimental analysis designed to
validate its existence in the diffusion of COVID-19 preventive
measure messages.

A. Measuring info-exposure spillover effect

We design our experimental framework based on the exper-
imental investigation method for spillover effect validation.
Intuitively, the idea is to investigate whether users exposed to
different information will behave differently in retweeting a
message related to preventive measures. In other words, we
will check whether certain type of exposed information will
change the likelihood of users with regard to retweeting a
preventive measure message.

We divide the set of users into groups according to the
information they are exposed to. Each group is composed
of users who are exposed to a certain composition of in-
formation. One of these groups is set as the control group.
The selection of the control group depends on the purpose
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TABLE I
KEYWORDS FOR THE TOPIC CATEGORIES

Keywords
Preventive measure stayathome, mask, masque, maske, wash hand, social distancing, socialdistancing, staysafe, lockdown

Unemployment job, jobsearch, unemployment, employment, career, resume, recruitment, recession, economy,
economic emploi, stelle, employ, arbeitslos, chômeurs

Panic buying panicbuying, panicshopping, panicbuyers, toiletpaper, handsanitizer, coronashopping
School closures schoolclos, closenypublicschool, closenycschools, suny, cuny, homeschool, noschool, shutdownschools

of the experiment. Then the proportion of users in each
group retweeting preventive measure messages will be used
to estimate the likelihood of adopting preventive measure
messages. By comparing the measurements with the control
group, we can then quantitatively evaluate the gratitude of
the spillover effect of the information exposed to this user
group on adopting preventive measure messages, which we
call spillover elasticity.

Formally, the nodes in social graph G will be divided into
n groups, i.e., D = {V1, . . . ,Vn} where ∪V′∈DV ′ = V . Let
Vc ∈ D be the selected control group. For each user group
Vi, we will find the users who re-tweet preventive measure
messages inMPM , and construct the set of users VPM

i . Then
the activation likelihood for users in Vi is calculated as αVi =
|VPM

i |
|Vi| . With these notations, we can define spillover elasticity.
Definition 1 (Spillover elasticity): The elasticity of the info-

exposure spillover effect of group Vi in a division D of user
set V is calculated as

εDVi =
αVi − αVc

αVc
.

Positive elasticity indicates the exposure to the information of
Vi increases the likelihood of adopting a preventive measure
message while negative elasticity indicates the opposite.

B. Experimental validation of info-exposure spillover effect

We start to verify that being exposed to certain information
will affect users’ behaviour of adopting and re-tweeting pre-
ventive measure messages. In order to conduct our experimen-
tal analysis, we need to first distinguish the types of COVID-
19 related information. Previous studies [24], [25] classified
the information into several topics. Among these topics, we
select three that are widely discussed in our dataset, i.e.,
unemployment, panic buying and school closures, and extract
corresponding tweets with the keywords listed in Table I.

We conduct our analysis from two perspectives. We first
evaluate the influence of messages of a single topic on the
behaviour of adopting a preventive measure message. Second,
we investigate the influences of different compositions of
topics of messages.

Spillover effect of information of single topic. We build
three divisions of the users in order to evaluate the spillover
effect of each topic, i.e., DU , DP and DS for unemployment,
panic buying and school closure, specifically. Each division
has only two groups. One group consists of users that have
been exposed to messages of the corresponding topic while the

TABLE II
VALIDATION OF INFO-EXPOURE SPILLOVER EFFECT OF SINGLE TOPICS.

Exposed Unexposed Elasticityε#user α #user α

Unemployment 4,238 0.67 17,101 0.25 1.69
Panic buying 6,119 0.39 15,220 0.31 0.25
School closures 6,460 0.61 14,879 0.21 1.87

other group is composed of users that have not been exposed.
We will take the group unexposed to the topic of messages as
the control group. In table II, we summarise the results about
the number of users exposed and unexposed in each division
and the activation likelihood as well as the final elasticity.

We have two observations from this table. First, the expo-
sure to each type of messages will increase the likelihood of
users to re-tweet a preventive measure message. On average,
the activation likelihood equals to 0.56 for the exposed group
while the unexposed group only has an activation likelihood
of 0.26. The average elasticity is 1.27, which indicates that
the activation likelihood doubles for the users exposed to
the topics we selected on average. Second, the increase of
activation likelihood for exposed users differs among the
topics of exposed information. For instance, the exposure to
information related to panic buying just leads to 25% increase
which is much smaller than the other two topics of messages.

For the above analysis, we can conclude that i) exposure
to certain topics of information will have a positive spillover
effect on users’ adopting preventive measure messages; ii)
the scale of spillover effect differs according to the topics of
exposed messages.

Spillover effect of information of compositions of topics. In
the previous analysis, we focus on the spillover effect of single
topics and ignore the changes when multiple topics of infor-
mation are exposed to users simultaneously. We construct of a
division of the users Dcomp with 8 groups, each of which cor-
responds to a possible composition of the three selected top-
ics, i.e., {U}, {P}, {S}, {U,P}, {U, S}, {P, S}, {U,P, S}, ∅
where U , P and S are short for unemployment, panic buying
and school closure, respectively. The user group exposed to
none of the topics is selected as the control group. Figure 1
shows the activation likelihood of user groups exposed to one
or two selected topics of messages.

We can see that exposure to more selected topics increases
the likelihood of adopting a preventive measure message. The
most significant increase occurs to the panic buying topic.
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Fig. 1. Activation likelihood when exposed to compositions of topics.

Exposure to an additional topic will increase the activation
likelihood by more than two times. When exposed to all the
topics, the activation likelihood is increased to 0.81. When
exposed to none of the topics, the activation likelihood for the
users drops below 0.10.

From the analysis, we empirically validated that the infor-
mation exposed to users indeed has a spillover effect on the
behaviour of adopting a preventive measure message. In other
words, the likelihood of a user to re-tweet a preventive measure
message will differ if they are exposed to different information.
In the following, we will make use of this phenomenon to
improve the accuracy of the prediction of message popularity.

VI. PREDICTING POPULARITY OF COVID-19 PREVENTIVE
MEASURE MESSAGES WITH SPILLOVER EFFECT

In this section, we will make use of our findings of the
spillover effect of users’ exposed information on their decision
of retweeting preventive measure messages to improve the
accuracy of cascade prediction. Recall that the information
exposed of users is composed of the messages posted by their
friends and his/her own posts. We encode users’ posted textual
messages into representation vectors and then attach them to
the attributes of the corresponding nodes in the social network.
Then we can make use of the GNN framework to summarise
the messages posted by their neighbours and even users that
are not incident but within a certain number of hops defined
by the number of layers in GNNs. In the following, we start
with describing the node attributes of the social graph and
then proceed to extend GNN-based models to integrate info-
exposure spillover effect. We also give the objective function
to train the model parameters

A. Preparing initial node attributes

The node attribute of node v ∈ V , i.e., h0v is concatenated
by three components: i) sv , the activation status of the user in
the given cascade C, ii) δv , the representation vector of the
messages posted by the user, and iii) ev , the node embedding
of the user’s corresponding node in the network. Formally,
h0v = sv‖δv‖ev where ·‖· is the concatenation operator. The
user activation status sv is set to 1 if v ∈ C and 0, otherwise.
The node embedding captures the structural properties of the
user’s neighbourhood in the graph. Following existing stud-
ies [16], [20], we use DeepWalk without further fine-tuning to
learn the structural embedding for each user. We will describe

in detail the method to abstract the messages posted by the user
into a representation vector. RoBERTa [26] is a language pre-
trained transformer to encode short texts in multiple languages.
In this paper, we use a widely used multilingual pre-trained
RoBERTa variant: XLM-RoBERTa [27]. For each m ∈ M,
we calculate its embedding with our trained XLM-RoBERTa
model, and let dm be the corresponding embedding vector. For
the messages posted by user v, we take the mean of the em-
bedding vectors of all his posted messages as the final message
embedding. Formally, we have δv = 1

|Mv|
∑

m∈Mv
dm.

B. Instantiating GNNs with info-exposure spillover effect

We implement three variants of GNN to integrate the info-
exposure spillover effect we identified in the previous section,
i.e., Graph Convolutional Networks (GCN) [28], Graph At-
tention Network [29] and CoupledGNN [20]. GCN is a semi-
supervised learning algorithm for graph representation and
GAT is a variant of GCN which introduces the attention mech-
anism to distinguish the significance of neighbours. These two
variants are not designed specifically for cascade prediction,
but for the general purpose of summarising neighbourhoods
with a given depth. The calculated node representation can
then be used for the downstream tasks such as link prediction
and node classification. CoupledGNN [20] is a model devel-
oped for cascade prediction, and can stand for the state-of-the-
art. It has overwhelming performance over existing models by
considering the cascading effect of information diffusion on
social network, i.e., the phenomenon that users are activated
due to the influence from their activated neighbours.

By extending these models, our purpose is to illustrate
the effectiveness of info-exposure spillover effect in improv-
ing further the performance of predicting the popularity of
COVID-19 preventive measure messages. In addition, our
extension can provide useful references for future cascade
prediction models to integrate info-exposure spillover effect.

The definitions of the function Aggregate(*) and Com-
bine(*) of GCN, GAT and CoupledGNN are briefly given in
Table III. GAT and GCN share the same combination function.
For GCN, we use the mean of the representation vectors of
both the nodes and their one-hop neighbours as the aggregated
value at each layer while GAT uses the weighted average.

We describe CoupledGNN in more details due to its simu-
lation of the cascading effect in information diffusion. For the
full description, we refer the readers to the original paper [20].
It deploys two GNNs. One GNN captures the activation
statuses of users during the information diffusion at each
layer, e.g., the activation status of user v at the `-th layer
s`v . The other GNN aims to simulate the influence of users
changing along with the activation status and the influences
of their neighbours, i.e., r`u. A neighbour u’s influence to user
v on becoming active in the next layer `+ 1 is calculated by
the function influGate(r`u, r

`
v). Then the aggregation function

is the weighted average of all the neighbours’ activation
statuses with the default activation probability pv added. The
combination function is based on the weighted average of its
status of the previous layer and the aggregated representation.

2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

459



TABLE III
BRIEF DESCRIPTION OF SELECTED GNN VARIANTS.

Model Aggregate(*) Combine(*)

GCN a`
v =

∑
u∈N(v)∪{v} h

`−1
u

|N (v)∪{v} h`
v = LeakyReLu

(
W `a`

v

)
GAT

a`
v =

∑
u∈N (v)∪{v} β

`
uvh

`−1
u

β`uv =
exp

(
LeakyRelu(γT [Wh

`−1
u ‖Wh

`−1
v ])

)
∑

u′∈N(v)∪{v} exp
(
LeakyRelu(γT [Wh

`−1

u′
‖Wh

`−1
v ])

) h`
v = LeakyReLu

(
W `a`

v

)

CoupledGNN
a`
v =

∑
u∈N (v) InfluGate

(
r`−1
u , r`−1

v

)
s`−1
u + pv

influGate
(
r`u, r

`
v

)
= β`

[
W `r`u‖W `r`v

] s`+1
v =

{
1 v ∈ CT

m

σ(µ`ss
`
v + µ`aa

`
v) v 6∈ CT

m

With the output activation status at the last layer (e.g., k),
the popularity of the message diffused in Cm

T is calculated
as ñm∞ =

∑
v∈V sv. In the following, we will describe in

detail how we extend each selected model to capture the info-
exposure spillover effect.

SE-GCN & SE-GAT. We can interpret the output of the k-
th layer of a k-layered GCN or GAT as the summary of the
information exposed to every user. Then we use an activation
function to capture the info-exposure effect. Specifically, the
function takes as input the output of the GCN or GAT and the
representation of the message diffused in the given cascade
and outputs the predicted final activation status of the nodes.
Let m be the message being diffused and recall that dm is the
representation of m calculated by the RoBERTa model. Let
s̃∞v be the predicted activation status of node v. Our activation
function is defined as:

s̃∞v =

{
activate

(
Whh

k
v‖Wddm

)
v 6∈ CT

m

1 v ∈ CT
m

where function activate is implemented as a 3-layer neural
network in this paper and Wh and Wδ are two parameters
matrix to be learned. We add this function as an additional
layer after the last layer of the GCN and GAT.

SE-CGNN. Recall that CoupledGNN uses the function Influ-
Gate to simulate the process of a user to be activated by
their neighbours. The influence vector, e.g., ru of user u,
contains user u’s posted message and the messages from u’s
neighbourhood. Therefore, it can be considered as a summary
of the information perceived by a user v from u if v follows
u in Twitter. Based on this intuition, we extend CoupledGNN
by reformulating the function InfluGate(*) to capture the the
info-exposure spillover effect:

influGate
(
r`u, r

`
v

)
= β`

[
W `r`u‖W `r`v‖Wddm

]
.

C. Objective function

We use the same objective function of [20] which is the
mean relative square error (MRSE) and defined as the follows:

LMRSE =
1

M

M∑
n=1

(
ñm∞ − nm∞

nm∞

)2

.

This loss function is regularised to avoid over-fitting and
accelerate the convergence speed, i.e., L = LMRSE + LReg

where LReg = θ
∑

p∈P ‖p‖2 + λLuser . Note that P de-
notes the set of parameters and Luser is the cross-entropy
1
M

∑M
n=1

1
|V|
(
s∞v log skv + (1− s∞v ) log(1− skv)

)
where s∞v

is the final activation status of v.

VII. EXPERIMENTAL EVALUATION

A. Evaluation metrics

We adopts the metrics used in [20] to evaluate and compare
the performance of our extended models and the bench-
markings used in our experiments. Specifically, in addition
to the mean relative square error (MRSE) introduced in the
previous section, we also use mean absolute percentage error
(MAPE) and wrong percentage error (WroPerc). MAPE mea-
sures the average deviation between the predicted popularity
and the true one while WroPerc measures the percentage
of cascades that are incorrectly predicted with a given error
tolerance ε. formally, they can be formally defined as:

MAPE = 1
M

∑
m∈MC

|ñm
∞−n

m
∞|

nm
∞

,

WroPerc = 1
M

∑
m∈MC

I
[
|ñm

∞−n
m
∞|

nm
∞

≥ ε
]
.

Note that I(∗) is an indication function which outputs 1 when
the input proposition is true or 0 otherwise, and the threshold
ε is set as 0.5 in our experiments.

B. Baseline Methods

In addition to CoupledGNN, we use the following models
as baselines.
Feature-based method. This is a linear regression model with
L2 regularisation with features. For better comparison, we
adopt the same features used in the past studies [20], [16].
SEISMIC [15]. SEISMIC uses the Hawkes self-activation
point process to estimate or approximate the impact of cas-
cading effect by their average number of followers.
DeepCas [16]. DeepCas is an end-to-end deep learning
method for information cascades prediction. It utilises the
structure of the cascade graphs and node identities for pre-
diction. An attention mechanism is designed to assemble a
cascade graph representation from a set of random walk paths.
GCN and GAT. We construct these two models from our
SE-GCN and SE-GAT models by removing the representation
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TABLE IV
PREDICTION RESULTS

Models C CPM CPM

MRSE MAPE WroPerc MRSE MAPE WroPerc MRSE MAPE WroPerc
Feature-based 0.3611 0.4018 41.31% 0.4403 0.4049 46.08% 0.3704 0.4151 41.56%
SEISMIC 0.5580 0.5104 56.35% 0.5899 0.5265 55.88% 0.5419 0.5083 56.14%
DeepCas 0.2837 0.3959 37.71% 0.2847 0.3724 38.67% 0.2872 0.4010 37.31%
GCN 0.3144 0.4217 38.88% 0.3179 0.4238 41.76% 0.3110 0.4200 38.69%
SE-GCN 0.2826 0.4056 36.76% 0.2702 0.3961 35.44% 0.2899 0.4109 36.65%
GAT 0.3072 0.4211 39.19% 0.3014 0.4268 40.01% 0.3101 0.438 39.85%
SE-GAT 0.2862 0.4124 37.58% 0.2721 0.4001 35.31% 0.2903 0.4175 38.64%
CoupledGNN 0.2678 0.3861 35.19% 0.2769 0.3920 34.44% 0.2601 0.3812 34.70%
SE-CGNN 0.2214 0.3410 31.17% 0.2087 0.3001 28.13% 0.2261 0.3508 31.22%

vectors of messages. In other words, these two models only
rely on network structure to predict the size of final cascades.

C. Implementation details

As the output of the RoBERTa for a sentence is a high-
dimensional and sparse vector. we apply linear transformation
to map its output to a relatively low-dimensional space. The
dimension of the final text embedding used is set at 128. For
all models including baselines, we tune their hyper-parameters
to ensure a good performance on validation sets. The L2-
coefficients are chosen from {0.5, 0.1, 0.05, · · · , 10−8}. For
all neural network models, the learning rate is chosen from
{0.1, 0.05, · · · , 10−5}, the coefficient in loss function is set
to be 0.5, and the mini-batch size is chosen from {15, 10, 5}.
The number of GNN layers k is selected from {5, 4, 3, 2}.
As for DeepCas, the number of walk sequences with walk
length are set as 100 and 8, respectively. For SEISMIC, we
follow the parameters from the original study, i.e. setting the
constant period as 5 minutes and power-law decay parameters
θ as 0.242. Considering the diffusion time of the messages in
our collected data, we set the observation time window T as
3 hours and construct a set of observed cascades by removing
users in our cascades that were activated after the first 3 hours.
Moverover, we randomly select 80%, 10%, 10% instances for
training, validation and test, respectively.

In order to comprehensively evaluate the effectiveness of
info-exposure spillover effect in predicting the message pop-
ularity, in addition to the cascades of COVID-19 preventive
measure messages CPM , we also apply all the models on
another two sets of cascades. One is the set of all COVID-
19 related cascades C. The other is the set of COVID-19
related cascades that are not related to preventive measures,
i.e., CPM = C/CPM , the complement of CPM in C.

D. Experiment results

We list the performance of all the above mentioned models
in Table IV in the form of the three selected metrics. In
general, we can see two obvious differences when the info-
exposure spillover effect is introduced in cascade prediction.

First, compared to the original models, our extended mod-
els significantly improve their performance not only for the
preventive measure messages, but also for all the three types

of messages. The most significant improvement occurs to SE-
CGNN and reaches 23% in the WroPerc measurement for the
preventive measure messages and over 10% for the messages
unrelated to preventive measures. This is due to the fact that
CoupledGNN simulates the cascading effects iteratively and
this allows for applying the info-exposure spillover effect on
activating individual users in a finer granularity. From the
above analysis, we can conclude that the use of info-exposure
spillover effects can effectively improve the performance of
existing cascade prediction models. It should be integrated into
future models by design.

Second, we can observe that the extended models can more
accurately predict the popularity of COVID-19 preventive
measure messages than the other messages, which is the
opposite for the baseline models. From the baseline models,
we see that it is more difficult for accurately predict the
final cascade size of COVID-19 preventive measure messages.
Their performance on C and CPM are almost the same but
becomes worse on CPM . The feature-based model has the
worst performance which decreases by over 11% compared
to that in predicting the size of the other two sets of cascades.
However, when the identified info-exposure effect is used in
our extended models, the popularity of preventive measure
messages can be predicted with a much better accuracy.
SE-CGNN can improve the performance in the set CPM

by about 10% better for preventive measurement messages
than those unrelated to preventive messages. This observation
validated empirically that the exposure to information related
to the COVID-19 pandemic has a strong spillover effect on
retweeting message related to COVID-19 messages about how
to prevent the transmission of the virus.

VIII. CONCLUSION & DISCUSSION

In this paper, we concentrated on the problem of cascade
prediction for COVID-19 information about preventive mea-
sures on online social media platforms. Compared to previous
works, we took into account the phenomenon that the exposure
to COVID-19 information will influence the behaviour of
users to participate in the diffusion of information related to
preventive measures, which we call info-exposure spillover
effect in this paper. With a dataset we collected from Twit-
ter, we successfully validated its existence. We then applied
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the identified spillover effects in predicting the popularity
of preventive measure messages. Specifically, we built three
new models by making use of the recent advances of graph
representation techniques, i.e., graph neural networks. With
extensive experiments, we showed that our new models outper-
form baselines not only for preventive measure messages but
for all the COVID-19 related messages. This illustrates that the
introduction of info-exposure spillover effect can effectively
improve the performance of cascade prediction.

There are still several limitations in our research. When
representing users’ historical textual posts, we took the mean
of their representation vectors. This may remove certain useful
information hidden in users’ past messages. Moreover, we
ignore the significance variance caused by the post time of
messages. It has been studied that recent messages may have
larger influence. This can be solved by introducing recurrent
networks such as LSTM or the Hawkes process. Second,
we studied the spillover effects of messages that were all
related to COVID-19. We will analyse the spillover effects
of pandemic-unrelated messages on COVID-19 message dif-
fusion in following studies. Third, our cascade prediction
models are extended from existing GNN models and focus on
preventive measure messages. It will be interesting to design
a new general end-to-end GNN model which can capture
diffusion patterns shared by COVID-19 related messages.
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