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Motivation

• Population ageing is one of the key challenges of our times. The share of the
EU population above the age of 65 is expected to reach almost 25% by 2050
(starting from 19.2% in 2016)

• Depression in old age is common. In Europe 8.9% of those among 55-64 years
old and 8.6% of those 65+ suffer of chronic depression (EUROSTAT, 2019)

• Depression in old age is both under-diagnosed and under-treated in primary
care setting

• Depression is an independent predictor of other major diseases: Alzheimer,
dementia and diabetes
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Objectives

• Prevention strategies and improvements in early identification are essential
(WHO, 2016).

• Predicting depression is a challenge:

• Complex disease

• Lack of bio-markers/risk factors

• Humans subjectivity

• Supervised Machine Learning Algorithms may tackle these complexities
resulting in high predictive performance

• Could we preemptively identify clinically depressed individuals from their past
life histories? Which is the most predictive data configuration?

• Are there differences in life course depressive patterns across genders?
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Data Source/Subjects

• The Survey of Health, Ageing and Retirement in Europe (SHARE)

• We drawn Retrospective information from SHARELIFE (SL) questionnaire

• Different individuals of wave 3 and wave 7

Wave 1
(2004/05)

Wave 2
(2005/06)

Wave 3 (SL)
(2008/09)

Wave 4
(2011/12)

Wave 5
(2013)

Wave 6
(2015)

Wave 7(SL)
(2017)

Final Sample

Male: 27808 Female: 35218

• We select:

1. respondents aged < 89 for recall bias

2. respondents that provide attention during the interview

3. respondents without missing variables in all depression symptoms across all
waves
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Measurements framework

• Educational level
• Gender
• Cohort/Age
• Country of residence
• Migrant 
• Age at first childbirth
• Age at cohabitation
• Number of job changes

• Happiness/stress/financial 
stress/Hunger history

• Employment history
• Family  history
• Health history
• Residence location history
• Housing history• Socio Economic Status (SES)

• Health conditions
• School performance
• General life conditions

Control variables

Depression

Adult life trajectories (15-49y)

Childhood events (0-15 y.)

Old age SWB (50-89y)

Time

SWB

Figure 1: Measurements framework
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Depression in SHARE

Figure 2: Depression prevalence across genders. Colors represent ventiles of the depression distributions in the pooled
sample

• Depression in SHARE is measured by the 12 questions that compose the
euro-D instrument: good test-retest reliability and internal consistency
(Prince, 1999a)

• Clinical depression threshold: euro-D scale score of higher than 4 is categorized
as case of depression (1) and a scale score below four as not depressed (0) (M.
Prince et al., 1999b; E. Castro-Costa, M. Dewey, et al.,2008)

• The sample counts 40% individuals with at least one depression measurement
in the observation period (46% females, 29% males) 7



Life Trajectories

• A life trajectory is defined as the long-term pattern of stability and change,
which usually involves multiple transitions. Along this trajectory, each
individual may experience many events, either positive or negative

• Sequences (A. Abbot, 1995):
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Sequences representations

• We construct life trajectories for 6 life dimensions:

1. Work

2. Family

3. Housing arrangement

4. Location of residence

5. Health

6. General life events

• We operationalize sequence in three different ways:

1. Clusters or Typologies: distinct groups of individuals’ having similar life
trajectory (∼ 113 predictors) Example cluster

2. Sequences features: timing, duration, sequencing, and entropy (∼ 301
predictors)

3. Unstructured representation (∼ 306 predictors) Example unstructured
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Example Features

ID Duration BC Duration ST Duration Rur LT → BC LT → Rur → BC Age(20-25) Rur Entropy
1 24 0 5 1 1 1 0.20 . . .
2 7 1 0 1 0 0 0.12 . . .
3 6 5 6 0 0 0 0.29 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .
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Machine Learning Methods

We explore six different algorithms:

1. Logistic Regression

2. Ridge

3. Lasso

4. Elastic Net

5. Extreme Gradient Boosting

6. Artificial Neural Network
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Optimization Routine

Stratified train-test split approach:

1. Training sets: 80% sample; test set: 20% sample

2. Tuning Models: random/grid search + stratified 10-folds cross validation to
maximize the Area Under the Precision-Recall Curve (PR-AUC)

3. Compare models’ performance on the test set: PR-AUC, AUC, Sensitivity

4. Benchmark model: minimal predictor set with only demographic information,
i.e., age, interview year, migrant status, education level, age at first childbirth
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Models’ PR-AUC Female
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Figure 3: Sensitivity across models and input structures. Performance on the test set. Female sample

• PR-AUC of all algorithms increases along with the increasing dimensionality of
the input structure

• We reach a PR-AUC of ∼ 68.2% combining the Gradient Boosting with
sequential features 15
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Figure 4: Sensitivity across models and input structures. Performance on the test set. Female sample

• For males, we reach a PR-AUC of ∼ 46.2%

• Males’ life course trajectories are less informative than females’ trajectories.
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SHapley Additive ExPlanation (SHAP)

• SHAP values inform on how much each input variable contribute to create the
final predicted probability

• Example: we are giving the Gradient Boosting model the life course
information of a Slovenian Female of age 59, not depressed

Figure 5: A SHAP force plot of a single individual. In bold is the predicted odd ratio, which correspond to 0.39
probability of being depressed. Red represents features that pushed the model probability score higher, blue represents
features that pushed the score lower.
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Depression Patterns Across Gender

Female Male

Figure 6: Left is female and right is male. Note: Importance of the features in descending order of their importance based
on Shapley values. Color for each feature shows the positive or negative correlation with the target outcome.

• For both genders and across models: age, fragile health conditions in
childhood and adulthood, low education, and low dental care increases
depression risk

• Only for male and across models: house ownership’s duration decreases the
risk of depression

• For both genders but only black box methods: higher general life entropy
increases the depression risk
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Conclusion

• Life histories predict some future clinically depressed individuals but are not
able to perfectly detect them

• The data required for achieving the highest predictive performance is more
complex than what has been traditionally used in well-being studies

• We identify new idiosyncratic and common patterns across genders

• Interpretable machine learning tools may support the hypothesis creation
process

• Sub-samples: Performance across thresholds

• Predictions at regional levels: Predictions regional level
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Thank you for your attention!
carlotta.montorsi@liser.lu
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Example clusters

Figure 7: Clusters of housing arrangement, pooled sample

ID age Emotion: Type 1 Emotion: Type 2 Emotion: Type 3
1 56 1 0 0 . . .
2 53 0 1 0 . . .
3 63 1 0 0 . . .
. . . . . . . . . . . . . . .

sequence representation
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Example Unstructured

ID Age15: Big city Age15: Large Town Age15: Small tows Age15: Rural Area Age15: Suburbs Age15: Missing . . .
1 0 1 0 0 0 0 . . .
2 0 1 0 0 0 0 . . .
3 0 0 0 1 0 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . .

sequence representation
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Sensitivity across sub-samples
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Predictions: European Regions

Figure 8: Left: observed depression rate at NUTS3 level. Right: aggregated depression probabilities at NUTS3

Conclusion
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