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Abstract. This note describes a new efficient bit-slice implementation DenseQMC of the
Quine-McCluskey algorithm for finding all prime implicants of a Boolean function in the
dense case. It is practically feasible for n ≤ 23 when run on a common laptop or for n ≤ 27
when run on a server with 1 TiB RAM.

This note also outlines a very common mistake in the implementations of the Quine-McCluskey
algorithm, leading to a quadratic slowdown. An optimized corrected implementation of the
classic approach is also given (called SparseQMC).

The implementation is freely available at github.com/hellman/Quine-McCluskey .
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1 Introduction

Boolean/logic minimization is a broad topic with numerous applications, including logic synthesis,
expressing problems for SAT solvers (e.g., in symmetric-key cryptanalysis [24]), performing Qual-
itative Comparative Analysis (QCA) in social sciences. The simplest minimization setting is the
two-level minimization, in which the target function has to be expressed in one of the two follow-
ing types of formulas: sum-of-products (SOP) or product-of-sums (POS), also known as disjunctive
normal form (DNF) and conjunctive normal form (CNF) respectively. Here, a “sum” refers to the
logic OR operator and a “product” refers to the logic AND operator. The two formula types are
dual to each other, as they are related by the De Morgan’s laws. Therefore, it is sufficient to study
any one of the two, and this work describes algorithms for DNF minimization.

A DNF/SOP formula consists of clauses connected by the OR operator, and where each
clause consists of variables or their negations connected by the AND operator. According to the
sum/product interpretation, the OR operator is often denoted by “+” and the AND operator is
omitted. Furthermore, the logic negation (NOT) is denoted by the prime mark (for example, x′).
For example, the 3-bit majority function Maj can be expressed in DNF as

Maj(x, y, z) = xy + xz + yz.

The DNF minimization problem asks, given an expression of a Boolean function, to find a
DNF formula with the smallest possible number of logic AND/OR operations (sometimes, only
OR operations are counted, leading to minimization of the number of clauses). This work considers
the most general case when the input function is given by its truth table.

The Quine-McCluskey method In a series of works [15,17,18], Quine and McCluskey developed an
algorithm for two-level minimization. It consists of two steps:
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1. Find all minimal products that can be consistently included in the DNF (also called prime
implicants). Minimality here means that no proper divisor of the product is consistent with
the target function.

2. Choose a subset of minimal products according to the problem’s goal: minimizing the number
of products or minimizing the total number of AND/OR operations.

The second step is an instance of the SetCover problem, which is NP-hard. Furthermore, NP-hard
instances were proven to occur in this setup. Therefore, one has to resort to heuristic methods.
Classically, the Petrick’s method [16] was used. However, a modern integer optimization suite
may perform better (as noted already in [6]). In addition, there are several dedicated exact or
approximate heuristic solvers for the SetCover problem in general [7, 12, 23], as well as methods
tailored to the Boolean minimization problem [11].

New method This work focuses on the first step of the Quine-McCluskey algorithm, namely, finding
all prime implicants of the function. Although the second step is overwhelmingly dominating the full
procedure, an efficient solution to the first step opens doors to fast heuristic approximate methods
for the second step. In particular, the set of prime implicants itself provides a DNF expression of
the function (or CNF of the function’s complement) which can be sufficiently compact (even if
containing redundant terms).

For the first step of the Quine-McCluskey algorithm, we propose a new implementation based
on multidimensional ternary transforms and on the bit-slicing technique, called DenseQMC. To
the best of our knowledge, the new approach significantly outperforms all available previous im-
plementations and expands the feasible number n of function’s inputs to n = 23 when run on a
laptop and to n = 27 when run on a server equipped with 1 TiB of RAM (see Table 1). It is in
particular useful for very dense problems (computing a DNF of a dense function or a CNF of a
sparse function), which are the worst-case for the Quine-McCluskey algorithm and where sparse
methods are too slow. For a fair comparison and due to absence of competitive classic (sparse)
implementations, we also developed an optimized implementation of the classic Quine-McCluskey
method, called SparseQMC. Surprisingly, it also outperforms existing reports and even the new
DenseQMC when density is at most 50%-60%.

A brief benchmark is given in Table 1. We do not provide explicit comparison with existing
implementations, since we could not find any competitive implementation and/or sufficient per-
formance information. For a rough comparison, the work [10] reports 34 seconds for a function
with n = 11, [5] reports 5 seconds for a very sparse function with n = 15, all of which are done
instantly by any of our implementations; [14] gives mixed CPU/GPU timings such as 1000 sec-
onds and 10 GiB RAM for the dense case of n = 20, 10 minutes for an n = 24-bit function of
density 70%, 2000 seconds for an n = 28-bit function of density 30%, close to 106 seconds on an
n = 32-bit function of density 42% using disk storage (due to ambiguous reports and absence of
available implementation, it is difficult to provide a clear comparison). Note that the dense case is
often occurring in practice when optimizing a CNF formula of a sparse function, for example, [2]
report 2 hours of work for the case of n = 16 and 82%-dense function, appearing in cryptographic
applications. Note that this work does not intend to compete with sparse or approximate methods
such as ESPRESSO-Exact [3] or more recent “Consistency Cubes” method [4].

The source code is publicly available at

github.com/hellman/Quine-McCluskey

2 Definitions and notation

The Boolean AND,OR,NOT operations are denoted by ∧,∨,¬ respective. They can be operate on
single bits or bitwise on bit-vectors. The left and right shift operations on bit-vectors are denoted
by ≪ and ≫ respectively.
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Table 1: Time/memory benchmark of the optimized implementations of new DenseQMC (Section 4,
Algorithm 4) and classic SparseQMC (Section 5) algorithms on random n-bit Boolean functions
with a given density. Ran on a single core of an AMD EPYC 3.2 GHz processor with 1 TiB of
RAM available.

DenseQMC
density: any

SparseQMC
density: 25%

SparseQMC
density: 50%

SparseQMC
density: 99%

n RAM Time RAM Time RAM Time RAM Time

16 5 MiB 0.01 s 2.0 MiB 0.01 s 4.0 MiB 0.07 s 0.2 GiB 18 s

17 16 MiB 0.04 s 4.0 MiB 0.03 s 16 MiB 0.2 s 1.0 GiB 62 s

18 49 MiB 0.2 s 8 MiB 0.05 s 32 MiB 0.7 s 2.0 GiB 3.2 m

19 0.1 GiB 0.5 s 16 MiB 0.2 s 64 MiB 1.9 s 6 GiB 11.2 m

20 0.4 GiB 1.5 s 32 MiB 0.6 s 0.1 GiB 5 s 16 GiB 0.6 h

21 1.3 GiB 5 s 64 MiB 1.6 s 0.2 GiB 10 s 64 GiB 1.6 h

22 3.8 GiB 13 s 0.1 GiB 3 s 0.5 GiB 22 s - -
23 12 GiB 39 s 0.2 GiB 7 s 1.5 GiB 49 s - -
24 35 GiB 2.0 m 0.5 GiB 18 s 3.0 GiB 1.9 m - -
25 0.1 TiB 6.0 m 1.0 GiB 35 s 6 GiB 5.0 m - -
26 0.3 TiB 0.3 h 2.0 GiB 78 s 12 GiB 13.1 m - -
27 0.9 TiB 1.1 h 4.0 GiB 3.2 m 24 GiB 0.5 h - -
28 - - 8 GiB 8.2 m 64 GiB 1.2 h - -
29 - - 24 GiB 0.3 h 0.1 TiB 3.1 h - -
30 - - 48 GiB 0.8 h - - - -
31 - - 96 GiB 1.8 h - - - -

Fig. 1: Comparison of DenseQMC and SparseQMC implementations (time and memory usage) on
random n-bit Boolean functions with a given density d. Evaluated on a single core of a 3.2GHz
CPU.
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Let Σ = {0, 1, ∗} be the alphabet. The symbol ∗ is called a wildcard. Throughout the work,
the number of input variables to the considered function is denoted by n. A literal α is either an
input variable xi or its negation ¬xi.

Definition 1. A minterm is a product α1 . . . αm of literals αj ∈ {xtj , x
′
tj}, tj ∈ {1, . . . , n} such

that ti ̸= tj for all i ̸= j. In other words, every variable occurs at most once in the minterm. The
minterm α1 . . . αm is equivalently described by the string s = (s1, . . . , sn) ∈ Σn such that

sk = 0, if x′
tk

is present in the product,

sk = 1, if xtk is present in the product,

sk = ∗, otherwise.

The weight of a minterm is defined as the number of wildcards in the string representation, equal
to n minus the minterm’s degree.

Example 1. Let n = 5. Then, the minterm x1x
′
3 corresponds to the string 1∗0∗∗.

Definition 2. A minterm α1 . . . αm is called an implicant of a Boolean function f : {0, 1}n →
{0, 1}, if α1 . . . αm(x) = 1 implies f(x) = 1 for all x ∈ {0, 1}n.

Definition 3. An implicant α1 . . . αm of a Boolean function f is said to be prime, if no proper
divisor of α1 . . . αm is an implicant of f . Otherwise, it is said to be redundant.

3 Classic Quine-McCluskey algorithm

The Quine-McCluskey algorithm constructs all implicants of the function, removing redundant
implicants along the way, so that the final remaining implicants are prime. The construction relies
on the following observation about combining minterms.

Obsevation 1. Let α1 . . . αm and β1 . . . βm be two minterms such that, for some i ∈ {1, . . . ,m},
it is αi = β′

i and αj = βj for all j ̸= i. Then, the sum of α1 . . . αm and β1 . . . βm is functionally
equivalent to the minterm

∏
j ̸=i aj.

In terms of strings, two minterms can be combined if they differ exactly at one position, and
the new minterm is obtained by setting the string at this position to ∗.

Example 2. The sum of minterms 0011∗ and 0111∗ is 0∗11∗.

The observation works in the other way too: any implicant with at least one wildcard can be
constructed as a sum of two implicants each with one wildcard less. This means that all implicants
can be constructed bottom up from implicants with no wildcards.

The idea of the algorithm is to start with implicants of degree n (having no wildcards in their
strings). Then, at w-th level, w ∈ {1, . . . , n}, all implicants with w wildcards are constructed by
combining implicants from the previous level in pairs. When a new implicant is constructed, the
two used implicants are marked redundant (and can be removed from memory after the level w is
fully finished). The pseudocode for the high-level procedure is given in Algorithm 1.

Implementation caveat So far, we have not considered how to find pairs of implicants that dif-
fer in exactly one position (as strings). This crucial step is performed in line 5 of Algorithm 1.
Unfortunately, there is a widespread misconception about this step, stemming from a heuristic
used in the initial works of Quine and McCluskey, who did not focus on formal algorithmic com-
plexity of the approach. In fact, most works from 19xx describe various heuristic variants in a
“pen-and-paper” style. Yet, even modern implementations follow the inefficient approach, see for
example [1,5,9,10,25]. A few works that follow the efficient approach are [21]. In the following, we
first discuss the inefficient approach and then describe the efficient variants.
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Algorithm 1 Quine-McCluskey algorithm for finding all prime implicants

Input: truth table of a Boolean f : {0, 1}n → {0, 1}
Output: set S ⊆ Σn of prime implicants of f

1: L0 ← {x ∈ {0, 1}n : f(x) = 1} ⊆ Σn

2: for w ∈ {1, . . . , n} do
3: R← ∅
4: Lw ← ∅
5: for s, t ∈ Lw−1 : ∃i ∈ {1, . . . , n} si = 0, ti = 1 and sj = tj for all j ̸= i do
6: R← R ∪ {s, t}
7: Lw ← Lw ∪ {s+ t}
8: L′

w−1 ← L′
w−1 \R

9: L′
n ← Ln

10: S ←
⋃n

w=0 L
′
w

Finding compatible pairs of implicants (inefficient) Since the strings s, t differ only at one position,
at which they are equal to 0 and 1 respectively, it follows that the number of 1s in s is by one less
than that in t. It is thus commonly suggested to sort and group each Lw−1 by the number of 1s
in the increasing order. Let Lw−1,u denote the subset of strings from Lw−1 which have exactly u
symbols 1, 0 ≤ u ≤ n− w + 1. Then, for each compatible pair s, t considered by the algorithm, it
must be s ∈ Lw−1,u and t ∈ Lw−1,u+1 for some u. It follows that, at step w, it is sufficient to only
consider pairs from the set

(Lw−1,0 × Lw−1,1) ∪ . . . (Lw−1,n−w × Lw−1,n−w+1)

The problem is that this observation is often interpreted as the direct method to find the compatible
pairs, by enumerating all pairs from Lw−1,u×Lw−1,u+1, for each fitting u. This approach however
leads to a quadratic complexity blowup.

Proposition 1. There exists an infinite family of functions f such that Algorithm 1 implemented
using the described heuristic has

|Lw−1,u × Lw−1,u+1| = Ω

(
6n

n3

)
.

for some index u.

Proof. Consider the worst case for the Quine-McCluskey algorithm (in general), the constant-1
function f = 1, for which all possible minterms are implicants (although only the minterm 1 is
prime). For simplicity, we assume that n = 3m for some integer m. Then, Lm,m consists of strings
from Σn with exactly m zeroes, m ones, and m wildcards, the number of which is

(3m)!

m!m!m!
= Θ

(
√
m

(
3m

e

)3m

·
√
m

−3
(m
e

)−3m
)

= Θ

(
3n

n

)
for some constant c (using Stirling’s approximation). Since Lm,m can be obtained by replacing one

0 by 1 in each position in each string from Lm,m−1, we have Lm,m−1 ≥ Lm,m

m+1 . It follows that for
w = m+ 1, u = m− 1, the set

Lw−1,u × Lw−1,u+1

has size Ω
(
6n

n3

)
.
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Finding compatible pairs of implicants (efficient) A correct implementation was described by We-
gener [26, Section 2.2], who suggested to iterate through the list Lw−1,u and, for each string s in
it, check all strings that can be obtained by replacing exactly one 1 with 0 inside the set Lw−1,u−1.
Note that there are at most n such strings to check. As a membership test, Wegener proposed to
sort Lw−1,u−1 in advance and use binary search for each query. This leads to complexity O(3nn2)
(3n maximum minterms, at most n neighbors per a string, logarithmic cost of the binary search in
Lw−1,u−1 of size at most 3n). In practice, the membership test can be performed using a hash table
in amortized constant time, leading to a probabilistic algorithm with expected time complexity of
O(3nn) operations on minterms (n-bit strings) and memory accesses.

Note that there is no benefit for the asymptotic complexity in grouping elements of Lw−1 by the
number of 1s: the cost of a membership test is asymptotically the same for sets of size 3n and 3n/n
(both for binary search and hash-based methods). Although such grouping may improve locality
of memory operations (and thus, improve the constant behind the asymptotic time complexity),
it also makes the implementation more complex.

4 DenseQMC: New bit-slice algorithm for the dense case

This section describes a new algorithm for finding prime implicants, which exploits the ideas of
Quine and McCluskey in a more careful implementation. It has complexity O(3nn) of bit operations
on any function of n variables, which is further reduced by a bit-slice style implementation allowing
to maximally utilize the CPU registers. Its high-level structure is based on iterating over dimensions
(variables), not over weights. A similar idea was proposed already in [19], but not sufficiently
developed and detailed. Furthermore, we also employ and develop the idea of [5] to consider the
full possible state of size 3n packed in a dense bit-vector similar to implementations in [14, 21]. In
addition, the core of the algorithm essentially describes a Boolean circuit, reminiscent of hardware
accelerators proposed in [13,14].

4.1 Multidimensional ternary transforms

State representation The problem of finding prime implicants takes as input a subset of {0, 1}n
and outputs a subset of Σn = {0, 1, ∗}n. The input set can be also naturally embedded in Σn.
This allows to represent the problem as a map from 2Σ

n

to itself. In the general (dense) case, it
is efficient to represent a subset of Σn as a bit-vector S of size 3n (i.e., S ∈ {0, 1}3n). For now,
we assume that bits in the memory are indexed by strings from Σn; concrete implementation is
described in Subsection 4.2. For example, by S(s) we denote the single bit indicating whether s
belongs to the set represented by S or not. As we shall see, it is possible to implement the required
mapping by manipulating such a state in-place by a fixed Boolean circuit.

The Quine-McCluskey algorithm can be directly reinterpreted to work on such a state. Essen-
tially, we only change the data structure behind the sets Lw, which is a further evolution of the
observation about efficient implementation in the previous section.

Definition 4. Define two Boolean operations

Merge : F3
2 → F3

2 : (χ0, χ1, χ∗) 7→ (χ0, χ1, χ∗ ∨ (χ0 ∧ χ1)),

Reduce : F3
2 → F3

2 : (χ0, χ1, χ∗) 7→ (χ0 ∧ ¬χ∗, χ1 ∧ ¬χ∗, χ∗).

These operators can be viewed as maps from 2Σ to itself. The Merge operator will be used
to combine two compatible minterms; the Reduce operator will be used to remove redundant
minterms.

Theorem 1. The Quine-McCluskey algorithm can be implemented as a Boolean circuit mapping
the set {0, 1}3n to itself, interpreted as 2Σ

n

. The circuit uses 3n−1n Boolean OR and NOT gates,
and 3nn AND gates.
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Proof. See Algorithm 2. Complexity: the algorithm considers all triples having n−1 positions equal
and the other position taking all three possible values (in the fixed order (0, 1, ∗). There are n3n−1

such triples. The Merge and Reduce operations are applied exactly once per such a triple.
Correctness: it is easy to see that I represents the same state as the set L0 ∪ L1 . . . ∪ Lw from

Algorithm 1 at matching steps. More precisely, each iteration of the first inner loop in Algorithm 2
has the same effect as an iteration of the inner loop in Algorithm 1; the second inner loop in
Algorithm 2 has the same effect as the line Lw ← Lw \R in Algorithm 1.

Algorithm 2 Boolean circuit implementation of the Quine-McCluskey algorithm for finding all
prime implicants

Input: indicator set I ∈ {0, 1}3
n

of the support of a Boolean function f : {0, 1}n → {0, 1}
Output: indicator set O ∈ {0, 1}3

n

of the set O ⊆ Σn of prime implicants of f

1: S ← I ▷ working state
2: for w ∈ {1, . . . , n} do
3: for s, t, u ∈ Σn :

u has w wildcards,
∃i ∈ {1, . . . , n} si = 0, ti = 1, ui = ∗ and sj = tj = uj for all j ̸= i do

4: (S(s), S(t), S(v))← Merge(S(s), S(t), S(v))

5: for s, t, u ∈ Σn :
u has w wildcards,
∃i ∈ {1, . . . , n} si = 0, ti = 1, ui = ∗ and sj = tj = uj for all j ̸= i do

6: (S(s), S(t), S(v))← Reduce(S(s), S(t), S(v))

7: O ← S

Remark 1. Lines 2 and 4 of Algorithm 2 define wirings in the Boolean circuit, and so do not
contribute to its complexity. Software implementation of it would require careful enumeration of
minterms with w wildcards for all values of w. It is not included here as the alternative implemen-
tation below is superior.

The Quine-McCluskey algorithm (and its Boolean circuit implementation from Algorithm 2)
traverses the space of minterms in the order of increasing number of wildcards w in the associated
strings (equal to the decreasing order of minterms’ degree). The correctness of the processing order
is crucial, since Merge transfers information from lower to higher w, while Reduce goes in the
other direction. A crucial observation is that these two processes can be completely separated.
More precisely, second inner loop in Algorithm 2 (Lines 4-5) can be performed in a separate loop
on w following the first loop on w. However, the second loop has to iterate w in the decreasing
order. In terms of implicants, the interpretation is that we can first compute all the implicants of
the function, and only then remove all the redundant implicants.

Lemma 1. Let MergeAll,ReduceAll : {0, 1}3n → {0, 1}3n be maps such that, for all I ∈ {0, 1}3n ,
M = MergeAll(I), O = ReduceAll(M), it holds:

M(u) =

{
I(u) if u ∈ {0, 1}n,∨

s,t∈Σn: s+t=u M(s) ∧M(t) otherwise,

O(s) = M(s) ∧ ¬
∧

u,t∈Σn: s+t=u

M(u).

Then:
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1. For all u ∈ Σn with w wildcards, M(u) = 1 if and only if u ∈ Lw computed in Algorithm 1 if
and only if I(u) = 1 at the iteration w before the second inner loop in Algorithm 2.

2. For all u ∈ Σn with w wildcards, O(u) = 1 if and only if u ∈ L′
w computed in Algorithm 1 if

and only if I(u) = 1 at the iteration w after the second inner loop in Algorithm 2.

Proof. Follows from the dataflow in the algorithms.

We are now ready to explain the idea of multidimensional transforms, which essentially consists
in switching the traversal order of the minterms from monotonic in the number of wildcards to
traversal of each coordinate (“dimension”) at a time. In other words, the same operations

(S(s), S(t), S(v))← Merge(S(s), S(t), S(v)),

(S(s), S(t), S(v))← Reduce(S(s), S(t), S(v))

are performed, but on a differently ordered sequence of the triples (s, t, v). The idea is to first
iterate over the position i where si = 0, ti = 1, vi = ∗. Note that all such triples are independent
as any such pair of triples would differ in at least one one other position. All such triples can be
enumerated for example by going through the whole string space Σn filtered by i-th coordinate
equal to 0, and obtaining the respective t, v by changing this coordinate appropriately.

The Boolean circuit utilizing the alternative traversal order is given by Algorithm 3.

Algorithm 3 Boolean circuit implementation of the Quine-McCluskey algorithm for finding all
prime implicants (multidimensional transforms)

Input: indicator set I ∈ {0, 1}3
n

of the support of a Boolean function f : {0, 1}n → {0, 1}
Output: indicator set O ∈ {0, 1}3

n

of the set O ⊆ Σn of prime implicants of f

MergeAll :
1: S ← I
2: for i ∈ {1, . . . , n} do
3: for s ∈ Σn : si = 0 do
4: t← s with i-th position set to 1

5: u← s with i-th position set to ∗
6: (S(s), S(t), S(v))← Merge(S(s), S(t), S(v))

7: M ← S
ReduceAll :

8: S ←M
9: for i ∈ {1, . . . , n} do
10: for s ∈ Σn : si = 0 do
11: t← s with i-th position set to 1

12: u← s with i-th position set to ∗
13: (S(s), S(t), S(v))← Reduce(S(s), S(t), S(v))

14: O ← S

Proposition 2. Algorithm 2 and Algorithm 3 describe the same circuits (up to reordering gates).

Although the circuits produced by the two algorithms are equivalent, the new traversal order
is more regular and easier to implement in software. More importantly, it allows efficient bit-slice
implementation described below.

4.2 Bit-slicing the transforms

While the Boolean circuit structure may be useful for theoretic purposes, for practical purposes it
favors hardware implementations, which does not make sense for this kind of a problem. Therefore,
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it is crucial to optimize a software implementation of the algorithm. For this purpose, we employ
the bit-slicing technique, which is (in particular) commonly used in implementations and designs
of symmetric-key cryptographic primitives such as block ciphers [8].

The idea is that CPU instructions perform operations on full registers, not on single bits. The
most common general register size is ω = 64 bits, while there are vector extensions processing even
more bits at once. Essentially, a bitwise operation such as OR, AND, NOT can be performed on
ω bits in parallel by a single instruction. A straightforward implementation of a Boolean circuit in
software would waste this potential. Furthermore, a Boolean circuit needs to have a very regular
structure to be efficiently bit-sliceable. On the other hand, it is easy to perform batch executions for
any Boolean circuit: the i-th bit in each register is simply associated to the i-th parallel execution.
Besides loading the inputs and reconstructing the outputs (which require single bit manipulations),
the algorithm itself can be executed by simply translating the circuit into a straight-line program
(using arbitrary topological order). In the following, we will use both the batch method and a
custom bit-slice optimization relying on circuit’s regular structure.

Data structure If the working state S ∈ {0, 1}3N is represented by a single bit-stream in the
memory.

We represent the working state S ∈ {0, 1}3n in a two-layer approach. In both layers, the strings
over Σ are treated as base-3 numbers (with ∗ representing the digit 2). For both layers, we employ
0-based indexes, as they are more natural for algorithmic computations.

Notation 1. For a string s ∈ Σn, we associate the integer ρ(s) =
∑n

i=1 3
i−1ρ(si), where ρ(0) =

0, ρ(1) = 1, ρ(∗) = 2.

The bottom layer covers h dimensions, 1 ≤ h ≤ n, while the top layer covers the remaining n−h
dimensions. The whole working state consists of 3n−h independent subsets of Σh, each represented
by a contiguous bit-stream of length 3h closely fitting a single CPU register or a small number of
registers. All such bit-streams are always aligned to the register’s least significant bit and padded
to the register size. When such bit-streams are stored in memory, we will call them blocks. Unused
bits in blocks are not employed (i.e., are wasted). Therefore, it is desirable to choose a block size
equal to a small multiple of the register size close to the maximum power of 3 it fits. Note that a
large multiple implies bigger overhead on bitwise shifts.

Example 3. The 32-bit blocks are well fitted by h = 3: 27/32 bits are used (15% of used memory
is wasted). The 64-bit blocks do not add any value over 32-bit blocks, while 128-bit blocks waste
about 37% of memory. The best fit on practice are 256-bit blocks: with h = 5 only 5% of memory
is wasted, it is a small multiple of 64-bit register size provided by modern high-performance CPUs
and also matches the bit-size of the AVX2 vector extension.

Notation 2. The block in a bottom layer will be denoted by Block ∈ {0, 1}3h . We recall that it

represents a subset of Σ3h by its indicator bit-string of length 3h, while requiring memory of 2ℓ

bits, where ℓ is smallest integer such that 2ℓ ≥ 3h.
A working state S consists of 3n−h blocks of size 3h bits. For a ∈ Σn−h we let S[a] denote the

Block indexed by ρ(a), and for b ∈ Σh we let S[a][b] denote the bit indexed by ρ(b) in the block S[a].
It corresponds to the indicator bit for the minterm string (a||b), where || denotes the concatenation.

Processing the top layer The top layer is straightforward to process as it can be seen as batch
Boolean circuit evaluation, described above. To process i-th dimension, 1 ≤ i ≤ n−h, we consider
all triples of bits at distance 3i−1, non-intersecting and properly aligned. This can be done by
considering groups (of blocks) of size 3i. Inside each block at offset b, we consider first 3i−1 offsets
c inside the block, which correspond to minterms-strings having 0 at position i. The respective
strings having 1 and ∗ at position i are obtained by adding 3i−1 to the index. Thus, the 3 indexes
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corresponding to these strings are given by

(is, it, iu)← (b+ c, b+ c+ 3i−1, b+ c+ 2 · 3i−1),

where b takes values 0, 3i, 2 · 3i, . . . , 3n−h − 3i; c takes values 0, 1, . . . , 3i−1 − 1.

Processing the bottom layer In the bottom layer, the same procedure is applied to each block

independently. Recall that a block is essentially a register v ∈ {0, 1}3h storing the indicator vector
of a subset of Σh having 3h bits, and extra unused bits which we can ignore. When processing a
dimension i covered by the bottom layer, we can extract the subset of relevant indicator bits by a
computing AND with a fixed bitmask. For example, the 0-valued positions in the lowest dimension
correspond to the mask

µ1 = (0, . . . , 0, 0, 0, 1, 0, 0, 1, . . . , 0, 0, 1)

(most-significant bits first), where the first group of zeroes corresponds to the padding (unused
memory). The 1-valued positions can then be extracted by the same mask shifted by 1 position to
the left:

(µ1 ≪ 1) = (0, . . . , 0, 0, 1, 0, 0, 1, 0, . . . , 0, 1, 0),

and the ∗-valued positions are given by one more shift:

(µ1 ≪ 2) = (0, . . . , 0, 1, 0, 0, 1, 0, 0, . . . , 1, 0, 0),

Since the extracted bits need to be aligned to allow computations, it is more convenient to shift
the register before applying the mask. Then, we can apply the Merge/Reduce operations as:

s ← (v ≫ 0) ∧ µ1,

t ← (v ≫ 1) ∧ µ1,

u ← (v ≫ 2) ∧ µ1,

(s, t, u) ← Merge(s, t, u),

v ← (s ≪ 0) ∨ (t ≪ 1) ∨ (u ≪ 2).

In this way, the operation is applied to 3h−1 bit triples at once. This is possible due to the regular
structure of the algorithm, allowing aligning bits by simple shift operation. This approach is easily
generalized to any dimension i, by computing the mask µi via summing bits at indexes given by
is from (4), and replacing the shift amount by 3i−1.

Notation 3. The i-th mask µi ∈ {0, 1}3
h

is defined as

µi =

3h−i∑
b=0

3i−1∑
c=0

e3ib+c,

where ej denotes the unit vector with j-th rightmost bit equal to 1.

Note that, compared to the batch processing of the top layer, which almost fully exploits the
available register (excluding only the unused “padding” bits), an operation in the bottom layer is
performed on approximately only 1/3 of the register’s bits in parallel. In addition, the shift and
mask operations slow down the process even further. Yet, all this operations are performed locally
on a single block, where as the top-layer processing requires more expensive memory accesses.

The full algorithm processing the two layers is given in Algorithm 4. The bit-slicing optimization
can be summarized as full exploitation of a machine’s word size, and generalized to the following
theoretical result.

Theorem 2. In the RAM computational model with ω-bit words, all prime implicants of an ex-
plicitly given Boolean set over n-bits can be computed in O(3nn/ω) bitwise word operations and
memory accesses over a storage of O(3n/ω) words.
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Algorithm 4 Bit-slice implementation of the algorithm for finding all prime implicants

Input: the support I ⊆ {0, 1}n of a Boolean function f : {0, 1}n → {0, 1}
Output: set O ⊆ Σn of prime implicants of f (in the two-layer data structure)

Load input:
1: S ← Two-layer data structure
2: for x ∈ I do
3: (a, b) ∈ Σn−h ×Σh ← x as a Σ-string
4: S[ρ(a)][ρ(b)]← 1

MergeAll :
△ Processing top layer (batch processing)

5: for i ∈ {1, . . . , n− h} do
6: for b ∈ 3i · {0, . . . , 3n−h−i − 1} do
7: for c ∈ {0, . . . , 3i−1 − 1} do
8: (is, it, iu)← (b+ c, b+ c+ 3i−1, b+ c+ 2 · 3i−1)
9: (S[is], S[it], S[iu])← Merge(S[is], S[it], S[iu]) ▷ bit-slice operation on blocks

△ Processing bottom layer (bit-masks manipulation on single blocks)
10: for a ∈ {0, . . . , 3n−h − 1} do ▷ iterate over all blocks
11: for i ∈ {1, . . . , h} do
12: s← (S[a] ≫ 0 · 3i−1) ∧ µi

13: t← (S[a] ≫ 1 · 3i−1) ∧ µi

14: u← (S[a] ≫ 2 · 3i−1) ∧ µi

15: (s, t, u)← Merge(s, t, u)
16: S[a]← (s ≪ 0 · 3i−1) ∨ (t ≪ 1 · 3i−1) ∨ (u ≪ 2 · 3i−1)

ReduceAll :
17: Same operations as in the MergeAll procedure above,

but with Reduce instead of Merge.

Extracting output:
18: O ← ∅
19: for a ∈ Σn−h, b ∈ Σh do
20: if S[ρ(a)][ρ(b)] = 1 then
21: O ← O ∪ (a||b)
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5 SparseQMC: Optimized hash-based implementation for the sparse
case

For a fair comparison, we implemented the classic Quine-McCluskey algorithm using hash-based
neighbor search and various optimizations, which we describe in this section. This implementation
is particularly useful in the sparse case, including the case of random functions with density of
50%.

There also exist a few other heuristic algorithms for the sparse case [20,22], which however are
not sufficiently detailed to be directly and efficiently implemented. For example, these methods
often involve manipulation of formulas defining the function per each prime implicant

Bit-based representation of minterms Each minterm is represented by a 2n-bit value (fitting a
64-bit machine word when n ≤ 31, assuming 2 bits are reserved for control flags). Each 2-bit chunk
represents a symbol from Σ by correspondences 002 7→ 0, 012 7→ 1, 102 7→ ∗. This allows efficient
minterm manipulation and hashing by bitwise operations. A similar idea was proposed in [10,19].

Avoiding repeated implicant generation Each implicant containing w wildcards can be constructed
in w possible pairs of implicants with w − 1 wildcards (per each wildcard position). To avoid
duplicates, it is sufficient to merge minterms on positions that don’t have preceding wildcards. For
example, 1∗∗ can be merged from (10∗, 11∗) and from (1∗0, 1∗1). The latter one can be skipped
as there is a wildcard preceding the merging position 3. However, such skipped pairs might not be
marked as redundant as they should. Therefore, an extra pass over all new implicants is required
to mark all w possible merge pairs as redundant.

This optimization allows, at step w, to first collect all new implicants in a list (which is more
efficient than a hash-table due to sequential memory access), and then to convert it to the hash-
based set Lw (requiring 1 random memory access per element if linear probing is used, see below).
Then, all w merge pairs of each new implicant has to be marked redundant (removed from Lw−1).

Custom hash-based set As described above, the step w of Algorithm 1 can be processed in two
separate stages: generating the full set of implicants Lw, and removing redundant implicants from
Lw−1. A hash-table with linear probing reduces the amount of random memory accesses, which
is crucial for large memory structures. While generally linear probing becomes complicated when
elements are removed, the two-stage process simplifies the implementation: when elements are
removed, they can be simply marked in the hash-space (e.g., by using a control bit) without
performing the expensive shrinking procedure requiring to rehash the whole set. At the end of the
step, non-redundant (prime) implicants are collected and the set can be cleared to free the memory.

6 Experimental evaluation

We implemented the new dense algorithm and the optimized sparse variant in the C++ program-
ming language. In addition, for the dense algorithm, we added obvious optimizations, such as
unrolling the bottom layer dimension loop and merging the bottom layers of Merge and Reduce
(using the fact that the two Reduce layers are independent and can be swapped). The optimized
version performs about 3 times faster than the basic one (measured on n = 22).

Experiments were performed on a single core of an AMD EPYC 3.2 GHz CPU, run on the
Ubuntu Server OS 1 inside a QEMU 2 virtual machine, with 1 TiB of RAM available. The code
was compiled using the GNU g++ compiler (version 9.4.0). Time measurements and memory re-
quirements are listed in Table 1 and illustrated in Figure 1. Measurements were done on single
runs due to time constraints.

The source code is publicly available at

1 https://ubuntu.com/download/server
2 https://www.qemu.org/
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github.com/hellman/Quine-McCluskey
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